
D S Sharma, R Sangal and J D Pawar. Proc. of the 11th Intl. Conference on Natural Language Processing, pages 146–149,
Goa, India. December 2014. c©2014 NLP Association of India (NLPAI)

Identification of Karaka relations in an English sentence

Sai Kiran Gorthi, Ashish Palakurthi, Radhika Mamidi, Dipti Misra Sharma
International Institute of Information Technology - Hyderabad
{saikiran.gorthi, ashish.palakurthi}@research.iiit.ac.in

{radhika.mamidi, dipti}@iiit.ac.in

Abstract

In this paper we explain the identification
of karaka relations in an English sentence.
We explain the genesis of the problem
and present two different approaches, rule
based and statistical. We briefly describe
about rule based and focus more on sta-
tistical approach. We process a sentence
through various stages and extract features
at each stage. We train our data and iden-
tify Karaka relations using Support Vector
Machines (SVM). We also explain the im-
pact of our work on Natural Language In-
terfaces for Database systems.

1 Introduction

In any sentence, it is important that the relations
between words are expressed properly in order
to understand it. There are many widely used
relations between words like subject and object
relations, agent-patient of thematic relations.
These are commonly used relations that we come
across. The Computational Paninian Grammar
(CPG) framework uses Karakas to express re-
lations between words in a sentence. Karakas
are classes with which relations between words
in a sentence can be expressed. One of the key
features of the karaka relations is that they are
verb centric. All the relations are dependent on
the main verb of the sentence. The advantage of
using Karakas is that they provide proper mapping
between verb and its relations using a very small
set of tags. By providing a good understanding
of the syntactic as well as the semantic relations,
they help in resolving ambiguities posed by a
sentence.
There are around 24 Karakas in total, but we
generally take into consideration only 6 Karakas
which are frequently occurring (75%) in most of
the sentences. They are karta (k1), karma (k2),

karana (k3),sampradaan (k4), apadaan(k5) and
adhikarana (k7). Karta is the doer of the action.
It is independent of the other Karakas. Karma is
the object of the action or verb. Karana helps in
completing action. It acts as an instrument in the
completion of the action. The beneficiary of the
action is known as sampradana and the source
of the action is called apadaan. There are three
types of k7 Karakas namely k7t, k7p and k7. k7t
denotes the time of action, whereas k7p denotes
location of the doer or patient at the time of action.
k7 represents location in topic. In the example,
John gave the book to Clarke, we have John, who
is the doer of the action as karta(k1), bag, which
is the object of the action as karma(k2), Clarke,
the beneficiary or sampradaan(k4) of the action.
Let us take another example, He played cricket
yesterday. Here yesterday is k7t. In this way, we
can get different relations expressed for different
sentences based on the verb.
NLIDB1 system converts an input natural lan-
guage query into an SQL query and then gets
the answer from respective database by running
the query on it. The NLIDB system proposed
by (Gupta et al., 2012) requires two stages in the
processing of the input query. The first stage is
the syntactic stage and the second stage is the
semantic stage.
In the syntactic stage, they give the input sentence
to Stanford dependency parser. Once they get
Stanford dependencies, they map them to karaka
relations. These identified karakas are then used
in the semantic stage to build semantic frames.
This is where our work comes into effect. By
identifying karaka relations in an English sen-
tence, we address the issue of identifying karaka
relations in the syntactic stage more effectively.

1Natural Language Interface for Databases146



2 Related work

Significant work happened in the identification
of karaka relations in Indian languages. This is
the first attempt to work on identifying karaka
relations in English. (Bharati et al., 2008) demon-
strated on constraint based parsing for free word
order languages. (Vaidya et al., 2009) showed
that it is possible to apply CPG to English. We
propose a statistical method for identifying karaka
relations from a given sentence using machine
learning.
The remainder of this section is organized as
follows. In section 3, we explain our different
approaches. In section 4, we discuss about the
experiments and results. In section 5, we discuss
the impact of our system. In section 6, we
conclude and discuss about future work.

3 Approach

3.1 Rule-based approach
The following are the steps we followed for identi-
fying Karaka relations in English using rule based
approach:

• As a first step, we analyzed the queries we
made for the NLIDB system of our university
courses portal.

• We generated the Stanford parse for each
query and tried to map each dependency re-
lation to a CPG relation.

• We then generated a rule set to to automate
the mapping from Stanford dependencies to
CPG relations.

• We developed a preference-based allotment
system for the purpose of mapping.

• After parsing each query from the Stanford
parse, we take the dependency relations from
it and check them from the rules table in col-
umn2.

• If we find a relation, we map it to its corre-
sponding CPG label. We continue this pro-
cess for each Stanford dependency relation.

The overall performance of the system with the
method above is 52%. We adopted a statistical
approach for better results.

Karaka relation Stanford dependency relation
k1 nsubj (subject)
k2 dobj (object)
k3 prep with
k4 prep to
k5 prep from
r6 poss
k7 prep at

Table 1: Basic rules for mapping

4 Statistical approach

4.1 Stage 1 DataExtraction

English Dependency Tree bank data is in SSF2 for-
mat. We processed each sentence and extracted all
of its relations(child node, parent node, karaka re-
lation).We got 2557 such relations.

4.1.1 Example
4.1.1.1 SSF Sentence id=’2’ 1((NPfsaf =′
′drel =′ k1 : V G′name =′

NP ′ 1.1BipashaNNPfsname =′

Bipasha′ ))2((V Gfsaf =′ ′name =′

V G′ 2.1stormsVMfsaf =′

storm, n,m, p, 3, 0 ′name =′

storms′ ‖fsaf =′ storm, v,m, s, 3, 0 ′tense =′

PRES′ ))3((PRTfsname =′ PRT ′drel =′

pof idiom : V G′ 3.1outRPfsaf =′

out, p,m, s, 3, 0 ′name =′ out′ ‖fsaf =′

out, n,m, s, 3, 0 ′ ‖fsaf =′

out, adj,m, s, 3, 0 ′ ‖fsaf =′

out,D,m, s, 3, 0 ′ ‖fsaf =′

out, v,m, s, 3, 0 ′ |fsaf =′

out, p,m, s, 3, 0 ′ ))4((PPfsname =′

PP ′drel =′ k5 : V G′ 4.1ofINfsaf =′

of, p,m, s, 3, 0 ′name =′

of ′ 4.2((NPfsname =′

NP2′ 4.2.1filmNNfsaf =′

film, n,m, s, 3, 0 ′name =′ film′ ‖fsaf =′

film, v,m, s, 3, 0 ′ 4.2.2festivalNNfsaf =′

festival, n,m, s, 3, 0 ′name =′

festival′ 4.2.3GoaNNfsaf =′

goa, n,m, s, 3, 0 ′name =′

Goa′ ))))5.SYMfsaf =′

., punc, n, s, 3, 0 ′name =′ .′ /Sentence

4.1.1.2 Extracted data

4.1.1.2.1 Sentence Bipasha storms out of
film festival Goa.

2Shakti Standard Format147



4.1.1.2.2 Relations Bipasha, storms, k1
out of... , storms, pof idiom
Goa, storms, k5

4.2 Stage 2 DependencyParse

Having extracted English sentence for each rela-
tion, we got the Stanford Dependency parse struc-
ture for the sentence. We then run a parallel check
for the same sentence in the karaka relation we
extracted in the first step. For a matching rela-
tion(child node, parent node), we add the corre-
sponding verb of the relation(from Stanford De-
pendency Tree) and Stanford Dependency label to
the relation and update as (verb of the relation,
child node, parent node, Stanford dependency re-
lation, karaka relation). Lets call it feature set.

4.2.1 Examples

storms, Bipasha, storms, nsubj, k1
storms, out of... , storms, prep out of, pof idiom

4.3 Stage 3 RootV erbExtraction

We also extract the verb with respect to a relation
in the format aforementioned. We take this verb
from the feature set and replace with it’s root verb
using Morphadoner(Burns, 2013).

4.3.1 Example

declared - declare
said - say

4.4 Stage 4 V erbClassification

Beth Levin defined classes for verbs(Levin, 2011)
based on their action. Each verb could fall into
different categories depending on their varied ac-
tion. Two verbs having the same set(list of differ-
ent classes they belong to) could be considered as
similar verbs. Using this classification, we built a
dictionary (key : verb, value :class number). Us-
ing this dictionary, we replace the root verb in the
feature set with its class number.

4.4.1 Example

abandon - 1
abate - 3
desert - 1

4.5 Stage 5 POSTagging

The first two features we considered are the two
words in the relation. The data is so sparse that
the frequency of any noun in the entire dataset is
frequently 1, very less, when we’re dealing with
a machine learning application which needs good
density in the data point distribution. Since the
data is very sparse and considerably less, we re-
placed the words in the relation with their POS
tags. This step ensure that the features are more
specific and suitable for training. We anyway get
the stanford parse, so it’s POS tags could also be
used.

4.5.1 Example
Bipasha, storms : nsubj, VG

4.6 Stage 6 FeatureEnumeration

The feature set is ready. Now we need to make
an appropriate format of the features. Machine
Learning methods usually take features as num-
bers(each feature is a dimension).
From the annotated data, we’ve the result that
these four features map to. We enumerate that too.

4.6.1 Example
Fx is Feature #x, OP is Output for the relation
{F1 F2 F3 F4 OP} is feature set
{685 VBD PRP nsubj k1} correspond to {1 1 1 1
1}.
685 is the verb class. It’s given #1 because it
comes first in the data. All other instances of 685,
VBD, PRP, nsubj, k1 in the data also get the same
numbers as these.

4.7 Stage 7 Cross− V alidation

Using Support Vector Machines(Chang and Lin,
2011) and cross-validation method, we trained
and tested on the enumerated feature set.

We experimented by dividing the data into 1:4,
3:7 and picked the best accuracy.

5 Experiments and results

Our training set consists of 18,345 tokens. Our
dataset consisted of 1479 sentences. We divided
our training sets into 4 equal subsets. One of the
subsets is kept as a test set and we use the remain-
ing three subsets for training. We repeated this148



process for 4 times to get an average result, which
is called the 4-fold cross validation. After con-
ducting many experiments and applying the grid-
search method, we found that c=8.0 and g=0.125
were the values giving the best results. We exper-
imented on the following kernels:

1. Polynomial Kernel.

2. Radial Basis Function kernel (RBF).

3. Linear Kernel.

Polynomial RBF Linear
d A g A c A
1 73.28% 0.125 74.14% 6.0 74.42%
2 74.26% 0.3 73.21% 8.0 74.14%
3 72.54% 0.6 73.23% 10.0 73.83%
4 67.10% 0.8 70.78% 12.0 73.75%

Table 2: Results

In the results table, d is the degree of the
polynomial kernel.
g, c are the gamma and cost parameters respec-
tively.

6 Impact

We used our module in the NLIDB system in the
syntactic stage. We investigated our results over
213 natural language queries. Our module was
found to be effective in improving the accuracy
of the ’Stanford dependency to karaka mapping’.
The error rate of the syntactic stage decreased by
4.79%, thus improving the overall performance of
the NLIDB system.

7 Conclusions and Future work

This paper presents a statistical approach and
a brief overview of rule based approach for
identification of karaka relations in English. We
would go further to explore more features and
experiment with larger data-sets. We shall include
many semantic features so that mapping becomes
more compact.

Acknowledgements

We thank Yeka Jayendra Rakesh for his useful
insights and Shalaka Vaidya for helping us with

the extraction of data.

References
Akshar Bharati, Samar Husain, Dipti Misra Sharma,

and Rajeev Sangal. 2008. A two-stage constraint
based dependency parser for free word order lan-
guages. In Proceedings of the COLIPS Interna-
tional Conference on Asian Language Processing
2008 (IALP).

Philip R Burns. 2013. Morphadorner v2: A java li-
brary for the morphological adornment of english
language texts. Northwestern University, Evanston,
IL.

Chih-Chung Chang and Chih-Jen Lin. 2011. Lib-
svm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology
(TIST), 2(3):27.

Abhijeet Gupta, Arjun Akula, Deepak Malladi,
Puneeth Kukkadapu, Vinay Ainavolu, and Rajeev
Sangal. 2012. A novel approach towards build-
ing a portable nlidb system using the computational
paninian grammar framework. In Asian Language
Processing (IALP), 2012 International Conference
on, pages 93–96. IEEE.

Beth Levin. 2011. Verb classes within and across lan-
guages. Handout, Leipzig, April.

Ashwini Vaidya, Samar Husain, Prashanth Mannem,
and Dipti Misra Sharma. 2009. A karaka based an-
notation scheme for english. In Computational Lin-
guistics and Intelligent Text Processing, pages 41–
52. Springer.

149


