
SPMRL-SANCL 2014

First Joint Workshop on Statistical Parsing of
Morphologically Rich Languages and Syntactic Analysis of

Non-Canonical Languages (SPMRL-SANCL 2014)
#
ad
h
oc

Proceedings of the Workshop

c©2014 The Authors

The papers in this volume are licensed by the authors under a Creative Commons Attribution
4.0 International License. Feel free to print your own copy.

The graphic on a titlepage is based on a work by Randall Munroe (XKCD 724: Hell, xkcd.com/724/) and is
licensed under a Creative Commons Attribution NonCommercial 2.5 License.

ISBN 978-1-941643-30-3
Proceedings of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic
Analysis of Non-canonical Language (SPMRL-SANCL)
Yoav Goldberg, Yuval Marton, Yannick Versley, Özlem Çetinoǧlu, Ines Rehbein, Joel Tetreault, Sandra Kübler,
Djamé Seddah and Reut Tsarfaty (eds.)

ii

Introduction

The papers in these proceedings were presented at the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages (SPMRL-
SANCL 2014), held in Seattle, USA, on October 18th, 2013, in conjunction with the 25th international
Conference on Computational Linguistics (Coling 2014).

SPMRL-SANCL is endorsed by the ACL SIGPARSE interest group and provides a forum for research in
parsing morphologically-rich languages and non-canonical language, with the goal of identifying cross-
cutting issues in the annotation and parsing methodology, in the face of more flexible word order and/or
higher word-form variation, or lexical sparseness and ad-hoc structures than English newspaper text.

SPMRL has also been host to discussions on realistic and appropriate evaluation methods that can be
applied in the face of morphological and/or segmentation ambiguities; these discussions have culminated
in the first shared task for parsing morphologically-rich languages, co-located with SPMRL 2013, and
the second shared task for semi-supervised parsing of morphologically-rich languages, co-located with
SPMRL 2014. The proceedings include nine contributions to the workshop as well as one system
description from the shared task. The workshop included a keynote talk by Joakim Nivre (Uppsala).

We would like to thank all submitting authors for their contributions, the program committee for their
fine work on reviewing the submissions, the participants of the shared task for their contributions and
of course our invited speaker. For their precious help preparing the SPMRL 2014 Shared Task and
for allowing their data to be part of it, we warmly thank and the Linguistic Data Consortium, the
Knowledge Center for Processing Hebrew (MILA), the Ben Gurion University, Columbia University,
Institute of Computer Science (Polish Academy of Sciences), Korea Advanced Institute of Science and
Technology, University of the Basque Country, Uppsala University, University of Stuttgart, University of
Szeged, University Paris Diderot (Paris 7), University of Marne La Vallée, and University of Tübingen.
We gratefully acknowledge the contribution of Språkbanken and the University of Gothenburg for
providing the PAROLE corpus and the help of Dr. Jungyeul Park and Prof. Key-Sun Cho for the KAIST
annotated news corpus. Finally, we would also like to thank the ACL SIGPARSE interest group for
their endorsement, for the support of INRIA’s Alpage project, and everybody who participated in the
workshop and contributed to the discussions.

Yoav Goldberg, Yuval Marton, Ines Rehbein, Yannick Versley, Özlem Çetinoğlu, Joel Tetrault
(Workshop organisers)

Sandra Kübler, Djamé Seddah and Reut Tsarfaty
(Shared Task organisers)

iii

Workshop Organizers

Yoav Goldberg (Bar Ilan University, Israel)

Yuval Marton (Microsoft Corp., US)

Ines Rehbein (Potsdam University, Germany)

Yannick Versley (Heidelberg University, Germany)

Özlem Çetinoğlu (University of Stuttgart, Germany)

Joel Tetreault (Yahoo! Labs, US)

SANCL Special Track

Ines Rehbein (Potsdam University, Germany)

Djamé Seddah (Université Paris Sorbonne & INRIA’s Alpage Project, France)

Özlem Çetinoğlu (University of Stuttgart, Germany)

Joel Tetreault (Yahoo! Labs, US)

SPMRL Shared Task

Sandra Kübler (Indiana University, US)

Djamé Seddah (Université Paris Sorbonne & INRIA’s Alpage Project, France)

Reut Tsarfaty (Weizmann Institute of Science, Israel)

Invited Speaker:

Joakim Nivre (Uppsala University)

v

Program Committee:

Bernd Bohnet (University of Birmingham, UK)
Marie Candito (University of Paris 7, France)
Aoife Cahill (Educational Testing Service, US)
Jinho D. Choi (University of Massachusetts Amherst, US)
Grzegorz Chrupała (Tilburg University, Netherlands)
Markus Dickinson (Indiana University, US)
Stefanie Dipper (Ruhr-Universität Bochum, Germany)
Jacob Eisenstein (Georgia Institute of Technology, US)
Richárd Farkas (University of Szeged, Hungary)
Jennifer Foster (Dublin City University, Ireland)
Josef van Genabith (DFKI, Germany)
Koldo Gojenola (University of the Basque Country, Spain)
Spence Green (Stanford University, US)
Samar Husain (Potsdam University, Germany)
Sandra Kübler (Indiana University, US)
Joseph Le Roux (Université Paris-Nord, France)
John Lee (City University of Hong Kong, China)
Wolfgang Maier (University of Düsseldorf, Germany)
Takuya Matsuzaki (University of Tokyo, Japan)
David McClosky (IBM Research, US)
Detmar Meurers (University of Tübingen, Germany)
Joakim Nivre (Uppsala University, Sweden)
Kemal Oflazer (Carnegie Mellon University, Qatar)
Adam Przepiórkowski (ICS PAS, Poland)
Owen Rambow (Columbia University, US)
Kenji Sagae (University of Southern California, US)
Benoît Sagot (Inria, France)
Djamé Seddah (Univ. Paris Sorbonne, France)
Wolfgang Seeker (University of Stuttgart, Germany)
Anders Søgaard (University of Copenhagen, Denmark)
Reut Tsarfaty (Weizmann Institute of Science, Israel)
Lamia Tounsi (Dublin City University, Ireland)
Daniel Zeman (Charles University, Czech Republic)

vi

Table of Contents

Parsing German: How Much Morphology Do We Need?
Wolfgang Maier, Sandra Kübler, Daniel Dakota and Daniel Whyatt . 1

Joint Ensemble Model for POS Tagging and Dependency Parsing
Iliana Simova, Dimitar Vasilev, Alexander Popov, Kiril Simov and Petya Osenova 15

Improving the parsing of French coordination through annotation standards and targeted features
Assaf Urieli . 26

Experiments with Easy-first nonprojective constituent parsing
Yannick Versley . 39

Exploring Options for Fast Domain Adaptation of Dependency Parsers
Viktor Pekar, Juntao Yu, Mohab El-karef and Bernd Bohnet . 54

Self-Training for Parsing Learner Text
Aoife Cahill, Binod Gyawali and James Bruno . 66

The effect of disfluencies and learner errors on the parsing of spoken learner language
Andrew Caines and Paula Buttery . 74

Initial Explorations in Two-phase Turkish Dependency Parsing by Incorporating Constituents
İlknur Durgar El-Kahlout, Ahmet Afşın Akın and Ertugrul Yılmaz. .82

Experiments for Dependency Parsing of Greek
Prokopis Prokopidis and Haris Papageorgiou . 90

Introducing the IMS-Wrocław-Szeged-CIS entry at the SPMRL 2014 Shared Task: Reranking and Morpho-
syntax meet Unlabeled Data

Anders Björkelund, Özlem Çetinoğlu, Agnieszka Faleńska, Richárd Farkas, Thomas Mueller, Wolf-
gang Seeker and Zsolt Szántó . 97

Introducing the SPMRL 2014 Shared Task on Parsing Morphologically-rich Languages
Djamé Seddah, Sandra Kübler and Reut Tsarfaty . 103

vii

Conference Program

Sunday August 24, 2014

9:00 Opening

9:05 Invited Talk: Universal Dependency Parsing (Joakim Nivre)

SPMRL

10:00 Parsing German: How Much Morphology Do We Need?
Wolfgang Maier, Sandra Kübler, Daniel Dakota and Daniel Whyatt

10:30 (coffee break)

11:00 Joint Ensemble Model for POS Tagging and Dependency Parsing
Iliana Simova, Dimitar Vasilev, Alexander Popov, Kiril Simov and Petya Osenova

11:30 Improving the parsing of French coordination through annotation standards and
targeted features
Assaf Urieli

12:00 Experiments with Easy-first nonprojective constituent parsing
Yannick Versley

12:25 (lunch)

SANCL

14:00 Exploring Options for Fast Domain Adaptation of Dependency Parsers
Viktor Pekar, Juntao Yu, Mohab El-karef and Bernd Bohnet

14:30 Self-Training for Parsing Learner Text
Aoife Cahill, Binod Gyawali and James Bruno

14:50 The effect of disfluencies and learner errors on the parsing of spoken learner lan-
guage
Andrew Caines and Paula Buttery

15:30 Poster session (SPMRL short papers and shared task)

ix

Sunday August 24, 2014 (continued)

SPMRL short papers

Initial Explorations in Two-phase Turkish Dependency Parsing by Incorporating Con-
stituents
İlknur Durgar El-Kahlout, Ahmet Afşın Akın and Ertugrul Yılmaz

Experiments for Dependency Parsing of Greek
Prokopis Prokopidis and Haris Papageorgiou

SANCL special session

I lack words and I don’t know why: Solving elliptical structures in the syntactic annotation
of private letters (Clara Pinto and Catarina Carvalheiro)

SPMRL shared task

Introducing the IMS-Wrocław-Szeged-CIS entry at the SPMRL 2014 Shared Task: Rerank-
ing and Morpho-syntax meet Unlabeled Data
Anders Björkelund, Özlem Çetinoğlu, Agnieszka Faleńska, Richárd Farkas, Thomas
Mueller, Wolfgang Seeker and Zsolt Szántó

Introducing the SPMRL 2014 Shared Task on Parsing Morphologically-rich Languages
Djamé Seddah, Sandra Kübler and Reut Tsarfaty

x

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 1–14 Dublin, Ireland, August 23-29 2014.

Parsing German: How Much Morphology Do We Need?

Wolfgang Maier
Heinrich-Heine-Universität Düsseldorf

Düsseldorf, Germany
maierw@hhu.de

Sandra Kübler
Indiana University

Bloomington, IN, USA
skuebler@indiana.edu

Daniel Dakota
Indiana University

Bloomington, IN, USA
ddakota@indiana.edu

Daniel Whyatt
Indiana University

Bloomington, IN, USA
dwhyatt@indiana.edu

Abstract

We investigate how the granularity of POS tags influences POS tagging, and furthermore, how
POS tagging performance relates to parsing results. For this, we use the standard “pipeline”
approach, in which a parser builds its output on previously tagged input. The experiments are
performed on two German treebanks, using three POS tagsets of different granularity, and six
different POS taggers, together with the Berkeley parser. Our findings show that less granularity
of the POS tagset leads to better tagging results. However, both too coarse-grained and too
fine-grained distinctions on POS level decrease parsing performance.

1 Introduction

German is a non-configurational language with a moderately free word order in combination with a case
system. The case of a noun phrase complement generally is a direct indicator of the phrase’s grammatical
function. For this reason, a morphological analysis seems to be a prerequisite for a syntactic analysis.
However, in computational linguistics, parsing was developed for English without the use of morpho-
logical information, and this same architecture is used for other languages, including German (Kübler et
al., 2006; Petrov and Klein, 2008). An easy way of introducing morphological information into parsing,
without modifying the architecture, is to attach morphology to the part-of-speech (POS) tagset. However,
this makes POS tagging more complex and thus more difficult.

In this paper, we investigate the following questions: 1) How well do the different POS taggers work
with tagsets of a varying level of morphological granularity? 2) Do the differences in POS tagger per-
formance translate into similar differences in parsing quality? Complementary POS tagging results and
preliminary parsing results have been published in German in Kübler and Maier (2013).

Our experiments are based on two different treebanks for German, TiGer (Brants et al., 2002) and
TüBa-D/Z (Telljohann et al., 2012). Both treebanks are based on the same POS tagset, the Stuttgart-
Tübingen Tagset (STTS) (Schiller et al., 1995). We perform experiments with three variants of the tagset:
The standard STTS, the Universal Tagset (UTS) (Petrov et al., 2012) (a language-independent tagset),
and an extended version of the STTS that also includes morphological information from the treebanks
(STTSmorph). STTS consists of 54 tags, UTS uses 12 basic tags, and the morphological variants of the
STTS comprise 783 and 524 POS tags respectively. We use a wide range of POS taggers, which are
based on different strategies: Morfette (Chrupala et al., 2008) and RF-Tagger (Schmid and Laws, 2008)
are designed for large morphological tagsets, the Stanford tagger (Toutanova et al., 2003) is based on a
maximum entropy model, SVMTool (Giménez and Màrquez, 2004) is based on support vector machines,
TnT (Brants, 2000) is a Markov model trigram tagger, and Wapiti (Lavergne et al., 2010) a conditional
random field tagger. For our parsing experiments, we use the Berkeley parser (Petrov and Klein, 2007b;
Petrov and Klein, 2007a).

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1

Our findings for POS tagging show that Morfette reaches the highest accuracy on UTS and overall on
unknown words while TnT reaches the best performance for STTS and the RF-Tagger for STTSmorph.
These trends are stable across both treebanks. As for the parsing results, using STTS results in the best
accuracies. For TiGer, POS tags assigned by the parser perform better in combination with UTS and
STTSmorph. For TiGer in combination with STTS and all variants in TüBa-D/Z, there are only minor
differences between the parser assigned POS tags and those by TnT.

The remainder of the article is structured as follows. In section 2, we review previous work. Section
3 presents the different POS tagsets. Section 4 describes our experimental setup. The POS tagging and
parsing results are discussed in the sections 5 and 6, respectively. Section 7 concludes the article.

2 Previous Work

In this section, we present a review of the literature that has previously examined the correlation of
POS tagging and parsing under different aspects. While this overview is not exhaustive, it presents the
major findings related to our work. The issues examined can be regarded under two orthogonal aspects,
namely, the parsing model used (data-driven or grammar-based), and the question of how to disambiguate
between various tags for a single word.

Some work has been done on investigating different tagsets for individual languages. Collins et al.
(1999) adapt the parser of Collins (1999) for the Czech Prague Dependency Treebank. Using an external
lexicon to reduce data sparseness for word forms did not result in any improvement, but adding case to the
POS tagset had a positive effect. Seddah et al. (2009) investigate the use of different parsers on French.
They also investigate two tagsets with different granularity and come to the conclusion that the finer
grained tagset leads to higher parser performance. The work that is closest to ours is work by Marton et
al. (2013), who investigate the optimal POS tagset for parsing Arabic. They come to the conclusion that
adding definiteness, person, number, gender, and lemma information to the POS tagset improve parsing
accuracy. Both Dehdari et al. (2011) and Szántó and Farkas (2014) investigate automatic methods for
selecting the best subset of morphological features, the former for Arabic, the latter for Basque, French,
German, Hebrew, and Hungarian. However, note that Szántó and Farkas (2014) used the data from the
SPMRL shared task 2013, which does not contain grammatical functions in the syntactic annotations.
Both approaches found improvements for subsets of morphological features.

Other works examine, also within a “pipeline” method, possibilities for ambiguity reduction through
modification of tagsets, or of the lexicon by tagset reduction, or through word-clustering. Lakeland
(2005) uses lexicalized parsing à la Collins (1999). Similarly to the more recent work by Koo et al.
(2008) or Candito and Seddah (2010), he addresses the question of how to optimally disambiguate for
parsing on the lexical level by clustering. A word cluster is thereby seen as an equivalence class of
words and assumes to a certain extent the function of a POS tag, but can be adapted to the training
data. Le Roux et al. (2012) address the issue of data sparseness on the lexical level with PCFG parsing
with the morphologically rich language Spanish. The authors use a reimplementation of the Berkeley
parser. They show that parsing results can be improved by simplifying the POS tagset, as well as by
lemmatization, since both approaches reduce data sparseness.

As already mentioned, a POS tag can be seen as an equivalence class of words. Since in the “pipeline”
approach, the parse tree is built on POS tags, it is possible that a POS tagset is optimal from a linguistic
point of view, but that its behavior is not optimal with respect to parsing results, because relevant lexical
information is hidden from the parse tree by the POS tagset. While Koo et al. (2008) overcome this
deficit by automatically searching for “better” clusters, other works copy certain lexical information into
the actual tree, e.g., by using grammatical function annotation (Versley, 2005; Versley and Rehbein,
2009). Seeker and Kuhn (2013) complement the “pipeline” model (using a dependency parser (Bohnet,
2010)) by an additional component that uses case information as a filter for the parser. They achieve
improvements for Hungarian, German and Czech.

A number of works develop models for simultaneous POS tagging or morphological segmentation
and parsing. Based on work by Ratnaparkhi (1996) and Toutanova and Manning (2000), Chen and Kit
(2011) investigate disambiguation on the lexical level. They assume that local, i.e., sequential but not

2

tag description tag description tag description
NOUN noun PRON pronoun CONJ conjunction
VERB verb DET determiner, article PRT particle
ADJ adjective ADP preposition, postposition . punctuation
ADV adverb NUM numeral X everything else

Table 1: The 12 tags of the Universal Tagset.

hierarchical, features are decisive for the quality of POS tagging and note that a “pipeline” model does not
take this into account since the parser effectively performs the POS disambiguation. On these grounds,
they present a factorized model for PCFG parsing which separates parsing into a discriminative lexical
model (with local features) and the actual parsing model, to be combined with a product-of-experts
(Hinton, 1999).

Particularly in the dependency parsing literature, combined models for simultaneous POS tagging and
parsing can be found. Research has concentrated on languages that require additional segmentation on
the word level, such as Chinese (Hatori et al., 2011) or Hebrew (Goldberg and Tsarfaty, 2008). A new
approach by Bohnet and Nivre (2012) was also evaluated on German. Results for POS tagging and
parsing of German by means of a constraint grammar can be found in Daum et al. (2003) as well as
in Foth et al. (2005). However, since these approaches are only marginally related to our approach, we
forego a further overview.

3 The Three Tagset Variants

In our experiments, we use three POS tagset variants: The standard Stuttgart-Tübingen Tagset (STTS),
the Universal Tagset (UTS) (Petrov et al., 2012), and an extended version of the STTS that also includes
morphological information from the treebanks (STTSmorph). Since the two treebanks differ in their
morphological annotation, in this variant, the tags differ between the two treebanks: For TiGer, we have
783 possible complex POS tags, and for TüBa-D/Z, there are 524. By complex tags, we mean a combi-
nation of an STTS tag with the morphological tag. Also, note that not all of the possible combinations
are attested in the treebanks.

The UTS consists of 12 basic POS tags, shown in table 11. It was developed for multilingual appli-
cations, in which a common tagset is of importance, such as for a multilingual POS tagger. The UTS
only represents the major word classes. Thus, this tagset should result in a high POS tagging accuracy
since only major distinctions are made. However, it is unclear whether these coarse distinctions provide
enough information for a syntactic analysis.

The STTS is based on distributional regularities of German. It contains 54 tags and thus models more
fine grained distinctions than the UTS. For a list of tags, see Schiller et al. (1995). The finer distinctions
in STTS mostly concern word classes, but there is also a distinction between finite and infinite verbs.
This distinction is important for the syntactic analysis, especially in TüBa-D/Z, but it can be difficult to
make by a POS tagger with a limited context.

The STTS can be extended by a morphological component. Both treebanks provide a morphological
analysis, but the analyses model different decisions. In TiGer, a set of 585 different feature combinations
is used, which can be combined from the features listed in table 2. The sentence in (1) gives an example
of the combination of the STTS and morphology, which are separated by the % sign. The feature –
means that there are no morphological features for the given POS tag.

(1) Konzernchefs
NN%Nom.Pl.Masc

lehnen
VVFIN%3.Pl.Pres.Ind

den
ART%Acc.Sg.Masc

Milliardär
NN%Acc.Sg.Masc

als
APPR%–

US-Präsidenten
NN%Acc.Sg.Masc

ab
PTKVZ%–

/
$(%–

’Corporate CEOs disapprove of the billionaire as US president /’
1For a mapping from STTS to UTS, cf. https://code.google.com/p/universal-pos-tags/.

3

feature description
ambiguous: *
gender masculine (Masc), feminine (Fem), neuter (Neut)
gradation positive (Pos), comparative (Comp), superlative (Sup)
case nominative (Nom), genitive (Gen), dative (Dat), accusative (Akk)
mode indicative (Ind), conjunctive (Subj), imperative (Imp)
number singular (Sg), plural (Pl)
person 1., 2., 3.
tense present (Pres), past (Past)

Table 2: The morphological categories in TiGer.

feature description
ambiguous *
gender masculine (m), feminine (f), neuter (n)
case nominative (n), genitive (g), dative (d), accusative (a)
number singular (s), plural (p)
person 1., 2., 3.
tense present (s), past (t)
mode indicative (i), conjunctive (k)

Table 3: The morphological categories in TüBa-D/Z.

Out of the 585 possible combinations of morphological features, 271 are attested in TiGer. In combi-
nation with the STTS, this results in 783 combinations of STTS and morphological tags. Out of those,
761 occur in the training set. However, we expect data sparseness during testing because of the high
number of possible tags. For this reason, we calculated which percentage of the tags in the development
and test set are known combinations. We found that 25% and 30%, respectively, do not occur in the train-
ing set. However, note that the number of tags in the development and test sets is considerably smaller
than the number of tags in the training set.

In TüBa-D/Z, there are 132 possible morphological feature combinations which can be combined from
the features listed in table 3. The sentence in (2) gives an example of the combination of the STTS and
morphology.

(2) Aber
KON%–

Bremerhavens
NE%gsn

AfB
NE%nsf

fordert
VVFIN%3sis

jetzt
ADV%–

Untersuchungsausschuß
NN%asm

’But the Bremerhaven AfB now demands a board of inquiry’

Out of the 132 possible feature combinations, 105 are attested in TüBa-D/Z. In combination with the
STTS, this results in 524 combinations of STTS and morphological tags. Out of those, 513 occur in the
training set. For the development and test set, we found that 16% and 18% respectively do not occur in
the training set. These percentages are considerably lower than the ones for TiGer.

Since the tagsets that include morphology comprise several hundred different POS tags, we expect
tagging to be more difficult, resulting in lower accuracies. We also expect that the TüBa-D/Z tagset
is better suited for POS tagging than the TiGer set because of its smaller tagset size and its higher
coverage on the development and test set. It is, however, unknown whether this information can be used
successfully in parsing.

4

dieses

PDAT

Acc.Sg.Neut

Buch

NN

Acc.Sg.Neut

finden

VVFIN

3.Pl.Pres.Ind

vor

APPR

allem

PIS

Dat.Sg.Neut

diejenigen

PDS

Nom.Pl.*

schwierig

ADJD

Pos

,

$,

die

PRELS

Nom.Pl.*

am

PTKA

meisten

PIS

..*

Bildung

NN

Acc.Sg.Fem

haben

VAFIN

3.Pl.Pres.Ind

,

$,

vor

APPR

allem

PIS

Dat.Sg.Neut

psychoanalytische

ADJA

Pos.Acc.Sg.Fem

Bildung

NN

Acc.Sg.Fem

(

$(

...

$(

)

$(

NK NK

NP

AC NK

PP

PM HD

AA

AC NK

PP

MO NK NK

NP

NK NK APP

NP

SB OAHD

S

MO NK RC

NP

OA HD SBMO

S

VROOT

Figure 1: A sentence from TiGer.

4 Experimental Setup

4.1 Treebanks

We use the treebanks TiGer (Brants et al., 2002), version 2.2, and TüBa-D/Z (Telljohann et al., 2012),
release 8. Both are built on newspaper text, Frankfurter Rundschau for TiGer and taz for TüBa-D/Z.
Both treebanks use the same POS tagset with only one minor difference in the naming of one POS label.
However, the treebanks differ considerably in the syntactic annotation scheme. While TiGer uses a very
flat annotation involving crossing branches, the annotations in TüBa-D/Z are more hierarchical, and long
distance relations are modeled via grammatical function labels rather than via attachment. Figures 1 and
2 show examples.

For preprocessing, we follow the standard practices from the parsing community. In both treebanks,
punctuation and other material, such as parentheses, are not included in the annotation, but attached to a
virtual root node. We attach the respective nodes to the tree using the algorithm described by Maier et
al. (2012) so that every sentence corresponds to exactly one tree. In a nutshell, this algorithm uses the
left and right terminal neighbors as attachment targets. In TiGer, we then remove the crossing branches
using a two-stage process. In a first step, we apply the transformation described by Boyd (2007). This
transformation introduces a new non-terminal for every continuous block of a discontinuous constituent.
We keep a flag on each of the newly introduced nodes that indicates if it dominates the head daughter of
the original discontinuous node. Subsequently, we delete all those nodes for which this flag is false.2

For both POS tagging and parsing, we use the same split for training, development, and test. We use
the first half of the last 10 000 sentences in TiGer for development and the second half for testing. The
remaining 40 472 sentences are used for training. Accordingly, in order to ensure equal conditions, we
use the first 40 472 sentences in TüBa-D/Z for training, and the first and second half of the following
10 000 sentences for development and testing. The remaining sentences in TüBa-D/Z are not used.

4.2 POS Taggers

We employ six different POS tagger, each of them using a different tagging technique. Morfette (Chru-
pala et al., 2008), in its current implementation based on averaged Perceptron, is a tool designed for the
annotation of large morphological tagsets. Since none of the other POS taggers have access to lemmas,
we only provide full word forms to Morfette as well, which may inhibit its generalization capability.
The RF-Tagger (Schmid and Laws, 2008) assumes a tagset in a factorized version. I.e., the POS tag
VVFIN%3sis in sentence (2) would be represented as VVFIN.3.s.i.s, where the dots indicate different
subcategories, which are then treated separately by the POS tagger. It is based on a Markov model, but
the context size is determined by a decision tree. The Stanford tagger (Toutanova et al., 2003) is based
on a maximum entropy model, and SVMTool (Giménez and Màrquez, 2004) is based on support vector
machines. TnT (Brants, 2000; Brants, 1998), short for trigrams and tags, is a Markov model POS tagger.

2An implementation of all transformations is available at http://github.com/wmaier/treetools.

5

Beides

PIS

nsn

sind

VAFIN

3pis

Liedformen

NN

npf

,

$,

die

PRELS

np*

am

APPRART

dsn

Ende

NN

dsn

des

ART

gsn

achtzehnten

ADJA

gsn

Jahrhunderts

NN

gsn

die

ART

apn

ersten

ADJA

apn

Anzeichen

NN

apn

eines

ART

gsm

Verschmelzungsprozesses

NN

gsm

zeigen

VVFIN

3pis

.

$.

HD

NX

HD

VXFIN

HD

NX

HD

NX

HD

NX

HD

ADJX

HD

ADJX

- HD

NX

HD

VXFIN

PRED

VF

HD

LK

ON

MF

ON

C

- - HD

NX

- - HD

NX

HD

VC

HD -

NX

HD -

NX

- HD

PX

V-MOD OA

MF

- - -

R-SIMPX

ON-MO|

NF

- - - -

SIMPX

VROOT

Figure 2: A sentence from TüBa-D/Z.

It uses an interpolation between uni-, bi- and trigrams as probability model. TnT has a sophisticated
mechanism for tagging unknown words. We also use Wapiti (Lavergne et al., 2010) a conditional ran-
dom field tagger. Since conditional random fields were developed for sequence tagging, this POS tagger
is expected to perform well.

All POS taggers are used with default settings. For the Stanford tagger, we use the bi-directional model
based on a context of 5 words. For SVMTool, we use the processing from left to right in combination
with features based on word and POS trigrams and word length, prefix and suffix information. Wapiti is
trained on uni-, bi-, and trigrams. Features used in training consist of tests concerning the alphanumeric,
upper or lower case characteristics, prefixes and suffixes of length three, and all possible POS tags for a
word.

For POS tagging evaluation, we use the script provided by TnT since it also allows us to calculate
accuracy on known and unknown words.

4.3 Parser

We use the Berkeley parser (Petrov and Klein, 2007b; Petrov and Klein, 2007a). We chose the Berke-
ley parser because we are aware of the fact that there are considerable differences in the tagset sizes,
which a plain PCFG parser cannot process successfully. The Berkeley parser split/merge capabilities
provide a way of smoothing over these differences. For parser evaluation, we use our own implementa-
tion of the PARSEVAL metrics.3 We report labeled precision (LP), labeled recall (LR), and the labeled
F-score(LF1). Note that the labeled evaluation does not only look at constituent labels but also at gram-
matical functions attached to the constituents, e.g. NP-SBJ for a subject NP. This is a considerably more
difficult task for German because of the relatively free word order. We also provide POS tagging ac-
curacy in the parse trees since the Berkeley parser adapts POS tags from the input if they do not fit its
syntax model.

5 POS Tagging Results

5.1 The Three Tagset Variants

The results for the POS tagging evaluation are shown in table 4. We are aware of the fact that the results
are not directly comparable across the different POS tagsets and across different treebanks since the

3The implementation is available at http://github.com/wmaier/evalb-lcfrs. Note that we evaluate the trees
as they are, i.e., we do not collapse or ignore tags.

6

TiGer TüBa-D/Z
Tagset Tagger dev test dev test
UTS Morfette 98.51 98.09 98.25 98.49

RF-Tagger 97.89 97.41 97.69 97.96
Stanford 97.88 96.83 97.11 97.26
SVMTool 98.54 98.01 98.09 98.28
TnT 97.94 97.48 97.72 97.92
Wapiti 97.54 96.67 97.47 97.80

STTS Morfette 94.12 93.23 92.95 93.41
RF-Tagger 97.04 96.24 96.68 96.84
RF-Tagger (fact.) 97.05 96.26 96.69 96.85
Stanford 96.26 95.15 95.63 95.79
SVMTool 97.06 96.22 96.46 96.69
TnT 97.15 96.29 96.92 97.00
Wapiti 92.93 91.62 90.99 91.81

STTSmorph Morfette 82.71 80.10 81.19 82.26
RF-Tagger 86.56 83.90 85.68 86.31
Stanford – – – –
SVMTool 82.47 79.53 80.33 81.31
TnT 85.77 82.77 84.67 85.45
Wapiti 79.83 75.92 77.27 78.29

STTSmorph → STTS TnT 97.08 96.15 96.78 96.82

Table 4: POS tagging results using three versions of the German POS tagset and two treebanks.

corresponding tagging tasks differ in the level of difficulty. Any interpretation must therefore be taken
with a grain of salt, but we think that it is important to evaluate POS tagging on its own, especially
since it is not always the case that a larger label set automatically results in a more difficult task. The
results show that UTS, i.e., the variant with the least information, results in the highest POS tagging
results, between 96.67% and 98.54%. In tagging with the STTS, we reach a lower accuracy between
90.99% and 97.15%. When we include the morphological information, we reach considerably lower
results, between 75.92% and 86.56%. In other words, this shows that the more information there is in
the POS tagset, the harder the POS tagging task is. POS tagging with morphological information is the
most difficult task. We also see that there are no results for the Stanford POS tagger in the morphological
setting. We were unable to run these experiments, even when we used a high-memory cluster with access
to 120g of memory. It seems that the Stanford tagger is incapable of handling the large tagset sizes in the
setting using morphological information. Additionally, our assumption that the morphological tagset of
TüBa-D/Z is less difficult to annotate because of its smaller tagset size is not borne out. The variation of
results on TüBa-D/Z is often less than between the treebanks, across POS taggers.

If we compare the result of the different POS taggers, we see that for the different tagset variants,
different POS taggers perform best: For UTS, surprisingly, Morfette reaches the highest results, with
the exception of the TiGer development set, for which SVMTool performs slightly better. In general,
SVMTool is very close in accuracy to Morfette for this tagset variant. For STTS, TnT outperforms
all other POS taggers, and SVMTool is a close second. For STTSmorph, the RF-Tagger reaches the
highest results. For the RF-Tagger in combination with the STTS, we performed 2 experiments, one
using the standard STTS and one in which the STTS tags are factored, such that VVFIN is factored
into V.V.FIN. The latter variant reaches minimally higher results. In all settings, Wapiti is the weakest
approach; the difference between Wapiti and the best performing POS tagger reaches 6-7 percent points
for STTSmorph. This is rather surprising given that POS tagging is a typical sequence tagging task, for
which CRFs were developed.

Another fact worth mentioning is that there are considerable differences in POS tagging accuracy

7

TiGer TüBa-D/Z
dev test dev test

Tagset Tagger Known Unkn. Known Unkn. Known Unkn. Known Unkn.
UTS Morfette 98.66 96.74 98.32 96.04 98.54 95.46 98.69 96.39

RF-Tagger 98.15 94.64 97.82 93.65 98.28 92.02 98.35 93.85
Stanford 99.05 91.85 98.78 87.70 98.94 79.30 98.92 79.69
SVMTool 98.81 95.26 98.41 94.45 98.63 92.89 98.66 94.27
TnT 98.06 96.50 97.67 95.74 98.07 94.28 98.25 95.25
Wapiti 98.94 80.71 98.51 80.04 98.68 85.79 98.83 86.91

STTS Morfette 94.42 90.60 93.56 90.24 93.17 90.83 93.59 91.57
RF-Tagger 97.80 87.92 97.30 86.71 97.62 87.59 97.73 87.52
RF-T. (fact.) 97.78 88.21 97.28 87.09 97.63 87.65 97.73 87.51
Stanford 98.16 73.56 97.75 71.60 97.96 73.04 97.97 72.64
SVMTool 97.86 87.41 97.26 86.82 97.50 86.47 97.60 87.05
TnT 97.80 89.25 97.21 87.95 97.65 89.78 97.72 89.33
Wapiti 94.51 73.78 93.48 74.83 93.21 69.45 93.71 71.74

STTSmorph Morfette 84.30 63.50 82.43 58.98 82.91 64.53 83.95 64.42
RF-Tagger 88.34 65.09 86.38 61.47 87.70 66.20 88.25 65.80
SVMTool 84.67 55.89 82.40 53.58 82.87 55.81 83.61 57.01
TnT 87.62 63.41 85.55 57.65 86.91 62.95 87.61 62.55
Wapiti 83.91 30.51 81.43 26.08 82.05 31.05 82.83 30.29

Table 5: Results for the different POS taggers for known and unknown words.

between the development and test set in both treebanks. For both STTS variants, these differences are
often larger than the differences between individual POS taggers on the same data set. Thus, in the
STTSmorph setting, the difference for TnT between the development and test set in TiGer is 3 percent
points while the differences between TnT and SVMTool and Morfette respectively are less.

One last question that we investigated concerns the effect of the morphological information on POS
tagging accuracy. We know that when we use morphological information, the POS tagging task is more
difficult. However, it is possible that the mistakes that occur concern only the morphological information
while the POS tags minus morphology may be predicted with equal or even higher accuracy. In order to
investigate this problem, we used the STTSmorph output of TnT and deleted all the morphological infor-
mation, thus leaving only the STTS POS tags. We then evaluated these POS tags against the gold STTS
tags. The results are shown in the last row in table 4, marked as STTSmorph → STTS. A comparison of
these results with the TnT results for STTS shows that the POS tagger reaches a higher accuracy when
trained directly on STTS rather than on STTSmorph, with a subsequent deletion of the morphological
information. This means that the morphological information is not useful but rather harmful in POS
tagging.

5.2 Evaluating on Known and Unknown Words

In a next set of experiments, we investigate how the different POS taggers perform on known and un-
known words. We define all words from the development and test set as known if the appear in the
training set. If they do not, they are considered unknown words. Note, however, that even if a word is
known, we still may not have the full set of POS tags in its ambiguity set. This is especially relevant for
the larger tagsets where the ambiguity rate per word is higher.

In TiGer, 7.64% of the words in the development set are unknown, 9.96% in the test set. In TüBa-D/Z,
9.36% of the words in the development set are unknown, 8.64% in the test set. Note that this corresponds
to the levels of accuracy in table 4.

The results of the evaluation on known and unknown words are shown in table 5. These results show
that the Stanford POS tagger produces the highest accuracies for known words for UTS and STTS (note

8

TiGer TüBa-D/Z
Morphology dev test dev test
STTS 97.15 96.29 96.92 97.00
STTSmorph 85.77 82.77 84.67 85.45
agreement 86.04 83.08 84.96 85.77
case 88.10 86.47 87.48 87.91
number 95.60 94.19 95.24 95.41
number + person 95.55 94.11 95.18 95.24
verbal features 97.03 96.02 96.55 96.44

Table 6: The results for TnT with different morphological variants.

that it could not be used for STTSmorph). For unknown words, Morfette reaches the highest results for
UTS and STTS, with TnT reaching the second highest results. For STTSmorph, the RF-Tagger reaches
the highest accuracy on both known and unknown words. The results for the RF-Tagger for STTS show
that the factored version performs better on unknown words than the standard one. It is also noticeable
that Wapiti, the CRF POS tagger, has the lowest performance on unknown words: For UTS, the results
are 10-16 percent points lower that the ones by Morfette; for STTS, the difference reaches 16-23 percent
points, and for STTSmorph, about 35 percent points. This shows that in order to reach a reasonable
accuracy rate, Wapiti’s unknown word handling model via regular expressions must be extended further.
However, note that Wapiti’s results on known words are also lower than the best performing system’s,
thus showing that CRFs are less well suited for POS tagging than originally expected.

5.3 Evaluating Morphological Variants

In this set of experiments, we investigate whether there are subsets of STTSmorph that are relevant for
parsing and that would allow us to reach higher POS tagging and parsing accuracies than on the full set
of morphological features. The subsets were chosen manually to model our intuition on which features
may be relevant for parsing. We investigate the following subsets: all agreement features, case only,
number only, number + person, and only verbal features. In this set of experiments, we concentrate on
TnT because it has been shown to be the most robust across the different settings. The results of these
experiments are shown in table 6. For comparison, we also list the results for the original STTS and
STTSmorph settings from table 4.

The results show that there are morphological subsets that allow reliable POS accuracies: If we use
verbal features, we reach results that are only slightly below the STTS results. For the subset using
number + person features, the difference is around 2 percent points. However, all subsets perform worse
than the STTS. The subsets that include case or all agreement features, which are the subsets most
relevant for parsing, reach accuracies that are slightly above STTSmorph, but still more than 10 percent
points below the original STTS.

6 Parsing Results

In this section, we report parsing results for TiGer in table 7 and for TüBa-D/Z in table 8. We again
use the three POS tag variants as input, and we report results for 1) gold POS tags, 2) for tags assigned
by TnT, which proved to be the most reliable POS tagger across different settings, and 3) for POS tags
assigned by the Berkeley parser. Since the parser is known to alter POS tags given as input if they do not
fit the syntax model, we also report POS tagging accuracy. Note that this behavior of the parser explains
why we do not necessarily have a 100% POS tagging accuracy in the gold POS tag setting.

A first glance at the POS tagging results in the gold POS setting in tables 7 and 8 shows that for UTS
and STTS, the decrease in accuracy is minimal. In other words, the parser only changes a few POS tags.
When we compared the differences in POS tags between the output of the parser and the gold standard,
we found that most changes constitute a retagging of common nouns (NN) as proper nouns (NE). In
the STTSmorph setting, POS tagging accuracy is considerably lower, showing that the parser changed

9

dev test
Tag source Tagset POS LP LR LF1 POS LP LR LF1
gold UTS 100.00 77.97 77.23 77.60 99.97 71.80 70.26 71.02

STTS 99.98 78.09 77.55 77.82 99.97 71.90 71.11 71.50
STTSmorph 91.67 74.72 75.21 74.97 88.70 67.68 67.99 67.83

parser UTS 98.55 77.75 76.84 77.29 97.83 71.13 69.50 70.30
STTS 97.25 78.03 77.19 77.60 96.18 71.16 69.84 70.49
STTSmorph 83.06 75.53 75.24 75.39 79.05 67.67 67.02 67.34

TnT UTS 96.56 74.16 73.28 73.72 96.01 68.37 66.78 67.57
STTS 97.26 78.03 77.19 77.60 96.19 71.16 69.84 70.49
STTSmorph 77.94 73.06 72.69 72.88 75.05 65.43 64.78 65.10

Table 7: Parsing results for TiGer.

dev test
Tag source Tagset POS LP LR LF1 POS LP LR LF1
gold UTS 99.98 81.39 81.12 81.26 99.98 82.24 81.94 82.09

STTS 100.00 83.60 83.58 83.59 99.99 84.54 84.46 84.50
STTSmorph 89.75 82.27 78.85 80.53 90.55 83.57 79.91 81.70

parser UTS 98.35 79.97 79.61 79.79 98.58 81.07 80.66 80.87
STTS 97.20 81.84 81.65 81.74 97.39 82.93 82.78 82.85
STTSmorph 81.03 80.85 77.22 78.99 81.68 81.89 78.20 80.00

TnT UTS 98.35 79.97 79.61 79.79 98.58 81.07 80.66 80.87
STTS 97.21 81.84 81.65 81.74 97.39 82.93 82.78 82.85
STTSmorph 81.03 80.85 77.22 78.99 81.68 81.89 78.20 80.00

Table 8: Parsing results for TüBa-D/Z.

between 8% (UTS) and 25% (STTSmorph) of the POS tags. This is a clear indication that the parser
suffers from data sparseness and has to adapt the POS tags in order to be able to parse the sentences.

We need to compare the POS tagging results based on automatically assigned POS tags; they show
the following trends: For TiGer in the STTS setting, the results based on TnT and on the parser are
very similar. For UTS and STTSmorph, the POS tags assigned by the parser reach a higher accuracy.
For TüBa-D/Z, all the results are extremely similar.4 If we compare the POS tagging accuracies of the
parsed sentences and the accuracies of the original POS tags assigned by the tagger, we see that for
TiGer, the accuracy decreases by approximately 1.5 percent points for UTS, 0.1 percent points for STTS
and 9 percent points for STTSmorph. For TüBa-D/Z, the loss in the STTSmorph setting is smaller, at
around 4 percent points. For UTS and STTS, there is a small improvement in POS tagging accuracy.

When we look at the parsing results, we see that gold POS tags always lead to the highest parsing
results, across treebanks and POS tagsets. We also see that across all conditions, the parsing results
for STTS are the highest. For TiGer, the results for UTS are only marginally lower, which seems to
indicate that some of the distinctions made in STTS are important, but not all of them. For TüBa-D/Z,
the loss for UTS is more pronounced, at around 2 percent points. This suggests that for the TüBa-D/Z
annotation scheme, the more fined grained distinctions in STTS are more important than for UTS. One
example would be the distinction between finite and infinite verbs, which is directly projected to the verb
group in TüBa-D/Z (see the verb groups VXFIN and VXINF in figure 2). Note also that for Tüba-D/Z,
the parsing based on automatic POS tagging outperforms parsing based on gold UTS tags, thus again
confirming how important the granularity of STTS is for this treebank.

When we look at the parsing results for STTSmorph, it is obvious that this POS tagset variant leads
to the lowest parsing results, even in the gold POS setting. This means that even though agreement

4Because of the (almost) identical results, we checked our results with extreme care but could not find any errors.

10

information should be helpful for assigning grammatical functions, the information seems to be presented
to the parser in a form that it cannot exploit properly. We also performed preliminary experiments using
the morphological variants discussed in section 5.3 in parsing, but the results did not improve over the
STTS baseline.

When we compare the two sets of automatically assigned POS tags for TiGer, we see that the difference
in POS accuracy for UTS is 1.8 percent points while the difference in F-scores is 2.5 percent points. This
means that TnT tagging errors have a more negative impact on parsing quality than those in the POS
tags assigned by the parser itself. For STTSmorph, the difference is more pronounced in POS accuracy
(4 points as opposed to 2.2 in F-scores), which means that for STTSmorph, TnT errors are less harmful
than for UTS. We assume that this is the case because in many instances, the POS tags themselves will
be correct, and the error occurs in the morphological features. For TüBa-D/Z, the difference between
UTS and STTSmorph is marginal; this is due to the fact that UTS results are much lower than for TiGer.
Thus, the difference between STTS and STTSmorph is stable across both treebanks.

A more in-depth investigation of the results shows that the aggregate EVALB score tends to hide indi-
vidual large differences between single sentences in the results. For example, in the results for the TiGer
dev set with gold POS tags, there are 119 sentences in STTSmorph which have an STTS counterpart with
an F-score that is at least 50 points higher. However, there are also 28 sentences for which the opposite
holds, i.e., for which STTSmorph wins over STTS. In TüBa-D/Z, there are fewer sentences with such
extreme differences. There are 28 / 11 sentences with a score difference of 50 points or more between
STTS and STTSmorph in the TüBa-D/Z development set, and vice versa. A manual inspection of the
results indicates that in some cases, the morphology is passed up into the tree and thereby contributes
to a correct grammatical function of a phrase label (such as for case information) while in other cases,
it causes an over-differentiation of grammatical functions and thereby has a detrimental effect (such as
for PPs, which are attached incorrectly). In the case of TüBa-D/Z, this leads to trees with substructures
that are too flat, while in the case of TiGer, it leads to more hierarchical substructures. This finding is
corroborated by a further comparison of the number of edges produced by the parser, which reveals that
for the case of TiGer, the number of edges grows with the size of the POS tagset, while for the case of
TüBa-D/Z, the number of edges produced with STTS is higher than with UTS, but drops considerably
for STTSmorph. The large differences in results for single sentences look more pronounced in TiGer due
to the average number of edges per sentence (7.60/8.72 for dev/test gold), which is much lower than for
TüBa-D/Z (20.93/21.16 for dev/test gold); in other words, because of its flat annotation. We suspect that
there is data sparsity involved, but this needs to be investigated further.

7 Conclusion and Future Work

We have investigated how the granularity of POS tags influences POS tagging, and furthermore, how POS
tagging performance relates to parsing results, on the basis of experiments on two German treebanks,
using three POS tagsets of different granularity (UTS, STTS, and STTSmorph), and six different POS
taggers, together with the Berkeley parser.

We have shown that the tagging task is easier the less granular the tagset is. Furthermore, we have
shown that both too coarse-grained and too fine-grained distinctions on POS level hurt parsing perfor-
mance. The results for the morphological tagset are thus in direct contrast to previous studies, such as
(Dehdari et al., 2011; Marton et al., 2013; Seddah et al., 2009; Szántó and Farkas, 2014), which show
for different languages that adding morphological information increases parsing accuracy. Surprisingly,
given the STTS tagset, the Berkeley parser itself was able to deliver a POS tagging performance which
was almost identical to the performance of the best tagger, TnT. Additionally, we can conclude that the
choice of the tagset and of the best POS tagger for a given treebank does not only depend on the language
but also on the annotation scheme.

In future work, we will undertake a systematic investigation of tag clustering methods in order to find a
truly optimally granular POS tagset. We will also investigate the exact relation between annotation depth
and the granularity of the POS tagset with regard to parsing accuracy and data sparsity. The latter may
elucidate reasons behind the differences between our results and those of the studies mentioned above.

11

References
Bernd Bohnet and Joakim Nivre. 2012. A transition-based system for joint part-of-speech tagging and labeled

non-projective dependency parsing. In Proceedings of the Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 1455–1465,
Jeju Island, Korea.

Bernd Bohnet. 2010. Very high accuracy and fast dependency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational Linguistics (IJCNLP), pages 89–97, Beijing, China.

Adriane Boyd. 2007. Discontinuity revisited: An improved conversion to context-free representations. In Pro-
ceedings of The Linguistic Annotation Workshop (LAW) at ACL 2007, pages 41–44, Prague, Czech Republic.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. The TIGER treebank.
In Proceedings of the First Workshop on Treebanks and Linguistic Theories (TLT), pages 24–41, Sozopol,
Bulgaria.

Thorsten Brants, 1998. TnT–A Statistical Part-of-Speech Tagger. Universität des Saarlandes, Computational
Linguistics, Saarbrücken, Germany.

Thorsten Brants. 2000. TnT–a statistical part-of-speech tagger. In Proceedings of the 1st Conference of the North
American Chapter of the Association for Computational Linguistics and the 6th Conference on Applied Natural
Language Processing (ANLP/NAACL), pages 224–231, Seattle, WA.

Marie Candito and Djamé Seddah. 2010. Parsing word clusters. In Proceedings of the NAACL HLT 2010 First
Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 76–84, Los Angeles, CA.

Xiao Chen and Chunyu Kit. 2011. Improving part-of-speech tagging for context-free parsing. In Proceedings of
5th International Joint Conference on Natural Language Processing (IJCNLP), pages 1260–1268, Chiang Mai,
Thailand.

Grzegorz Chrupala, Georgiana Dinu, and Josef van Genabith. 2008. Learning morphology with Morfette. In
Proceedings the Fifth International Conference on Language Resources and Evaluation (LREC), Marrakech,
Morocco.

Michael Collins, Jan Hajič, Lance Ramshaw, and Christoph Tillmann. 1999. A statistical parser for Czech. In
Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, pages 505–512,
College Park, MD.

Michael Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania, Philadelphia, PA.

Michael Daum, Kilian Foth, and Wolfgang Menzel. 2003. Constraint based integration of deep and shallow
parsing techniques. In Proceedings of the 10th Conference of the European Chapter of the Association for
Computational Linguistics (EACL), Budapest, Hungary.

Jon Dehdari, Lamia Tounsi, and Josef van Genabith. 2011. Morphological features for parsing morphologically-
rich languages: A case of Arabic. In Proceedings of the Second Workshop on Statistical Parsing of Morpholog-
ically Rich Languages, pages 12–21, Dublin, Ireland.

Kilian Foth, Michael Daum, and Wolfgang Menzel. 2005. Parsing unrestricted German text with defeasible
constraints. In H. Christiansen, P. R. Skadhauge, and J. Villadsen, editors, Constraint Solving and Language
Processing, pages 140–157. Springer.

Jesús Giménez and Lluı́s Màrquez. 2004. SVMTool: A general POS tagger generator based on Support Vector
Machines. In Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC),
pages 43–46, Lisbon, Portugal.

Yoav Goldberg and Reut Tsarfaty. 2008. A single generative model for joint morphological segmentation and
syntactic parsing. In Proceedings of The 46th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies (ACL:HLT), pages 371–379, Columbus, OH.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2011. Incremental joint POS tagging and
dependency parsing in Chinese. In Proceedings of 5th International Joint Conference on Natural Language
Processing (IJCNLP), pages 1216–1224, Chiang Mai, Thailand.

Geoffrey Hinton. 1999. Products of experts. In Proceedings of the Ninth International Conference on Artificial
Neural Networks, pages 1–6, Stockholm, Sweden.

12

Terry Koo, Xavier Carreras, and Michael Collins. 2008. Simple semi-supervised dependency parsing. In Pro-
ceedings of The 46th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies (ACL:HLT), pages 595–603, Columbus, OH.

Sandra Kübler and Wolfgang Maier. 2013. Über den Einfluss von Part-of-Speech-Tags auf Parsing-Ergebnisse.
Journal for Language Technology and Computational Linguistics. Special Issue on ”Das Stuttgart-Tübingen
Wortarten-Tagset – Stand und Perspektiven”, 28(1):17–44.

Sandra Kübler, Erhard W. Hinrichs, and Wolfgang Maier. 2006. Is it really that difficult to parse German? In
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
111–119, Sydney, Australia.

Corrin Lakeland. 2005. Lexical Approaches to Backoff in Statistical Parsing. Ph.D. thesis, University of Otago,
New Zealand.

Thomas Lavergne, Olivier Cappé, and François Yvon. 2010. Practical very large scale CRFs. In Proceedings
the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pages 504–513, Uppsala,
Sweden.

Joseph Le Roux, Benoit Sagot, and Djamé Seddah. 2012. Statistical parsing of Spanish and data driven lemma-
tization. In Proceedings of the ACL 2012 Joint Workshop on Statistical Parsing and Semantic Processing of
Morphologically Rich Languages, pages 55–61, Jeju, Republic of Korea.

Wolfgang Maier, Miriam Kaeshammer, and Laura Kallmeyer. 2012. Data-driven PLCFRS parsing revisited:
Restricting the fan-out to two. In Proceedings of the Eleventh International Conference on Tree Adjoining
Grammars and Related Formalisms (TAG+11), Paris, France.

Yuval Marton, Nizar Habash, and Owen Rambow. 2013. Dependency parsing of Modern Standard Arabic with
lexical and inflectional features. Computational Linguistics, 39(1):161–194.

Slav Petrov and Dan Klein. 2007a. Improved inference for unlexicalized parsing. In Proceedings of Human Lan-
guage Technologies 2007: The Conference of the North American Chapter of the Association for Computational
Linguistics, pages 404–411, Rochester, NY.

Slav Petrov and Dan Klein. 2007b. Learning and inference for hierarchically split PCFGs. In Proceedings of
AAAI (Nectar Track), Vancouver, Canada.

Slav Petrov and Dan Klein. 2008. Parsing German with language agnostic latent variable grammars. In Proceed-
ings of the ACL Workshop on Parsing German, pages 33–39, Columbus, OH.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012. A universal part-of-speech tagset. In Proceedings of the
Eight International Conference on Language Resources and Evaluation (LREC), Istanbul, Turkey.

Adwait Ratnaparkhi. 1996. A maximum entropy model for part-of-speech tagging. In Proceedings of the Empiri-
cal Methods in Natural Language Processing Conference (EMNLP), pages 133–142, Philadelphia, PA.

Anne Schiller, Simone Teufel, and Christine Thielen. 1995. Guidelines für das Tagging deutscher Textkorpora mit
STTS. Technical report, Universität Stuttgart and Universität Tübingen.

Helmut Schmid and Florian Laws. 2008. Estimation of conditional probabilities with decision trees and an
application to fine-grained POS tagging. In Proceedings of the 22nd International Conference on Computational
Linguistics (COLING), pages 777–784, Manchester, UK.

Djamé Seddah, Marie Candito, and Benoı̂t Crabbé. 2009. Cross parser evaluation: A French Treebanks study.
In Proceedings of the 11th International Conference on Parsing Technologies (IWPT), pages 150–161, Paris,
France.

Wolfgang Seeker and Jonas Kuhn. 2013. Morphological and syntactic case in statistical dependency parsing.
Computational Linguistics, 39(1):23–55.

Zsolt Szántó and Richárd Farkas. 2014. Special techniques for constituent parsing of morphologically rich lan-
guages. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pages 135–144, Gothenburg, Sweden.

Heike Telljohann, Erhard W. Hinrichs, Sandra Kübler, Heike Zinsmeister, and Kathrin Beck, 2012. Stylebook for
the Tübingen Treebank of Written German (TüBa-D/Z). Seminar für Sprachwissenschaft, Universität Tübingen,
Germany.

13

Kristina Toutanova and Christopher D. Manning. 2000. Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger. In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora (EMNLP/VLC), Hong Kong.

Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics (HLT-NAACL), pages 252–259,
Edmonton, Canada.

Yannick Versley and Ines Rehbein. 2009. Scalable discriminative parsing for German. In Proceedings of the 11th
International Conference on Parsing Technologies (IWPT), pages 134–137, Paris, France.

Yannick Versley. 2005. Parser evaluation across text types. In Fourth Workshop on Treebanks and Linguistic
Theories (TLT 2005), Barcelona, Spain.

14

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 15–25 Dublin, Ireland, August 23-29 2014.

Joint Ensemble Model for POS Tagging and Dependency Parsing

Iliana Simova Dimitar Vasilev Alexander Popov
Linguistic Modelling Laboratory, IICT-BAS

Sofia, Bulgaria
{iliana|dvasilev|alex.popov|kivs|petya}@bultreebank.org

Kiril Simov Petya Osenova

Abstract

In this paper we present several approaches towards constructing joint ensemble models for mor-
phosyntactic tagging and dependency parsing for a morphologically rich language – Bulgarian.
In our experiments we use state-of-the-art taggers and dependency parsers to obtain an extended
version of the treebank for Bulgarian, BulTreeBank, which, in addition to the standard CoNLL
fields, contains predicted morphosyntactic tags and dependency arcs for each word. In order to
select the most suitable tag and arc from the proposed ones, we use several ensemble techniques,
the result of which is a valid dependency tree. Most of these approaches show improvement over
the results achieved individually by the tools for tagging and parsing.

1 Introduction

Language processing pipelines are the standard means for preprocessing natural language text for various
natural language processing (NLP) tasks. A typical pipeline applies the following modules sequentially:
a tokenizer, a part-of-speech (POS) tagger, a lemmatizer, and a parser. The main drawback of such
an architecture is that the erroneous output of one module in the pipeline propagates through to its final
step. This usually has a more significant impact on the processing of languages with segmentation issues,
like Chinese, or languages with rich morphological systems, like the Slavic and Romance ones, which
exhibit greater morphological and syntactic ambiguity due to the high number of word forms and freer
word order.

In this paper we present several experiments in which we simultaneously solve two of the aforemen-
tioned tasks – tagging and parsing. The motivation behind this idea is that the two tasks are highly
dependent on each other when working with a morphologically rich language, and thus a better solution
could be found for each if they are solved jointly. We assemble the outputs of three morphosyntactic tag-
gers (POS taggers) and five dependency parsers in a single step. The ensemble approach uses weights in
order to select the best solution from a number of alternatives. We follow (Surdeanu and Manning, 2010)
and use two classes of approaches for selecting weights for the alternatives: voting, where the weights
are assigned by simple calculations over the number of used models and their performance measures;
machine learning weighting1, where machine learning is exploited in order to rank the alternatives on
the basis of a joint feature model. We refer to both types of approaches as ranking. The language of
choice in our experiments is Bulgarian, but the techniques presented here are easily applicable to other
languages, given the availability of training data.

The interaction between the two levels – morphology and syntax – is carried out via a joint model of
features for machine learning. Its aim is to determine the best possible combination out of the predictions
of the different taggers and dependency parsers. Working only with the outputs of the taggers and parsers,
instead of considering all possibilities for tag, head and syntactic relation for each word in the sentence,
reduces the search space and allows us to experiment with more complex features. One limitation of
this approach is that the correct combination of an POS tag and a dependency arc might not have been

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1Surdeanu and Manning (Surdeanu and Manning, 2010) call them meta-classification.

15

predicted by any of the tools in the first place. Therefore the ensemble approach can be beneficial only
to a certain extent.

The data used throughout our experiments consists of the dependency conversion2 of the HPSG-based
Treebank of Bulgarian – the BulTreeBank. This data set contains non-projective dependency trees, which
are more suitable for describing the relatively free word order of Bulgarian sentences.

The structure of the paper is as follows: in Section 2 we introduce related work on joint models and
ensemble models; in Section 3 we introduce related work on Bulgarian parsing and POS tagging; in
Section 4 we present our ensemble model; in Section 5 we report on our current experimental setup,
including the construction of a parsebank of parses and tagging results; Section 6 presents the results
from our ensemble experiments; the last section concludes the paper.

2 Related Work

Our work on ensemble systems for dependency parsing is inspired by the in-depth performance analysis
of two of the most influential dependency parsing models: transition-based and graph-based (McDonald
and Nivre, 2007). This analysis shows that the two frameworks make different errors when trained and
tested on the same datasets. The authors conclude the paper by proposing three approaches for using the
advantages of both frameworks: (1) ensemble systems – weighted combinations of the output of both
systems; (2) hybrid systems – a single system designed to integrate the strengths of the individual ones;
and (3) novel approaches – based on a combination of new training and inference methods. In their
further work (Nivre and McDonald, 2008) on the subject they present a hybrid system that combines
the two models. The work presented in this paper is along the lines of their first suggestion – a system
to facilitate the combination of the outputs of several parsing and tagging models, in order to find an
optimal solution.

An experiment with ensemble systems is presented in (Surdeanu and Manning, 2010). This work
describes several approaches to the combination of dependency parsers via different types of voting
and meta-classification. Voting determines the correct dependency arcs by choosing the ones that are
selected by the majority of parsers. Weighted voting uses the accuracy of each parser in order to choose
between their predictions for each arc. We also employ these two ranking techniques in our current
experiment. Surdeanu and Manning (Surdeanu and Manning, 2010) conclude that meta-classification
does not improve the results in comparison to voting. They divide the dependencies in two categories:
majority dependencies and minority dependencies. Their conclusion is that meta-classification cannot
provide a better selection of minority dependencies, and in this way is comparable to voting. In our
work we show that depending on the feature selection for meta-classification, it can actually outperform
the voting approach. The experiments presented in (Surdeanu and Manning, 2010) do not use a specific
algorithm for the selection of dependencies, and do not ensure that the result of voting is a well-formed
dependency tree. In our work we use two algorithms to ensure the construction of trees. We show that
the results also depend on the algorithm for tree construction.

Joint models have been successfully used for processing other morphologically rich languages. For
instance, (Lee et al., 2011) propose a joint model for inference of morphological properties and syntactic
structures, which outperforms a standard pipelined solution when tested on highly-inflected languages
such as Latin, Czech, Ancient Greek and Hungarian. It uses a graphical model that employs “local” and
“link” factors to impose local word context constraints and to handle long-distance dependencies.

(Cohen and Smith, 2007) and (Goldberg and Tsarfaty, 2008) focus on a joint model for morphological
segmentation and syntactic parsing with application to Hebrew. The authors argue that syntactic context
is crucial for the correct segmentation of tokens into lexemes and that a model wherein the segmenta-
tion and parsing modules share information during processing is better suited to carry out the task. To
solve the two tasks jointly, the different morphological analyses of a given utterance are represented
simultaneously in a lattice structure; a path through the lattice corresponds to a specific morphologi-
cal segmentation of the utterance. In (Cohen and Smith, 2007), paths in the lattice and parse trees are
combined through a joint probability model and the best combination is found through chart parsing.

2www.bultreebank.org/dpbtb/

16

(Hatori et al., 2012) employ an incremental joint approach to solve three tasks in Chinese: word
segmentation, POS tagging, and dependency parsing. The motivation for solving them simultaneously
is that some segmentation ambiguities in the language cannot be resolved without considering the sur-
rounding grammatical constructions, while syntactic information can improve the segmentation of out-
of-vocabulary words. Parsing is done through a dynamic programming framework – a version of the
shift-reduce algorithm.

Joint morphological and syntactic analysis of several morphologically rich languages is presented in
(Bohnet et al., 2013). They use an extended transition system for dependency parsing to incorporate POS
tagging, tagging with morphological descriptions and lemmas. In addition they define new evaluation
metrics. They include the standard POS accuracy, Labeled and Unlabled Arc Accuracy, but also accuracy
of combination of features like POS tags, morphological description, lemmas and dependency arcs.
Several experiments with different parameters controlling the selection of best tags and morphosyntactic
descriptions are presented.

The approach presented in our work is joint in the sense that we solve two tasks simultaneously – the
choice for POS tag is dependent on the choice for dependency arc, and vice versa. However, our approach
is also ensemble, since it combines the outputs of several systems for solving the two tasks, instead of
exploring the whole search space of all combinations of tags and arcs. In this way, the approach is better
described as a joint ensemble model.

3 Related Work on Bulgarian

Bulgarian is still under-studied with respect to parsing. Although several systems were trained on the
BulTreeBank treebank during the CoNLL-X 2006 Shared Task (Buchholz and Marsi, 2006) and after it,
a pipeline including a dependency parser with state-of-the-art performance does not exist. A state-of-
the-art POS tagger with nearly 98% accuracy is available for Bulgarian (Georgiev et al., 2012). The best
result for dependency parsing of Bulgarian reported in literature is 93.5% UAS (Martins et al., 2011).
The best result for a pipeline including POS tagging and dependency parsing for Bulgarian is not known
because most available tools were trained on the whole BulTreeBank and there is no way to measure
their actual performance.

Our work is motivated by previous efforts to solve several NLP tasks simultaneously with application
to Bulgarian (Zhikov et al., 2013). The presented joint model for POS tagging, dependency parsing,
and co-reference resolution achieved results comparable to a state-of-the-art pipeline with respect to
dependency parsing. This pipeline, however, used gold standard POS tags as input to the parser. Note
that in the current work we do not rely on gold standard POS tags in the dependency parsing step in order
to achieve more realistic results.

The usefulness of the ensemble parsing approach for Bulgarian is investigated in our previous works
– (Simov et al., 2013) and (Simov et al., 2014). We trained 21 dependency parsing models with different
configurations (parsing algorithm settings and features), including 12 MaltParser (Nivre et al., 2006)
models, 6 MSTParser (McDonald, 2006) models, two TurboParser (Martins et al., 2010) models, and
one Mate-tools parser (Bohnet, 2010) model. The best achieved ensemble result was 93,63% UAS, but
gold POS tags were used as input for parsing. In our current work the best result is slightly lower, but
more realistic, since no gold POS tags were used.

In this work as well as in the previous mentioned works we use Chu-Liu-Edmonds algorithm for maxi-
mum spanning tree as implemented in the MSTParser to ensure the construction of complete dependency
trees. In (Zhikov et al., 2013), POS tags and the co-referential chains are encoded as an extension of the
dependency tree in order to apply the same algorithm. We make use of this representation in the current
work, as described in the following lines.

4 Ensemble Model

Our ensemble model works over extended dependency trees and graphs. First we define a dependency
tree. Then we extend the dependency tree to include alternative POS tags for each wordform node and
alternative dependency arcs.

17

Let us have a set D of dependency tags (ROOT ∈D) and a sentence x = w1, ...,wn. A dependency tree
is a tree T = (V,A,δ) where:

1. V = {0,1, ...,n} is an ordered set of nodes, that corresponds to an enumeration of the words in the
sentence (the root of the tree has index 0);

2. A⊆V ×V is a set of arcs;

3. δ : A→ D is a labeling function for arcs;

4. 0 is the root of the tree.

In order to extend the tree, we assume a range of possible POS tags for each wordform in the sentence.
Such a range of tags has to contain the correct tag for the wordform in the given context. In this work
we assume they are coming from results of several POS taggers. These tags are included in the tree
as service nodes. In the linear representation of the sentence, they are inserted after the node for the
corresponding wordform, and before the node for the next wordform to the right. They are connected to
the corresponding wordform with a special link $TAG. In order to indicate the correct tag, we introduce
another type of service node. In the linear representation of the sentence, it is inserted after the last POS
tag candidate node, and before the one corresponding to the next wordform to the right. This node is
connected to the correct tag via a special arc $CTAG (correct tag). In this way, all information about
the potential tags and the correct tag is represented in the form of a subtree, attached to the wordform.
Figure 1 depicts the encoding of a word with POS tag ambiguity as a tree. The correct tag is indicated:
verb, personal, perfective, transitive, finite, aorist, third person, singular, or “Vpptf-03s”. The TAG arcs
are represented as red links. The CTAG arc is represented as an oval.

Figure 1: Subtree of a word with candidate POS tags and the correct tag.

Our ensemble model starts working on a set of extended dependency trees from which it to select the
an extended tree. We represent this set as an extended dependency graph.

Let us have a set G of POS tags, and a set D of dependency tags (ROOT ∈ D). Let us have a sentence
x = w1, ...,wn. An extended dependency graph is a directed graph Gr = (Ve,A,π,δ,ρ) where:

1. Ve = {0,1,$TAG11,TAG12, ...,TAG1 j1 ,T T 1, ...,n,TAGn1,TAGn2, ...,TAGn jn ,T T n} is an ordered
set of nodes, that corresponds to an enumeration of the words in the sentence (the root of the tree
has index 0), additional nodes for alternative POS tags - TAGk j, such that for each wordform k there
is at least one such node and for each wordform k there is one T T k selecting its correct POS tag;

2. V = {0,1, ...,n} is the ordered subset of Ve corresponding to words in the sentence including the
root element;

3. A⊆V ×V is a set of arcs;

4. π : TAGk j → G is a labeling function from tag nodes to POS tags (node 0 does not have POS tag).
These nodes are called POS nodes;

5. TAGk j is connected by an arc with label $TAG to the wordform k;

6. T T k is connected each TAGk j by an arc with label $CTAG, where k is the number of the wordform;

18

7. δ : A→ D is a labeling relation for arcs. Each arc has at least one label;

8. ρ : 〈a, l〉→ R, is a ranking function, where a is either an arc in A and l ∈ δ(a) or a = 〈TAGk j,k〉 and
l = $CTAG. ρ assigns to each labeled dependency arc or tagging arc a rank. The arcs from POS
tags nodes to wordform node always have rank 1;

9. 0 is the root of the graph.

We use an extended dependency graph Gr to represent the initial data from which we select an analysis.
Each extended dependency graph could incorporate the results from several POS taggers and several
dependency parsers. At the beginning each node for true tag is connected to all corresponding tagger
predictions, and after ensemble is assigned to a single parent node, the correct tag. In this way, all
information about the potential tags and the correct tag is represented in the form of a subtree, attached
to the word form.

Our ensemble model starts from an extended dependency graph Gr and constructed an extended tagged
dependency tree T which is a subgraph of Gr. In the rest of the paper we will use just dependency tree
and dependency graph terms to denote the extended ones. We use two algorithms for the construction of
a single dependency tree from the predictions of all tagger and parser models (dependency graph).

The first algorithm, denoted LocTr, is presented in (Attardi and Dell’Orletta, 2009). It constructs the
dependency tree incrementally, starting from an empty tree and then selecting the arc with the highest
rank that could extend the current partial tree. The arcs are selected from the extended dependency graph.
The algorithm chooses the best arc locally.

The second algorithm, denoted GloTr, is the Chu-Liu-Edmonds algorithm for maximal spanning tree
implemented in the MSTParser (McDonald, 2006). This algorithm starts with a complete dependency
graph including all possible dependency arcs. Then it selects the maximal spanning tree on the basis of
the ranks assigned to the potential arcs. The arcs that are not proposed by any of the parsers are deleted
(or we could think about them as having infinite small rank). The arcs for the service nodes include only
the once from the definition of extended dependency graph. The algorithm is global with respect to the
selection of arcs. In our scenario, however, we do not construct a full graph, but one containing only the
suggestions of the parsers and taggers.

These two ensemble algorithms are included in our system for experiments with dependency parsers.
The user can specify which one should be used in their experiments, or alternatively compare the perfor-
mance of both. Making choice for each of the T T nodes both algorithms select the best POS tag for the
corresponding wordform.

In the next section we define the experimental setup: the creation of parsebank where for each tree in
the original treebank a dependency graph is created; the definition of voting approaches and the machine
learning weighting.

5 Experimental Setup

In this section we present in detail the way in which our ensemble experiment was set up, including the
data format and choice of ranking and features for machine learning.

5.1 Tagger and Parser Models and Parsebank
In the current experiments we use the five parsing models which achieved the highest LAS and UAS
scores for the BulTreeBank data in previous experiments3 (Simov et al., 2014). They include two Malt-
Parser models, MLT07 and MLT09, one MSTParser model, MST05, one TurboParser model, Turbo02, and
one Mate-tools Parser model, MATE01. The following configurations were used for each model:

1. MLT07 - Convington non-projective algorithm with extended feature set for lemmas.

2. MLT09 - Stack eager algorithm with extended feature set for morphosyntactic descriptions.

3. MST05 - default parser settings, with the exception of the order of features. The parser was set to
use features over pairs of adjacent edges (second-order: true).

3The names of the models were left unchanged for easier reference to previous work.

19

4. MATE01 - default parser settings.

5. Turbo02 - the parser was set to use a complex set of features (model_type=full), which include
arbitrary sibling parts, non-projectivity parts, grand-sibling third-order parts, and tri-sibling third-
order parts.

The models were initially trained on the gold standard values for lemma, part-of-speech tags and
features, from the dependency version of the BulTreeBank. The best performing model in a 10-fold
cross validation is MATE01, with 92.9% UAS, followed by TURBO02 with 92.7% UAS.

In addition to the parsing models, three part-of-speech taggers were trained to predict the morphosyn-
tactic tags from the BTB-tagset (Simov et al., 2004) for the data. They include a baseline tagger which
makes use of a lexicon (BLL tagger), the morphology tagger of Mate-tools, and the TreeTagger (Schmid,
1994).

The standard approach for setting up a POS tagging baseline – selection of the most frequent tag
– cannot be applied for our experiment with Bulgarian, because of the rich morphosyntactic tagset of
680 tags. We construct a baseline tagger on the basis of the corpus and a morphological lexicon. This
baseline ignores context altogether and assigns each word type the POS tag it was most frequently seen
with in the training dataset; ties are broken randomly. For words not seen in the training dataset we use a
simple guesser which assigns POS tags on the basis of the word suffix. We first built two frequency lists,
containing respectively (1) the most frequent tag in the training dataset for each word type, as before, and
(2) the most frequent tag in the training dataset for each class of tags that can be assigned to some word
type, according to the lexicon. Given a target word type, this new baseline first tries to assign to it the
most frequent tag from the first list. If this is not possible, which happens (i) in case of ties or (ii) when
the word type was not seen during training, it extracts the tag class from the lexicon and consults the
second list. If there is a single most frequent tag in the corpus for this tag class, it is assigned; otherwise
a random tag from this tag class is selected. This strategy gives us a very high accuracy for this tagger.
Although we refer to it as a baseline, it achieves the best score among the taggers we used in these
experiments. Our explanation for this is the fact that we are using a morphological lexicon to predict the
possible tags for the unseen words in the test sets.

The Mate morphology tagger constitutes one step of the processing pipeline in Mate-tools, and makes
use of previously predicted values for lemma and tag. Therefore, we trained a Mate-tools lemmatizer and
tagger in addition, so that no gold standard data is used directly to obtain the morphological information
for each word in our experiment.

The third tagger trained on the BulTreeBank data and used in the experiments is TreeTagger, a tool that
estimates transition probabilities via decision trees. In training mode it was run with its default options.
The tagger takes as parameters a lexicon of all the words that are found in the training corpus, one per
line, followed by the respective POS tags encountered in the corpus and, optionally, by the lemmas for
those forms. We extracted this information from our training data, but skipped the optional training for
lemma, since lemmas can be automatically generated for each word form using the predicted BTB tag.

Using the taggers in a 10-fold experiment, we obtained three new versions of the dependency treebank,
with predicted values for the fields lemma, tag, and features, which brings us closer to a real-world
parsing scenario with unseen data. The output of the Mate morphology tagger is a prediction of the
values in the features field of the CoNLL dependency format. The BLL and TheeTagger predictions for
morphosyntactic tags were used to generate the fields lemma, tag, and features, for each word in the
original treebank. The taggers achieved accuracy of 95.91% (BLL Tagger), 94.92% (Mate morphology
tagger), and 93.12% (TreeTagger). Each of the five parsing models was evaluated on the new data sets
(Table 1). This evaluation exemplifies the extent to which a decrease in tagger accuracy can influence
parsing accuracy. There is a decrease in performance in terms of UAS score ranging from 1.6% to 4.6%,
compared to the performance of the models when using the gold data fields.

We define an upper bound for the potential improvement through ensemble for each task as the per-
centage of words in the parsebank for which there is at least one correct prediction by a tagger or parser.
The upper bound for the combination of taggers is 98.38%. For the parses the upper bound is 96.95 %

20

MLT07 MLT09 MATE01 MST05 Turbo02 training data

0.900 0.908 0.929 0.911 0.927 gold

0.881 0.890 0.910 0.890 0.911 BLL tagger

0.881 0.889 0.908 0.890 0.910 Mate tagger

0.857 0.865 0.883 0.865 0.883 TreeTagger

Table 1: Average UAS scores from the 10-fold cross validation of the parsing models trained on gold
data and on data containing automatically generated fields obtained using the outputs of three taggers.

for UAS and 95.38 % for LAS. These upper bounds can be reached if the algorithm is able to select the
correct solution in all cases.

A rich search space of possible combinations of POS tags and parses is available for the voting and
machine learning weighting modules to choose from. An increase in tagging accuracy through ensemble
can lead to obtaining better parsing results. In order to allow for ensemble to be performed on the output
of several POS taggers and parsers, the tree that stores the POS tags and the head and relation predicted
by each parsing model was represented in a dependency graph.

Thus, the parsebank consists of dependency graphs constructed by the three POS tagging models and
the five dependency parsing models. All the models are trained on gold data from the original treebank.
Because the parsing depends on the POS tags assigned to the wordform we applied the parsing models
for the results from each POS taggers. In this way we potentially up to fifteen arcs per wordform.

5.2 Combining Parses by Voting

We investigate three voting modes for the calculation of the weight assigned to each candidate depen-
dency arc: (1) the arcs are ranked by the number of parsers/taggers that predicted them (Rank01); (2)
the arcs are ranked by the sum of the accuracy of all parsers/taggers that predicted them (these metrics
include the LAS and UAS measures from the 10-fold cross validation and the tagger accuracies individ-
ually achieved by each tool) (Rank02); and (3) the arcs are ranked by the average of the accuracy of the
parsers/taggers that predicted them (Rank03).

5.3 Combining Taggers and Parsers by Machine Learning Weighting

In order to evaluate the interaction between morphosyntactic information and the dependency parsing,
we conducted an experiment in which a machine learning technique was used for ranking the tags and
arcs suggested by the different models. This was done with the help of the package RandomForest4

of the system R5. The parsebank was once again divided into training and test parts, using the same
proportion, but orthogonally: 90% and 10%.

For each word node there are up to three different tags and for each tag there are up to five arcs. We
constructed pairs of tags and arcs on the basis of these suggestions. Each pair was compared with the
gold data and classified as correct or incorrect for a given context. To each pair (Tag , Arc) a vector
of features was assigned. Arc was modelled by three features: relation (Rel), distance in words to the
parent node (Dist) and direction of the parent node (Dir) – Left, meaning that the parent node is on
the left, and Right, meaning that the parent node is on the right. Tag was represented as a vector of
its grammatical features including POS, gender, number, etc. In this way the agreement features were
represented explicitly. We also included the word form string as a feature, as well as the corresponding
information for the word form context – words before and after it, and the same for the parent node in
the dependency tree.

A representation of this data as a value vector for RandomForest is given in Table 2.

4http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
5http://www.r-project.org/

21

Feature Value
Word the current node
WordBefore the word before the current node
WordAfter the word after the current node
ParentWord the parent word

PWordBefore the word before the parent word

PWordAfter the word after the parent word

SelectedArc one of the arcs suggested by one of

the models for the node
SelectedTag one of the arcs suggested by one of

the models for the node
CorrectIncorrect true or false depending on whether

the selected pair is

the correct one for the node

Table 2: Feature vector used with RandomForest for the experiment.

The tuples generated from the training part of the treebank were used to train the RandomForest in
regression mode, then the model was applied to the test set to rank each pair. After this the ranks were
distributed to tags and arcs. These weights were used by the algorithms LocTr and GloTr.

Each tag and arc for a given word could participate in several different feature vectors. Thus each of
them could receive different weights from the evaluation of the vectors. In our view, the best selection
among these weights could be determined only through experimentation. We have tested three rankings:
WMax – the maximum tag weight for all word vectors, WMin – the minimum tag weight for all word
vectors, and MSum – the sum of all tag weights for all word vectors.

6 Experiments

We ran both algorithms (LocTr and GloTr) for construction of dependency trees using various combina-
tions of the outputs of our dependency parsing and tagging models. Table 3 shows the parsing accuracy
results when combining all models (1), only the models of the two best performing parsers, Turbo02 and
Malt01 (2), and the best combination we have found by trying all possible combinations (around 32K)
(3). We included the results for (1) and (2) to demonstrate that the best combination cannot be predicted
in advance by simply selecting the candidate with the largest number of models, or the one with the best
performing individual parsers.

The best combination in this experiment in terms of UAS score is: MLT09+BLL, Mate01+BLL,
MST05+BLL, Turbo02+BLL, MLT07+MateTagger, Mate01+MateTagger, Turbo02+MateTagger. This
combination achieves better UAS score (92.47%) than any of the individual parsers (see Table 1).

There was an improvement of 1.37% over the best performing individual parser Turbo01+BLL, which
achieves 91.10% UAS. The unlabelled accuracy after voting is, however, still 0.43% lower than the best
result on the gold data achieved by an individual model Mate01. We suspect that this is due to having
only three tagger models in the current experiment, and that adding a few more tagger models for voting
can help improve the result.

Table 4 presents the accuracy achieved for all possible combinations of the three taggers by voting per
rank. We have to stress the fact that the selection of the morphosyntactic tag in the extended dependency
tree is independent from the selection of dependency arcs, because each new tag node is connected to
the word node by equal weight. The interaction between dependency arcs and morphosyntactic arcs is
ensured by the features used in machine learning weighting. The results for the combination improve the
individual accuracy for all taggers.

The results in Table 4 show that it is hard to predict the best combinations in advance without enumer-
ating all possibilities. Note that for voting (Rank01, Rank02, and Rank03) it is meaningless to investigate

22

Models Algorithm Rank01 Rank02 Rank03

Number Sum Average

LAS UAS LAS UAS LAS UAS

(1) all models
LocTr 88.55 92.05 88.61 92.10 85.57 88.82
GloTr 88.55 91.96 88.65 92.04 84.54 88.75

(2) all Mate01 and Turbo02 models
LocTr 87.68 91.38 87.80 91.48 86.94 90.55
GloTr 87.58 91.21 87.82 91.45 86.84 90.62

(3) best combination
LocTr 88.90 92.34 89.05 92.47 86.19 89.40
GloTr 88.94 92.31 89.14 92.45 85.23 89.27

Table 3: UAS and LAS obtained after voting using the algorithms LocTr and GloTr for tree construction.
(1) All 18 models; (2) A combination of the best individual models: Mate01 and Turbo02 + each tag-
ger; (3) best combination: MLT09+BLL, Mate01+BLL, MST05+BLL, Turbo02+BLL, MLT07+MateTagger,
Mate01+MateTagger, Turbo02+MateTagger;

Voting Rank01 Rank02 Rank03

Number Sum Average

BLL, Mate, TreeTagger 96.24 96.24 95.22

MLearning WMax WMin WSum

BLL, Mate, TreeTagger 96.10 96.20 96.25

BLL, Mate 96.62 96.59 96.63
BLL, TreeTagger 95.89 96.08 96.09

Mate, TreeTagger 95.29 95.40 96.25

Table 4: Tagger accuracy after voting and machine learning weighting.

the combinations involving only two taggers, because in this case the output of voting will always be the
same as the output of the better tagger.

Table 5 presents the UAS and LAS measures achieved using machine learning weighting. In this
case the best combination is Mate01+BLL, Turbo02+BLL, Mate01+MateTagger, Turbo02+MateTagger.
Again, the results are better than the ones obtained by the individual parsing models. They also demon-
strate some small improvement over the voting ranking.

Model Algorithm LAS UAS

all
LocTr 89.17 92.46
GloTr 89.23 92.27

all Mate01 and Turbo02 models
LocTr 88.26 91.81
GloTr 88.32 91.87

best combination
LocTr 89.76 93.18
GloTr 89.81 93.22

Table 5: Results from the experiments with RandomForest. The best combination is Mate01+BLL,
Turbo02+BLL, Mate01+MateTagger, Turbo02+MateTagger.

These experiments show the following: (1) the combination of taggers and parsers is a feasible task;
(2) the combination improves the accuracy of both the taggers and the parsers; (3) the combination of
both tasks is better than the pipeline approach; (4) there is room for improvement in order to reach the
upper bounds presented in Section 5.1.

7 Conclusion and Future Work

In this paper we have presented several approaches for combining parses produced by five parsing models
and tagging results from three taggers. The motivation behind a joint ensemble model is the interaction

23

between the morphosyntactic features of the word forms and the dependency relations between them.
The interaction could be considered as local and global interaction. The local interaction is usually
captured by n-gram models for tagging. The global interaction is represented by such phenomena like
subject – verb agreement, verb clitic – object – indirect object agreement, agreement between head noun
and relative pronouns, agreement between secondary predication, agreement within co-reference chains,
agreement within NPs. With relation to these cases, our current model deals with local interaction on
the basis of an n-gram model. Global agreement phenomena are currently modeled via dependency arcs
between word forms that agree in their grammatical features.

We deal with some of the interaction between local and some global patterns via a machine learning
approach in which the appropriateness of the MorphoSyntactic tag and the dependency arc for a given
word form are evaluated in conjunction. The appropriateness is expressed as a number between 0 and 1,
where 0 means inappropriate and 1 means appropriate. This number is used as a rank for the ensemble
algorithms.

Some of the global agreement phenomena such as verb clitic – object – indirect object agreement,
secondary predication and relative pronoun agreement are not covered by the current model. In the
future we plan to extend the model with global features defined not by arcs in the dependency tree, but
by patterns of dependency paths. These feature patterns will depend on the grammatical characteristics
of the given word form. In some cases they might not be directly related to the word form in the tree.

Our experiments show that a joint architecture is a good alternative to a pipeline architecture. There is
an improvement in accuracy for both tasks in our joint model. However, this approach has its limitations
with respect to possible improvement.

Future extensions of the experiments in several directions are envisaged. First, more linguistic knowl-
edge will be included from the morphological lexicon, valency lexicon and semantic categories of the
words as features for machine learning. Second, we plan to extend the experiments by including more
tagger and parser models, which could lead to an increase in the upper bound for potential improvement
in accuracy. In future work we envisage to compare our work with the work of (Bohnet et al., 2013)
applied on Bulgarian data. Also we will would like to include as features word clusters as they suggested
in the paper and as we did in parsing context (Ghayoomi et al., 2014).

Acknowledgements

This research has received partial funding from the EC’s FP7 (FP7/2007-2013) under grant agreement
number 610516: “QTLeap: Quality Translation by Deep Language Engineering Approaches” and grant
agreement number 611760: “EUCases: EUropean and National CASE Law and Legislation Linked in
Open Data Stack”.

References
Giuseppe Attardi and Felice Dell’Orletta. 2009. Reverse revision and linear tree combination for dependency

parsing. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, pages 261–264,
Boulder, Colorado.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, RichÃ¡rd Farkas, Filip Ginter, and Jan Hajic. 2013. Joint mor-
phological and syntactic analysis for richly inflected languages. TACL, 1:415–428.

Bernd Bohnet. 2010. Very high accuracy and fast dependency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational Linguistics, COLING ’10, pages 89–97, Stroudsburg, PA,
USA.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x shared task on multilingual dependency parsing. In Proceedings
of the Tenth Conference on Computational Natural Language Learning (CoNLL-X), pages 149–164, New York
City.

Shay B Cohen and Noah A Smith. 2007. Joint morphological and syntactic disambiguation. Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL). Prague, Czech Republic.

24

Georgi Georgiev, Valentin Zhikov, Kiril Ivanov Simov, Petya Osenova, and Preslav Nakov. 2012. Feature-rich
part-of-speech tagging for morphologically complex languages: Application to Bulgarian. In EACL’12, pages
492–502.

Masood Ghayoomi, Kiril Simov, and Petya Osenova. 2014. Constituency parsing of bulgarian: Word- vs class-
based parsing. Proceedings of LREC 2014.

Yoav Goldberg and Reut Tsarfaty. 2008. A single generative model for joint morphological segmentation and
syntactic parsing. In ACL 2008, pages 371–379.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2012. Incremental joint approach to word
segmentation, pos tagging, and dependency parsing in chinese. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers-Volume 1, pages 1045–1053.

John Lee, Jason Naradowsky, and David A Smith. 2011. A discriminative model for joint morphological disam-
biguation and dependency parsing. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies-Volume 1, pages 885–894.

André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, and Mário A. T. Figueiredo. 2010. Turbo
parsers: Dependency parsing by approximate variational inference. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, EMNLP ’10, pages 34–44, Stroudsburg, PA, USA.

Andre Martins, Noah Smith, Mario Figueiredo, and Pedro Aguiar. 2011. Dual decomposition with many overlap-
ping components. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Process-
ing, pages 238–249, Edinburgh, Scotland, UK.

Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency parsing mod-
els. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 122–131.

Ryan McDonald. 2006. Discriminative Training and Spanning Tree Algorithms for Dependency Parsing. Ph.D.
thesis.

Joakim Nivre and Ryan McDonald. 2008. Integrating graph-based and transition-based dependency parsers. In
Proceedings of ACL-08: HLT, pages 950–958, Columbus, Ohio.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Maltparser: a data-driven parser-generator for dependency
parsing. In Proceedings of LREC-2006.

Helmut Schmid. 1994. Probabilistic part-of-speech tagging using decision trees. In Proceedings of international
conference on new methods in language processing, volume 12, pages 44–49. Manchester, UK.

Kiril Simov, Petya Osenova, and Milena Slavcheva. 2004. BTB:TR03: BulTreeBank morphosyntactic tagset
BTB-TS version 2.0.

Kiril Simov, Ginka Ivanova, Maria Mateva, and Petya Osenova. 2013. Integration of dependency parsers for
Bulgarian. In The Twelfth Workshop on Treebanks and Linguistic Theories, pages 145–156, Sofia, Bulgaria.

Kiril Simov, Iliana Simova, Ginka Ivanova, Maria Mateva, and Petya Osenova. 2014. A system for experiments
with dependency parsers. In Proceedings of LREC 2014), Reykjavik, Iceland.

Mihai Surdeanu and Christopher D. Manning. 2010. Ensemble models for dependency parsing: Cheap and good?
In Proceedings of the North American Chapter of the Association for Computational Linguistics Conference
(NAACL-2010), Los Angeles, CA.

Valentin Zhikov, Georgi Georgiev, Kiril Simov, and Petya Osenova. 2013. Combining pos tagging, dependency
parsing and coreferential resolution for Bulgarian. In Proceedings of the International Conference Recent Ad-
vances in Natural Language Processing RANLP 2013, pages 755–762, Hissar, Bulgaria.

25

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 26–38 Dublin, Ireland, August 23-29 2014.

Improving the parsing of French coordination through annotation
standards and targeted features

Assaf Urieli
CLLE-ERSS

Université de Toulouse
assaf.urieli@univ-tlse2.fr

Joliciel Informatique
Foix, France

assaf@joli-ciel.com

Abstract

In the present study we explore various methods for improving the transition-based parsing of
coordinated structures in French. Features targeting syntactic parallelism in coordinated struc-
tures are used as additional features when training the statistical model, but also as an efficient
means to find and correct annotation errors in training corpora. In terms of annotation, we com-
pare four different annotations for coordinated structures, demonstrate the importance of globally
unambiguous annotation for punctuation, and discuss the decision process of a transition-based
parser for coordination, explaining why certain annotations consistently out-perform others. We
compare the gains provided by different annotation standards, by targeted features, and by using
a wider beam. Our best configuration gives a 37.28% reduction in the coordination error rate,
when compared to the baseline SPMRL test corpus for French after manual corrections.

1 Introduction

Coordinated structures (CS) are recognised as one of the main difficulties for automatic syntax parsers.
They are particularly challenging for transition-based parsers, which operate sequentially from sentence
start to end: indeed, even for a simple coordinated structure, it is virtually impossible to determine the
first conjunct of the structure without examining the rest of the sentence. Consider the following three
sentences, identical in French up to the coordinating conjunction:

Example 1.1 - J’ai mangé une pomme rouge et mûre. (I ate a red and ripe apple)
- J’ai mangé une pomme rouge et une orange. (I ate a red apple and an orange)
- J’ai mangé une pomme rouge et Georges a bu du thé. (I ate a red apple and George drank some tea)

In the above cases, selecting the correct conjuncts is simply a matter of examining the parts-of-speech
immediately following the coordinating conjunction, except in the last case, where we have to decide
whether or not George gets eaten. Nevertheless, nothing preceding the conjunction can help us make the
decision. Often the situation is more complex, with adjuncts intervening between the conjunction and
second conjunct, not to mention cases such as various forms of ellipsis, CSs with 3 or more conjuncts,
and modifiers shared by two or more conjuncts.

In this article, after reviewing related work (section 2) and introducing CS annotation and transition-
based parsing (section 3) and our data set and software (section 4), we follow a chronological outline in
terms of our own research. In a previous study (Urieli, 2014) we successfully applied knowledge-rich
targeted features to the pos-tagging of ambiguous functional words. In the present study we turn to pars-
ing (section 5.1), and attempt to apply knowledge-rich targeted features for coordination to the SPMRL
2013 dependency corpus for French (Seddah et al., 2013). Although the results are not fully satisfactory,
we discover while tuning the features that they can be very useful for pinpointing and correcting many
of the coordination errors in the training and evaluation corpora (section 5.2). Also, while exploring the
reason behind failure to coordinate correctly, we note that the way in which coordination is annotated in
the corpus is responsible for a sizable proportion of errors. We then attempt automatic transformations

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/.

26

of this annotation and compare results for six different annotations (section 5.3). Finally, we combine
annotation schemes with targeted features and a wider beam to find the maximal gain that can be attained
(section 5.4).

2 Related work

Several studies have explored the annotation standards for coordination in English. However, the original
Penn Treebank annotates only a subset of simple coordinated structures implicitly by grouping the items
together in a single phrase. Maier et al. (2012) present an annotation scheme for Penn Treebank coordi-
nation which includes punctuation, critical in the case of constituency treebanks. They then (Maier and
Kübler, 2013) train a classifier to attempt to recognise coordinating vs. non-coordinating commas, and
achieve an f-score of 89.22 for the coordinating (difficult) class. Many of the phenomena they are trying
to disambiguate in the constituency treebank by annotating punctuation are disambiguated in dependency
treebanks more simply by using an appropriate set of dependency labels, e.g. in the case of apposition vs.
coordination. In the present study, we thus take a somewhat opposite approach by removing annotation
from punctuation in the dependency treebank context, in order to concentrate the decision-process on the
conjuncts themselves.

Ivanova et al. (2013) measure performance for English using three different annotations for coordi-
nation, all of which are covered by the present study. With respect to annotation, they come to similar
conclusions for English to ours for French, but concentrate on the lowest-accuracy conjunction-headed
approach, as it is proned by the grammar-based parser in which they specialize.

Popel et al. (2013) perform a survey of many different dependency annotations for coordination, and
develop a tool for lossless transformation between these annotations. They also describe in detail the
various difficulties involved in annotating coordination, including the role of punctuation.

Schwartz et al. (2012) compare the “learnability” of various possible annotations for 6 structures in
English, including coordination, where learnability is defined both by the annotation giving the highest
attachment accuracy, and by the annotation which attains a target accuracy with the fewest training
examples. They compare 2 possible annotations for coordination, and find, as we do, that using one of
the conjuncts as head is far more learnable than using the conjunction as the head, across a variety of
parsers. However, since the Penn Treebank does not annotate coordinated structures with more than 2
conjuncts, they explore fewer annotation possibilites than in the present study.

Tsarfaty et al. (2011) raise a similar question of evaluating parsers trained on different annotation stan-
dards, including for coordination, but take a radically different approach. They convert all annotations to
directly comparable generalised functional trees, and find that apparent major differences in performance
are considerably attenuated or disappear when considered in such a light. It would be interesting to apply
their method to our different annotations for French data, and see to what extent it affects results.

In terms of annotation standards, the present study extends previous work by (a) applying similar
experiments to French and consolidating certain conclusions, while concentrating on the case of 3 or
more conjuncts, (b) highlighting the importance of a systematic annotation for punctuation, which is
only possible when punctuation is not explicitly used to indicate coordination, and (c) comparing gains
from annotation changes to those made by the addition of targeted coordination features or using a wider
beam.

In terms of specific targeted features for coordination, Hogan (2007) achieves statistically signifi-
cant improvements in noun phrase (NP) coordination in English, in the context of a history-based con-
stituency parser, by introducing features for NP head semantic similarity. Shimbo and Hara (2007)
leave out semantics, and instead use features incorporating the syntactic “edit-distance” between com-
peting structures. Both studies apply to consitituency parsers with a higher complexity than our linear
transition-based parser.

Other studies have attempted introducing generic “rich” features without specifically aiming at par-
allelism in coordination. Kübler et al. (2009) propose a method whereby the n-best PCFG parses are
reranked, in order to improve the parsing of coordination in German. Their features are generic, but can
cover the full parse trees since they are applied in reranking rather than during parsing. Our study differs

27

Je vois Jean , Paul et Marie

obj

coord

dep coord

coord

dep coord

Figure 1: French SPMRL annotation for coordination

from theirs by applying the features during the first parsing pass of a linear-complexity transition-based
parser, rather than requiring a large beam of n-best solutions at the outset.

Zhang and Nivre (2011; 2012) have shown the usefulness of generic “rich” features such as the valency
(number of dependents) of a given token, the distance between two tokens, a list of current unique
modifier labels for a token, and features looking at various characteristics a token’s second order governor
(its governor’s governor). They find that these features are particularly useful for global-learning based
parsers with a very high beam width (64)—this however comes with certain practical disadvantages,
since parsing speed is linearly correlated to beam width, and analysing with a beam of 64 takes 64 times
as long. In our study, we do not explore beam widths beyond 5 and do not apply global learning, and
show nevertheless that highly specific targeted features give considerable gain even in such a context.

In terms of French, De la Clergerie (2014) introduces rich symbolic features into statistical transition-
based parsing indirectly, by parsing each sentence first using FRMG, a TAG parser, and injecting fea-
tures based on the FRMG parse into the transition-based parser. He attains excellent results for French
(LAS=90.25 for the SPMRL test corpus with guessed pos-tags). However, given the need to parse
with a TAG parser, this system is not directly comparable to linear-time transition-based parsing.

3 Annotations and analysis mechanisms

Let us consider the following sentence containing a 3-conjunct coordinated structure:

Example 3.1 Je vois Jean, Paul et Marie. (I see John, Paul and Mary)

Figure 1 shows the French SPMRL dependency annotation for this sentence: all conjuncts are gov-
erned by the first conjunct via the preceding comma or conjunction.

The next question is: how is such an annotation parsed? In this study we concentrate purely on
transition-based parsing (Kübler et al., 2009). Parsing is thus defined as a series of transitions leading
from one parse configuration to the next, where a parse configuration is defined as follows:

• σ: a stack, or ordered sequence of tokens which have been partially processed

• β: a buffer, or ordered sequence of tokens which have not yet been processed

• ∆: a set of dependency arcs of the form label(governor, dependent) that have already been added

• τ : a sequence of transitions allowing us to reach the current configuration from an initial one

We will use σ0 to indicate the token currently on top of the stack, and σ1..n for tokens deeper in the
stack. Similarly, β0 indicates the next token to be processed on the buffer, and β1..n for tokens farther
down the buffer. Parsing begins with root artefact on the stack and all other tokens on the buffer. Parsing
ends when the buffer is empty. Our study uses the arc-eager transition system (Nivre, 2008), which
defines the four transitions shown in table 1 for moving from one configuration to the next.

It is well known that transition-based parsers tend to favour short-distance dependencies over longer
distance ones (McDonald and Nivre, 2007; Candito et al., 2010), since they will always compare two
closer tokens before comparing two tokens which are farther away, and the decision regarding the two
closer tokens is taken independently given the information available at this point. Thus, a closer token
is never directly compared to a token farther away when making an attachment decision. This tendency
can be somewhat curtailed by applying a beam search (Urieli and Tanguy, 2013).

28

transition effect precondition
left-arclabel Create the dependency arc

label(β0,σ0) and pop the stack
The reverse dependency
any(σ0,β0) does not exist, and
σ0 is not the root node

right-arclabel Create the dependency arc
label(σ0,β0), and push the head of the
buffer to the top of the stack

reduce Pop the top of the stack The top-of-stack has a governor
shift Push the head of the buffer to the top

of the stack

Table 1: The arc-eager transition system for shift-reduce dependency parsing

Now, as already seen in example 1.1, forward-looking features are required to correctly identify the
first conjunct by guessing the second conjunct. Table 2 shows the exact sequence of transitions required
for parsing the 3rd example sentence from example 1.1, from the moment when we first encounter the
coordinating conjunction on the buffer to the moment when the CS itself has been fully parsed. Difficult
decisions are shown in bold. Among these, the reduce transitions on lines n+1 and n+2 both require us
to look farther down the buffer to guess the most likely second conjunct, since we can only reduce when
there are no more dependents to be attached. The shift transitions on lines n+4 and n+5 are simpler,
since we already know that the first conjunct is a verb. Still, we have to recognise that the second verb is
composite, which is governed by convention by the past participle rather than the helper verb.

transition stack buffer dependencies
added

n root, mangé,
pomme, rouge

et, Georges, a, bu,
du, thé

n+1 reduce root, mangé,
pomme

et, Georges, a, bu,
du, thé

n+2 reduce root, mangé et, Georges, a, bu,
du, thé

n+3 right-arccoord root, mangé, et Georges, a, bu, du,
thé

coord(mangé,et)

n+4 shift root, mangé, et,
Georges

a, bu, du, thé

n+5 shift root, mangé, et,
Georges, a

bu, du, thé

n+6 left-arcaux tps root, mangé, et,
Georges

bu, du, thé aux tps(bu, a)

n+7 left-arcsuj root, mangé, et bu, du, thé suj(bu, Georges)
n+8 right-

arcdep coord

root, mangé, et, bu du, thé dep coord(et, bu)

Table 2: Arc-eager transition sequence for coordination, with difficult decisions in bold

The case of a CS with 3 or more conjuncts is even more complicated, since it requires lookahead
features for the first two conjuncts, looking farther ahead than in the case of the 2-conjuct CS. In all
cases, correctly guessing the final conjunct ahead of time is critical information to correctly annotating
the coordination.

29

4 Data and software

4.1 Talismane
All of the experiments in this study use the Talismane parser1. Talismane (Urieli, 2013) is an NLP toolkit
including a sentence detector, tokeniser, pos-tagger and transition-based parser. All four modules use a
statistical supervised machine learning approach, and it is possible to apply a beam search to the last
three modules, as well as defining sophisticated features and rules using an expressive feature definition
syntax. For all experiments in the present study, we used a linear SVM model with C = 0.25 and
ε = 0.01. We applied a cutoff of 5, so that a feature has to appear at least 5 times in the training corpus
to be considered.

4.2 French Treebank
The original input for this study is the dependency annotation for the French section of SPMRL (Seddah
et al., 2013), itself derived from the French Treebank (Abeillé et al., 2003), via an automatic conversion
of constituency structures to dependencies. We use the train (14,759 sentences, 412,879 tokens), dev
(1,235 sentences, 36,272 tokens) and test (2,541 sentences, 69,922 tokens) divisions of this corpus
as defined for SPMRL. All of our studies use the gold pos-tags from the treebank, in order to make an
abstraction of pos-tagger errors and concentrate on parsing. The baseline LAS excluding punctuation is
89.57% (dev) and 89.45% (test). The baseline f-score for coordinated structures, calculated as the
f-score for all individual coordination arcs, is 84.35% (dev) and 85.16% (test).

4.3 Initial error classification
We began this study by analysing coordination errors performed by Talismane in the dev corpus. Out of
240 errors analysed, 24% were annotation errors (of which over 60% were correctly annotated by Talis-
mane), 14% were artefacts of the annotation scheme (the 2nd and 3rd conjunct were directly coordinated
by Talismane unlike the original annotation), and 30% were errors where Talismane coordinated two
different pos-tags, whereas the correct coordination involved the same pos-tag. If we group this together
with other cases of simple parallelism (e.g. cases where Talismane coordinated different prepositions
instead of the same prepostion), this climbs up to 38%. The remaining 24% covered various difficult
cases, including elliptical coordinations. Only 12% involved cases where semantics were required to
make the correct choice.

The cases where the mildly rich French morphology might help us are very rare: only three cases
among the dev corpus errors. In the examples below and elsewhere in this article, the guessed conjuncts
are shown in italics (non-italics for the English translation), the correct conjuncts are underlined, and the
conjunction is shown in bold. In the first example, the feminine demonstrative pronoun celle indicates
that we are coordinating with the feminine noun présidence rather than with M. Michel Albert:
Example 4.1 [. . .] on avait parlé de la présidence des AGF à la place de M. Michel Albert ou de celle
du GAN occupée par M. François Heilbronner. (. . . they spoke of the presidency of the AGFs instead of
Mr Michel Albert or of that of the GAN occupied by Mr François Heilbronner.)

In the second case, the masculine past participle rejeté should coordinate with the masculine past
participle opté rather than the feminine faite:
Example 4.2 Le conseil d’administration [. . .] a opté pour la proposition de reprise faite par Bongrain
et rejeté celle de Besnier. (The board of directors chose the takeover proposal made by Bongrain and
rejected the one made by Besnier.)

In the final example, a plural adjective répétitifs is coordinated with a plural adjectival past participle
construits, rather than a previous morphologically unadorned past participle découvert in a conjugated
construction:
Example 4.3 [. . .] les Européens ont découvert/VPP l’immensité du stock japonais : [. . .] scénarios
répétitifs/ADJ mais habilement construits/VPP [. . .] (the Europeans discovered the immensity of the
Japanese stock: repetitive and skillfully constructed scenarios. . .)

1http://redac.univ-tlse2.fr/applications/talismane.html

30

Because of the rarity of such cases, we decided not to include morpholigical features in our experi-
ments.

5 Experiments

5.1 Initial experiment with targeted features
We first decided to target the 38% of errors relating to simple parallelism (e.g. parallelism errors related
to mismatched pos-tags or prepositions, rather than semantics).

Because of the importance of identifying a second conjunct before identifying the first one, we first
constructed the following targeted feature:

• Second conjunct identification: attempts to correctly identify the second conjunct. Since all
subsequent features depend on this second conjunct feature, it was critical to attain high accuracy.
Also, since the feature is a component of features used to select the first conjunct, it can only make
use of information available when a first conjunct candidate is at σ0 and the conjunction at β0 (steps
1, 2 and 3 in table 2): critically, it tries to guess the second conjunct with no knowledge of the
correct first conjunct.

The most difficult cases for this feature are verbs, since both coordinated verbs need to be outside of
subordinate, relative or comment phrases. Comment phrases, particularly numerous in journalistic text,
and marked only by punctuation, word order, and lexical choices, are the most difficult to recognise. The
following list shows examples of sentences with two conjugated verbs (in italics), and with the conjuncts
underlined.

1. Verb coordination: Il s’agit ici d’un jour normal de la semaine et un inventaire scrupuleux exigerait
que l’on prenne également en compte l’offre accrue du mercredi. (We are dealing here with a normal
weekday, and a scupulous inventory would require us to take into account the increased offer on
Wednesdays.)

2. Verb coordination: Les chiffres parlent d’eux-mêmes : les Japonais occupent 30 % du marché
américain et leurs exportations représentent près de 75 % du déficit commercial global annuel.
(The numbers speak for themselves: the Japanese occupy 30% of the American market and their
exports represent almost 75% of the annual global commercial deficit.)

3. Comment phrase: A Lourdes, nous signale notre correspondant Jean-Jacques Rollat, la venue et
la circulation des pèlerins ont été très perturbées. (At Lourdes, signals our correspondent Jean-
Jacques Rollat, the arrival and circulation of pilgrims was considerably disrupted.)

4. Relative clause: Les émissions d’éveil qui ont fait la richesse des chaı̂nes de service public entre
1975 et 1985 ont toutes disparu. (The discovery programmes which constituted the richness of
public channels between 1975 and 1985 have all disappeared.)

We tested this feature on the training corpus, by applying it whenever a conjunction was found in
σ0, and seeing how often it correctly guessed “true” when the token in β0 was the second conjunct, and
“false” when the token in β0 was not the second conjunct, while ignoring knowledge of the first conjunct.
The accuracy for the “true” result is 99.07%, and for the “false” result is 94.54%.

We then used this feature to construct various features attempting to recognise parallelism in CS within
the framework of transition-based parsing. Most of these features compare the item currently at the top-
of-stack to the second conjunct guess, and check to see if there is a better candidate deeper in the stack.
The following features were used:

• Pos-tag mismatch: if the first conjunct candidate at the top-of-stack has a different pos-tag from
the second conjunct guess, does a candidate with the same pos-tag exist deeper on the stack?

• Mismatched prepositions: if the first candidate at the top-of-stack and the second conjunct guess
are two different prepositions, does the same preposition exist deeper on the stack?

31

• Pos-tag match: if the first conjunct candidate at the top-of-stack is the same pos-tag as the second
conjunct guess, are there any other candidates with this pos-tag deeper on the stack?

• 3 conjunct parallelism: when two tokens of the same pos-tag, separated by a comma, are being
compared, is the second token followed by a coordinating conjunction and then a third token with
the same pos-tag as the first two? We allow for various intervening modifiers depending on the
pos-tag being considered.

• Parentheses: is the first conjunct candidate at the top-of-stack inside parentheses and the second
conjunct guess outside of them?

When we first attempted to apply these features to our dev (and test) corpora, our f-score for
coordination (coord and dep coord combined) improved from 84.34% to 85.52% (85.16% to 86.97%
for test), giving a fairly modest error reduction of 7.54% (12.20% for test). In terms of significance,
McNemar’s test gives a p-value < 0.001 for coordination label changes in both dev and test.

Now, there are of course cases in the training corpus with valid non-parallel structures, such as the
following coordination between an adjective and prepositional phrase:

Example 5.1 Au mieux, la reprise sera lente/ADJ et de/P faible ampleur. (At best, the recovery will be
slow and of limited extent.)

These, however, are few and far in between when compared to the very large number of errors concern-
ing clear pos-tag parallelism. We will examine some errors introduced by applying targeted parallelism
features to non-parallel CSs in our final error analysis found in section 5.4.

5.2 Improvements through manual correction
The targeted feature definition involved several iterations in which features were projected onto the train-
ing corpus, and any unexpected results were analysed. Among the unexpected results were a very large
number of annotation errors. Given that 24% of the original errors in the dev corpus were annotation er-
rors, and our efficient method for pinpointing and correcting such errors by projecting targeted features,
we decided to apply these targeted manual corrections to the entire SPMRL French corpus (train, dev
and test).

Specifically, these manual corrections involved:

• Fixing any coordination where the dependent preceded the governor (impossible in the original
annotation standard)

• Reviewing and standardizing all cases of ni. . . ni. . . (neither. . . nor. . .) and soit. . . soit. . . (ei-
ther. . . or. . .).

• Projecting the above targeted features onto the corpus via Talismane, and correcting any items where
the feature yielded unexpected results.

The total corrections are 1,488 for train (out of 21,061 coordination relations = 7.07%), 106 for dev
(out of 1,743 coordination relations = 6.08%) and 274 for test (out of 3,420 coordination relations =
8.01%). Multi-word expressions (MWEs) were left as is, except on rare cases where a modifier inside
the MWE was coordinated to a modifier outside of it.

dev base dev fix test base test fix
train base 84.34 85.08 85.16 85.54
train fix 83.99 85.75 84.99 86.75

Table 3: Coordination f-score after targeted manual error correction

Table 3 shows the coordination f-score with and without targeted error correction in both training and
evaluation. Fixing errors in the training corpus is only useful when equivalent errors are fixed in the

32

Je vois Jean , Paul et Marie

obj

coord

dep coord

coord

dep coord

(a) 1st-conjunct headed (1H)
Je vois Jean , Paul et Marie

coord

coord

obj

coord

(b) Conjunction headed (CH)

Je vois Jean , Paul et Marie

obj

coord

dep coord

coord

dep coord

(c) Previous conjunct headed (PH)

Je vois Jean , Paul et Marie

obj

coord coord
dep coord

(d) Previous conjunct headed 2 (PH2)

Figure 2: Different annotations for coordination

evaluation corpora. If we consider the corrected evaluation corpora only, fixing errors in the training
corpus gives an f-score error reduction of 4.49% for dev (8.37% for test).

The remainder of this study uses the manually corrected corpora as a baseline. Although this is not
satisfying in terms of comparisons with other studies, we found ourselves constrained to do so because
our automatic conversions from one annotation scheme to another required a clean and consistent anno-
tation to begin with. In order to simplify comparisons, we have generated a difference file to apply to the
original SPMRL corpus, available upon request.

5.3 Comparing annotation schemes

As seen in section 4.3, over 14% of the initial errors were artefacts of the annotation scheme for a
CS with more than 2 conjuncts, where Talismane systematically attached the conjunct to the previous
conjunct, whereas the original annotation scheme systematically attaches it to the first conjunct. Indeed,
the previous conjunct attachment is more natural for transition-based parsers: since the comma is a highly
ambiguous indicator for coordination, the coordination is often missed between the first and second
conjuncts, and the first conjunct is reduced. By the time the parser reaches the coordinating conjunction,
only the second conjunct is left on the stack. This suggested that changing the CS annotation scheme
could lead to considerable improvements.

We therefore decided to experiment with four different equivalent CS annotation schemes, as shown in
figure 2. Subfigure 2a gives the original 1H (1st conjunct headed) annotation used in the SPMRL 2013
dependency corpus for French. The first conjunct always heads the CS, and governs the coordinating
commas and conjunction with a coord label, which in turn govern the remaining conjuncts with a
dep coord label. Subfigure 2b shows the CH (conjunction headed) annotation, used by a wide variety
of grammars: the conjunction governs all of the conjuncts with a coord label. Subfigure 2c shows the
PH (previous conjunct headed) annotation, in which each conjunct governs the following coordinator
(whether a comma or a conjunction) with the coord label, and the coordinator governs the following
conjunct with the dep coord label. Finally, subfigure 2d shows the PH2 annotation, in which we skip
the comma, so that conjuncts separated by a comma are directly governed by the previous conjunct using
the coord label. In the case of a simple CS with 2 conjuncts, the PH and PH2 annotations are identical
to the 1H annotation.

Notice that there is no loss of information between these four annotations, so that round-trip conver-
sions can restore the original annotation. Post-positioned shared modifiers (e.g. “Jean, Paul et Marie
Dupont”, where all three are members of the Dupont family) can be indicated by having the conjunc-
tion govern the shared modifier in the CH annotation, and having the 1st conjunct govern it in the other
annotations. This annotation becomes non-projective (i.e. involves crossed dependency arcs) in 1H, PH
and PH2 when the modifier applies to the objects of a prepositional phrase coordination, e.g. “Je parle

33

de Jean, de Paul, et de Marie Dupont” (“I’m talking about John, Paul and Marie Dupont”). Since we
use a projective parser in the present study, we change the governor to the final conjunct when required
to avoid non-projectivity, thus losing some information. The 1H, PH and PH2 have no simple way of
distinguishing ante-positioned shared modifiers from modifiers of the first conjunct, e.g. “Chers Jean,
Paul et Marie” (“Dear John, Paul and Mary”). Moreover, none of these annotation schemes provide a
clear solution for elliptical coordinations, e.g. “J’ai vu Jean et Paul hier, et Marie aujourd’hui” (“I saw
John and Paul yesterday, and Mary today”).

Another possibility for annotation was suggested by detailed analysis of the actual transition sequences
for the first 20 coordination errors, revealing two cases in which, if a comma followed the first conjunct,
the first conjunct was erroneously reduced. This suggested that having to take a decision when the comma
was found at β0 led to errors which could be eliminated if the comma were immediately attached and only
used as a feature for further decisions. Now, if we look at the French Treebank annotation for punctuation
outside of coordinated structures, the label is always ponct, but the choice of the punctuation’s governor
seems fairly arbitrary. Parser confidence is thus very low for punctuation attachment decisions, and as
a result, when applying a beam search, the beam is often filled with alternative arbitrary punctuation
attachment decisions instead of true syntactic ambiguities. We therefore decided to experiment as well
with attaching punctuation systematically to the previous non-punctation token (or to the root artefact
when punctuation opens the sentence), except in the case of coordinating commas for the 1H and PH
annotations. Indeed, for the CH and PH2 schemes, we were forced to apply this punctuation “fix”
in order to avoid generating a large number of non-projective punctuation arcs when transforming the
corpus. In these latter two annotations, where coordinated commas are not used to annotate the CS,
applying a punctuation fix results in systematic annotation for all punctuation in the corpus, thus resulting
in a systematic application of the right-arcponct and reduce transitions.

We thus make the hypothesis that transition-based parsers will favour those annotations which rely
on shorter-distance dependencies, specifically PH and PH2. Our second hypothesis is that systematic
annotation for commas (PH2) helps improve annotation by removing a needless source of ambiguity.

Scheme: 1H 1H+P CH+P PH PH+P PH2+P
Dev
Coord f-score 85.75 85.60 73.20 86.68 86.96 89.21
Coord prec. 99.55 99.55 98.88 99.49 99.49 99.41
Coord recall 75.31 75.09 58.11 76.79 77.24 80.91
LAS no punct. 89.69 89.69 87.44 89.74 89.82 90.11
UAS no punct. 91.71 91.64 89.39 91.74 91.78 92.02
LAS 87.34 91.00 89.13 87.38 91.11 91.45
UAS 89.10 92.69 90.81 89.12 92.82 93.10
Test
Coord f-score 86.75 86.94 73.09 88.20 88.44 90.29
Coord prec. 99.70 99.52 99.38 99.75 99.50 99.71
Coord recall 76.78 77.18 57.80 79.04 79.59 82.50
LAS no punct. 89.63 89.81 87.19 89.76 89.94 90.16
UAS no punct. 91.63 91.79 89.17 91.75 91.94 92.13
LAS 87.19 91.12 88.93 87.29 91.24 91.49
UAS 88.93 92.85 90.64 89.01 92.98 93.20

Table 4: Comparing CS annotation

Table 4 shows results for the six annotation schemes (where +P indicates the punctuation fix was ap-
plied): 1H, 1H+P, CH+P, PH, PH+P, PH2+P. All results are after targeted manual correction. For ease of
comparison with previous studies, we show LAS and UAS both with and without punctuation. Unsur-
prisingly, in the schemes without the punctuation fix, hence with arbitrary attachment for punctuation,
we systematically lose 2% when we include punctuation in the LAS/UAS, whereas in the schemes with

34

the punctuation fix we systematically gain over 1%.
In the coordination results, we include both the coord and dep coord labels, since different

schemes have different proportions for these. Precision is very high because of the strong markers
for coordination. Recall is much lower, because of the difficulty of finding the first conjunct. The
conjunction-headed scheme CH+P is a clear loser in transition-based parsing—hardly a surprising re-
sult, since it requires far more lookahead features. All of the previous-conjunct headed schemes (PH,
PH+P, PH2+P) outperform the first-conjunct headed schemes (1H, 1H+P) by over 1.5% when it comes
to the coordination f-score, which validates our hypothesis based on the analysis of errors in section
4.3. Finally, the clear winner is the PH2+P scheme, where all attachment ambiguity is transposed from
punctuation to the conjuncts, with 2.0% gain in coordination f-score with respect to the PH+P scheme.
The coordination f-score error reduction between the original 1H scheme and PH2+P is 24.28% for dev
(26.72% for test). In terms of statistical significance for both the dev and test corpora (McNemar’s
test applied to identifying individual conjuncts), the differences between 1H, 1H+P, PH and PH+P are
not significant (p-value > 0.05). The differences between any other schema and CH+P or PH2+P are
highly significant (p-value < 0.001).

5.4 Combining with targeted features
In our final experiment, we combine the PH2+P annotation scheme with the targeted features presented
in section 5.1, to see to what extent the gains are cumulative. We also test at different beam widths to see
how much additional gain can be had at higher beams.

Beam: Beam 1 Beam 2 Beam 5
Scheme: 1H PH2+P 1H PH2+P 1H PH2+P
Features: ∅ + ∅ + ∅ + -∅ + ∅ + ∅ +
Dev
Coord f-score 85.8 86.4 89.2 90.0 87.0 87.2 90.3 90.5 87.2 87.4 90.8 90.7
Coord prec. 99.6 99.4 99.4 99.4 99.6 99.5 99.5 99.5 99.4 99.4 99.6 99.5
Coord recall 75.3 76.3 80.9 82.2 77.2 77.5 82.7 83.0 77.6 78.0 83.3 83.4
LAS no pnct 89.7 89.7 90.1 90.3 90.2 90.3 90.5 90.6 90.4 90.4 90.7 90.7
UAS no pnct 91.7 91.8 92.0 92.2 92.2 92.3 92.5 92.6 92.4 92.5 92.6 92.7
LAS 87.3 87.4 91.5 91.6 88.0 88.1 91.8 91.9 88.2 88.3 91.9 92.0
UAS 89.1 89.2 93.1 93.2 89.8 89.9 93.5 93.6 90.0 90.1 93.6 93.7
Test
Coord f-score 86.8 88.5 90.3 91.3 87.8 89.3 90.5 91.6 88.6 89.6 90.6 91.7
Coord prec. 99.7 99.6 99.7 99.7 99.8 99.7 99.6 99.6 99.8 99.6 99.6 99.6
Coord recall 76.8 79.5 82.5 84.3 78.4 80.9 83.0 84.8 79.6 81.5 83.1 85.0
LAS no pnct 89.6 89.9 90.2 90.3 90.3 90.4 90.6 90.7 90.5 90.6 90.6 90.8
UAS no pnct 91.6 91.9 92.1 92.2 92.2 92.4 92.5 92.6 92.5 92.6 92.6 92.7
LAS 87.2 87.4 91.5 91.6 88.0 88.2 91.8 92.0 88.4 88.4 91.9 92.0
UAS 88.9 89.2 93.2 93.3 89.7 89.9 93.5 93.6 90.0 90.1 93.6 93.7

Table 5: Combining annotation schemes and targeted features at different beam widths

Table 5 shows the results at beams 1, 2 and 5, for the original scheme 1H and the best scheme PH2+P,
and with (+) or without (∅) targeted features. Gains are clearly centered on coordination recall. Table 6
shows the same information in terms of f-score error reduction with respect to the baseline configuration
(1H annotation, baseline features, beam 1), with a maximal reduction of 35.09% for the dev corpus, and
37.28% for test. The three parameters tested are to a large extend cumulative. Individually, changing
the annotation standard gives the most gain, followed by targeted features and then increasing the beam
size to 2. In terms of statistical significance for the test corpus (McNemar’s test applied to identifying
individual conjuncts), all combinations are significant (p-value < 0.05) except for: PH2+P/∅/1-2 to
PH2+P/∅/5; PH2+P/+/2 to PH2+P/+/5; and a few other combinations going from 1H/+ to PH2+P/∅.

35

None Features Scheme Both
Dev: base f-score = 85.75
Beam 1 0.00 4.28 24.28 29.89
Beam 2 8.49 9.82 32.14 33.40
Beam 5 9.82 11.44 35.09 34.95
Test: base f-score = 86.75
Beam 1 0.00 12.91 26.72 34.64
Beam 2 8.15 19.02 28.53 36.83
Beam 5 13.58 21.81 28.98 37.28

Table 6: Coordination f-score error reduction with respect to 1H, baseline features, beam 1

In terms of time performance, these changes have a vastly different cost. All tests were run on an Intel
Xeon E3-1245 V2 machine, with a 3.4GHz clock speed, 4 cores, 8 threads, and 8 Mb cache, running the
Ubuntu 12.04.2 LTS 64-bit operating system. The baseline setup takes 171 seconds to parse the test
corpus (+133 seconds to load the model and lexicon), giving about 400 tokens/second. Changing the
schema from 1H to PH2+P speeds up analysis slightly (×0.93). Changing the beam width results in a
linear increase in time, ×2 for a beam of 2, and ×5 for a beam of 5. Finally, targeted features result in a
×22 increase in time.

We also performed a detailed error analysis for dev corpus, on the remaining errors in the PH2+P
corpus with targeted features at beam 1. Although the number of erroneous coordinations analysed has
reduced from 241 to 151, the percentage of errors relating to simple parallelism (pos-tag mismatch,
preposition mismatch, etc.) remains stable, down from 38% to 36%. Annotation errors are reduced from
24% to 11%. Artefacts of the annotation scheme in which conjuncts are attached to the first or second
conjunct are reduced from 15% to 5%. Finally, the complicated cases have climbed significantly, with
ellipses climbing from 5% to 13% and cases where only semantics can help us decide climbing from
12% to 23%. The latter results indicates that introducing semantic resources might be worthwhile for the
remaining errors.

There are a few cases of CSs coordinating unlike categories, where the new features introduced errors.
We have a two cases of true non-parallelism, as in the following case, where an adjectival past participle
is coordinated with a prepositional phrase:
Example 5.2 [. . .] celle d’/P une part significative des programmes et des productions réalisées/VPP
ou en cours de/P réalisation. (. . . that of a significant part of programs and productions that are already
finished or currently being prepared.)

We have a similar valid case of a non-parallel copula coordinating an adjective with a pronoun :
Example 5.3 Ce n’est/V pas forcément la plus économiquement souhaitable/ADJ, mais celle/PRO qui
fera le moins de vagues, compte tenu de l’agitation dans les campagnes, entendait/V-on [. . .] (It’s not
necessarily the most economically desirable, but the one which will make the least waves, given the
restlessness in the countryside, we were told. . .)

The remaining cases are related to spelling errors in the original text, or to tokenisation and pos-tag
errors in the gold pos-tags. For example, in the following case, the journalist misspelt the second baisser
(to lower) as an infinitive verb whereas it should have been the homophone past participle baissé:
Example 5.4 Quant au dollar lui-même, il a monté/V quand on croyait qu’il allait baisser/VINF [. . .] et
baisser/VINF derechef quand le marché commençait à se convaincre. . . (As for the dollar itself, it rose
when we thought it would lower, and lower[ed] once again when the market started to convince itself. . .)

A second case involves the MWE conformément aux (in conformance with), which should probably
be marked as a single preposition rather than ADV+P:
Example 5.5 Dans le cas des/P céréales, et conformément/ADV aux/P orientations souhaitées par les
organisations professionnelles [. . .] (In the case of cereals, and in conformance with the desires of
professional organisations, . . .)

36

Similar cases involve the pos-tagging of généraux as a noun (generals in an army) rather than an
adjective (general):

Example 5.6 [. . .] à l’ensemble des présidents/NC des conseils régionaux/ADJ et généraux/NC. (. . . to
all of the presidents of regional and general councils.)

6 Conclusions and perspectives

In the present study, we attempted to improve the parsing of coordinated structures in French through
changes to the annotation scheme and the application of targeted features. Both methods were successful,
with annotation scheme changes reducing the test corpus coordination f-score error rate by 26.72%,
targeted features reducing it by 12.91%, and the two combined reducing it by 34.64% (36.83% at beam
2, 37.28% at beam 5).

However, the application of targeted features comes at a considerable practical cost in terms of time
performance (×22 increase in time). This is partly due to the fact that features are described in configu-
ration files using a declarative syntax, so that certain operations (e.g. looking forward in the buffer) are
repeated thousands of times. Indeed, forward-looking features do not rely on partial parsing information,
and could even be cached for any given token for the entire sentence parse, across parse configurations.
If features were programmed and compiled, this could be made far more efficient, but we would lose the
advantage of external configuration files.

In addition, we introduced a method for efficiently correcting training corpus errors through the pro-
jection of targeted features, a method which could be extremely useful for corpus constructors. Finally,
we highlighted the usefulness of removing all ambiguity from the annotation of punctuation.

In a future study, we would need to test these methods with guessed pos-tags rather than gold pos-tags
in order to check their sensitivity to pos-tag errors. It would also be interesting to apply our methods
to other languages, and to include targeted semantic features based on semantic resources automatically
constructed using semi-supervised methods. For languages with a richer morphology than French, it
might well be worthwhile to introduce features based on morphological parallelism as well. Finally,
various methods would have to be explored for improving the time performance of targeted features, if
possible without losing the configurability and flexibility of declarative feature files.

Acknowledgements

I would like to thank the anonymous reviewers for their in-depth reading and many helpful suggestions.

References
Anne Abeillé, Lionel Clément, and François Toussenel. 2003. Building a treebank for French. In Anne Abeillé,

editor, Treebanks. Kluwer.

Marie Candito, Joakim Nivre, Pascal Denis, and Enrique Henestroza Anguiano. 2010. Benchmarking of statis-
tical dependency parsers for french. In Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, pages 108–116. Association for Computational Linguistics.

Deirdre Hogan. 2007. Coordinate noun phrase disambiguation in a generative parsing model. In Annual Meeting
- Association for Computational Linguistics, volume 45, page 680.

Angelina Ivanova, Stephan Oepen, and Lilja Øvrelid. 2013. Survey on parsing three dependency representations
for english. ACL 2013, page 31.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency parsing. Morgan & Claypool Publishers.

Sandra Kübler, Wolfgang Maier, Erhard Hinrichs, and Eva Klett. 2009. Parsing coordinations. In Proceedings of
the 12th Conference of the European Chapter of the Association for Computational Linguistics, pages 406–414.
Association for Computational Linguistics.

Wolfgang Maier and Sandra Kübler. 2013. Are all commas equal? detecting coordination in the penn treebank.
In The Twelfth Workshop on Treebanks and Linguistic Theories (TLT12), page 121.

37

Wolfgang Maier, Erhard Hinrichs, Sandra Kübler, and Julia Krivanek. 2012. Annotating coordination in the
penn treebank. In Proceedings of the Sixth Linguistic Annotation Workshop, pages 166–174. Association for
Computational Linguistics.

Ryan T McDonald and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency parsing models.
In EMNLP-CoNLL, pages 122–131.

Joakim Nivre. 2008. Algorithms for deterministic incremental dependency parsing. Computational Linguistics,
34(4):513–553.

Martin Popel, David Marecek, Jan Štepánek, Daniel Zeman, and Zdeněk Žabokrtskỳ. 2013. Coordination struc-
tures in dependency treebanks. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics.

Éric Villemonte de la Clergerie. 2014. Jouer avec des analyseurs syntaxiques. In Actes de la 21e conférence sur
le Traitement Automatique des Langues Naturelles (TALN’2014), pages 67–78, Marseille, France.

Roy Schwartz, Omri Abend, and Ari Rappoport. 2012. Learnability-based syntactic annotation design. In COL-
ING, pages 2405–2422.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang Maier,
Joakim Nivre, Adam Przepiorkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Eric Villemonte de la Clérgerie. 2013. Overview of the spmrl 2013 shared
task: A cross-framework evaluation of parsing morphologically rich languages. In Proceedings of the 4th
Workshop on Statistical Parsing of Morphologically Rich Languages: Shared Task, Seattle, WA.

Masashi Shimbo and Kazuo Hara. 2007. A discriminative learning model for coordinate conjunctions. In EMNLP-
CoNLL, pages 610–619.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. 2011. Evaluating dependency parsing: robust and heuristics-
free cross-nnotation evaluation. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 385–396. Association for Computational Linguistics.

Assaf Urieli and Ludovic Tanguy. 2013. L’apport du faisceau dans l’analyse syntaxique en dépendances par tran-
sitions : études de cas avec l’analyseur Talismane. In Actes de la 20e conférence sur le Traitement Automatique
des Langues Naturelles (TALN’2013), pages 188–201, Les Sables d’Olonne, France.

Assaf Urieli. 2013. Robust French syntax analysis: reconciling statistical methods and linguistic knowledge in
the Talismane toolkit. Ph.D. thesis, Université de Toulouse II le Mirail.

Assaf Urieli. 2014. Améliorer l’étiquetage de “que” par les descripteurs ciblés et les règles. In Actes de la
21e conférence sur le Traitement Automatique des Langues Naturelles (TALN’2014), pages 56–66, Marseille,
France.

Yue Zhang and Joakim Nivre. 2011. Transition-based dependency parsing with rich non-local features. In ACL
(Short Papers), pages 188–193.

Yue Zhang and Joakim Nivre. 2012. Analyzing the effect of global learning and beam-search on transition-based
dependency parsing. In COLING (Posters), pages 1391–1400.

38

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 39–53 Dublin, Ireland, August 23-29 2014.

Experiments with Easy-first nonprojective constituent parsing

Yannick Versley
Department of Computational Linguistics

University of Heidelberg
versley@cl.uni-heidelberg.de

Abstract

Less-configurational languages such as German often show not just morphological variation but
also free word order and nonprojectivity. German is not exceptional in this regard, as other
morphologically-rich languages such as Czech, Tamil or Greek, offer similar challenges that
make context-free constituent parsing less attractive.

Advocates of dependency parsing have long pointed out that the free(r) word order and non-
projective phenomena are handled in a more straightforward way by dependency parsing. How-
ever, certain other phenomena in language, such as gapping, ellipses or verbless sentences, are
difficult to handle in a dependency formalism.

In this paper, we show that parsing of discontinuous constituents can be achieved using easy-first
parsing with online reordering, an approach that previously has only been used for dependencies,
and that the approach yields very fast parsing with reasonably accurate results that are close to
the state of the art, surpassing existing results that use treebank grammars. We also investigate
the question whether phenomena where dependency representations may be problematic – in
particular, verbless clauses – can be handled by this model.

1 Introduction

Automatic syntactic parsing has been fruitfully incorporated into sytems for information extraction
(Miyao et al., 2008), question answering, machine translation (Huang and Chiang, 2007), among others,
but we also see syntactic structures being used to communicate facts about language use in the digital
humanities or in investigations of the language of language learners. In all of these applications, we see
fruitful use both of constituent trees, and of dependency trees.

Depending on the application, different criteria may become important: on one hand, the ability to
produce structures that are (intuitively) compatible with semantic composition, or where arguments and
adjuncts are related to their predicate in the tree, which commonly requires dealing with nonprojectivity.
Such a formalism should also deal with a wide range of constructions including verbless clauses. Finally,
parsing speed is somewhat important for many application cases, and a parser that changes the tokeniza-
tion of the input or inserts additional “null” tokens runs afoul many of the fundamental assumptions in
pipelines for semantic processing or information extraction.

If we look at the current three largest treebanks for German, namely the Hamburg Dependency Tree-
bank (Foth et al., 2014) with 101 000 sentences, the TüBa-D/Z treebank (Telljohann et al., 2009) with
85 000 sentences or the Tiger treebank (Brants et al., 2002) with about 50 000 sentences, we see find a
continuum of the nonprojective single-parent dependencies of the HDT on one side and projective phrase
structures of TüBa-D/Z, with Tiger straddling in the middle with a scheme that is neither projective nor
limited to dependencies, and which represents, we’ll argue, both the best and the worst of both worlds.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

39

Because of its expressivity, the Negra/Tiger scheme has also been used for other languages such as
Swedish Volk and Samuelsson (2004) as well as Georgian/Russian/Ukrainian (Kapanadze, 2012), and as
Early New High German (Pauly et al., 2012).

The Tiger scheme is arguably more expressive than either of the alternatives since it can capture
both elliptic clauses (which are difficult to represent in normal dependency schemes) and nonprojective
constructions (which have to be added as a second annotation layer in purely projective treebanks such
as TüBa-D/Z). It also makes it the most difficult to provide good automatic tool support, in terms of
effective parsing components or of annotation tools, since parsing of discontinuous constituents has only
recently become practical.

The straightforward approach of Kallmeyer and Maier (2013) to use a treebank-derived linear context-
free rewriting system suffers from near-exponential observed time consumption in practice. Approaches
that use context-free grammar approximation such as the ones of Schmid (2006), Cai et al. (2011) or
van Cranenburgh and Bod (2013), still have cubic time complexity; especially in the latter case, it is not
clear whether techniques that allow fast PCFG parsing such as those of Bodenstab et al. (2011) would be
suitable for the subsequent steps with increased grammar complexity.

In this paper, we present a novel application of the easy-first parsing principle of Goldberg and Elhalad
(2010) to discontinuous constituent parsing, which performs fast enough for interactive use (about 40
sentences per second) while giving an acceptable accuracy that is within the range normally seen with
unmodified treebank grammars.

In the remainder of the paper, we will include a short discussion of the interrelation between con-
stituency and dependency relations of syntax, as well as relevant prior work in section 2, and discuss the
construction of the parser in section 3. Section 4 and following contain a discussion of quantitative re-
sults on the Tiger corpus, whereas the penultimate section contains a more detailed analysis of the parser
behaviour on constructions that are problematic for either dependency parsers or projective constituent
parsing.

2 Constituency and Dependency: Good friends?

Constituency and dependency structures are two formalisms that are frequently used for theory-neutral
description of syntactic structures. In constituent structures, usually influenced by some version of X-
bar theory (see Kornai and Pullum, 1990 for a discussion; most notably, phrases are supposed to be
projections of a head), whereas in dependency structures it is usually assumed that each word has exactly
one governor (except one or more words that are attached to a virtual root node).

The common subset of both can be described (in the words of Hockenmaier, 2007) as “Heads, argu-
ments, modifiers, conjuncts”, which includes the grammatical function labels that are added in depen-
dency structures, and to varying extent in phrase structure treebanks. Nivre (2011) goes further and asks
whether we need constituents at all, since pure dependency parsing recovers arguments and adjuncts
while being generally faster (and, at least for results published on Czech and French which Nivre cites,
more accurate). Versley and Zinsmeister (2006) similarly argue that even “deep” dependency relations
(including nonlocal ones) can be recovered from single-parent dependencies if subsequent disambigua-
tion steps identify the scope of conjunctions, argument sharing in coordination, passive identification,
and lexicalized control phenomena. However, verbless clauses as they may occur in coordination pose
a problem to the idea that every phrase is headed by a preterminal, or the equivalent assumption in
dependency grammar that every argument has a governing head word.

In constituent treebanks, the solution to this problem is rather simple: deviate from the descriptive-
Xbar schema outlined earlier on and introduce headless projections for these clauses. Dependency tree-
banks lack this additional degree of freedom, and the choice is usually to either attach the respective
nodes somewhere else (Böhmova et al., 2001; Foth, 2006) or introduce empty nodes that are the gover-
nors of the orphaned subtrees (Bosco and Lombardo, 2006; Vincze et al., 2010; Dipper et al., 2013).

In dependency parsing, good solutions for nonprojective edges have been found, including pseudopro-
jective parsing (Nivre and Nilsson, 2005), approximate weighted constraint solving (Koo et al., 2010), as
well as deterministic online reordering (Nivre, 2009), which also has been applied to easy-first decoding

40

strategies (Tratz and Hovy, 2011). Seeker et al. (2012) additionally employs an attach-inner opera-
tion which allows non-projective insertion into a structure that has already been built. Despite these
very reasonable solutions, the treatment of elliptic phrases, whether it is done using the somewhere-else
approach or by introducing empty nodes (see Seeker et al., 2012 and references therein) yields unin-
formative structures for subsequent processing components or even makes it necessary to re-engineer
subsequent processing stages for dealing with the newly introduced empty nodes, or (equally impracti-
cal) require the refactoring of annotated corpus resources to accommodate a new tokenization whenever
a null element is introduced or changed.

In constituency parsing, the problem of discontinuous constituents in parsing has, at least in German,
first been met with a proposals of raising degrees of complexity (among others, van Noord, 1991; Plaehn,
2000) and then silently been ignored both in the building of parsers and in their evaluation: researchers
from Dubey and Keller (2003) to the present day cite bracketing scores based on structures that would
make the reconstruction of “Heads, arguments, modifiers, and conjuncts” – usually – rather difficult.

Only relatively recently has the problem of discontinuous constituent parsing been tackled head-on.
Kallmeyer and Maier (2013) propose an approach that extracts a treebank LCFRS grammar, which is
then used for probabilistic parsing, albeit with near-exponential time consumption. Maier et al. (2012)
present an approach to make parsing in this approach more efficient by flattening coherent structures in
a sentence to one single sentence node and thus eliminating scrambling as a source of discontinuities,
together with other transformations, which allows a time complexity of O(n6) and parsing times of about
2 minutes for a 40-word sentence. van Cranenburgh and Bod (2013) use a more practical approach that
first creates phrase candidates from the n-best list of a projective constituent parser, and uses these to
construct LCFRS items that do not necessarily correspond to grammar rules seen in the training set, but
which are then matched against a collection of tree fragments extracted from the training set.

There exists some work on transforming dependency structures into constituents that may help in the
recovery of discontinuous constituents: Hall and Nivre (2008) propose to encode information about node
labels in the dependency labels, whereas Carreras et al. (2008) show that an ILP-based combination of
finding dependencies and adding phrase projections and adjunctions to a dependency backbone works
well for constructing structures matching those of the Penn Treebank. Seddah (2010) found that similar
spinal structures can be used for the French Treebank.

3 Incremental parsing

In general, statistical parsing follows one of several general approaches: one is the approach of item-
based decoding, which is centered around the creation of a parse forest that implicitly stores a very large
number of possible trees, followed by either dynamic programming in the case of projective parsing (e.g.
(Collins, 2003)) or techniques that provide an approximate or exact solution to the intractable problem
in the case of nonprojective parsing with second-order factors (Koo et al., 2010). The second large group
of approaches is based on incremental structure building, including the approaches of Magerman (1995)
or Sagae and Lavie (2006) in the case of constituent parsing, or of Nivre (2003) and following in the case
of dependency parsing, with approaches such as Stolcke (1995) or Huang and Sagae (2010) occupying a
middle ground.

While the idea of head lexicalization has played a large role in projective constituent parsing, there are
rather few approaches that attempt to bridge the gap between dependency and constituency representa-
tions in a way that could be exploited for the efficient building of discontinuous constituent structures.

Among these, both the approaches of Hall and Nivre (2008) and of Carreras et al. (2008) could be
described in terms of a spinal transform: each terminal in the input string is assigned a set of governing
nodes that form its spine; parsing then consists of assigning a dependency structure among the terminal
nodes and of assigning spines and the relation to each other.

In the remainder of this section, we describe two approaches that we used to perform nonprojective
constituent parsing in expected linear time: one is relatively close to the approach of Hall and Nivre
(2008), but instead of assigning nodes to the first terminal of their yield, uses a strategy more like the
spinal tree adjoining grammr of Carreras et al. (2008). The other is an application of the principle

41

Zum einen
on the one hand

PP

add↗

ist er
he is

S

add↘

außergewöhnlich
extraordinarily

ADJD

populär
popular

[i:i+1] AP

ADJD

[i] AP

Figure 1: Example for an intermediate state in EaFi, with the preferred action candidates for each position

of easy-first parsing, which has been used for unlabeled dependency parsing by Goldberg and Elhalad
(2010), and for non-projective labeled dependency parsing by Tratz and Hovy (2011), towards discon-
tinuous constituency parsing. Because computed feature vectors can be memorized and only have to be
recomputed in a small window around the last parser action, this latter approach, just as a left-to-right
transition-based parser, has an expected time consumption that is linear in the number of words to be
parsed.

3.1 ADG: Constituency-to-Dependency Reduction

Our baseline is an approach close in spirit to Hall and Nivre (2008): The tree with node labels is turned
into a dependency graph that encodes, on the governor edge of each terminal, a combination of (i) the
node labels on the spine of this node, and (ii) the level at which this node attaches to its parent’s spine.

We change two parameters of Hall and Nivre’s approach: on one hand, we do not use the first terminal
in the yield of a node as its representative but the head according to the head table that we also use to
assign the head in the easy-first parser. The reason for this is a practical one: using the head, we get
a distribution of 531 different spine/level combinations when we use the head, whereas we would get
about 1525 categories when we use the first terminal.

To ensure efficient parsing, this list is further pared down to 100 entries, with the remaining entries
being replaced by an UNK placeholder. In decoding, terminals with these entries are assigned the most
frequent combination of spine and parent category for the POS tags of the node and its governor, and the
topmost spine node with a matching category (or simply the topmost one) would be chosen.

The decoding algorithm and parameter settings for MaltParser were then determined using the Malt-
Optimizer software (Ballesteros and Nivre, 2012). The settings selected use the stack-projective algo-
rithm with head+path marking strategy for pseudoprojective parsing.1

Hall and Nivre’s approach is more complex than the approach presented here, and involves interleaving
of identifying dependency edges (using the nonprojective Covington parsing scheme) and the stepwise
determination of the topmost edge label, then the path of edge labels, and finally the path of constituent
labels and its attachment. However, we find that this approach of dependency reduction constitutes a
very reasonable intelligent baseline, and is able to perform at a similar speed than our approach.

3.2 EaFi: Easy-first Constituency Parsing

The main approach that we will present here constitutes an adaptation of the Easy-First approach to
nonprojective constituent parsing. The parser keeps track of a sequence of nodes, beginning with the
terminals that are output by the preprocessing consisting of morphological analyzer and lemmatization,
and at each point applies one of several actions:

• Reduce-Unary: one node is grouped under a unary node of a given category, with the restriction that
the corresponding unary rule must have been observed in the treebank. (Additionally, we collapse
any two nodes with the same category embedding each other, which sometimes occurs in the Tiger
treebank when several empty-headed phrases are assumed to embed each other in coordination).

1MaltParser is able to do direct nonprojective parsing using the reordering approaches of Nivre (2009) and Nivre et al.
(2009), however the pseudoprojective approach was selected in MaltOptimizer’s parameter selection.

42

Basic featureset
Unigram: n ∈ ni−2 . . . ni+3 CnPn CnWn CnMn CnLn
Left/Right Children: n ∈ ni,Lni,Rni+1,Lni+1,R CnPn
Bigram: m,n ∈ ni−1ni . . . ni+2ni+3 WmWn WmCn CmWn WmWn
Trigram: r,m,n ∈ ni−1nini+1 . . . ni+1ni+2ni+3
Medium featureset
Bigram+Child: m,n, r ∈ {nini+1ni+1,L;nini+1ni,R;

ni+1ni+2ni+1,R;nini−1ni,L} CmCnCr CmCnPr
Distance: ∆ ∈ {dist(ni, ni+1),gap(ni, ni+1)} ∆Cm ∆Cn ∆Pm ∆Pn

m,n = ni, ni+1 ∆Fm ∆Fn
Large featureset
Gap bigram: m,n ∈ ni−1ni+2, nini+2 WmWn WmCn CmWn WmWn
Bigram+2child: m,n ∈ ni−1ni . . . ni+2ni+3;C,D ∈ L,R CmCnCmCCnD CmCnCmCPnD

CmCnPmCCnD

Bigram-Dist m,n ∈ ni−1ni . . . ni+2ni+3 ∆
∆ = dist(m,n) ∆PmPn

Table 1: Features used: W=word, C=phrase label, M=head morph, P=head pos

• Reduce-Binary: two nodes are grouped under one node, with the head of the new node being
determined by a head table.

• Add-Left/Add-Right: one node is added as a child to a node on its left/to its right.

• Swap: if two nodes are in surface order (i.e., the head of the first node being left of the head of the
second node in the normal word ordering), they can be swapped.

In addition, we experimented with a retag action which allows the parser to change the tag of a word
that has been mistagged. While this has a positive effect on the parser’s accuracy for verb phrases, it also
results in a slight deterioration of other phrases, resulting in a very slight decline in performance.

To decide among different parsing actions, the parser uses a linear classifier with a pre-defined feature
set (POS, word form, morphological tag and lemma in a two-token window around the two nodes that
are being considered, the category and part-of-speech tag of the leftmost and rightmost dependent of
the nodes that are being considered; bigrams of words, categories, and one of each, in a window of
one around the two nodes being considered, and trigrams consisting of two category and one category,
part-of-speech tag, or word form within said window).

Weights are learned by performing online learning with early stopping, similar to the strategy em-
ployed by Collins and Roark (2004). We use the Adaptive Gradients method (Duchi et al., 2011) for
weight updates and averaging of the weight vector (in a fashion identical to the averaged perceptron).
We found that 5-10 epochs of training on Tiger were sufficient to get a mostly usable model, and used
15 epochs of training for the results reported in the later section. Considering that Goldberg and Elhalad
(2010) use a learning strategy that performs multiple perceptron updates until the constraint violation is
fixed, we also tried this strategy but did not achieve convergence.

3.3 Reordering Oracles for Constituents
The basic idea for reordering oracles in deterministic dependency parsing has been presented by Nivre
(2009). In the following, we present a straightforward adapation of the idea to constituent trees.

Given a set of terminals T = {w1, . . . ,wn} that is totally ordered by a relation <, an unordered tree
graph is a directed graph (NT ∪T,⊲)with nonterminal (NT) and terminal nodes (T), where the transitive
hull ⊲∗ of the parent relation ⊲ is acyclic, no node has a parent from T , and exactly one node, vroot, has
no parent.

An node ordering ≺ is consistent with ⊲ whenever, for any node u and an descendant u′ ⊳∗ u, and a
node v with an descendant v′ ⊳∗ v, u ≺ v entails u′ ≺ v′.

43

A tree cut of a tree is a sequence v1, . . . , vn that contains exactly one node from each path vroot, . . .wi

from the root to a terminal. Nivre’s insight, applied to constituent structures, is that sorting the terminals
in a ⊲-compatible order ≺ will allow us to use normal projective parsing techniques to find a sequence of
reductions that parses this tree, since any needed reduction would reduce one ≺-ordered cut to another≺-ordered cut. In the following, two orderings ≺, ≺′ are considered equivalent iff they only differ on pairs
of nodes u, v where one is the ancestor of the other.

Two subtrees under nodes u and v with yields yield(u) = {u′ ∈ T ∣u′ ⊲∗ u} and yield(v) = {v′ ∈
T ∣v′ ⊲∗ v} are separated by a surface ordering < whenever any two terminals u′ of u and v′ of v fulfill
u′ < v′. Note that two nodes without gaps (i.e. block-degree one) either embed each other (in which
case u ⊲∗ v or v ⊲∗ u is the case) or they are separated by <. In a slight abuse of notation, we extend< from a total order of the terminals to a partial order of the nonterminals by writing u < v whenever u
and v are separated. For projective trees, this extension of < specifies exactly one total relation (modulo
equivalence), and which is also ⊲-compatible.

For trees that are non-projective, we can have the situation where two nodes u and v are overlapping
in that u has descendants u′, u′′ and v has a descendant v′ with u′ < v′ < u′′. Then we cannot extend <
to an ordering of nodes that is ⊲-compatible. However, we can always find an ordering that respects <
locally such that, for two children u′ and u′′ of u, u′ < u′′ entails u′ ≺ u′′. Nivre proposes the sequence
assigned by an in-order traversal of the dependency tree. In our case, any function h ∶ NT → (NT ∪ T)
that assigns a “head” child to each node will do the same, with an extension h∗(w) = w for all terminals
and h∗(v) = h∗(h(v)) otherwise, through u ≺ v ∶⇒ h∗(u) ≺ h∗(v).2

A transition sequence for parsing a tree is then a sequence consisting of reductions (leading from
a cut . . . vi, u

′, . . . u′′, vj , . . . with a contiguous subsequence of the children of u to the sequence
. . . vi, u, vj , . . . that contains u instead) and swaps (leading from a cut . . . vi, vj . . . that has h∗(vi) and
h∗(vj) ordered with respect to < but not with respect to ≺ to a cut . . . vj , vi . . . that is orders h∗(vi) and
h∗(vj) with respect to ≺ but not <).

Nivre (2009) defines an oracle for shift-reduce parsing that is swap-eager in that it always allows
swapping. In Nivre’s case, the oracle is deterministic and always performs the swapping before any
reduction.

Nivre et al. (2009) note that the swap-eager oracle performs too many swaps because it swaps groups
of words that are later reduced. They propose a swap-lazy algorithm that does not swap two nodes if
one of them is adjacent to another node that is within the same maximal projective subtree.

The perspective of parsing as a series of swap and reduce actions allows us to specify a strategy that
performs less reductions in some cases: Consider that we need to reorder the <-contiguous sequence of
terminals to the ≺-contiguous sequence that is needed for reducing the tree to its final form. The number
of swaps performed, if we assume that we always swap adjacent constituents, is exactly equal to the
number of terminal pairs vi, vj that are <-ordered but not ≺-ordered. Any reduction of the number of
swaps relative to this baseline will come from a group of nodes with heads vi1, . . . vik that are reduced to
their parent vi before being swapped with a node vj .

We can take advantage of this fact by using any node with blockdegree one as a barrier: no node that
is a descendant of this node can be swapped with a node that is not a descendant before the reduction
that results in the barrier node has been carried out. Because any projective subtree has all nodes as
barrier nodes, any pair of nodes whose swapping is delayed by the swap-lazy approach will be kept from
swapping by a barrier. Conversely, nodes with a block-degree of one can also occur higher-up in the tree
(e.g. as clause or sentence nodes), in which case they can act as a barrier even when their subtrees are
not projective.

4 Quantitative Evaluation

In order to evaluate our approach, we used the Tiger treebank, with the split used in the SPMRL’2013
shared task (about 40 000 training sentences and 5 000 development and test sentences each; see also

2Note that the concrete choice of h is quite arbitrary: we could take the actual head child, but also the first or last child of a
node.

44

` ≤ 30 ` ≤ 40
F1 F1 LA EX NP PP VP

EaFi: Preprocessing (large, barrier, noretag)
gold 77.95 76.64 92.17 41.71 75.0 82.8 56.6
marmot 75.51 73.97 91.08 38.48 72.7 81.3 48.3
pred 74.71 73.18 90.81 37.67 72.1 80.6 48.9
ADG, marmot preprocessing
marmot 73.42 72.24 90.95 33.77 68.0 77.4 52.1
EaFi: Train projective, evaluate on real data
gold 76.86 75.50 92.13 38.38 74.4 81.7 48.2

marmot 74.43 72.98 91.20 36.52 72.1 79.8 42.6

pred 73.75 72.32 90.72 35.55 71.8 79.2 42.4

EaFi: Train projective, evaluate on projective
gold 79.95 78.59 93.40 44.20 76.1 83.0 68.7

marmot 77.00 75.64 92.38 40.79 73.8 81.1 59.1

pred 76.25 74.94 91.87 39.60 73.5 80.5 58.4

Table 2: Results on SPMRL’13-dev (German, Tiger treebank) with varying preprocessing

` ≤ 30 ` ≤ 40
F1 F1 LA EX NP PP VP

EaFi: Feature set (barrier, noretag)
basic 70.26 68.60 89.03 34.03 69.1 77.1 40.1
medium 73.31 71.75 90.13 36.22 70.5 79.9 45.8
large 74.71 73.18 90.81 37.67 72.1 80.6 48.9
EaFi: Reordering (large, noretag)
eager 73.33 71.66 90.33 37.43 71.7 80.6 47.8
lazy 74.85 73.37 90.85 38.08 72.2 80.8 49.0
barrier 74.71 73.18 90.81 37.67 72.1 80.6 48.9
EaFi: Tag correction (large, barrier)
noretag 74.71 73.18 90.81 37.67 72.1 80.6 48.9
retag 74.62 73.16 90.83 37.51 71.5 80.3 49.4

Table 3: Results on SPMRL’13-dev (German, Tiger treebank) with pred preprocessing

45

Seddah et al., 2013 for a more extensive description), with the state-of-the-art preprocessing results
for part-of-speech and morphological tags3 which were produced by Björkelund et al. (2013) using the
MarMoT tagger (Müller et al., 2013), in addition to the gold-standard preprocessing (gold) and automatic
predictions (pred) that are part of the official dataset of the SPMRL shared task.

We applied two transformations to the data, which are automatically reversed in the parser output:
one is adding NPs into PPs, which is also done by Seeker et al. (2012), and the other is that we make
parenthetical material subordinate to its embedding clause, as Maier et al. (2012) also advocate.

Evaluation was performed using the evaluator from the DISCODOP package of van Cranenburgh and
Bod (2013), excluding punctuation and the ROOT label added by disco-dop from the evaluation. Train-
ing was run for 15 epochs. Parsing the 5000 development sentences took about 90-120 seconds for
EAFI, which corresponds to 40-55 sentences per second (on a Core i7 2GHz) and is slightly faster than
MaltParser using the ADG-derived model and a LibLinear classifier.

In the results in table 2, we see the results for the dependency-to-constiuents approach, as well as for
the easy-first parsing with different reordering heuristics. As in Nivre et al. (2009), we notice that the
lazy strategy that keeps projective constituents together yields better results than the eager strategy which
allows moving right away. The overall results – around 76.6% f-score on gold tags and 73.1% f-score on
predicted tags in sentences of 40 words and below – indicate the promise of this approach, even though
they are significantly below the results of van Cranenburgh and Bod (2013) who achieve more than 78%
f-measure using predicted tags on a different split of the Tiger treebank. Van Cranenburgh’s approach is
about 15-20 times slower than ours, using 10 seconds for a 40-word sentence.

For informative purposes, we also included results for projective parsing in table 2, using a conversion
that first attaches punctuation and then projectivizes the tree by detaching non-head children.4 Compar-
ing the nonprojective parser and a variant that was trained on the projectivized version of the dataset,
we see that the projective parser is about 1-2 percent worse than the nonprojective one, corresponding
to our intuition that the reordering part improves the parsing on average. We also see that the projective
evaluation yields an estimate of parser performance that is substantially more optimistic than evaluating
on the original treebank.

4.1 Comparison with Related work
Tables 4 and 5 show previous results for discontinous constituent parsing on the Tiger and Negra tree-
banks. The current best results on the Tiger treebank have been achieved by van Cranenburgh and Bod
(2013), whose approach yields 78.8% Parseval F1 measure on the Tiger treebank in the split by Hall and
Nivre (2008), and 76.8% on the Negra treebank, in both cases with above 40% of exact matches among
the sentences of up to 40 words. Kallmeyer and Maier (2013) only report results on shorter sentences in
Negra for their approach using a modified treebank LCFRS. They achieve 75.6% on sentences of up to
30 words.

A recent approach that attempts to speed up discontinuous constituent parsing is the one by Angelov
and Ljunglöf (2014), whose parser takes about 100 seconds for a length-40 sentence, which can be
reduced to 10 seconds for a length-40 sentence with an approximate search strategy. For sentences
between 5 and 60 tokens, their approach reaches an F1 score of 69.3%, which however deteriorates
quickly when approximate search is used, to 61.9% F1 in the latter case.

It is quite evident that pushing for more speed in these formalisms forcibly leads to a deterioration
in the quality of the results. As such, we think that the speed/quality tradeoff achieved in our system is
quite useful.

5 Qualitative Analysis

In the following, we will provide a categorization of the phenomena concerning verbless clauses on
one hand, and discontinuous constituents on the other. Table 6 contains a breakdown on these types of

3Data from http://www.cis.lmu.de/˜muellets/marmot/marmot_spmrl.tar.bz2, version with file dates
of June 13th 2014. See http://code.google.com/p/cistern/wiki/marmotSPMRL

4The SPMRL shared task dataset is idiosyncratic in that it deprojectivizes before attaching punctuation, which leads to a
result that is rather dissimilar to the original treebank.

46

` ≤ 30 ` ≤ 40
F1 EX F1 EX

Hall and Nivre (2008), golda — — 79.93 37.78
Hall and Nivre (2008), preda — — 75.33 32.63
van Cranenburgh and Bod (2013), preda — — 78.8 40.8
This work, golda 76.47 40.61 74.23 37.32
Maier (2010), LCFRS goldc 73.43 29.87 — —
Maier (2010), CFG goldc 75.57 31.80 — —
This work, goldb 77.95 43.81 76.64 41.71
This work, gold, eval w/ ROOTbc 81.13 43.81 79.80 41.71

a) Hall&Nivre split b) SPMRL split c) includes the ROOT node in the evaluation

Table 4: Previous results on the Tiger treebank

` ≤ 30 ` ≤ 40
F1 EX F1 EX

Maier (2010), LCFRS goldc 71.52 31.65 — —
Maier (2010), CFG goldc 74.04 33.43 — —
van Craenburgh (2012), LCFRS, gold — — 67.26 27.90
van Craenburgh (2012), Disco-DOP, gold — — 72.33 33.16
Maier et al. (2012) 74.5 — — —
Kallmaier and Maier (2013), LCFRS, gold 75.75 — — —
van Cranenburgh and Bod (2013), gold — — 76.8 40.5

c) includes the ROOT node in the evaluation

Table 5: Previous results on the NeGra treebank

phenomena according to whether they are:

• correctly parsed (+): when the incredients for the construction are present in the parse and they are
combined in a suitable fashion.

• missed (o): when the ingredients for the construction are present, but combined in another way –
for example, an extraposition where the extraposed item is misattached

• broken (-): when the ingredients for the construction are not present and the parse has a completely
different structure.

Many of the same categories are discussed by Seeker and Kuhn (2012), who only discuss examples,
and by Maier et al. (2014), who published a list of sentence numbers for each phenomenon that is,
however, disjoint with the development portion considered here. Although the distinctions between
“missed” and “broken” analyses are somewhat subjective, we think that it is still informative in the sense
that it helps to compare the relative difficulty of the problems involved.

5.1 Types of Verbless Clauses
In their conversion Seeker and Kuhn (2012) found 3 035 sentences that contain at least one empty node
in the Tiger treebank, or about one every 16 sentences. While this phenomenon may be more frequent in
spontaneously-produced text such as it may occur in user-generated content, it is still quite frequent.

Seeker et al. only distinguish among edge labels, followed by a guess on the clause type that they need
in order to place the inserted null element.

In this work, we will concentrate on verbless VP and S nodes, with rougly three categories:
The first consists of verbless copula clauses that mostly occur at top level,5 and where the most

obvious way to build a complete clause would be to add a be copula to the clause.
5sentences 40499, 41442, 41468, 41676, 41682, 41736, 41743, 42566, 42606, 42738

47

ADG/marm large/pred

+ o - + o -
copula clauses 3 4 3 2 5 3
gapping/ellipsis 0 4 6 0 4 6
parentheticals 1 6 4 0 4 6
extraposition 1 7 2 0 7 3
scrambling 3 2 4 3 1 5
topicalization 3 6 1 4 4 2

+) construction parsed ok, o) construction missed, -) broken parse

Table 6: Qualitative analysis: Counts for ok/missed/broken examples

A second group consists of clauses with gapping/ellipsis which occur in a coordinated structure, but
do not have a verb of their own.6 Such cases can occur with a final constituent in clause coordination as
well as with a non-final constituent in verb-last clauses:

(1) a. Die
the

Anstalt
institution

soll
shall

[Anfang
start

1998
1998

noch
still

1200
1200

Beschäftigte]
employees

und
and

[ein
one

Jahr
year

später
later

600
600

zählen].
count.
“The institution will count 1200 employees at the start of 1998 and one year later, 600”.

b. [Die
the

Zahl
number

der
of

Urlaubsreisen
holiday trips

im
in

Inland
interior

fiel
fell

laut
according to

Schörcher
Schörcher

um
by

zwei
two

Prozent]
percent

und
and

[damit
hence

nicht
not

mehr
anymore

so
as

stark
strong

wie
as

im
in the

Vorjahreszeitraum]
previous year period

.

“The national number of holiday trips fell by two percent according to Schorcher, and hence
not as strongly anymore as in the corresponding period from last year”.

Finally, we have parentheticals, which are rather rather similar to the examples listed under verbless
copula clauses, except that they occur as parenthetical material in a larger clause rather than by them-
selves.7

5.2 Types of Non-projectivity Phenomena

For the purpose of this paper, we will make a three-way distinction in the phenomena that create discon-
tinuities, according to the following questions:

• If we serialize the sorted (sub)tree, would the result yield a grammatical sequence? Or, to ask a
related question, would anything be missing if we kept only the continuous block of the head?

• If we flatten the tree by introducing a common ordering domain for multiple heads (which would
be the result of tree flattening as proposed by Uszkoreit, 1987 or of a common argument list as
advocated by Hinrichs and Nakazawa, 1989; flattening the sentence is also the solution used in the
German LFG grammar of Forst, 2007), would we have gotten rid of the problem?

Making these distinctions gives us three rather large categories that we can use to classify nonprojec-
tivity phenomena:

Extraposition8 is phenomenon where the sorted subtree would (usually) be grammatical, and where
the continuous part only would (usually) be acceptable:

6sentences 40698, 40788, 40836, 41003, 41174, 41218, 41356, 41399, 41544, 41665
7sentences 40698, 40749, 40861, 40894, 40899, 40924, 41219, 41267, 41437, 41443
8Sentences 40506, 40507, 40517, 40528, 40567, 40583, 40589, 40594, 40622, 40672

48

(2) a. Ele
Ele

hat
has

mir
me

[ein
a

Buch]
book

geschenkt
given

[über
about

die
the

Savanne].
savannah.

“Ele gave me a book about the savannah”.
b. Ich

I
habe
have

[Ele]
Ele

ein
a

Buch
book

geschenkt
given

[und
and

Susi].
Susi.

“I gave a book to Ele and Susi”.
c. Heute

Today
ist
is

[der
the

Staubsauger]
vacuum cleaner

gekommen,
come,

[den
which

Du
you

bestellt
ordered

hast].
have.

“Today, the vacuum cleaner that you ordered came.”

Note that extraposition can be arbitrarily deep, as NPs can embed each other recursively:

(3) a. Heute
Today

ist
is

(die
the

Rechnung
invoice

für
for

[den
the

Staubsauger])
vacuum cleanerj

gekommen,
come,

([den
whichj

Du
you

bestellt
ordered

hast]).
have.

“Today, the invoice for the vacuum cleaner you ordered came”
b. Ich

I
habe
have

(die
the

Rechnung
invoicei

für
for

[den
the

Staubsauger])
vacuum cleaner

gefunden,
found,

(die
whichi

Du
you

vermißt
missed

hast).
have.

“I found the invoice for the vacuum cleaner which you were missing”

Scrambling9 is the effect that occurs when two verbs that both have arguments are in the same clause,
and share the ordering domain in that clause, have crossing argument dependencies:

(4) . . . daß
. . . that

(dem
the

Kunden)
customer

[den
the

Kühlschrank]
fridge

bisher
until now

noch
yet

niemand
nobody

[zu
to

reparieren]
repair

zu
to

versuchen
try

(versprochen)
promised

hat.
has.

“that no one has promised the customer to try repairing the fridge.”

The example above is due to Becker et al. (1992), who claim that there is no bound on the distance over
which each element can scramble, nor a bound on the number of unbounded dependencies that can occur
in one sentence. Becker et al. further claim that no LCFRS can faithfully represent a sequence of m
verbs which are each preceded by one argument, where the arguments can be permuted freely.10

Finally, Topicalization11 or more generally V2-order phenomena are those where a part of the verb
clause (either an argument, or an argument of a phrase within the verb clause, or part of the verb clause
itself) is moved into clause-initial position.

(5) a. Ein
a

Buch
book

über
about

die
the

Savanne
savannah

hat
has

Ele
Ele

mir
me

geschenkt.
given.

“Ele gave me a book about the savannah.”
b. Über

about
die
the

Savanne
savannah

hat
has

mir
me

Ele
Ele

ein
a

Buch
book

geschenkt.
given.

“Ele gave me a book about the savannah.”
c. Ein

a
Buch
book

geschenkt
given

hat
has

Ele
Ele

mir.
me.

“Give me a book, Ele did.”

9Sentences 40524, 40567, 40572, 40588, 40594, 40595, 40601, 40885, 40966, 41025
10The practical consequence is that any LCFRS extracted from a treebank will either underspecify the dependencies in such

a construction – this is the flattening solution – or yield rules with growing block-degree. van Cranenburgh (2012) shows that
the sentences with up to 25 words in Negra can be parsed with an LCFRS that leads to O(n9) time complexity when a suitable
binarization is used, where the original treebank grammar would mean a parsing complexity of O(n19). Maier et al. (2012)
point out that the observed time complexity of the arbitrary-block-degree parser used by Maier (2010) and Kallmeyer and Maier
(2013) is due to necessary bookkeeping, and that their variant with fixed block degree yields a polynomial time complexity.

11Sentences 40513, 40521, 40528, 40544, 40546, 40548, 40551, 40572, 40580, 40585

49

5.3 Analysis of Parser behaviour
Using the movement actions, the parser is able to correctly attach topicalized nodes in simple sentences,
and to sort out in most cases which nodes belong to the VP and which ones to the S node. In the presence
of complex sentence structure, the very local view on the sentence that the parser has quickly becomes
a hindrance. Extraposed material is attached correctly in the case of relative clauses, whereas infinitival
constructions (which can plausibly attach to the verb) are often missed, and clauses that are extraposed
modifiers of adverbs or adjectives are mostly missed. As with early treebank-based parsers, the presence
of multiple verbs (as in coherent constructions) can mislead the parser into assuming a more complex
structure than is actually present.

In general, verbless copula clauses, asyndetic coordination, and gapping/ellipsis, which are difficult
for dependency parsing, are also especially prone to confuse the very local view of the easy-first parser,
which is a rather anticlimactic, yet commonsensical conclusion.

In summary, simple material is often handled surprisingly well, whereas sentences with a complex
topological structure – i.e., coordination, clauses embedded in a nominal phrase, or correlations, are
rather challenging for easy-first parsing. Parsing algorithms with more context such as Sartorio et al.
(2013) or an application of beam search might help in some of these cases.

6 Summary and Future Work

In this article, we presented a deterministic parser that uses an easy-first strategy to perform non-
projective constituent parsing in expected linear time, with results that perform in a similar range as
results for discontinuous treebank grammars, and provides a means to provide rather fast parsing in
cases where discontinuous structure is required. We introduced the barrier formulation as an alternative
to the lazy reordering of Nivre et al. (2009), which shows similar performance but which may reveal a
closer connection to formalisms with restricted discontinuities.

While all experiments and the phenomen-oriented analysis have been performed on German data, the
reordering oracle approach does not make any language-specific assumptions and constitutes a general
technique for deterministic parsing of discontinuous constituent trees.

Acknowledgements The author would like to thank the three anonymous reviewers for their valuable
comments, and Thomas Müller for providing the Marmot-tagged version of the SPMRL dataset.

References

Angelov, Krasimir and Peter Ljunglöf. 2014. Fast statistical parsing with multiple context-free grammars.
In Proceedings of EACL 2014.

Ballesteros, Miguel and Joakim Nivre. 2012. MaltOptimizer: A system for MaltParser optimization.
In Proceedings of the Eigth International Conference on Language Resources and Evaluation (LREC
2012).

Becker, Tilman, Owen Rambow, and Michael Niv. 1992. The derivational generative power, or, scram-
bling is beyond LCFRS. Technical report, University of Pennsylvania. A version of this paper was
presented at MOL3, Austin, Texas, November 1992.

Björkelund, Anders, Özlem Çetinoglu, Richard Farkas, Thomas Müller, and Wolfgang Seeker. 2013.
(re)ranking meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task. In Proc.
SPMRL 2013.

Bodenstab, Nathan, Aaron Dunlop, Keith Hall, and Brian Roark. 2011. Adaptive beam-width prediction
for efficient CYK parsing. In Proceedings of ACL/HLT 2011.

Böhmova, A., Jan Hajič, Eva Hajičová, and B. Hladká. 2001. The Prague dependency treebank: Three-
level annotaion scenario. In Treebanks: Building and using syntactically annotated corpora, Kluwer
Academic Publishers, pages 103–127.

Bosco, Cristina and Vincenzo Lombardo. 2006. Comparing linguistic information in treebank annota-
tions. In LREC 2006.

50

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. The TIGER
treebank. In Proc. TLT 2002.

Cai, Shu, David Chiang, and Yoav Goldberg. 2011. Language-independent parsing with empty elements.
In Proceedings of ACL 2011.

Carreras, Xavier, Michael Collins, and Terry Koo. 2008. TAG, dynamic programming, and the perceptron
for efficient, feature-rich parsing. In Proceedings of CoNLL.

Collins, Michael. 2003. Head-Driven statistical models for Natural Language parsing. Computational
Linguistics 29(4):589–637.

Collins, Michael and Brian Roark. 2004. Incremental parsing with the perceptron algorithm. In ACL-04.

Dipper, Stefanie, Anke Lüdeling, and Marc Resnicek. 2013. NoSta-D: A corpus of german non-standard
varieties. In Marcos Zampieri and Sascha Diwersy, editors, Non-standard DataSources in Corpus-
based Research, Shaker Verlag.

Dubey, Amit and Frank Keller. 2003. Probabilistic parsing for German using sister-head dependencies.
In ACL’2003.

Duchi, John, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12:2121–2159.

Forst, Martin. 2007. Filling statistics with linguistics - property design for the disambiguation of German
LFG parses. In ACL 2007 workshop on deep linguistic processing.

Foth, Kilian. 2006. Eine umfassende Dependenzgrammatik des Deutschen. Technical report, Fachbe-
reich Informatik, Universität Hamburg.

Foth, Kilian, Arne Köhn, Niels Beuck, and Wolfgang Menzel. 2014. Because size does matter: The
Hamburg dependency treebank. In Proceedings of the Language Resources and Evaluation Confer-
ence (LREC 2014).

Goldberg, Yoav and Michael Elhalad. 2010. An efficient algorithm for easy-first non-directional depen-
dency parsing. In Proceedings of NAACL-2010.

Hall, Johann and Joakim Nivre. 2008. Parsing discontinuous phrase structure with grammatical func-
tions. In Proceedings of the 6th International Conference on Natural Language Processing (GoTAL
2008).

Hinrichs, Erhard and Tsuneko Nakazawa. 1989. Flipped out: AUX in German. In Papers from the 25th
Annual Regional Meeting of the Chicago Linguistic Society.

Hockenmaier, Julia. 2007. CCG grammar extraction from treebanks: translation algorithms and applica-
tions. Presentation from the Treebank Workshop, 2007, Rochester NY.

Huang, Liang and David Chiang. 2007. Forest rescoring: Faster decoding with integrated language
models. In Proceedings of ACL 2007.

Huang, Liang and Kenji Sagae. 2010. Dynamic programming for linear-time incremental parsing. In
Proceedings of ACL 2010.

Kallmeyer, Laura and Wolfgang Maier. 2013. Data-driven parsing using probabilistic linear context-free
rewriting systems. Computational Linguistics 39:87–119.

Kapanadze, Oleg. 2012. Building parallel treebanks for the lesser-resourced languages. Technical report,
Tbilisi State University.

Koo, Terry, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head automata. In Proceedings of EMNLP 2010.

Kornai, Andras and Geoff Pullum. 1990. The X-bar theory of phrase structure. Language 66:24–50.

Magerman, David M. 1995. Statistical decision-tree models for parsing. In ACL’1995.

Maier, Wolfgang. 2010. Direct parsing of discontinuous constituents in German. In Proceedings of the
NAACL-HLT First Workshop on Statistical Parsing of Morphologically Rich Languages.

51

Maier, Wolfgang, Miriam Kaeshammer, Peter Baumann, and Sandra Kübler. 2014. Discosuite – a parser
test suite for German discontinuous structures. In Proceedings of LREC 2014.

Maier, Wolfgang, Miriam Kaeshammer, and Laura Kallmeyer. 2012. PLCFRS parsing revisited: Re-
stricting the fan-out to two. In Proceedings of the 11th International Workshop on Tree Adjoining
Grammar and Related Formalisms (TAG+11).

Miyao, Yusuke, Rune Sætre, Kenji Sagae, Takuya Matsuzaki, and Jun’ichi Tsujii. 2008. Task-oriented
evaluation of syntactic parsers and their representations. In ACL 2008.

Müller, Thomas, Helmut Schmid, and Hinrich Schütze. 2013. Efficient higher-order CRFs for morpho-
logical tagging. In Proceedings fo EMNLP 2013.

Nivre, Joakim. 2003. An efficient algorithm for projective dependency parsing. In 8th International
Workshop on Parsing Technologies.

Nivre, Joakim. 2009. Non-projective dependency parsing in expected linear time. In Proc. Joint ACL-
AFNLP 2009.

Nivre, Joakim. 2011. Bare-bones dependency parsing - a case for occam’s razor? In Nodalida 2011.

Nivre, Joakim, Marco Kuhlmann, and Johan Hall. 2009. An improved oracle for dependency parsing
with online reordering. In Proceedings of the 11th International Conference on Parsing Technologies
(IWPT).

Nivre, Joakim and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In Proceedings of ACL
2005.

Pauly, Dennis, Ulyana Senyuk, and Ulrike Demske. 2012. Strukturelle Mehrdeutigkeit in
frühneuhochdeutschen Texten. Journal for Language Technology and Computational Linguistics
27(2):65–82.

Plaehn, Oliver. 2000. Computing the most probable parse for a discontinuous phrase structure grammar.
In Proceedings of the 6th International Workshop on Parsing Technologies.

Sagae, Kenji and Alon Lavie. 2006. A best-first probabilistic shift-reduce parser. In Proceedings of the
Human Language Technology Conference of the NAACL (NAACL/HLT 2006).

Sartorio, Francesco, Giorgio Satta, and Joakim Nivre. 2013. A transition-based dependency parser using
a dynamic parsing strategy. In Proceedings of ACL 2013.

Schmid, Helmut. 2006. Trace prediction and recovery with unlexicalized PCFGs and slash features. In
Proceedings of COLING-ACL 2006.

Seddah, Djamé. 2010. Exploring the spinal-tig model for parsing French. In Proceedings of LREC 2010.

Seddah, Djamé, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi, Richárd Farkas, Jennifer
Foster, Iakes Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar Habash,
Marco Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin Woliński, Alina Wróblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL 2013 Shared Task: A Cross-Framework Evaluation
of Parsing Morphologically Rich Languages. In Proceedings of the Fourth Workshop on Statistical
Parsing of Morphologically-Rich Languages. Seattle, WA, pages 146–182.

Seeker, Wolfgang, Richárd Farkas, Bernd Bohnet, Helmut Schmid, and Jonas Kuhn. 2012. Data-driven
dependency parsing with empty heads. In Proceedings of Coling 2012.

Seeker, Wolfgang and Jonas Kuhn. 2012. Making ellipses explicit in dependency conversion for a ger-
man treebank. In Proceedings of the Eight International Conference on Language Resources and
Evaluation (LREC’12).

Stolcke, Andreas. 1995. An efficient probabilistic context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics 21(2):165–201.

52

Telljohann, Heike, Erhard W. Hinrichs, Sandra Kübler, Heike Zinsmeister, and Kathrin Beck. 2009.
Stylebook for the Tübingen Treebank of Written German (TüBa-D/Z). Technical report, Seminar für
Sprachwissenschaft, Universität Tübingen.

Tratz, Stephen and Eduard Hovy. 2011. A fast, accurate, non-projective, semantically-enriched parser. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP
2011).

Uszkoreit, Hans. 1987. Word order and constituent structure in German. Number 8 in CSLI Lecture
Notes. Center for the Study of Language and Information.

van Cranenburgh, Andreas. 2012. Efficient parsing with linear context-free rewriting systems. In EACL
2012.

van Cranenburgh, Andreas and Rens Bod. 2013. Discontinuous parsing with an efficient and accurate
DOP model. In Proceedings of the International Conference on Parsing Technologies (IWPT 2013).

van Noord, Geertjan. 1991. Head corner parsing for discontinuous constituency. In Proceedings of ACL
1991.

Versley, Yannick and Heike Zinsmeister. 2006. From dependency parsing to deep(er) semantics. In
Proceedings of the Fifth International Workshop on Treebanks and Linguistic Theories (TLT 2006).

Vincze, Veronika, Dóra Szauter, Attila Almási adn György Móra, Zoltán Alexin, and János Csirik. 2010.
Hungarian dependency treebank. In Proceedings of the Seventh Conference on International Language
Resources and Evaluation (LREC 2010).

Volk, Martin and Yvonne Samuelsson. 2004. Bootstrapping parallel treebanks. In Proceedings of the
5th International Workshop on Linguistically Interpreted Corpora (LINC) at Coling 2004.

53

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 54–65 Dublin, Ireland, August 23-29 2014.

Exploring Options for Fast Domain Adaptation of Dependency Parsers

Viktor Pekar, Juntao Yu, Mohab El-karef, Bernd Bohnet
School of Computer Science
University of Birmingham

Birmingham, UK
{v.pekar,jxy362,mxe346,b.bohnet}@cs.bham.ac.uk

Abstract

The paper explores different domain-independent techniques to adapt a dependency parser
trained on a general-language corpus to parse web texts (online reviews, newsgroup posts, we-
blogs): co-training, word clusters, and a crowd-sourced dictionary. We examine the relative
utility of these techniques as well as different ways to put them together to achieve maximum
parsing accuracy. While we find that co-training and word clusters produce the most promising
results, there is little additive improvement when combining the two techniques, which suggests
that in the absence of large grammatical discrepancies between the training and test domains,
they address largely the same problem, that of unknown vocabulary, with word clusters being
a somewhat more effective solution for it. Our highest results were achieved by a combination
of word clusters and co-training, significantly improving on the baseline, by up to 1.67%. Eval-
uation of the best configurations on the SANCL-2012 test data (Petrov and McDonald, 2012)
showed that they outperform all the shared task submissions that used a single parser to parse
test data, averaging the results across all the test sets.

1 Introduction

Domain adaptation of a statistical dependency parser is a problem that is of much importance for many
practical NLP applications. Previous research has shown that the accuracy of parsing significantly drops
when a general-language model is applied to narrow domains like financial news (Gildea, 2001), biomed-
ical texts (Lease and Charniak, 2005), web data (Petrov and McDonald, 2012), or patents (Burga et al.,
2013). In a preliminary experiment, we looked at the effect of cross-domain parsing on three state-of-
the-art parsers – Malt (Nivre, 2009), MST (McDonald and Pereira, 2006), and Mate parser (Bohnet et
al., 2013) – trained on the CoNLL09 dataset and tested on texts from different domains in the OntoNotes
v5.0 corpus as well as the in-domain CoNLL09 test set. The results (see Table 1) indicate that depending
on the application domain, the parsing accuracy can suffer an absolute drop of as much as 16%.

Domain MST MALT Mate
Newswire 84.8 81.7 87.1
Pivot Texts 84.9 83.0 86.6
Broadcast News 79.4 78.1 81.2
Magazines 77.1 74.7 79.3
Broadcast Conversation 73.4 70.5 74.4
CoNLL09 test 86.9 84.7 90.1

Table 1: Labelled accuracy scores achieved by the MST, Malt, and Mate parsers trained on CoNLL09
data and tested on different specialist domains.

In a typical domain adaptation scenario, there are in-domain texts that are manually annotated and
that are used to train a general-language parser, and out-of-domain or target domain texts that are

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

54

parsed during parser testing. In addition, a certain amount of unlabelled target domain texts may be
available that can be leveraged in this or that way to facilitate domain adaptation. To address the problem
of domain adaption, previous work focused on weakly supervised methods to re-train parsers on auto-
matically parsed out-of-domain texts, through techniques such as co-training (Sarkar, 2001; Steedman
et al., 2003), self-training (McClosky and Charniak, 2008; Rehbein, 2011), and uptraining (Petrov et
al., 2010); selecting or weighting sentences from annotated in-domain data that fit best with the target
domain (Plank and Van Noord, 2011; Søgaard and Plank, 2012; Khan et al., 2013b). Another line of
research aims specifically to overcome the lexical gap between the training data and the target domain
texts. These approaches include techniques such as text pre-processing and normalization (Foster, 2010),
the use of external lexica and morphological clues to predict PoS tags of unknown target domain words
(Szolovits, 2003; Pyysalo et al., 2006), discrete or continuous word clusters computed from unlabelled
target domain texts (Candito et al., 2011; Bansal et al., 2014), selectional preferences modelled from
word co-occurrences obtained from unannotated texts (Zhou et al., 2011).

The goal of this paper is to investigate a combination of such techniques to adapt a general-language
parser to parse web data (weblogs, online reviews, newsgroups, and answers) without resorting to manual
annotation. In our study we include several techniques that have been shown to be reasonably effective
for domain adaptation: text normalization, the use of word clusters, an external crowd-sourced lexicon,
as well as automatically annotated texts produced with the help of co-training. All these techniques
are domain-independent and can be applied to new target domains given unlabelled texts form these
domains. We explore the relative utility of these methods and ways to combine them for maximum
parser accuracy.

2 Related work

2.1 Text normalization

User-generated content on the web is notoriously low-quality, containing slang, abbreviations, inconsis-
tent grammar and spelling. Foster (2010) investigated lexical phenomena that appear on online discus-
sion forums that present common problems for parsing and compiled a list of such phenomena along
with their transformations. Applying the transformations to test sentences helped to bring the F-score up
by 2.7%. A similar approach was taken by Khan et al. (2013a) who found that it performed better than
spelling correction based on the Levenshtein distance. Gadde et al. (2011) use a word clustering method
and language modelling in order to align misspelled words with their regular spelling. Their method of
cleaning noisy text helped to increase the accuracy of PoS tagging of SMS data by 3.5%.

2.2 External lexica

To adapt the Link parser to the medical domain, Szolovitz (2003) extended its lexicon with terms from
the UMLS Specialist Lexicon. Pyysalo et al. (2006) take the same approach and together with predicting
the PoS tags for out-of-vocabulary words based on their morphology this allowed them to achieve a 10%
reduction in the error rate of parsing. External lexica have also been used to improve out-of-domain PoS
tagging (Li et al., 2012).

2.3 Word clusters

In order to reduce the amount of annotated data to train a dependency parser, Koo et al. (2008) used
word clusters computed from unlabelled data as features for training a parser. The same approach has
proved to be effective for out-of-domain parsing, where there are many words in the test data unseen
during training, and word clusters computed from in-domain data similarly help to deal with the vocab-
ulary discrepancies between the training and test datasets. Discrete word clusters produced by Brown et
al. (1992) method have been shown to be beneficial for adapting dependency parsers to biomedical texts
(Candito et al., 2011) and web texts (Øvrelid and Skjærholt, 2012). Word clusters created with Brown
clustering method have also been used to adapt a PoS tagger to Twitter posts (Owoputi et al., 2013).
Bansal et al. (2014) introduced continuous word representations and showed them to increase parsing
accuracy both on the Penn Treebank and on web data.

55

2.4 Co-training

Co-training (Blum and Mitchell, 1998) is a paradigm for weakly supervised learning of a classification
problem from a limited amount of labelled data and a large amount of unlabelled data, whereby two or
more views on the data, i.e. feature subsets, or two or more different learning algorithms are employed
that complement each other to bootstrap additional training data from the unlabelled dataset. Co-training
algorithms have been successfully used in NLP tasks, and specifically for parsing. Sarkar (2001) showed
the both precision and recall of a phrase structure parser can be increased using a co-training procedure
that iteratively adds the most confidently parsed sentences from two different views to the training set.
Steedman et al.(2003) used two different parsers that supplied training data to each other in a bootstrap-
ping manner.

A number of studies specifically aimed to use co-training for domain adaptation of a dependency
parser. Sagae (2007) used two different learning algorithms of their graph-based parser to complete a
one iteration of co-training, getting an improvement of 2-3%, which was the best result on the out-of-
domain track of the CoNLL07 shared task (Nilsson et al., 2007). An interesting finding of their work was
that the agreement between the two classifiers during testing was a very good predictor of accuracy. More
recently, Zhang et al. (2012) used a tri-training algorithm for parser domain adaptation. The algorithm
uses three learners and each learner was designed to learn from those automatically classified unlabelled
data where the other two learners agreed on the classification label.

3 Experimental set-up

3.1 Parsers

In the experiments we included the Malt parser (Nivre, 2009), the MST parser (McDonald and Pereira,
2006), the transition-based Mate parser (Bohnet et al., 2013), and the graph-based Turbo parser (Martins
et al., 2010). All the parsers were used with their default settings, and PoS tags used in the input of all
the parsers were the same and came from the Mate parser.

3.2 Baseline

As the baseline we used the Mate parser, as it showed the highest accuracy when no domain adaptation
techniques were used, i.e. trained on an in-domain training dataset and applied directly to out-of-domain
test data.

3.3 Data

The experiments were conducted on annotated data on web-related domains available in the Ontonotes
v.5 and SANCL datasets, since a large amount of unlabelled data required for most domain adaptation
techniques is widely available.

OntoNotes. In experiments with weblog texts, we used the CoNLL09 training dataset (Hajič et al.,
2009) as the general-language training data. The CoNLL09 test dataset was used to evaluate in-domain
parsing. To create an out-of-domain test set, we selected the last 10% of the weblogs section of the
OntoNotes v5.0 corpus1, in order to make the size of the out-of-domain test data comparable to that of
the in-domain test data, i.e. of CoNLL09 test. The OntoNotes corpus was converted to the CoNLL09
format using the LTH constituent-to-dependency conversion tool (Johansson and Nugues, 2007).

SANCL. In order to compare our results with the results achieved by participants in the SANCL-2012
shared task, we also ran experiments on the Stanford dependences of three SANCL test sets (answers,
newsgroups and reviews). In these experiments we used the training set, test sets, unlabelled data,
as well as the evaluation script provided by SANCL-2012 organizers (Petrov and McDonald, 2012).

Tables 2 and 3 show the sizes of the OntoNotes and SANCL datasets as well as several measures
of lexical and grammatical characteristics of the data. The average sentence length (in tokens) and the
average number of subjects, roughly corresponding to the number of clauses in the sentence, aim to
characterize the syntactic complexity of the sentences: the higher these values, the more complex the

1https://catalog.ldc.upenn.edu/LDC2013T19

56

structure of the sentences is likely to be. The ratio of word forms absent from training data describes
how different the train and test data are in terms of vocabulary.

We see that in the OntoNotes test set the average sentence length and the number of subjects per
sentence is very similar to those in the train data. In SANCL test sets, these measures are more different,
but the values indicate a smaller syntactic complexity than in the train data. The amount of unknown
vocabulary in all the four test sets is between 5% and 8%.

CoNLL09 train CoNLL09 test OntoNotes test
Sentences 39,279 2,399 2,150
Tokens 958,167 57,676 42,144
Sentence length 24.61 24.59 23.4
Subjects 1.8 1.83 1.89
Unk. wordforms ratio 0.0 0.011 0.05

Table 2: The size of OntoNotes train and test datasets.

SANCL train Answers test Newsgroups test Reviews test
Sentences 30,060 1,744 1,195 1,906
Tokens 731,678 28,823 20,651 28,086
Sentence length 24.56 18.44 22.79 16.35
Subjects 1.69 1.78 1.62 1.5
Unk. wordforms ratio 0.0 0.064 0.084 0.051

Table 3: The size of SANCL train and test datasets.

Unlabelled Data. As unlabelled target domain data we used the unlabelled dataset from the SANCL-
2012 shared task. In experiments with word clusters, the entire dataset was used without any pre-
processing. In the co-training experiments, we pre-processed the data by removing sentences that are
longer than 500 tokens, or contained non-English words (this reduced the test set by 2%). Table 4 de-
scribes the size of the subsets of the unlabelled data.

Emails Weblogs Answers Newsgroups Reviews
Sentences 1,194,173 524,834 27,274 1,000,000 1,965,350
Tokens 17,047,731 10,356,284 424,299 18,424,657 29,289,169

Table 4: The size of unlabelled datasets.

3.4 Evaluation method

As a measure of parser accuracy, we report labeled attachment scores (LAS), the percentage of depen-
dencies which are attached and labeled correctly. Significance testing was performed using paired t-test.

4 Results and Discussion

4.1 Text normalization

We used a manually compiled lexicon containing Internet-specific spellings of certain words aligned
with their traditional spellings, e.g. u⇒ you, gr8⇒ great, don,t⇒ don‘t, as well as a number of regular
expressions to deal with extra symbols usually added for emphasis (This is sooooo good., This *is*
great.). After the original word forms were read by the parser, the lexicon and the regular expressions
were applied to normalize the spelling of the words. This produced only a very insignificant gain on the
baseline. A manual examination of the test data in both OntoNotes and SANCL has shown that in fact
although it comes from the web it contains very few examples of “Internet speak”.

57

4.2 Word clusters
We used Liang’s (2005) implementation of the Brown clustering algorithm to create clusters of words
found in unlabelled domain texts. The output of the algorithm are word types assigned to discrete hi-
erarchical clusters, with clusters assigned ids in the form of bit strings of varying length corresponding
to clusters of different granularity. We experimentally set the maximum length of the bit string to 6,
collapsing more fine-grained clusters. Instead of replacing the original word forms and/or PoS tags with
cluster ids as was done in some previous studies (Koo et al., 2008; Candito et al., 2011; Täckström et
al., 2013), the ids of clusters were used to generate additional features in the representations of the word
forms, as this also produced better results in the preliminary runs. Below we describe experiments with
several other parameters of the clustering algorithm.

Number of clusters. As an input parameter, the Brown clustering algorithm requires a desired number
of clusters. Initially discarding all word types with a count of less than 3, we experimented with different
numbers of clusters and found that an optimal settings lies around 600 and 800 clusters, which gives an
improvement on the baseline of 0.9% for out-of-domain texts; but there does not seem to be noticeable
differences between specific numbers of clusters (see Table 5, statistically significant differences to the
baseline are indicated by stars2).

Number of clusters CoNLL09 OntoNotes
50 90.46** 78.10*
100 90.28* 78.40**
200 90.27 78.39**
400 90.37** 78.20**
600 90.40** 78.43**
800 90.30* 78.14**
Baseline 90.07 77.54

Table 5: The effect of the number of word clusters on in- and out-of-domain parsing, using the reviews
and weblogs subsets of the SANCL-2012 unlabelled data.

Filtering rare words. Due to the inevitable data sparseness, the algorithm is likely to mis-cluster
infrequent words. At the same time, it is rare words that are not seen during parser training and are
potentially of greatest value if included into word clusters. We examined several thresholds on word
frequency and their impact on parsing accuracy (see Table 6; statistically significant differences to the
baseline are indicated by stars). We found very slight differences between these three thresholds, al-
though the cut-off point of 3 showed the best results. Hence in further experiments with word clusters
we used this cut-off point.

Min. freq. CoNLL09 OntoNotes
1 90.36** 78.12*
3 90.40** 78.43**
5 90.22 78.24**

Table 6: The effect of filtering out rare words on word clusters, using the reviews and weblogs subsets
of the SANCL-2012 unlabelled data.

Amount of unlabelled data. To examine the effect that the size of unlabelled data from which word
clusters are computed, has on parser accuracy, we compared parser accuracy achieved when using only
the reviews and weblogs subsets of the SANCL corpus (39.6 mln word tokens), and when using the
entire SANCL dataset (75.2 mln tokens). These results are shown in Table 7, significant improvements
on the smaller set are indicated by stars. As expected, a larger amount of data does improve the parsing
accuracy, and the improvement is greater for out-of-domain parsing (+0.55% vs. +0.32%).

2In this and the following tables, one star indicates significance at the p < 0.05 level, two stars at the p < 0.01 level.

58

CoNLL09 OntoNotes
Reviews and Weblogs 90.30 78.14
Entire SANCL dataset 90.62* 78.69*

Table 7: The effect of the size of unlabelled data on word clusters, discarding word types with count less
than 3.

Relevant domain data. Furthermore, we were interested if simply adding more unlabelled data, not
necessarily from the relevant domain, produced the same increase in accuracy. We obtained the plain-
text claims and description parts of 13,600 patents freely available in the Global IP Database which
is based on the Espacenet3, creating a corpus with 42.5 mln tokens, i.e. which was similar in size to
the reviews and weblogs sections of the SANCL unlabelled dataset. Table 8 compares results achieved
when building clusters from the patents corpus and when using the reviews and weblogs texts from the
SANCL unlabelled dataset. Despite the fact that the size of the two datasets is comparable, we find that
while creating clusters from an irrelevant domain does gain on the baseline (+0.25%), the improvement
for clusters built from the relevant domain texts is noticeably higher (+0.6%). The difference between
the accuracy on the legal texts and the accuracy on the reviews and weblogs texts is significant at the
p < 0.05 level.

CoNLL09 OntoNotes
Legal texts 90.19 77.77
Reviews and Weblogs 90.30 78.14*

Table 8: The effect of the domain of unlabelled data on word clusters, discarding word types with count
less than 3.

4.3 External lexicon

It is possible to supply to the dependency parser an external lexicon, where word forms are provided
with PoS tags. Wiktionary, a companion project for Wikipedia that aims to produce a free, large-scale
multilingual dictionary, is a large and constantly growing crowd-sourced resource that appears attrac-
tive for NLP research. Wiktionary encodes word definitions, pronunciation, translations, etymology,
word forms and part-of-speech information. PoS tag dictionaries derived from Wiktionary have been
previously used for out-of-domain PoS tagging (Li et al., 2012) and for PoS tagging of resource-poor
languages (Täckström et al., 2013).

To create a lexicon for the parser, we extracted 753,970 English word forms and their PoS tags from
a dump of Wiktionary4. Wiktionary uses a rather informal set of PoS labels; to convert them to the
CoNLL09 tag set, we manually aligned all unique PoS tags found in Wiktionary with those of the
CoNLL09 tag set. We compared the accuracy achieved by the parser when the lexicon was supplied,
as well as when the lexicon was supplied together with the best configuration word clusters (800 clusters
built from the entire SANCL dataset after filtering words with the count less than 3). Table 9 shows
results achieved with these settings in comparison to the baseline (improvements on the baseline are in-
dicated with stars). When the lexicon is used on its own, we observe only slight gains on the baseline,
on both in-domain and out-domain data, and neither are statistically significant. When combining the
lexicon and word clusters, the accuracy actually decreases compared to using word clusters on their own.

Thus the best combination of domain adaptation techniques so far included the use of 800 word clusters
built from the entire SANCL unlabelled dataset, after filtering out word forms with the count less than 3,
with text normalization, but without the Wiktionary lexicon (+1.15% on the baseline).

3http://www.epo.org/searching/free/espacenet.html
4http://wiki.dbpedia.org/Wiktionary

59

CoNLL09 OntoNotes
Wiktionary 90.22 77.73
Clusters 90.62** 78.69**
Wiktionary+Clusters 90.44 78.49**
Baseline 90.07 77.54

Table 9: The effect of the Wiktionary lexicon on parsing accuracy.

4.4 Co-Training
Following Sagae (2007), the overall approach to parser co-training we adopted was as follows. First,
several parsers were combined to generate additional training data from unlabelled data, i.e. were used
as source learners for co-training. Then, the Mate parser was re-trained on the augmented training set
and tested on a test set, i.e. used as the evaluation learner. The reason Mate was selected the evaluation
learner was that it achieved the best results on the test data in its default settings (see Table 10).

CoNLL09 OntoNotes
Mate 90.07 77.54
MST 86.9 75.35
Turbo 85.94 74.85
Malt 84.72 72.63

Table 10: The baselines of parsers used in co-training experiments.

Agreement-based co-training. We first experimented with three pairwise parser combinations: using
Mate as one source learner and each of the other three parsers as the other source learner in order to obtain
additional training data. If two learners agreed on the parse of an unlabelled sentence, i.e. assigned each
word form the same dependency label and attached it to the same head, this was taken as an indication of
a correct parse, and the sentence was added to the training set. We experimented with different amounts
of the additional training sentences added to the main training set in such a manner: 10k, 20k, and 30k
sentences. The results of these experiments are shown in Table 11 (significant differences to the baseline
results are indicated by stars). The best result is obtained by Mate Malt pair, which outperforms the
baseline by just above 1%.

+10k +20k +30k
Mate+Malt 78.22** 78.61** 78.61**
Mate+MST 78.10** 78.23** 78.31**
Mate+Turbo 77.94** 77.84* 77.99**
Baseline 77.54

Table 11: Agreement-based co-training using two parsers.

Removing short sentences from unlabelled data. We noticed that among those sentences where
two parsers agreed, many tended to be very short: the average number of tokens in generated additional
training data was 8 per sentence, while both the training and test set contain much longer sentences
on average: the OntoNotes test set had 19.6 tokens/sentence and the CoNLL09 training set had 24.4
tokens/sentence. Such short sentences in the additional training data may be less useful or even harmful
for learning an accurate model of the target domain, than those that approximate both training and test
data. We experimented with several thresholds (4, 5, and 6 tokens) on the sentence length below which
sentences were removed from the additional training data. Table 12 shows that discarding short sentences
did improve accuracy by up to 0.25%, though none of the improvements were significant.

Three learners co-training. In the previous experiments, the Mate parser was used both as a source
learner and as the evaluation learner. Therefore it was likely that the additional training data did not

60

Mate+Malt, +30k Avg. Length
>6 tokens 78.88 13.1
>5 tokens 78.61 12.67
>4 tokens 78.67 11.94
All sentences 78.61 8.35

Table 12: The effect of removing short sentences from generated training data.

contain sufficiently novel examples based on which the evaluation parser could adapt better to the new
domain. Thus we next tried the tri-training algorithm (Zhou and Li, 2005), where two parsers are used
as source learners and a third as the evalaution learner. We used Malt and MST as source learners,
identifying sentences which they parsed in the same manner, and using these sentences to retrain the
Mate parser. We find that the tri-training algorithm performs better than the set-up with two parsers:
on 10k and 20k additional sentences, it achieves an accuracy increase on Mate+Malt, significant at the
p < 0.05 level (see Table 13).

+10k +20k +30k
Mate+Malt+MST 78.70* 79.12* 78.95
Mate+Malt 78.43 78.70 78.88

Table 13: Accuracy scores for tri-training (Mate+Malt+MST) and the best two-parser co-training algo-
rithm (Mate+Malt).

5 Combining co-training with clusters and an external lexicon

5.1 OntoNotes test set

We explored several possibilities to combine co-training with word clusters and an external lexicon, each
time supplying word clusters and/or the lexicon to the Mate parser when it is being retrained on additional
training data and applied to the test data. The following configurations of each of the techniques were
used:

• Word clusters: 800 clusters generated from the entire SANCL unlabelled dataset, after discarding
word types with the count less than 3.

• Lexicon: Wiktionary

• Co-training: Retraining the Mate parser on the combination of initial training set and 20k automat-
ically parsed sentences (agreed by Malt and MST) which contained more than 6 tokens.

The results showed that all three combinations failed to obtain significant improvements over co-
training alone. The best result is achieved by combining co-training and clusters, which obtains an
increase of only 0.09% on co-training; this is however, the greatest overall improvement on the baseline
(+1.67%). The combination of co-training and a Wiktionary lexicon in fact harms accuracy (see Table
14).

5.2 SANCL test set

In order to compare different technique combinations with the results achieved by participants of the
SANCL-2012 shared task, we evaluated them on the SANCL test set5.

As the results in Table 15 indicate, similarly to the results on OntoNotes, word clusters usually fare
much better than the Wiktionary-based lexicon, while the latter fails to produce statistically significant

5Note that the data was annotated in the Stanford format.

61

OntoNotes
Co-training 79.12**
Clusters 78.69**
Wiktionary 77.73
Co-training+Clusters 79.21**
Co-training+Wiktionary 78.89*
Co-training+Clusters+Wiktionary 79.19**
Baseline 77.54

Table 14: Combination of co-training with word clusters and an external lexicon, OntoNotes test set.

improvements on the baseline. The best accuracy overall was achieved by combinations of techniques,
in all the three subdomains, improving on the baseline by up to 1.3%.

Comparing the results achieved by our best configurations with the results of the shared task, we see
that our labelled accuracy averaged across the subdomains was just above the Stanford-2 system (80.31
vs. 80.25), which ranked 5th of all the twelve submissions (Petrov and McDonald, 2012). Although our
results are still 3.15% lower than DCU-Paris13, the best system at SANCL-2012, the top four results
were all generated by combination systems (Le Roux et al., 2012; Zhang et al., 2012; McClosky et al.,
2012); our highest results only produced by the Mate parser, hence our best configuration achieved the
best performance of a single parser.

Answers Newsgroups Reviews Average
Co-training 77.18 82.72** 78.21 79.37
Clusters 78.04** 83.06* 79.03** 80.04
Wiktionary 77.61 82.8 78.32 79.57
Clusters+Wiktionary 78.19** 83.38* 79.36** 80.31
Co-training+Clusters 78.05* 83.29** 78.8** 80.04
Co-training+Clusters+Wiktionary 78.33** 83.35** 78.84* 80.17
Baseline 77.03 82.4 78.12 79.18
SANCL Stanford-2 77.5 83.56 79.7 80.25
SANCL Best (DCU-Paris13) 81.15 85.38 83.86 83.46

Table 15: Combination of co-training with word clusters and an external lexicon, SANCL test set.

The results on both the OntoNotes and SANCL datasets show that on their own, word clusters and co-
training often improve significantly on the baseline, but their combination results only in minor further
improvements (only up to 0.32%). Word clusters aim specifically to deal with the unknown vocabulary
problem, and, since there seem to be no major grammatical differences between the train and test do-
mains (see Section 3.3), it is likely that the main benefit derived from co-training is the compensation
for unknown domain vocabulary. Word clusters also seem a better way to approach this problem: they
perform better than co-training on three out of four subdomains. The explanation that unknown vocab-
ulary is the main issue for domain adaptation in this domain pair is further supported by the fact that
combinations of word clusters with a Wiktionary lexicon sometimes performed better than combinations
involving co-training (on newsgroups and reviews).

6 Conclusion

In this paper we described experiments with several domain adaptation techniques, in order to quickly
adapt a general-language parser to parse web data. We find that the best combination of the techniques
improves significantly on the baseline (up to 1.67%), and achieves very promising results on the SANCL-
2012 shared task data, outperforming all submissions that used a single parser, in terms of labelled
accuracy score averaged across three test sets.

62

Our experiments with word clusters showed that word clusters derived from unlabelled domain texts
consistently contribute to a greater parsing accuracy, and that both the domain relevance of the unlabelled
data and its quantity are major factors for successful exploitation of word clusters. Experiments with a
crowd-sourced PoS lexicon however were not as conclusive: whereas supplying the lexicon to the parser
often resulted in certain accuracy gains, they were not as large as those for word clusters. This suggests
word clusters created automatically from relevant domain texts are a better tool to deal with unknown
vocabulary than a generic hand-crafted and wide-coverage lexicon. Another interesting finding was
that co-training was most effective when the evaluation parser was not used for creating extra training
data (the so-called tri-training technique), and when removing very short sentences from automatically
labelled data before re-training the evaluation parser.

With respect to combining co-training with word clusters, we could not find clear evidence for additive
improvement. This suggests that co-training solves largely the same problem as word clusters, i.e.,
unknown target domain vocabulary, and that for the web texts under study unknown vocabulary is a much
more significant impediment for domain adaptation than grammatical differences between domains.

Acknowledgements

The research was supported by FP7 ICT project “Workbench for Interactive Contrastive Analysis of
Patent Documentation” under grant no. FP7-SME-606163.

References
Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014. Tailoring continuous word representations for dependency

parsing. In Proceedings of the 52nd annual meeting of the Association for Computational Linguistics.

Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In Proceedings of
the Eleventh Annual Conference on Computational Learning Theory, COLT’ 98, pages 92–100, New York, NY,
USA. ACM.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Richárd Farkas Filip Ginter, and Jan Hajic. 2013. Joint morpho-
logical and syntactic analysis for richly inflected languages. Transactions of the Associtation for Computational
Linguistics, 1.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai. 1992. Class-based
n-gram models of natural language. Computational Linguistics, 18:467–479.

Alicia Burga, Joan Codina, Gabriella Ferraro, Horacio Saggion, and Leo Wanner. 2013. The challenge of syntactic
dependency parsing adaptation for the patent domain. In ESSLLI-13 Workshop on Extrinsic Parse Improvement.

Marie Candito, Enrique Henestroza Anguiano, and Djam Seddah. 2011. A word clustering approach to domain
adaptation: Effective parsing of biomedical texts. In IWPT, pages 37–42. The Association for Computational
Linguistics.

Jennifer Foster. 2010. ”cba to check the spelling”: Investigating parser performance on discussion forum posts. In
HLT-NAACL, pages 381–384. The Association for Computational Linguistics.

Phani Gadde, L. V. Subramaniam, and Tanveer A. Faruquie. 2011. Adapting a WSJ trained part-of-speech tag-
ger to noisy text: Preliminary results. In Proceedings of the 2011 Joint Workshop on Multilingual OCR and
Analytics for Noisy Unstructured Text Data, MOCRAND11, pages 51–58, New York, NY, USA. ACM.

Daniel Gildea. 2001. Corpus variation and parser performance. In Lillian Lee and Donna Harman, editors,
Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing, EMNLP ’01,
pages 167–202, Stroudsburg. Association for Computational Linguistics.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s Màrquez,
Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and
Yi Zhang. 2009. The CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple languages.
In Proceedings of the 13th Conference on Computational Natural Language Learning (CoNLL-2009), June 4-5,
Boulder, Colorado, USA.

Richard Johansson and Pierre Nugues. 2007. Extended constituent-to-dependency conversion for english. In 16th
Nordic Conference of Computational Linguistics, pages 105–112. University of Tartu.

63

Mohammad Khan, Markus Dickinson, and Sandra Kübler. 2013a. Does size matter? text and grammar revision
for parsing social media data. In Proceedings of the Workshop on Language Analysis in Social Media, pages
1–10, Atlanta, Georgia, June. Association for Computational Linguistics.

Mohammad Khan, Markus Dickinson, and Sandra Kübler. 2013b. Towards domain adaptation for parsing web
data. In Galia Angelova, Kalina Bontcheva, and Ruslan Mitkov, editors, RANLP, pages 357–364. RANLP 2011
Organising Committee / ACL.

Terry Koo, Xavier Carreras, and Michael Collins. 2008. Simple semi-supervised dependency parsing. In In Proc.
ACL/HLT.

Joseph Le Roux, Jennifer Foster, Joachim Wagner, Rasul Samad Zadeh Kaljahi, and Anton Bryl. 2012. Dcu-
paris13 systems for the sancl 2012 shared task.

Matthew Lease and Eugene Charniak. 2005. Parsing biomedical literature. In Robert Dale, Kam-Fai Wong, Jian
Su, and Oi Yee Kwong, editors, IJCNLP, volume 3651 of Lecture Notes in Computer Science, pages 58–69.
Springer.

Shen Li, Joo Graa, and Ben Taskar. 2012. Wiki-ly supervised part-of-speech tagging. In EMNLP-CoNLL, pages
1389–1398. ACL.

Percy Liang. 2005. Semi-supervised learning for natural language. In MASTERS THESIS, MIT.

André FT Martins, Noah A Smith, Eric P Xing, Pedro MQ Aguiar, and Mário AT Figueiredo. 2010. Turbo parsers:
Dependency parsing by approximate variational inference. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–44. Association for Computational Linguistics.

David McClosky and Eugene Charniak. 2008. Self-training for biomedical parsing. In ACL (Short Papers), pages
101–104. The Association for Computer Linguistics.

David McClosky, Wanxiang Che, Marta Recasens, Mengqiu Wang, Richard Socher, and Christopher Manning.
2012. Stanfords system for parsing the english web. In Workshop on the Syntactic Analysis of Non-Canonical
Language (SANCL 2012). Montreal, Canada.

Ryan T McDonald and Fernando CN Pereira. 2006. Online learning of approximate dependency parsing algo-
rithms. In EACL.

Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007. The conll 2007 shared task on dependency parsing. In
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, pages 915–932. sn.

Joakim Nivre. 2009. Non-projective dependency parsing in expected linear time. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 1-Volume 1, pages 351–359. Association for Computational Linguistics.

Lilja Øvrelid and Arne Skjærholt. 2012. Lexical categories for improved parsing of web data. In Proceedings of
COLING 2012: Posters, pages 903–912, Mumbai, India, December. The COLING 2012 Organizing Committee.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, Nathan Schneider, and Noah A. Smith. 2013.
Improved part-of-speech tagging for online conversational text with word clusters. In HLT-NAACL, pages 380–
390. The Association for Computational Linguistics.

Slav Petrov and Ryan McDonald. 2012. Overview of the 2012 shared task on parsing the web. In Notes of the
First Workshop on Syntactic Analysis of Non-Canonical Language (SANCL), volume 59.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and Hiyan Alshawi. 2010. Uptraining for accurate determin-
istic question parsing. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’10, pages 705–713, Stroudsburg, PA, USA. Association for Computational Linguistics.

Barbara Plank and Gertjan Van Noord. 2011. Effective measures of domain similarity for parsing. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pages 1566–1576. Association for Computational Linguistics.

Sampo Pyysalo, Tapio Salakoski, Sophie Aubin, and Adeline Nazarenko. 2006. Lexical adaptation of link
grammar to the biomedical sublanguage: a comparative evaluation of three approaches. BMC Bioinformat-
ics, 7(Suppl 3).

64

Ines Rehbein. 2011. Data point selection for self-training. In Proceedings of the Second Workshop on Statistical
Parsing of Morphologically Rich Languages, SPMRL ’11, pages 62–67, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Kenji Sagae. 2007. Dependency parsing and domain adaptation with lr models and parser ensembles. In In
Proceedings of the Eleventh Conference on Computational Natural Language Learning.

Anoop Sarkar. 2001. Applying co-training methods to statistical parsing. In Proceedings of the Second Meeting
of the North American Chapter of the Association for Computational Linguistics on Language Technologies,
NAACL ’01, pages 1–8, Stroudsburg, PA, USA. Association for Computational Linguistics.

Anders Søgaard and Barbara Plank. 2012. Parsing the web as covariate shift. In Workshop on the Syntactic
Analysis of Non-Canonical Language (SANCL2012), Montreal, Canada.

Mark Steedman, Anoop Sarkar, Miles Osborne, Rebecca Hwa, Stephen Clark, Julia Hockenmaier, Paul Ruhlen,
Steven Baker, and Jeremiah Crim. 2003. Bootstrapping statistical parsers from small datasets. In EACL, pages
331–338. The Association for Computer Linguistics.

Peter Szolovits. 2003. Adding a medical lexicon to an English parser. In AMIA Annual Symposium Proceedings,
volume 2003, page 639. American Medical Informatics Association.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan T. McDonald, and Joakim Nivre. 2013. Token and type
constraints for cross-lingual part-of-speech tagging. TACL, 1:1–12.

Meishan Zhang, Wanxiang Che, Yijia Liu, Zhenghua Li, and Ting Liu. 2012. Hit dependency parsing: Bootstrap
aggregating heterogeneous parsers. In Notes of the First Workshop on Syntactic Analysis of Non-Canonical
Language (SANCL).

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Exploiting unlabeled data using three classifiers. Knowledge and
Data Engineering, IEEE Transactions on, 17(11):1529–1541.

Guangyou Zhou, Jun Zhao, Kang Liu, and Li Cai. 2011. Exploiting web-derived selectional preference to improve
statistical dependency parsing. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 1556–1565, Stroudsburg, PA, USA.
Association for Computational Linguistics.

65

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 66–73 Dublin, Ireland, August 23-29 2014.

Self-Training for Parsing Learner Text

Aoife Cahill, Binod Gyawali and James V. Bruno
Educational Testing Service,

660 Rosedale Road,
Princeton, NJ 08541,

USA
{acahill, bgyawali, jbruno}@ets.org

Abstract

We apply the well-known parsing technique of self-training to a new type of text: language-
learner text. This type of text often contains grammatical and other errors which can cause
problems for traditional treebank-based parsers. Evaluation on a small test set of student data
shows improvement over the baseline, both by training on native or non-native text. The main
contribution of this paper adds additional support for the claim that the new self-trained parser
has improved over the baseline by carrying out a qualitative linguistic analysis of the kinds of
differences between two parsers on non-native text. We show that for a number of linguistically
interesting cases, the self-trained parser is able to provide better analyses, despite the sometimes
ungrammatical nature of the text.

1 Introduction

The vast majority of treebank-based parsing research assumes that the text to be parsed is well-formed.
In this paper, we are concerned with parsing text written by non-native speakers of English into phrase
structure trees, as a precursor for applications in automated scoring and error detection. Non-native text
often contains grammatical errors ranging in severity from minor collocational differences to extremely
garbled strings that are difficult to interpret. These kinds of errors are known to cause difficulty for
automated analyses (De Felice and Pulman, 2007; Lee and Knutsson, 2008).

We explore a previously documented technique for adapting a state-of-the-art parser to be able to bet-
ter parse learner text: domain adaptation using self-training. Self-training is a semi-supervised learning
technique that relies on some labeled data to train an initial model, and then uses large amounts of unla-
beled data to iteratively improve that model. Self-training was first successfully applied in the newspaper
parsing domain by McClosky et al. (2006) who used the Penn Treebank WSJ as their labeled data and un-
labeled data from the North American News Text corpus. Previous attempts (Charniak, 1997; Steedman
et al., 2003) had not shown encouraging results, and McClosky et al. (2006) hypothesize that the gain
they saw was due to the two-phase nature of the BLLIP parser used in their experiments. In a follow-up
study (McClosky et al., 2008) they find that one major factor leading to successful self-training is when
the process sees known words in new combinations.

2 Related Work

Foster et al. (2011) compare edited newspaper text and unedited forum posts in a self-training parsing
experiment, evaluating on a treebank of informal discussion forum entries about football. They find that
both data sources perform about equally well on their small test set overall, but that the underlying gram-
mars learned from the two sources were different. Ott and Ziai (2010) apply an out-of-the-box German
dependency parser to learner text and analyze the impact on down-stream semantic interpretation. They
find that core functions such as subject and object can generally be reliably detected, but that when there
are key elements (e.g. main verbs) missing from the sentence that the parses are less reliable. They

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

66

also found that less-severe grammatical errors such as agreement did not tend to cause problems for the
parser.

An alternative approach to parsing learner text is to modify the underlying dependency scheme used in
parsing to account for any grammatical errors. This can be useful because it is not always clear what the
syntactic analysis of ungrammatical text should be, given some scheme designed for native text. Dick-
inson and Ragheb (2009) present such a modified scheme for English, designed for annotating syntactic
dependencies over a modified POS tagset. Dickinson and Lee (2009) retrain a Korean dependency parser,
but rather than adding additional unlabeled data as we do, they modify the original annotated training
data. The modifications are specifically targeted to be able to detect errors relating to Korean postpo-
sitional particles. They show that the modified parser can be useful in detecting those kinds of particle
errors and in their conclusion suggest self-training as an alternative approach to parsing of learner text.
A similar alternative approach is to directly integrate error detection into the parsing process (Menzel
and Schröder, 1999; Vandeventer Faltin, 2003).

3 Self-training a new parser

We first describe the data that we use for both training and evaluating our parsers, and then we describe
our experiments and results.

We take the standard portion of the Penn Treebank (sections 02–21) as our seed labeled data. We
then compare two different unlabeled training data sets. The first data set consists of 480,000 sentences
of newspaper text extracted from the LA Times portion of the North American News Corpus (NANC).
The second is a corpus of non-native written English text randomly sampled from a large dataset of
student essays. It consists of 480,900 sentences from 33,637 essays written as part of a test of English
proficiency, usually administered to non-native college-level students. The essays have been written to
422 different prompts (topics) and so cover a wide range of vocabulary and usage. Each essay has been
assigned a proficiency level (high, medium, low) by a trained human grader. 17.5% of the sentences were
from low proficiency essays, 42% from medium proficiency and 40.5% from high proficiency essays.

In order to determine the optimal number of self-training iterations and carry out our final evaluations
we use a small corpus of manually treebanked sentences. The corpus consists of 1,731 sentences written
by secondary level students which we randomly split into a development set (865 sentences) and a test set
(866 sentences). The native language of the students is unknown, but it is likely that many spoke English
as their first language. In addition, this corpus had originally been developed for another purpose and
therefore contains modifications that are not ideal for our experiments. The main changes are that spelling
and punctuation errors were corrected before the trees were annotated (and we do not have access to the
original text). Although the treebanked corpus does not align perfectly with our requirements, we believe
that it is a more useful evaluation data set than any other existing treebanked corpus.

We used the Charniak and Johnson (2005) (BLLIP) parser1 to perform the self training experiments.
Our experiment is setup as follows: first we train a baseline model on the Penn Treebank WSJ data
(sections 02-21). Then, iteratively, sentences are selected from the unlabeled data sets, parsed by the
parser, and combined with the previously annotated data to retrain the parser. The parser also requires
development data, for which we use section 22 of the WSJ data. After each iteration we evaluate the
parser using our 865-sentence development set. Parser evaluation was done using the EVALB2 tool and
we report the performance in terms of F1 score.

There are two main parameters in our self-training setup: the size of the unlabeled data set added at
each iteration and the weight given to the original labeled data.3 In preliminary experiments, we found
that a block size of 40,000 sentences per each iteration and a weight of 5 on the original labeled data
performed best. Given our training data, and a block size of 40K, this results in 12 iterations. In each
iteration, the training data consists of the PTB data repeated 5 times, plus the parsed output of previous
blocks of unlabeled data.

1https://github.com/BLLIP/bllip-parser
2http://nlp.cs.nyu.edu/evalb/
3Note that this approach differs to that outlined in McClosky et al. (2006) who only perform one self-training iteration. It is

more similar to the approach described in Reichart and Rappoport (2007).

67

The results of our experiments are as shown in Figure 1. Iteration 0 corresponds to the baseline parser
while iterations 1–12 are the self trained parsers. We see that the F1 score of the baseline parser is
80.9%.4 The self trained parsers have higher accuracies compared to the baseline parser starting at the
first iteration. The highest score training on non-native text (82.3%) was achieved on the 11th iteration,
and the highest score training on newspaper text (81.8%) was achieved on the 8th iteration. Both of these
results are statistically significantly better than the baseline parser only trained on WSJ text.5 The graph
also shows that the non-native training results in slightly higher overall f-scores than the parser trained
on the native data after iteration 5, however these differences are not statistically significant.

81.5

81.75

82

82.25

82.5

F
1

S
c
o
r

F1 score of each iteration

Non‐Native English NANC

80.75

81

81.25

0 1 2 3 4 5 6 7 8 9 10 11 12

r
e

(

%)

Iteration number

Figure 1: Performance of parsers after each iteration. Parsers used WSJ Section 22 as development data
and were evaluated on the student response development data.

The final evaluation was carried out by evaluating on the student test corpus of 866 sentences, using
the parsing model that performed best on the student dev corpus. The parser trained on native text
achieved an f-score of 82.4% and the parser trained on the non-native text achieved an f-score of 82.6%.
This difference is not statistically significant and is a similar finding to Foster et al. (2011). In another
experiment, we found that if the development data used during self-training is similar to the test data, we
see even smaller differences between the two different kinds of training data.6

4 Analysis

We carry out a qualitative analysis of the differences in parses between the original parser and one of the
best-performing self-trained ones, trained on non-native text. We randomly sample 5 essays written by
non-native speakers (but not overlapping with the data used to self-train the parser). Table 1 shows the
number of sentences and the number of parse trees that differ, according to each proficiency level.

Proficiency # Essays # Sentences # Words # Differing Parses % Differing Parses
High 2 30 694 12 40
Mid 1 22 389 12 54
Low 2 17 374 8 47
Totals 5 69 1457 32 46

Table 1: Descriptive Statistics for Essays in the Qualitative Sample

4Note that these overall f-scores are considerably lower than current state-of-the-art for newspaper text, indicating that this
set of student texts are considerably different.

5Significance testing was carried out using Dan Bikel’s Randomized Parsing Evaluation Comparator script for comparing
evalb output files. We performed 1000 random shuffles and tested for p-values < 0.01.

6These data sets were all quite small, however, so further investigation is required to fully assess this finding.

68

Figure 2 reports the number of differences by proficiency level. It is important to note that these
differences only included ones that were considered to be independent (e.g. a change in POS tag that
necessitated a change in constituent label was only counted once). We note a trend in which the self-
trained parser produces better parses than the baseline more often; however, at the highest proficiency
level the baseline parser produces better parses more often. In some applications it might be possible to
take the proficiency level into account before running the parser. However for many applications this will
present a challenge since the parser output plays a role in predicting the proficiency level. A possible
alternative would be to approximate proficiency using frequencies of spelling and other grammatical
errors that can be automatically detected without relying on parser output and use this information to
decide which version of the parser to use.

10
14

7

5
4

3

4 3

9

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

In
de

p
en

d
en

t
D

if
fe

re
nc

es

0%
Low

(Total = 19)
Mid

(Total = 21)
High

(Total = 19)

I

Proficiency Level

Better Self-Trained Better Unclear Better Original

Figure 2: Unrelated Differences by Proficiency Level.

We systematically examine each of the 32 pairs of differing parse trees in the sample and manually
categorize the differences. Figure 3 shows the 5 most frequent types of differences, their breakdown
by proficiency level, as well as the results of a subjective evaluation on which parse was better. These
judgements were made by one of the authors of this paper who is a trained linguist.

3 3
5 4

2
4 5 4

2

2

2

1
1

1

1

2

5

1

2

3

1
1 2 10

2

4

6

8

10

12

14

Low Mid High Low Mid High Low Mid High Low Mid High Low Mid High

Attachment Site
(Total = 22)

POS Tag
(Total = 15)

Sentential
Components
(Total = 10)

POS of Misspelled
Terminal

(Total = 6)

Headedness
(Total = 5)

Better Self-Trained Better Unclear Better Original

Figure 3: Parse Tree Differences by Proficiency Level.

The differences in Figure 3 are defined as follows. Attachment Site: the same constituent is attached
to different nodes in each parse; POS Tag: the same terminal bears a different POS tag in each parse,
where the terminal exists in our dictionary of known English7 words; Sentential Components: One parse
groups a set of constituents exhaustively into an S-node, while the other does not; POS of misspelled
terminal: the same terminal bears a different POS tag in each parse, where the terminal has been flagged
as a misspelling; Headedness: a terminal heads a maximal projection of a different syntactic category in
one parse but not the other, (e.g. a VP headed by a nominal).

7We use the python package enchant with US spelling dictionaries to carry out spelling error detection.

69

We characterized the differences according to whether the better output was produced by the original
parser, the self trained parser, or if it was not clear that either parse was better than the other. Attachment
Site differences were evaluated according to whether or not they were attached to the constituent they
modified; POS Tag differences were evaluated according to the Penn Treebank Guidelines (Santorini,
1995); Sentential Components differences were evaluated according to whether or not the terminals
should indeed form a clausal constituent, infinitive, or gerund; POS of Misspelled Terminal differences
were evaluated according to the evaluator’s perception of the writer’s intended target. We note that
the most abundant differences are in Attachment Site, that the biggest improvements resulting from self-
training are in the recognition of Sentential Components and in the identification of the POS of Misspelled
Terminals, and that the biggest degradation is in Headedness.

4.1 General Difference Patterns

Using the categories defined during the manual analysis of the 5 essays, we develop rules to automatically
detect these kinds of differences in a large dataset. We expect that the automatic rules will identify more
differences than the linguist, however we hope to see the same general patterns. We apply our rules to an
additional set of data consisting of roughly 10,000 sentences written by non-native speakers of English.
Table 2 shows the number of sentences for which the parsers found different parses at each proficiency
level, and Table 3 gives the totals for each of the five difference categories described above.

Proficiency # Essays # Sentences # Words # Differing Parses % Differing Parses
High 256 4178 266543 2214 53
Mid 285 4168 263685 2364 57
Low 149 1657 93466 971 59
Totals 690 10003 623694 5549 55

Table 2: Descriptive Statistics for Essays in the Larger Sample

Difference Total Low Medium High
Attachment Site 7805 1331 3474 3000
POS Tag 6827 1205 3238 2384
Sentential Components 4103 778 1786 1539
POS of Misspelled Terminal 2040 346 894 800
Headedness 1357 353 568 436

Table 3: Total number of differences detected automatically by proficiency level

We see that the proportion of sentences with different parses is similar to the 5-essay sample and also
that the relative ordering of the five difference categories is identical. This at least indicates that the
5-essay sample does not differ largely in its general properties from a larger set.

4.2 Illustrative Observations

We highlight some of the most interesting differences between the baseline parser and the self-trained
parser, using examples from our 5-essay sample described above.

Ambiguity of subordinating conjunctions: Figure 4 shows an example from a lower proficiency
essay that contains multiple interacting differences, primarily stemming from the fact that the POS tag
for a subordinating conjunction is the same as the POS tag for a regular preposition according to the
Penn Treebank guidelines (Santorini, 1995). The original parser (4a) treats it as a preposition: it is
dominated by PP and takes NP as a complement. The self-trained parser (4b) correctly treats because
as a subordinating conjunction: it is dominated by SBAR and takes S as a complement. In addition,
the original parser identified suffer as the main verb in the sentence. The self-trained parser correctly
analyzes this as part of the dependent clause, however this results in no main verb being identified and
an overall FRAGMENT analysis. Since it is unclear what the original intention of the writer was, this
fragment analysis could be more useful for identifying grammatical errors and giving feedback.

70

S

. . . PP

IN

because

NP

DT

the

NN

world

VP

VBP

suffer

. . .

(a) Original Parser

FRAG

. . . SBAR

IN

because

S

NP

DT

the

NN

world

VP

VBP

suffer

. . .

(b) Self-Trained Parser

Figure 4: Parses for Especaily, in this time, because the world suffer, the economy empress.

Ambiguity of to: Figure 5 exemplifies a difference related to the analysis of infinitives. Here we can
see that the original parser analyzed the to phrase as a PP (c.f. afraid of) whereas the self-trained parser
analyzes it as an infinitival. We believe that the infinitival interpretation is slightly more likely (with a
missing verb do), though of course it is difficult to say for sure what the intended meaning is. Here there
are two interacting difference types: Sentential Components and Headedness. In the self-trained parse,
anything is an NN that heads a VP, whereas it is an NN that appropriately heads an NP in the original
parse. However, it is important to note that the self-trained parse treats to anything as an infinitive: a TO
dominated by a VP, which is dominated by a unary-branching S. The original parse treats to anything as
a regular PP. The fact that the self-trained parse contains a set of terminals exhaustively dominated by
an S-node that does not exist in the original parse constitutes a Sentential Components difference. We
believe that it is more useful to correctly identify infinitives and gerunds as sentential constituents, even
at the cost of an XP that is apparently headed by an inappropriate terminal (VP headed by NN).

S

. . . AdjP

JJ

afraid

PP

TO

to

NP

NN

anything

PP

during your life

(a) Original Parser

S

. . . AdjP

JJ

afraid

S

VP

TO

to

VP

NN

anything

PP

during your life

(b) Self-Trained Parser

Figure 5: Parses for If you have this experience, you will do not afraid to anything during your life.

Attachment ambiguity: We turn now to Figure 6. The main difference has to do with the attachment
of the phrase that you think it worth: the SBAR is attached to the VP in the original parse (as a clausal
complement) and to the NP in the self-trained parse (as a relative clause). This example also shows that
a change in POS-tag can have a significant impact on the final parse tree.

5 Future Work and Conclusions

We have shown that it is possible to apply self-training techniques in order to adapt a state-of-the-art
parser to be able to better parse English language learner text. We experimented with training the parser
on native text as well as non-native text. In an evaluation on student data (not necessarily language-

71

VP

VBN

used

PP

IN

in

NP

DT

the

NN

thing

SBAR

IN

that

S

you think it worth

(a) Original Parser

VP

VBN

used

PP

IN

in

NP

NP

DT

the

NN

thing

SBAR

WHNP

WDT

that

S

you think it worth

(b) Self-Trained Parser

Figure 6: Parses for So I support that the money should be used in the thing that you think it worth.

learner data) we found that both training sets performed at about the same level, but that both significantly
out-performed the baseline parser trained only on WSJ text.

We carry out an in-depth study on a small data set of 5 learner essays and define a set of difference
categories in order to describe the parse-tree differences from a linguistic perspective. We implement
rules to automatically detect these parse-tree differences and show that the general proportions of errors
found in the small data set are similar to that of a larger data set. We highlight some of the most interesting
improvements of the parser, and we show that despite various grammatical errors present in sentences,
the self-trained parser is, in general, able to assign better analyses than the baseline parser.

Of course, the self-trained parser does sometimes choose a parse that is less appropriate than the
baseline one. In particular, we noticed that this happened most frequently for the highest proficiency
essays. Further investigation is required to be able to better understand the reasons for this. In future
work, the most informative evaluation of the self-trained parser would be in a task-based setting. We
plan to investigate whether the self-trained parser improves the overall performance of tasks such as
automated essay scoring or automated error detection, which internally rely on parser output.

References

Eugene Charniak and Mark Johnson. 2005. Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative Reranking.
In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages
173–180, Ann Arbor, Michigan, June. Association for Computational Linguistics.

Eugene Charniak. 1997. Statistical parsing with a context-free grammar and word statistics. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence, pages 598–603, Menlo Park, CA. AAAI Press/MIT
Press.

Rachele De Felice and Stephen Pulman. 2007. Automatically Acquiring Models of Preposition Use. In Pro-
ceedings of the Fourth ACL-SIGSEM Workshop on Prepositions, pages 45–50, Prague, Czech Republic, June.
Association for Computational Linguistics.

Markus Dickinson and Chong Min Lee. 2009. Modifying corpus annotation to support the analysis of learner
language. CALICO Journal, 26(3):545–561.

Markus Dickinson and Marwa Ragheb. 2009. Dependency Annotation for Learner Corpora. In Proceedings of
the Eighth Workshop on Treebanks and Linguistic Theories (TLT-8), pages 59–70, Milan, Italy.

Jennifer Foster, Özlem Çetinoğlu, Joachim Wagner, and Josef van Genabith. 2011. Comparing the Use of Edited
and Unedited Text in Parser Self-Training. In Proceedings of the 12th International Conference on Parsing
Technologies, pages 215–219, Dublin, Ireland. Association for Computational Linguistics.

72

John Lee and Ola Knutsson. 2008. The Role of PP Attachment in Preposition Generation. In Proceedings
of CICLing 2008, 9th International Conference on Intelligent Text Processing and Computational Linguistics,
pages 643–654, Haifa, Israel.

David McClosky, Eugene Charniak, and Mark Johnson. 2006. Effective Self-Training for Parsing. In Proceedings
of the Human Language Technology Conference of the NAACL, Main Conference, pages 152–159, New York
City, USA, June. Association for Computational Linguistics.

David McClosky, Eugene Charniak, and Mark Johnson. 2008. When is Self-Training Effective for Parsing? In
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 561–568,
Manchester, UK, August. Coling 2008 Organizing Committee.

Wolfgang Menzel and Ingo Schröder. 1999. Error diagnosis for language learning systems. ReCALL, 11:20–30.

Niels Ott and Ramon Ziai. 2010. Evaluating dependency parsing performance on German learner language. In
Proceedings of the Ninth Workshop on Treebanks and Linguistic Theories (TLT-9), pages 175–186.

Roi Reichart and Ari Rappoport. 2007. Self-Training for Enhancement and Domain Adaptation of Statistical
Parsers Trained on Small Datasets. In Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 616–623, Prague, Czech Republic, June. Association for Computational Linguistics.

Beatrice Santorini. 1995. Part-of-speech tagging guidelines for the Penn Treebank Project (3rd revision). Techni-
cal Report, Department of Computer and Information Science, University of Pennsylvania.

Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen Clark, Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen,
Steven Baker, and Jeremiah Crim. 2003. Bootstrapping statistical parsers from small datasets. In Proceedings
of EACL 03, pages 331–228.

Anne Vandeventer Faltin. 2003. Syntactic Error Diagnosis in the context of Computer Assisted Language Learn-
ing. Ph.D. thesis, Université de Genève.

73

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 74–81 Dublin, Ireland, August 23-29 2014.

The effect of disfluencies and learner errors on the parsing of spoken
learner language

Andrew Caines Paula Buttery
Institute for Automated Language Teaching and Assessment

Department of Theoretical and Applied Linguistics
University of Cambridge, Cambridge, U.K.

(apc38|pjb48)@cam.ac.uk

Abstract

NLP tools are typically trained on written data from native speakers. However, research into
language acquisition and tools for language teaching & proficiency assessment would benefit
from accurate processing of spoken data from second language learners. In this paper we dis-
cuss manual annotation schemes for various features of spoken language; we also evaluate the
automatic tagging of one particular feature (filled pauses) – finding a success rate of 81%; and we
evaluate the effect of using our manual annotations to ‘clean up’ the transcriptions for sentence
parsing, resulting in a 25% improvement in parse success rate by completely cleaning the texts of
disfluencies and errors. We discuss the need to adapt existing NLP technology to non-canonical
domains such as spoken learner language, while emphasising the worth of continued integration
of manual and automatic annotation.

1 Introduction

Natural language processing (NLP) tools are typically trained on written data from native speakers.
However, research into language acquisition and tools for language proficiency assessment & language
teaching – such as learner dialogue and feedback systems – would benefit from accurate processing of
spoken data from second language learners. Being able to convert the text from unparseable to parseable
form will enable us to (a) posit a target hypothesis that the learner intended to produce, and (b) provide
feedback on this target based on the information removed or repaired in achieving that parseable form.

To proceed towards this goal, we need to adapt current NLP tools to the non-canonical domain of
spoken learner language in a persistent fashion rather than use ad hoc post-processing steps to ‘correct’
the non-canonical data. Outcomes of this approach have been reported in the literature (e.g. Rimell &
Clark (2009) in the biomedical domain; Caines & Buttery (2010) for spoken language). These fully
adaptive approaches require large amounts of annotated data to be successful and, as we intend to work
along these lines in future, the discussion in this paper is pointed in that direction.

The work presented here will act as a foundation for more permanent adaptations to existing tools.
We annotate transcriptions of speech for linguistic features that are known to interfere with standard
NLP to assess whether large-scale annotation of these features will be useful for training purposes. Ob-
vious instances of this include disfluencies (e.g. filled pauses, false starts, repetition), formal errors of
morphology and syntax, as well as ‘errors’ of word and phrase selection1.

Since manual annotation is costly in terms of time and often money, one might question whether so
many feature types are strictly necessary or even helpful for the task in hand. Indeed, filled pauses
such as ‘oh’ and ‘um’ are already accounted for in the part-of-speech (POS) tagset we use (CLAWS2
(Garside, 1987)); and one might also argue that lexico-semantic errors might be dismissed a priori on
the assumption that both the original and proposed forms are of the same POS (and thus won’t affect
a parser that performs tagging before the parse). We investigate the contribution of these features to

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1The word ‘error’ appears here in quotes as it might be argued that questionable lexical selections are more a matter of
infelicity and improbability than any strict dichotomy; we put this concern aside for now as a matter for future research.

74

parsing success. From a theoretical perspective we are interested in these features with regard to second
language acquisition and therefore need to analyse them closely.

In this paper we describe our initial efforts to address the challenge of parsing learner speech with
tools trained on native speaker writing. We also present empirical results that demonstrate the utility of
annotated spoken transcription with respect to both tagging and parsing. We investigate: [i] the frequency
of disfluencies, formal errors of morpho-syntax, and idiomatic errors of lexico-semantics in a corpus of
spoken learner language; [ii] the accuracy of part-of-speech labels produced by the tagger associated
with the Robust Accurate Statistical Parsing System (RASP (Briscoe et al., 2006)) for a particular type
of disfluency (the filled pause)2; [iii] parse success rates and parse likelihoods using the RASP System
with the texts in various ‘modes’ ranging from unaltered transcription to fully edited and corrected3.

We find that in our spoken learner corpus of 2262 words, (i) around a quarter of words are annotated
as disfluencies or errors; (ii) 81% of filled pauses were correctly tagged, meaning 1 in 5 are incorrectly
tagged; (iii) mean parse likelihood for the text ‘as is’, unaltered, is –2.599 with a parse success rate of
47%, whereas completely ‘cleaned up’ text improves those scores to –1.995 and 72%4. We discuss the
implications of these results below, along with the background context for our study and a more detailed
description of our investigations.

2 Background

Previous analyses of the NLP of learner language include various experiments on the tagging and parsing
of errorful text. Geertzen et al. (2013) employed the Stanford parser on written English learner data and
achieved labelled and unlabelled attachment scores (LAS, UAS)5 of 89.6% and 92.1%. They found that
errors at the morphological level lead to incorrect POS-tagging, which in turn can result in an erroneous
parse. Others have focused only on the POS-tagging of written learner corpora – for example with
English (van Rooy and Schäfer, 2003) and French learner data (Thouësny, 2011) – demonstrating that
post-hoc corrections for the most frequent tagging errors results in significant parse error reduction.

In other investigations of standard NLP tools on learner corpora, Ott & Ziai (2010) report general
robustness using MaltParser on written German learner language; however, they found that by manually
correcting POS tags, LAS improved from 79.15% to 85.71% and UAS from 84.81% to 90.22%. Wagner
& Foster (2009) ran a series of parsing experiments using parallel errorful/corrected corpora, including
a spoken learner corpus in which the likelihood of the highest ranked tree for corrected sentences was
higher than that of uncorrected sentences in 69.6% of 500 instances. Taken together, these studies suggest
that existing NLP tools remain robust to learner data, even more so if the original texts can be corrected
and if the tagging stage is in some way verified, or adapted (e.g. Zinsmeister et al. (2014)).

On the other hand, Díaz-Negrillo et al. (2010) argue that treating learner data as a ‘noisy variant’ of
native language glosses over systematic differences between the two, and instead call for a dedicated tag-
ging format for ‘interlanguage’, one that encodes distributional, morphological and lexical information.
For instance, ‘walks’ in ‘John has walks’ would morphologically be tagged as a present tense 3rd-person
verb, but distributionally tagged as a past participle6. This is the kind of adaptation of existing tools that
we advocate, though we would add that this system should be available for not just interlanguage but all
data, allowing for non-canonical language use by native speakers as much as learners.

As for spoken language, Caines & Buttery (2010) among others suggest that adaptation can also be
made to the parser, such that it enters a ‘speech-aware mode’ in which the parser refers to additional
and/or replacement rules adapted to the particular features of spoken language. They demonstrated this
with the omission of auxiliary verbs in progressive aspect sentences (‘you talking to me?’, ’how you

2The RASP POS-tagger was evaluated on the 560 randomly selected sentences from The Wall Street Journal that constitute
the PARC dependency bank (DepBank; (King et al., 2003)) and achieved 97% accuracy (Briscoe et al., 2006).

3The RASP parser achieves a 79.7% microaveraged F1 score on grammatical relations in DepBank (Briscoe and Carroll,
2006).

4N.B. the closer the parse likelihood to zero, the more probable the parse in the English language.
5LAS indicates the proportion of tokens that are assigned both the correct head and the correct dependency label; UAS

indicates the proportion of tokens assigned the correct head, irrespective of dependency label.
6We thank reviewer #1 for this example.

75

doing?’) and achieved a 30% improvement in parsing success rate for this construction type.

3 The corpus

Our speech data consist of recordings from Business Language Testing Service (BULATS) speaking
tests7. In the test, learners are required to undertake five tasks; we exclude the tasks involving brief
question-answering (‘can you tell me your full name?’, ‘where are you from?’, etc) and elicited imitation,
leaving us with three free-form speech tasks. For this particular test the tasks were: [a] talk about some
advice from a colleague (monologue), [b] talk about a series of charts from Business Today magazine
(monologue), [c] give advice on starting a new retail business (dialogue with examiner).

In our full dataset the candidates come from India, Pakistan and Brazil, with various first languages
(L1) including Hindi, Gujarati, Malayalam, Urdu, Pashto and Portuguese, and an age range of 16 to 47
at the time of taking the test. However, in this analysis we have only sampled recordings from candidates
deemed to be at ‘B2’ upper intermediate level on the CEFR scale8, so that the proficiency level of
language used (and how that relates to NLP) is controlled for. In addition the L1s in our sample are
Gujarati, Punjabi and Urdu only. This gives us a sample corpus of 2262 tokens in ‘as-is’ format (i.e. the
true transcriptions before any corrections are made).

4 Manual annotation

The recordings were manually transcribed and annotated for various features falling into three categories
described and exemplified in the following non-exhaustive list.

• disfluencies – interruptions to the flow of otherwise fluent speech;
– <fp> filled pauses (tokens such as uh, er, um that serve to fill time and hold the turn) and <rep

n="n"> repetition (the speaker repeats a word or phrase one or several times):
“or the other way is to <fp>um</fp> <rep n="1">is to</rep> raise finance”

– <false> false starts – the speaker begins to express a word or phrase which he then corrects:
“in two thousand eight it was <false>thirty five p</false> thirty percent”

• formal errors of morpho-syntax, such as number agreement, verb inflection and word order errors;
– noun form: “for becoming a chartered <NS type="FN"><i>accountants</i><c>accountant

</c></NS>”
– missing verb: “as the charts <NS type="MV"><c>show</c></NS> its sales increased”
– word order: “<NS type="W"><i>how it would be help for you mention</i><c>mention how

it helped you</c></NS>”
• idiomatic ‘errors’ – infelicities in lexical selection, failure to express intended meaning, or less-

than-natural phrasing;
– idiomatic: “all my class <NS type="ID"><i>fellows</i><c>mates</c></NS>”
– idiomatic: “to <NS type="ID"><i>get in</i><c>make a</c></NS> profit”
– replace quantifier: “for a bank to grant us <NS type="RQ"><i>some</i><c>a</c></NS> loan”

The annotation scheme for formal and idiomatic errors comes from the project to annotate the Cambridge
Learner Corpus (Briscoe et al., 2010). The ‘error zone’ is denoted by <NS> tags, with any original
token(s) enclosed by <i> and any proposed correction enclosed by <c>. The various error types are
defined in Nicholls (2003) and the categories are similar to the ones given: either self-defining (‘ID’ for
idiom error, ‘W’ for word order, etc) or a combination of operation plus part-of-speech (‘FN’ form of
noun, ‘MV’ missing verb, ‘RQ’ replace quantifier, etc).

In Table 1 we report the number of errors and disfluencies found in our corpus along with a relative
frequency per 100 words. Just under a quarter of the thousand tokens in our corpus are affected by
disfluencies and errors, with the former being far more prevalent.

7We thank Cambridge English Language Assessment for releasing these recordings for this pilot study; for further informa-
tion on BULATS go to http://www.bulats.org/

8The ‘Common European Framework of Reference for Languages’: a schema for grading an individual learner’s language
level. For further information go to http://www.coe.int/lang-CEFR

76

All transcription and annotation has been carried out by a single annotator (the first author). It would
be interesting to obtain measures of inter-annotator agreement to assess the extent to which the nature of
error judgement (particularly in judgements as to idiomaticity) is subjective.

type instances in corpus relative frequency (per 100 words)
disfluency 316 14
formal error 143 6
idiomatic error 70 3
total 529 23

Table 1: Error counts in our corpus

5 Automated annotation: part-of-speech tagging

Since filled pauses such as ‘er’ and ‘um’ are included in the CLAWS2 tagset used by the RASP System
as UH, ‘interjection’, one might question the worth of manually annotating filled pauses (FPs). Of the
disfluency set, it might be one small time-saving to leave these to the tagger. However, ‘interjection’ is
not a homogeneous set, as UH also covers exclamations of surprise (‘oh’) and assent (‘yes’). Moreover,
we find that the POS-tagging of tokens annotated as FPs is not entirely appropriate in this non-canonical
domain. Table 2 shows that the majority of FPs are correctly tagged UH, though others are tagged as
nouns (NN), verbs (VV), adjectives (JJ), adverbs (RR) and foreign words (&FW)9.

Token UH &FW JJ NN RR VV total
er 104 0 0 0 0 0 104
mm 0 0 0 8 0 0 8
uh 0 0 0 1 2 4 7
um 2 5 0 0 0 0 7
nuh 0 0 0 0 2 1 3
buh 0 0 0 1 0 1 2
other 2 0 1 0 0 0 3
total 108 5 1 10 6 9 134

Table 2: POS tagging of filled pauses

One possible solution is to append a dictionary of known FP tokens to the tagger, and specify that
they should be tagged UH, or even better, a new tag such as FP. But as the Table demonstrates, there
are standard, highly frequent FPs such as ‘er’, ‘uh’ and ‘um’, and then there are novel forms such as
‘nuh’, ‘buh’ and ‘nna’ which we found to be rather idiosyncratic – i.e. there might be novel FPs for every
individual. Moreover, the introduction of a closed class depends on consistent transcription practice, not
necessarily a given with even a lone annotator, let alone more than one.

Automatic identification and repair of disfluencies is a well-developed research topic, with continuing
refinements to joint parsing and disfluency detection models (e.g. Qian & Liu (2013), Rasooli & Tetreault
(2014), Honnibal & Johnson (2014)), plus applied work in the domains of automatic speech recognition
(Fitzgerald et al., 2009) and machine translation (Cho et al., 2014). We note the linguistic rules included
in the Lease, Johnson & Charniak (2006) tree adjoining grammar (TAG) noisy-channel model – lexical,
POS and syntactic rules that reduce errors in the TAG model. This is another case of improvements to
NLP tools thanks to data-driven linguistic insight, and a design that we could incorporate into our work
on automated assessment and feedback.

9The ‘other’ filled pauses are singleton forms: eh, nna, ah.

77

6 Automated annotation: sentence parsing

In this section we report the results of our parsing experiment in which transcribed learner utterances
were processed by the RASP system in four different forms:

(A) as-is: without alteration;

(B) less-disfluency: with disfluencies removed;

(C) less-form-error: with morpho-syntactic errors corrected;

(D) less-lex-error: with semantic/idiomatic improvements.

We investigated the effect on the parsing output of each transcription format compared to the (A) format
as a baseline. We processed each format in turn singularly, as well as cumulative combinations of (B),
(C) and (D) in every possible order. The results are set out in Table 3, with mean likelihoods of the
highest ranked parse for each sentence (µ)10, differences between this mean and the baseline where
applicable (∆base), and success rates in terms of non-fragmentary tree outputs (i.e. parses labelled other
than ‘T/frag’ in the RASP System).

mode µ ∆base ¬T/frag mode µ ∆base ¬T/frag mode µ ∆base ¬T/frag

(A) –2.599 0 .471 (A) –2.599 0 .471 (A) –2.599 0 .471

(B) –2.094 +.505 .623 (BC) –2.032 +.567 .689 (BCD) –1.995 +.604 .715

(C) –2.574 +.025 .484 (BD) –2.049 +.550 .649 - - -

(D) –2.563 +.036 .503 (CD) –2.545 +.054 .523 - - -

Table 3: Mean parse likelihoods, deltas to baseline and parse success rates in all transcription modes

As can be seen in Table 3, the removal of disfluencies (B) is the single move of greatest benefit to
parse likelihood scores and parse tree success rates compared to the ‘as-is’ baseline (A). The correction
of morpho-syntactic (C) and idiomatic errors (D) have a lesser effect. All pairings have a positive effect
on parse likelihoods, especially those featuring disfluency removal (B); and the three ‘corrective’ steps
combined (BCD) have the greatest effect of all.

However, we show by analysis of two candidates in our corpus that these effects can differ on an
individual basis. In Figure 1, the candidate on the left has a less pronounced effect of disfluency removal
(B) compared to the baseline (A) than the candidate on the right. The effect of both formal (C) and
idiomatic (D) error correction are also seen to make improvements over (A), which is not the case for
the second candidate. Such observations serve as a reminder that when generalising about overall corpus
patterns we collapse over so many individual language models. It may well turn out that disfluencies are
an especially idiosyncratic type of language use, an avenue we will explore in future work.

7 Discussion

In this paper we have investigated NLP of transcribed learner speech, questioning how tools trained on
native speaker written data would handle such data. We found that the majority (81%) of filled pauses
were correctly tagged ‘UH’, though this only covers three of eleven FP forms (er, um, eh). We propose a
dictionary of FPs and a specific FP POS-tag, while suggesting that the dictionary will not catch all novel
FPs (since they seem to be idiosyncratic) and that we can turn to state-of-the-art research on automated
disfluency detection to help us.

We also showed that sentence parsing could be improved from a 47% ‘success’ rate (i.e. non-
fragmentary (T/frag in RASP parlance) parse trees) in the ‘as-is’ transcriptions, to 72% in transcrip-
tions with disfluencies removed and errors corrected (see Table 3). We found that disfluency removal
is the main contributor to this improvement, though this was found to be somewhat idiosyncratic (as in
Figure 1).

10Note that parse likelihoods have been normalised for word length, as they increase in a near-linear manner according to the
number of terminal nodes in a tree.

78

● ● ●

●

●●

●

●●

●
●

●●

●

●●

●

S2BWWT9EVS S3R66XVRQ2

−6

−4

−2

0

A B C D BC BD CD ABC A B C D BC BD CD ABC

transcription mode

pa
rs

e
lik

el
ih

oo
d

(n
or

m
al

is
ed

 fo
r

w
or

d
le

ng
th

)

Figure 1: Parse likelihoods for each transcription mode, for two individuals in our corpus; the whiskers
indicate the largest and smallest observation within 1.5∗IQR (inter-quartile range; the distance between
first and third quartiles), while the upper hinge indicates the third quartile (75th percentile), the middle
is the median, the lower hinge is the first quartile (25th percentile), and the points are outliers.

The motivation for this work is to investigate what is required to convert texts from unparseable to
parseable form. The steps taken to achieve this can be used to inform automated learner dialogue or
feedback systems. We note that automated assessment may be improved by parse trees but may well
be performed without them: it can proceed on the basis of superficial detection of features known to
correlate with high grades (possibly including certain disfluency types, for instance). But to be able to
diagnose how the learner can improve, we need a deeper structural analysis of the text – i.e. requiring
that the text is in parseable form. Our manual annotations are one step towards this goal.

Our annotations also indicate that spoken learner data features many disfluencies and errors, with over
a quarter of the 2262-word testset affected in some way. Automatic error detection (and correction) is
a burgeoning field (see for example the work on learner data by Briscoe et al. (2010), Andersen (2011)
and Kochmar & Briscoe (2014), as well as the most recent shared task on grammatical error correction
at CoNLL-2014 (Ng et al., 2014)). Such studies are based on written language. We envisage adding
speech-specific information and adaptations to such systems on the basis of our fuller annotation project.

Indeed, it so happens that the problem of NLP in the spoken domain is one we address here with
learner data. However, we do not assume that the problem of adapting or building NLP tools for spoken
data is substantially different for native speaker data. We intend to collect recordings of native speakers
undertaking the same tasks as the BULATS candidates, allowing for comparative studies of errors and
disfluencies in native and learner data, with the task and topic variables held constant as far as possible.

Finally, we emphasise that we intend to add to the corpus with more annotated data from a wider
range of L1s and a wider range of proficiency levels. We can then investigate the possible effects of more
varied syntactic complexity, lexical diversity and error types.

79

Acknowledgments

We thank Cambridge English Language Assessment for funding this work and providing the data. We
also thank Ted Briscoe, Mike McCarthy and Øistein Andersen for their support and advice, and we are
grateful to the three anonymous reviewers for their helpful comments and suggestions.

References
Øistein E. Andersen. 2011. Semi-automatic ESOL error annotation. English Profile Journal, 2:e1.

Ted Briscoe and John Carroll. 2006. Evaluating the accuracy of an unlexicalized statistical parser on the PARC
DepBank. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions. Association for Com-
putational Linguistics.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006. The second release of the RASP System. In Proceedings
of the COLING/ACL 2006 Interactive Presentations Session. Association for Computational Linguistics.

Ted Briscoe, Ben Medlock, and Øistein E. Andersen. 2010. Automated assessment of ESOL free text examina-
tions. University of Cambridge Computer Laboratory Technical Reports, 790.

Andrew Caines and Paula J. Buttery. 2010. ‘You talking to me?’ A predictive model for zero auxiliary construc-
tions. In Proceedings of the Workshop on Natural Language Processing and Linguistics, Finding the Common
Ground, Annual Meeting of the Association for Computational Linguistics (ACL) 2010. Association for Com-
putational Linguistics.

Eunah Cho, Jan Niehues, and Alex Waibel. 2014. Tight integration of speech disfluency removal into SMT. In
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics
(EACL 2014). Association for Computational Linguistics.

Ana Díaz-Negrillo, Detmar Meurers, Salvador Valera, and Holger Wunsch. 2010. Towards interlanguage POS
annotation for effective learner corpora in SLA and FLT. Language Forum, 36:139–154.

Alison Edwards. 2014. The progressive aspect in the Netherlands and the ESL/EFL continuum. World Englishes,
33:173–194.

Erin Fitzgerald, Keith Hall, and Frederick Jelinek. 2009. Reconstructing false start errors in spontaneous speech
text. In Proceedings of the 12th Conference of the European Chapter of the Association for Computational
Linguistics (EACL 2009). Association for Computational Linguistics.

Roger Garside. 1987. The CLAWS word-tagging system. In Roger Garside, Geoffrey Leech, and Geoffrey
Sampson, editors, The Computational Analysis of English: A Corpus-based Approach. London: Longman.

Jeroen Geertzen, Theodora Alexopoulou, and Anna Korhonen. 2013. Automatic linguistic annotation of large
scale L2 databases: the EF-Cambridge Open Language Database (EFCAMDAT). In Proceedings of the 31st
Second Language Research Forum. Somerville, MA: Cascadilla Proceedings Project.

Matthew Honnibal and Mark Johnson. 2014. Joint incremental disfluency detection and dependency parsing.
Transactions of the Association for Computational Linguistics, 2:131–142.

Tracy H. King, Richard Crouch, Stefan Riezler, Mary Dalrymple, and Ronald M. Kaplan. 2003. The PARC700
Dependency Bank. In Proceedings of the 4th International Workshop on Linguistically Interpreted Corpora
(LINC 2003).

Ekaterina Kochmar and Ted Briscoe. 2014. Detecting learner errors in the choice of content words using com-
positional distributional semantics. In Proceedings of the 25th International Conference on Computational
Linguistics (COLING 2014). Association for Computational Linguistics.

Matthew Lease, Mark Johnson, and Eugene Charniak. 2006. Recognizing disfluencies in conversational speech.
IEEE Transactions on Audio, Speech, and Language Processing, 14:1566–1573.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto, and Christopher
Bryant. 2014. The CoNLL-2014 Shared Task on Grammatical Error Correction. In Eighteenth Conference
on Computational Natural Language Learning, Proceedings of the Shared Task. Association for Computational
Linguistics.

80

Diane Nicholls. 2003. The Cambridge Learner Corpus: error coding and analysis for lexicography and ELT. In
Dawn Archer, Paul Rayson, Andrew Wilson, and Tony McEnery, editors, Proceedings of the Corpus Linguistics
2003 conference; UCREL technical paper number 16. Lancaster University.

Niels Ott and Ramon Ziai. 2010. Evaluating dependency parsing performance on German learner language. In
Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories (NEALT 2010).

Xian Qian and Yang Liu. 2013. Disfluency detection using multi-step stacked learning. In Proceedings of the
2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT).

Mohammad Sadegh Rasooli and Joel Tetreault. 2014. Non-monotonic parsing of Fluent umm I Mean disfluent
sentences. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational
Linguistics (EACL 2014). Association for Computational Linguistics.

Laura Rimell and Stephen Clark. 2009. Porting a lexicalized-grammar parser to the biomedical domain. Journal
of Biomedical Informatics, 42:852–865.

Sylvie Thouësny. 2011. Increasing the reliability of a part-of-speech tagging tool for use with learner language. In
Proceedings of the Pre-conference Workshop on Automatic Analysis of Learner Language, CALICO Conference
2009.

Bertus van Rooy and Lande Schäfer. 2003. An evaluation of three POS taggers for the tagging of the Tswana
Learner English Corpus. In Proceedings of the Corpus Linguistics 2003 Conference. Lancaster University.

Joachim Wagner and Jennifer Foster. 2009. The effect of correcting grammatical errors on parse probabilities. In
Proceedings of the 11th International Conference on Parsing Technologies.

Heike Zinsmeister, Ulrich Heid, and Kathrin Beck. 2014. Adapting a part-of-speech tagset to non-standard text:
the case of STTS. In Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC 2014). European Language Resources Association.

81

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 82–89 Dublin, Ireland, August 23-29 2014.

Initial Explorations in Two-phase Turkish Dependency Parsing by
Incorporating Constituents

İlknur Durgar El-Kahlout Ahmet Afşın Akın

TÜBİTAK-B İLGEM
Gebze, KOCAEL̇I

{ilknur.durgar,akin.ahmet,yilmaz.ertugrul}@tubitak.gov.tr

Ertu ǧrul Yılmaz

Abstract

This paper describes a two-phase Turkish dependency parsing whichseparates dependency and
labeling into two similar to (McDonald et al., 2006b). First, in order to solve the long distance de-
pendency attachment problem, the sentences are split into constituents and the dependencies are
estimated on shorter sentences. Later, for better estimation of labels, Conditional Random Fields
(CRFs) are used with previously learned chunk and several dependency and morphosyntactic
features. Finally, a post-processing step is applied to “correct” some of labels, if necessary.

1 Introduction

Dependency parsing, a well-studied problem in natural language processing, is the task of forming a
dependency tree by attaching each word of a sentence (dependent) to another word in the same sentence
(head) with a label that describes the dependency relation between thesewords. In the last decade, the
data-driven dependency parsing approaches (Nivre et al., 2007;McDonald et al., 2006a) have received a
considerable attention as it learns solely from labeled data and can be rapidly adapted to new languages
and domains.

The accuracy of a dependency parser is negatively affected by two factors, among possibly others.
First, a parser’s accuracy is sensitive to sentence length (McDonald and Nivre, 2007). As the parsers
tend to assign dependencies in relatively short distances (Nivre et al., 2006), long sentences are not
easy to parse correctly. Second, wrong labels that are assigned to correct dependencies result in labeled
accuracy drop.

In data-driven dependency parsing approaches (Nivre et al., 2007; McDonald et al., 2006a), the de-
pendencies and labels are often learned at the same time. To our best knowledge, the work by McDonald
et al. (2006b) is unique in that it learns the dependencies and labels in two separate stages. In this paper,
we present a two-phase data-driven dependency parsing of Turkish that addresses the above-mentioned
problems in consecutive steps.

In order to solve the long distance dependency attachment problem, we first split sentences into their
constituents. For each constituent, we construct a sub-sentence by appending the verb group of the
original sentence to the end of the constituent. We then parse all these short sentences by the MaltParser
(Nivre et al., 2007) which is trained with Turkish specific parameters (Eryiǧit et al., 2008). Finally, we
combine the generated sentences to form the original sentence with full dependencies.

For the labeling problem, we use a CRF-based (Lafferty et al., 2001) approach with the use of chunk
information and parser output for identifying dependencies. On top of our CRF-based labeling approach,
we also apply a post-processing step to correct dependency labels if necessary. Our methodology im-
proves the state-of-the-art Turkish dependency parsing (Eryiǧit et al., 2008) with a1.7% increase in the
labeled attachment score (ASL) and0.4% increase in the unlabeled attachment score (ASU).

There are several related research on incorporating different features during the parsing such as chunk
(Attardi and Dell’Orletta, 2008) and causal (Gadde et al., 2010) and morphosyntactic features (Ambati
et al., 2010). Our works differs from several aspects; first, insteadof using the chunk information as a

This work is licensed under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings
footer are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

82

Short Mid Long
Gold 3188 506 815

MaltParser 3268/2881 498/298 743/537

Table 1: The Dependency Distance Statistics of the Validation Set.

feature in the parsing, we used the chunk information as a preprocessingstep to split the sentences into
“shorter” ones and in the second step of parsing while estimating the labels. Second, as an addition to the
word’s morphosyntactic features, we employed the morphosyntactic features of the head word for each
token again in label estimation step.

2 Turkish Dependency Parsing

Turkish, a member of the Turkic languages, is an agglutinative language withvery productive inflectional
and derivational morphology. From the dependency point of view, Turkish is generally a head-final
language. The dependency relation arcs are formed from left to right and do not cross each other except
in some rare cases (Oflazer et al., 2003). The first investigations on a Turkish dependency parser was
done by Oflazer (Oflazer, 2003). Following this grammar-based work, Turkish dependency parsing was
investigated by Eryǐgit et al. (Eryǐgit et al., 2008) where the impact of morphological units on different
types of parsers was explored. This study showed that the correct dependency representation of a Turkish
sentence should use root words and inflectional groups (IGs)1 instead of the whole words themselves.
The best performing Turkish dependency parsing is obtained via the data-driven MaltParser (Nivre et al.,
2007) by using Turkish-specific features.

For training the parser, we used the Turkish dependency treebank (Oflazer et al., 2003) that is also
used in CoNLL-X (Buchholz and Marsi, 2006)2. The treebank corpus contains several features including
word, lemma, POS, coarse POS3, and IGs that reflect the morphological structure of Turkish.

Recently, Turkish dependency parsing was improved with the use of multiword expressions (Eryiǧit
et al., 2011) and the effects of automatic morphological analyzer and disambiguation were explored
(Eryiǧit, 2012).

To show that the transition-based dependency parsers are in favor ofidentifying dependencies in short
distances, we examined the dependency attachments of the MaltParser with respect to distance on the
ITU validation set (Eryǐgit, 2007)4. We classified the dependency attachments into three categories with
respect to the number of words that occur between the attached words: i)Short, dependency attachments
at a distance of 1 or 2 words, ii)Mid, dependency attachments at a distance between 3 and 6 words, and
iii) Long, dependency attachments at a distance of 6 or more words. Table 2 showsthe comparison of the
distances in the gold data and in the attachments identified by the dependency parser for the validation
set (all/correct attachments). As can be seen from the results, the Turkish dependency parser assigns
66% of the “correct” long distance attachments and58% of the mid distance attachments that appear in
the gold data.

3 Incorporating Constituents as a Preprocessing Step

A constituent is a group of words that behave as a single unit from the structural and meaning views. Con-
stituents can be ommitted in the sentence without influencing the sentence gramaticality. Constituents
are the word groups that we can be found by asking the questions “who/what”, “when”, “where”, etc.
to the verb constituent. Most frequent Turkish constituents can be listed asSubject, Sentence (Verb),
Object, and Adjunct. The main constituent of a sentence is its verb and other constituents can form a

1To represent the morphology, words are separated at the derivational boundaries. The inflectional morphemes with deriva-
tion (or the root word for the first IG) are called as inflectional groups.

2Shared Task on Multilingual Dependency Parsing
3The Turkish morphological analyzer gives a two-layered POS information such asNoun+ProperandNum+Ordinal. The

coarse POS is the first part of this POS information. In the absence of thesecond layer, the POS is the coarse POS.
4This set was used as the test set in this work.

83

Öteleme işleminde kuyrukta bekleyen eleman yığına itilir .
(during the shifting process) (the element in the queue) (onto the stack) (is pushed) (.)

WHEN? WHERE?WHAT?

1. Öteleme işleminde itilir .

2. kuyrukta bekleyen eleman itilir .

3. yığına itilir .

VERB

(pushed during the shifting process .)

(the element in the queue is pushed .)

(pushed onto the stack .)

(a) Constituent Chunking

(b) Generating Short Sentences

Figure 1: Constituent Chunking and Generation of Shorter Sentences.

sentence with the presence of the verb. Every word in a constituent is dependent to a word within the
constituent except the head word of the constituent. Head word of the constituent is dependent to the
verb. Any constituent becomes an ungrammatical and meaningless structureif its head word is removed.

Figure 1 illustrates the chunking process for the sentenceÖteleme1 işleminde2 kuyrukta3 bekleyen4
eleman5 yıǧına6 itilir 7 (The element5 in3 the3 queue3 is7 pushed7 onto6 the6 stack6 during2 the1
shifting1 process2). This sentence contains four constituents sequentially, Locative.Adjunct, Subject,
Dative.Adjunct and finally (Sentence/Verb). One can observe by dropping the head wordişleminde in
the Locative.Adjunct constituent, contituent looses its meaning completely. Each of these constituents
(except the verb) are “phrases” alone and can form a sentence onlywith the verb chunk. After drop-
ping any constituent (again except the verb), for example the Subject, thesentence is still a grammatical
Turkish sentence as̈Oteleme işleminde yıǧına itilir. (is pushed onto the stack during the shifting process.)

In our work, we used the Turkish dependency treebank and ITU validation test set which is enriched
with the chunk information (Durgar El-Kahlout and Akın, 2013). The chunker is reported to work with
an F-measure 91.95 for verb chunks and 87.50 for the other chunks. In that work, only verb chunks
are labeled separately and the other chunks are labeled with the same type such as[CHUNK Öteleme
işleminde] [CHUNK kuyrukta bekleyen eleman] [CHUNK yıǧına] [VERB itilir] .

3.1 Procedure

Before the parsing process, we split each sentence of the test set into their constituents. The idea be-
hind splitting sentences was to create synthetically shorter sentences in order to make the dependency
parsing task easier by “shortening” long distance dependencies. For each constituent, we generated a
sub-sentence by appending the verb to the end of the constituent. As a result, we generatedn − 1 new
sentences from a sentence withn constituents. Part (b) of Figure 1 illustrates the generation of shorter
sentences from the chunked sentence shown in part (a) of the same figure. Each of these shorter sen-
tences are grammatical for Turkish. The shorter sentences contains onlythe dependencies within the
constituent and the dependencies of the constituent to the verb constituent.

After splitting the original sentence into a number of shorter sentences, each of these sentences are
parsed by the MaltParser in order to obtain the dependencies. Finally, these parsed sentences were
combined into a whole in such a way that the original sentence was generatedback with identified
dependency relations.

Splitting complex sentences with more than one verb group was not trivial. We classified these sen-
tences into two groups; complex sentences with two verb groups and complexsentences with more than
two verb groups. For the first case, the last verb group was considered as the dominating one and the
sentence was splitted according to this verb group. In this work, we didn’tsplit sentences that belong to
the second group and kept them as whole sentences in our experiments.

Figure 2 illustrates a sample Turkish sentence, its dependency parse generated by the MaltParser (part
(a)), and the gold parse (part (b)) of the sentence. As can be seen from this example, the parser mistakenly
attaches the word“işleminde” to the word“bekleyen” (shown with a dotted link in part (a)). The figure
also shows the parses of the shorter sentences generated from this sentence (part (c)). The generation
of the original sentence from the parses of shorter sentences (part (d)) are also given in the figure. It
is noteworthy to mention that splitting the original sentence and parsing shortersentences individually
enables the parser to find the correct attachment of the word“işleminde” to the verb“itilir” (as is in the

84

Ötele +me bekle +yenişleminde kuyrukta eleman yığına it +ilir .
DERIV CLASSIFIER

LOC.ADJ
LOC.ADJ

DAT.ADJ

SUBJECT

DERIV

SENT

DERIV MODIFIER

Ötele +me bekle +yenişleminde kuyrukta eleman yığına it +ilir .
DERIV CLASSIFIER LOC.ADJ

DAT.ADJ

SUBJECT

DERIV

SENT

DERIV MODIFIER

LOC.ADJ

it +ilir .
DERIV

SENT

Ötele +me işleminde
DERIV CLASSIFIER

bekle +yenkuyrukta eleman it +ilir .
LOC.ADJ

SUBJECT
DERIV

SENT

DERIV MODIFIER

LOC.ADJ

yığına it +ilir .

DAT.ADJ
DERIV

SENT

(a) MaltParser output

(b) Gold Parse

(c) Parses of "Short" Sentences

SUBJECT

Ötele +me bekle +yenişleminde kuyrukta eleman yığına it +ilir .
DERIV CLASSIFIER LOC.ADJ

DAT.ADJ
DERIV

SENT

DERIV MODIFIER

LOC.ADJ

(d) Generation of the Original Sentence

Figure 2: An Example of the Dependency Parsing by Chunks.

Distance Original Sents. Gold Chunks Our Approach
prec. recall prec. recall prec. recall

1 90.47 94.06 89.58 95.45 89.91 95.36

2 75.29 76.48 75.10 79.10 74.32 80.08

3− 6 70.72 70.43 73.61 73.16 71.75 70.30

> 6 79.48 60.86 92.91 60.88 88.43 58.32

Table 2: Precision and Recall Scores Relative to the Head Distance.

gold output part (b)).

3.2 Results

For our evaluations, we used the evaluation tool distributed with the MaltParser. The performance of
a dependency parser is mainly evaluated with three scores; the labeled attachment score (ASL); the
unlabeled attachment score (ASU) and the label accuracy score (LA). We conducted experiments both
on the chunked sentences using Turkish constituent chunker (DurgarEl-Kahlout and Akın, 2013) and
gold chunks as described in Section 3.1.

Table 2 compares the precision and recall scores of the MaltParser output with original sentences
and our approach relative to the dependency attachment distance. The results showed that dependency
parsing with the use of constituent chunks increased the recall for all distance lengths (i.e., up to6 points)
and improved the precision approximately3 points for dependency distances between3 and6 words and
more than13 points for dependency distances more than6 words.

To see the effects of sentence lengths on parsing performance, we splitsentences relative to their
lengths (i.e., 1-8, 9-15, 16-30, and>30) and reported the scores with respect to different length groups.
Table 3 shows the parser performance depending on sentence lengths.The results showed thatASU

was improved up to 1.5 points for all sentence lengths. For shorter sentences, theASL was relatively
worse than the parses of original sentences but for longer sentencesthe performance was better with the
gold chunks. For the chunker output, performance slightly better for sentences with16 to 30 words for
the chunker chunks. It is particularly noteworthy to mention that the labeling (the label accuracy result)
was worse than the parses of original sentences for all sentence lengths. Our approach in a second step

85

of # of Original Sents. Gold Chunks Our Approach
Tokens Sentences ASL ASU LA ASL ASU LA ASL ASU LA

1− 8 57 79.85 88.81 83.96 79.10 90.30 82.46 79.48 90.30 82.09

9− 15 130 76.48 83.18 86.31 75.76 84.62 84.62 74.96 83.29 84.35

16− 30 99 67.48 76.55 80.76 68.20 77.17 80.55 67.84 76.63 81.26

> 30 14 68.73 76.98 82.82 69.07 78.69 82.13 66.67 76.98 80.76

all 300 71.95 79.90 83.28 72.05 81.23 82.37 71.40 80.23 82.44

Table 3: Evaluation Relative to the Sentence Lengths.

improved the label accuracy as described in Section 4.

4 Relabeling the parser output

In the parses of original sentences5, we observed that the intersection of the correct dependencies (2461)
and the correct labels (2565) is only 2216 out of 30806 attachments. This shows us that approximately
10% of the correct dependencies are missed because of the wrong labels; this causes an accuracy drop in
theASL score.

Assigning dependency labels can be approximated as a sequential labelingtask for Turkish with the
projectivity assumption, where the dependency tags are associated with every token in a sequence of
tokens (Ramshaw and Marcus, 1995). Adding features of the head word’s (that is learnt in the previous
step) can be included to each token to create syntetically sequential data.

To assign the labels, we used CRFs (Lafferty et al., 2001) which became the state-of-the-art framework
for several labeling tasks such as text segmentation, named entity recognition, part of speech tagging, and
shallow parsing. They are shown to outperform the probabilistic models such as HMMs (Church, 1988;
Freitag and McCallum, 2000) and MEMMs (McCallum et al., 2000) in severalsequential assignment
tasks.

4.1 Features

To model the label attachment problem with CRFs, we used four types of features; i)baseline features:
the set of features that exists in the Turkish dependency treebank, ii)morphological features:the features
that are split from the IG information, iii)dependency features:features that are extracted from the first
phase of the dependency parsing, and iv)chunk features:the features from the chunk annotation. The
full set of features that are used in the dependency labeling task are asfollows:

• Baseline Features: Word, Lemma, Themain POS of the word (CPOS), The second layer of
the POS information of the word (POS), The combined inflectional morpheme information of the
word’s last inflectional group (IG)7.

• Morphological Features: The case of the word when its POS is Noun or Pronoun (CASE). The
feature can take the valuesAcc, Dat, Nom, Loc, or Abl8.

• Dependency Features:The word’s distance to its head (DIST); If the word is attached to a head
within a distance of one or two words then the distance isshort, otherwise it islong, Head word
CPOS (HCPOS), lemma of the word’s head (HLEM).

• Chunk Features: Chunk type (ChnkTYPE), Chunk type isVerb for the sentence/verb chunks and
Regularfor the rest of the chunks. The chunk type isUndefinedif the token is not assigned to any
chunk.

5The situation is more or less same in the output of our approach.
6This excludes the derivation and punctuation tokens.
7To represent the morphology, words are separated at the derivational boundaries. The inflectional morphemes with deriva-

tion (or the root word for the first IG) are called as inflectional groups.
8The Case information also exists in the IG feature but combined with the Person and Number information

86

WORD LEM POS CPOS IG DIST CASE HCPOS HLEM ChnkTYPE
Burada bura Noun Noun A3sg|Pnon|Loc long Loc Verb var REGULAR

çiçeklerin çiçek Noun Noun A3pl|Pnon|Gen short Gen Verb sat REGULAR
sat Verb Verb short Verb sat REGULAR

Verb Verb Pass|Pos short APastPart sat REGULAR
satıldı̌gı Adj APastPart P3sg long Noun alan REGULAR

geniş geniş Adj Adj short Noun alan REGULAR
bir bir Det Det short Noun alan REGULAR

alan alan Noun Noun A3sg|Pnon|Nom short Nom Verb var REGULAR
vardı var Verb Verb Pos|Past|A3sg short Punc . VERBGROUP

. . Punc Punc long EMPTY EMPTY UNDEFINED

Table 4: An Example of a Sentence with Labeling Features.

To the train the CRF relabeling, the gold labels (morphology, dependencies,etc.) are used for each
type of features. Table 4 shows the complete set of features used for theTurkish sentence “Burada
çiçeklerin satıldı̌gı geniş bir alan vardı” (There used to be a huge area here where the flowers were sold).

4.2 Post-processing

To better estimate the labels, we should figure out the type of labeling errors that the dependency parser
produces. In order to designate such kind of errors, we parsed50 sentences from a Turkish corpus
(different from the test set). After a manual inspection, we observed that from several others, some of the
“DATIVE.ADJUNCT”s are labeled as “OBJECT”. This error can be easily corrected by just controlling
theCasefeature of the token. In Turkish, specific adjuncts ends with specific case suffixes. For example,
all dative adjuncts have theCase“Dat”. Both MaltParser and our labeling procedure fails to assign
the correct label for this case. So, after the relabeling procedure, wereplaced every token with the label
“OBJECT” and theCasefeature “Dat” to “DATIVE.ADJUNCT”. This manual post-processing corrected
41 (out of56) of the problematic cases on the test set.

4.3 Results

We used the CRF++9 tool, to train and test the Turkish dependency labeling. The window size of the
sentence was 5 taking the preceding two words and following two words. For training, we used all
Turkish dependency treebank data. As the test data, we used the outputproduced in the first phase of
parsing. Table 5 compares the performance of the labeling according to theASL andLA scores for
original sentences, attachments obtained by the gold chunks and chunkerchunks in the previous step. As
a result, we obtained sameASL without the post-processing step score and0.26 points inASL after the
post-processing step with betterLA scores over the MaltParser output of the original sentences with the
chunker output. The performance is much better with the gold chunked assignments. Our experiments
showed that using a CRF-based labeling enhanced with extra features increased the label accuracy and
outperformed the Turkish dependency parser with respect toASL.

5 Results and Main Findings

Dependency parsers have problems in assigning long distance dependencies. They tend to assign depen-
dencies relatively in short distances. In order to solve this problem, we offered a new chunking-based
parsing methodology. Our methodology first chunks sentences into constituents. For each constituent,
one grammatically correct sentence is generated with some meaning loss by attaching the verb chunk
and parsed with MaltParser. First chunking a sentence and then using thedependency parser outper-
forms the state-of-the-art results. However, the results with respect to theASL is not satisfying due to
wrong labeling. Thus, in a second phase, our approach treats labeling as a sequential attachment prob-
lem. CRF-based models are used with enhanced features extracted from morphological structure, chunks
and dependency attachments.

In our experiments,52 sentences out of300 sentences were not split as either they have only one
chunk or more than two verb chunks. We generated approximately2.69 short sentences from each of

9CRF++: Yet Another CRF toolkit.
87

Method ASL LA

Original Sents. 71.95 83.28
+POST 72.95 84.51

Chunks - Gold
Shortened Sents. 72.05 82.37
+POST 73.28 83.67
CRF Feat.s 72.63 83.21
+POST 73.86 84.51

Chunks - Chunker
Shortened Sents. 71.40 82.44
+POST 72.56 83.73
CRF Feat.s 71.95 83.51
+POST 73.21 84.81

Table 5: CRF-based Labeling and Post-processing Results.

the remaining sentence. The performance with respect toASL was improved from71.95 to 73.21 (an
improvement of1.7%) and with respect toASU from 79.90 to 80.23 (an improvement of0.4%) over
parses of original sentences.

6 Conclusions and Future Work

In this paper, we presented a two-phase Turkish dependency parsingapproach where the dependencies
are identified in the first phase and the labels are identified in the second phase. We improved dependency
attachments by chunking sentences into their constituents, generating shorter sentences from these con-
stituents, finding dependencies in these shorter sentence, and finally generating the original sentence back
from these dependency parses. For the labeling task, we used a CRF-based approach enriched with extra
features from the morphological information, dependencies and chunking. Moreover, we performed a
rule-based post-processing to correct some dependency labels, if necessary.

Future work includes splitting the dependency treebank into constituents alsoand train the parser with
shorter sentences similar to the test data. Because the lack of different test sets for Turkish, we will
also make 10-fold cross validation with the training data. Moreover, we are planning to replicate the
experiments with different state-of-the-art parsers such as Bohnet parser (Bohnet and Nivre, 2012).

References

Bharat Ram Ambati, Samar Husain, Sambhav Jain, Dipti Misra Sharma, and Rajeev Sangal. 2010. Two methods
to incorporate local morphosyntactic features in hindi dependency parsing. InProceedings of the First Workshop
on Statistical Parsing of Morphologically Rich Languages in NAACL-HLT’10, pages 22–30.

Gluseppe Attardi and Felice Dell’Orletta. 2008. Chunking and dependency parsing. InProceedings of LREC
Workshop on Partial Parsing: Between Chunking and Deep Parsing.

Bernd Bohnet and Joakim Nivre. 2012. A transition-based system for joint part-of-speech and labeled non-
projective dependency parsing. InProoceedings of the EMNLP-CoNLL, pages 1455–1465.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x shared task on multilingual dependency parsing. InProceedings
of the 10th Conference on Computational Natural Language Learning (CoNLL), pages 149–164, New York, NY.

Kenneth Church. 1988. A stochastic parts program and noun phrase parser for unrestricted texts. InProceedings
of the Second Conference on Applied Natural Language Processing, pages 136–143, Austin, Texas.

İlknur Durgar El-Kahlout and Ahmet Afşın Akın. 2013. Turkish constituent chunking with morphological and
contextual features. InProoceedings of the Computatioanl Linguistics and Intelligent Text Processing (CI-
CLING), pages 270–281.

88

Gülşen Eryǐgit, Joakim Nivre, and Kemal Oflazer. 2008. Dependency parsing of turkish.Computational Linguis-
tics, 34:357–389.

Gülşen Eryǐgit, Tugayİlbay, and Ozan Arkan Can. 2011. Multiword expressions in statistical dependency parsing.
In Proceedings of the 2nd Workshop on Statistical Parsing of Morphologically-Rich Langauges (SPMRL), pages
45–55, Dublin, Ireland.

Gülşen Eryǐgit. 2007. Itu validation set for metu-sabancı turkish treebank.

Gülşen Eryǐgit. 2012. The impact of automatic morphological analysis and disambiguation on dependency parsing
of turkish. InProceedings of the LREC, pages 1960–1965,İstanbul, Turkey.

Dayne Freitag and Andrew McCallum. 2000. Information extraction with hmm structures learned by stochastic
optimization. InProceedings of 17th National Conference on Artificial Intelligence (AAAI), pages 584–589,
Austin,Texas.

Phani Gadde, Karan Jindal, Samar Husain, Sambhav Jain, Dipti Misra Sharma, and Rajeev Sangal. 2010. Im-
proving data driven dependency parsing using clausal information. InProceedings of the Human Language
Technology Conference of the NAACL, pages 657–660.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. InProceedings of the 18th International Conference on Machine
Learning (ICML), pages 282–289, Williamstown, MA.

Andrew McCallum, Dayne Freitag, and Fernanda Pereira. 2000. Maximum entropy markov models for informa-
tion extraction and segmentation. InProceedings of International Conference on Machine Learning (ICML),
pages 591–598, California, CA.

Ryan McDonald and Joakim Nivre. 2007. Characterizing errors of data-driven dependency parsing models. In
Proceedings of the Conference Empirical Methods in NaturalLanguage Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 122–131, Prague.

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2006a. Online large-margin training of dependency
parsers. InProceedings of the 43th Annual Meeting of the Association for Computational Linguistics (ACL).

Ryan McDonald, Kevin Lerman, and Fernando Pereira. 2006b. Multilingual dependency analysis with a two-stage
discriminative parser. InProceedings of the 10th Conference on Computational Natural Language Learning
(CONLL), New York, NY.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryǐgit, and Svetoslav Marinov. 2006. Labeled pseudo-projective
dependency parsing with support vector machines. InProceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 221–225, New York, NY.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülşen Eryǐgit, Sandra K̈ubler, Stetoslav Marinov, and
Erwin Marsi. 2007. Maltparser: A language-independent system for data-driven dependency parsing.Natural
Langauge Engineering Journal, 2:99–135.

Kemal Oflazer, Bilge Say, Deniz Z. Hakkani-Tr, and Gökhan T̈ur, 2003. Building a Turkish Treebank, pages
261–277. Kluwer.

Kemal Oflazer. 2003. Dependency parsing with an extended finite-state approach.Computational Linguistics,
29:515–544.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text chunkingusing transformation-based learning. InPro-
ceedings of the Third ACL Workshop on Very Large Corpora, pages 88–94, Cambridge, Massachusetts.

89

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 90–96 Dublin, Ireland, August 23-29 2014.

Experiments for Dependency Parsing of Greek

Prokopis Prokopidis
Institute for Language
and Speech Processing
Athena Research Center

Athens, Greece
prokopis@ilsp.gr

Haris Papageorgiou
Institute for Language
and Speech Processing
Athena Research Center

Athens, Greece
xaris@ilsp.gr

Abstract

This paper describes experiments for statistical dependency parsing using two different parsers
trained on a recently extended dependency treebank for Greek, a language with a moderately rich
morphology. We show how scores obtained by the two parsers are influenced by morphology and
dependency types as well as sentence and arc length. The best LAS obtained in these experiments
was 80.16 on a test set with manually validated POS tags and lemmas.

1 Introduction

This work describes experiments for statistical dependency parsing using a recently extended dependency
treebank for Greek, a language with a moderately rich morphology. Relatively small training resources
like the one we use here can set severe sparsity obstacles for languages with flexible word order and
a relatively rich morphology like Greek. This work presents ongoing efforts for evaluating ways of
improving this situation. The rest of this paper is structured as follows: We describe the treebank and
the tools for preprocessing it in section 2. After mentioning some relevant work, we present in section 4
different settings for experiments involving manually validated and automatically pre-processed data for
morphology and lemmas. In section 5we include a comparison of the output of twowell-known statistical
parsers in reference to a set of criteria. Section 6 describes work on using sentences from relatively large
auto-parsed resources as additional training data.

2 Treebank

We use the Greek Dependency Treebank (Prokopidis et al., 2005) for all experiments. GDT includes
texts from open-content sources and from corpora collected in the framework of research projects aiming
at multilingual, multimedia information extraction. A first version of the GDT (GDT-2007) contained
70223 tokens and 2902 sentences, and it was used in the CoNLL 2007 Shared Task on Dependency Pars-
ing (Nivre et al., 2007a). A recently extended version of the resource (henceforth GDT-2014) amounts
to 130753 tokens (including punctuation) and 5668 sentences. The current version of the resource con-
tains 21827 unique types, 11005 lemmas and 10348 hapax legomena (excluding dates, digits and proper
names). The average sentence length is 23.07 tokens. GDT consists of 249 whole documents and can thus
be used for the annotation of other, possibly inter-sentential, relations like coreference. Each document
has 22.76 sentences on average.
The dependency-based annotation scheme used for the syntactic layer of the GDT is based on an adap-

tation of the guidelines for the Prague Dependency Treebank (Böhmová et al., 2003), and allows for
intuitive representations of long-distance dependencies and non-configurational structures common in
languages with flexible word order. Most trees are headed by a word that bears the Pred relation to an
artificial root node. Other tokens depending on this root node include sentence-final punctuation marks

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

90

..
..... ..εξετάζοντας ..φακέλους ..στους ..οποίους ..νομίζουν ..ότι ..υπάρχει
..... ..VbMn ..NoCm ..AsPpPa ..PnRe ..VbMn ..CjSb ..VbMn
..... ..examining ..folders ..in ..which ..they-think ..that ..it-exists

.

Adv

.

Atr

.

AuxC

.

Obj

.

AuxP

.

Adv

Figure 1: An analysis for a sentence fragment with a non-projective arc

and coordinating conjunctions. Coordinating conjunctions and apposition markers head participating to-
kens in relevant constructions. Table 1 contains some of the most common dependency relations used in
the treebank, while Figure 1 presents a sentence fragment that contains a non-projective arc connecting
the verb of a complement clause and its extraposed argument. In GDT-2014, 12.86% of the trees include
at least one non-projective arc.
The relatively free word order of Greek can be inferred when examining typical head-dependent struc-

tures in the resource. Although nouns are almost always preceded by determiners and adjectives, the
situation is different for arguments of verbs. Of the 5414 explicit subjects in GDT, 31% occur to the
right of their parent. The situation is more straightforward for non-pronominal objects, of which only
4% occur to the left of their head. Of those subjects and objects appearing in “non-canonical” positions,
21% and 31%, respectively, are of neuter gender. This fact can pose problems to parsing, since the case
of nominative and accusative neuter homographs is particularly difficult to disambiguate, especially due
to the fact that articles and adjectives often preceding them (e.g. το/the κόκκινο/red βιβλίο/book) are also
invariant for these two case values.

Dep. Rel Description Dep. Rel. Description
Pred Main sentence predicate Adv Adverbial dependent
Subj Subject Atr Attribute
Obj Direct object Coord A node governing coordination
AuxC Subord. conjunction node AuxP Prepositional node

Table 1: Common dependency relations in the Greek Dependency Treebank

Apart from the addition of new material, another difference from previous versions is that GDT-2014
sentences have been manually validated for POS, morphosyntactic features and lemmas. The tagset used
contains 584 combinations of basic POS tags (Table 2) and features that capture the rich morphology
of the Greek language. As an example, the full tag AjBaMaSgNm for a word like ταραχώδης/turbulent
denotes an adjective of basic degree, masculine gender, singular number and nominative case. The three
last features are also used for nouns, articles, pronouns, and passive participles. Verb tags include features
for tense and aspect, while articles are distinguished for definiteness.
Manual annotation at these levels allows to examine how the parser’s accuracy is affected in realistic,

automatic pre-processing scenarios. In these settings, POS tagging is conducted with a tagger (Papa-
georgiou et al., 2000) trained on a manually annotated corpus of Greek texts amounting to 455K tokens.
During automatic processing, the tagger assigns to each token the most frequent tag in a lexicon compiled
from the training corpus. A list of suffixes guides initial tagging of unknown words. When all tokens
have been assigned a tag, a set of about 800 contextual rules learned during training, is applied to correct
initial decisions. The tagger’s accuracy reaches 97.49 when only basic POS is considered. When all
features (including, for example, gender and case for nouns, and aspect and tense for verbs) are taken
into account, the tagger’s accuracy drops to 92.54. As an indication of the relatively rich morphology of
Greek, the tags/word ratio in the tagger’s lexicon is 1.82. Tags for a word typically differ in only one or
two features like case and gender for adjectives. However, distinct basic parts of speech (e.g. Vb/No) is
also a possibility.
Following POS tagging, a lemmatizer retrieves lemmas from a lexicon containing 66K lemmas, which

91

in their expanded form extend the lexicon to approximately 2M different entries. When a token under
examination is associated in the lexicon with two or more lemmas, the lemmatizer uses information from
the POS tags to disambiguate. For example, the token+POS input εξετάσεις/VbMn guides the lemma-
tizer to retrieve the lemma εξετάζω (examine), while the lemma εξέταση (examination) is returned for
εξετάσεις/NoCm.

POS Description POS Description
Ad Adverb AsPpPa Prep. + Article combination
AjBa Adjective (basic degree) CjCo Coordinating conjunction
AsPpSp Preposition CjSb Subordinating conjunction
AtDf Definite article NoCm Common noun
AtId Indefinite article PnPo Possessive pronoun
VbMn Finite verb PnRe Relative pronoun

Table 2: Fine grained POS tags in GDT

3 Relevant work

Nakagawa (2007) was the best system in parsing the GDT in the CoNLL 2007 shared task, showing a
76.31 Labeled Attachment Score. Nakagawa’s two-stage parser first constructed unlabeled dependency
structures using sentence and token features, and then labeled the arcs using SVMs. The second best
score for Greek was Hall et al. (2007), who scored 74.65 LAS using an ensemble system combining the
output of six different Maltparser configurations. In recent work discussing the cube-pruned dependency
parsing framework, Zhang and McDonald (2014) report a 78.45 LAS on the CoNLL dataset.

4 Experiments

In this section, we report on experiments using statistical parsers trained on automatically preprocessed
and manually validated versions of GDT-2014. In all experiments we report the Labeled and Unlabeled
Attachment Scores (LAS and UAS) and the Label Accuracy (LACC), with punctuation tokens counting
as scoring tokens. We split the data of GDT-2014 in 90% and 10% training and test sets (5,101/567
sentences; 117,581/13,172 tokens). In this partitioning scheme, unknown tokens and lemmas when pars-
ing the test set are 27% and 16%, respectively. We performed experiments with the transition-based
Maltparser (Nivre et al., 2007b) and the graph-based Mateparser (Bohnet, 2010). For Maltparser, a 5-
fold cross validation on the training set using MaltOptimizer (Ballesteros and Nivre, 2012) resulted in
the selection of the non-projective stacklazy parsing algorithm as the one yielding an average best 78.96
LAS. Table 3 provides an abbreviated overview of the selected feature model, which is dominated by the
top and first three elements in the parser’s stack and its lookahead list. For Mateparser we used default
settings.
Table 4 summarizes the results of our experiments. We observe a better 79.74 LAS with Mateparser

with a larger difference in UAS than in LACC (2.37 vs 1.26). This may suggest that the two parsers
agree on the labels they assign but differ more in discovering node heads. Not surprisingly, testing in
a more realistic scenario of using automatic PoS, features and lemmas produces more errors (Figure 2).
Maltparser shows a relatively smaller decrease in accuracy (-3.05 vs -3.45) in this context. In the next
two experiments with Mateparser, we see that in automatic pre-processing scenarios, the tagger clearly
contributes more to error increase (-3.34) compared to the lemmatizer (-0.06).
We also trained Mateparser in the MPL setting with POS tagsets of varying granularity, by remov-

ing features that were intuitively deemed to increase sparsity without contributing to parsing accuracy.
More specifically, we experimented with several combinations of removing for aspect and tense of verbs,
gender of nominal elements, definiteness of articles and degree of adjectives. A best LAS of 80.16 (cf.
the two final columns of Table 4) was observed after removing features for degree and definiteness.
Finally, and in order to examine how the expansion of the treebank has affected performance, we also

92

Tokens Form Lem PoS Feats Dep Tokens Form Lem PoS Feats Dep
st[0] + + + + rd(st[0]) + +
st[1] + + + + rd(st[1]) +
st[2] + + hd(st[0]) +
inp[0] + lh[0] + + +
ld(st[0]) + + lh[1] + + +
ld(st[1]) + lh[2] +

Table 3: Automatically selected Maltparser features. Stack/Input (st/inp) tokens refer to tokens that
are/have been in the stack of partially parsed tokens. Lookahead (lh) tokens are tokens that have not
been in the stack. Features ld/rd/hd refer to the leftmost/rightmost dependents and and the head. We do
not show features resulting from merging two or three features (e.g. merge3(PoS(lh[0]) + PoS(lh[1]) +
PoS(lh[2])))

..
..Υποθέτω ..ότι ..θα ..επιβεβαιώσει ..προφορικά ..αυτή ..τη ..δέσμευση
..VbMn ..CjSb ..PtFu ..VbMn ..Aj ..PnDm ..AtDf ..NoCm
..assume-1stPers ..that ..Future ..confirm-3rdPers ..orally ..this ..the ..commitment

.

Pred

.

AuxC

.

AuxV

.

Obj

.

Atr

.

Atr

.

Det

.

Obj

Figure 2: An example of a preprocessing error misguiding the parser: the wrong adjectival tag for the
adverb προφορικά leads the parser in recognizing it as an attribute to a noun.

trained Mateparser in the MPL scenario using a training set equal in size to the 2.7K sentences of the
CoNLL-2007 data. The results observed were 78.39 LAS and 84.77 UAS.

MPL APL APML MPAL APL-AUTO MFR1 MFR2
Malt Mate Malt Mate Mate Malt Mate Mate

LAS 77.50 79.74 74.45 76.29 76.40 79.68 75.13 76.81 80.05 80.16
UAS 83.46 85.83 81.35 83.57 83.69 85.77 81.98 83.94 86.02 86.29

LACC 86.68 87.94 84.29 85.67 85.72 87.91 84.92 85.90 88.03 88.13

Table 4: Results from parsing GDT with Malt and Mate parsers: MPL refers to training and testing on
manually validated POS, morphological features and lemmas; APL is evaluation on automatic POS, fea-
tures and lemmas; APML is evaluation on automatic morphology and gold lemmas; MPAL on gold mor-
phology and automatic lemmas. APL-AUTO is APL with training data including automatically parsed
sentences. MFR1 is MPL after removing features for tense, aspect, degree and definiteness. MFR2 is
MPL after removing features for degree and definiteness.

5 Error analysis

In this section we first provide a comparative analysis of errors by the two parsers on the 567 sentences
test set. We use the set of length and linguistic factors proposed in the comparison between the Malt
and MST parsers in McDonald and Nivre (2007). For example, in Figure 3, we plot sentence length in
bins of size 10 and show, as expected, that the accuracy of both parsers decreases when analyzing longer
sentences. Maltparser shows a higher accuracy for sentences of size up to 10, possibly because when
parsing shorter sentences, early mistakes when making greedy decisions based on local features do not
have a chance to lead to large error propagation. We omit details on UAS, where a similar pattern is
observed. Figure 4 shows that Mateparser achieves better harmonic means of precision and recall, when
longer dependencies are examined. This is again consistent with the fact that Maltparser favors shorter

93

0.70

0.75

0.80

0.85

0.90

10 20 30 40 50
Sentence Length

LA
S

Parser

malt

mate

Figure 3: LAS relative to sentence length.

0.4

0.6

0.8

5 10 15 20
Dependency Length

F
−

sc
or

e

Parser

malt

mate

Figure 4: Dependency arc F-score relative to depen-
dency length.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Adj Adv Conj Noun Prep Pron Verb
Part of Speech

LA
S

Parser

Malt

Mate

Figure 5: LAS for different POS tags.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Adv Apos Coord ExD IObj Obj Pnom Pred Pred_Co Sb Sb_Ap Sb_Co
Deprel

F
−

sc
or

e

Parser

Malt

Mate

Figure 6: F-score for different relations.

arcs when making decisions based on local features only. We have seen that both parsers exhibit low
F1-scores (Malt: 0.36; Mate: 0.30) in detecting non-projective heads.

In Figure 5 we see that Mate’s LAS is better for all basic parts of speech. The difference is more
evident for verbs, which are typically involved in longer dependencies. Finally, it is clear from Figure
6 that certain relations are particularly difficult for both parsers. For example, indirect object (IObj)
dependents are low scoring nodes: this is because they are often attached to the correct head but are
mislabeled as adverbial dependents (Adv) or plain objects (Obj). Dependents labeled as ellipsis (ExD) or
heading appositional (Apos) constructions are also more error-prone. The same applies to nodes involved
in coordinate structures as subjects headed by coordinative conjuctions (Sb_Co). The latter show an
almost 0.3 drop in F1-score in comparison to simple subjects (Sb).

In the APL setting, errors by both parsers often involve some type of interaction between the rela-
tively free order of Greek sentences and the case feature of nominal homographs. For example, in the
case of the sentence Διαφορετικά/different στοιχεία/figures δίνουν/provide τρεις/three επίσημες/official
πηγές/sources για/on την/the ανεργία/unemployment (Three official sources provide different figures on
unemployment), the two nominal arguments of the verb and all of their modifiers are ambiguous as far as
case (Nominative/Accusative) is concerned. Both nominal arguments also agree with the verb in number.
These facts, in combination with the OVS order of this and similar fragments present serious challenges
to both the tagger and the parsers. In contrast, the case of the noun ανεργία/unemployment is easier for the
tagger to disambiguate based on the preposition+article combination preceding it. However, attaching
the whole subtree headed by the preposition is also problematic: it is part of a non-projective construction
that would probably be disallowed in languages with a more strict order.

94

6 Use of autoparsed data

Following recent efforts in exploiting automatically processed data in training (Chen et al., 2012) and in
accelerating treebank creation (Lynn et al., 2012), we conducted an experiment in extending the training
set with similar material. We used a corpus of 66 million tokens, obtained by crawling (Papavassiliou et
al., 2013) the 2009-2012 online archive of a Greek daily newspaper. We used models induced in theMPL
experiment to parse all documents in the data pool with both parsers. We then appended to the original
training set 30K randomly selected parsed sentences of 10 to 30 tokens length, for which identical trees
were generated by both parsers. After retraining both parsers and testing on the APL test set, we observed
(columns 8 and 9 of table 4) absolute LAS improvements of 0.68 and 0.52 for Maltparser andMateparser.

7 Conclusions and future work

We described a set of experiments for dependency parsing of Greek using Maltparser and Mateparser,
two well known representatives of the transition and graph-based families of parsers. Mateparser has
exhibited the best accuracy on the test partition of a recently expanded version of the Greek Dependency
Treebank, with Maltparser yielding higher scores on shorter sentences. After appending auto-parsed data
to a training set manually validated for POS and lemmas, we observed small accuracy improvements that
show room for improvement.
Scores obtained by training on datasets of different sizes in Section 4 probably indicate that apart from

adding only documents or document fragments to the treebank, we should also consider selecting specific
sentences for annotation, after measuring their informativeness and representativeness. In ongoing work,
we are investigating ways of selecting sentences for manual annotation based on how much two or more
parsers disagree, in combination with criteria like number of coordination/subordination elements and/or
number of OOV words. For this purpose, we will also experiment with more members of the two parser
families.
Our best LAS scores were obtained after mapping certain morphological features to default values.

Since these tagset mappings may not be the most efficient ones, we plan to investigate automatic tech-
niques for selecting optimal feature combinations.
Another line of research will be investigating semi-automatically mapping to different annotation

schemes like the one proposed in McDonald et al. (2013). Finally, we plan to examine, as an additional
source for resource expansion and domain adaptation, sentences from automatic dialogue transcriptions
and/or product reviews.

Acknowledgments

Work by the first author was supported by the European Union Abu-MaTran project (FP7-People-IAPP,
Grant 324414). Work by the second author was supported by the POLYTROPON project (KRIPIS-
GSRT, MIS: 448306). We would like to thank the three anonymous reviewers and our colleague Vassilis
Papavassiliou for their comments.

References
Miguel Ballesteros and Joakim Nivre. 2012. MaltOptimizer: An Optimization Tool for MaltParser. In EACL,

pages 58–62.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora Hladká, 2003. Treebanks: Building and Using Parsed
Corpora, chapter The Prague Dependency Treebank: A Three-Level Annotation Scenario. Kluwer.

Bernd Bohnet. 2010. Very High Accuracy and Fast Dependency Parsing is Not a Contradiction. In Proceedings
of the 23rd International Conference on Computational Linguistics, COLING ’10, pages 89–97. Association for
Computational Linguistics.

Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa. 2012. Exploiting subtrees in auto-
parsed data to improve dependency parsing. Computational Intelligence, pages 426–451.

95

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen Eryigit, Beáta Megyesi, Mattias Nilsson, and Markus Saers. 2007.
Single Malt or Blended? A Study in Multilingual Parser Optimization. In Proceedings of the CoNLL Shared
Task Session of EMNLP-CoNLL 2007, pages 933–939.

Teresa Lynn, Jennifer Foster, Mark Dras, and Elaine Dhonnchadha. 2012. Active Learning and the Irish Treebank.
In Australasian Language Technology Workshop, December.

Ryan McDonald and Joakim Nivre. 2007. Characterizing the Errors of Data-Driven Dependency Parsing Mod-
els. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 122–131.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzman Ganchev,
Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini, Núria Bertomeu Castelló, and Jungmee
Lee. 2013. Universal Dependency Annotation for Multilingual Parsing. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 92–97, Sofia, Bul-
garia.

Tetsuji Nakagawa. 2007. Multilingual Dependency Parsing Using Global Features. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pages 952–956.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007a. The CoNLL 2007 Shared Task on Dependency Parsing. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 915–932.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen Erygit, Sandra Kübler, Svetoslav Marinov, and
Erwin Marsi. 2007b. MaltParser: A language-independent system for data-driven dependency parsing. Natural
Language Engineering, 13:95–135, 6.

Harris Papageorgiou, Prokopis Prokopidis, Voula Giouli, and Stelios Piperidis. 2000. A Unified POS Tagging
Architecture and its Application to Greek. In Proceedings of the 2nd Language Resources and Evaluation
Conference, pages 1455–1462, Athens, June. European Language Resources Association.

Vassilis Papavassiliou, Prokopis Prokopidis, and Gregor Thurmair. 2013. A modular open-source focused crawler
for mining monolingual and bilingual corpora from the web. In Proceedings of the Sixth Workshop on Building
and Using Comparable Corpora, pages 43–51, Sofia, Bulgaria, August. Association for Computational Linguis-
tics.

Prokopis Prokopidis, Elina Desypri, Maria Koutsombogera, Haris Papageorgiou, and Stelios Piperidis. 2005.
Theoretical and practical issues in the construction of a Greek Dependency Treebank. In Proceedings of the
Fourth Workshop on Treebanks and Linguistic Theories, Barcelona, Spain, December.

Hao Zhang and Ryan McDonald. 2014. Enforcing Structural Diversity in Cube-pruned Dependency Parsing. In
ACL.

96

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 97–102 Dublin, Ireland, August 23-29 2014.

Introducing the IMS-Wrocław-Szeged-CIS Entry at the SPMRL 2014
Shared Task: Reranking and Morphosyntax Meet Unlabeled Data∗

Anders Björkelund§ and Özlem Çetinoğlu§ and Agnieszka Faleńska�,§

Richárd Farkas† and Thomas Müller‡ and Wolfgang Seeker§ and Zsolt Szántó†

§Institute for Natural Language Processing University of Stuttgart, Germany
�Institute of Computer Science, University of Wrocław, Poland
†Department of Informatics University of Szeged, Hungary

‡Center for Information and Language Processing University of Munich, Germany

{anders,ozlem,muellets,seeker}@ims.uni-stuttgart.de
agnieszka.falenska@cs.uni.wroc.pl
{rfarkas,szantozs}@inf.u-szeged.hu

Abstract

We summarize our approach taken in the SPMRL 2014 Shared Task on parsing morphologically
rich languages. Our approach builds upon our contribution from last year, with a number of
modifications and extensions. Though this paper summarizes our contribution, a more detailed
description and evaluation will be presented in the accompanying volume containing notes from
the SPMRL 2014 Shared Task.

1 Introduction

This paper summarizes the approach of IMS-Wrocław-Szeged-CIS taken for the SPMRL 2014 Shared
Task on parsing morphologically rich languages (Seddah et al., 2014). Since this paper is a rough sum-
mary that is written before submission of test runs we refer the reader to the full description paper which
will be published after the shared task (Björkelund et al., 2014).1

The SPMRL 2014 Shared Task is a direct extension of the SPMRL 2013 Shared Task (Seddah et al.,
2013) which targeted parsing morphologically rich languages. The task involves parsing both depen-
dency and phrase-structure representations of 9 languages: Arabic, Basque, French, German, Hebrew,
Hungarian, Korean, Polish, and Swedish. The only difference between the two tasks is that large amounts
of unlabeled data are additionally available to participants for the 2014 task.

Our contribution builds upon our system from last year (Björkelund et al., 2013), with additional
features and components that try to exploit the unlabeled data. Given the limited window of time to
participate in this year’s shared task, we only contribute to the setting with predicted preprocessing,
using the largest available training data set for each language.2 We also do not participate in the Arabic
track since the shared task organizers did not provide any unlabeled data at a reasonable time.

2 Review of Last Year’s System

Our current system is based on the system we participated with in the SPMRL 2013 Shared Task. We
summarize the architecture of this system as three different components.

∗Authors in alphabetical order
1Due to logistical constraints this paper had to be written before the deadlines for the actual shared task and do thus not contain
a full description of the system, nor the experimental evaluation of the same.

2In other words, no gold preprocessing or smaller training sets.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

97

2.1 Preprocessing

As the initial step of preprocessing we converted the Shared Task data from the CoNLL06 format to
CoNLL09, which required a decision on using coarse or fine grained POS tags. After a set of preliminary
experiments we picked fine POS tags where possible, except Basque and Korean.

We used MarMoT3 (Müller et al., 2013) to predict POS tags and morphological features jointly. We in-
tegrated the output from external morphological analyzers as features to MarMoT. We also experimented
with the integration of predicted tags provided by the organizers and observed that these stacked models
help improve Basque, Polish, and Swedish preprocessing. The stacked models provided additional infor-
mation to our tagger since the provided predictions were coming from models trained on larger training
sets than the shared task training sets.

2.2 Dependency Parsing

The dependency parsing architecture of our SPMRL 2013 Shared Task contribution is summarized in
Figure 1. The first step combines the n-best trees of two parsers, namely the mate parser4 (Bohnet, 2010)
and a variant of the EasyFirst parser (Goldberg and Elhadad, 2010), which we call best-first parser. We
merged the 50-best analyses from these parsers into one n-best list of 50 to 100 trees. We then added
parsing scores to the n-best trees from the two parsers, and additionally from the turboparser5 (Martins
et al., 2010).

mate parser

best-first
parser

turboparser

merged list
of 50-100 best
trees/sentence

merged list
scored by
all parsers

ranker

ptb trees

Parsing Ranking

IN OUT

scores

scores

scores

features

Figure 1: Architecture of the dependency ranking system from (Björkelund et al., 2013).

The scored trees are fed into the ranking system. The ranker utilizes the parsing scores and fea-
tures coming from both constituency and dependency parses. We specified a default feature set and
experimented with additional features for each language for optimal results. We achieved over 1% LAS
improvement on all languages except a 0.3% improvement on Hungarian.

2.3 Constituency Parsing

The constituency parsing architecture advances in three steps. For all setups we removed the morphologi-
cal annotation of POS tags and the function labels of non-terminals and apply the Berkeley Parser (Petrov
et al., 2006) as our baseline. As the first setup, we replaced words with a frequency < 20 with their pre-
dicted part-of-speech and morphology tags and improved the PARSEVAL scores across languages. The
second setup employed a product grammar (Petrov, 2010), where we combined 8 different grammars
trained on the same data but with different initialization setups. As a result, the scores substantially
improved on all languages.

Finally, we conducted ranking experiments on the 50-best outputs of the product grammars. We used
a slightly modified version of the Mallet toolkit (McCallum, 2002), where the reranker is trained for the

3https://code.google.com/p/cistern/
4https://code.google.com/p/mate-tools
5http://www.ark.cs.cmu.edu/TurboParser/

98

maximum entropy objective function of Charniak and Johnson (2005) and uses the standard feature set
from Charniak and Johnson (2005) and Collins (2000). Hebrew and Polish scores remained almost the
same, whereas Basque, French, and Hungarian highly benefited from reranking.

3 Planned Additions to Last Year’s System

This year we extend our systems for both the constituency and dependency tracks to add additional
information and try to profit from unlabeled data.

3.1 Preprocessing
We use the mate-tools’ lemmatizer and MarMoT to preprocess all labeled and unlabeled data. From the
SPMRL 2013 Shared Task, we learned that getting as good preprocessing as possible is an important
part of the overall improvements. Preprocessing consists of predicting lemmas, part-of-speech, and
morphological features. Preprocessing for the training data is done via 5-fold jackknifing to produce
realistic input features for the parsers. This year we do not do stacking on top of provided morphological
analyses since the annotations on the labeled and unlabeled data were inconsistent for some languages.6

3.2 Dependency Parsing
We pursue two different ways of integrating additional information into our system from the SPMRL
2013 Shared Task (Björkelund et al., 2013): supertags and co-training.

Supertags (Bangalore and Joshi, 1999) are tags that encode more syntactic information than standard
part-of-speech tags. Supertags have been used in deep grammar formalisms like CCG or HPSG to prune
the search space for the parser. The idea has been applied to dependency parsing by Foth et al. (2006)
and recently to statistical dependency parsing (Ouchi et al., 2014; Ambati et al., 2014), where supertags
are used as features rather than to prune the search space. Since the supertag set is dynamically derived
from the gold-standard syntactic structures, we can encode different kinds of information into a supertag,
in particular also morphological information. Supertags are predicted before parsing using MarMoT and
are then used as features in the mate parser and the turboparser.

We will use a variant of co-training (Blum and Mitchell, 1998) by applying two different parsers to
select additional training material from unlabeled data. We use the mate parser and the turboparser to
parse the unlabeled data provided by the organizers. We then select sentences where both parsers agree
on the structure as additional training examples following Sagae and Tsujii (2007). We then train two
more models: one on the labeled training data and the unlabeled data selected by the two parsers, and
one only on the unlabeled data. These two models are then integrated into our parsing system from 2013
as additional scorers to score the n-best list. Their scores are used as features in the ranker.

Before we parse the unlabeled data to obtain the training sentences, we filter it in order to arrive
at a cleaner corpus. Most importantly, we only keep sentences up to length 50, and which contain at
maximum two unknown words (compared to the labeled training data).

3.3 Constituency Parsing
We experiment with two approaches for improving constituency parsing:

Preterminal labelsets play an important role in constituency parsing of morphologically rich lan-
guages (Dehdari et al., 2011). Instead of removing the morphological annotation of POS tags, we use a
preterminal set which carries more linguistic information while still keeping it compact. We follow the
merge procedure for morphological feature values of Szántó and Farkas (2014). This procedure outputs a
clustering of full morphological descriptions and we use the cluster IDs as preterminal labels for training
the Berkeley Parser.

Reranking at the constituency parsing side is enriched by novel features. We define feature tem-
plates exploiting co-occurrence statistics from the unlabeled datasets; automatic dependency parses of
the sentence in question (Farkas and Bohnet, 2012); Brown clusters (Brown et al., 1992); and atomic
morphological feature values (Szántó and Farkas, 2014).
6The organizers later resolved this issue by patching the data, although time constraints prevented us from using the patched
data.

99

4 Conclusion

This paper describes our plans for the SPMRL 2014 Shared Task, most of which are yet to be imple-
mented. For the actual system description and our results, we refer the interested reader to (Björkelund
et al., 2014) and (Seddah et al., 2014).

Acknowledgements

Agnieszka Faleńska is funded through the Project International computer science and applied mathemat-
ics for business study programme at the University of Wrocław co-financed with European Union funds
within the European Social Fund No. POKL.04.01.01-00-005/13. Richárd Farkas and Zsolt Szántó are
funded by the European Union and the European Social Fund through the project FuturICT.hu (grant no.:
TÁMOP-4.2.2.C-11/1/KONV-2012-0013). Thomas Müller is supported by a Google Europe Fellowship
in Natural Language Processing. The remaining authors are funded by the Deutsche Forschungsgemein-
schaft (DFG) via the SFB 732, projects D2 and D8 (PI: Jonas Kuhn).

We also express our gratitude to the treebank providers for each language: Arabic (Maamouri et al.,
2004; Habash and Roth, 2009; Habash et al., 2009; Green and Manning, 2010), Basque (Aduriz et al.,
2003), French (Abeillé et al., 2003), Hebrew (Sima’an et al., 2001; Tsarfaty, 2010; Goldberg, 2011;
Tsarfaty, 2013), German (Brants et al., 2002; Seeker and Kuhn, 2012), Hungarian (Csendes et al., 2005;
Vincze et al., 2010), Korean (Choi et al., 1994; Choi, 2013), Polish (Świdziński and Woliński, 2010),
and Swedish (Nivre et al., 2006).

References
Anne Abeillé, Lionel Clément, and François Toussenel. 2003. Building a treebank for french. In Anne Abeillé,

editor, Treebanks. Kluwer, Dordrecht.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa, A. Dı́az de Ilarraza, A. Garmendia, and M. Oronoz. 2003.
Construction of a Basque dependency treebank. In TLT-03, pages 201–204.

Bharat Ram Ambati, Tejaswini Deoskar, and Mark Steedman. 2014. Improving dependency parsers using combi-
natory categorial grammar. In Proceedings of the 14th Conference of the European Chapter of the Association
for Computational Linguistics, volume 2: Short Papers, pages 159–163, Gothenburg, Sweden, April. Associa-
tion for Computational Linguistics.

Srinivas Bangalore and Aravind K. Joshi. 1999. Supertagging: An approach to almost parsing. Computational
Linguistics, 25(2):237–265.

Anders Björkelund, Özlem Çetinoğlu, Richárd Farkas, Thomas Müller, and Wolfgang Seeker. 2013. (re)ranking
meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task. In Proceedings of the Fourth
Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 135–145, Seattle, Washington,
USA, October. Association for Computational Linguistics.

Anders Björkelund, Özlem Çetinoğlu, Agnieszka Faleńska, Richárd Farkas, Thomas Müller, Wolfgang Seeker,
and Zsolt Szántó. 2014. The IMS-Wrocław-Szeged-CIS entry at the SPMRL 2014 Shared Task: Reranking and
Morphosyntax meet Unlabeled Data. In Notes of the SPMRL 2014 Shared Task on Parsing Morphologically-
Rich Languages, Dublin, Ireland, August.

Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In Proceedings of
the Eleventh Annual Conference on Computational Learning Theory, COLT’ 98, pages 92–100, New York, NY,
USA. ACM.

Bernd Bohnet. 2010. Top Accuracy and Fast Dependency Parsing is not a Contradiction. In Proceedings of
the 23rd International Conference on Computational Linguistics (Coling 2010), pages 89–97, Beijing, China,
August. Coling 2010 Organizing Committee.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. The TIGER treebank.
In Erhard Hinrichs and Kiril Simov, editors, Proceedings of the First Workshop on Treebanks and Linguistic
Theories (TLT 2002), pages 24–41, Sozopol, Bulgaria.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jenifer C. Lai, and Robert L. Mercer. 1992. Class-based
n-gram models of natural language. Computational Linguistics, 18(4):467–479.

100

Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-best parsing and MaxEnt discriminative reranking.
In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05, pages
173–180.

Key-Sun Choi, Young S Han, Young G Han, and Oh W Kwon. 1994. Kaist tree bank project for korean: Present
and future development. In Proceedings of the International Workshop on Sharable Natural Language Re-
sources, pages 7–14. Citeseer.

Jinho D. Choi. 2013. Preparing korean data for the shared task on parsing morphologically rich languages. CoRR,
abs/1309.1649.

Michael Collins. 2000. Discriminative Reranking for Natural Language Parsing. In Proceedings of the Seven-
teenth International Conference on Machine Learning, ICML ’00, pages 175–182.

Dóra Csendes, Janós Csirik, Tibor Gyimóthy, and András Kocsor. 2005. The Szeged treebank. In Václav Ma-
toušek, Pavel Mautner, and Tomáš Pavelka, editors, Text, Speech and Dialogue: Proceedings of TSD 2005.
Springer.

Jon Dehdari, Lamia Tounsi, and Josef van Genabith. 2011. Morphological features for parsing morphologically-
rich languages: A case of arabic. In Proceedings of the Second Workshop on Statistical Parsing of Morphologi-
cally Rich Languages, pages 12–21, Dublin, Ireland, October. Association for Computational Linguistics.

Richárd Farkas and Bernd Bohnet. 2012. Stacking of dependency and phrase structure parsers. In Proceedings of
COLING 2012, pages 849–866, Mumbai, India, December. The COLING 2012 Organizing Committee.

Kilian A. Foth, Tomas By, and Wolfgang Menzel. 2006. Guiding a constraint dependency parser with supertags.
In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pages 289–296, Sydney, Australia, July. Association for Com-
putational Linguistics.

Yoav Goldberg and Michael Elhadad. 2010. An Efficient Algorithm for Easy-First Non-Directional Dependency
Parsing. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages 742–750, Los Angeles, California, June. Association for
Computational Linguistics.

Yoav Goldberg. 2011. Automatic syntactic processing of Modern Hebrew. Ph.D. thesis, Ben Gurion University of
the Negev.

Spence Green and Christopher D. Manning. 2010. Better arabic parsing: Baselines, evaluations, and analysis. In
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 394–402,
Beijing, China, August. Coling 2010 Organizing Committee.

Nizar Habash and Ryan Roth. 2009. Catib: The columbia arabic treebank. In Proceedings of the ACL-IJCNLP
2009 Conference Short Papers, pages 221–224, Suntec, Singapore, August. Association for Computational
Linguistics.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syntactic Annotation in the Columbia Arabic Treebank. In
Proceedings of MEDAR International Conference on Arabic Language Resources and Tools, Cairo, Egypt.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. 2004. The Penn Arabic Treebank: Building
a Large-Scale Annotated Arabic Corpus. In NEMLAR Conference on Arabic Language Resources and Tools.

Andre Martins, Noah Smith, Eric Xing, Pedro Aguiar, and Mario Figueiredo. 2010. Turbo Parsers: Dependency
Parsing by Approximate Variational Inference. In Proceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, pages 34–44, Cambridge, MA, October. Association for Computational
Linguistics.

Andrew Kachites McCallum. 2002. ”mallet: A machine learning for language toolkit”.
http://mallet.cs.umass.edu.

Thomas Müller, Helmut Schmid, and Hinrich Schütze. 2013. Efficient Higher-Order CRFs for Morphological
Tagging. In In Proceedings of EMNLP.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006. Talbanken05: A Swedish treebank with phrase structure and
dependency annotation. In Proceedings of LREC, pages 1392–1395, Genoa, Italy.

101

Hiroki Ouchi, Kevin Duh, and Yuji Matsumoto. 2014. Improving dependency parsers with supertags. In Proceed-
ings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, volume
2: Short Papers, pages 154–158, Gothenburg, Sweden, April. Association for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate, compact, and interpretable
tree annotation. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational Linguistics, pages 433–440. Association for Computa-
tional Linguistics.

Slav Petrov. 2010. Products of Random Latent Variable Grammars. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages
19–27, Los Angeles, California, June. Association for Computational Linguistics.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency parsing and domain adaptation with LR models and parser
ensembles. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 1044–1050,
Prague, Czech Republic, June. Association for Computational Linguistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolf-
gang Maier, Joakim Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński, Alina Wróblewska, and Eric Villemonte de la Clergerie. 2013. Overview of the
SPMRL 2013 shared task: A cross-framework evaluation of parsing morphologically rich languages. In Pro-
ceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA, October. Association for Computational Linguistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho Choi, Matthieu Constant, Richárd Farkas,
Iakes Goenaga, Koldo Gojenola, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika Vincze,
Marcin Woliński, Alina Wróblewska, and Eric Villemonte de la Clérgerie. 2014. Overview of the SPMRL 2014
shared task on parsing morphologically rich languages. In Notes of the SPMRL 2014 Shared Task on Parsing
Morphologically-Rich Languages, Dublin, Ireland.

Wolfgang Seeker and Jonas Kuhn. 2012. Making Ellipses Explicit in Dependency Conversion for a German
Treebank. In Proceedings of the 8th International Conference on Language Resources and Evaluation, pages
3132–3139, Istanbul, Turkey. European Language Resources Association (ELRA).

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altman, and Noa Nativ. 2001. Building a Tree-Bank for Modern
Hebrew Text. In Traitement Automatique des Langues.

Marek Świdziński and Marcin Woliński. 2010. Towards a bank of constituent parse trees for Polish. In Text,
Speech and Dialogue: 13th International Conference (TSD), Lecture Notes in Artificial Intelligence, pages
197—204, Brno, Czech Republic. Springer.

Zsolt Szántó and Richárd Farkas. 2014. Special techniques for constituent parsing of morphologically rich lan-
guages. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational
Linguistics, pages 135–144, Gothenburg, Sweden, April. Association for Computational Linguistics.

Reut Tsarfaty. 2010. Relational-Realizational Parsing. Ph.D. thesis, University of Amsterdam.

Reut Tsarfaty. 2013. A Unified Morpho-Syntactic Scheme of Stanford Dependencies. Proceedings of ACL.

Veronika Vincze, Dóra Szauter, Attila Almási, György Móra, Zoltán Alexin, and János Csirik. 2010. Hungarian
dependency treebank. In LREC.

102

First Joint Workshop on Statistical Parsing of Morphologically Rich Languages
and Syntactic Analysis of Non-Canonical Languages, pages 103–109 Dublin, Ireland, August 23-29 2014.

Introducing the SPMRL 2014 Shared Task on Parsing
Morphologically-Rich Languages

Djamé Seddah
INRIA & Univ. Paris Sorbonne

Paris, France
djame.seddah@paris-sorbonne.fr

Sandra Kübler
Indiana University

Bloomington, IN, USA
skuebler@indiana.edu

Reut Tsarfaty
Weizman Institute

Rehovot, Israel
reut.tsarfaty@weizmann.ac.il

1 Introduction

This first joint meeting on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis
of Non-Canonical English (SPMRL-SANCL) featured a shared task on statistical parsing of morpholog-
ically rich languages (SPMRL). The goal of the shared task is to allow to train and test different partic-
ipating systems on comparable data sets, thus providing an objective measure of comparison between
state-of-the-art parsing systems on data data sets from a range of different languages. This 2014 SPMRL
shared task is a continuation and extension of the SPMRL shared task, which was co-located with the
SPMRL meeting at EMNLP 2013 (Seddah et al., 2013).

This paper provides a short overview of the 2014 SPMRL shared task goals, data sets, and evaluation
setup. Since the SPMRL 2014 largely builds on the infrastructure established for the SPMRL 2013
shared task, we start by reviewing the previous shared task (§2) and then proceed to the 2014 SPMRL
evaluation settings (§3), data sets (§4), and a task summary (§5). Due to organizational constraints,
this overview is published prior to the submission of all system test runs, and a more detailed overview
including the description of participating systems and the analysis of their results will follow as part of
(Seddah et al., 2014), once the shared task is completed.

2 The SPMRL Shared Task 2013

The SPMRL Shared Task 2013 (Seddah et al., 2013) was organized with the goal of providing standard
data sets, streamlined evaluation metrics, and a set of strong baselines for parsing morphologically rich
languages (MRLs). The goals were both to provide a focal point for researchers interested in parsing
MRLs and consequently to advance the state of the art in this area of research.

The shared task focused on parsing nine morphologically rich languages, from different typological
language families, in both a constituent-based and a dependency-based format. The set of nine typolog-
ically diverse languages comprised data sets for Arabic, Basque, French, German, Hebrew, Hungarian,
Korean, Polish, and Swedish. Compared to previous multilingual shared tasks (Buchholz and Marsi,
2006; Nivre et al., 2007), the SPMRL shared task targeted parsing in realistic evaluation scenarios, in
which the analysis of morphologically ambiguous input tokens is not known in advance. An additional
novelty of the SPMRL shared task is that it allowed for both a dependency-based and a constituent-
based parse representation. This setting relied on an intricate and careful data preparation process which
ensured consistency between the constituent and the dependency version by aligning the two representa-
tion types at the token level and at the level of part-of-speech tags. For all languages, we provided two
versions of the data sets: an all data set, identical in size to the one made available by the individual
treebank providers, and a small data set, with a training set of 5,000 sentences, and a test set of about 500
sentences. Controlling the set sizes across languages allows us to level the playing field across languages
and treebanks.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

103

The shared task also advanced the state of the art by introducing different levels of complexity in
parsing. In general, parsing is reduced to the parsing proper step, assuming gold segmentation of the
text into sentences and words as well as gold POS tags and morphological analyses. This is a serious
simplification of the task since especially in Semitic languages, the segmentation into input tokens is a
task that is best performed in combination with parsing because of the ambiguities involved.

The shared task deviated from this standard configuration by adding conditions in which more realistic
settings were given: In the gold setting, unambiguous gold morphological segmentation, POS tags, and
morphological features for each input token were given. In the predicted setting, disambiguated morpho-
logical segmentation was provided, but the POS tags and morphological features for each input segment
were not. In the raw setting, there was no gold information, i.e., morphological segmentation, POS tags
and morphological features for each input token had to be predicted as part of the parsing task. To lower
the entry cost, participants were provided with reasonable baseline (if not state-of-the-art) morphological
predictions (either disambiguated – in most cases– or ambiguous prediction in lattice forms).

As a consequence of the raw scenario, it was not possible to (only) rely on the accepted parsing met-
rics, labeled bracket evaluation via EVALB1 (Black et al., 1991), Leaf-Ancestor (Sampson and Babarczy,
2003) for constituents and CONLL X’s Labeled/Unlabeled Attachment Score for dependencies (Buch-
holz and Marsi, 2006). When the segmentation of words into input tokens is not given, there may be
discrepancies on the lexical levels, which neither EVALB and LEAF-ANCESTOR nor LAS/UAS are pre-
pared to handle. Thus, we also used TedEval, a distance-based metric that evaluates a morphosyntactic
structure as a complete whole (Tsarfaty et al., 2012b). Note that given the workload brought to the par-
ticipants, we did not try to enforce function label evaluation for constituent parsing. We hope that further
shared tasks will try to generalize such an evaluation. Indeed, having predicted function labels would
ease labeled TEDEVAL evaluation and favor a full parsing chain evaluation. Nevertheless, the choice of
TEDEVAL allowed us to go beyond the standard cross-parser evaluation within one setting and approach
cross-framework (constituent vs. dependency (Tsarfaty et al., 2012a)) and cross-language evaluation,
thus pushing the envelope on parsing evaluation. Additionally, we performed a specialized evaluation of
multi-word expressions in the French treebank.

The SPMRL Shared Task 2013 featured seven teams who approached the dependency parsing task
and one team that approached constituent parsing. The best performing system (Björkelund et al., 2013)
in either framework consisted of an ensemble system, combining several dependency parsers or sev-
eral instantiations of a PCFG-LA parser by a (re-)ranker, both on top of state-of-the-art morphological
analyses. The results show that parser combination helps to reach a robust performance across lan-
guages. However, the integration of morphological analysis into the parsing needs to be investigated
thoroughly, and new, morphologically aware approaches are needed. The cross-parser, cross-scenario,
and cross-framework evaluation protocols show that performance on gold morphological input is signif-
icantly higher than that in more realistic scenarios, and more training data is beneficial. Additionally,
differences between dependency and constituents are smaller than previously assumed, and languages
which are typologically farthest from English, such as Semitic and Asian languages, are still amongst
the hardest to parse, regardless of the parsing method used.

3 SPMRL 2014 Parsing Scenarios

As in the previous edition, this year, we consider three parsing scenarios, depending on how much of the
morphological information is provided. The scenarios are listed below, in increasing order of difficulty.

• Gold: In this scenario, the parser is provided with unambiguous gold morphological segmentation,
POS tags, and morphological features for each input token.

• Predicted: In this scenario, the parser is provided with disambiguated morphological segmentation.
However, the POS tags and morphological features for each input segment are unknown.

• Raw: In this scenario, the parser is provided with morphologically ambiguous input. The morpho-
logical segmentation, POS tags, and morphological features for each input token are unknown.

1We extended the usualEVALB to penalize unparsed sentences.

104

Scenario Segmentation PoS+Feat. Tree
Gold X X –
Predicted X 1-best –
Raw (1-best) 1-best 1-best –
Raw (all) – – –

Table 1: A summary of the parsing and evaluation scenarios. X depicts gold information, – depicts
unknown information, to be predicted by the system.

The Predicted and Raw scenarios require predicting morphological analyses. This may be done using
a language-specific morphological analyzer, or it may be done jointly with parsing. We provide inputs
that support these different scenarios:

• Predicted: Gold treebank segmentation is given to the parser. The POS tags assignment and mor-
phological features are automatically predicted by the parser or by an external resource.

• Raw (1-best): The 1-best segmentation and POS tags assignment is predicted by an external re-
source and given to the parser.

• Raw (all): All possible segmentations and POS tags are specified by an external resource. The
parser selects jointly a segmentation and a tree.

An overview of all scenarios is shown in table 1. For languages in which terminals equal tokens, only
Gold and Predicted scenarios are considered. For the Semitic languages, we further provide input for
both Raw (1-best) and Raw (all) scenarios.2

4 SPMRL 2014 Data Sets

The main innovation of the SPMRL 2014 shared task with respect to the previous edition is the availabil-
ity of additional, unannotated data, for the purpose of semi-supervised training. This section provides
a description of the unlabeled-data preparation that is required in the context of parsing MRLs, and the
core labeled data that is used in conjunction with it.

4.1 SPMRL Unlabeled Data Set

One of the common problems when dealing with morphologically rich languages (MRLs) is lexical data
sparseness due to the high level of variation in word forms (Tsarfaty et al., 2010; Tsarfaty et al., 2012c).
The use of large, unlabeled corpora in a semi-supervised setting, in addition to the relatively small MRL
data sets, can become a valid option to overcome such issues. For instance, using Brown clusters (Brown
et al., 1992) has been shown to boost the performance of a PCFG-LA based parser for French (Candito
and Crabbé, 2009; Candito and Seddah, 2010). External lexical acquisition was successfully used for
Arabic (Habash, 2008) and Hebrew (Goldberg et al., 2009), self-training increased accuracy for parsing
German (Rehbein, 2011), and more recently, the use of word embeddings led to some promising results
for some MRLs (Cirik and Şensoy, 2013).

By releasing large, unlabeled data sets and by providing accurate pre-annotation in a format directly
compatible with models trained on the SPMRL Shared Task treebanks, we hope to foster the development
of interesting and feature-rich parsing models that build on larger, morphologically rich, lexicons. Table
2 presents basic facts about the data sets. Details on the unlabeled data and their pre-annotations will
be provided in (Seddah et al., 2014). Note that we could not ensure the same volume of data for all
languages, nor we could run the same parser, or morphology prediction, on all data. Potential future work
could focus on ensuring a stricter level of comparability of these data or on investigating the feasibility
of such a normalization of procedures.

2The raw Arabic lattices were made available later than the other data. They are now included in the shared task release.

105

Language Source (main) type size (tree tokens) morph parsed
Arabic news domain news 120M X* X*
Basque web balanced 150M X X
French news domain newswire 120M X+mwe X*

German Wikipedia wiki (edited) 205M X X
Hebrew Wikipedia wiki (edited) 160M X X

Hungarian news domain newswire 100M X X
Korean news domain newswire 40M X X*
Polish Wikipedia wiki (edited) 100M X X

Swedish PAROLE balanced 24M X X

Table 2: Unlabeled data set properties.*: made available mid-july

4.2 SPMRL Core Labeled Data Set

In order to provide a faithful evaluation of the impact of these additional sets of unlabeled data, we used
the exact same data sets for training and testing as in the previous edition. Specifically, we used an Arabic
data set, originally provided by the LDC (Maamouri et al., 2004), in a dependency form, derived from the
Columbia Catib Treebank (Habash and Roth, 2009; Habash et al., 2009) and in a constituency instance,
following the Stanford pre-processing scheme (Green and Manning, 2010) and extended according to the
SPMRL 2013 extension scheme (Seddah et al., 2013). For Basque, the data was provided by Aduriz et
al. (2003) in both dependency and constituency, we removed sentences with non-projective trees so both
instances could be aligned at the token level. Regarding French, we used a new instance of the French
Treebank (Abeillé et al., 2003) that includes multi-word expression (MWE) annotations, annotated at the
morpho-syntactic level in both instances. Predicted MWEs were added this year, using the same tools as
Constant et al. (2013). The German data are based on the Tiger corpus (Brants et al., 2002), and converted
to constituent and dependency following (Seeker and Kuhn, 2012). The Hebrew data set is based on the
Modern Hebrew Treebank (Sima’an et al., 2001), with the Goldberg (2011) dependency version, in turn
aligned with the phrase structure instance described in (Tsarfaty, 2010; Tsarfaty, 2013). Note that in
order to match the Hebrew unlabeled data encoding, the Hebrew treebank was converted back to UTF-8.
The Hungarian data are derived from the Szeged treebank (Csendes et al., 2005; Vincze et al., 2010),
while the Korean data originate from the Kaist Treebank (Choi et al., 1994) which was converted to
dependency for the SPMRL shared task by Choi (2013). The Polish treebank we used is described in
(Woliński et al., 2011; Świdziński and Woliński, 2010; Wróblewska, 2012). Compared to the last year’s
edition, we added explicit feature names in the relevant data fields. The Swedish data originate from
(Nivre et al., 2006), we added function labels extracted from the original Swedish XML data. Note
that in addition to constituency and dependency versions, the Polish, German and Swedish data sets are
also available in the Tiger XML format (Mengel and Lezius, 2000), allowing a direct representation of
discontinuous structures in their phrase-based structures.

5 Conclusion

At the time of writing this short introduction, the shared task is ongoing, and neither results nor the final
submitting teams are known. At this point, we can say that 15 teams registered for the 2014 shared
task edition, indicating an increased awareness of and continued interest in the topic of the shared task.
Results, cross-parser and cross-data analysis, and shared task description papers will be made available
at http://www.spmrl.org/spmrl2014-sharedtask.html.

Acknowledgments

We would like to express our gratitude to the original treebank labeled and unlabeled data contribu-
tors for the considerable time they devoted to our shared task. Namely, Arabic: Nizar Habash, Ryan
Roth (Columbia University); Spence Green (Stanford University) , Ann Bies, Seth Kulick, Mohamed
Maamouri (the Linguistic Data Consortium) ; Basque: Koldo Gojenola, Iakes Goenaga (University of
the Basque Country) ; French: Marie Candito (Univ. Paris 7 & Inria), Djamé Seddah (Univ. Paris
Sorbonne & Inria) , Matthieu Constant (Univ. Marne la Vallée) ; German: Wolfgang Seeker (IMS

106

Stuttgart), Wolfgang Maier (Univ. of Dusseldorf), Yannick Versley (Univ. of Tuebingen) ; Hebrew:
Yoav Goldberg (Bar Ilan Univ.), Reut Tsarfaty (Weizmann Institute of Science) ; Hungarian: Richàrd
Farkas, Veronika Vincze (Univ. of Szeged) ; Korean: Jinho D. Choi (Univ. of Massachusetts Amherst),
Jungyeul Park (Kaist); Polish: Adam Przepiórkowski, Marcin Woliński, Alina Wróblewska (Institute
of Computer Science, Polish Academy of Sciences) ; Swedish: Joakim Nivre (Uppsala Univ.), Marco
Kuhlmann (Linköping University).

We gratefully acknowledge the contribution of Språkbanken and the University of Gothenburg for
providing the PAROLE corpus. We are also very grateful to the Philosophical Faculty of the Heinrich-
Heine Universität Düsseldorf for hosting the shared task data via their dokuwiki.

References
Anne Abeillé, Lionel Clément, and François Toussenel. 2003. Building a treebank for French. In Anne Abeillé,

editor, Treebanks. Kluwer, Dordrecht.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa, A. Dı́az de Ilarraza, A. Garmendia, and M. Oronoz. 2003.
Construction of a Basque dependency treebank. In Proceedings of the Second Workshop on Treebanks and
Linguistic Theories, pages 201–204, Växjö, Sweden.

Anders Björkelund, Ozlem Cetinoglu, Richárd Farkas, Thomas Mueller, and Wolfgang Seeker. 2013. (Re)ranking
meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task. In Proceedings of the Fourth
Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 134–144, Seattle, WA.

Ezra Black, Steven Abney, Dan Flickinger, Claudia Gdaniec, Ralph Grishman, Philip Harrison, Donald Hindle,
Robert Ingria, Frederick Jelinek, Judith Klavans, Mark Liberman, Mitchell Marcus, Salim Roukos, Beatrice
Santorini, and Tomek Strzalkowski. 1991. A procedure for quantitatively comparing the syntactic coverage
of English grammars. In Proceedings of the DARPA Speech and Natural Language Workshop 1991, pages
306–311, Pacific Grove, CA.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. The TIGER treebank.
In Proceedings of the First Workshop on Treebanks and Linguistic Theories (TLT), pages 24–41, Sozopol,
Bulgaria.

Peter F. Brown, Vincent J. Della, Peter V. Desouza, Jennifer C. Lai, and Robert L. Mercer. 1992. Class-based
n-gram models of natural language. Computational Linguistics, 18(4):467–479.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proceed-
ings of CoNLL, pages 149–164, New York, NY.

Marie Candito and Benoı̂t Crabbé. 2009. Improving generative statistical parsing with semi-supervised word
clustering. In Proceedings of the 11th International Conference on Parsing Technologies (IWPT’09), pages
138–141, Paris, France.

Marie Candito and Djamé Seddah. 2010. Parsing word clusters. In Proceedings of the NAACL/HLT Workshop on
Statistical Parsing of Morphologically Rich Languages (SPMRL 2010), Los Angeles, CA.

Key-sun Choi, Young S. Han, Young G. Han, and Oh W. Kwon. 1994. KAIST Tree Bank Project for Korean:
Present and Future Development. In In Proceedings of the International Workshop on Sharable Natural Lan-
guage Resources, pages 7–14, Nara, Japan.

Jinho D. Choi. 2013. Preparing Korean data for the shared task on parsing morphologically rich languages.
arXiv:1309.1649.

Volkan Cirik and Hüsnü Şensoy. 2013. The AI-KU system at the SPMRL 2013 shared task: Unsupervised features
for dependency parsing. In Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich
Languages, pages 68–75, Seattle, WA.

Matthieu Constant, Marie Candito, and Djamé Seddah. 2013. The LIGM-Alpage architecture for the SPMRL
2013 shared task: Multiword expression analysis and dependency parsing. In Proceedings of the Fourth Work-
shop on Statistical Parsing of Morphologically-Rich Languages, pages 46–52, Seattle, WA.

Dóra Csendes, János Csirik, Tibor Gyimóthy, and András Kocsor. 2005. The Szeged treebank. In Proceedings
of the 8th International Conference on Text, Speech and Dialogue (TSD), Lecture Notes in Computer Science,
pages 123–132, Berlin / Heidelberg. Springer.

107

Yoav Goldberg, Reut Tsarfaty, Meni Adler, and Michael Elhadad. 2009. Enhancing unlexicalized parsing per-
formance using a wide coverage lexicon, fuzzy tag-set mapping, and EM-HMM-based lexical probabilities.
In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL), pages 327–335, Athens,
Greece.

Yoav Goldberg. 2011. Automatic syntactic processing of Modern Hebrew. Ph.D. thesis, Ben Gurion University of
the Negev.

Spence Green and Christopher D. Manning. 2010. Better Arabic parsing: Baselines, evaluations, and analysis. In
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 394–402,
Beijing, China.

Nizar Habash and Ryan Roth. 2009. CATiB: The Columbia Arabic Treebank. In Proceedings of ACL-IJCNLP,
pages 221–224, Suntec, Singapore.

Nizar Habash, Reem Faraj, and Ryan Roth. 2009. Syntactic Annotation in the Columbia Arabic Treebank. In
Proceedings of MEDAR International Conference on Arabic Language Resources and Tools, Cairo, Egypt.

Nizar Habash. 2008. Four techniques for online handling of out-of-vocabulary words in Arabic-English statistical
machine translation. In Proceedings of ACL-08: HLT, Short Papers, pages 57–60, Columbus, OH.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. 2004. The Penn Arabic treebank: Build-
ing a large-scale annotated Arabic corpus. In Proceedings of NEMLAR International Conference on Arabic
Language Resources and Tools, pages 102–109, Cairo, Egypt.

Andreas Mengel and Wolfgang Lezius. 2000. An XML-based encoding format for syntactically annotated cor-
pora. In Proceedings of the Second International Conference on Language Resources and Engineering (LREC
2000), pages 121–126, Athens, Greece.

Joakim Nivre, Jens Nilsson, and Johan Hall. 2006. Talbanken05: A Swedish treebank with phrase structure and
dependency annotation. In Proceedings of LREC, pages 1392–1395, Genoa, Italy.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency parsing. In Proceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007, pages 915–932, Prague, Czech Republic.

Ines Rehbein. 2011. Data point selection for self-training. In Proceedings of the Second Workshop on Statistical
Parsing of Morphologically Rich Languages, pages 62–67, Dublin, Ireland.

Geoffrey Sampson and Anna Babarczy. 2003. A test of the leaf-ancestor metric for parse accuracy. Natural
Language Engineering, 9(04):365–380.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi, Richárd Farkas, Jennifer Foster, Iakes
Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolf-
gang Maier, Joakim Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika
Vincze, Marcin Woliński, Alina Wróblewska, and Eric Villemonte de la Clergerie. 2013. Overview of the
SPMRL 2013 shared task: A cross-framework evaluation of parsing morphologically rich languages. In Pro-
ceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages, pages 146–182,
Seattle, WA.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho Choi, Matthieu Constant, Richárd Farkas,
Iakes Goenaga, Koldo Gojenola, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika Vincze,
Marcin Woliński, Alina Wróblewska, and Eric Villemonte de la Clérgerie. 2014. Overview of the spmrl 2014
shared task on parsing morphologically rich languages. In Notes of the SPMRL 2014 Shared Task on Parsing
Morphologically-Rich Languages, Dublin, Ireland.

Wolfgang Seeker and Jonas Kuhn. 2012. Making Ellipses Explicit in Dependency Conversion for a German
Treebank. In Proceedings of the 8th International Conference on Language Resources and Evaluation, pages
3132–3139, Istanbul, Turkey.

Khalil Sima’an, Alon Itai, Yoad Winter, Alon Altmann, and Noa Nativ. 2001. Building a tree-bank of Modern
Hebrew text. Traitement Automatique des Langues, 42:347–380.

Marek Świdziński and Marcin Woliński. 2010. Towards a bank of constituent parse trees for Polish. In Proceed-
ings of Text, Speech and Dialogue, pages 197–204, Brno, Czech Republic.

108

Reut Tsarfaty, Djame Seddah, Yoav Goldberg, Sandra Kübler, Marie Candito, Jennifer Foster, Yannick Versley,
Ines Rehbein, and Lamia Tounsi. 2010. Statistical parsing for morphologically rich language (SPMRL): What,
how and whither. In Proceedings of the First workshop on Statistical Parsing of Morphologically Rich Lan-
guages (SPMRL), Los Angeles, CA.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. 2012a. Cross-framework evaluation for statistical parsing.
In Proceeding of EACL, Avignon, France.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson. 2012b. Joint evaluation for segmentation and parsing. In
Proceedings of ACL, Jeju, Korea.

Reut Tsarfaty, Djamé Seddah, Sandra Kübler, and Joakim Nivre. 2012c. Parsing morphologically rich languages:
Introduction to the special issue. Computational Linguistics, 39(1):15–22.

Reut Tsarfaty. 2010. Relational-Realizational Parsing. Ph.D. thesis, University of Amsterdam.

Reut Tsarfaty. 2013. A unified morpho-syntactic scheme of Stanford dependencies. In Proceedings of ACL, Sofia,
Bulgaria.

Veronika Vincze, Dóra Szauter, Attila Almási, György Móra, Zoltán Alexin, and János Csirik. 2010. Hungarian
Dependency Treebank. In Proceedings of LREC, Valletta, Malta.

Marcin Woliński, Katarzyna Głowińska, and Marek Świdziński. 2011. A preliminary version of Składnica—a
treebank of Polish. In Proceedings of the 5th Language & Technology Conference, pages 299–303, Poznań,
Poland.

Alina Wróblewska. 2012. Polish Dependency Bank. Linguistic Issues in Language Technology, 7(1):1–15.

109

Author Index

Akın, Ahmet Afşın, 82

Björkelund, Anders, 97
Bohnet, Bernd, 54
Bruno, James, 66
Buttery, Paula, 74

Cahill, Aoife, 66
Caines, Andrew, 74
Çetinoğlu, Özlem, 97

Dakota, Daniel, 1
Durgar El-Kahlout, İlknur, 82

El-karef, Mohab, 54

Faleńska, Agnieszka, 97
Farkas, Richárd, 97

Gyawali, Binod, 66

Kübler, Sandra, 1, 103

Maier, Wolfgang, 1
Mueller, Thomas, 97

Osenova, Petya, 15

Papageorgiou, Haris, 90
Pekar, Viktor, 54
Popov, Alexander, 15
Prokopidis, Prokopis, 90

Seddah, Djamé, 103
Seeker, Wolfgang, 97
Simov, Kiril, 15
Simova, Iliana, 15
Szántó, Zsolt, 97

Tsarfaty, Reut, 103

Urieli, Assaf, 26

Vasilev, Dimitar, 15
Versley, Yannick, 39

Whyatt, Daniel, 1

Yılmaz, Ertugrul, 82
Yu, Juntao, 54

111

	Program
	Parsing German: How Much Morphology Do We Need?
	Joint Ensemble Model for POS Tagging and Dependency Parsing
	Improving the parsing of French coordination through annotation standards and targeted features
	Experiments with Easy-first nonprojective constituent parsing
	Exploring Options for Fast Domain Adaptation of Dependency Parsers
	Self-Training for Parsing Learner Text
	The effect of disfluencies and learner errors on the parsing of spoken learner language
	Initial Explorations in Two-phase Turkish Dependency Parsing by Incorporating Constituents
	Experiments for Dependency Parsing of Greek
	Introducing the IMS-Wrocław-Szeged-CIS entry at the SPMRL 2014 Shared Task: Reranking and Morpho-syntax meet Unlabeled Data
	Introducing the SPMRL 2014 Shared Task on Parsing Morphologically-rich Languages

