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Abstract

A robust voice activity detection (VAD) is
a prerequisite for many speech based ap-
plications like speech recognition. We in-
vestigated two VAD techniques that use
time domain and frequency domain char-
acteristics of speech signal. The temporal
characteristic of the autocorrelation lag is
able to discriminate speech and nonspeech
regions. In the frequency domain, peak
value of the magnitude spectrum in differ-
ent sub-bands is used for VAD.

Performance of the proposed methods
are evaluated on TIMIT database with
noises from NOISEX-92 database at var-
ious signal-to-noise ratio (SNR) levels.
From the experimental results, it is ob-
served that VAD based on autocorrelation
lag is working consistently better than the
maximum peak value of the autocorrela-
tion function based method. However,
it performs inferior compared to our sec-
ond approach and AMR-VAD2. Our sec-
ond approach i.e., VAD based on maxi-
mum spectral amplitude in sub-bands out-
performs AMR-VAD2 and Sohn VAD for
some noise conditions. Moreover, it is
shown that a threshold independent of
noises and their levels can be selected in
the proposed method.

1 Introduction

Voice activity detection (VAD) aims at separating
the background noise and speech. VAD plays an
important preprocessing role in applications like
automatic speech recognition (Karray and Martin,
2003), speaker verification (Kinnunen and Rajan,

2013), wireless communications (Beritelli et al.,
1998), speech enhancement for hearing aids (Itoh
and Mizushima, 1997), etc. So, there has been
growing interest for developing a robust VAD in
low signal-to-noise ratio (SNR) conditions.

Approaches to VAD can be broadly classified
as model-based and non-model based (signal pro-
cessing) methods. One of the recent model-based
approaches is based on using non-negative sparse
coding (Teng and Jia, 2013). In this, a dictio-
nary is trained for speech and noise separately and
are concatenated to form a global dictionary. The
noisy signals are represented as linear combina-
tion of elements of global dictionary. One inherent
drawback of this technique is that it assumes noise
during the test time to be known apriori.

In addition, there are also statistical model-
based VADs (Sohn et al., 1999) (Ramirez et al.,
2005) (Tan et al., 2010). Here, typically the noisy
speech complex spectrum is assumed to follow a
distribution like Gaussian and the parameters are
estimated using various methods. This is followed
by a likelihood ratio test on each frame to declare
the signal frame to be speech absent or speech
present. Improvements to incorporate continuity
(Ramirez et al., 2005) and robustness (Tan et al.,
2010) have also been proposed. Most of these
techniques assume the noise statistics like variance
to be known apriori. In general, these techniques
perform poorly in low SNR conditions (You et al.,
2012).

On the other hand, there are signal processing
based approaches like using long-term signal vari-
ability (Ghosh et al., 2011), spectral flux (Sad-
jadi and Hansen, 2013), time-domain autocorrela-
tion function (Ghaemmaghami et al., 2010), sub-
band order statistic filters (Ramirez et al., 2004)
to the VAD problem. These primarily involve ex-48



tracting a feature which is specific to speech and
robust to various noises. For example, method
based on time autocorrelation function proposed
in (Ghaemmaghami et al., 2010), uses maximum
peak of autocorrelation function (at non-zero lag)
as the feature along with quasi periodicity prop-
erty of speech to improve the robustness of VAD.
In our time domain approach, we compare the per-
formance of VAD using maximum peak of auto-
correlation function (at non-zero lag) as a feature
against the corresponding lag of autocorrelation
function. The method using maximum peak of au-
tocorrelation function (at non-zero lag) is referred
to as ACF-MAX and that using corresponding
lag is referred to as ACF-LAG hereafter. In fre-
quency domain, the maximum amplitude of mag-
nitude spectrum in sub-bands is used as a feature
for VAD, we refer to this method as MSA-SB.
While ACF-LAG method can be looked upon as
an excitation based method, the MSA-SB can be
accounted as a system based technique. Our tech-
niques use speech production based features and
are expected to be robust to a wide variety of noise
conditions.

Our contributions in this paper are, investigat-
ing robustness of autocorrelation lag over peak
method, proposing the use of maximum spectral
amplitudes in speech specific sub-bands and com-
bining these contours along with mean, variance
normalizations to get a threshold independent of
noises and their dBs.

Rest of the paper is organized as follows. The
database and evaluation metrics used are described
in Section 2. The detailed description of time do-
main approach is given in Section 3. Section 4
discusses the frequency domain technique. Con-
clusions follow in Section 5.

2 Database and Evaluation Metrics

The test signals are created by taking clean
speech signals from TIMIT (tim, 1993) corpus and
synthetically adding noise from the NOISEX-92
(Varga and Steeneken, 1993) corpus. Around 80
signals from TIMIT corpus sampled at 16000 Hz
are taken. 10 signals from each of eight dialects
with 7 male and 3 female sentences are randomly
selected. Every signal is appended with approx-
imately 2 sec silence before and after the speech
signal and then noise is added to it at desired SNR.
Seven different noises are used from NOISEX-92
database and SNRs at -10dB, -5dB, 0dB and 5dB

are considered. Approximately, each test signal
has 40 % of noisy speech part and 60 % of noise
part. The ground truth is generated by consider-
ing the appended silence along with labels of ‘ h#
’, ‘ pau ’ and ‘ epi ’ in the TIMIT phone file as
nonspeech and the other regions as speech. False
alarm rate (% FAR) and miss rate (% MR) are used
as evaluation metrics, and are given by,

%FAR =

(
nonspeech samples detected as speech

total number of nonspeech samples

)
×

100

%MR =

(
speech samples detected as nonspeech

total number of speech samples

)
×

100

The half total error rate (HTER) (Ghaem-
maghami et al., 2010) is computed as the mean of
FAR and MR. For a good VAD algorithm, FAR,
MR and HTER must be as low as possible.

3 The Time Domain Method
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Figure 1:Illustration of ACF-LAG and ACF-MAX
methods; (a) Noisy speech signal (white noise at
-10 dB), (b) Lag at the maximum in ACF plot, (c)
Difference of (b), (d) Maximum peak of normal-
ized ACF, (e) VAD from ACF-LAG method (dis-
played on clean speech signal for reference), (f)
VAD from ACF-MAX method (displayed on clean
speech signal for reference)

The time domain autocorrelation function has
been used in the past for many basic speech pro-
cessing tasks like pitch extraction (de Cheveign
and Kawahara, 2002). These methods exploit two
key features associated with the autocorrelation
function, one is the lag of the maximum peak
which is usually used to computeF0 and the other49



is the amplitude of maximum peak which is used
to decide whether a speech frame is voiced or un-
voiced. The maximum amplitude of autocorrela-
tion function (ACF-MAX) is not a robust feature
in low SNR conditions. So, in (Ghaemmaghami et
al., 2010), along with ACF-MAX, the quasi peri-
odicity property of speech is incorporated as a fea-
ture by using the cross-correlation to take the VAD
decision. To exploit quasi-periodicity of speech,
we propose to use the lag of the autocorrelation
function (ACF-LAG) as a feature for VAD. The
basis for our method comes from the observation
that the pitch period of speech signals is locally
stationary and varies smoothly in voiced regions
(e.g., Fig. 1(b) region around 2-2.5 sec) where as
in noise or unvoiced regions the lag varies errat-
ically (e.g., Fig. 1(b) region around 0-1 sec). It
is this speech specific feature which is exploited
here to detect speech and noisy regions in a given
signal. To the best of authors knowledge, pitch pe-
riod or lag has not been solely used for VAD previ-
ously. Hence, ACF-LAG performance is analysed
for VAD in this section.

In our method, the input speech is segmented
into frames with frame size of 20 ms and shift of
10 ms. Letxp[n] be thepth signal frame, the nor-
malised autocorrelation function for the frame is
computed as,

Rp[l] =

L−l−1∑
n=0

xp[n]xp[n+ l]

L−1∑
n=0

xp[n]xp[n]

(1)

wherel is the autocorrelation lag andL is the
length of the signal frame. Usuallyl is limited be-
tween 2 ms and 20 ms because any value of pitch
outside this range is considered to be spurious.

V (p) = max Rp(l) (2)

I(p) = argmax
l

Rp(l) (3)

whereV (p) is the peak of autocorrelation func-
tion at non-zero lag andI(p) is the corresponding
lag at which the peak occurs per frame.

In ACF-MAX method, peak of autocorrelation
function (eq. 2) is thresholded to get the VAD
decision. In ACF-LAG method, VAD decision is
made using the lag (eq. 3) corresponding to max-
imum of autocorrelation function.I(p) is plot-
ted in Fig. 1(b). From the plot, it can be seen

that for unvoiced/noise regions the values of in-
dex vary randomly where as in voiced regions, it
varies smoothly. This characteristic of the con-
tour is used to detect voiced and unvoiced/noise
regions in speech. The difference operation on
contour, will give its slope and slope should be
minimal when the contour is slowly varying. VAD
decision is taken by setting a threshold on differ-
enced vector. Fig. 1 (e) and (f), shows VAD de-
cisions from ACF-LAG and ACF-MAX methods
respectively. It can be seen that ACF-LAG method
performs better than ACF-MAX method.

Table 1:FAR and MR for various noises in differ-
ent SNRs for ACF-LAG and ACF-MAX methods

White 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

ACF-LAG 52.90 0.05 58.61 0.04 67.64 0.04 81.96 0.01
ACF-MAX 71.21 0.00 82.82 0.00 93.79 0.00 99.24 0.00

Pink 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

ACF-LAG 57.90 0.07 65.64 0.04 78.22 0.04 91.95 0.09
ACF-MAX 69.71 0.00 81.44 0.00 92.62 0.00 98.89 0.00

HFchannel 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

ACF-LAG 55.49 0.09 63.38 0.09 75.44 0.16 89.96 0.09
ACF-MAX 70.40 0.00 82.01 0.00 93.70 0.00 98.94 0.00

Factory1 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

ACF-LAG 55.52 3.29 63.46 4.70 76.03 3.83 88.07 3.62
ACF-MAX 69.96 0.02 81.25 0.01 92.03 0.00 98.00 0.00

Buccaneer1 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

ACF-LAG 57.17 0.21 65.16 0.26 78.23 0.19 90.99 0.28
ACF-MAX 70.73 0.00 83.04 0.00 94.25 0.00 99.29 0.00

Volvo 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

ACF-LAG 56.61 0.07 63.99 0.04 75.32 0.01 87.07 0.00
ACF-MAX 63.70 0.01 72.07 0.01 83.25 0.00 92.36 0.00

Babble 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

ACF-LAG 51.25 19.28 59.45 16.71 70.41 17.81 77.93 17.27
ACF-MAX 66.33 3.58 77.52 3.07 89.15 3.93 95.17 3.51

3.1 Results

Table 1 reports MR and FAR of ACF-LAG and
ACF-MAX methods. FAR is low for both the
methods across all the noises at different SNRs.
This implies that rejection of nonspeech by both
the algorithms is equally good. It can also be ob-
served from the Table 1 that ACF-LAG method
has relatively lower MR than the ACF-MAX
method. Hence, our hypothesis that lag of the
autocorrelation function at the maximum is a ro-
bust feature compared to the peak value itself is
evident. The MR is high in both the methods in-
dicating that actual speech is missed in most of
the cases. This is due to the fact that proposed
methods work only for voiced regions but ground50



truth includes both voiced and unvoiced regions
as speech. Thus both the techniques are far from
being useful as a practical VAD and hence we ex-
plore the frequency domain approach.

4 The Frequency Domain Method

The resonances of the vocal tract are high energy
regions in the spectrum and are hence expected
to be robust to noisy conditions. Due to inherent
constraints in the human speech production mech-
anism, the variation of spectrum is slow as com-
pared to noisy regions. This fact has been used in
the literature for VAD, by utilizing feature such as
spectral flux. However, our technique differs from
all the previous techniques by making use of max-
imum of the magnitude spectrum alone as the fea-
ture. The maximum in magnitude spectrum cor-
responds to the strength of a resonance of vocal
tract in speech regions and is used as a feature to
distinguish speech from nonspeech.

The given noisy signal is first segmented into
frames with frame size of 25 ms and hop of 5 ms.
Each frame is windowed with a hamming win-
dow. The discrete Fourier transform (DFT) forpth

frame of the signal is computed as,

Xp[k] =
N−1∑

n=0

xp[n]e
− j2πkn

N (4)

whereN is the number of DFT points andk
ranges from0, · · · , N − 1. N is set to 2048 in our
experiments. Then the maximum of the magnitude
part of the complex spectrum for each frame is the
desired spectral feature.

M(p) = max |Xp(k)|; k = 0, 1, · · · , N−1 (5)

In Fig. 2, noisy signal (signal corrupted with
white noise at -5 dB) is shown in (a) and the cor-
responding maximum of the DFT spectrum ex-
tracted per frame is plotted in (b). It is observed
that in the noise part, there is a high frequency rip-
ple (e.g., Fig. 2(b) region around 0-1 sec) and in
the speech region the variation of maximum over
time is slow and smooth (e.g., Fig. 2(b) region
around 2-3 sec). So, an FIR filter is used for low-
pass filtering to remove the ripple. The low-pass
filtered version of the maximum contour is plotted
in (c) which is then thresholded to take the VAD
decision.

While this method works for white noise, it fails
for few noises like pink and volvo. As can be seen

from the Fig. 3 (b) and (c), for pink noise (at -5 dB
SNR), passing the maximum contour through the
low-pass filter, even the noisy region has a slowly
varying maximum amplitude. This is because of
the high concentration of low frequency energy in
pink noise.
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Figure 2:The maximum contours of the DFT spec-
trum in white noise at -5 dB; (a) Noisy signal, (b)
Maximum amplitude in the magnitude spectrum,
(c) Low-pass filtered signal of (b), (d) Maximum
amplitude in the resonance 1 sub-band of magni-
tude spectrum, (e) Low-pass filtered signal of (d),
(f) VAD from MSA-SB method (displayed on clean
speech signal for reference)
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Figure 3:The maximum contours of the DFT spec-
trum in pink noise at -5 dB; (a) Noisy signal, (b)
Maximum amplitude in the magnitude spectrum,
(c) Low-pass filtered signal of (b), (d) Maximum
amplitude in the resonance 1 sub-band of magni-
tude spectrum, (e) Low-pass filtered signal of (d),
(f) VAD from MSA-SB method (displayed on clean
speech signal for reference)51



This motivated us to experiment with maximum
contours in sub-bands that are specific to vocal
tract resonances. The entire spectrum, is divided
into three sub-bands, which were chosen to be
300-900Hz , 600-2800 Hz and 1400-3800 Hz cor-
responding to ranges of first three vocal tract reso-
nances (Deng et al., 2006). The maximum in each
sub-band of the spectrum is then computed. Fig.
2 (d) and 3 (d) show the maximum contour in res-
onance 1 sub-band corresponding to speech signal
with white and pink noise at -5 dB. These maxi-
mum contours are then low-pass filtered (Figs. 2
(e) and 3 (e)). Thus, it can be seen that maximum
contours in a sub-band specific to speech, is able to
robustly discriminate speech and noise regions, as
opposed to the full-band maximum contours. This
is because maximum picked in sub-band 1 corre-
sponds to vocal tract resonance in speech region
and to an arbitrary maximum in noise regions. As
transition of vocal tract is a continuum, the varia-
tion of maximum contour is smooth in speech re-
gions and is otherwise in noise regions. And also
in this sub-bands maximum of speech has higher
amplitude than that of noise.

Experimental results show that maximum in
sub-band 1 is sufficient for robust VAD. VAD deci-
sion is obtained by setting a threshold on the low-
pass filtered version of maximum contour. Figs.
2 (f) and 3 (f) show the resulting VAD. One way
of setting threshold is by picking a maximum in
first 50 ms from low-pass filtered version of the
noisy signal assuming that it is devoid of speech.
This threshold automatically varies for different
noises and SNRs. Though, it is the simplest way
of selecting threshold, it might not be the appro-
priate way in all cases. Thus, for a more efficient
thresholding operation, we used the combined de-
cision of low-pass filtered versions of three bands.
Mean subtraction and variance normalization is
performed on low-pass filtered versions of three
selected bands. The output is summed up and
again mean subtraction and variance normaliza-
tion is performed to get a final contour on which
VAD decision is to be taken. The histogram for
this final contour varies between -2 to 5. So,
threshold is varied between -0.5 to 0.8 to decide
upon a proper value for speech-nonspeech deci-
sion. ROC curves obtained are shown in fig. 4.
We can observe that the same threshold that is in-
dependent of noise and SNR can be applied on fi-
nal contour to get an appropriate VAD decision.

This is due to combination of three sub-bands, fol-
lowed by mean and variance normalization that is
canceling the effect of noise level through out the
signal. Sohn method (Sohn et al., 1999) for VAD
provides an option to vary thresholds. False alarm
rate (FAR) and correct detection rate (CDR) varies
according to threshold. ROCs are plotted by tak-
ing FAR on x-axis and CDR on y-axis for vari-
ous thresholds. ROCs of our method are compared
with VAD using Sohn (Sohn et al., 1999) method
as shown in fig. 4. It is observed that our method
outperforms Sohn for all the tested noises at differ-
ent dBs. After selecting an appropriate threshold
from ROC, our method is compared with AMR-
VAD2 (AMR, 1998) in the results section.

Table 2:FAR and MR for various noises in differ-
ent SNRs for MSA-SB and AMR2 methods

White 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

MSA-SB 12.71 1.98 15.79 1.80 20.62 1.59 28.50 1.34
AMR2 6.92 2.39 20.83 1.49 47.80 0.63 83.38 0.32

Pink 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

MSA-SB 14.70 1.85 19.24 1.61 26.57 1.46 39.50 2.28
AMR2 5.84 2.80 21.32 1.83 50.83 0.72 83.24 0.48

HFchannel 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

MSA-SB 14.92 1.87 19.58 1.67 26.24 1.51 37.19 2.13
AMR2 3.89 3.95 17.04 2.66 42.69 2.05 73.95 1.40

Factory1 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

MSA-SB 16.73 3.43 23.00 6.63 32.32 11.99 39.39 22.61
AMR2 2.87 37.54 10.13 36.25 25.84 37.70 48.47 37.36

Buccaneer1 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

MSA-SB 15.46 1.83 19.83 1.66 26.30 1.63 41.46 3.73
AMR2 7.17 3.29 24.36 2.05 56.17 1.18 87.66 0.84

Volvo 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

MSA-SB 9.59 2.21 10.36 2.13 11.54 2.04 13.64 1.93
AMR2 0.54 5.57 0.50 5.39 0.51 5.20 0.93 5.14

Babble 5 dB 0 dB -5 dB -10 dB
Noise MR % FAR % MR % FAR % MR % FAR % MR % FAR %

MSA-SB 22.15 6.16 28.51 14.84 40.53 20.44 54.75 24.30
AMR2 0.93 36.78 4.57 34.05 14.58 31.98 29.80 30.42

4.1 Results

The proposed algorithms are compared against the
standard ETSI AMR-VAD2 (AMR, 1998). The
FAR and MR of our methods along with the base-
line techniques in various noisy conditions in four
different SNRs are reported in Table 2. The corre-
sponding HTER is plotted in Fig. 5. The lower
HTER indicates better performance of the algo-
rithm. We can observe from the bar graph that
for most of the noise conditions, MSA-SB method
outperforms (3rd bar (light yellow) from the left
in every noise) all other methods at low SNR lev-
els. For volvo noise, we can see that MSA-SB
method has lower FAR but higher MR compared52
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Figure 4:ROC curves for different noises at -10, -5, 0 and 5 dB

to AMR2. This is because of the threshold set-
ting, some unvoiced and stop sounds might have
been recognised as nonspeech in volvo. In bab-
ble noise, from the Table 2 one can observe that
the FAR is consistently lower for MSA-SB than
that of the AMR2 method. However in AMR2,
MR is lower than all the methods for all SNRs in
babble. This is attributed to the fact that our al-
gorithms rely on speech specific features and bab-
ble being speech like noise, shows a drop in the
performance. In summary, for most noises MSA-
SB outperforms AMR2, while in some it performs
comparable to it.

5 Conclusions and Future Work

In this paper, we investigated two methods for
VAD in low SNR conditions. We experimented on
seven noise conditions under four different SNRs.
The time domain analysis revealed that lag of
the autocorrelation function at peak (ACF-LAG)
is more reliable than peak value (ACF-MAX) it-
self. The frequency domain MSA-SB method was
found to be very robust even under very low SNR
conditions and justifies our motivation for choos-
ing sub-bands specific to vocal tract resonance
ranges. The combination of sub-bands followed
by mean and variance normalization has resulted
in choosing a threshold independent of noise con-53
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noise scenario at SNRs 5dB, 0 dB, -5dB, -10dB.

ditions and levels. In future, we plan to do ex-
tensive evaluation of the technique on real world
speech signals.
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