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Abstract

DSLRAE is a hierarchical classifier for similar written languages and varieties based on
maximum-entropy (maxent) classifiers. In the first level, the text is classified into a language
group using a simple token-based maxent classifier. At the second level, a group-specific maxent
classifier is applied to classify the text as one of the languages or varieties within the previously
identified group. For each group of languages, the classifier uses a different kind and combination
of knowledge-poor features: token or character n-grams and ‘white lists’ of tokens. Features were
selected according to the results of applying ten-fold cross-validation over the training dataset.
The system presented in this article1 has been ranked second in the Discriminating Similar Lan-
guage (DSL) shared task co-located within the VarDial Workshop at COLING 2014 (Zampieri
et al., 2014).

1 Introduction

Language identification (LI) can be defined as the task of determining the language of a written text.
LI is also a cross-cutting technology supporting many other text analysis tasks: sentiment analysis,
political tendency or topic classification. There are some interesting problems around written language
identification that have attracted some attention recently, as native language identification (NLI, Tetreault
et al., 2013), the identification of the country of origin or the discrimination between similar or closely
related languages (DSL, Tiedemann and Ljubešić, 2012).

LI has reached a great success in discriminating between languages with unique character sets and lan-
guages belonging to different language groups or typologically distant. However, according to Zampieri
(2013), multilingualism, noisy or non-standard features in text and discrimination between similar lan-
guages, varieties or dialects remain as the major known bottlenecks in language identification. For this
reason, DSL can be considered as a sub-task in language identification. Interestingly enough, LI seems
to work well with what Kloss (1967) called abstandsprache or language by distance (because Basque
is an isolate, it is generally regarded as a distant language) but fails in dealing with ausbausprache or
language by development (a standard variety together with all varieties heteronomous with respect to it,
e. g. Basque Batua koiné and the various vernacular dialects).

Mass media, educational centres, administrations and communications favour standard languages in-
stead of other varieties. Standard varieties of languages are then seen by sociolinguists and dialectologists
as political and cultural constructs (Trudgill, 2004). However, languages and varieties are not just sys-
tems for communication between individuals, they are also used by groups and they are a crucial part
of their identity and culture. Language variation is systematic, both inter- and intra-personal. It can be
related to political, social, geographical, situational, communicative or instrumental factors. Variation
within a language can be found at different levels: alphabet, orthography (diacritics), word structure
(syllable composition, morphology), lexical choice or even syntax. Similar or closely related languages
often reflect a common origin and are members of a dialect continuum (Bloomfield, 1935).

1We wish to thank an anonimous reviewer for her valuable comments and suggestions.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
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Solutions to language identification are often based either on generative or discriminative character
n-gram language models. While character-based methods provide a means to distinguish between differ-
ent languages on the basis of coarse-grained statistics on n-grams, it seems that discriminating between
similar languages needs more fine-grained distinctions not always reflected by n-gram character distribu-
tions. According to Tiedemann and Ljubešić (2012), character-based n-gram methods fail for languages
with a high lexical overlap, since the more shared words between two languages, the more similar will
their n-gram character frequency profiles be.

Group Model Lang/Var Precision Recall F1-score

A C 1-5
bs 0.930 0.889 0.909
hr 0.924 0.941 0.932
sr 0.929 0.953 0.941

B L 1
id 0.988 0.994 0.991
my 0.994 0.988 0.991

C T 1-2
cz 1.000 0.999 0.999
sk 0.999 1.000 0.999

D T 1-2
pt-BR 0.933 0.964 0.948
pt-PT 0.963 0.930 0.946

E T 1-2
es-AR 0.942 0.816 0.874
es-ES 0.837 0.949 0.890

F L 1
en-GB 0.959 0.411 0.575
en-US 0.643 0.932 0.761

Overall without F 0.949 0.947 0.947
Overall 0.926 0.932 0.928

Table 1: Macro-averaged Precision, Recall and F1-score on the DSL training dataset resulting from 10-
fold cross-validation using the best model for each group of languages o varieties. Model has a letter
code indicating the kind of elements considered: C (characters), T (tokens), L (tokens from the list of the
10,000 most frequent tokens), and a number indicating how many consecutive elements have been taken
in a feature: 1 (unigrams), 1-2 (unigrams and bigrams), 1-5 (sequences of length one to five).

2 Previous Approaches

Although focused on formal languages, Gold (1967) is usually credited as the first to attempt compu-
tational language identification. In particular, two common LI approaches, namely n-gram language
models and white (or black) lists, echo Gold’s information presentation methods. In the 1990s, language
identification was formulated as a sub-task of text categorization and varied approaches were explored.
Beesley (1988) pioneered the use of character n-grams models, which were also used by Dunning (1994)
and Cavnar and Trenkle (1994). Grefenstette (1995) compared this approach to Ingle (1978), based on
the frequency of short words. The interested reader is referred to Zampieri (2013) for a review of some
statistical and machine learning proposals and to both Baldwin and Lui (2010) and Lui and Baldwin
(2011) for an overview of some linguistically motivated models.

As Baldwin and Lui (2010) or Tiedemann and Ljubešić (2012) point out, language identification is
erroneously considered an easy and solved problem2, in part because of some general purpose systems
being available, notably TextCat3, Xerox Language Identifier4 and, more recently, langid.py (Lui
and Baldwin, 2012). While it is true that it is possible to obtain brilliant results for a small number of
languages (Baldwin and Lui, 2010) or typologically distant languages (Zampieri et al., 2013), accurately
discriminating among closely related languages or varieties of the same language has been repeatedly
reported as a bottleneck for language identification systems, in particular for those based on n-grams.

2See McNamee (2005) eloquent title.
3http://odur.let.rug.nl/vannoord/TextCat
4http://open.xerox.com/Services/LanguageIdentifier
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Back in 2004, Padró and Padró concluded that “since the tested systems tend to fail when distinguishing
similar languages (e.g. Spanish and Catalan), further research could be done to solve these cases.”
Martins and Silva (2005) report similar difficulties in discriminating among European and Brazilian
Portuguese. Ranaivo-Malançon (2006) motivates her work on the unsatisfactory performance of (then)
available language identifiers when dealing with close languages such as Malay and Indonesian. Ljubešić
et al. (2007) do not even attempt to distinguish Bosnian from Croatian when developing a Croatian
identifier because of their closeness. Trieschnigg et al. (2012) come as an exception as they report
satisfactory results in identifying sixteen varieties of Dutch with TextCat.

Ranaivo-Malançon (2006) presents a cascaded language identifier for Malay and Indonesian. It first
distinguishes Malay or Indonesian from other four European languages using trigrams extracted from
the most frequent words from each language. Texts classified as Malay or Indonesian are subsequently
scanned for some linguistic features (format of numbers and exclusive words), yielding a more precise
performance than TextCat.

Ljubešić et al. (2007) also propose a cascaded identifier that relies on ‘black lists’ to discard non-
Balkan languages and a second order Markov model on n-grams to discriminate among them, aug-
mented with a ‘black list’ component that raises accuracy up to 0.99 when dealing with the most difficult
pair (Croatian and Serbian). This work is followed up in Tiedemann and Ljubešić (2012) where 9%
of improvement over standard approaches is reported and where support for Bosnian discrimination is
included.

Huang and Lee (2008) use a bag of the most frequent words to build a voting identifier for three Chi-
nese varieties with a top accuracy of 0.929. More recently, Zampieri (2013) compares the performance
of n-gram based models to machine learning methods using bag of words when discriminating similar
languages and varieties obtaining comparable performance with both approaches.

Grouin et al. (2010) present the shared task DEFT 2010. Participants were challenged to identify
the decade, country (France and Canada) and newspaper for a set of journalistic texts. As far as the
country labeling is concerned, they report an upper 0.964 F1-measure and an average of 0.767. Very
brief descriptions of the systems are also offered.

Zampieri and Gebre (2012) present a log-likelihood estimation method for language models built on
orthographical (character n-grams), lexical (word unigrams) and lexico-syntactic (word bigrams) fea-
tures. They report a 0.998 accuracy distinguishing European and Brazilian Portuguese with a language
model based on character 4-grams. This approach is adapted in Zampieri et al. (2013) to deal with Span-
ish varieties, where the role of knowledge-rich features (POS tags) is also explored. They report a 0.99
accuracy when binarily distinguishing Argentinean and Mexican Spanish with single words or bigrams.

Trieschnigg et al. (2012) compare the performance of TextCat to the nearest neighbour and nearest
prototype in combination with a cosine distance when distinguishing among sixteen varieties of Dutch.
They report a micro-average F1-score of 0.799 (and a macro-average F1-score of 0.527) with a top
F1-score of 0.987 when dealing with Frisian.

Lui and Cook (2013) report experiments with different classifiers to map English documents to their
country of origin. An SVM classifier with bag of words is top ranked with a macro-average 0.911 F1-
score in a cross-domain setting and 0.975 in an in-domain setting.

All these previous works (with the sole exception of Trieschnigg et al. (2012), where a general purpose
LI system yields a satisfactory performance) agree in the specificity of DSL regarding LI. Maybe because
of that, two level approaches are not uncommon. Features used to discriminate seem to be language-
group specific, altough word rather than character features seem to perform better (Zampieri and Gebre
(2012) report best results for character 4-grams, however, given that European and Brazilian Portuguese
do not completely share ortography).

3 Maximum Entropy Models and Feature Engineering

Maximum Entropy modelling is a general purpose machine learning framework that has proven to be
highly expressive and powerful in many areas. Maximum Entropy (maxent) was first introduced into
natural language processing by Berger et al. (1996) and Della Pietra et al. (1997). Since its introduction,
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Maximum Entropy techniques and the more general framework of Random Fields have been applied
extensively to natural language processing problems, where maxent classifiers are commonly used as an
alternative to Naı̈ve Bayes classifiers. In maxent modelling, the probability that an example x is in a
class c is estimated from its bag of words (or n-grams) as:

p(c|x) =
1
Z

exp
∑

y∈bow(x)

N∑
i=1

wci · fi(c, y)

where fi(c, y) are indicator functions, wci is the weight assigned to feature i in class c, and Z is a
normalization factor. Features are modelled by indicator functions fi(c, y), which are evaluated to one
when the feature i for a particular class c is true for a word y and zero otherwise. The following is an
example of an indicator function modelling the presence of a particular word in a class:

f1(c, y) =
{

1, c = en-GB ∧ y = ‘colour’
0, otherwise

The class assigned to an example x is the most probable one:

ĉ = arg max
c∈C

p(c|x)

The maxent classifiers are implemented with the toolkit of Zhang Le (2004), and the parameters of the
model are estimated using Generalized Iterative Scaling (Darroch and Ratcli, 1972).

Having chosen a closed approach to the DSL shared task, no other resources than the text samples
given as training and development datasets have been used in features design. In this knowledge-poor
approach to the problem, the maxent classifier has been trained with token and character n-gram features.
Character-based features are obtained with a simple character tokenizer. However, for token-based fea-
tures, texts are tokenized using an orthographic tokenizer which splits punctuation from words. Several
bags of features have been considered during the experiments: single tokens (T1), single words from the
list of the 10,000 most frequent tokens (L1), token bigrams (T2), and n-grams of character sequences of
length from one to five (C1-5). We will also refer to the lists of the 10,000 most frequent words as ‘white
list’, which have a complementary role to the ‘black lists’ of Tiedemann and Ljubešić (2012).

To determine which features are best suited to each group, we measured their performance using ten-
fold cross-validation on the training dataset and using the development dataset for testing. For group A,
best results were obtained using bag of features consisting of variable length character n-grams ranging
from one to five (C1-5). On group B, token bigrams (T2) performed slightly better in the development
set than in the training set than the ‘white list’ of tokens (L1), which seems to indicate a better general-
isation of the former on unseen examples. Results for group C were similar for all features considered.
Regarding groups D and E, token-based features got similar results, with slightly better results for token
bigrams. Finally, for English (group F) results were generally bad, reaching the ‘white list’ the better
results. Group F is known to contain more than a few misclassifications due to news cross citing be-
tween American and British press. Results for each group’s best model using ten-fold cross-validation
on the training dataset are shown in Table 1. All figures have been macro averaged, i.e., they have been
computed averaging the ten folds.

Because best results for each group are obtained with different feature sets, a new classifier is in-
troduced. This classifier determines the language/variety group of each example before applying its
particular group classifier. As can be seen in Table 2, the degree of token overlap between languages and
varieties of different groups is rather low compared with the degree of overlap within the same group.
Using only tokens, total accuracy is reached on the training dataset using cross validation. A classifier
applying several classifiers in the way we propose is known as a hierarchical two-level classifier.

4 Evaluation and Error Analysis

Having as a goal to assess the performance of the hierarchical maxent classifier with the DSL task
dataset, models were trained using all the examples provided in the training and development datasets.
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bs hr sr id my sk cz pt-BR pt-PT es-AR es-ES en-GB en-US
bs 35.51 31.29 2.25 2.05 2.09 1.95 1.91 2.00 1.92 1.99 2.09 2.10
hr 41.18 2.47 2.21 2.15 2.04 2.08 2.20 2.12 2.16 2.42 2.39
sr 2.06 1.74 1.95 1.79 1.63 1.72 1.69 1.69 1.68 1.68
id 19.02 2.36 2.47 4.00 4.14 4.35 4.21 6.81 6.74
my 1.91 2.00 3.43 3.61 3.75 3.52 6.40 6.23
sk 9.45 2.12 2.15 2.20 2.22 2.55 2.56
cz 2.18 2.25 2.24 2.27 2.73 2.70

pt-BR 29.17 12.04 11.63 4.62 4.60
pt-PT 12.14 12.50 4.92 4.94
es-AR 30.91 5.52 5.52
es-ES 4.89 4.90
en-GB 32.76
en-US

Table 2: Lexical overlap between pairs of languages as a percentage. Only orthographic forms and
punctuation signs appearing more than once in the training dataset has been considered.

Group Model Lang/Var Precision Recall F1-score

A C 1-5
bs 0.903 0.875 0.889
hr 0.923 0.931 0.927
sr 0.928 0.951 0.939

B L 1
id 0.991 0.996 0.993
my 0.996 0.991 0.993

C T 1-2
cz 1.000 1.000 1.000
sk 1.000 1.000 1.000

D T 1-2
pt-BR 0.933 0.964 0.948
pt-PT 0.962 0.931 0.946

E T 1-2
es-AR 0.950 0.819 0.879
es-ES 0.840 0.957 0.895

F L 1
en-GB 0.486 0.713 0.578
en-US 0.463 0.247 0.322

Overall without F 0.948 0.948 0.947
Overall 0.875 0.870 0.872

Table 3: Macro-averaged Precision, Recall and F1-score on the DSL test dataset. Models are described
in Table 1.

Table 4 shows the confusion matrix for the classifier on the test dataset and Table 1 the results in terms
of precision, recall and F1-score for each language and variety. As can be seen in Table 4, no example
has been classified outside in a wrong group.

Tan et al. (2014) provide a baseline using a Naı̈ve Bayes classifier on character 5-grams. As can be
seen if Table 3 is compared with Table 4 of Tan et al. (2014), figures for group A are slightly below the
baseline, groups B and C achieve the same results, D and E groups get slightly better results with the
maxent classifier, and the biggest difference is found in group F, having better results Naı̈ve Bayes. The
overall result without group F is similar: an F1-score of 0.947 for maxent and 0.942 for Naı̈ve Bayes.

The DSL Corpus is composed of journalistic comparable texts to make the corpus suitable for discrim-
inating similar languages and languages varieties but not text types or genres. Tiedemann and Ljubešić
(2012) avoid biases towards topic and domain by experimenting with parallel texts reaching an overall
accuracy of 90.3% for group A (br, hr, sr) using a ‘black list’ classifier and comparing its results with a
Naı̈ve Bayes approach. They found that the ‘black list’ classifier generalise better than the Naı̈ve Bayes
approach when moving from parallel to comparable corpora, since the former classifier is based on more
informative features than the later.

Results of ten-fold cross-validation on the training dataset for different feature settings for group E
(Spanish) were consistent with those of Zampieri et al. (2013), where word bigrams are reported to
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bs hr sr id my cz sk pt-BR pt-PT es-AR es-ES en-GB en-US
bs 875 61 64 0 0 0 0 0 0 0 0 0 0
hr 60 931 9 0 0 0 0 0 0 0 0 0 0
sr 33 16 951 0 0 0 0 0 0 0 0 0 0
id 0 0 0 996 4 0 0 0 0 0 0 0 0
my 0 0 0 9 991 0 0 0 0 0 0 0 0
cz 0 0 0 0 0 1,000 0 0 0 0 0 0 0
sk 0 0 0 0 0 0 1,000 0 0 0 0 0 0

pt-BR 0 0 0 0 0 0 0 964 36 0 0 0 0
pt-PT 0 0 0 0 0 0 0 69 931 0 0 0 0
es-AR 0 0 0 0 0 0 0 0 0 819 181 0 0
es-ES 0 0 0 0 0 0 0 0 0 43 957 0 0
en-GB 0 0 0 0 0 0 0 0 0 0 0 571 229
en-US 0 0 0 0 0 0 0 0 0 0 0 602 198

Table 4: Confusion matrix for the hierarchical maxent classifier on languages and varieties in the DSL
test dataset. The 1,000 Bosnian texts have been classified as Bosnian (875), Croatian (61) and Serbian
(64).

Group Language/Variety Code

A
Bosnian bs
Croatian hr
Serbian sr

B
Indonesian id
Malay my

C
Czech cz
Slovak sk

D
Brazilian Portuguese pt-BR
European Portuguese pt-PT

E
Argentine Spanish es-AR
European Spanish es-ES

F
British English en-GB
American English en-US

Table 5: Languages and varieties groups and codes.

outperform character n-grams. Given that datasets are not identical, it is difficult to draw any conclusion
from the 1.2% difference in accuracy between DSLRAE and Zampieri et al. (2013). Manual inspection
of misclassified news suggests some textual properties that are specially challenging: a) high density of
foreign proper names (Russian, Baby, Pony, Jack, . . . ) may dilute the evidence provided by vernacular
words; b) conversely, low density of features specific to any variant (such as place or family names5,
demonyms, lexical choices) may be insufficient to drive the text to the right class; this is also the case of
some perfectly neutral sentences where a trained linguist could not spot any clue about their origin; c)
certain syntactical idiosyncrasies (for example Argentinian idioms la pasas bien, tal como muchas veces,
en exceso de) are not captured by bigrams; d) there are instances of cross-information, e. g., Argentinian
news about Spain and vice versa where maybe more of a topic rather than a variety is being detected
(e. g., news about Urdangarı́n or Fernández de Kirchner); e) there are some typos and misspellings
(carabanas, dosco) whose role remains unclear; e) finally, there is at least one text misclassified in the
gold standard: it is labeled as Argentinian but it was written by the Spanish EFE news agency. Some of
these difficulties cross-cut all language groups and are not specific to Spanish but rather to DSL as a task.

In contrast to what Zampieri and Gebre (2012) found, ten-fold cross-validation on the training dataset
for different feature settings on the DSL dataset did not find character n-grams to outperform word n-
grams for group D (Portuguese). It could be hypothesized that they used a unique source (newspaper)
for each variety and therefore rigid editorial conventions could be at play; moreover, the collections were

5Zampieri and Gebre (2012) highlight the importance of proper nouns when using word n-grams.
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three years distant, so topic consistency could also be compromised6. Manual inspection of mislabeled
sentences shows some already known categories: evidence diluted by foreign words (Red Brick Ware-
house, Mészáros, Fat Duck), poor evidence (Valongo, Sao Paulo) or cross-information (TAP, Brası́lia).
There is, however, a Portuguese-specific issue: some texts obey the 1990 Orthographic Agreement7

which blurs the orthographic distinctions regarding diacritics or consonant clusters; in fact, one sentence
contains words following both standards (perspectiva and reprodução). It remains unexplained why
word bigrams did not capture the Brazilian preference for passive voice (foram rebaixados), auxiliary +
gerund chunks (estamos utilizando) or clitic dropping (lembro).

Despite findings by Tiedemann and Ljubešić (2012), character n-grams performed better during ten-
fold cross-validation on the training dataset for different feature settings on the DSL dataset for group A
(Bosnian, Croatian and Serbian). Misclassified sentences involve failing to capture adapted place names
(Belgiji, Švedskoj) or derivational choices (organiziranog).

Results of ten-fold cross-validation on the training dataset for different feature settings for group B
(Indonesian and Malay) top ranked word unigrams. Ranaivo-Malançon (2006) uses number formatting
and exclusive word lists. It can be hypothesized that lexical overlap is low (see Table 2) and/or frequency
distributions are dissimilar thus allowing word unigrams to perform as well as ‘white lists’.

Languages of group C (Czech and Slovak) are dissimilar both orthographically and lexically. These
dissimilarities are surprisingly well captured by the top 10,000 most frequent words.

5 Conclusions and Future Work

In this paper, we have shown that a hierarchical classifier is well suited to discriminate among different
language groups and languages or varieties therein. Different features are shown to better suit typological
traits of supported languages. A comparison to previous approaches is provided, when available.

In a multilingual setting, the effect of adding Galician to group D could be investigated. Focusing on
Spanish language, we plan to geographically expand the classifier to deal with all national varieties, a
much harder task as both Baldwin and Lui (2010) and Zampieri et al. (2013) remark. Moreover, the
classifier could be used, as Tiedemann and Ljubešić (2012) suggest, to learn varieties discriminators to
label texts beyond national classes (e.g. both Caribbean and Andean Spanish cross-cut national borders
and, conversely, nations involved are known not to be dialectally uniform). Given that error analysis
showed that word bigrams fail to capture certain syntactical idiosyncrasies, a model with longer n-grams
and/or knowledge-richer features such as POS sequences could also be explored, although Zampieri et al.
(2013) report lower performance than knowledge-poor features. Finally, classification techniques such as
those described in Gyawali et al. (2013) may be used to discard translations when building monolingual,
vernacular corpora.

A diachronic expansion, such as Trieschnigg et al. (2012), is also in mind. Medieval Castilian coex-
isted with other Romance varieties such as Leonese or Aragonese whose features permeated Castilian
texts. Researchers are in need of a tool to properly classify diachronic texts to accurately describe older
stages of Spanish. Following the suggestion of Tiedemann and Ljubešić (2012), we envisage the use of
parallel texts such as versions of the Bible from different areas to learn the differences among varieties.
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