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Abstract

The pipeline of modern statistical machine
translation (SMT) systems consists of sev-
eral stages, presenting interesting oppor-
tunities to tune it towards improved per-
formance on distant language pairs like
Japanese and English. We explore modifi-
cations to several parts of this pipeline. We
include a preordering method in the pre-
processing stage, a neural network based
model in the tuning stage and a recurrent
neural network languagemodel in the post-
processing stage.
To our knowledge this is the first work
tightly integrating a neural network based
model into the tuning stage of a SMT
system for the Japanese-English language
pair. As a first step in this direction we pro-
vide several insights into how this integra-
tion should be approached and give rise to
future work in this area.

1 Introduction

Modern models for statistical machine translation
constitute a pipeline of different components. This
pipeline usually involves a preprocessing part, a
language model, a translation model and a post-
processing part. While this or a similar structure is
basis of most systems and generally agreed upon,
a lot of research has been focusing on modifying
and extending the individual components.
Many parts rely on probabilities acquired

through word frequencies in fixed contexts, dis-
carding additional syntactical and semantical in-
formation. Problems arising from these strong
assumptions become particularly apparent when
dealing with distant language pairs like Japanese
and English.
We focus exclusively on translating Japanese

sentences to English and take several measures to

inject additional information into the pipeline of
our baseline system.

• We apply preordering to the input text as
a way of compensating for syntactic differ-
ences between English and Japanese.

• We insert scores into the translation model of
our baseline system that are computed from
semantically meaningful distributed vector
representations.

• As postprocessing, we utilize a recurrent neu-
ral network language model to re-score the
100 best translation candidates for each out-
put sentence of our system. Being able to han-
dle variable length context, it complements
the n-gram based language model used within
the pipeline.

2 System

We built our baseline system with Moses (Koehn
et al., 2007) as a phrase-based machine translation
system loosely following the setup described by
the WAT 2014 organizers (Nakazawa et al., 2014),
with some modifications.
We will quickly go through every step of our

training.

1. Tokenization (section 3)
2. Training of compositional distributed vector

representations (section 2.1.2)
3. Preordering (section 2.1.1)
4. Generation of 6-gram language model with

SRILM
5. Training of translationmodel withMGIZA++
6. Tuning with compositional distributed se-

mantics features
7. Translation of devtest and test set using

Moses decoder
8. Training of RNN LM and reranking of 100

best translation candidates for every sentence
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9. Evaluation of final output through BLEU and
RIBES scores and submission to WAT 2014
human evaluation

2.1 Extensions

In the following, we will describe the modifica-
tions to our baseline system. They are grouped into
three parts, one part describing the preordering of
the Japanese input text, the second part explain-
ing the integration of a neural network based dis-
tributed compositional semantics model and lastly,
the reranking of the translation candidates for each
sentence using a recurrent neural network lan-
guage model.

2.1.1 Preordering Japanese Text
We employ a preordering method for Japanese-to-
English translation. We preorder the input text in
the preprocessing stage to reduce the difference be-
tween the word order of the Japanese input sen-
tence and the word order of the English target sen-
tence.
Parts of a Japanese sentence can be scram-

bled/shuffled without changing the meaning of
the sentence or making it grammatically incor-
rect. Therefore, one English sentence can poten-
tially correspond to several shuffled variations of
the same Japanese sentence.
Yoshida et al. (2014) show that normalizing the

word order of Japanese sentences can benefit read-
ability.
Taking scrambling into account not only in-

creases readability, it also plays an important
role in machine translation (Isozaki et al., 2014).
Hayashi et al. (2013) were able to improve the
results of statistical machine translation systems
by generating English determiners in the Japanese
input text and reordering its words. Kudo et al.
(2014) applied preordering and generated zero-
subjects to achieve state-of-the-art results on a
web-text corpus.
We employ the preordering rules introduced in

(Hoshino et al., 2014) to reduce order ambiguity in
the Japanese input text. This method has achieved
state-of-the-art results on the NTCIR patent cor-
pus.
Following thismethod, we parse input sentences

with the Japanese dependency parser KNP to ob-
tain chunked1 dependency and coordination labels
corresponding to the dependency. After that, we

1This chunk actually is a bunsetsu, a linguistic unit in
Japanese, as used in (Yoshida et al., 2014)

apply the following three rules: Rule 1 transforms
each chunked sentence into a form that is more
suitable for the preordering rules that follow this
step. Rule 2 reorders entire chunks while Rule 3
reorders the words inside of every chunk resulting
in the final reordered version of the sentence.

Rule 1 (chunking) Given an input sentence with
l chunks (input = c1 c2 ... cl) we
merge all coordinated chunks into one chunk
(c1 c2 ... cl → c1 c2 ... cm wherem ≤ l). Af-
ter that, we split punctuations2 from chunks
applying the following rules:

Rule 1-A A chunk cx(1 < x ≤ m) will not
be split when a predecessor chunk cx−1 is a
noun.

Rule 1-B Even if Rule 1-A is applied to a chunk
cx, the chunk will be split into three new
chunks (words,particle,punctuation) if this
chunk ends with a particle3 .

Rule 1-C A chunk cx will always be split into
words and punctuation when it ends with a
punctuation.

Rule 2 (inter-chunk reordering) After Rule 1
produced a new chunked sentence, all of the
n chunks between punctuations (c1 c2 ... cn
where cx(1 ≤ x ≤ n) is not a punc-
tuation) are reordered (c1 c2 ... cn →
w1 ... wq−1 ci−1 ... c1 wq cn ... ci+1), where a
chunk ci(1 ≤ i ≤ n) contains q words, end-
ing with a particle word (ci = w1, ..., wq−1wq

where wq is a particle).
Rule 3 (intra-chunk reordering) Given a chunk

cx which has p content words and q function
words (cx = w1 ... wp wp+1 ... wp+q),
we swap the content words and the func-
tion words, then reverse the function words
(cx = w1 ... wp wp+1 ... wp+q →
wp+q ... wp+1 w1 ... wp).

Figure 1 illustrates how the introduced preorder-
ing rules are applied to an example sentence.
The sentence comprises 6 chunks two of which are
labeled as coordinated by the KNP parser (表1と
and図2は).
Step 1 displays the basic, unaltered source sen-
tence. In the second step the two coordinated

2We only regard Japanese comma “、” or period “。” as
punctuation.

3Weonly consider the Japanese topic casemarker particles
“ga” and “ha”.
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Figure 1: Illustration of the pre-ordering rules described in 2.1.1 to an example.

chunks aremerged into one following Rule 1. Rule
1, Rule 1 A, B and C result in several splits (topic
marker,“.”, “,”) in step 3.
In step 4, Rule 2 causes “represent” and “follow-
ing” to be switched. Finally, Rule 3 is applied in
step 5 and affects only the Japanese text. いる and
を, both labeled as function words by the parser.

2.1.2 Compositional Distributed Semantics
Many machine learning algorithms require fixed
length vectors as input. Of the various differ-
ent ways to map words to vectors, neural network
based models have proven very effective recently.
Vector representations (embeddings) created by

these models have been utilized as features to
achieve state-of-the-art results in several differ-
ent Natural Language Processing tasks (Collobert
et al., 2011; Mikolov et al., 2013; Baroni et al.,
2014), giving rise to many new variants. Meth-
ods have been developed that are capable of em-
bedding words from different languages into the
same vector space (Zou et al., 2013), there are
models that can induce representations of whole
phrases or sentences instead of only single tokens
(Socher et al., 2010; Le and Mikolov, 2014; Bla-
coe and Lapata, 2012) and there are models imple-
menting a mixture of these two ideas, embedding
phrases from different languages into the same
vector space (Hermann and Blunsom, 2014; Cho
et al., 2014).
Work has been published about integrating em-

beddings and neural network models into the
statistical machine translation pipeline for vari-
ous language combinations, however, we are not
aware of any previous work attempting this for the
Japanese/English language pair.
As a first step in this direction, we integrate the

model introduced byHermann et al. (Hermann and
Blunsom, 2014) into our baseline system, specif-
ically, we use a slightly modified version of the
“BI” model described in the paper.

Figure 2: Illustration of model described in (Her-
mann and Blunsom, 2014), slightly modified to
use mean instead of addition

From this point on we will refer to the model
as embedding model or neural network model.
Learned in an unsupervised way, we hope to indi-
rectly inject context knowledge through the neural
network model into our baseline machine transla-
tion system.
Figure 2 illustrates how the model is trained.

The training is centered around a model M that
looks up a word representation wi for each word
in a given sentence and combines them by wrap-
ping a hyperbolic tangent function (tanh) around
the sum of the vectors of each bi-gram and com-
puting the mean of these intermediate results. The
original version described in (Hermann and Blun-
som, 2014) applies addition instead of the mean.
However, in preliminary experiments on an infor-
mation retrieval task we obtained more promising
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results using the mean and therefore decided to ex-
ploit this insight.
One training step requires this model to be ap-

plied to three sentences: One English sentence, the
Japanese sentence aligned to this English sentence
and a Japanese sentence chosen at random from the
corpus. There are two sets of word representations,
a Japanese set and an English set, that are initially
initialized at random by sampling values from a
Gaussian centered at 0with a standard deviation of
0.1. When looking up the vector representations to
compose in the model, we choose the set of repre-
sentations corresponding to the language that the
currently handled sentence is in.
During training we then modify the word vec-

tors to minimize the Euclidean distance between
the vectors composed for the sentences of the
valid, sentence aligned Japanese-English sentence
pair and maximize the distance between the vec-
tors of the English sentence and the randomly sam-
pled Japanese sentence. By repeating this proce-
dure for many sentence pairs the model learns to
distinguish between valid translation pairs and in-
valid, randomly sampled pairs. At application time
we exploit this property and compute a normalized
distance between two given phrases or sub-phrases
to judge their similarity.
Because this model only weakly incorporates

order information on the bi-gram level it is appli-
cable to very short phrases and even single tokens
and can potentially even deal with preordered text.
Due to this flexibility we can insert it into almost
any part of the machine translation pipeline.
We trained the model on the 1 million parallel

sentences in ASPEC that feature the highest align-
ment scores. We omitted the remaining 2 million
sentence pairs completely to avoid introducing er-
rors caused by incorrect alignment. Replacing to-
kens that occur less than 6 times in the training set
resulted in more stable learning and better perfor-
mance on a simple information retrieval task. Af-
ter hyperparameter optimization the vectors in our
embedding model were chosen to be 128 dimen-
sional, the margin for the noise-contrastive objec-
tive was set to 1.0 and we regularized the word
representations with a l2-regularization of 10−5.
For faster trainingwe utilized RMSProp (Tieleman
andHinton, 2012) with a decay of 0.99 and a learn-
ing rate of 0.001.
We explored two ways to include the method

into our baseline system.

Feature Function We created a new feature func-
tion that is utilized in the tuning phase of
the log-linear translation model of our base-
line. Moses allows us to access the text
of each sub-phrase candidate pair evaluated
during decoding. For each sub-phrase we
compute its corresponding Japanese and En-
glish vector representation using our embed-
ding model. We proceed by calculating a
similarity score between the English and the
Japanese sub-phrase vector. We chose the an-
gular similarity, a normalized version ([0, 1])
of the cosine similarity, as it was superior to
the Euclidean similarity in our previous ex-
periments on an information retrieval task.
Depending on the outcome we create one of
3 Sparse Features. One feature for highly
similar phrases (similarity > 0.5), one for
less similar phrases (similarity ≤ 0.5) and
one for out-of-vocabulary cases where none
of the tuples in one or both phrases could
be found. This feature split is necessary to
counteract problems with out-of-vocabulary
cases. We encountered these cases specifi-
cally for phrases containingmostly named en-
tities. Named entities are often not part of
the pre-trained word representations. Even
though moses would translate these tokens
correctly (often just by transliteration) the
score produced by the neural model would be
not defined due to out-of-vocabulary errors.
Not using this feature split lead to very poor
performance.

Phrase Table We computed a score for each
phrase tuple in the phrase table of our sys-
tem, following (Cho et al., 2014). We iterated
through all phrase combinations present in the
phrase table and added an additional similar-
ity score computed by the neural model in
the same way as described above for the fea-
ture function case. This does not require ex-
tending our baseline system, the system only
needs to incorporate one more feature when
reading the phrase table.

2.1.3 Reranking with the Recurrent Neural
Network Language Model

Neural Networks have been applied successfully
in language modeling tasks over the past years
(Mikolov et al., 2011a) and are increasingly often
found in combination with or as an extension to
statistical machine translation systems (Devlin et

58



al., 2014; Cho et al., 2014; Zhang et al., 2014; Liu
et al., 2014).
We employ the Recurrent Neural Network Lan-

guage Model Toolkit (RNNLM) (Mikolov et al.,
2011b) to rerank the 100 best translation candi-
dates for each sentence and use the best candidates
for our submission.

3 Data
We use only the provided ASPEC corpus and do
not rely on any external resources. We train our
language model with all 3 million sentences of the
training set. For the translation model we only uti-
lize the top 1 million sentences (regarding align-
ment scores). For hyperparameter tuning we use
the development split of the corpus. Our prelim-
inary evaluation is conducted on the devtest split,
only the final results specified in the paper were
calculated on the test split.
The default moses tokenization script does not

perform Unicode NFKC normalization. Convert-
ing Japanese full width roman characters to half
width characters is crucial to tackle transliteration
cases from Japanese to English. Therefore we ap-
ply the following preprocessing steps before exe-
cuting the moses tokenization script.

1. Conversion of XML entity names to Unicode
characters

2. Character normalization by Unicode NFKC
and deletion of double spaces

3. First letter lowercasing in all sentences with-
out an all-uppercase first word

4. Conversion of double quotations to “ and ”
5. Commas, periods, and round brackets were

regarded as tokens

In the final submissions, we applied the Moses de-
tokenization script and converted the first letter of
each sentence to upper case in order to avoid pos-
sible biases in the human evaluation.

4 Evaluation
We evaluated our results on the test split pro-
vided with the ASPEC corpus. To avoid tok-
enization mismatches we applied the same tok-
enization method to the test set that we had pre-
viously used on the training set and computed
BLEU and RIBES scores with the Travatar4 scor-
ing script. The scores published on the WAT auto-

4http://www.phontron.com/travatar/
evaluation.html

Preordering Embeddings BLEU RIBES

No None (Baseline) 19.16 63.41
No Feature Function 18.95 63.48
No Phrase Table (full) 18.82 63.23

Yes Feature Function 18.92 61.76
Yes None (Baseline) 18.55 61.44
Yes Phrase Table (full) - -

No Phrase Table (1 col) 14.53 60.59

Table 1: Scores for different ways to include the
Compositional Distributed Semantics model, with
and without preordering. In the Feature Function
setting, the embedding model was integrated as
a feature function into Moses; in the Phrase Ta-
ble setting we employed the model to produce a
score for each entry in the phrase table of the base-
line translation model. (full) means that we used
the default moses scores plus the newly computed
score, for (1 col) we used only the score without
the Moses default scores.

matic evaluation website differ due to tokenization
mismatches.

4.1 General Experiments

As listed in Table 1 our baseline achieved a score
of 19.16 BLEU and 63.41 RIBES. Both of these
scores can be considered low compared to results
acquired e.g. on the Chinese to Japanese task of
WAT 2014 where the phrase-based baseline model
provided by the organizers achieved a BLEU score
of 27.96. The same baseline system only achieved
18.45 on the Japanese to English task which con-
firms that the Japanese to English translation task
is highly difficult.
Settings with preordering consistently perform

worse than their counterparts without preordering,
even though the employed preordering method has
proven very successful (Hoshino et al., 2014) on
the NTCIR patent corpus before. We suspect the
main cause to be the different domain of the text.
The NTCIR workshop revolved around text from
the patent and legal domain while WAT 2014 is
based on the ASPEC corpus comprising abstracts
from scientific papers. Sentences in patent and
legal text must be phrased in a very concise and
unambiguous way and therefore feature a lot of
recurring phrases. Writers of scientific text have
more freedom to express content in English and
can draw from a larger set of ways to phrase their
ideas. This looser structure leads to mismatches
when applying the heuristic preordering rules.
Both ways to integrate the scores computed with
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the neural network model into the Moses pipeline
perform roughly equally well, falling just a little
short of the baseline but failing to beat it. (see
Phrase Table (full) and Feature Function)
Examining phrase pairs and their scores re-

vealed that the scores make sense in general, even
identifying transliterations correctly with a high
confidence. However, themodel fails to capture an
important property that prevents it from contribut-
ing information to Moses that is not already cov-
ered by the default features. It almost entirely ne-
glects syntactic structure. Because of its objective
to only distinguish valid translations from invalid
ones, the model learns to ignore special charac-
ters, determiners and other words that do not pos-
sess a high discriminative value. The translation
hypotheses of our baseline system, however, in-
clude many cases where the recognition of syntax
and special characters is crucial to assign sensible
scores. The values of word vectors of many stop
words, determiners and special characters reveal
that most of them are in close proximity to the zero
vector. This vector consisting only of zeros consti-
tutes the neutral element of the mean function as
well as the hyperbolic tangent. Therefore, having
or not having such a token in a sentence will only
marginally change the composed representation.
This issue becomes particularly problematic for

pairs of the form

Japanese English

トークン token
トークン token !
トークン the token the the

All three of these examples will have an almost
identical score since the vectors of “!” and “the”
were learned to be very close to the zero vector.
In an information retrieval context where pro-

cessed sentences are sensible and sane, this prop-
erty does not pose a huge problem. However, in
the case of a phrase table or hypotheses in the tun-
ing stage of an SMT system, cases like the one il-
lustrated above occur regularly and should exhibit
not the same but very different scores.
The Phrase Table (1 col) setting achieves 14.53

BLEU without utilizing the default Moses scores
in the phrase table. We were surprised that having
only one score value in the phrase table the sys-
tem could reach a BLEU value that is not on an
entirely different level than the baseline. We leave
it to future research to investigate to what extend

System averaged Kendall’s tau

Baseline 0.2990
Baseline + Preordering 0.3712

Table 2: Preordering Evaluation with Kendall’s
tau.

the neural model score can substitute the default
Moses scores.

4.2 Preordering

To separate the evaluation of our preordering
method from the machine translation evaluation,
we calculated an intrinsic quality measure specific
to preordering.
We apply the procedure previously introduced

by (Isozaki et al., 2010b; Hoshino et al., 2014).
In our baseline method we rely on MGiza++ to

align Japanese and English sub-phrases. Without
preordering MGiza++ will perform a lot of non-
monotonic alignments. The goal of preordering
is to reduce the number of these non-monotonic
alignments, in the best case leading to exclusively
monotonic alignments. Utilizing Kendall’s tau we
can compare the alignments resulting from input
with andwithout preordering. The closer this coef-
ficient is to 1.0, the more monotonic are the align-
ments and the higher is the intrinsic benefit of the
preordering. Table 2 lists the averaged coefficients
computed with the baseline and the preordered in-
put. It shows that our preordering performs bet-
ter than the non-preordered system on this intrinsic
measure.
Observations at the previously held NTCIR

workshops indicated that better values in this mea-
sure correspond to better machine translation qual-
ity in terms of automatic as well as human evalua-
tion. Our results in section 4.1 show that this intu-
ition does not hold for the ASPEC corpus.

4.3 RNNLM Reranking

After training our baseline system including the
neural network score feature function and obtain-
ing 100 translation candidates for each input sen-
tence of the test set, we apply the Recurrent Neu-
ral Network Language Model toolkit described
in (Mikolov et al., 2011b) to re-rank these 100-
best candidates according to their language model
score.
Mikolov’s implementation offers a variety of

hyperparameters to tune the neural network train-
ing for optimal performance. Specifically, we
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RIBES BLEU hidden direct Preordering

63.90 18.37 300 150 No
63.74 18.40 300 100 No
63.72 18.61 200 100 No
63.66 18.30 200 150 No
63.41 19.16 - - No
62.06 18.36 200 100 Yes
62.03 18.29 200 150 Yes
61.99 18.34 300 150 Yes
61.98 18.48 300 100 Yes
61.44 18.55 - - Yes

Table 3: Results for training the RNN LM with
different hyperparameters applying it to re-rank
the 100 best translation candidates for each out-
put sentence of our SMT model. We varied the
number of hidden units (hidden), the number of di-
rect connections from input to output layer (direct)
and kept the number of classes for the factored
softmax fixed at 220 (following the recommenda-
tion in (Mikolov et al., 2011b) with #classes =√
size of vocabulary) and the number of steps of

backpropagation-through-time fixed at 5. The pre-
ordered column indicates whether the preordering
described in (Hoshino et al., 2014) was applied.

BLEU RIBES human

Baseline 17.47 63.08 -5.750
Baseline + Preordering 17.01 61.08 -14.250

Table 4: Scores fromWAT 2014 evaluation board.

adapted the number of hidden units and the num-
ber of direct connections from the input to the
output layer. To choose the best settings we
evaluated several configurations, the results for
some of these configurations are displayed in Ta-
ble 3. Reranking the translation candidates with
the RNNLM improves the RIBES score while
BLEU decreases instead. This pattern is consis-
tent over all settings displayed in the table. Fur-
ther, all settings with preordering perform worse
than their counterparts without preordering. This
goes along with previous observations presented
in Table 1. The RIBES measure was specifically
designed with distant language pairs like English
and Japanese in mind(Isozaki et al., 2010a). With
an increase of almost 0.5 from the non-preordered
baseline to the best results with reranking and
even more improvement for the preordered case,
we conclude that reranking with an RNNLM im-
proved our translation results significantly.

4.4 WAT 2014 Evaluation Board

The BLEU and RIBES scores on the official eval-
uation board as reported in Table 4 differ largely
from the results presented in Table 1. This is due
to tokenization mismatches.
Since our baseline system differs slightly from

the system provided by the WAT 2014 organizers
we submitted our baseline as a point of reference
for our own experiments to the human evaluation.
As our second submission to the human evalua-
tion we chose our baseline with preordering. Pre-
ordering has proven successful in previous NTCIR
workshops but has failed to improve upon the base-
line in WAT 2014.
Table 4 shows that our baseline performs

slightly worse than the baseline of the organizers.
We are primarily interested in the difference be-
tween our baseline and our baseline with preorder-
ing. The human evaluation confirms that preorder-
ing has a negative effect when applied to the AS-
PEC corpus. According to the WAT 2014 home-
page, the scores of the human evaluation are calcu-
lated by repeatedly comparing sentences from the
submissions to their corresponding outputs of the
baseline system provided by the organizers. They
therefore indicate how a submission performs in
comparison to the organizer’s baseline. The fine
grained results of the human evaluation in WAT
2014 offer a good opportunity to investigate the
effects of our preordering method.
Examples illustrating the effect of the applied

preordering method are shown in Table 5. We only
picked examples featuring clear annotator agree-
ment. -1 indicates that the organizers’ baselinewas
assessed as superior to our system, 1 that it was
evaluated to be inferior.
The biggest change in both of the examples shown
in Table 5 was induced by the same preordering
rule (Rule 2). Due to the lack of a topic marker in
both source sentences Rule 2 caused the main verb
to be brought to the front of the sentence.
Despite the similarity in the preprocessing step the
quality of the translations differs heavily. While
Example 2 was evaluated as superior to the orga-
nizers’ baseline, Example 1 was received as just
the opposite.
In example 1, the preordered main verb (“dis-
cussed”) was omitted entirely in the output of our
system, changing the meaning from a discussion to
a statement.
On the contrary, the output of our system for ex-

61



Example 1: Negative Impact of Preordering

human judgment -1 -1 -1
Source プラスチック以外の非金属製の義肢装具材料について論じた。

Preordered Source 論じた ついて に 義肢 装具 材料 の 非 金属 製 の プラスチック 以外 。
Baseline + Preordering The non ‐ metallic materials of a prosthesis apparatus is made of plastics.

Organizers’ The non ‐ made of metal except for the plastic prosthesis apparatus material are discussed.
Reference Artificial limb apparatus nonmental material other than plastic is discussed.

Example 2: Positive Impact of Preordering

human judgment 1 1 1
Source 標記の新しいインライン流量計を開発した。

Preordered Source 開発 した を インライン 流量 計 新しい の 標記 。
Baseline + Preordering We have developed a new in-line flowmeter.

Organizers’ The titled new in-line flowmeter was developed.
Reference The titled new in‐line flowmeter was developed.

Table 5: Positive and negative effects of preordering

ample 2 shows a very natural structure, following
the word order of the preordered Japanese source
almost exactly.

5 Conclusion and Future Work

In this work we investigated several modifications
and insertions to the pipeline of our baseline statis-
tical machine translation system.
In the preprocessing phase we preordered the

Japanese input text to compensate for order dif-
ferences in the distant Japanese-English language
pair. In the tuning phase of our decoder we eval-
uated different ways to include phrase similarity
scores computed utilizing a neural network based
compositional distributed semantics model. In the
postprocessing phase we reranked the translation
candidates for each sentence according to scores
calculated with a recurrent neural network lan-
guage model.
To our knowledge this is the first attempt to uti-

lize neural network features directly integrated into
the tuning and decoding process of a SMT system
in a Japanese-English translation task. We there-
fore regard this work a first step towards improving
Japanese to English translation systems by tightly
coupling them with neural networks.
Our experiments show that preordering fails to

yield the same improvements in the scientific pa-
per domain that it has previously achieved on text
from the legal/patent domain. We attribute this to
the difference in the rigidness of possible formu-
lations in these domains. The heuristic rules our
preordering method is based on can better capture
themore rigid sentences in the patent domainwhile
they are prone to mismatches on the less rigid sen-
tences in the scientific paper domain.
We conclude that neural networks utilized in

machine translation should take word order into
account and should be trained towards objectives
that do not neglect syntactic features. The seman-
tic similarity that can be captured by the model de-
scribed in (Hermann and Blunsom, 2014) appears
to be already sufficiently covered by the default
features of our baseline system for the case of ma-
chine translation.
Employing the recursive neural network lan-

guage model introduced by Mikolov et al.
(Mikolov et al., 2011a) has proven successful for
reranking translation candidates and significantly
improved the RIBES score in our experiments.
Recent work (Devlin et al., 2014; Cho et al.,

2014; Zhang et al., 2014; Liu et al., 2014) proves,
there is a lot of potential in utilizing neural network
based models in the machine translation pipeline.
With the lessons learned from our work we hope
for successful applications of this combination to
the Japanese-English language pair in the future.
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