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Introduction

The Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8) was held
on 25 October 2014 preceding the EMNLP 2014 conference in Doha, Qatar. Like the first seven SSST
workshops in 2007, 2008, 2009, 2010, 2011, 2012 and 2013, it aimed to bring together researchers from
different communities working in the rapidly growing field of structured statistical models of natural
language translation.

This year’s special theme focused on compositional distributional semantics, distributed
representations, and continuous vector space models in MT.

We selected 19 papers and extended abstracts for this year’s workshop, many of which reflect statistical
machine translation’s movement toward not only tree-structured and syntactic models incorporating
stochastic synchronous/transduction grammars, but also increasingly semantic models and the closely
linked issues of deep syntax and shallow semantics, and vector space representations to support these
approaches.

Thanks are due once again to our authors and our Program Committee for making the eighth SSST
workshop another success.

Dekai Wu, Marine Carpuat, Xavier Carreras and Eva Maria Vecchi
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Abstract

This paper investigates the application
of vector space models (VSMs) to the
standard phrase-based machine translation
pipeline. VSMs are models based on
continuous word representations embed-
ded in a vector space. We exploit word
vectors to augment the phrase table with
new inferred phrase pairs. This helps
reduce out-of-vocabulary (OOV) words.
In addition, we present a simple way to
learn bilingually-constrained phrase vec-
tors. The phrase vectors are then used to
provide additional scoring of phrase pairs,
which fits into the standard log-linear
framework of phrase-based statistical ma-
chine translation. Both methods result
in significant improvements over a com-
petitive in-domain baseline applied to the
Arabic-to-English task of IWSLT 2013.

1 Introduction

Categorical word representation has been widely
used in many natural language processing (NLP)
applications including statistical machine transla-
tion (SMT), where words are treated as discrete
random variables. Continuous word representa-
tions, on the other hand, have been applied suc-
cessfully in many NLP areas (Manning et al.,
2008; Collobert and Weston, 2008). However,
their application to machine translation is still an
open research question. Several works tried to ad-
dress the question recently (Mikolov et al., 2013b;
Zhang et al., 2014; Zou et al., 2013), and this work
is but another step in that direction.

While categorical representations do not encode
any information about word identities, continuous
representations embed words in a vector space, re-
sulting in geometric arrangements that reflect in-

formation about the represented words. Such em-
beddings open the potential for applying informa-
tion retrieval approaches where it becomes possi-
ble to define and compute similarity between dif-
ferent words. We focus on continuous represen-
tations whose training is influenced by the sur-
rounding context of the token being represented.
One motivation for such representations is to cap-
ture word semantics (Turney et al., 2010). This
is based on the distributional hypothesis (Harris,
1954) which says that words that occur in similar
contexts tend to have similar meanings.

We make use of continuous vectors learned
using simple neural networks. Neural networks
have been gaining increasing attention recently,
where they have been able to enhance strong SMT
baselines (Devlin et al., 2014; Sundermeyer et
al., 2014). While neural language and transla-
tion modeling make intermediate use of continu-
ous representations, there have been also attempts
at explicit learning of continuous representations
to improve translation (Zhang et al., 2014; Gao et
al., 2013).

This work explores the potential of word se-
mantics based on continuous vector representa-
tions to enhance the performance of phrase-based
machine translation. We present a greedy algo-
rithm that employs the phrase table to identify
phrases in a training corpus. The phrase table
serves to bilingually restrict the phrases spotted
in the monolingual corpus. The algorithm is ap-
plied separately to the source and target sides of
the training data, resulting in source and target cor-
pora of phrases (instead of words). The phrase
corpus is used to learn phrase vectors using the
same methods that produce word vectors. The
vectors are then used to provide semantic scor-
ing of phrase pairs. We also learn word vectors
and employ them to augment the phrase table with
paraphrased entries. This leads to a reduction in
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the OOV rate which translates to improved BLEU

and and TER scores. We apply the two methods on
the IWSLT 2013 Arabic-to-English task and show
significant improvements over a strong in-domain
baseline.

The rest of the paper is structured as follows.
Section 2 presents a background on word and
phrase vectors. The construction of the phrase
corpus is discussed in Section 3, while Section 4
demonstrates how to use word and phrase vectors
in the standard phrase-based SMT pipeline. Ex-
periments are presented in Section 5, followed by
an overview of the related word in Section 6, and
finally Section 7 concludes the work.

2 Vector Space Models

One way to obtain context-based word vectors is
through a neural network (Bengio et al., 2003;
Schwenk, 2007). With a vocabulary size V , one-
hot encoding of V -dimensional vectors is used to
represent input words, effectively associating each
word with a D-dimensional vector in the V ×D
input weight matrix, where D is the size of the
hidden layer. Similarly, one-hot encoding on the
output layer associates words with vectors in the
output weight matrix.

Alternatively, a count-based V-dimensional
word co-occurrence vector can serve as a word
representation (Lund and Burgess, 1996; Lan-
dauer and Dumais, 1997). Such representations
are sparse and high-dimensional, which might re-
quire an additional dimensionality reduction step
(e.g. using SVD). In contrast, learning word rep-
resentations via neural models results directly in
relatively low-dimensional, dense vectors. In this
work, we follow the neural network approach to
extract the feature vectors. Whether word vectors
are extracted by means of a neural network or co-
occurrence counts, the context surrounding a word
influences its final representation by design. Such
context-based representations can be used to de-
termine semantic similarities.

The construction of phrase representations, on
the other hand, can be done in different ways.
The compositional approach constructs the vector
representation of a phrase by resorting to its con-
stituent words (or sub-phrases) (Gao et al., 2013;
Chen et al., 2010). Kalchbrenner and Blunsom
(2013) obtain continuous sentence representations

by applying a sequence of convolutions, starting
with word representations.

Another approach for phrase representation
considers phrases as atomic units that can not be
divided further. The representations are learned
directly in this case (Mikolov et al., 2013b; Hu et
al., 2014).

In this work, we follow the second approach to
obtain phrase vectors. To this end, we apply the
same methods that yield word vectors, with the
difference that phrases are used instead of words.
In the case of neural word representations, a neural
network that is presented with words at the input
layer is presented with phrases instead. The result-
ing vocabulary size in this case would be the num-
ber of distinct phrases observed during training.
Although learning phrase embeddings directly is
amenable to data sparsity issues, it provides us
with a simple means to build phrase vectors mak-
ing use of tools already developed for word vec-
tors, focussing the effort on preprocessing the data
as will be discussed in the next section.

3 Phrase Corpus

When training word vectors using neural net-
works, the network is presented with a corpus.
To build phrase vectors, we first identify phrases
in the corpus and generate a phrase corpus. The
phrase corpus is similar to the original corpus ex-
cept that its words are joined to make up phrases.
The new corpus is then used to train the neural net-
work. The columns of the resulting input weight
matrix of the network are the phrase vectors corre-
sponding to the phrases encountered during train-
ing.

Mikolov et al. (2013b) identify phrases using a
monolingual point-wise mutual information crite-
rion with discounting. Since our end goal is to
generate phrase vectors that are helpful for trans-
lation, we follow a different approach: we con-
strain the phrases by the conventional phrase table
of phrase-based machine translation. This is done
by limiting the phrases identified in the corpus to
high quality phrases occurring in the phrase table.
The quality is determined using bilingual scores
of phrase pairs. While the phrase vectors of a lan-
guage are eventually obtained by training the neu-
ral network on the monolingual phrase corpus of
that language, the reliance on bilingual scores to
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Algorithm 1 Phrase Corpus Construction
1: p← 1
2: for p≤ numPasses do
3: i← 2
4: for i≤ corpus.size−1 do
5: w̃← join(ti, ti+1) . create a phrase using the current and next tokens
6: ṽ← join(ti−1, ti) . create a phrase using the previous and current tokens
7: joinForward← score(w̃)
8: joinBackward← score(ṽ)
9: if joinForward ≥ joinBackward and joinForward ≥ θ then

10: ti← w̃
11: remove ti+1
12: i← i+2 . newly created phrase not available for further merge during current pass
13: else
14: if joinBackward > joinForward and joinBackward ≥ θ then
15: ti−1← ṽ
16: remove ti
17: i← i+2 . newly created phrase not available for further merge during current pass
18: else
19: i← i+1
20: end if
21: end if
22: end for
23: p← p+1
24: end for

construct the monolingual phrase corpus encodes
bilingual information in the corpus, namely, the
corpus will include phrases that having a match-
ing phrase in the other language, which is in line
with the purpose for which the phrases are con-
structed, that is, their use in the phrase-based ma-
chine translation pipeline which is explained in the
next section. In addition, the aforementioned scor-
ing serves to exclude noisy phrase-pair entries dur-
ing the construction of the phrase corpus. Next, we
explain the details of the construction algorithm.

3.1 Phrase Spotting

We propose Algorithm 1 as a greedy approach for
phrase corpus construction. It is a multi-pass algo-
rithm where each pass can extend tokens obtained
during the previous pass by a single token at most.
Before the first pass, all tokens are words. During
the passes the tokens might remain as words or can
be extended to become phrases. Given a token ti
at position i, a scoring function is used to score
the phrase (ti, ti+1) and the phrase (ti−1, ti). The
phrase having a higher score is adopted as long as
its score exceeds a predefined threshold θ . The

scoring function used in lines 7 and 8 is based on
the phrase table. If the phrase does not belong to
the phrase table it is given a score θ ′ < θ . If the
phrase exists, a bilingual score is computed using
the phrase table fields as follows:

score( f̃ ) = max
ẽ

{
L

∑
i=1

wigi( f̃ , ẽ)

}
(1)

where gi( f̃ , ẽ) is the ith feature of the bilingual
phrase pair ( f̃ , ẽ). The maximization is carried out
over all phrases ẽ of the other language. The score
is the weighted sum of the phrase pair features.
Throughout our experiments, we use 2 phrasal and
2 lexical features for scoring, with manual tuning
of the weights wi.

The resulting corpus is then used to train phrase
vectors following the same procedure of training
word vectors.

4 End-to-end Translation

In this section we will show how to employ phrase
vectors in the phrase-based statistical machine
translation pipeline.
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4.1 Phrase-based Machine Translation

The phrase-based decoder consists of a search us-
ing a log-linear framework (Och and Ney, 2002)
as follows:

êÎ
1 = argmax

I,eI
1

{
max
K,sK

1

M

∑
m=1

λmhm(eI
1,s

K
1 , f J

1 )

}
(2)

where eI
1 = e1...eI is the target sentence, f J

1 =
f1... fJ is the source sentence, sK

1 = s1...sK is
the hidden alignment or derivation. The mod-
els hm(eI

1,s
K
1 , f J

1 ) are weighted by the weights λm

which are tuned using minimum error rate train-
ing (MERT) (Och, 2003). The rest of the section
presents two ways to integrate vector representa-
tions into the system described above.

4.2 Semantic Phrase Feature

Words that occur in similar contexts tend to have
similar meanings. This idea is known as the dis-
tributional hypothesis (Harris, 1954), and it moti-
vates the use of word context to learn word repre-
sentations that capture word semantics (Turney et
al., 2010). Extending this notion to phrases, phrase
vectors that are learned based on the surrounding
context encode phrase semantics. Since we will
use phrase vectors to compute a feature of a phrase
pair in the following, we refer to the feature as a
semantic phrase feature.

Given a phrase pair ( f̃ , ẽ), we can use the phrase
vectors of the source and target phrases to compute
a semantic phrase feature as follows:

hM+1( f̃ , ẽ) = sim(Wx f̃ ,zẽ) (3)

where sim is a similarity function, x f̃ and zẽ are the
S-dimensional source and T -dimensional target
vectors respectively corresponding to the source
phrase f̃ and target phrase ẽ. W is an S×T linear
projection matrix that maps the source space to the
target space (Mikolov et al., 2013a). The matrix
is estimated by optimizing the following criterion
with stochastic gradient descent:

min
W

N

∑
i=1
||Wxi− zi||2 (4)

where the training data consists of the pairs
{(x1,z1), ...,(xN ,zN)} corresponding to the source
and target vectors.

Since the source and target phrase vectors are
learned separately, we do not have an immedi-
ate mapping between them. As such mapping is
needed for the training of the projection matrix,
we resort to the phrase table to obtain it. A source
and a target phrase vectors are paired if there is a
corresponding phrase pair entry in the phrase table
whose score exceeds a certain threshold. Scoring
is computed using Eq. 1. Similarly, word vectors
are paired using IBM 1 p(e| f ) and p( f |e) lexica.
Noisy entries are assumed to have a probability
less than a certain threshold and are not used to
pair word vectors.

4.3 Paraphrasing

While the standard phrase table is extracted using
parallel training data, we propose to extend it and
infer new entries relying on continuous representa-
tions. With a similarity measure (e.g. cosine sim-
ilarity) that computes the similarity between two
phrases, a new phrase pair can be generated by re-
placing either or both of its constituent phrases by
similar phrases. The new phrase is referred to as a
paraphrase of the phrase it replaces. This enables
a richer use of the bilingual data, as a source para-
phrase can be borrowed from a sentence that is not
aligned to a sentence containing the target side of
the phrase pair. It also enables the use of monolin-
gual data, as the source and target paraphrases do
not have to occur in the parallel data. The cross-
interaction between sentences in the parallel data
and the inclusion of the monolingual data to ex-
tend the phrase table are potentially capable of re-
ducing the out-of-vocabulary (OOV) rate.

In order to generate a new phrase rule, we en-
sure that noisy rules do not contribute to the gener-
ation process, depending on the score of the phrase
pair (cf. Eq. 1). High scoring entries are para-
phrased as follows. To paraphrase the source side,
we perform a k-nearest neighbor search over the
source phrase vectors. The top-k similar entries
are considered paraphrases of the given phrase.
The same can be done for the target side. We as-
sign the newly generated phrase pair the same fea-
ture values of the pair used to induce it. However,
two extra phrase features are added: one measur-
ing the similarity between the source phrase and
its paraphrase, and another for the target phrase
and its paraphrase. The new feature values for
the original non-paraphrased entries are set to the

4



highest similarity value.

We focus on a certain setting that avoids in-
terference with original phrase rules, by extend-
ing the phrase table to cover OOVs only. That
is, source-side paraphrasing is performed only if
the source paraphrase does not already occur in
the phrase table. This ensures that original entries
are not interfered with and only OOVs are affected
during translation. Reducing OOVs by extending
the phrase table has the advantage of exploiting
the full decoding capabilities (e.g. LM scoring),
as opposed to post-decoding translation of OOVs,
which would not exhibit any decoding benefits.

The k-nearest neighbor (k-NN) approach is
computationally prohibitive for large phrase tables
and large number of vectors. This can be allevi-
ated by resorting to approximate k-NN search (e.g.
locality sensitive hashing). Note that this search
is performed during training time to generate ad-
ditional phrase table entries, and does not affect
decoding time, except through the increase of the
phrase table size. In our experiments, the train-
ing time using exact k-NN search was acceptable,
therefore no search approximations were made.

5 Experiments

In the following we first provide an analysis of the
word vectors that are later used for translation ex-
periments. We use word vectors (as opposed to
phrase vectors) for phrase table paraphrasing to
reduce the OOV rate. Next, we present end-to-
end translation results using the proposed seman-
tic feature and our OOV reduction method.

The experiments are based on vectors trained
using the word2vec1 toolkit, setting vector dimen-
sionality to 800 for Arabic and 200 for English
vectors. We used the skip-gram model with a max-
imum skip length of 10. The phrase corpus was
constructed using 5 passes, with scores computed
according to Eq. 1 using 2 phrasal and 2 lexical
features. The phrasal and lexical weights were set
to 1 and 0.5 respectively, with all features being
negative log-probabilities, and the scoring thresh-
old θ was set to 10. All translation experiments
are performed with the Jane toolkit (Vilar et al.,
2010; Wuebker et al., 2012).

1https://code.google.com/p/word2vec/

5.1 Baseline System

Our phrase-based baseline system consists of two
phrasal and two lexical translation models, trained
using a word-aligned bilingual training corpus.
Word alignment is automatically generated by
GIZA++ (Och and Ney, 2003) given a sentence-
aligned bilingual corpus. We also include bi-
nary count features and bidirectional hierarchical
reordering models (Galley and Manning, 2008),
with three orientation classes per direction result-
ing in six reordering models. The baseline also in-
cludes word penalty, phrase penalty and a simple
distance-based distortion model.

The language model (LM) is a 4-gram mix-
ture LM trained on several data sets using mod-
ified Kneser-Ney discounting with interpolation,
and combined with weights tuned to achieve the
lowest perplexity on a development set using the
SRILM toolkit (Stolcke, 2002). Data selection
is performed using cross-entropy filtering (Moore
and Lewis, 2010).

5.2 Word Vectors

Here we analyze the quality of word vectors used
in the OOV reduction experiments. The vectors
are trained using an unaltered word corpus. We
build a lexicon using source and target word vec-
tors together with the projection matrix using the
similarity score sim(Wx f ,ze)), where the projec-
tion matrix W is used to project the source word
vector x f , corresponding to the source word f , to
the target vector space. The similarity between the
projection result Wx f and the target word vector
ze is computed. In the following we will refer to
these scores computed using vector representation
as VSM-based scores.

The resulting lexicon is compared to the IBM
1 lexicon2. Given a source word, we select the
the best target word according to the VSM-based
score. This is compared to the best translation
based on the IBM 1 probability. If both transla-
tions coincide, we refer to this as a 1-best match.
We also check whether the best translation accord-
ing to IBM 1 matches any of the top-5 translations
based on the VSM model. A match in this case is
referred to as a 5-best match.

2We assume for the purpose of this experiment that the
IBM 1 lexicon provides perfect translations, which is not nec-
essarily the case in practice.
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corpus Lang. # tokens # segments
WIT Ar 3,185,357 147,256
UN Ar 228,302,244 7,884,752
arGiga3 Ar 782,638,101 27,190,387
WIT En 2,951,851 147,256
UN En 226,280,918 7,884,752
news En 1,129,871,814 45,240,651

Table 1: Arabic and English corpora statistics.

The vectors are trained on a mixture of in-
domain data (WIT) which correspond to TED
talks, and out-of-domain data (UN). These sets are
provided as part of the IWSLT 2013 evaluation
campaign. We include the LDC2007T40 Arabic
Gigaword v3 (arGiga3) and English news crawl ar-
ticles (2007 through 2012) to experiment with the
effect of increasing the size of the training corpus
on the quality of the word vectors. Table 1 shows
the corpora statistics obtained after preprocessing.

The fractions of the 1- and 5-best matches are
shown in table 2. The table is split into two halves.
The upper part investigates the effect of increasing
the amount of Arabic data while keeping the En-
glish data fixed (2nd row), the effect of increasing
the amount of the English data while keeping the
Arabic data fixed (3rd row), and the effect of using
more data on both sides (4th row). The projection
is done on the representation of the Arabic word f ,
and the similarity is computed between the projec-
tion and the representation of the English word e.
In the lower half of the table, the same effects are
explored, except that the projection is performed
on the English side instead. The results indicate
that the accuracy increases when increasing the
amount of data only on the side being projected.
More data on the corresponding side (i.e. the side
being projected to) decreases the accuracy. The
same behavior is observed whether the projected
side is Arabic (upper half) or English (lower half).
All in all, the accuracy values are low. The accu-
racy increases about three times when looking at
the 5-best instead of the 1-best accuracy. While the
accuracies 32.2% and 33.1% are low, they reflect
that the word representations are encoding some
information about the words, although this infor-
mation might not be good enough to build a word-
to-word lexicon. However, using this information
for OOV reduction might still yield improvements
as we will see in the translation results.

Arabic English
word corpus size 231M 229M
phrase corpus size 126M 115M
word corpus vocab. size 467K 421K
phrase corpus vocab. size 5.8M 5.3M
# phrase vectors 934K 913K

Table 3: Phrase vectors statistics.

5.3 Phrase Vectors

Translation experiments pertaining to the pro-
posed semantic feature are presented here. The
feature is based on phrase vectors which are built
with the word2vec toolkit in a similar way word
vectors are trained, except that the training cor-
pus is the phrase corpus containing phrases con-
structed as described in section 3. Once trained, a
new feature is added to the phrase table. The fea-
ture is computed for each phrase pair using phrase
vectors as described in Eq. 3.

Table 3 shows statistics about the phrase corpus
and the original word corpus it is based on. Al-
gorithm 1 is used to build the phrase corpus using
5 passes. The number of phrase vectors trained
using the phrase corpus are also shown. Note that
the tool used does not produce vectors for all 5.8M
Arabic and 5.3M English phrases in the vocab-
ulary. Rather, noisy phrases are excluded from
training, eventually leading to 934K Arabic and
913K English phrase embeddings.

We perform two experiments on the IWSLT
2013 Arabic-to-English evaluation data set. In the
first experiment, we examine how the semantic
feature affects a small phrase table (2.3M phrase
pairs) trained on the in-domain data (WIT). The
second experiment deals with a larger phrase table
(34M phrase pairs), constructed by a linear inter-
polation between in- and out-of-domain phrase ta-
bles including UN data, resulting in a competitive
baseline. The two baselines have hierarchical re-
ordering models (HRMs) and a tuned mixture LM,
in addition to the standard models, as described in
section 5.1. The results are shown in table 4.

In the small experiment, the semantic phrase
feature improves TER by 0.7%, and BLEU by
0.4% on the test set eval13. The translation seems
to benefit from the contextual information en-
coded in the phrase vectors during training. This
is in contrast to the training of the standard phrase
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Arabic Data English Data 1-best
Match %

5-best
Matches %

WIT+UN WIT+UN 8.0 26.1
WIT+UN+arGiga3 WIT+UN 10.9 32.2
WIT+UN WIT+UN+news 4.9 17.9
WIT+UN+arGiga3 WIT+UN+news 7.5 25.7
WIT+UN WIT+UN 8.4 27.2
WIT+UN WIT+UN+news 10.9 33.1
WIT+UN+arGiga3 WIT+UN 5.7 18.9
WIT+UN+arGiga3 WIT+UN+news 8.3 25.2

Table 2: The effect of increasing the amount of data on the quality of word vectors. VSM-based scores are
compared to IBM model 1 p(e| f ) (upper half) and p( f |e) (lower half), effectively regarding the IBM 1
models as the true probability distributions. In the upper part, the projection is done on the representation
of the Arabic word f , and the similarity is computed between the projection and the representation of the
English word e. In the lower half of the table, the role of f and e is interchanged, where the English side
in this case will be projected.

system dev2010 eval2013
BLEU TER BLEU TER

WIT 29.1 50.5 28.9 52.5
+ feature 29.1 ‡50.1 ‡29.3 ‡51.8
+ paraph. 29.2 ‡50.2 ‡29.5 ‡51.8
+ both 29.2 50.2 ‡29.4 ‡51.8
WIT+UN 29.7 49.3 30.5 50.5
+ feature 29.8 49.2 30.2 50.7

Table 4: Semantic feature and paraphrasing re-
sults. The symbol ‡ indicates statistical signifi-
cance with p< 0.01.

features, which disregards context. As for the hi-
erarchical reordering models which are part of the
baseline, they do not capture lexical information
about the context. They are only limited to the or-
dering information. The skip-gram-based phrase
vectors used for the semantic feature, on the other
hand, discard ordering information, but uses con-
textual lexical information for phrase representa-
tion. In this sense, HRMs and the semantic feature
can be said to complement each other. Using the
semantic feature for the large phrase table did not
yield improvements. The difference compared to
the baseline in this case is not statistically signifi-
cant.

All reported results are averages of 3 MERT op-
timizer runs. Statistical significance is computed
using the Approximate Randomization (AR) test.
We used the multeval toolkit (Clark et al., 2011)
for evaluation.

5.4 Paraphrasing and OOV Reduction

The next set of experiments investigates the re-
duction of the OOV rate through paraphrasing,
and its impact on translation. Paraphrasing is per-
formed employing the cosine similarity, and the k-
NN search is done on the source side, with k = 3.
The nearest neighbors are required to satisfy a ra-
dius threshold r > 0.3, i.e., neighbors with a simi-
larity value less or equal to r are rejected. Training
the projection matrices is performed using a small
amount of training data amounting to less than 30k
translation pairs.

To examine the effect of OOV reduction, we
perform paraphrasing on a resource-limited sys-
tem, where a small amount of parallel data ex-
ists, but a larger amount of monolingual data is
available. Such a system is simulated by train-
ing word vectors on the WIT+UN data monolin-
gually , while extracting the phrase table using the
much smaller in-domain WIT data set only. Table
5 shows the change in the number of OOV words
after introducing the paraphrased rules to the WIT-
based phrase table. 19% and 30% of the original
OOVs are eliminated in the dev and eval13 sets,
respectively. This reduction translates to an im-
provement of 0.6% BLEU and 0.7% TER as indi-
cated in table 4.

Since BLEU or TER are based on word iden-
tities and do not detect semantic similarities, we
make a comparison between the reference transla-
tions and translations of the system that employed
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# OOV
phrase table dev eval13
WIT 185 254
WIT+paraph. 150 183
Vocab. size 3,714 4,734

Table 5: OOV change due to paraphrasing. Vocab-
ulary refers to the number of unique tokens in the
Arabic dev and test sets.

OOV VSM-based
Translation

Reference

�I 	® ��º�K found unfolded
�é��
Qk interested keen

ú

	æm.�� jail imprisoned

	̈ CK. claim report
�é��. �JÊÓ confusing confounding
�I�Jk encourage rallied for

AK
ðQ�̄ villagers redneck

Table 6: Examples of OOV words that were trans-
lated due to paraphrasing. The examples are
extracted from the translation hypotheses of the
small experiment.

OOV reduction. Examples are shown in Table 6.
Although the reference words are not matched ex-
actly, the VSM translations are semantically close
to them, suggesting that OOV reduction in these
cases was somewhat successful, although not re-
warded by either of the scoring measures used.

6 Related Work

Bilingually-constrained phrase embeddings were
developed in (Zhang et al., 2014). Initial embed-
dings were trained in an unsupervised manner, fol-
lowed by fine-tuning using bilingual knowledge to
minimize the semantic distance between transla-
tion equivalents, and maximizing the distance be-
tween non-translation pairs. The embeddings are
learned using recursive neural networks by de-
composing phrases to their constituents. While
our work includes bilingual constraints to learn
phrase vectors, the constraints are implicit in the
phrase corpus. Our approach is simple, focusing
on the preprocessing step of preparing the phrase
corpus, and therefore it can be used with different

existing frameworks that were developed for word
vectors.

Zou et al. (2013) learn bilingual word embed-
dings by designing an objective function that com-
bines unsupervised training with bilingual con-
straints based on word alignments. Similar to
our work, they compute an additional feature for
phrase pairs using cosine similarity. Word vec-
tors are averaged to obtain phrase representations.
In contrast, our approach learns phrase representa-
tions directly.

Recurrent neural networks were used with min-
imum translation units (Hu et al., 2014), which are
phrase pairs undergoing certain constraints. At the
input layer, each of the source and target phrases
are modeled as a bag of words, while the output
phrase is predicted word-by-word assuming con-
ditional independence. The approach seeks to al-
leviate data sparsity problems that would arise if
phrases were to be uniquely distinguished. Our
approach does not break phrases down to words,
but learns phrase embeddings directly.

Chen et al. (2010) represent a rule in the hierar-
chical phrase table using a bag-of-words approach.
Instead, we learn phrase vectors directly without
resorting to their constituent words. Moreover,
they apply a count-based approach and employ
IBM model 1 probabilities to project the target
space to the source space. In contrast, our map-
ping is similar to that of Mikolov et al. (2013a)
and is learned directly from a small set of bilin-
gual data.

Mikolov et al. (2013a) proposed an efficient
method to learn word vectors through feed-
forward neural networks by eliminating the hid-
den layer. They do not report end-to-end sentence
translation results as we do in this work.

Mikolov et al. (2013b) learn direct representa-
tions of phrases after joining a training corpus us-
ing a simple monolingual point-wise mutual in-
formation criterion with discounting. Our work
exploits the rich bilingual knowledge provided by
the phrase table to join the corpus instead.

Gao et al. (2013) learn shared space mappings
using a feed-forward neural network and represent
a phrase vector as a bag-of-words vector. The vec-
tors are learned aiming to optimize an expected
BLEU criterion. Our work is different in that we
learn two separate source and target mappings.
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We also do not follow their bag-of-words phrase
model approach.

Marton et al. (2009) proposed to eliminate
OOVs by looking for similar words using distri-
butional vectors, but they prune the search space
limiting it to candidates observed in the same con-
text as that of the OOV. We do not employ such a
heuristic. Instead, we perform a k-nearest neigh-
bor search spanning the full phrase table to para-
phrase its rules and generate new entries.

Estimating phrase table scores using monolin-
gual data was investigated in (Klementiev et al.,
2012), by building co-occurrence context vectors
and using a small dictionary to induce new scores
for existing phrase rules. Our work explores the
use of distributional vectors extracted from neu-
ral networks, moreover, we induce new phrase
rules to extend the phrase table. New phrase rules
were also generated in (Irvine and Callison-Burch,
2014), where new phrases were produced as a
composition of unigram translations.

7 Conclusion

In this work we adapted vector space models to
provide the state-of-the-art phrase-based statisti-
cal machine translation system with semantic in-
formation. We leveraged the bilingual knowledge
of the phrase table to construct source and target
phrase corpora to learn phrase vectors, which were
used to provide semantic scoring of phrase pairs.
Word vectors allowed to extend the phrase table
and eliminate OOVs. Both methods proved bene-
ficial for low-resource tasks.

Future work would investigate decoder inte-
gration of semantic scoring that extends beyond
phrase boundaries to provide semantically coher-
ent translations.
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Abstract

Earlier work on labeling Hiero grammars
with monolingual syntax reports improved
performance, suggesting that such label-
ing may impact phrase reordering as well
as lexical selection. In this paper we ex-
plore the idea of inducing bilingual labels
for Hiero grammars without using any
additional resources other than original
Hiero itself does. Our bilingual labels
aim at capturing salient patterns of phrase
reordering in the training parallel corpus.
These bilingual labels originate from hier-
archical factorizations of the word align-
ments in Hiero’s own training data. In this
paper we take a Markovian view on syn-
chronous top-down derivations over these
factorizations which allows us to extract
0th- and 1st-order bilingual reordering la-
bels. Using exactly the same training
data as Hiero we show that the Marko-
vian interpretation of word alignment fac-
torization offers major benefits over the
unlabeled version. We report extensive
experiments with strict and soft bilingual
labeled Hiero showing improved perfor-
mance up to 1 BLEU points for Chinese-
English and about 0.1 BLEU points for
German-English.

Phrase reordering in Hiero (Chiang, 2007) is mod-
elled with synchronous rules consisting of phrase
pairs with at most two nonterminal gaps, thereby
embedding ITG permutations (Wu, 1997) in lexi-
cal context. It is by now recognized that Hiero’s
reordering can be strengthened either by labeling
(e.g., (Zollmann and Venugopal, 2006)) or by sup-
plementing the grammar with extra-grammatical
reordering models, e.g., (Xiao et al., 2011; Huck
et al., 2013; Nguyen and Vogel, 2013). In this
paper we concentrate on labeling approaches.

Conceptually, labeling Hiero rules aims at in-
troducing preference in the SCFG derivations for
frequently occurring lexicalized ordering constel-
lations over rare ones which also affects lexical se-
lection. In this paper, we present an approach for
distilling phrase reordering labels directly from
alignments (hence bilingual labels).

To extract bilingual labels from word
alignments we must first interpret the alignments
as a hierarchy of phrases. Luckily, every
word alignment factorizes into Normalized
Decomposition Trees (NDTs) (Zhang et al.,
2008), showing explicitly how the word alignment
recursively decomposes into phrase pairs. Zhang
et al. (2008) employ NDTs for extracting Hiero
grammars. In this work, we extend NDTs
with explicit phrase permutation operators also
extracted from the original word alignment
(Sima’an and Maillette de Buy Wenniger, 2013);
Every node in the NDT is equipped with a
node operator that specifies how the order of
the target phrases (children of this node) is
produced from the corresponding source phrases.
Subsequently, we cluster the node operators
in these enriched NDTs according to their
complexity, e.g., monotone (straight), inverted,
non-binary but one-to-one, and the more complex
case of discontinuous (Maillette de Buy Wenniger
and Sima’an, 2013).

Inspired by work on parsing (Klein and Man-
ning, 2003), we explore a vertical Markovian
labeling approach: intuitively, 0th-order labels
signify the reordering of the sub-phrases inside the
phrase pair (Zhang et al., 2008), 1st-order labels
signify reordering aspects of the direct context
(an embedding, parent phrase pair) of the phrase
pair, and so on. Like the phrase orientation
models this labeling approach does not employ
external resources (e.g., taggers, parsers) beyond
the training data used by Hiero.

We empirically explore this bucketing for 0th-
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and 1st-order labels both as hard and soft labels.
In experiments on German-English and Chinese-
English we show that this extension of Hiero of-
ten significantly outperforms the unlabeled model
while using no external data or monolingual la-
beling mechanisms. This suggests the viability
of automatically inducing bilingual labels follow-
ing the Markov labeling approach on operator-
labelled NDTs as proposed in this paper.

1 Hierarchical models and related work

Hiero SCFGs (Chiang, 2005; Chiang, 2007) allow
only up to two (pairs of) nonterminals on the right-
hand-side (RHS) of synchronous rules. The types
of permissible Hiero rules are:

X → 〈α, γ〉 (1)

X → 〈α X1 β, δ X1 ζ〉 (2)

X → 〈α X1 β X2 γ , δ X1 ζ X2 η 〉 (3)

X → 〈α X1 β X2 γ , δ X2 ζ X1 η 〉 (4)

Here α, β, γ, δ, ζ, η are terminal sequences, possi-
bly empty. Equation 1 corresponds to a normal
phrase pair, 2 to a rule with one gap and 3 and 4
to the monotone- and inverting rules respectively.

Given an Hiero SCFG G, a source sentence s is
translated into a target sentence t by synchronous
derivations d, each is a finite sequence of well-
formed substitutions of synchronous productions
from G, see (Chiang, 2006). Existing phrase-
based models score a derivation der with linear
interpolation of a finite set of feature functions
(Φ(d)) of the derivation d, mostly working with
local feature functions φi of individual produc-
tions, the target side yield string t of d (target
language model features) and other features (see
experimental section): arg maxd∈G P(t,d | s) ≈
arg maxd∈G

∑|Φ(d)|
i=1 λi × φi. The parameters {λi} are

optimized on a held-out parallel corpus by direct
error-minimization (Och, 2003).

A range of (distantly) related work exploits
syntax for Hiero models, e.g. (Liu et al., 2006;
Huang et al., 2006; Mi et al., 2008; Mi and
Huang, 2008; Zollmann and Venugopal, 2006;
Wu and Hkust, 1998). In terms of labeling
Hiero rules, SAMT (Zollmann and Venugopal,
2006; Mylonakis and Sima’an, 2011) exploits a
“softer notion” of syntax by fitting the CCG-like
syntactic labels to non-constituent phrases. The
work of (Xiao et al., 2011) adds a lexicalized
orientation model to Hiero, akin to (Tillmann,

2004) and achieves significant gains. The work
of (Huck et al., 2013; Nguyen and Vogel, 2013)
overcomes technical limitations of (Xiao et al.,
2011), making necessary changes to the decoder,
which involves delayed (re-)scoring at hypernodes
up in the derivation of nodes lower in the chart
whose orientations are affected by them. This
goes to show that phrase-orientation models are
not mere labelings of Hiero.

Soft syntactic constraints has been around for
some time now (Zhou et al., 2008; Venugopal et
al., 2009; Chiang, 2010). In (Zhou et al., 2008)
Hiero is reinforced with a linguistically motivated
prior. This prior is based on the level of syntactic
homogeneity between pairs of non-terminals
and the associated syntactic forests rooted at
these nonterminals, whereby tree-kernels are
applied to efficiently measure the amount of
overlap between all pairs of sub-trees induced
by the pairs of syntactic forests. Crucially, the
syntactic prior encourages derivations that are
more syntactically coherent but does not block
derivations when they are not. In (Venugopal
et al., 2009) the authors associate distributions
over compatible syntactic labelings with grammar
rules, and combine these preference distributions
during decoding, thus achieving a summation
rather than competition between compatible label
configurations. The latter approach requires
significant changes to the decoder and comes at a
considerable computational cost. An alternative
approach (Chiang, 2010) uses labels similar to
(Zollmann and Venugopal, 2006) together with
boolean features for rule-label and substituted-
label combinations; using discriminative training
(MIRA) it is learned what combinations are
associated with better translations.

The labeling approach presented next differs
from existing approaches. It is inspired by soft
labeling but employs novel, non-linguistic bilin-
gual labels. And it shares the bilingual intuition
with phrase orientation models but it is based on
a Markov approach for SCFG labeling, thereby
remaining within the confines of Hiero SCFG,
avoiding the need to make changes inside the
decoder.1

1Soft constraint decoding can easily be implemented
without adapting the decoder, through a smart application of
“label bridging” unary rules. In practice however, adapting
the decoder turns out to be computationally more efficient,
therefore we used this solution in our experiments.
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Figure 1: Example alignment from Europarl

([1, 6], [1, 6], 1 )

([1, 2], [2, 3], 2 )

([1, 1], [3, 3], 4 ) ([2, 2], [2, 2], 5 )

([4, 5], [4, 5], 3 )

([4, 4], [4, 4], 6 ) ([5, 5], [5, 5], 7 )

Figure 2: Normalized Decomposition Tree (Zhang
et al., 2008) extended with pointers to original
alignment structure from Figure 1

2 Bilingual reordering labels for Hiero

Figure 1 shows an alignment from Europarl
German-English (Koehn, 2005) along with a tree
showing corresponding maximally decomposed
phrase pairs. Phrase pairs can be grouped into a
maximally decomposed tree (called Normalized
Decomposition Tree – NDT) (Zhang et al., 2008).
Figure 2 shows the NDT for Figure 1, extended
with pointers to the original alignment structure
in Figure 2. The numbered boxes indicate how
the phrases in the two representations correspond.
In an NDT every phrase pair is recursively split
up at every level into a minimum number (two
or greater) of contiguous parts. In this example
the root node splits into three phrase pairs, but
these phrase pairs together do not cover the entire
parent phrase pair because of the discontinuity:
“tailor ... accordingly/ darauf ... ausrichten”.

Following (Zhang et al., 2008), we use the
NDT factorizations of word alignments in the
training data for extracting phrases. Every NDT
shows the hierarchical structuring into phrases
embedded in larger phrases, which together with
the context of the original alignment exposes the
reordering complexity of every phrase (Sima’an
and Maillette de Buy Wenniger, 2013). We will
exploit these elaborate distinctions based on the
complexity of reordering for Hiero rule labels as
explained next.

Phrase-centric (0th-order) labels are based on
the view of looking inside a phrase pair to see
how it decomposes into sub-phrase pairs. The op-
erator signifying how the sub-phrase pairs are re-
ordered (target relative to source) is bucketted into
a number of “permutation complexity” categories.
Straightforwardly, we can start out by using the

two well known cases of Inversion Transduction
Grammars (ITG) {Monotone, Inverted} and label
everything2 that falls outside these two category
with a default label “X” (leaving some Hiero
nodes unlabeled). This leads to the following
coarse phrase-centric labeling scheme, which we
name 0th

ITG+: (1) Monotonic(Mono): binarizable,
fully monotone plus non-decomposable phrases
(2) Inverted(Inv): binarizable, fully inverted (3) X:
decomposable phrases that are not binarizable.

A clear limitation of the above ITG-like label-
ing approach is that all phrase pairs that decom-
pose into complex non-binarizable reordering pat-
terns are not further distinguished. Furthermore,
non-decomposable phrases are lumped together
with decomposable monotone phrases, although
they are in fact quite different. To overcome these
problems we extend ITG in a way that further
distinguishes the non-binarizable phrases and also
distinguishes non-decomposable phrases from the
rest. This gives a labeling scheme we will call
simply 0th-order labeling, abbreviated 0th, con-
sisting of a more fine-grained set of five cases,
ordered by increasing complexity (see examples
in Figure 4): (1) Atomic: non-decomposable
phrases, (2) Monotonic(Mono): binarizable, fully
monotone, (3) Inverted(Inv): binarizable, fully
inverted (4) Permutation(Perm): factorizes into a
permutation of four or more sub-phrases (5) Com-
plex(Comp): does not factorize into a permutation
and contains at least one embedded phrase.

In Figure 3, we show a phrase-complexity la-
beled derivation for the example of Figure 1.
Observe how the phrase-centric labels reflect the
relative reordering at the node. For example, the

2Non-decomposable phrases will still be grouped
together with Monotone, since they are more similar to this
category than to the catchall “X” category.
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Figure 3: Synchronous trees (implicit derivations end results) based on differently labelled Hiero
grammars. The figure shows alternative labeling for every node: Phrase-Centric (0th-order) (light gray)
and Parent-Relative (1st-order) (dark gray).

this is an important matter

das ist ein wichtige angelegenheit

1

1

2
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1

1

2

2

Inversion

i want to stress two points

auf zwei punkte möchte ich hinweisen

1

1

2

2

3

3

4

4

Permutation

we owe this to our citizens

das sind wir unsern burgern schuldig

1

1

2

2

3

3

Complex

it would be possible

kann mann

1

1

Atomic

Figure 4: Different types of Phrase-Centric Alignment Labels

Inverted label of node-pair 2 corresponds to the
inversion in the alignment of 〈we should, müsen
wir〉; in contrast, node-pair 1 is complex and
discontinuous and the label is Complex.

Parent-relative (1st-order) labels capture the re-
ordering that a phrase undergoes relative to an
embedding parent phrase.

1. For a binarizable mother phrase with orien-
tation Xo ∈ {Mono, Inv}, the phrase itself can
either group to the left only Left-Binding-
Xo, right only Right-Binding-Xo, or with both
sides (Fully-Xo).

2. Fully-Discontinuous: Any phrase within
a non-binarizable permutation or complex

alignment containing discontinuity.

3. Top: phrases that span the entire aligned
sentence pair.

In cases were multiple labels are applicable, the
simplest applicable label is chosen according to
the following preference order:
{Fully-Monotone, Left/Right-Binding-Monotone,
Fully-Inverted, Left/Right-Binding-Inverted,
Fully-Discontinuous, TOP}.

In Figure 3 the parent-relative labels in the
derivation reflect the reordering taking place at the
phrases with respect to their parent node. Node 4
has a parent node that inverts the order and the
sibling node it binds is on the right, therefore it
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is labeled “right-binding inverted” (R.B.I.); E.F.D.
and L.B.M. are similar abbreviations for “embed-
ded fully discontinuous” and “left-binding mono-
tone” respectively. As yet another example node
7 in Figure 3 is labeled “left-binding monotone”
(L.B.M.) since it is monotone, but the alignment
allows it only to bind to the left at the parent node,
as opposed to only to the right or to both sides
which cases would have yielded “right-binding
monotone” R.B.M. and “(embedded) fully mono-
tone” (E.F.M.) parent-relative reordering labels
respectively.

Note that for parent-relative labels the binding
direction of monotone and inverted may not be
informative. We therefore also form a set of
coarse parent-relative labels (“1st

Coarse”) by col-
lapsing the label pairs Left/Right-Binding-Mono
and Left/Right-Binding-Inverted into single labels
One-Side-Binding-Mono and One-Side-Binding-
Inv3.

3 Features for soft bilingual labeling

Labels used in hierarchical Statistical Machine
Translation (SMT) are typically adapted from ex-
ternal resources such as taggers and parsers. Like
in our case, these labels are typically not fitted to
the training data – with very few exceptions e.g.,
(Mylonakis and Sima’an, 2011; Mylonakis, 2012;
Hanneman and Lavie, 2013). Unfortunately this
means that the labels will either overfit or underfit,
and when they are used as strict constraints on
SCFG derivations they are likely to underperform.
Experience with mismatch between syntactic la-
bels and the data is abundant (Venugopal et al.,
2009; Marton et al., 2012; Chiang, 2010), and
using soft constraint decoding with suitable label
substitution features has been shown to be an
effective workaround solution. The intuition be-
hind soft constraint decoding is that even though
heuristic labels are not perfectly tailored to the
data, they do provide useful information provided
the model is “allowed to learn” to use them only
in as far as they can improve the final evaluation
metric (usually BLEU).

3We could also further coarsen the 1stlabels by
removing entirely all sub-distinctions of binding-type for
the binarizable cases, but that would make the labeling
essentially equal to the earlier mentioned 0th

ITG+ except for
looking at the reordering occurring at the parent rather than
inside the phrase itself. We did not explore this variant in this
work, as the high similarity to the already explored 0th

ITG+

variant made it not seem to add much extra information.

γβα

LHS
10

N1
11

N2
12

GAP1
11

GAP2
12

Substituting rule

Decoder chart

Label Substitution Features

Figure 5: Label substitution features, schematic
view. Labels/Gaps with same filling in the figures
correspond to the situation of a nonterminal/gap
whose labels correspond (for N1/GAP1). Fillings
of different shades (as for N2/GAP2 on the right
in the two figures) indicates the situation were the
label of the nonterminal and the gap is different.

Next we introduce the set of label substitution
features used in our experiments.

Label substitution features consist of a unique
feature for every pair of labels 〈Lα, Lβ〉 in the
grammar, signifying a rule with left-hand-side
label Lβ substituting on a gap labeled Lα. These
features are combined with two more coarse
features, “Match” and “Nomatch”, indicating if
the substitution involves labels that match or not.

Figure 5 illustrates the concept of label substi-
tution features schematically. In this figure the
substituting rule is substituted onto two gaps in
the chart, which induces two label substitution
features indicated by the two ellipses. The sit-
uation is analogous for rules with just one gap.
To make things concrete, lets assume that both
the first nonterminal of the rule N1 as well as
the first gap it is substituted onto GAP1 have
label MONO. Furthermore lets assume the second
nonterminal N2 has label COMPLEX while the
label of the gap GAP2 it substitutes onto is INV .
This situation results in the following two specific
label substitution features:
• subst(MONO,MONO)
• subst(INV ,COMPLEX)

Canonical labeled rules. Typically when la-
beling Hiero rules there can be many different
labeled variants of every original Hiero rule. With
soft constraint decoding this leads to prohibitive
computational cost. This also has the effect of
making tuning the features more difficult. In
practice, soft constraint decoding usually exploits
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Systen Name Matching Type Label Order Label Granularity
Hiero-0th

ITG+ Strict 0th order Coarse
Hiero-0th Strict 0th order Fine
Hiero-1st

Coarse Strict 1th order Coarse
Hiero-1st Strict 1th order Fine
Hiero-0th

ITG+-Sft Soft 0th order Coarse
Hiero-0th-Sft Soft 0th order Fine
Hiero-1st

Coarse-Sft Soft 1th order Coarse
Hiero-1st-Sft Soft 1th order Fine

Table 1: Experiment names legend

System Name
DEV TEST

BLEU ↑ METEOR ↑ TER ↓ KRS ↑ BLEU ↑ METEOR ↑ TER ↓ KRS ↑
German-English

Hiero 27.90 32.69 58.22 66.37 28.39 32.94 58.01 67.44
SAMT 27.76 32.67 58.05 66.84N 28.32 32.88 57.70NN 67.63
Hiero-0th

ITG+ 27.85 32.70 58.04NN 66.27 28.36 32.90H 57.83NN 67.30
Hiero-0th 27.82 32.75 57.92NN 66.66 28.39 33.03NN 57.75NN 67.55
Hiero-1st

Coarse 27.86 32.66 58.23 66.37 28.22H 32.90 57.93 67.47
Hiero-1st 27.74H 32.60HH 58.11 66.44 28.27 32.80HH 57.95 67.39

Chinese-English
Hiero 31.70 30.72 61.21 58.28 31.63 30.56 59.28 58.03
Hiero-0th

ITG+ 31.54 30.97NN 62.79HH 59.54NN 31.94NN 30.84NN 60.76HH 59.45NN

Hiero-0th 31.66 30.95NN 62.20HH 60.00NN 31.90NN 30.79NN 60.11HH 59.68NN

Hiero-1st
Coarse 31.64 30.75 61.37 59.48NN 31.57 30.57 59.58HH 59.13NN

Hiero-1st 31.74 30.79 61.94HH 60.22NN 31.77 30.62 60.13HH 59.89NN

Table 2: Mean results bilingual labels with strict matching.4

a single labeled version per Hiero rule, which
we call the “canonical labeled rule”. Following
(Chiang, 2010), this canonical form is the most
frequent labeled variant.

4 Experiments

We evaluate our method on two language pairs:
using German/Chinese as source and English as
target. In all experiments we decode with a
4-gram language model smoothed with modified
Knesser-Ney discounting (Chen and Goodman,
1998). The data used for training the language
models differs per language pair, details are given
in the next paragraphs. All data is lowercased as
a last pre-processing step. In all experiments we
use our own grammar extractor for the generation
of all grammars, including the baseline Hiero
grammars. This enables us to use the same
features (as far as applicable given the grammar
formalism) and assure true comparability of the
grammars under comparison.

German-English
4Statistical significance is dependent on variance of

resampled scores, and hence sometimes different for same
mean scores across different systems.

The data for our German-English experiments
is derived from parliament proceedings sourced
from the Europarl corpus (Koehn, 2005), with
WMT-07 development and test data. We used a
maximum sentence length of 40 for filtering the
training data. We employ 1M sentence pairs for
training, 1K for development and 2K for test-
ing (single reference per source sentence). Both
source and target of all datasets are tokenized
using the Moses(Hoang et al., 2007) tokenization
script. For these experiments both the baseline
and our method use a language model trained
on the target side of the full original training set
(approximately 1M sentences).

Chinese-English
The data for our Chinese-English experiments is
derived from a combination of MultiUn(Eisele
and Chen, 2010; Tiedemann, 2012)5 data and
Hong Kong Parallel Text data from the Linguistic
Data Consortium6. The Hong Kong Parallel Text
data is in traditional Chinese and is thus first
converted to simplified Chinese to be compatible

5Freely available and downloaded from
http://opus.lingfil.uu.se/

6The LDC catalog number of this dataset is LDC2004T08
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System Name
DEV TEST

BLEU ↑ METEOR ↑ TER ↓ KRS ↑ BLEU ↑ METEOR ↑ TER ↓ KRS ↑
German-English

Hiero 27.90 32.69 58.22 66.37 28.39 32.94 58.01 67.44
SAMT 27.76 32.67 58.05 66.84N 28.32 32.88 57.70NN 67.63
Hiero-0th

ITG+-Sft 28.00N 32.76NN 57.90NN 66.17 28.48 32.98 57.79NN 67.32
Hiero-0th-Sft 28.01N 32.71 57.95NN 66.24 28.45 32.98 57.73NN 67.51
Hiero-1st

Coarse-Sft 27.94 32.69 57.91NN 66.26 28.45N 32.94 57.75NN 67.36
Hiero-1st-Sft 28.13NN 32.80NN 57.92NN 66.32 28.45 33.00N 57.79NN 67.45

Chinese-English
Hiero 31.70 30.72 61.21 58.28 31.63 30.56 59.28 58.03
Hiero-0th

ITG+-Sft 31.88N 30.46HH 60.64NN 57.82H 31.93NN 30.37HH 58.86NN 57.60H

Hiero-0th-Sft 32.04NN 30.90NN 61.47HH 59.36NN 32.20NN 30.74NN 59.45H 58.92NN

Hiero-1st
Coarse-Sft 32.39NN 31.02NN 61.56HH 59.51NN 32.55NN 30.86NN 59.57HH 59.03NN

Hiero-1st-Sft 32.63NN 31.22NN 62.00HH 60.43NN 32.61NN 30.98NN 60.19HH 59.84NN

Table 3: Mean results bilingual labels with soft matching.4

with the rest of the data 7. We used a maximum
sentence length of 40 for filtering the training
data. The combined dataset has 7.34M sentence
pairs. The MulitUN dataset contains translated
documents from the United Nations, similar in
genre to the parliament domain. The Hong Kong
Parallel Text in contrast contains a richer mix
of domains, namely Hansards, Laws and News.
For the dev and test set we use the Multiple-
Translation Chinese datasets from LDC, part 1-48,
which contain sentences from the News domain.
We combined part 2 and 3 to form the dev set
(1813 sentence pairs) and part 1 and 4 to form the
test set (1912 sentence pairs). For both develop-
ment and testing we use 4 references. The Chinese
source side of all datasets is segmented using the
Stanford Segmenter(Chang et al., 2008)9. The
English target side of all datasets is tokenized
using the Moses tokenization script.

For these experiments both the baseline and
our method use a language model trained on
5.4M sentences of domain specific10 news data
taken from the “Xinhua” subcorpus of the English
Gigaword corpus of LDC. 11

7Using a simple conversion script downloaded from
http://www.mandarintools.com/zhcode.html

8LDC catalog numbers: LDC2002T01, DC2003T17,
LDC2004T07 and LDC2004T07

9Downloaded from
http://nlp.stanford.edu/software/segmenter.shtml

10For Chinese-English translation the different domain of
the train data (mainly parliament) and dev/test data (news)
requires usage of a domain specific language model to get
optimal results. For German-English, all data is from the
the parliament domain, so a language model trained on the
(translation model) training data is already domain-specific.

11The LDC catalog number of this dataset is LDC2003T05

4.1 Experimental Structure
In our experiments we explore the influence of
three dimensions of bilingual reordering labels on
translation accuracy. These dimensions are:

• label granularity : granularity of the labeling
{Coarse,Fine}
• label order : the type/order of the labeling
{0th, 1st}
• matching type : the type of label matching

performed during decoding {Strict,Soft}
Combining these dimensions gives 8 different

reordering labeled systems per language pair.
On top of that we use two baseline systems,
namely Hiero and Syntax Augmented Machine
Translation (SAMT) to measure these systems
against. An overview of the naming of our
reordering labeled systems is given in Table 1.

Training and decoding details Our experiments
use Joshua (Ganitkevitch et al., 2012) with Viterbi
best derivation. Baseline experiments use nor-
mal decoding whereas soft labeling experiments
use soft constraint decoding. For training we
use standard Hiero grammar extraction constraints
(Chiang, 2007) (phrase pairs with source spans
up to 10 words; abstract rules are forbidden).
During decoding maximum span 10 on the source
side is maintained. Following common practice,
we use relative frequency estimates for phrase
probabilities, lexical probabilities and generative
rule probability.

We train our systems using (batch-kbest) Mira
as borrowed by Joshua from the Moses codebase,
allowing up to 30 tuning iterations. Following
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standard practice, we tune on BLEU, and after
tuning we use the configuration with the highest
scores on the dev set with actual (corpus level)
BLEU evaluation. We report lowercase BLEU
(Papineni et al., 2002), METEOR (Denkowski
and Lavie, 2011) and TER (Snover et al., 2006)
scores for the tuned test set and also for the tuned
dev set, the latter mainly to observe any possible
overfitting. We use Multeval version 0.5.1.12 for
computing these metrics. We also use MultEval’s
implementation of statistical significance testing
between systems, which is based on multiple
optimizer runs and approximate randomization.
Multeval (Clark et al., 2011) randomly swaps
outputs between systems and estimates the prob-
ability that the observed score difference arose by
chance. Differences that are statistically signif-
icant and correspond to improvement/worsening
with respect to the baseline are marked with N/Hat
the p ≤ .05 level and NN/HHat the p ≤ .01 level. We
also report the Kendall Reordering Score (KRS),
which is the reordering-only variant of the LR-
score (Birch and Osborne, 2010) (without the
optional interpolation with BLEU) and which is
a sentence-level score. For the computation of
statistical significance of this metric we use our
own implementation of the sign test 13 (Dixon and
Mood, 1946), as also described in (Koehn, 2010).

In our experiments we repeated each experi-
ment three times to counter unreliable conclusions
due to optimizer variance. Scores are averages
over three runs of tuning plus testing. Scores
marked with N are significantly better than the
baseline, those marked with H are significantly
worse; according to the resampling test of Mul-
teval (Clark et al., 2011).

Preliminary experiment with strict matching
Initial experiments concerned 0th-order reorder-
ing labels in a strict matching approach (no soft
constraints). The results are shown in Table 2 for
both language pairs. The results for the Hiero and
SAMT14 baselines (Hiero and SAMT) are shown
in the first rows. Below it results for the 0th-order
(phrase-centric) bilingual labeled systems with
either the Coarse (Hiero-0th

ITG+) or Fine label
12https://github.com/jhclark/multeval
13To make optimal usage of the 3 runs we computed

equally weighted improvement/worsening counts for all
possible 3 × 3 baseline output / system output pairs and use
those weighted counts in the sign test.

14SAMT could only be ran for German-English and not
for Chinese-English, due to memory constraints.

variant (Hiero-0th) are shown, followed by the
results for Coarse and Fine variant of the 1th-order
(parent-relative) bilingual labeled systems (Hiero-
1st

Coarse and Hiero-1st). All these systems use the
default decoding with strict label matching.

For German-English the effect of strict bilin-
gual labels is mostly positive: although we have
no improvement for BLEU we do achieve sig-
nificant improvements for METEOR and TER
on the test set. For Chinese-English, overall
Hiero-0th

ITG+ shows the biggest improvements,
namely significant improvements of +0.31 BLEU,
+0.28 METEOR and +1.42 KRS. TER is the
only metric that worsens, and considerably so
with +1.48 point. Hiero-1stachieves the highest
improvement of KRS, namely 1.86 point higher
than the Hiero baseline. Overall, this preliminary
experiment shows that strict labeling sometimes
gives improvements over Hiero, but sometimes it
leads to worsening in terms of some of the metrics.

Results with soft bilingual constraints Our ini-
tial experiments with strict bilingual labels in
combination with strict matching by the decoder
gave some hope such constraints could be useful.
At the same time the results showed no stable
improvements across language pairs, and thus
does not allow us to draw definite conclusions
about the merit of bilingual labels.

Results for experiments with soft bilingual la-
beling are shown in Table 3. Here Hiero corre-
sponds to the Hiero baseline. Below it are shown
the systems that use soft constraint decoding (
SCD). Hiero-0th

ITG+-Sft and Hiero-0th-Sft using
phrase-centric labels (0th-order) in Coarse or Fine
form. Similarly, Hiero-1st

Coarse-Sft and Hiero-
1st-Sft correspond to the analog systems with
1st-order, parent-relative labels. For German-
English there are only minor improvements for
BLEU and METEOR, with somewhat bigger im-
provements for TER. For Chinese-English how-
ever the improvements are considerable, +0.98
BLEU improvement over the Hiero baseline for
Hiero-1st-Sft as well as +0.42 METEOR and
+1.81 KRS. TER is worsening with +0.85 for this
system. For Chinese-English the Fine version of
the labels gives overall superior results for both
0th-order and 1st-order labels.

Discussion Our best soft bilingual labeling system
for German-English shows small but significant
improvements of METEOR and TER while im-
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proving BLEU and KRS as well, but not signifi-
cantly. The results with soft-constraint matching
are better than those for strict-matching in general,
while there is no clear winner between the Coarse
and Fine variant of labels.

For Chinese-English we see considerable
improvements and overall the best results for
the combination of soft-constraint matching,
with the Fine 1st-order variant of the labeled
systems (Hiero-1st-Sft). For Chinese-English the
improvement of the word-order is also particularly
clear as indicated by the +1.81 KRS improvement
for this best system. Furthermore the negative
effects in terms of worsening of TER are also
reduced in the soft-matching setting, dropping
from +1.48 TER to +0.85 TER. The results for
Hiero-0th-Sft are also competitive, since though
it gives somewhat lower improvements of BLEU
and METEOR, it gives an improvement of +1.89
KRS, while TER only worsens by +0.17 for this
system.

We conclude that bilingual Markov labels can
make a big difference in improvement of hier-
archical SMT. We observe that going beyond
the basic reordering labels of ITG, refining the
cases not captured by ITG and even more ef-
fective: taking a 1st-order rather than oth-order
perspective on reordering are major factors for
the success of including reordering information to
hierarchical SMT through labeling. Crucial to the
success of this undertaking is also the usage of
a soft-constraint approach to label matching, as
opposed to strict-matching. Finally, comparison
of the German-English results with results for
Syntax-Augmented Machine Translation (SAMT)
reveals that SAMT loses performance compared
to the Hiero baseline for BLEU, the metric upon
which tuning is done, as well as METEOR, while
only TER and KRS show improvement. Since
the best bilingual labeled system for German-
English (Hiero-1st-Sft) improves METEOR and
TER significantly, while also improving BLEU
and KRS, though not significant, we believe our
labeling is highly competitive with syntax-based
labeling approaches, without the need for any
additional resources in the form of parsers or
taggers, as syntax-based systems require. Likely
complementarity of reordering information, and
(target) syntax, which improves fluency, makes
combining both a promising possibility we would
like to explore in future work.

5 Conclusion

We presented a novel method to enrich Hierarchi-
cal Statistical Machine Translation with bilingual
labels that help to improve the translation quality.
Considerable and significant improvements of the
BLEU, METEOR and KRS are achieved simul-
taneously for Chinese-English translation while
tuning on BLEU, where the Kendall Reordering
Score is specifically designed to measure im-
provement of reordering in isolation. For German-
English more modest, statistically significant im-
provements of METEOR and TER (simultane-
ously) or BLEU (separately) are achieved. Our
work differs from related approaches that use
syntactic or part-of-speech information in the for-
mation of reordering constraints in that it needs no
such additional information. It also differs from
related work on reordering constraints based on
lexicalization in that it uses no such lexicaliza-
tion but instead strives to achieve more globally
coherent translations, afforded by global, holistic
constraints that take the local reordering history
of the derivation directly into account. Our exper-
iments also once again reinforce the established
wisdom that soft, rather than strict constraints,
are a necessity when aiming to include new in-
formation to an already strong system without the
risk of effectively worsening performance through
constraints that have not been directly tailored
to the data through a proper learning approach.
While lexicalized constraints on reordering have
proven to have great potential, un-lexicalized soft
bilingual constraints, which are more general and
transcend the rule level have their own place in
providing another agenda of improving transla-
tion which focusses more on the global coher-
ence direction by directly putting soft alignment-
informed constraints on the combination of rules.
Finally, while more research is necessary in this
direction, there are strong reasons to believe that
in the right setup these different approaches can be
made to further reinforce each other.
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Abstract
We introduce an inversion transduc-
tion grammar based restructuring of
the MEANT automatic semantic frame
based MT evaluation metric, which,
by leveraging ITG language biases, is
able to further improve upon MEANT’s
already-high correlation with human
adequacy judgments. The new metric,
called IMEANT, uses bracketing ITGs to
biparse the reference and machine transla-
tions, but subject to obeying the semantic
frames in both. Resulting improvements
support the presumption that ITGs, which
constrain the allowable permutations
between compositional segments across
the reference and MT output, score the
phrasal similarity of the semantic role
fillers more accurately than the simple
word alignment heuristics (bag-of-word
alignment or maximum alignment) used
in previous version of MEANT. The
approach successfully integrates (1) the
previously demonstrated extremely high
coverage of cross-lingual semantic frame
alternations by ITGs, with (2) the high
accuracy of evaluating MT via weighted
f-scores on the degree of semantic frame
preservation.

1 Introduction

There has been to date relatively little use of in-
version transduction grammars (Wu, 1997) to im-
prove the accuracy of MT evaluation metrics, de-
spite long empirical evidence the vast majority of
translation patterns between human languages can
be accommodated within ITG constraints (and the
observation that most current state-of-the-art SMT
systems employ ITG decoders). We show that
ITGs can be used to redesign the MEANT seman-
tic frame based MT evaluation metric (Lo et al.,

2012) to produce improvements in accuracy and
reliability. This work is driven by the motiva-
tion that especially when considering semanticMT
metrics, ITGs would be seem to be a natural basis
for several reasons.

To begin with, it is quite natural to think of
sentences as having been generated from an ab-
stract concept using a rewriting system: a stochas-
tic grammar predicts how frequently any particu-
lar realization of the abstract concept will be gen-
erated. The bilingual analogy is a transduction
grammar generating a pair of possible realizations
of the same underlying concept. Stochastic trans-
duction grammars predict how frequently a partic-
ular pair of realizations will be generated, and thus
represent a good way to evaluate how well a pair
of sentences correspond to each other.

The particular class of transduction gram-
mars known as ITGs tackle the problem that
the (bi)parsing complexity for general syntax-
directed transductions (Aho and Ullman, 1972)
is exponential. By constraining a syntax-directed
transduction grammar to allow only monotonic
straight and inverted reorderings, or equivalently
permitting only binary or ternary rank rules, it is
possible to isolate the low end of that hierarchy into
a single equivalence class of inversion transduc-
tions. ITGs are guaranteed to have a two-normal
form similar to context-free grammars, and can
be biparsed in polynomial time and space (O

(
n6

)
time and O

(
n4

)
space). It is also possible to do ap-

proximate biparsing in O
(
n3

)
time (Saers et al.,

2009). These polynomial complexities makes it
feasible to estimate the parameters of an ITG us-
ing standard machine learning techniques such as
expectation maximization (Wu, 1995b) .

At the same time, inversion transductions have
also been directly shown to be more than sufficient
to account for the reordering that occur within se-
mantic frame alternations (Addanki et al., 2012).
This makes ITGs an appealing alternative for eval-
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uating the possible links between both semantic
role fillers in different languages as well as the
predicates, and how these parts fit together to form
entire semantic frames. We believe that ITGs are
not only capable of generating the desired struc-
tural correspondences between the semantic struc-
tures of two languages, but also provide meaning-
ful constraints to prevent alignments from wander-
ing off in the wrong direction.

In this paper we show that IMEANT, a new met-
ric drawing from the strengths of both MEANT
and inversion transduction grammars, is able to
exploit bracketing ITGs (also known as BITGs
or BTGs) which are ITGs containing only a sin-
gle non-differentiated non terminal category (Wu,
1995a), so as to produce even higher correlation
with human adequacy judgments than any auto-
matic MEANT variants, or other common auto-
matic metrics. We argue that the constraints pro-
vided by BITGs over the semantic frames and ar-
guments of the reference and MT output sentences
are essential for accurate evaluation of the phrasal
similarity of the semantic role fillers.

In common with the various MEANT semantic
MT evaluation metrics (Lo and Wu, 2011a, 2012;
Lo et al., 2012; Lo and Wu, 2013b), our proposed
IMEANT metric measures the degree to which
the basic semantic event structure is preserved
by translation—the “who did what to whom, for
whom, when, where, how and why” (Pradhan et
al., 2004)—emphasizing that a good translation
is one that can successfully be understood by a
human. In the other versions of MEANT, sim-
ilarity between the MT output and the reference
translations is computed as a modified weighted f-
score over the semantic predicates and role fillers.
Across a variety of language pairs and genres, it
has been shown that MEANT correlates better with
human adequacy judgment than both n-gram based
MT evaluation metrics such as BLEU (Papineni
et al., 2002), NIST (Doddington, 2002), and ME-
TEOR (Banerjee and Lavie, 2005), as well as edit-
distance based metrics such as CDER (Leusch et
al., 2006), WER (Nießen et al., 2000), and TER
(Snover et al., 2006) when evaluating MT output
(Lo and Wu, 2011a, 2012; Lo et al., 2012; Lo and
Wu, 2013b; Macháček and Bojar, 2013). Further-
more, tuning the parameters of MT systems with
MEANT instead of BLEU or TER robustly im-
proves translation adequacy across different gen-
res and different languages (English and Chinese)

(Lo et al., 2013a; Lo and Wu, 2013a; Lo et al.,
2013b). This has motivated our choice of MEANT
as the basis on which to experiment with deploying
ITGs into semantic MT evaluation.

2 Related Work

2.1 ITGs and MT evaluation
Relatively little investigation into the potential
benefits of ITGs is found in previous MT eval-
uation work. One exception is invWER, pro-
posed by Leusch et al. (2003) and Leusch and Ney
(2008). The invWER metric interprets weighted
BITGs as a generalization of the Levenshtein edit
distance, in which entire segments (blocks) can be
inverted, as long as this is done strictly compo-
sitionally so as not to violate legal ITG biparse
tree structures. The input and output languages
are considered to be those of the reference and ma-
chine translations, and thus are over the same vo-
cabulary (say,English). At the sentence level, cor-
relation of invWER with human adequacy judg-
ments was found to be among the best.

Our current approach differs in several key
respects from invWER. First,invWER operates
purely at the surface level of exact token match,
IMEANT mediates between segments of refer-
ence translation and MT output using lexical BITG
probabilities.

Secondly, there is no explicit semantic model-
ing in invWER. Providing they meet the BITG
constraints, the biparse trees in invWER are com-
pletely unconstrained. In contrast, IMEANT em-
ploys the same explicit, strong semantic frame
modeling as MEANT, on both the reference and
machine translations. In IMEANT, the semantic
frames always take precedence over pure BITG
biases. Compared to invWER, this strongly con-
strains the space of biparses that IMEANT permits
to be considered.

2.2 MT evaluation metrics
Like invWER, other common surface-form ori-
ented metrics like BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), METEOR (Banerjee
and Lavie, 2005; Denkowski and Lavie, 2014),
CDER (Leusch et al., 2006), WER (Nießen et
al., 2000), and TER (Snover et al., 2006) do
not correctly reflect the meaning similarities of
the input sentence. There are in fact several
large scale meta-evaluations (Callison-Burch et
al., 2006; Koehn and Monz, 2006) reporting cases
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where BLEU strongly disagrees with human judg-
ments of translation adequacy.

Such observations have generated a recent surge
of work on developing MT evaluation metrics that
would outperform BLEU in correlation with hu-
man adequacy judgment (HAJ). Like MEANT, the
TINE automatic recall-oriented evaluation metric
(Rios et al., 2011) aims to preserve basic event
structure. However, its correlation with human ad-
equacy judgment is comparable to that of BLEU
and not as high as that of METEOR. Owczarzak
et al. (2007a,b) improved correlation with human
fluency judgments by using LFG to extend the ap-
proach of evaluating syntactic dependency struc-
ture similarity proposed by Liu and Gildea (2005),
but did not achieve higher correlation with hu-
man adequacy judgments than metrics like ME-
TEOR. Another automatic metric, ULC (Giménez
and Màrquez, 2007, 2008), incorporates several
semantic similarity features and shows improved
correlation with human judgement of translation
quality (Callison-Burch et al., 2007; Giménez
and Màrquez, 2007; Callison-Burch et al., 2008;
Giménez and Màrquez, 2008) but no work has
been done towards tuning an SMT system using
a pure form of ULC perhaps due to its expensive
run time. Likewise, SPEDE (Wang and Manning,
2012) predicts the edit sequence needed to match
the machine translation to the reference translation
via an integrated probabilistic FSM and probabilis-
tic PDA model. The semantic textual similarity
metric Sagan (Castillo and Estrella, 2012) is based
on a complex textual entailment pipeline. These
aggregated metrics require sophisticated feature
extraction steps, contain many parameters that
need to be tuned, and employ expensive linguis-
tic resources such as WordNet or paraphrase tables.
The expensive training, tuning and/or running time
renders these metrics difficult to use in the SMT
training cycle.

3 IMEANT

In this section we give a contrastive description
of IMEANT: we first summarize the MEANT ap-
proach, and then explain how IMEANT differs.

3.1 Variants of MEANT

MEANT and its variants (Lo et al., 2012) measure
weighted f-scores over corresponding semantic
frames and role fillers in the reference and machine
translations. The automatic versions of MEANT

replace humans with automatic SRL and align-
ment algorithms. MEANT typically outperforms
BLEU, NIST, METEOR, WER, CDER and TER
in correlation with human adequacy judgment, and
is relatively easy to port to other languages, re-
quiring only an automatic semantic parser and a
monolingual corpus of the output language, which
is used to gauge lexical similarity between the se-
mantic role fillers of the reference and translation.
MEANT is computed as follows:

1. Apply an automatic shallow semantic parser
to both the reference and machine transla-
tions. (Figure 1 shows examples of auto-
matic shallow semantic parses on both refer-
ence and MT.)

2. Apply the maximum weighted bipartite
matching algorithm to align the semantic
frames between the reference and machine
translations according to the lexical similari-
ties of the predicates. (Lo and Wu (2013a)
proposed a backoff algorithm that evaluates
the entire sentence of the MT output using the
lexical similarity based on the context vector
model, if the automatic shallow semantic
parser fails to parse the reference or machine
translations.)

3. For each pair of the aligned frames, apply the
maximum weighted bipartite matching algo-
rithm to align the arguments between the ref-
erence and MT output according to the lexical
similarity of role fillers.

4. Compute the weighted f-score over the
matching role labels of these aligned predi-
cates and role fillers according to the follow-
ing definitions:

q0
i,j ≡ ARG j of aligned frame i in MT

q1
i,j ≡ ARG j of aligned frame i in REF

w0
i ≡ #tokens filled in aligned frame i of MT

total #tokens in MT

w1
i ≡ #tokens filled in aligned frame i of REF

total #tokens in REF
wpred ≡ weight of similarity of predicates

wj ≡ weight of similarity of ARG j

ei,pred ≡ the pred string of the aligned frame i of MT
fi,pred ≡ the pred string of the aligned frame i of REF
ei,j ≡ the role fillers of ARG j of the aligned frame i of MT
fi,j ≡ the role fillers of ARG j of the aligned frame i of REF

s(e, f) = lexical similarity of token e and f
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[IN] 至此 ， 在 中国 内地 停售 了 近 两 个 月 的 ＳＫ－ＩＩ 全线 产品 恢复 销售 。  

[REF] Until after their sales had ceased in mainland China for almost two months , sales of the complete range of SK – II products have now been resumed . 

ARGM-TMP PRED ARGM-LOC PRED ARG1 

ARGM-LOC PRED ARG1 PRED ARG1 

ARG0 ARGM-TMP 

[MT1] So far , nearly two months sk - ii the sale of products in the mainland of China to resume sales .  

PRED ARG0 ARG1 

[MT2] So far , in the mainland of China to stop selling nearly two months of SK - 2 products sales resumed .  

ARGM-TMP ARG1 PRED PRED ARG1 

[MT3] So far , the sale in the mainland of China for nearly two months of SK - II line of products .  

PRED 

PRED ARG0 

ARG1 

ARGM-TMP 

ARGM-ADV 

ARG0 

ARGM-EXT 

Figure 1: Examples of automatic shallow semantic parses. Both the reference and machine translations
are parsed using automatic English SRL. There are no semantic frames for MT3 since there is no predicate
in the MT output.

prece,f =

∑
e∈e max

f∈f
s(e, f)

| e |

rece,f =

∑
f∈f max

e∈e
s(e, f)

| f |

si,pred =
2 · precei,pred,fi,pred

· recei,pred,fi,pred

precei,pred,fi,pred
+ recei,pred,fi,pred

si,j =
2 · precei,j ,fi,j

· recei,j ,fi,j

precei,j ,fi,j
+ recei,j ,fi,j

precision =

∑
i w0

i
wpredsi,pred+

∑
j wjsi,j

wpred+
∑

j wj |q0
i,j |∑

i w0
i

recall =

∑
i w1

i
wpredsi,pred+

∑
j wjsi,j

wpred+
∑

j wj |q1
i,j |∑

i w1
i

MEANT =
2 · precision · recall
precision + recall

where q0
i,j and q1

i,j are the argument of type j in
frame i in MT and REF respectively. w0

i and w1
i are

the weights for frame i in MT/REF respectively.
These weights estimate the degree of contribution
of each frame to the overall meaning of the sen-
tence. wpred and wj are the weights of the lexical
similarities of the predicates and role fillers of the
arguments of type j of all frame between the ref-
erence translations and the MT output.There is a
total of 12 weights for the set of semantic role la-
bels in MEANT as defined in Lo and Wu (2011b).
For MEANT, they are determined using super-
vised estimation via a simple grid search to opti-
mize the correlation with human adequacy judg-
ments (Lo and Wu, 2011a). For UMEANT (Lo and

Wu, 2012), they are estimated in an unsupervised
manner using relative frequency of each semantic
role label in the references and thus UMEANT is
useful when human judgments on adequacy of the
development set are unavailable.

si,pred and si,j are the lexical similarities based
on a context vector model of the predicates and role
fillers of the arguments of type j between the ref-
erence translations and the MT output. Lo et al.
(2012) and Tumuluru et al. (2012) described how
the lexical and phrasal similarities of the semantic
role fillers are computed. A subsequent variant of
the aggregation function inspired by Mihalcea et
al. (2006) that normalizes phrasal similarities ac-
cording to the phrase length more accurately was
used in more recent work (Lo et al., 2013a; Lo and
Wu, 2013a; Lo et al., 2013b). In this paper, we
will assess IMEANT against the latest version of
MEANT (Lo et al., 2014) which, as shown, uses
f-score to aggregate individual token similarities
into the composite phrasal similarities of semantic
role fillers,since this has been shown to be more ac-
curate than the previously used aggregation func-
tions.

Recent studies (Lo et al., 2013a; Lo and Wu,
2013a; Lo et al., 2013b) show that tuning MT sys-
tems against MEANT produces more robustly ad-
equate translations than the common practice of
tuning against BLEU or TER across different data
genres, such as formal newswire text, informal
web forum text and informal public speech.
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In an alternative quality-estimation oriented line
of research, Lo et al. (2014) describe a cross-
lingual variant called XMEANT capable of eval-
uating translation quality without the need for ex-
pensive human reference translations, by utiliz-
ing semantic parses of the original foreign in-
put sentence instead of a reference translation.
Since XMEANT’s results could have been due
to either (1) more accurate evaluation of phrasal
similarity via cross-lingual translation probabili-
ties, or (2) better match of semantic frames with-
out reference translations, there is no direct evi-
dence whether ITGs contribute to the improvement
in MEANT’s correlation with human adequacy
judgment. For the sake of better understanding
whether ITGs improve semantic MT evaluation,
we will also assess IMEANT against cross-lingual
XMEANT.

3.2 The IMEANT metric
Although MEANT was previously shown to pro-
duce higher correlation with human adequacy
judgments compared to other automatic metrics,
our error analyses suggest that it still suffers from a
common weakness among metrics employing lex-
ical similarity, namely that word/token alignments
between the reference and machine translations
are severely under constrained. No bijectivity or
permutation restrictions are applied, even between
compositional segments where this should be nat-
ural. This can cause role fillers to be aligned even
when they should not be. IMEANT, in contrast,
uses a bracketing inversion transduction grammar
to constrain permissible token alignment patterns
between aligned role filler phrases. The semantic
frames above the token level also fits ITG com-
positional structure, consistent with the aforemen-
tioned semantic frame alternation coverage study
of Addanki et al. (2012). Figure 2 illustrates how
the ITG constraints are consistent with the needed
permutations between semantic role fillers across
the reference and machine translations for a sam-
ple sentence from our evaluation data, which as
we will see leads to higher HAJ correlations than
MEANT.

Subject to the structural ITG constraints,
IMEANT scores sentence translations in a spirit
similar to the way MEANT scores them: it utilizes
an aggregated score over the matched semantic
role labels of the automatically aligned semantic
frames and their role fillers between the reference
and machine translations. Despite the structural

differences, like MEANT, at the conceptual level
IMEANT still aims to evaluate MT output in
terms of the degree to which the translation has
preserved the essential “who did what to whom,for
whom, when, where, how and why” of the foreign
input sentence.

Unlike MEANT, however, IMEANT aligns and
scores under ITG assumptions. MEANT uses a
maximum alignment algorithm to align the tokens
in the role fillers between the reference and ma-
chine translations, and then scores by aggregating
the lexical similarities into a phrasal similarity us-
ing an f-measure. In contrast, IMEANT aligns and
scores by utilizing a length-normalized weighted
BITG (Wu, 1997; Zens and Ney, 2003; Saers and
Wu, 2009; Addanki et al., 2012). To be precise in
this regard, we can see IMEANT as differing from
the foregoing description of MEANT in the defi-
nition of si,pred and si,j , as follows.

G ≡ ⟨{A} ,W0,W1,R, A⟩
R ≡ {A → [AA] , A → ⟨AA⟩, A → e/f}

p ([AA] |A) = p (⟨AA⟩|A) = 1

p (e/f |A) = s(e, f)

si,pred = lg−1

 lg
(
P
(

A ∗⇒ ei,pred/fi,pred|G
))

max(| ei,pred |, | fi,pred |)


si,j = lg−1

 lg
(
P
(

A ∗⇒ ei,j/fi,j |G
))

max(| ei,j |, | fi,j |)


where G is a bracketing ITG whose only non ter-
minal is A, andR is a set of transduction rules with
e ∈ W0∪{ϵ} denoting a token in the MT output (or
the null token) and f ∈ W1∪{ϵ} denoting a token
in the reference translation (or the null token). The
rule probability (or more accurately, rule weight)
function p is set to be 1 for structural transduction
rules, and for lexical transduction rules it is de-
fined using MEANT’s context vector model based
lexical similarity measure. To calculate the inside
probability (or more accurately, inside score) of a
pair of segments, P

(
A ∗⇒ e/f|G

)
, we use the al-

gorithm described in Saers et al. (2009). Given
this, si,pred and si,j now represent the length nor-
malized BITG parse scores of the predicates and
role fillers of the arguments of type j between the
reference and machine translations.

4 Experiments

In this section we discuss experiments indicating
that IMEANT further improves upon MEANT’s
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[REF] The reduction in hierarchy helps raise the efficiency of inspection and supervisory work .  

[MT2] The level of reduction is conducive to raising the inspection and supervision work efficiency .  
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Figure 2: An example of aligning automatic shallow semantic parses under ITGs, visualized using both
biparse tree and alignment matrix depictions, for the Chinese input sentence 层级的减少有利于提⾼检查
监督⼯作的效率。. Both the reference and machine translations are parsed using automatic English SRL.
Compositional alignments between the semantic frames and the tokens within role filler phrases obey
inversion transduction grammars.

already-high correlation with human adequacy
judgments.

4.1 Experimental setup

We perform the meta-evaluation upon two differ-
ent partitions of the DARPA GALE P2.5 Chinese-
English translation test set. The corpus includes
the Chinese input sentences, each accompanied by
one English reference translation and three partic-
ipating state-of-the-art MT systems’ output.

For the sake of consistent comparison, the first
evaluation partition, GALE-A, is the same as the
one used in Lo and Wu (2011a), and the second
evaluation partition, GALE-B, is the same as the
one used in Lo and Wu (2011b).

For both reference and machine translations, the
ASSERT (Pradhan et al., 2004) semantic role la-
beler was used to automatically predict semantic
parses.
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Table 1: Sentence-level correlation with human
adequacy judgements on different partitions of
GALE P2.5 data. IMEANT always yields top
correlations, and is more consistent than either
MEANT or its recent cross-lingual XMEANT
quality estimation variant. For reference, the hu-
man HMEANT upper bound is 0.53 for GALE-A
and 0.37 for GALE-B—thus, the fully automated
IMEANT approximation is not far from closing the
gap.
metric GALE-A GALE-B
IMEANT 0.51 0.33
XMEANT 0.51 0.20
MEANT 0.48 0.33
METEOR 1.5 (2014) 0.43 0.10
NIST 0.29 0.16
METEOR 0.4.3 (2005) 0.20 0.29
BLEU 0.20 0.27
TER 0.20 0.19
PER 0.20 0.18
CDER 0.12 0.16
WER 0.10 0.26

4.2 Results
The sentence-level correlations in Table 1 show
that IMEANT outperforms other automatic met-
rics in correlation with human adequacy judgment.
Note that this was achieved with no tuning what-
soever of the default rule weights (suggesting that
the performance of IMEANT could be further im-
proved in the future by slightly optimizing the ITG
weights).

On the GALE-A partition, IMEANT shows 3
points improvement over MEANT, and is tied
with the cross-lingual XMEANT quality estimator
discussed earlier.IMEANT produces much higher
HAJ correlations than any of the other metrics.

On the GALE-B partition, IMEANT is tied with
MEANT, and is significantly better correlated with
HAJ than the XMEANT quality estimator. Again,
IMEANT produces much higher HAJ correlations
than any of the other metrics.

We note that we have also observed this pattern
consistently in smaller-scale experiments—while
the monolingual MEANT metric and its cross-
lingual XMEANT cousin vie with each other on
different data sets, IMEANT robustly and consis-
tently produces top HAJ correlations.

In both the GALE-A and GALE-B partitions,
IMEANT comes within a few points of the human

upper bound benchmark HAJ correlations com-
puted using the human labeled semantic frames
and alignments used in the HMEANT.

Data analysis reveals two reasons that IMEANT
correlates with human adequacy judgement more
closely than MEANT. First, BITG constraints in-
deed provide more accurate phrasal similarity ag-
gregation, compared to the naive bag-of-words
based heuristics employed in MEANT. Similar re-
sults have been observed while trying to estimate
word alignment probabilities where BITG con-
straints outperformed alignments from GIZA++
(Saers and Wu, 2009).

Secondly, the permutation and bijectivity con-
straints enforced by the ITG provide better lever-
age to reject token alignments when they are not
appropriate, compared with the maximal align-
ment approach which tends to be rather promiscu-
ous. A case of this can be seen in Figure 3, which
shows the result on the same example sentence as
in Figure 1. Disregarding the semantic parsing er-
rors arising from the current limitations of auto-
matic SRL tools, the ITG tends to provide clean,
sparse alignments for role fillers like the ARG1
of the resumed PRED, preferring to leave tokens
like complete and range unaligned instead of aligning
them anyway as MEANT’s maximal alignment al-
gorithm tends to do. Note that it is not simply a
matter of lowering thresholds for accepting token
alignments: Tumuluru et al. (2012) showed that
the competitive linking approach (Melamed, 1996)
which also generally produces sparser alignments
does not work as well in MEANT, whereas the ITG
appears to be selective about the token alignments
in a manner that better fits the semantic structure.

For contrast, Figure 4 shows a case where
IMEANT appropriately accepts dense alignments.

5 Conclusion

We have presented IMEANT, an inversion trans-
duction grammar based rethinking of the MEANT
semantic frame based MT evaluation approach,
that achieves higher correlation with human ad-
equacy judgments of MT output quality than
MEANT and its variants, as well as other com-
mon evaluation metrics. Our results improve upon
previous research showing that MEANT’s explicit
use of semantic frames leads to state-of-the-art au-
tomatic MT evaluation. IMEANT achieves this
by aligning and scoring semantic frames under a
simple, consistent ITG that provides empirically
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[REF] Until after their sales had ceased in mainland China for almost two months , sales of the complete range of SK – II products have now been resumed .  

ARG0 PRED ARGM-LOC PRED ARG1 

[MT2] So far , in the mainland of China to stop selling nearly two months of SK - 2 products sales resumed .  
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Figure 3: An example where the ITG helps produce correctly sparse alignments by rejecting inappro-
priate token alignments in the ARG1 of the resumed PRED, instead of wrongly aligning tokens like the,
complete, and range as MEANT tends to do. (The semantic parse errors are due to limitations of automatic
SRL.)

informative permutation and bijectivity biases, in-
stead of the maximal alignment and bag-of-words
assumptions used by MEANT. At the same time,
IMEANT retains the Occam’s Razor style simplic-

ity and representational transparency characteris-
tics of MEANT.

Given the absence of any tuning of ITG weights
in this first version of IMEANT, we speculate that
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[REF] Australian Prime Minister Howard said the government could cancel AWB 's monopoly in the wheat business next week . 

[MT2] Australian Prime Minister John Howard said that the Government might cancel the AWB company wheat monopoly next week . 
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Figure 4: An example of dense alignments in IMEANT, for the Chinese input sentence 澳⼤利亚总理霍
华德表⽰，政府可能于下周取消 AWB公司⼩麦专卖的业务。 (The semantic parse errors are due to limitations
of automatic SRL.)

IMEANT could perform even better than it already
does here.We plan to investigate simple hyperpa-

rameter optimizations in the near future.

30



6 Acknowledgments

This material is based upon work supported
in part by the Defense Advanced Research
Projects Agency (DARPA) under BOLT contract
nos. HR0011-12-C-0014 and HR0011-12-C-0016,
and GALE contract nos. HR0011-06-C-0022 and
HR0011-06-C-0023; by the European Union un-
der the FP7 grant agreement no. 287658; and by
the Hong Kong Research Grants Council (RGC)
research grants GRF620811, GRF621008, and
GRF612806. Any opinions, findings and conclu-
sions or recommendations expressed in this mate-
rial are those of the authors and do not necessar-
ily reflect the views of DARPA, the EU, or RGC.
Thanks to Karteek Addanki for supporting work,
and to Pascale Fung, Yongsheng Yang and Zhao-
jun Wu for sharing the maximum entropy Chinese
segmenter and C-ASSERT, the Chinese semantic
parser.

References

Karteek Addanki, Chi-kiu Lo, Markus Saers, and
Dekai Wu. LTG vs. ITG coverage of cross-
lingual verb frame alternations. In 16th An-
nual Conference of the European Association
for Machine Translation (EAMT-2012), Trento,
Italy, May 2012.

Alfred V. Aho and Jeffrey D. Ullman. The The-
ory of Parsing, Translation, and Compiling.
Prentice-Halll, Englewood Cliffs, New Jersey,
1972.

Satanjeev Banerjee and Alon Lavie. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In
Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Sum-
marization, Ann Arbor, Michigan, June 2005.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. Re-evaluating the role of BLEU in ma-
chine translation research. In 11th Conference
of the European Chapter of the Association for
Computational Linguistics (EACL-2006), 2006.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder.
(meta-) evaluation of machine translation. In
Second Workshop on Statistical Machine Trans-
lation (WMT-07), 2007.

Chris Callison-Burch, Cameron Fordyce, Philipp
Koehn, Christof Monz, and Josh Schroeder.

Further meta-evaluation of machine transla-
tion. In Third Workshop on Statistical Machine
Translation (WMT-08), 2008.

Julio Castillo and Paula Estrella. Semantic tex-
tual similarity for MT evaluation. In 7th Work-
shop on Statistical Machine Translation (WMT
2012), 2012.

Michael Denkowski and Alon Lavie. METEOR
universal: Language specific translation eval-
uation for any target language. In 9th Work-
shop on Statistical Machine Translation (WMT
2014), 2014.

George Doddington. Automatic evaluation of
machine translation quality using n-gram co-
occurrence statistics. In The second interna-
tional conference on Human Language Technol-
ogy Research (HLT ’02), San Diego, California,
2002.

Jesús Giménez and Lluís Màrquez. Linguistic fea-
tures for automatic evaluation of heterogenous
MT systems. In Second Workshop on Statisti-
cal Machine Translation (WMT-07), pages 256–
264, Prague, Czech Republic, June 2007.

Jesús Giménez and Lluís Màrquez. A smorgas-
bord of features for automatic MT evaluation. In
Third Workshop on Statistical Machine Transla-
tion (WMT-08), Columbus, Ohio, June 2008.

Philipp Koehn and Christof Monz. Manual and
automatic evaluation of machine translation be-
tween european languages. In Workshop on Sta-
tistical Machine Translation (WMT-06), 2006.

Gregor Leusch and Hermann Ney. Bleusp, invwer,
cder: Three improved mt evaluation measures.
In NIST Metrics for Machine Translation Chal-
lenge (MetricsMATR), at Eighth Conference of
the Association for Machine Translation in the
Americas (AMTA 2008), Waikiki, Hawaii, Oct
2008.

Gregor Leusch, Nicola Ueffing, and Hermann
Ney. A novel string-to-string distance measure
with applications to machine translation evalu-
ation. In Machine Translation Summit IX (MT
Summit IX), New Orleans, Sep 2003.

Gregor Leusch, Nicola Ueffing, and Hermann
Ney. CDer: Efficient MT evaluation using
block movements. In 11th Conference of the
European Chapter of the Association for Com-
putational Linguistics (EACL-2006), 2006.

31



Ding Liu and Daniel Gildea. Syntactic features for
evaluation of machine translation. In Workshop
on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization,
Ann Arbor, Michigan, June 2005.

Chi-kiu Lo and Dekai Wu. MEANT: An inexpen-
sive, high-accuracy, semi-automatic metric for
evaluating translation utility based on seman-
tic roles. In 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human
Language Technologies (ACL HLT 2011), 2011.

Chi-kiu Lo and Dekai Wu. SMT vs. AI redux:
How semantic frames evaluate MT more ac-
curately. In Twenty-second International Joint
Conference on Artificial Intelligence (IJCAI-
11), 2011.

Chi-kiu Lo and Dekai Wu. Unsupervised vs. super-
vised weight estimation for semantic MT evalu-
ation metrics. In Sixth Workshop on Syntax, Se-
mantics and Structure in Statistical Translation
(SSST-6), 2012.

Chi-kiu Lo and Dekai Wu. Can informal genres
be better translated by tuning on automatic se-
mantic metrics? In 14th Machine Translation
Summit (MT Summit XIV), 2013.

Chi-kiu Lo and Dekai Wu. MEANT at WMT
2013: A tunable, accurate yet inexpensive se-
mantic frame based mt evaluation metric. In
8th Workshop on Statistical Machine Transla-
tion (WMT 2013), 2013.

Chi-kiu Lo, Anand Karthik Tumuluru, and Dekai
Wu. Fully automatic semantic MT evaluation.
In 7th Workshop on Statistical Machine Trans-
lation (WMT 2012), 2012.

Chi-kiu Lo, Karteek Addanki, Markus Saers, and
Dekai Wu. Improving machine translation by
training against an automatic semantic frame
based evaluation metric. In 51st Annual Meet-
ing of the Association for Computational Lin-
guistics (ACL 2013), 2013.

Chi-kiu Lo, Meriem Beloucif, and Dekai Wu. Im-
proving machine translation into Chinese by
tuning against Chinese MEANT. In Interna-
tional Workshop on Spoken Language Transla-
tion (IWSLT 2013), 2013.

Chi-kiu Lo, Meriem Beloucif, Markus Saers, and
Dekai Wu. XMEANT: Better semantic MT
evaluation without reference translations. In

52nd Annual Meeting of the Association for
Computational Linguistics (ACL 2014), 2014.

Matouš Macháček and Ondřej Bojar. Results of the
WMT13 metrics shared task. In Eighth Work-
shop on Statistical Machine Translation (WMT
2013), Sofia, Bulgaria, August 2013.

I. Dan Melamed. Automatic construction of
clean broad-coverage translation lexicons. In
2nd Conference of the Association for Ma-
chine Translation in the Americas (AMTA-
1996), 1996.

Rada Mihalcea, Courtney Corley, and Carlo Strap-
parava. Corpus-based and knowledge-based
measures of text semantic similarity. In The
Twenty-first National Conference on Artificial
Intelligence (AAAI-06), volume 21, 2006.

Sonja Nießen, Franz Josef Och, Gregor Leusch,
and Hermann Ney. A evaluation tool for ma-
chine translation: Fast evaluation for MT re-
search. In The Second International Conference
on Language Resources and Evaluation (LREC
2000), 2000.

Karolina Owczarzak, Josef van Genabith, and
Andy Way. Dependency-based automatic eval-
uation for machine translation. In Syntax
and Structure in Statistical Translation (SSST),
2007.

Karolina Owczarzak, Josef van Genabith, and
Andy Way. Evaluating machine translation
with LFG dependencies. Machine Translation,
21:95–119, 2007.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In 40th An-
nual Meeting of the Association for Compu-
tational Linguistics (ACL-02), pages 311–318,
Philadelphia, Pennsylvania, July 2002.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu,
James H. Martin, and Dan Jurafsky. Shallow se-
mantic parsing using support vector machines.
In Human Language Technology Conference
of the North American Chapter of the Asso-
ciation for Computational Linguistics (HLT-
NAACL 2004), 2004.

Miguel Rios, Wilker Aziz, and Lucia Specia.
TINE: A metric to assess MT adequacy. In
Sixth Workshop on Statistical Machine Transla-
tion (WMT 2011), 2011.

32



Markus Saers and Dekai Wu. Improving phrase-
based translation via word alignments from
stochastic inversion transduction grammars. In
Third Workshop on Syntax and Structure in
Statistical Translation (SSST-3), pages 28–36,
Boulder, Colorado, June 2009.

Markus Saers, Joakim Nivre, and Dekai Wu.
Learning stochastic bracketing inversion trans-
duction grammars with a cubic time biparsing
algorithm. In 11th International Conference on
Parsing Technologies (IWPT’09), pages 29–32,
Paris, France, October 2009.

Matthew Snover, Bonnie Dorr, Richard Schwartz,
Linnea Micciulla, and John Makhoul. A study
of translation edit rate with targeted human an-
notation. In 7th Biennial Conference Asso-
ciation for Machine Translation in the Ameri-
cas (AMTA 2006), pages 223–231, Cambridge,
Massachusetts, August 2006.

Anand Karthik Tumuluru, Chi-kiu Lo, and Dekai
Wu. Accuracy and robustness in measuring the
lexical similarity of semantic role fillers for au-
tomatic semantic MT evaluation. In 26th Pa-
cific Asia Conference on Language, Informa-
tion, and Computation (PACLIC 26), 2012.

Mengqiu Wang and Christopher D. Manning.
SPEDE: Probabilistic edit distance metrics for
MT evaluation. In 7th Workshop on Statistical
Machine Translation (WMT 2012), 2012.

Dekai Wu. An algorithm for simultaneously brack-
eting parallel texts by aligning words. In 33rd
Annual Meeting of the Association for Compu-
tational Linguistics (ACL 95), pages 244–251,
Cambridge, Massachusetts, June 1995.

Dekai Wu. Trainable coarse bilingual grammars
for parallel text bracketing. In Third Annual
Workshop on Very Large Corpora (WVLC-3),
pages 69–81, Cambridge, Massachusetts, June
1995.

Dekai Wu. Stochastic inversion transduction
grammars and bilingual parsing of parallel cor-
pora. Computational Linguistics, 23(3):377–
403, 1997.

Richard Zens and Hermann Ney. A compara-
tive study on reordering constraints in statisti-
cal machine translation. In 41st Annual Meeting
of the Association for Computational Linguis-
tics (ACL-2003), pages 144–151, Stroudsburg,
Pennsylvania, 2003.

33



Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 34–42,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Rule-based Syntactic Preprocessing
for Syntax-based Machine Translation

Yuto Hatakoshi, Graham Neubig, Sakriani Sakti, Tomoki Toda, Satoshi Nakamura
Nara Institute of Science and Technology
Graduate School of Information Science
Takayama, Ikoma, Nara 630-0192, Japan

{hatakoshi.yuto.hq8,neubig,ssakti,tomoki,s-nakamura}@is.naist.jp

Abstract

Several preprocessing techniques using
syntactic information and linguistically
motivated rules have been proposed to im-
prove the quality of phrase-based machine
translation (PBMT) output. On the other
hand, there has been little work on similar
techniques in the context of other trans-
lation formalisms such as syntax-based
SMT. In this paper, we examine whether
the sort of rule-based syntactic preprocess-
ing approaches that have proved beneficial
for PBMT can contribute to syntax-based
SMT. Specifically, we tailor a highly suc-
cessful preprocessing method for English-
Japanese PBMT to syntax-based SMT,
and find that while the gains achievable are
smaller than those for PBMT, significant
improvements in accuracy can be realized.

1 Introduction

In the widely-studied framework of phrase-based
machine translation (PBMT) (Koehn et al., 2003),
translation probabilities between phrases consist-
ing of multiple words are calculated, and trans-
lated phrases are rearranged by the reordering
model in the appropriate target language order.
While PBMT provides a light-weight framework
to learn translation models and achieves high
translation quality in many language pairs, it does
not directly incorporate morphological or syntac-
tic information. Thus, many preprocessing meth-
ods for PBMT using these types of information
have been proposed. Methods include preprocess-
ing to obtain accurate word alignments by the divi-
sion of the prefix of verbs (Nießen and Ney, 2000),
preprocessing to reduce the errors in verb conju-
gation and noun case agreement (Avramidis and
Koehn, 2008), and many others. The effectiveness
of the syntactic preprocessing for PBMT has been
supported by these and various related works.

In particular, much attention has been paid to
preordering (Xia and McCord, 2004; Collins et
al., 2005), a class of preprocessing methods for
PBMT. PBMT has well-known problems with lan-
guage pairs that have very different word order,
due to the fact that the reordering model has dif-
ficulty estimating the probability of long distance
reorderings. Therefore, preordering methods at-
tempt to improve the translation quality of PBMT
by rearranging source language sentences into an
order closer to that of the target language. It’s of-
ten the case that preordering methods are based
on rule-based approaches, and these methods have
achieved great success in ameliorating the word
ordering problems faced by PBMT (Collins et al.,
2005; Xu et al., 2009; Isozaki et al., 2010b).

One particularly successful example of rule-
based syntactic preprocessing is Head Finalization
(Isozaki et al., 2010b), a method of syntactic pre-
processing for English to Japanese translation that
has significantly improved translation quality of
English-Japanese PBMT using simple rules based
on the syntactic structure of the two languages.
The most central part of the method, as indicated
by its name, is a reordering rule that moves the
English head word to the end of the corresponding
syntactic constituents to match the head-final syn-
tactic structure of Japanese sentences. Head Final-
ization also contains some additional preprocess-
ing steps such as determiner elimination, parti-
cle insertion and singularization to generate a sen-
tence that is closer to Japanese grammatical struc-
ture.

In addition to PBMT, there has also recently
been interest in syntax-based SMT (Yamada and
Knight, 2001; Liu et al., 2006), which translates
using syntactic information. However, few at-
tempts have been made at syntactic preprocessing
for syntax-based SMT, as the syntactic informa-
tion given by the parser is already incorporated
directly in the translation model. Notable excep-
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tions include methods to perform tree transforma-
tions improving correspondence between the sen-
tence structure and word alignment (Burkett and
Klein, 2012), methods for binarizing parse trees to
match word alignments (Zhang et al., 2006), and
methods for adjusting label sets to be more ap-
propriate for syntax-based SMT (Hanneman and
Lavie, 2011; Tamura et al., 2013). It should be
noted that these methods of syntactic preprocess-
ing for syntax-based SMT are all based on auto-
matically learned rules, and there has been little in-
vestigation of the manually-created linguistically-
motivated rules that have proved useful in prepro-
cessing for PBMT.

In this paper, we examine whether rule-based
syntactic preprocessing methods designed for
PBMT can contribute anything to syntax-based
machine translation. Specifically, we examine
whether the reordering and lexical processing of
Head Finalization contributes to the improvement
of syntax-based machine translation as it did for
PBMT. Additionally, we examine whether it is
possible to incorporate the intuitions behind the
Head Finalization reordering rules as soft con-
straints by incorporating them as a decoder fea-
ture. As a result of our experiments, we demon-
strate that rule-based lexical processing can con-
tribute to improvement of translation quality of
syntax-based machine translation.

2 Head Finalization

Head Finalization is a syntactic preprocessing
method for English to Japanese PBMT, reducing
grammatical errors through reordering and lexi-
cal processing. Isozaki et al. (2010b) have re-
ported that translation quality of English-Japanese
PBMT is significantly improved using a transla-
tion model learned by English sentences prepro-
cessed by Head Finalization and Japanese sen-
tences. In fact, this method achieved the highest
results in the large scale NTCIR 2011 evaluation
(Sudoh et al., 2011), the first time a statistical ma-
chine translation (SMT) surpassed rule-based sys-
tems for this very difficult language pair, demon-
strating the utility of these simple syntactic trans-
formations from the point of view of PBMT.

2.1 Reordering

The reordering process of Head Finalization uses
a simple rule based on the features of Japanese
grammar. To convert English sentence into

John hit a ball

John hita ball

NN VBD DT NN

NP

VP

NP

S

VBD

VP

NP

S

DT NN

NP

NN

Original English

Head Final English

Add Japanese Particles

John hita ball

va0 va2

Singularize, 

Eliminate Determiners

John hita ball

va0 va2

Reordering

Figure 1: Head Finalization

Japanese word order, the English sentence is first
parsed using a syntactic parser, and then head
words are moved to the end of the corresponding
syntactic constituents in each non-terminal node
of the English syntax tree. This helps replicate
the ordering of words in Japanese grammar, where
syntactic head words come after non-head (depen-
dent) words.

Figure 1 shows an example of the application
of Head Finalization to an English sentence. The
head node of the English syntax tree is connected
to the parent node by a bold line. When this node
is the first child node, we move it behind the de-
pendent node in order to convert the English sen-
tence into head final order. In this case, moving
the head node VBD of black node VP to the end of
this node, we can obtain the sentence “John a ball
hit” which is in a word order similar to Japanese.

2.2 Lexical Processing

In addition to reordering, Head Finalization con-
ducts the following three steps that do not affect
word order. These steps do not change the word
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ordering, but still result in an improvement of
translation quality, and it can be assumed that the
effect of this variety of syntactic preprocessing is
not only applicable to PBMT but also other trans-
lation methods that do not share PBMT’s problems
of reordering such as syntax-based SMT. The three
steps included are as follows:

1. Pseudo-particle insertion

2. Determiner (“a”, “an”, “the”) elimination

3. Singularization

The motivation for the first step is that in con-
trast to English, which has relatively rigid word
order and marks grammatical cases of many noun
phrases according to their position relative to the
verb, Japanese marks the topic, subject, and object
using case marking particles. As Japanese parti-
cles are not found in English, Head Finalization
inserts “pseudo-particles” to prevent a mistransla-
tion or lack of particles in the translation process.
In the pseudo-particle insertion process (1), we in-
sert the following three types of pseudo-particles
equivalent to Japanese case markers “wa” (topic),
“ga” (subject) or “wo” (object).

• va0: Subject particle of the main verb

• va1: Subject particle of other verbs

• va2: Object particle of any verb

In the example of Figure 1, we insert the topic par-
ticle va0 behind of “John”, which is a subject of a
verb “hit” and object particle va2 at the back of
object “ball.”

Another source of divergence between the two
languages stems from the fact that Japanese does
not contain determiners or makes distinctions be-
tween singular and plural by inflection of nouns.
Thus, to generate a sentence that is closer to
Japanese, Head Finalization eliminates determin-
ers (2) and singularizes plural nouns (3) in addi-
tion to the pseudo-particle insertion.

In Figure 1, we can see that applying these
three processes to the source English sentence re-
sults in the sentence “John va0 (wa) ball va2 (wo)
hit” which closely resembles the structure of the
Japanese translation “jon wa bo-ru wo utta.”

3 Syntax-based Statistical Machine
Translation

Syntax-based SMT is a method for statistical
translation using syntactic information of the sen-
tence (Yamada and Knight, 2001; Liu et al., 2006).
By using translation patterns following the struc-
ture of linguistic syntax trees, syntax-based trans-
lations often makes it possible to achieve more
grammatical translations and reorderings com-
pared with PBMT. In this section, we describe
tree-to-string (T2S) machine translation based on
synchronous tree substitution grammars (STSG)
(Graehl et al., 2008), the variety of syntax-based
SMT that we use in our experiments.

T2S captures the syntactic relationship between
two languages by using the syntactic structure of
parsing results of the source sentence. Each trans-
lation pattern is expressed as a source sentence
subtree using rules including variables. The fol-
lowing example of a translation pattern include
two noun phrases NP0 and NP1, which are trans-
lated and inserted into the target placeholders X0

and X1 respectively. The decoder generates the
translated sentence in consideration of the proba-
bility of translation pattern itself and translations
of the subtrees of NP0 and NP1.

S((NP0) (VP(VBD hit) (NP1)))
→ X0 wa X1 wo utta

T2S has several advantages over PBMT. First,
because the space of translation candidates is re-
duced using the source sentence subtree, it is often
possible to generate translations that are more ac-
curate, particularly with regards to long-distance
reordering, as long as the source parse is correct.
Second, the time to generate translation results is
also reduced because the search space is smaller
than PBMT. On the other hand, because T2S gen-
erates translation results using the result of auto-
matic parsing, translation quality highly depends
on the accuracy of the parser.

4 Applying Syntactic Preprocessing to
Syntax-based Machine Translation

In this section, we describe our proposed method
to apply Head Finalization to T2S translation.
Specifically, we examine two methods for incor-
porating the Head Finalization rules into syntax-
based SMT: through applying them as preprocess-
ing step to the trees used in T2S translation, and
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through adding reordering information as a feature
of the translation patterns.

4.1 Syntactic Preprocessing for T2S

We applied the two types of processing shown in
Table 1 as preprocessing for T2S. This is similar
to preprocessing for PBMT with the exception that
preprocessing for PBMT results in a transformed
string, and preprocessing for T2S results in a trans-
formed tree. In the following sections, we elabo-
rate on methods for applying these preprocessing
steps to T2S and some effects expected therefrom.

Table 1: Syntactic preprocessing applied to T2S
Preprocessing Description
Reordering Reordering based on Japanese

typical head-final grammatical
structure

Lexical Processing Pseudo-particle insertion, deter-
miner elimination, singulariza-
tion

4.1.1 Reordering for T2S

In the case of PBMT, reordering is used to change
the source sentence word order to be closer to
that of the target, reducing the burden on the rel-
atively weak PBMT reordering models. On the
other hand, because translation patterns of T2S
are expressed by using source sentence subtrees,
the effect of reordering problems are relatively
small, and the majority of reordering rules spec-
ified by hand can be automatically learned in a
well-trained T2S model. Therefore, preordering
is not expected to cause large gains, unlike in the
case of PBMT.

However, it can also be thought that preordering
can still have a positive influence on the translation
model training process, particularly by increasing
alignment accuracy. For example, training meth-
ods for word alignment such as the IBM or HMM
models (Och and Ney, 2003) are affected by word
order, and word alignment may be improved by
moving word order closer between the two lan-
guages. As alignment accuracy plays a important
role in T2S translation (Neubig and Duh, 2014), it
is reasonable to hypothesize that reordering may
also have a positive effect on T2S. In terms of the
actual incorporation with the T2S system, we sim-
ply follow the process in Figure 1, but output the
reordered tree instead of only the reordered termi-
nal nodes as is done for PBMT.

John hit a ball

NN VBD DT NN

NP

VP

NP

S

Original English

NN VBD NN VA

NP

VP

NP

S

VA

John hit ball va2va0

Lexical Processing

Figure 2: A method of applying Lexical Process-
ing

4.1.2 Lexical Processing for T2S
In comparison to reordering, Lexical Processing
may be expected to have a larger effect on T2S,
as it will both have the potential to increase align-
ment accuracy, and remove the burden of learning
rules to perform simple systematic changes that
can be written by hand. Figure 2 shows an ex-
ample of the application of Lexical Processing to
transform not strings, but trees.

In the pseudo-particle insertion component,
three pseudo particles “va0,” “va1,” and “va2” (as
shown in Section 2.2) are added in the source En-
glish syntax tree as terminal nodes with the non-
terminal node “VA”. As illustrated in Figure 2, par-
ticles are inserted as children at the end of the cor-
responding NP node. For example, in the figure
the topic particle “va0” is inserted after “John,”
subject of the verb “hit,” and the object particle
“va2” is inserted at the end of the NP for “ball,”
the object.

In the determiner elimination process, terminal
nodes “a,” “an,” and “the” are eliminated along
with non-terminal node DT. Determiner “a” and
its corresponding non-terminal DT are eliminated
in the Figure 2 example.

Singularization, like in the processing for
PBMT, simply changes plural noun terminals to
their base form.

4.2 Reordering Information as Soft
Constraints

As described in section 4.1.1, T2S work well on
language pairs that have very different word order,
but is sensitive to alignment accuracy. On the other
hand, we know that in most cases Japanese word
order tends to be head final, and thus any rules that
do not obey head final order may be the result of
bad alignments. On the other hand, there are some
cases where head final word order is not applica-
ble (such as sentences that contain the determiner
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“no,” or situations where non-literal translations
are necessary) and a hard constraint to obey head-
final word order could be detrimental.

In order to incorporate this intuition, we add
a feature (HF-feature) to translation patterns that
conform to the reordering rules of Head Final-
ization. This gives the decoder ability to discern
translation patterns that follow the canonical re-
ordering patterns in English-Japanese translation,
and has the potential to improve translation quality
in the T2S translation model.

We use the log-linear approach (Och, 2003) to
add the Head Finalization feature (HF-feature). As
in the standard log-linear model, a source sen-
tence f is translated into a target language sen-
tence e, by searching for the sentence maximizing
the score:

ê = arg max
e

wT · h(f ,e). (1)

where h(f , e) is a feature function vector. w is
a weight vector that scales the contribution from
each feature. Each feature can take any real value
which is useful to improve translation quality, such
as the log of the n-gram language model proba-
bility to represent fluency, or lexical/phrase trans-
lation probability to capture the word or phrase-
wise correspondence. Thus, if we can incorporate
the information about reordering expressed by the
Head Finalization reordering rule as a features in
this model, we can learn weights to inform the de-
coder that it should generally follow this canonical
ordering.

Figure 3 shows a procedure of Head Finaliza-
tion feature (HF-feature) addition. To add the
HF-feature to translation patterns, we examine
the translation rules, along with the alignments
between target and source terminals and non-
terminals. First, we apply the Reordering to the
source side of the translation pattern subtree ac-
cording to the canonical head-final reordering rule.
Second, we examine whether the word order of the
reordered translation pattern matches with that of
the target translation pattern for which the word
alignment is non-crossing, indicating that the tar-
get string is also in head-final word order. Finally,
we set a binary feature (hHF(f , e) = 1) if the tar-
get word order obeys the head final order. This
feature is only applied to translation patterns for
which the number of target side words is greater
than or equal to two.

VP

VBD NP

hit x0:NP

x0 wo

Source side of

translation pattern

Target side of

translation pattern

VP

NP VBD

hitx0:NP

1. Apply Reordering to 

source translation pattern

2. Add HF-feature

if word alignment is 

non-crossing

utta

Word alignment 

x0 wo
Target side of

translation pattern utta

Reordered

translation pattern

Figure 3: Procedure of HF-feature addition

Table 2: The details of NTCIR7

Dataset Lang Words Sentences
Average
length

train
En 99.0M 3.08M 32.13
Ja 117M 3.08M 37.99

dev
En 28.6k 0.82k 34.83
Ja 33.5k 0.82k 40.77

test
En 44.3k 1.38k 32.11
Ja 52.4k 1.38k 37.99

5 Experiment

In our experiment, we examined how much each
of the preprocessing steps (Reordering, Lexical
Processing) contribute to improve the translation
quality of PBMT and T2S. We also examined the
improvement in translation quality of T2S by the
introduction of the Head Finalization feature.

5.1 Experimental Environment
For our English to Japanese translation experi-
ments, we used NTCIR7 PATENT-MT’s Patent
corpus (Fujii et al., 2008). Table 2 shows the
details of training data (train), development data
(dev), and test data (test).

As the PBMT and T2S engines, we used the
Moses (Koehn et al., 2007) and Travatar (Neubig,
2013) translation toolkits with the default settings.
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Enju (Miyao and Tsujii, 2002) is used to parse En-
glish sentences and KyTea (Neubig et al., 2011) is
used as a Japanese tokenizer. We generated word
alignments using GIZA++ (Och and Ney, 2003)
and trained a Kneser-Ney smoothed 5-gram LM
using SRILM (Stolcke et al., 2011). Minimum
Error Rate Training (MERT) (Och, 2003) is used
for tuning to optimize BLEU. MERT is replicated
three times to provide performance stability on test
set evaluation (Clark et al., 2011).

We used BLEU (Papineni et al., 2002) and
RIBES (Isozaki et al., 2010a) as evaluation mea-
sures of translation quality. RIBES is an eval-
uation method that focuses on word reordering
information, and is known to have high correla-
tion with human judgement for language pairs that
have very different word order such as English-
Japanese.

5.2 Result
Table 3 shows translation quality for each com-
bination of HF-feature, Reordering, and Lexical
Processing. Scores in boldface indicate no sig-
nificant difference in comparison with the con-
dition that has highest translation quality using
the bootstrap resampling method (Koehn, 2004)
(p < 0.05).

For PBMT, we can see that reordering plays an
extremely important role, with the highest BLEU
and RIBES scores being achieved when using Re-
ordering preprocessing (line 3, 4). Lexical Pro-
cessing also provided a slight performance gain
for PBMT. When we applied Lexical Processing to
PBMT, BLEU and RIBES scores were improved
(line 1 vs 2), although this gain was not significant
when Reordering was performed as well.

Overall T2S without any preprocessing
achieved better translation quality than all con-
ditions of PBMT (line 1 of T2S vs line 1-4 of
PBMT). In addition, BLEU and RIBES score of
T2S were clearly improved by Lexical Processing
(line 2, 4, 6, 8 vs line 1, 3, 5, 7), and these scores
are the highest of all conditions. On the other
hand, Reordering and HF-Feature addition had no
positive effect, and actually tended to slightly hurt
translation accuracy.

5.3 Analysis of Preprocessing
With regards to PBMT, as previous works on
preordering have already indicated, BLEU and
RIBES scores were significantly improved by Re-
ordering. In addition, Lexical Processing also con-

Table 5: Optimized weight of HF-feature in each
condition

HF-feature Reordering Word Weight of
Processing HF-feature

+ - - -0.00707078
+ - + 0.00524676
+ + - 0.156724
+ + + -0.121326

tributed to improve translation quality of PBMT
slightly. We also investigated the influence
that each element of Lexical Processing (pseudo-
particle insertion, determiner elimination, singu-
larization) had on translation quality, and found
that the gains were mainly provided by particle
insertion, with little effect from determiner elim-
ination or singularization.

Although Reordering was effective for PBMT,
it did not provide any benefit for T2S. This in-
dicates that T2S can already conduct long dis-
tance word reordering relatively correctly, and
word alignment quality was not improved as much
as expected by closing the gap in word order be-
tween the two languages. This was verified by a
subjective evaluation of the data, finding very few
major reordering issues in the sentences translated
by T2S.

On the other hand, Lexical Processing func-
tioned effectively for not only PBMT but also T2S.
When added to the baseline, lexical processing on
its own resulted in a gain of 0.57 BLEU, and 0.99
RIBES points, a significant improvement, with
similar gains being seen in other settings as well.

Table 4 demonstrates a typical example of the
improvement of the translation result due to Lex-
ical Processing. It can be seen that translation
performance of particles (indicated by underlined
words) was improved. The underlined particle is
in the direct object position of the verb that corre-
sponds to “comprises” in English, and thus should
be given the object particle “を wo” as in the refer-
ence and the system using Lexical Processing. On
the other hand, in the baseline system the genitive
“と to” is generated instead due to misaligned par-
ticles being inserted in an incorrect position in the
translation rules.

5.4 Analysis of Feature Addition

Our experimental results indicated that translation
quality is not improved by HF-feature addition
(line 1-4 vs line 5-8). We conjecture that the rea-
son why HF-feature did not contribute to an im-
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Table 3: Translation quality by combination of HF-feature, Reordering, and Lexical Processing. Bold
indicates results that are not statistically significantly different from the best result (39.60 BLEU in line
4 and 79.47 RIBES in line 2).

ID
PBMT T2S

HF-feature Reordering Lexical Processing BLEU RIBES BLEU RIBES
1 - - - 32.11 69.06 38.94 78.48
2 - - + 33.16 70.19 39.51 79.47
3 - + - 37.62 77.56 38.44 78.48
4 - + + 37.77 77.71 39.60 79.26
5 + - - — — 38.74 78.33
6 + - + — — 39.29 79.23
7 + + - — — 38.48 78.44
8 + + + — — 39.38 79.21

Table 4: Improvement of translation results due to Lexical Processing
Source another connector 96 , which is matable with this cable connector 90 , comprises a plurality of

male contacts 98 aligned in a row in an electrically insulative housing 97 as shown in the figure .
Reference このケーブルコネクタ９０と嵌合接続される相手コネクタ９６は、図示のように

、絶縁ハウジング９７内に雄コンタクト９８を整列保持して構成される。
- Lexical Processing このケーブルコネクタ９０は相手コネクタ９６は、図に示すように、電気絶縁

性のハウジング９７に一列に並ぶ複数の雄型コンタクト９８とから構成されて
いる。

+ Lexical Processing このケーブルコネクタ９０と相手コネクタ９６は、図に示すように、電気絶縁
性のハウジング９７に一列に並ぶ複数の雄型コンタクト９８を有して構成され
る。

provement in translation quality is that the reorder-
ing quality achieved by T2S translation was al-
ready sufficiently high, and the initial feature led
to confusion in MERT optimization.

Table 5 shows the optimized weight of the HF
feature in each condition. From this table, we can
see that in two of the conditions positive weights
are learned, and in two of the conditions negative
weights are learned. This indicates that there is no
consistent pattern of learning weights that corre-
spond to our intuition that head-final rules should
receive higher preference.

It is possible that other optimization methods,
or a more sophisticated way of inserting these fea-
tures into the translation rules could help alleviate
these problems.

6 Conclusion

In this paper, we analyzed the effect of applying
syntactic preprocessing methods to syntax-based
SMT. Additionally, we have adapted reordering
rules as a decoder feature. The results showed
that lexical processing, specifically insertion of
pseudo-particles, contributed to improving trans-
lation quality, and it was effective as preprocessing

for T2S.
It should be noted that this paper, while demon-

strating that the simple rule-based syntactic pro-
cessing methods that have been useful for PBMT
can also contribute to T2S in English-Japanese
translation, more work is required to ensure that
this will generalize to other settings. A next step in
our inquiry is the generalization of these results to
other proposed preprocessing techniques and other
language pairs. In addition, we would like to try
two ways described below. First, it is likely that
other tree transformations, for example changing
the internal structure of the tree by moving chil-
dren to different nodes, would help in cases where
it is common to translate into highly divergent syn-
tactic structures between the source and target lan-
guages. Second, we plan to investigate other ways
of incorporating the preprocessing rules as a soft
constraints, such as using n-best lists or forests to
enode many possible sentence interpretations.
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Abstract

In this paper we report the results of
first experiments with HMEANT (a semi-
automatic evaluation metric that assesses
translation utility by matching semantic
role fillers) on the Russian language. We
developed a web-based annotation inter-
face and with its help evaluated practica-
bility of this metric in the MT research
and development process. We studied reli-
ability, language independence, labor cost
and discriminatory power of HMEANT
by evaluating English-Russian translation
of several MT systems. Role labeling
and alignment were done by two groups
of annotators - with linguistic background
and without it. Experimental results were
not univocal and changed from very high
inter-annotator agreement in role labeling
to much lower values at role alignment
stage, good correlation of HMEANT with
human ranking at the system level sig-
nificantly decreased at the sentence level.
Analysis of experimental results and anno-
tators’ feedback suggests that HMEANT
annotation guidelines need some adapta-
tion for Russian.

1 Introduction

Measuring translation quality is one of the most
important tasks in MT, its history began long ago
but most of the currently used approaches and
metrics have been developed during the last two
decades. BLEU (Papineni et al., 2002), NIST
(Doddington, 2002) and METEOR (Banerjee and
Lavie, 2005)metric require reference translation
to compare it with MT output in fully automatic
mode, which resulted in a dramatical speed-up for
MT research and development. These metrics cor-
relate with manual MT evaluation and provide re-

liable evaluation for many languages and for dif-
ferent types of MT systems.

However, the major problem of popular MT
evaluation metrics is that they aim to capture lexi-
cal similarity of MT output and reference transla-
tion (fluency), but fail to evaluate the semantics of
translation according to the semantics of reference
(adequacy) (Lo and Wu, 2011a). An alternative
approach that is worth mentioning is the one pro-
posed by Snover et al. (2006), known as HTER,
which measures the quality of machine translation
in terms of post-editing. This method was proved
to correlate well with human adequacy judgments,
though it was not designed for a task of gisting.
Moreover, HTER is not widely used in machine
translation evaluation because of its high labor in-
tensity.

A family of metrics called MEANT was pro-
posed in 2011 (Lo and Wu, 2011a), which ap-
proaches MT evaluation differently: it measures
how much of an event structure of reference does
machine translation preserve, utilizing shallow se-
mantic parsing (MEANT metric) or human anno-
tation (HMEANT) as a gold standard.

We applied HMEANT to a new language —
Russian — and evaluated the usefulness of met-
ric. The practicability for the Russian language
was studied with respect to the following criteria
provided by Birch et al. (2013):

Reliability – measured as inter-annotator agree-
ment for individual stages of evaluation task.

Discriminatory Power – the correlation of
rankings of four MT systems (by manual evalu-
ation, BLEU and HMEANT) measured on a sen-
tence and test set levels.

Language Independence – we collected the
problems with the original method and guidelines
and compared these problems to those reported by
Bojar and Wu (2012) and Birch et al. (2013).

Efficiency – we studied the labor cost of anno-
tation task, i. e. average time required to evaluate
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translations with HMEANT. Besides, we tested
the statement that semantic role labeling (SRL)
does not require experienced annotators (in our
case, with linguistic background).

Although the problems of HMEANT were out-
lined before (by Bojar and Wu (2012) and Birch
et al. (2013)) and several improvements were pro-
posed, we decided to step back and conduct ex-
periments with HMEANT in its original form. No
changes to the metric, except for the annotation
interface enhancements, were made.

This paper has the following structure. Sec-
tion 2 reports the previous experiments with
HMEANT; section 3 summarizes the methods be-
hind HMEANT; section 4 – the settings for our
own experiments; sections 5 and 6 are dedicated
to results and discussion.

2 Related Work

Since the beginning of the machine translation era
the idea of semantics-driven approach for transla-
tion wandered around in the MT researchers com-
munity (Weaver, 1955). Recent works by Lo and
Wu (2011a) claim that this approach is still per-
spective. These works state that in order for ma-
chine translation to be useful, it should convey the
shallow semantic structure of the reference trans-
lation.

2.1 MEANT for Chinese-English
Translations

The original paper on MEANT (Lo and Wu,
2011a) proposes the semi-automatic metric, which
evaluates machine translations utilizing annotated
event structure of a sentence both in reference and
machine translation. The basic assumption be-
hind the metric can be stated as follows: trans-
lation shall be considered "good" if it preserves
shallow semantic (predicate-argument) structure
of reference. This structure is described in the pa-
per on shallow semantic parsing (Pradhan et al.,
2004): basically, we approach the evaluation by
asking simple questions about events in the sen-
tence: "Who did what to whom, when, where, why
and how?". These structures are annotated and
aligned between two translations. The authors of
MEANT reported results of several experiments,
which utilized both human annotation and seman-
tic role labeling (as a gold standard) and automatic
shallow semantic parsing. Experiments show that
HMEANT correlates with human adequacy judg-

ments (for three MT systems) at the value of 0.43
(Kendall tau, sentence level), which is very close
to the correlation of HTER (BLEU has only 0.20).
Also inter-annotator agreement was reported for
two stages of annotation: role identification (se-
lecting the word span) and role classification (la-
beling the word span with role). For the former,
IAA ranged from 0.72 to 0.93 (which can be in-
terpreted as a good agreement) and for the latter,
from 0.69 to 0.88 (still quite good, but should be
put in doubt). IAA for the alignment stage was not
reported.

2.2 HMEANT for Czech-English
Translations

MEANT and HMEANT metrics were adopted
for an experiment on evaluation of Czech-English
and English-Czech translations by Bojar and
Wu (2012). These experiments were based on
a human-evaluated set of 40 translations from
WMT121, which were submitted by 13 systems;
each system was evaluated by exactly one anno-
tator, plus an extra annotator for reference trans-
lations. This setting implied that inter-annotator
agreement could not be examined. HMEANT cor-
relation with human assessments was reported as
0.28, which is significantly lower than the value
obtained by Lo and Wu (2011a).

2.3 HMEANT for German-English
Translations

Birch et al. (2013) examined HMEANT thor-
oughly with respect to four criteria, which address
the usefulness of a task-based metric: reliability,
efficiency, discriminatory power and language in-
dependence. The authors conducted an experi-
ment to evaluate three MT systems: rule-based,
phrase-based and syntax-based on a set of 214 sen-
tences (142 German and 72 English). IAA was
broken down into the different stages of annotation
and alignment. The experimental results showed
that whilst the IAA for HMEANT is satisfying at
the first stages of the annotation, the compound-
ing effect of disagreement at each stage (up to
the alignment stage) greatly reduced the effective
overall IAA — to 0.44 on role alignment for Ger-
man, and, only slightly better, 0.59 for English.
HMEANT successfully distinguished three types
of systems, however, this result could not be con-
sidered reliable as IAA is not very high (and rank

1http://statmt.org/wmt12
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correlation was not reported). The efficiency of
HMEANT was stated as reasonably good; how-
ever, it was not compared to the labor cost of (for
example) HTER. Finally, the language indepen-
dence of the metric was implied by the fact that
original guidelines can be applied both to English
and German translations.

3 Methods

3.1 Evaluation with HMEANT

The underlying annotation cycle of HMEANT
consists of two stages: semantic role labeling
(SRL) and alignment. During the SRL stage, each
annotator is asked to mark all the frames (a pred-
icate and associated roles) in reference translation
and hypothesis translation. To annotate a frame,
one has to mark the frame head – predicate (which
is a verb, but not a modal verb) and its argu-
ments, role fillers, which are linked to that pred-
icate. These role fillers are given a role from the
inventory of 11 roles (Lo and Wu, 2011a). The
role inventory is presented in Table 1, where each
role corresponds to a specific question about the
whole frame.

Who? What? Whom?
Agent Patient Benefactive
When? Where? Why?
Temporal Locative Purpose
How?
Manner, Degree, Negation, Modal, Other

Table 1. The role inventory.

On the second stage, the annotators are asked
to align the elements of frames from reference
and hypothesis translations. The annotators link
both actions and roles, and these alignments can
be matched as “Correct” or “Partially Correct” de-
pending on how well the meaning was preserved.
We have used the original minimalistic guidelines
for the SRL and alignment provided by Lo and Wu
(2011a) in English with a small set of Russian ex-
amples.

3.2 Calculating HMEANT

After the annotation, HMEANT score of the
hypothesis translation can be calculated as the
F-score from the counts of matches of predicates
and their role fillers (Lo and Wu, 2011a). Pred-
icates (and roles) without matches are not ac-

counted, but they result in the lower value overall.
We have used the uniform model of HMEANT,
which is defined as follows.
#Fi – number of correct role fillers for predicate
i in machine translation;
#Fi(partial) – number of partially correct role
fillers for predicate i in MT;
#MTi, #REFi – total number of role fillers in
MT or reference for predicate i;
Nmt, Nref – total number of predicates in MT or
reference;
w – weight of the partial match (0.5 in the uniform
model).

P =
∑

matched i

#Fi

#MTi
R =

∑
matched i

#Fi

#REFi

Ppart =
∑

matched i

#Fi(partial)
#MTi

Rpart =
∑

matched i

#Fi(partial)
#REFi

Ptotal =
P + w ∗ Ppart

Nmt
Rtotal =

R+ w ∗Rpart

Nref

HMEANT =
2 ∗ Ptotal ∗Rtotal

Ptotal +Rtotal

3.3 Inter-Annotator Agreement
Like Lo and Wu (2011a) and Birch et al. (2013)
we studied inter-annotator agreement (IAA). It is
defined as an F1-measure, for which we consider
one of the annotators as a gold standard:

IAA =
2 ∗ P ∗R
P +R

Where precision (P ) is the number of labels (roles,
predicates or alignments) that match between an-
notators divided by the total number of labels by
annotator 1; recall (R) is the number of matching
labels divided by the total number of labels by an-
notator 2. Following Birch et al. (2013), we con-
sider only exact word span matches. Also we have
adopted the individual stages of the annotation
procedure that are described in (Birch et al. 2013):
role identification (selecting the word span), role
classification (marking the word span with a role),
action identification (marking the word span as a
predicate), role alignment (linking roles between
translations) and action alignment (linking frame
heads). Calculating IAA for each stage separately
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helped to isolate the disagreements and to see,
which stages resulted in a low agreement value
overall. To look at the most common role dis-
agreements we also created the pairwise agree-
ment matrix, every cell (i, j) of which is the num-
ber of times the role i was confused with the role
j by any pair of annotators.

3.4 Kendall’s Tau Rank Correlation With
Human Judgments

For the set of translations used in our experiments,
we had a number of relative human judgments (the
set was taken from WMT132). We used the rank
aggregation method described in (Callison-Burch
et al., 2012) to build up one ranking from these
judgments. This method is called Expected Win
Score (EWS) and for MT system Si from the set
{Sj} it is defined the following way:

score(Si) =
1

|{Sj}|
∑
j,j 6=i

win(Si, Sj)
win(Si, Sj) + win(Sj , Si)

Where win(Si, Sj) is the number of times system
i was given a rank higher than system j. This
method of aggregation was used to obtain the com-
parisons of systems, which outputs were never
presented together to assessors during the evalu-
ation procedure at WMT13.

After we had obtained the ranking of systems
by human judgments, we compared this ranking
to the ranking by HMEANT values of machine
translations. To do that, we used Kendall’s tau
(Kendall, 1938) rank correlation coefficient and
reported the results as Lo and Wu (2011a) and Bo-
jar (Bojar and Wu, 2012).

4 Experimental Setup

4.1 Test Set
For our experiments we used the set of translations
from WMT13. We tested HMEANT on a set of
four best MT systems (Bojar et al., 2013) for the
English-Russian language pair (Table 2).

From the set of direct English-Russian transla-
tions (500 sentences) we picked those which al-
lowed to build a ranking for the four systems (94
sentences); then out of these we randomly picked
50 and split them into 6 tasks of 25 so that each
of the 50 sentences was present in exactly three
tasks. Each task consisted of 25 reference transla-
tions and 100 hypothesis translations.

2http://statmt.org/wmt13

System EWS (WMT)
PROMT 0.4949
Online-G 0.475
Online-B 0.3898
CMU-Primary 0.3612

Table 2. The top four MT systems for the en-ru
translation task at WMT13. The scores were

calculated for the subset of translations which we
used in experiments.

4.2 Annotation Interface

As far as we know there is no publically available
interface for HMEANT annotation. Thus, first
of all, having the prototype (Lo and Wu, 2011b)
and taking into account comments and sugges-
tions of Bojar and Wu (2012) (e.g., ability to go
back within the phases of annotation), we created
a web-based interface for role labeling and align-
ment. This interface allows to annotate a set of
references with one machine translation at a time
(Figure 1) and to align actions and roles. We also
provided a timer which allowed to measure the
time required to label the predicates and roles.

4.3 Annotators

We asked to participate two groups of annota-
tors: 6 researchers with linguistic background (lin-
guists) and 4 developers without it. Every annota-
tor did exactly one task; each of the 50 sentences
was annotated by three linguists and at least two
developers.

5 Results

As a result of the experiment, 638 frames were
annotated in reference translations (overall) and
2 016 frames in machine translations. More de-
tailed annotation statistics are presented in Table
3. A closer look indicates that the ratio of aligned
frames and roles in references was larger than in
any of machine translations.

5.1 Manual Ranking

After the test set was annotated, we compared
manual ranking and ranking by HMEANT; on the
system level, these rankings were similar; how-
ever, on the sentence level, there was no correla-
tion between rankings at all. Thus we decided to
take a closer look at the manual assessments. For
the selected 4 systems most of the pairwise com-
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Figure 1. The screenshot of SRL interface. The tables under the sentences contain the information
about frames (the active frame has a red border and is highlighted in the sentence, inactive frames (not

shown) are semi-transparent).

Source # Frames # Roles Aligned frames, % Aligned roles, %
Reference 638 1 671 86.21 % 74.15 %
PROMT 609 1 511 79.97 % 67.57 %
Online-G 499 1 318 77.96 % 66.46 %
Online-B 469 1 257 78.04 % 68.42 %
CMU-Primary 439 1 169 75.17 % 66.30 %

Table 3. Annotation statistics.

parisons were obtained in a transitive way, i. e.
using comparisons with other systems. Further-
more, we encountered a number of useless rank-
ings, where all the outputs were given the same
rank. After all, for many sentences the ranking
of systems was based on a few pairwise compar-
isons provided by one or two annotators. These
rankings seemed to be not very reliable, thus we
decided to rank four machine translations for each
of the 50 sentences manually to make sure that the
ranking has a strong ground. We asked 6 linguists
to do that task. The average pairwise rank correla-
tion (between assessors) reached 0.77, making the
overall ranking reliable; we aggregated 6 rankings
for each sentence using EWS.

5.2 Correlation with Manual Assessments

To look at HMEANT on a system level, we com-
pared rankings produced during manual assess-
ment and HMEANT annotation tasks. Those rank-
ings were then aggregated with EWS (Table 4).

It should be noticed that HMEANT allowed to
rank systems correctly. This fact indicates that
HMEANT has a good discriminatory power on the
level of systems, which is a decent argument for

System Manual HMEANT BLEU
PROMT 0.532 0.443 0.126
Online-G 0.395 0.390 0.146
Online-B 0.306 0.374 0.147
CMU-Primary 0.267 0.292 0.136

Table 4. EWS over manual assessments, EWS
over HMEANT and BLEU scores for MT

systems.

the usage of this metric. Also it is worth to note
that ranking by HMEANT matched the ranking by
the number of frames and roles (Table 3).

On a sentence level, we studied the rank corre-
lation of ranking by manual assessments and by
HMEANT values for each of the annotators. The
manual ranking was aggregated by EWS from the
manual evaluation task (see Section 5.1). Results
are reported in Table 5.

We see that resulting correlation values are sig-
nificantly lower than those reported by Lo and Wu
(2011a) – our rank correlation values did not reach
0.43 on average across all the annotators (and even
0.28 as reported by Bojar and Wu (2012)).
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Annotator τ

Linguist 1 0.0973
Linguist 2 0.3845
Linguist 3 0.1157
Linguist 4 -0.0302
Linguist 5 0.1547
Linguist 6 0.1468
Developer 1 0.1794
Developer 2 0.2411
Developer 3 0.1279
Developer 4 0.1726

Table 5. The rank correlation coefficients for
HMEANT and human judgments. Reliable

results (with p-value >0.05) are in bold.

5.3 Inter-Annotator Agreement

Following Lo and Wu (2011a) and Birch et al.
(2013) we report the IAA for the individual stages
of annotation and alignment. These results are
shown in Table 6.

Stage Linguists Developers
Max Avg Max Avg

REF, id 0.959 0.803 0.778 0.582
MT, id 0.956 0.795 0.667 0.501
REF, class 0.862 0.715 0.574 0.466
MT, class 0.881 0.721 0.525 0.434
REF, actions 0.979 0.821 0.917 0.650
MT, actions 0.971 0.839 0.700 0.577
Actions – align 0.908 0.737 0.429 0.332
Roles – align 0.709 0.523 0.378 0.266

Table 6. The inter-annotator agreement for the
individual stages of annotation and alignment

procedures. Id, class, align stand for
identification, classification and alignment

respectively.

The results are not very different from those re-
ported in the papers mentioned above, except for
even lower agreement for developers. The fact
that the results could be reproduced on a new lan-
guage seems very promising, however, the lack of
training for the annotators without linguistic back-
ground resulted in lower inter-annotator agree-
ment.

Also we studied the most common role dis-
agreements for each pair of annotators (either lin-
guists or developers). As it can be deduced from

the IAA values, the agreement on all roles is lower
for linguists, however, both groups of annotators
share the roles on which the agreement is best of
all: Predicate, Agent, Locative, Negation, Tempo-
ral. Most common disagreements are presented in
Table 7.

Role A Role B %, L %, D
Whom What 18.0 15.2
Whom Who 13.7 23.1
Why None 17.0 22.3
How (manner) What 10.5 -
How (manner) How (degree) - 19.0
How (modal) Action 18.1 16.3

Table 7. Most common role disagreements. Last
columns (L for linguists, D for developers) stand
for the ratio of times Role A was confused with

Role B across all the label types (roles, predicate,
none).

These disagreements can be explained by the
fact that some annotators looked “deeper” in the
sentence semantics, whereas other annotators only
tried to capture the shallow structure as fast as pos-
sible. This fact explains, for example, disagree-
ment on the Whom role – for some sentences, e. g.
“mogli by ubedit~ politiqeskih liderov”
(“could persuade the political leaders”) it requires
some time to correctly mark politiqeskih lid-
erov (political leaders) as an answer to Whom,
not What. The disagreement on the Purpose (a lot
of times it was annotated only by one expert) is ex-
plained by the fact that there were no clear instruc-
tions on how to mark clauses. As for the Action
and Modal, this disagreement is based on the re-
quirement that Action should consist of one word
only; this requirement raised questions about com-
plex verbs, e.g. “zakonqil delat~” (“stopped
doing”). It is ambiguous how to annotate these
verbs: some annotators decided to mark it as
Modal+Action, some – as Action+What. Proba-
bly, the correct way to mark it should be just as
Action.

5.4 Efficiency

Additionnaly, we conducted an efficiency experi-
ment in the group of linguists. We measured the
average time required to annotate a predicate (in
reference or machine translation) and a role. Re-
sults are presented in Table 8.
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Annotator REF MT
Role Action Role Action

Linguist 1 14 26 11 36
Linguist 2 10 12 8 12
Linguist 3 13 14 8 23
Linguist 4 16 15 9 15
Linguist 5 13 20 11 24
Linguist 6 17 35 9 32

Table 8. Average times (in seconds) required to
annotate actions and roles.

These results look very promising; using the
numbers in Table 3, we get the average time re-
quired to annotate a sentence: 1.5 – 2 minutes for a
reference (and even up to 4 minutes for slower lin-
guists) and 1.5 – 2.5 minutes for a machine trans-
lation. Also for a group of “slower” linguists (1, 5,
6) inter-annotator agreement was lower (-0.05 on
average) than between “faster” linguists (2, 3, 4)
for all stages of annotation and alignment. Aver-
age time to annotate an action is similar for the ref-
erence and MT outputs, but it takes more time to
annotate roles in references than in machine trans-
lations.

6 Discussion

6.1 Problems with HMEANT

As we can see, HMEANT is an acceptably reliable
and efficient metric. However, we have met some
obstacles and problems with original instructions
during the experiments with Russian translations.
We believe that these obstacles are the main causes
of low inter-annotator agreement at the last stages
of annotation procedure and low correlation of
rankings.

Frame head (predicate) is required. This re-
quirement does not allow frames without predicate
at all, e.g. “On mo� drug” (“He is my friend”) –
the Russian translation of “is” (present tense) is a
null verb.

One-word predicates. There are cases where
complex verbs (e.g., which consist of two verbs)
can be correctly translated as a one-word verb.
For example, “ostanovils�” (“stopped”) is
correctly rephrased as “perestal delat~”
(“ceased doing”).

Roles only of one type can be aligned. Some-
times one role can be correctly rephrased as an-
other role, but roles of different type can not be

aligned. For example, “On uehal iz goroda”
(“He went away from the town”) means the same
as “On pokinul gorod” (“He left the town”).
The former has a structure of Who + Action +
Where, the latter – Who + Action + What.

Should we annotate as much as possible? It
is not clear from the guideline whether we should
annotate almost everything that looks like a frame
or can be interpreted as a role. There are some
prepositional phrases which can not be easily clas-
sified as one role or another. Example: “Nam ne
stoit ob �tom volnovat~s�” (“We should
not worry about this”) – it is not clarified how to
deal with “ob �tom” (“about this”) prepositional
phrase.

7 Conclusion

In this paper we describe a preliminary series of
experiments with HMEANT, a new metric for se-
mantic role labeling. In order to conduct these ex-
periments we developed a special web-based an-
notation interface with a timing feature. A team
of 6 linguists and 4 developers annotated Russian
MT output of 4 systems. The test set of 50 En-
glish sentences along with reference translations
was taken from the WMT13 data. We measured
IAA for each stage of annotation process, com-
pared HMEANT ranking with manual assessment
and calculated the correlation between HMEANT
and manual evaluation. We also measured anno-
tation time and collected a feedback from anno-
tators, which helped us to locate the problems and
better understand the SRL process. Analysis of the
preliminary experimental results of Russian MT
output annotation led us to the following conclu-
sions about HMEANT as a metric.

Language Independence. For a relatively
small set of Russian sentences, we encountered
problems with the guidelines, but they were not
specific to the Russian language. This can be
naively interpreted as language independence of
the metric.

Reliability. Inter-annotator agreement is high
for the first stages of SRL, but we noted that it de-
creases on the last stages because of the compound
effect of disagreements on previous stages.

Efficiency. HMEANT proved to be really ef-
fective in terms of time required to annotate ref-
erences and MT outputs and can be used in pro-
duction environment, though the statement that
HMEANT annotation task does not require quali-
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fied annotators was not confirmed.
Discriminatory Power. On the system level,

HMEANT allowed to correctly rank MT systems
(according to the results of manual assessment
task). On the sentence level, correlation with hu-
man rankings is low.

To sum up, first experience with HMEANT
was considered to be successful and allowed us
to make a positive decision about applicability
of the new metric to the evaluation of English-
Russian machine translations. We have to say that
HMEANT guidelines, annotation procedures and
the inventory of roles work in general, however,
low inter-annotator agreement at the last stages
of annotation task and low correlation with hu-
man judgments on the sentence level suggest us
to make respective adaptations and conduct new
series of experiments.
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Abstract

Morphologically rich languages generally
require large amounts of parallel data to
adequately estimate parameters in a statis-
tical Machine Translation(SMT) system.
However, it is time consuming and expen-
sive to create large collections of parallel
data. In this paper, we explore two strate-
gies for circumventing sparsity caused by
lack of large parallel corpora. First, we ex-
plore the use of distributed representations
in an Recurrent Neural Network based lan-
guage model with different morphological
features and second, we explore the use of
lexical resources such as WordNet to over-
come sparsity of content words.

1 Introduction

Statistical machine translation (SMT) models es-
timate parameters (lexical models, and distortion
model) from parallel corpora. The reliability of
these parameter estimates is dependent on the size
of the corpora. In morphologically rich languages,
this sparsity is compounded further due to lack of
large parallel corpora.

In this paper, we present two approaches that
address the issue of sparsity in SMT models for
morphologically rich languages. First, we use an
Recurrent Neural Network (RNN) based language
model (LM) to re-rank the output of a phrase-
based SMT (PB-SMT) system and second we use
lexical resources such as WordNet to minimize the
impact of Out-of-Vocabulary(OOV) words on MT
quality. We further improve the accuracy of MT
using a model combination approach.

The rest of the paper is organized as follows.
We first present our approach of training the base-
line model and source side reordering. In Section
4, we present our experiments and results on re-
ranking the MT output using RNNLM. In Section

5, we discuss our approach to increase the cover-
age of the model by using synset ID’s from the
English WordNet (EWN). Section 6 describes our
experiments on combining the model with synset
ID’s and baseline model to further improve the
translation accuracy followed by results and obser-
vations sections.We conclude the paper with future
work and conclusions.

2 Related Work

In this paper, we present our efforts of re-
ranking the n-best hypotheses produced by a PB-
MT (Phrase-Based MT) system using RNNLM
(Mikolov et al., 2010) in the context of an English-
Hindi SMT system. The re-ranking task in ma-
chine translation can be defined as re-scoring the
n-best list of translations, wherein a number of
language models are deployed along with fea-
tures of source or target language. (Dungarwal
et al., 2014) described the benefits of re-ranking
the translation hypothesis using simple n-gram
based language model. In recent years, the use
of RNNLM have shown significant improvements
over the traditional n-gram models (Sundermeyer
et al., 2013). (Mikolov et al., 2010) and (Liu et
al., 2014) have shown significant improvements in
speech recognition accuracy using RNNLM . Shi
(2012) also showed the benefits of using RNNLM
with contextual and linguistic features. We have
also explored the use of morphological features
(Hindi being a morphologically rich language) in
RNNLM and deduced that these features further
improve the baseline RNNLM in re-ranking the n-
best hypothesis.

Words in natural languages are richly diverse
so it is not possible to cover all source language
words when training an MT system. Untranslated
out-of-vocabulary (OOV) words tend to degrade
the accuracy of the output produced by an MT
model. Huang (2010) pointed to various types
of OOV words which occur in a data set – seg-
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mentation error in source language, named enti-
ties, combination forms (e.g. widebody) and ab-
breviations. Apart from these issues, Hindi being
a low-resourced language in terms of parallel cor-
pora suffers from data sparsity.

In the second part of the paper, we address the
problem of data sparsity with the help of English
WordNet (EWN) for English-Hindi PB-SMT. We
increase the coverage of content words (exclud-
ing Named-Entities) by incorporating sysnset in-
formation in the source sentences.

Combining Machine Translation (MT) systems
has become an important part of statistical MT in
past few years. Works by (Razmara and Sarkar,
2013; Cohn and Lapata, 2007) have shown that
there is an increase in phrase coverage when com-
bining different systems. To get more coverage of
unigrams in phrase-table, we have explored sys-
tem combination approaches to combine models
trained with synset information and without synset
information. We have explored two methodolo-
gies for system combination based on confusion
matrix(dynamic) (Ghannay et al., 2014) and mix-
ing models (Cohn and Lapata, 2007).

3 Baseline Components

3.1 Baseline Model and Corpus Statistics

We have used the ILCI corpora (Choudhary and
Jha, 2011) for our experiments, which contains
English-Hindi parallel sentences from tourism and
health domain. We randomly divided the data into
training (48970), development (500) and testing
(500) sentences and for language modelling we
used news corpus of English which is distributed
as a part of WMT’14 translation task. The data is
about 3 million sentences which also contains MT
training data.

We trained a phrase based (Koehn et al., 2003)
MT system using the Moses toolkit with word-
alignments extracted from GIZA++ (Och and Ney,
2000). We have used the SRILM (Stolcke and
others, 2002) with Kneser-Ney smoothing (Kneser
and Ney, 1995) for training a language model for
the first stage of decoding. The result of this base-
line system is shown in Table 1.

3.2 English Transformation Module

Hindi is a relatively free-word order language and
generally tends to follow SOV (Subject-Object-
Verb) order and English tends to follow SVO
(Subject-Verb-Object) word order. Research has

Number of Number of Number of
Training Development Evaluation BLEU
Sentences Sentences Sentences
48970 500 500 20.04

Table 1: Baseline Scores for Phrase-based Moses
Model

shown that pre-ordering source language to con-
form to target language word order significantly
improves translation quality (Collins et al., 2005).
We created a re-ordering module for transform-
ing an English sentence to be in the Hindi order
based on reordering rules provided by Anusaaraka
(Chaudhury et al., 2010). The reordering rules are
based on parse output produced by the Stanford
Parser (Klein and Manning, 2003).

The transformation module requires the text to
contain only surface form of words, however, we
extended it to support surface form along with its
factors such as lemma and Part of Speech (POS).

Input : the girl in blue shirt is my sister
Output : in blue shirt the girl is my sister.
Hindi : neele shirt waali ladki meri bahen hai (

blue) ( shirt) (Mod)(girl)(my)(sister)(Vaux)
With this transformation, the English sentence

is structurally closer to the Hindi sentence which
leads to better phrase alignments. The model
trained with the transformed corpus produces a
new baseline score of 21.84 BLEU score an
improvement over the earlier baseline of 20.04
BLEU points.

4 Re-Ranking Experiments

In this section, we describe the results of re-
ranking the output of the translation model us-
ing Recurrent Neural Networks (RNN) based lan-
guage models using the same data which is used
for language modelling in the baseline models.

Unlike traditional n-gram based discrete lan-
guage models, RNN do not make the Markov as-
sumption and potentially can take into account
long-term dependencies between words. Since the
words in RNNs are represented as continuous val-
ued vectors in low dimensions allowing for the
possibility of smoothing using syntactic and se-
mantic features. In practice, however, learning
long-term dependencies with gradient descent is
difficult as described by (Bengio et al., 1994) due
to diminishing gradients.

We have integrated the approach of re-scoring
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Figure 1: BLEU Scores for Re-ranking experi-
ments with RNNLM using different feature com-
binations.

n-best output using RNNLM which has also been
shown to be helpful by (Liu et al., 2014). Shi
(2012) also showed the benefits of using RNNLM
with contextual and linguistic features. Follow-
ing their work, we used three type of features for
building an RNNLM for Hindi : lemma (root),
POS, NC (number-case). The data used was a
Wikipedia dump, MT training data, news arti-
cles which had approximately 500,000 Hindi sen-
tences. Features were extracted using paradigm-
based Hindi Morphological Analyzer 1

Figure 1 illustrates the results of re-ranking per-
formed using RNNLM trained with various fea-
tures. The Oracle score is the highest achievable
score in a re-ranking experiment. This score is
computed based on the best translation out of n-
best translations. The best translation is found us-
ing the cosine similarity between the hypothesis
and the reference translation. It can be seen from
Figure 1, that the LM with only word and POS in-
formation is inferior to all other models. However,
morphological features like lemma, number and
case information help in re-ranking the hypothesis
significantly. The RNNLM which uses all the fea-
tures performed the best for the re-ranking exper-
iments achieving a BLEU score of 26.91, after re-
scoring 500-best obtained from the pre-order SMT
model.

1We have used the HCU morph-analyzer.

System BLEU
Baseline 21.84

Rescoring 500-best with RNNLM

Features

NONE 25.77
POS 24.36
Lemma(root) 26.32
ALL(POS+Lemma+NC) 26.91

Table 2: Rescoring results of 500-best hypotheses
using RNNLM with different features

5 Using WordNet to Reduce Data
Sparsity

We extend the coverage of our source data by us-
ing synonyms from the English WordNet (EWN).
Our main motivation is to reduce the impact of
OOV words on output quality by replacing words
in a source sentence with their corresponding
synset IDs. However, choosing the appropriate
synset ID based upon its context and morphologi-
cal information is important. For sense selection,
we followed the approach used by (Tammewar et
al., 2013), which is also described further in this
section in the context of our task. We ignored
words that are regarded as Named-Entities as in-
dicated by Stanford NER tagger, as they should
not have synonyms in any case.

5.1 Sense Selection

Words are ambiguous, independent of their sen-
tence context. To choose an appropriate sense ac-
cording to the context for a lexical item is a chal-
lenging task typically termed as word-sense dis-
ambiguation. However, the syntactic category of
a lexical item provides an initial cue for disam-
biguating a lexical item. Among the varied senses,
we filter out the senses that are not the same POS
tag as the lexical item. But words are not just am-
biguous across different syntactic categories but
are also ambiguous within a syntactic category. In
the following, we discuss our approaches to select
the sense of a lexical item best suited in a given
context within a given category. Also categories
were filtered so that only content words get re-
placed with synset IDs.

5.1.1 Intra-Category Sense Selection
First Sense: Among the different senses,we se-
lect the first sense listed in EWN corresponding to
the POS-tag of a given lexical item. The choice is
motivated by our observation that the senses of a
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lexical item are ordered in the descending order of
their frequencies of usage in the lexical resource.

Merged Sense: In this approach, we merge all
the senses listed in EWN corresponding to the
POS-tag of the given lexical item. The motivation
behind this strategy is that the senses in the EWN
for a particular word-POS pair are too finely clas-
sified resulting in classification of words that may
represent the same concept, are classified into dif-
ferent synsets. For example : travel and go can
mean the same concept in a similar context but the
first sense given by EWN is different for these two
words. Therefore, we merge all the senses for a
word into a super sense ( synset ID of first word
occurred in data), which is given to all its syn-
onyms even if it occurs in different synset IDs.

5.2 Factored Model

Techniques such as factored modelling (Koehn
and Hoang, 2007) are quite beneficial for Trans-
lation from English to Hindi language as shown
by (Ramanathan et al., 2008). When we replace
words in a source sentence with the synset IDâs,
we tend to lose morphological information associ-
ated with that word. We add inflections as features
in a factored SMT model to minimize the impact
of this replacement.

We show the results of the processing steps on
an example sentence below.
Original Sentence : Ram is going to market to
buy apples
New Sentence : Ram is Synset(go.v.1)
to Synset(market.n.0) to Synset(buy.v.1)
Synset(apple.n.1)
Sentence with synset ID: Ram E is E
Synset(go.v.1) ing to E Synset(market.n.0) E
to E Synset(buy.v.1) E Synset(apple.n.1) s
Then English sentences were reordered to Hindi
word-order using the module discussed in Section
3.
Reordered Sentence: Ram E Synset(apple.n.1) s
Synset(buy.v.1) E to E Synset(market.n.0) E to E
Synset(go.v.1) ing is E

In Table 3, the second row shows the BLEU
scores for the models in which there are synset IDs
for the source side. It can be seen that the factored
model also shows significant improvement in the
results.

6 Combining MT Models

Combining Machine translation (MT) systems has
become an important part of Statistical MT in
the past few years. There are two dominant ap-
proaches. (1) a system combination approach
based on confusion networks (CN) (Rosti et al.,
2007), which can work dynamically in combin-
ing the systems. (2) Combine the models by lin-
early interpolating and then using MERT to tune
the combined system.

6.1 Combination based on confusion
networks

We used the tool MANY (Barrault, 2010) for sys-
tem combination. However, since the tool is con-
figured to work with TERp evaluation metric, we
modified it to use METEOR (Gupta et al., 2010)
metric since it has been shown by (Kalyani et al.,
2014), that METEOR evaluation metric is better
correlated to human evaluation for morphologi-
cally rich Indian Languages.

6.2 Linearly Interpolated Combination
In this approach, we combined phrase-tables of
the two models (Eng (sysnset) - Hindi and Base-
line) using linear interpolation. We combined the
two models with uniform weights – 0.5 for each
model, in our case. We again tuned this model
with the new interpolated phrase-table using stan-
dard algorithm MERT.

7 Experiments and Results

As can be seen in Table 3, the model with synset
information led to reduction in OOV words. Even
though BLEU score decreased, but METEOR
score improved for all the experiments based on
using synset IDs in the source sentence, but it has
been shown by (Gupta et al., 2010) that METEOR
is a better evaluation metrics for morphologically
rich languages. Also, when synset IDâs are used
instead of words in the source language, the sys-
tem makes incorrect morphological choices. Ex-
ample : going and goes will be replaced by same
synset ID âSynset(go.v.1)â, so this has lead to loss
of information in the phrase-table but METEOR
catches these complexities as it considers features
like stems, synonyms for its evaluation metrics
and hence showed better improvements compared
to BLEU metric. Last two rows of Table 3 show
results for combination experiments and Mixture
Model (linearly interpolated model) showed best
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System #OOV words BLEU Meteor
Baseline 253 21.8 .492

Eng(Synset ID)-Hindi
Baseline 237 19.2 .494
*factor(inflections) 225 20.3 .506

Ensembled Decoding 213 21.0 .511
Mixture Model 210 21.2 .519

Table 3: Results for the model in which there were Synset ID’s instead of word in English data

results with significant reduction in OOV words
and also some gains in METEOR score.

8 Observations

In this section, we study the coverage of different
models by categorizing the OOV words into 5 cat-
egories.

• NE(Named Entities) : As the data was
from Health & Tourism domain, these words
were mainly the names of the places and
medicines.

• VB : types of verb forms

• NN : types of nouns and pronouns

• ADJ : all adjectives

• AD : adverbs

• OTH : there were some words which did not
mean anything in English

• SM : There were some occasional spelling
mistakes seen in the test data.

Note : There were no function words seen in the
OOV(un-translated) words

Cat. Baseline Eng(synset)-Hin MixtureModel
NE 120 121 115
VB 47 37 27
NN 76 60 47
ADJ 22 15 12
AD 5 5 4
OTH 2 2 2
SM 8 8 8

Table 4: OOV words in Different Models

As this analysis was done on a small dataset and
for a fixed domain, the OOV words were few in
number as it can be seen in Table 4. But the OOV
words across the different models reduced as ex-
pected. The NE words remained almost the same

for all the three models but OOV words from cate-
gory VB,NN,ADJ decreased for Eng(synset)-Hin
model and Mixture model significantly.

9 Future Work

In the future, we will work on using the two ap-
proaches discussed: Re-Ranking & using lexical
resources to reduce sparsity together in a system.
We will work on exploring syntax based features
for RNNLM and we are planning to use a better
method for sense selection and extending this con-
cept for more language pairs. Word-sense disam-
biguation can be used for choosing more appro-
priate sense when the translation model is trained
on a bigger data data set. Also we are looking for
unsupervised techniques to learn the replacements
for words to reduce sparsity and ways to adapt our
system to different domains.

10 Conclusions

In this paper, we have discussed two approaches
to address sparsity issues encountered in training
SMT models for morphologically rich languages
with limited amounts of parallel corpora. In the
first approach we used an RNNLM enriched with
morphological features of the target words and
show the BLEU score to improve by 5 points. In
the second approach we use lexical resource such
as WordNet to alleviate sparsity.
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Abstract 

The present article investigates the fusion of 

different language models to improve transla-

tion accuracy. A hybrid MT system, recently-

developed in the European Commission-

funded PRESEMT project that combines ex-

ample-based MT and Statistical MT princi-

ples is used as a starting point. In this article, 

the syntactically-defined phrasal language 

models (NPs, VPs etc.) used by this MT sys-

tem are supplemented by n-gram language 

models to improve translation accuracy. For 

specific structural patterns, n-gram statistics 

are consulted to determine whether the pat-

tern instantiations are corroborated. Experi-

ments indicate improvements in translation 

accuracy. 

1 Introduction 

Currently a major part of cutting-edge research 

in MT revolves around the statistical machine 

translation (SMT) paradigm. SMT has been in-

spired by the use of statistical methods to create 

language models for a number of applications 

including speech recognition. A number of dif-

ferent translation models of increasing complex-

ity and translation accuracy have been developed 

(Brown et al., 1993). Today, several packages for 

developing statistical language models are avail-

able for free use, including SRI (Stolke et al., 

2011), thus supporting research into statistical 

methods. A main reason for the widespread 

adoption of SMT is that it is directly amenable to 

new language pairs using the same algorithms. 

An integrated framework (MOSES) has been 

developed for the creation of SMT systems 

(Koehn et al., 2007). The more recent develop-

ments of SMT are summarised by Koehn (2010). 

One particular advance in SMT has been the in-

tegration of syntactically motivated phrases in 

order to establish correspondences between 

source language (SL) and target language (TL) 

(Koehn et al., 2003). Recently SMT has been 

enhanced by using different levels of abstraction 

e.g. word, lemma or part-of-speech (PoS), in fac-

tored SMT models so as to improve SMT per-

formance (Koehn & Hoang, 2007). 

The drawback of SMT is that SL-to-TL paral-

lel corpora of the order of millions of tokens are 

required to extract meaningful models for trans-

lation. Such corpora are hard to obtain, particu-

larly for less resourced languages. For this rea-

son, SMT researchers are increasingly investigat-

ing the extraction of information from monolin-

gual corpora, including lexica (Koehn & Knight, 

2002 & Klementiev et al., 2012), restructuring 

(Nuhn et al., 2012) and topic-specific informa-

tion (Su et al., 2011). 

As an alternative to pure SMT, the use of less 

specialised but more readily available resources 

has been proposed. Even if such approaches do 

not provide a translation quality as high as SMT, 

their ability to develop MT systems with very 

limited resources confers to them an important 

advantage. Carbonell et al. (2006) have proposed 

an MT method that requires no parallel text, but 

relies on a full-form bilingual dictionary and a 

decoder using long-range context. Other systems 

using low-cost resources include METIS 

(Dologlou et al., 2003) and METIS-II (Markan-

tonatou et al., 2009), which are based only on 

large monolingual corpora to translate SL texts. 

Another recent trend in MT has been towards 

hybrid MT systems, which combine characteris-

tics from multiple MT paradigms. The idea is 

that by fusing characteristics from different para-

digms, a better translation performance can be 

attained (Wu et al., 2005). In the present article, 

the PRESEMT hybrid MT method using pre-

dominantly monolingual corpora (Sofianopoulos 

et al., 2012 & Tambouratzis et al., 2013) is ex-

tended by integrating n-gram information to im-

prove the translation accuracy. The focus of the 

article is on how to extract, as comprehensively 

as possible, information from monolingual cor-

pora by combining multiple models, to allow a 

higher quality translation. 

A review of the base MT system is performed 

in section 2. The TL language model is then de-

tailed, allowing new work to be presented in sec-

tion 3. More specifically, via an error analysis, n-

gram based extensions are proposed to augment 
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the language model. Experiments are presented 

in section 4 and discussed in section 5. 

2 The hybrid MT methodology in brief 

The PRESEMT methodology can be broken 

down into the pre-processing stage, the post-

processing stage and two translation steps each 

of which addresses different aspects of the trans-

lation process. The first translation step estab-

lishes the structure of the translation by perform-

ing a structural transformation of the source side 

phrases based on a small bilingual corpus, to 

capture long range reordering. The second step 

makes lexical choices and performs local word 

reordering within each phrase. By dividing the 

translation process in these two steps the chal-

lenging task of both local and long distance reor-

dering is addressed. 

Phrase-based SMT systems give accurate 

translations for language pairs that only require a 

limited number of short-range reorderings. On 

the contrary, when translating between languages 

with free word order, these models prove ineffi-

cient. Instead, reordering models need to be built, 

which require large parallel training data, as 

various reordering challenges must be tackled. 

2.1 Pre-processing 

This involves PoS tagging, lemmatising and 

shallow syntactic parsing (chunking) of the 

source text. In terms of resources, the methodol-

ogy utilises a bilingual lemma dictionary, an ex-

tensive TL monolingual corpus, annotated with 

PoS tags, lemmas and syntactic phrases (chunks), 

and a very small parallel corpus of 200 sen-

tences, with tagged and lemmatised source side 

and tagged, lemmatised and chunked target side. 

The bilingual corpus provides samples of the 

structural transformation from SL to TL. During 

this phase, the translation methodology ports the 

chunking from the TL- to the SL-side, alleviating 

the need for an additional parser in SL. An ex-

ample of the pre-processing stage is shown in 

Figure 1, for a sentence translated from Greek to 

English. For this sentence, the chunk structure is 

shown at the bottom part of Figure 1. 

2.2 Structure Selection 

Structure selection transforms the input text us-

ing the limited bilingual corpus as a structural 

knowledge base, closely resembling the “transla-

tion by analogy” aspect of EBMT systems (Hut-

chins, 2005). Using available structural informa-

tion, namely the order of syntactic phrases, the 

PoS tag of the head token of each phrase and the 

case of the head token (if available), we retrieve 

the most similar source side sentence from the 

parallel corpus. Based on the alignment informa-

tion from the bilingual corpus between SL and 

TL, the input sentence structure is transformed to 

the structure of the target side translation. 

For the retrieval of the most similar source 

side sentence, an algorithm from the dynamic 

programming paradigm is adopted (Sofianopou-

los et al., 2012), treating the structure selection 

process as a sequence alignment, aligning the 

input sentence to an SL side sentence from the 

aligned parallel corpus and assigning a similarity 

score. The implementation is based on the Smith-

Waterman algorithm (Smith and Waterman, 

1981), initially proposed for similarity detection 

between protein sequences. The algorithm finds 

the optimal local alignment between the two in-

put sequences at clause level. 

The similarity of two clauses is calculated by 

taking into account the edit operations (replace-

ment, insertion or removal) that must be applied 

to the input sentence in order to transform it to a 

source side sentence from the corpus. Each of 

these operations has an associated cost, consid-

ered as a system parameter. The parallel corpus 

sentence that achieves the highest similarity 

score is the most similar one to the input source 

sentence. For the example of Figure 1, the com-

parison of the SL sentence structure to the paral-

lel corpus is schematically depicted in Figure 2. 

The resulting TL sentence structure is shown in 

Figure 3 in terms of phrase types and heads. 

 
 Ήδη από τα τέλη Μαΐου 1821 παρουσιάσθηκε ζωηρή κινητοποίηση υπέρ των 

αγωνιζόμενων Ελλήνων.

[Already by the end of May 1821 a lively mobilisation was presented in favour of 
Greek contestants.]

(Ήδη) (από τα τέλη Μαΐου 1821) (παρουσιάσθηκε) (ζωηρή κινητοποίηση) (υπέρ 
των αγωνιζόμενων Ελλήνων).

ADVC (ad,<ήδη>) PC (aspp,<από>,no,<Mάιος>) VC (vb,<παρουσιάζω>) PC 
(no,<κινητοποίηση>) PC (aspp,<υπέρ>,np,<Έλληνας>).

ADVC PC VC PC PCADVC PC VC PC PC  

Figure 1. Pre-processing of sentence (its gloss in 

square brackets) into a chunk sequence. 
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SL-side TL-side

advc pc vcpc pc

PC VC ADVC PCPC VC ADVC PC pc advc vc pc

PC VC PC pc vc pc

PC VC PCPC VC PC pc pc vc

ADVC PC VC PC PC

ADVC PC VC PC PC

 

Figure 2. Comparing sentence structure to paral-

lel corpus templates, to determine the best-

matching SL structure (here, the 4
th
 entry). 

 

ADVC (ad,<ήδη>) PC (aspp,<από>,no,<Mάιος>) VC (vb,<παρουσιάζω>) PC 
(no,<κινητοποίηση>) PC (aspp,<υπέρ>,np,<Έλληνας>).

ADVC PC VC PC PC

ADVC (ad,<ήδη>) PC (aspp,<από>,no,<Mάιος>) VC (vb,<παρουσιάζω>) PC 
(no,<κινητοποίηση>) PC (aspp,<υπέρ>,np,<Έλληνας>).

ADVC PC VC PC PCADVC PC VC PC PC

advc pc vcpc pc

advc (rb,<already>) pc (in,<of>,nn,<May>) pc (nn,<mobilisation>) vc (vv,<present>) 
pc (in,<in>,nn,<Greek>).

advc pc vcpc pcadvc pc vcpc pc

advc (rb,<already>) pc (in,<of>,nn,<May>) pc (nn,<mobilisation>) vc (vv,<present>) 
pc (in,<in>,nn,<Greek>).  

Figure 3. SL-to-TL Structure transformation 

based on the chosen parallel corpus template. 

 

2.3 Translation equivalent selection 

This second translation step performs word trans-

lation disambiguation, local word reordering 

within each syntactic phrase as well as addition 

and/or deletion of auxiliary verbs, articles and 

prepositions. All of the above are performed by 

using a syntactic phrase model extracted from a 

purely monolingual TL corpus. The final transla-

tion is produced by the token generation compo-

nent, since all processing during the translation 

process is lemma-based. 

Each sentence contained within the text to be 

translated is processed separately, so there is no 

exploitation of inter-sentential information. The 

first task is to select the correct TL translation of 

each word. The second task involves establishing 

the correct word order within each phrase. For 

each phrase of the sentence being translated, the 

algorithm searches the TL phrase model for simi-

lar phrases. All retrieved TL phrases are com-

pared to the phrase to be translated. The com-

parison is based on the words included, their tags 

and lemmas and any other morphological fea-

tures (case, number etc.). The stable-marriage 

algorithm (Gale & Shapley, 1962) is applied for 

calculating the similarity and aligning the words 

of a phrase pair. 

This word reordering process is performed si-

multaneously with the translation disambigua-

tion, using the same TL phrase model. During 

word reordering the algorithm also resolves is-

sues regarding the insertion or deletion of articles 

and other auxiliary tokens. Though translation 

equivalent selection implements several tasks 

simultaneously, it produces encouraging results 

when translating from Greek (a free-word order 

language) to English (an SVO language). 

2.4 Post-processing 

In this stage, a token generator is applied to the 

lemmas of the translated sentences together with 

the morphological features of their equivalent 

source words, to produce the final word forms. 

2.5 Comparison of the method to SMT 

In the proposed methodology, the structure selec-

tion step performs long distance reordering with-

out resorting to syntactic parsers and without 

employing any rules. In phrase-based SMT, long 

distance reordering is performed by either using 

SL syntax, with the use of complex reordering 

rules, or by using syntactic trees. 

The similarity calculation algorithms used in 

the two translation steps of the proposed method 

are of a similar nature to the extraction of trans-

lation models in factored-based SMT. In SMT, 

different matrices are created for each model (i.e. 

one for lemmas and another one for PoS tags), 

while in the methodology studied here lemmas 

and tags are handled at the same time. 

The main advantage of the method studied 

here is its ability to create a functioning MT sys-

tem with a parallel corpus of only a few sen-

tences (200 sentences in the present experi-

ments). On the contrary, it would not be possible 

to create a working SMT with such a corpus. 

3 Information extraction from the 

monolingual corpus 

3.1 Standard indexed phrase model 

The TL monolingual corpus is processed to ex-

tract two complementary types of information, 

both employed at the second phase of the transla-

tion process (cf. sub-section 2.3). The first im-

plements a disambiguation between multiple 

possible translations, while the second provides 

the micro-structural information to establish to-

ken order in the final translation. 
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Both these types of information are extracted 

from one model. More specifically, during pre-

processing of the corpus, a phrase model is es-

tablished that provides the micro-structural in-

formation on the translation output, to determine 

intra-phrasal word order. The model is stored in 

a file structure, where a separate file is created 

for phrases according to their (i) type, (ii) head 

and (iii) head PoS tag. 

The TL phrases are then organised in a hash 

map that allows the storage of multiple values for 

each key, using as a key the three aforemen-

tioned criteria. For each phrase the number of 

occurrences within the corpus is also retained. 

Each hash map is stored independently in a file 

for very fast access by the search algorithm. As a 

result of this process hundreds of thousands of 

files are generated, one for each combination of 

the three aforementioned criteria. Each file is of 

a small size and thus can be retrieved quickly. 

For creating the model used here, a corpus of 

30,000 documents has been processed for the 

TL, where each document contains a concatena-

tion of independent texts of approximately 

1MByte in size. The resulting phrase model con-

sists of 380,000 distinct files, apportioned into 

12,000 files of adjectival chunks, 348,000 of 

noun chunks, 17,000 of verb chunks and 3,000 of 

adverbial chunks. A sample of the indexed file 

corresponding to verb phrases with head ‘help’ is 

shown in Figure 4. 

 
 Occurrences Phrase structure 

1 41448 help (VV) 

2 29575 to(TO) help(VV) 

3 5896 will(MD) help(VV) 

4 4795 can(MD) help(VV) 

5 2632 have(VHD) help(VVN) 

Figure 4. Example of indexed file for “help”. 

3.2 Error analysis on translation output 

In Table 1, the translation accuracy attained by 

the proposed hybrid approach in comparison to 

established systems is displayed. The proposed 

method occupies the middle ground between the 

two higher performing SMT-based systems 

(Bing and Google) and the Systran and World-

Lingo commercial systems. 

Though the BLEU score of the proposed 

method is 0.17 BLEU points lower than the 

Google score, the proposed method achieves 

what is a respectable score with a parallel corpus 

of only 200 sentences. Though the exact re-

sources for Google or Bing are not disclosed, it is 

widely agreed that they are at least 3 orders of 

magnitude larger (very likely even more) justify-

ing the lower scores achieved by the proposed 

low-resource method. 

 

Number of sentences 200 Resources stand. 

Reference translations 1 
Language 

pair 
EL–EN 

Metrics 

MT config. 
BLEU NIST 

Me-

teor 
TER 

PRESEMT-

baseline 
0.3462 6.974 0.3947 51.05 

Google 0.5259 8.538 0.4609 42.23 

Bing 0.4974 8.279 0.4524 34.18 

SYSTRAN 0.2930 6.466 0.3830 49.72 

WorldLingo 0.2659 5.998 0.3666 50.63 

Table 1. Values of performance metrics for data-

set1, using the baseline version of the proposed 

method and other established systems. 

 

The n-gram method proposed in this article for 

supplementary language modelling is intended to 

identify recurring errors in the output or to verify 

translation choices made by the indexed mono-

lingual model. The errors mainly concern gen-

eration of tokens out of lemmata, positioning of 

tokens within phrases as well as disambiguation 

choices. An indicative list of errors encountered 

for Greek to English translation follows: 

Article introduction & deletion: Given that 

there is no 1:1 mapping between Greek and Eng-

lish concerning the use of the definite article, it is 

essential to check whether it is correctly intro-

duced in specific cases (e.g. before proper 

names). 

Generation of verb forms: Specific errors of 

the MT system involve cases of active/passive 

voice mismatches between SL and TL and depo-

nent verbs, i.e. active verbs with mediopassive 

morphology. For example, the Greek deponent 

verb "έρχοµαι" (come) is translated to “be come” 

by the system token generation component that 

takes into account the verb’s passive morphology 

in SL. This erroneous translation should be cor-

rected to “come”, i.e. the auxiliary verb “be” 

must be deleted. 

In-phrase token order: The correct ordering 

of tokens within a given phrase (which occasion-

ally fails to be established by the proposed sys-

tem) can be verified via the n-gram model. 

Prepositional complements: When translat-

ing the prepositional complement of a verb (cf. 

“depend + on”), it is often the case that the incor-

rect preposition is selected during disambigua-

tion, given that no context information is avail-
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able. The n-gram model may be accessed to 

identify the appropriate preposition. 

Double preposition: Prepositions appearing 

in succession within a sentence need to be re-

duced to one. For instance, the translation of the 

NP “κατά τη διάρκεια της πολιορκίας” (= during 

the siege) results in a prepositional sequence 

(“during of”) due to the translation of the indi-

vidual parts as follows: 

κατά τη διάρκεια = during 

της = of the 

πολιορκίας = siege 

In this example a single preposition is needed. 

3.3 Introducing n-gram models 

A new model based on n-gram appearances is 

intended to supplement phrase-based information 

already extracted from the monolingual corpus 

(cf. section 3.1). As the monolingual corpus is 

already lemmatised, both lemma and token-based 

n-grams are extracted. To simplify processing, 

no phrase-boundary information is retained in the 

n-gram models. 

One issue is how the n-gram model will be 

combined with the indexed phrase model of the 

hybrid MT algorithm. The new n-gram model 

can be applied at the same stage of the transla-

tion process. Alternatively, n-grams can be ap-

plied after the indexed phrase model, for verifi-

cation or revision of the translation produced by 

using the indexed corpus. Then, the indexed 

phrase model generates a first translation, which 

represents a hypothesis Hi, upon which a number 

of tests are performed. If the n-gram model cor-

roborates this hypothesis, no modification is ap-

plied, whilst if the n-gram likelihood estimates 

lead to the rejection of the hypothesis, the trans-

lation is revised accordingly. 

Having adopted this set-up, the main task is to 

specify the hypotheses to be tested. To that end, 

a data-driven approach based on the findings of 

the error analysis (cf. section 3.2) is used. 

The creation of the TL n-gram model is 

straightforward and employs the publicly avail-

able SRILM tool (Stolke et al., 2011) to extract 

n-gram probabilities. Both 2-gram and 3-gram 

models have been extracted, creating both token-

based and lemma-based models to support que-

ries in factored representation levels. The n-gram 

models have used 20,000 documents in English, 

each document being an assimilation of web-

posted texts with a cumulative size of 1 Mbyte 

(harvested without any restrictions in terms of 

domain). Following a pre-processing to remove 

words with non-English characters, the final cor-

pus contains a total of 707.6 million tokens and 

forms part of the EnTenTen corpus1. When cre-

ating both 2-grams and 3-grams, Witten-Bell 

smoothing is used and all n-grams with less than 

5 occurrences are filtered out to reduce the model 

size. Each n-gram model contains circa 25 mil-

lion entries, which are the SRILM-derived loga-

rithms of probabilities. 

3.4 Establishing translation hypotheses 

A set of hypotheses has been established based 

on the error analysis, to improve the translation 

quality. Each hypothesis is expressed by a 

mathematical formula which checks the likeli-

hood of an n-gram, via either the lemma-based n-

gram model (the relevant entry being denoted as 

p_lem(), i.e. the probability of the n-gram of 

lemmas) or the token-based model (the relevant 

entry being denoted as p_tok). The relevant 2-

gram or 3-gram model is consulted depending on 

whether the number of arguments is 2 or 3. 
 

Hypothesis H1: This hypothesis checks for the 

existence of a deponent verb, i.e. verb which is in 

passive voice in SL but has an active voice trans-

lation. Instead of externally providing a list of 

deponent verbs in Greek, the n-gram model is 

used to determine translations for which the verb 

is always in active voice, by searching the fre-

quency-of-occurrence in the TL corpus. As an 

example of a correct rejection of hypothesis H1, 

consider the verb “κοιµάµαι” [to sleep] which is 

translated by the hybrid MT system into “be 

slept” as in SL this verb has a medio-passive 

morphology. As the pattern “be slept” is ex-

tremely infrequent in the monolingual corpus, 

hypothesis H1 is rejected and lemma “be” is cor-

rectly deleted, to translate “κoιµάµαι” into 

“sleep”. The corresponding hypothesis is: 

 
H1 :p_lem (A,B)>thres_h1, 

where Lem (A)=”be” and PoS(B) =”VVN” 

If the aforementioned hypothesis does not 

hold, (i.e. the probability of the 2-gram formed 

by the auxiliary verb with lemma B is very rare) 

then H1 is rejected and the auxiliary verb is de-

leted, as expressed by the following formula: 
If (H1 == false) then {A, B} → {B} 

 

Hypothesis H2: This hypothesis checks the in-

clusion of an article, within a trigram of word 

forms. If this hypothesis is rejected based on n-

gram evidence, the article is deleted. Hypothesis 

                                                           
1http://www.sketchengine.co.uk/documentation/wiki/Corpor

a/enTenTen 
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H2 is expressed as follows, where thres_h2 is a 

minimum threshold margin: 

 
H2: min{p_lem(A,the),p_lem(the,B)} - p_lem(A;B) < 

thres_h2 

 

An example of correctly rejecting H2 is for tri-

gram {see, the, France}, which is revised to {see, 

France}. 

 
If (H2 == false) then {A, the, B} → {A, B} 

 

Hypothesis H3: This hypothesis is used to han-

dle cases where two consecutive prepositions 

exist (for prepositions the PoS tag is “IN”). In 

this case one of these prepositions must be de-

leted, based on the n-gram information. This 

process is expressed as follows: 

 
H3 : max((p_lem(A;B),p_lem(A,C)), where PoS(A)==”IN” 

& PoS(B)==”IN” 

 

If (H3==TRUE) then {A, B, C} → {A, C} or {B, C} 

 

Hypothesis H4: This hypothesis checks if there 

exists a more suitable preposition than the one 

currently selected for a given trigram {A, B, C}, 

where PoS(B) = “IN”. H4 is expressed as: 

 
H4: p_lem(A,B,C)-max(p_lem(A,D,C)>thres_h4 , 

for all D where PoS{D}==“IN”. 

 

If this hypothesis is rejected, B is replaced by 

D: 

 
If (H4==FALSE) then ({A,B,C} → {A,D,C} 

 

Hypothesis H5: This hypothesis checks if for a 

bigram, the wordforms might be replaced by the 

corresponding lemmas, as the wordform-based 

pattern is too infrequent. This is formulated as: 

 
H5: p_tok(A,B)- p_tok(lem(A),lem(B)) > thres_h5 

 

An example application would involve proc-

essing bigram {can, is} and revising it into the 

correct {can, be} by rejecting H5: 

 
If (H5==FALSE) then {A,B } → {lem(A),lem(B)} 

 

Similarly, H5 can revise the plural form “in-

formations” to the correct “information”. 

 

Hypothesis H6: This hypothesis also handles 

article deletion, by studying however bigrams, 

rather than trigrams, (cf. H1). This hypothesis is 

that the bigram frequency exceeds a given 

threshold value (thres_6). 

 
H6 :p_lem(2-gram(A, B))>thres_h6, where PoS(A)=”DT” 

 

If H6 is rejected, the corresponding article is 

deleted, as indicated by the following formula: 

 
If (H6==FALSE) then {A,B} → {B} 

 

4 Objective Evaluation Experiments 

4.1 Experiment design 

The experiments reported in the present article 

focus on the Greek – English language pair, the 

reason being that this is the language pair for 

which the most extensive experimentation has 

been reported for the PRESEMT system (Tam-

bouratzis et al., 2013). Thus, improvements in 

the translation accuracy will be more difficult to 

attain. Two datasets are used to evaluate transla-

tion accuracy, a development set (dataset1) and a 

test set (dataset2), each containing 200 sentences 

of length ranging from 7 to 40 tokens. These sets 

of sentences are readily available for download 

over the project website
2
. Two versions of the 

bilingual lexicon have been used, a base version 

and an expanded one. 

Both sets are manually translated by Greek na-

tive speakers and then cross-checked by English 

native speakers, with one reference translation 

per sentence. A range of evaluation metrics are 

employed, namely BLEU (Papineni et al., 2002), 

NIST (NIST 2002), Meteor (Denkowski and La-

vie, 2011) and TER (Snover et al., 2006). 

4.2 Experimental results 

The exact sequence with which hypotheses are 

tested affects the results of the translation, since 

only one hypothesis is allowed to be applied to 

each sentence token at present. This simplifies 

the evaluation of the hypotheses’ effectiveness. 

As a result, hypotheses are applied in strict order 

(i.e. first H1, then H2 etc.). The threshold values 

of Table 2 were settled upon via limited experi-

mentation using sentences from dataset1. 

Hypothesis testing was applied to both data-

sets. Notably, dataset1 has been used in the de-

velopment of the MT systems and thus the re-

sults obtained with dataset2 should be considered 

the most representative ones, as they are com-

                                                           
2 www.presemt.eu 
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pletely unbiased and the set of sentences was 

unseen before the experiment and was only 

translated once. The number of times each hy-

pothesis is tested for each dataset is quoted in 

Table 3, for both the standard (denoted as 

“stand”) and the enriched resources (“enrich”). 

 

Parameter name hypothesis Exper.value 

thres_h1 (H1) chk4 -4.50 

thres_h2 (H2)chk5 -4.00 

thres_h4 (H4)Ch k8 1.50 

thres_h5 (H5)chk2 1.50 

thres_h6 (H6)Ch k11 -5.50 

Table 2. Parameter values for experiments 

 

Hypothesis activations per experiment 
 

dataset 1 dataset 2 

Resource stand. enrich. stand. enrich 

H1 6 6 13 10 

H2 1 1 0 0 

H3 2 3 3 3 

H4 7 8 9 8 

H5 68 68 62 68 

H6 32 32 32 44 

Table 3. Tested hypotheses per dataset 

 

Since the first four hypotheses are only acti-

vated a few times each, when reporting the re-

sults, the applications of hypotheses H1 to H4 

are grouped together. As hypotheses 5 and 6 are 

tested more frequently, the application of each 

one of them is reported separately. 

 

Number of sentences 200 Resources stand. 

Reference transla-

tions 
1 

Language 

pair 
EL–EN 

Metrics 
MT config. 

BLEU NIST Meteor TER 

Baseline 0.3462 6.974 0.3947 51.05 

H1 to H4 0.3479 6.985 0.3941 50.84 

H1 to H5 0.3503 7.006 0.3944 50.80 

H1 to H6 0.3517 7.049 0.3935 50.42 

Table 4. Metric scores for dataset1, using the 

standard language resources, for the baseline sys-

tem and for different hypotheses. 

 

In Table 4, the results are depicted for the four 

MT objective evaluation metrics, when using 

dataset 1. For each metric, the configuration giv-

ing the highest score is depicted in boldface. As 

can be seen, the best BLEU score is obtained 

when checking all 6 hypotheses, and the same 

applies to NIST and TER. On the contrary, for 

Meteor the best result is obtained without resort-

ing to the n-gram model information. Still the 

difference in Meteor scores is minor (less than 

0.3%). The improvements in BLEU, NIST and 

TER are respectively +1.6%, +1.0% and -1.2% 

over the baseline, when using all 6 hypotheses. 

Furthermore, as the number of hypotheses to be 

tested increases, the performance for all three 

metrics is improved. 

 

Number of sentences 200 Resources enrich. 

Reference transla-

tions 
1 

Language 

pair 
EL–EN 

Metrics 
MT config. 

BLEU NIST Meteor TER 

Baseline 0.3518 7.046 0.3997 50.14 

H1 to H4 0.3518 7.054 0.3990 50.00 

H1 to H5 0.3541 7.094 0.3995 49.72 

H1 to H6 0.3551 7.135 0.3984 49.37 

Table 5. Metric scores for dataset1, using en-

riched language resources, for different systems. 

 

In Table 5, the same experiment is repeated 

using an enriched set of lexical resources includ-

ing a bilingual lexicon with higher coverage. No-

tably, on a case-by-case comparison, the scores 

in Table 5 are higher than those of Table 4, con-

firming the benefits of using enriched lexical 

resources. Focusing on Table 5, and comparing 

the MT configurations without and with hy-

pothesis testing, the results obtained are qualita-

tively similar to those of Table 4. Again, the best 

scores for Meteor are obtained when no hypothe-

ses are tested. On the other hand, for the other 

metrics the n-gram modeling coupled with hy-

pothesis testing results in an improvement to the 

scores obtained. The improvements obtained 

amount to approximately 1.0% for each one of 

BLEU, NIST and TER, over the baseline system 

scores indicating a measurable improvement. 

In Tables 6 and 7, the respective experiments 

are reported, using dataset 2 instead of dataset 1, 

with (i) standard and (ii) enriched lexical re-

sources. With standard resources (Table 6), con-

sistent improvements are achieved as more hy-

potheses are activated, for both BLEU and NIST. 

In the case of Meteor, the best performance is 

obtained when no hypotheses are activated, but 

once again the Meteor score varies minimally 

(by less than 0.2%). On the contrary, the im-

provement obtained by activating hypothesis-

checking is equal to 3.0% (BLEU), 1.4% (NIST) 

and 1.2% (TER). As can be seen, the improve-

ment for previously unused dataset2 is propor-

tionally larger than for dataset1. 
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Number of sentences 200 Resources stand. 

Reference transla-

tions 
1 

Language 

pair 
EL–EN 

Metrics 
MT config. 

BLEU NIST Meteor  

Baseline 0.2747 6.193 0.3406 Baseline 

H1 to H4 0.2775 6.217 0.3403 H1 to H4 

H1 to H5 0.2815 6.246 0.3400 H1 to H5 

H1 to H6 0.2837 6.280 0.3401 H1 to H6 

Table 6. Metric scores for dataset2, using stan-

dard language resources, for different systems. 

 

Number of sentences 200 Resources enrich. 

Reference transla-

tions 
1 Language pair EL–EN 

Metrics 
MT config. 

BLEU NIST Meteor TER 

Baseline 0.3008 6.541 0.3784 55.21 

H1 to H4 0.3059 6.569 0.3790 54.96 

H1 to H5 0.3105 6.593 0.3791 54.75 

H1 to H6 0.3096 6.643 0.3779 54.64 

Table 7. Metric scores for dataset2, using en-

riched language resources, for different systems. 

 

Using the enriched resources, as indicated in 

Table 7, the best results for BLEU and Meteor 

are obtained with hypotheses 1 to 5, while for 

NIST and TER the best results are obtained when 

all six hypotheses are tested. In the case of Me-

teor any improvement is marginal (of the order 

of 0.2%). The improvements of the other metrics 

are more substantial, being 3.3% for BLEU, 

1.6% for NIST and 1.0% for TER. 

A statistical analysis has been undertaken to 

determine whether the additional n-gram model-

ling improves significantly the translation scores. 

More specifically, paired t-tests were carried out 

to determine whether the difference in translation 

accuracy was statistically significant, comparing 

the MT accuracy obtained with all six hypothe-

ses versus the baseline system. Two populations 

were formed by scoring independently each 

translated sentence with each one of the NIST, 

BLEU and TER metrics, for dataset2. It was 

found that when using the standard resources (cf. 

Table 6), the translations were scored by TER to 

be significantly better when using the 6 hypothe-

ses, in comparison to the baseline system, while 

for BLEU and NIST the translations for the 2 

systems were equivalent (at a 0.05 confidence 

level). When using the enriched resources, no 

statistically significant difference was detected 

for any metric at a 0.05 confidence level, but 

significant differences were detected for all 3 

metrics at a 0.10 confidence level (cf. Table 7). 

5 Discussion 

According to the experimental results, the addi-

tion of a new model in the hybrid MT system has 

contributed to an improved translation quality. 

These improvements have been achieved using a 

limited experimentation time and only a few hy-

potheses on what is an extensively developed 

language pair, for the proposed MT methodol-

ogy. It is likely that as the suite of hypotheses is 

increased, larger improvements in objective met-

rics can be obtained. 

When applying the hypotheses, the initial sys-

tem translation is available both at token-level 

and at lemma-level. Out of the 6 hypotheses 

tested here, 5 involve token-based information 

and only one involves lemmas. If additional hy-

potheses are added operating on lemmas, a fur-

ther improvement is expected. 

Notably, the new n-gram modelling requires 

no collection or annotation of additional re-

sources. The use of an established software 

package (SRILM) for assembling an n-gram da-

tabase, via which hypotheses are rejected or con-

firmed, results in a straightforward implementa-

tion. In addition, multiple models can be effec-

tively combined to improve translation accuracy 

by investigating different language aspects. 

An interesting point is that the n-gram models 

created are factored (i.e. including information at 

both lemma and token level). Thus, different 

types of queries may be supported, to improve 

translation quality. 

6 Future work 

The experiments reported here have shown that 

improvements can be achieved, without specify-

ing in detail the templates searched for, but al-

lowing for more general formulations. 

One aspect which should be addressed in fu-

ture work concerns evaluation. Currently, this is 

limited to objective metrics. Still it is well-worth 

investigating the extent to which translation im-

provement is reflected by subjective metrics, 

which are the preferred instrument for quality 

evaluation (Callison-Burch at al., 2011). 

In addition, it is possible to achieve further 

improvements if the hypothesis templates are 

made more detailed, by supplementing the lexi-

cal information by detailed PoS information. 

Tests performed so far have used empirically-

set parameter values for the hypotheses. It is pos-

sible to adopt a systematic methodology such as 

MERT or genetic algorithms to optimise the ac-

tual values of the hypotheses parameters. 
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Another observation concerns the manner in 

which the two distinct language models are ap-

plied. In the present article, n-grams are used to 

correct a translation already established via the 

phrase indexed model, having a second-level, 

error-checking role. It is possible, however, to 

revise the mode of application of the language 

models, so that instead of a sequential applica-

tion, the two model families are consulted at the 

same time. This leads to an MT system that ex-

ploits the information from multiple models con-

currently, and is the focus of future research. 
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Abstract

We employ syntactic and semantic infor-
mation in estimating the quality of ma-
chine translation from a new data set
which contains source text from English
customer support forums and target text
consisting of its machine translation into
French. These translations have been both
post-edited and evaluated by professional
translators. We find that quality estima-
tion using syntactic and semantic informa-
tion on this data set can hardly improve
over a baseline which uses only surface
features. However, the performance can
be improved when they are combined with
such surface features. We also introduce
a novel metric to measure translation ade-
quacy based on predicate-argument struc-
ture match using word alignments. While
word alignments can be reliably used,
the two main factors affecting the per-
formance of all semantic-based methods
seems to be the low quality of seman-
tic role labelling (especially on ill-formed
text) and the lack of nominal predicate an-
notation.

1 Introduction

The problem of evaluating machine translation
output without reference translations is called
quality estimation (QE) and has recently been the
centre of attention (Bojar et al., 2014) following
the seminal work of Blatz et al. (2003). Most
QE studies have focused on surface and language-
model-based features of the source and target. The
quality of translation is however closely related to
the syntax and semantics of the languages, the for-
mer concerning fluency and the latter adequacy.

While there have been some attempts to utilize
syntax in this task, semantics has been paid less

attention. In this work, we aim to exploit both
syntax and semantics in QE, with a particular fo-
cus on the latter. We use shallow semantic analy-
sis obtained via semantic role labelling (SRL) and
employ this information in QE in various ways in-
cluding statistical learning using both tree kernels
and hand-crafted features. We also design a QE
metric which is based on the Predicate-Argument
structure Match (PAM ) between the source and its
translation. The semantic-based system is then
combined with the syntax-based system to evalu-
ate the full power of structural linguistic informa-
tion. We also combine this system with a baseline
system consisting of effective surface features.

A second contribution of the paper is the release
of a new data set for QE.1 This data set comprises
a set of 4.5K sentences chosen from customer sup-
port forum text. The machine translation of the
sentences are not only evaluated in terms of ade-
quacy and fluency, but also manually post-edited
allowing various metrics of interest to be applied
to measure different aspects of quality. All exper-
iments are carried out on this data set.

The rest of the paper is organized as follows:
after reviewing the related work, the data is de-
scribed and the semantic role labelling approach
is explained. The baseline is then introduced, fol-
lowed by the experiments with tree kernels, hand-
crafted features, the PAM metric and finally the
combination of all methods. The paper ends with
a summary and suggestions for future work.

2 Related Work

Syntax has been exploited in QE in various ways
including tree kernels (Hardmeier et al., 2012;
Kaljahi et al., 2013; Kaljahi et al., 2014b),
parse probabilities and syntactic label frequency
(Avramidis, 2012), parseability (Quirk, 2004) and
POS n-gram scores (Specia and Giménez, 2010).

1The data will be made publicly available - see http://
www.computing.dcu.ie/mt/confidentmt.html
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Turning to the role of semantic knowledge in
QE and MT evaluation in general, Pighin and
Màrquez (2011) propose a method for ranking two
translation hypotheses that exploits the projection
of SRL from a sentence to its translation using
word alignments. They first project the SRL of a
source corpus to its parallel corpus and then build
two translation models: 1) translations of proposi-
tion labelling sequences in the source to its projec-
tion in the target and 2) translations of argument
role fillers in the source to their counterparts in
the target. The source SRL is then projected to
its machine translation and the above models are
forced to translate source proposition labelling se-
quences to the projected ones. Finally the confi-
dence scores of these translations and their reach-
ability are used to train a classifier which selects
the better of the two translation hypotheses with
an accuracy of 64%. Factors hindering their clas-
sifier are word alignment limitations and low SRL
recall due to the lack of a verb or the loss of a
predicate during translation.

In MT evaluation, where reference translations
are available, Giménez and Màrquez (2007) use
semantic roles in building several MT evaluation
metrics which measure the full or partial lexical
match between the fillers of same semantic roles in
the hypothesis and translation, or simply the role
label matches between them. They conclude that
these features can only be useful in combination
with other features and metrics reflecting different
aspects of the quality.

Lo and Wu (2011) introduce HMEANT, a man-
ual MT evaluation metric based on predicate-
argument structure matching which involves two
steps of human engagement: 1) semantic role an-
notation of the reference and machine translation,
2) evaluating the translation of predicates and ar-
guments. The metric calculates the F1 score of
the semantic frame match between the reference
and machine translation based on this evaluation.
To keep the costs reasonable, the first step is car-
ried out by amateur annotators who were mini-
mally trained with a simplified list of 10 thematic
roles. On a set of 40 examples, the metric is
meta-evaluated in terms of correlation with human
judgements of translation adequacy ranking, and a
correlation as high as that of HTER is reported.

Lo et al. (2012) propose MEANT, a variant of
HMEANT, which automatizes its manual steps
using 1) automatic SRL systems for (only) verb

predicates, 2) automatic alignment of predicates
and their arguments in the reference and ma-
chine translation based on their lexical similarity.
Once the predicates and arguments are aligned,
their similarities are measured using a variety of
methods such as cosine distance and even Me-
teor and BLEU. In computation of the final score,
the similarity scores replace the counts of correct
and partial translations used in HMEANT. This
metric outperforms several automatic metrics in-
cluding BLEU, Meteor and TER, but it signifi-
cantly under-performs HMEANT and HTER. Fur-
ther analysis shows that automatizing the second
step does not affect the performance of MEANT.
Therefore, it seems to be the lower accuracy of the
semantic role labelling that is responsible.

Bojar and Wu (2012) identify a set of flaws
with HMEANT and propose solutions for them.
The most important problems stem from the su-
perficial SRL annotation guidelines. These prob-
lems are exacerbated in MEANT due to the auto-
matic nature of the two steps. More recently, Lo
et al. (2014) extend MEANT to ranking transla-
tions without a reference by using phrase transla-
tion probabilities for aligning semantic role fillers
of the source and its translation.

3 Data

We randomly select 4500 segments from a large
collection of Symantec English Norton forum
text.2 In order to be independent of any one MT
system, we translate these segments into French
with the following three systems and randomly
choose 1500 distinct segments from each.

• ACCEPT3: a phrase-based Moses system
trained on training sets of WMT12 releases
of Europarl and News Commentary plus
Symantec translation memories

• SYSTRAN: a proprietary rule-based system
augmented with domain-specific dictionaries

• Bing4: an online translation system

These translations are evaluated in two ways.
The first method involves light post-editing by
a professional human translator who is a native

2http://community.norton.com
3http://www.accept.unige.ch/Products/

D_4_1_Baseline_MT_systems.pdf
4http://www.bing.com/translator(on24-

Feb-2014)
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Adequacy Fluency
5 All meaning Flawless Language
4 Most of meaning Good Language
3 Much of meaning Non-native Language
2 Little meaning Disfluent Language
1 None of meaning Incomprehensible

Table 2: Adequacy/fluency score interpretation

French speaker.5 Each sentence translation is then
scored against its post-edit using BLEU6(Papineni
et al., 2002), TER (Snover et al., 2006) and
METEOR (Denkowski and Lavie, 2011), which are
the most widely used MT evaluation metrics. Fol-
lowing Snover et al. (2006), we consider this way
of scoring MT output to be a variation of human-
targeted scoring, where no reference translation
is provided to the post-editor, so we call them
HBLEU, HTER and HMETEOR. The average scores
for the entire data set together with their standard
deviations are presented in Table 1.7

In the second method, we asked three profes-
sional translators, who are again native French
speakers, to assess the quality of MT output in
terms of adequacy and fluency in a 5-grade scale
(LDC, 2002). The interpretation of the scores is
given in Table 2. Each evaluator was given the
entire data set for evaluation. We therefore col-
lected three sets of scores and averaged them to
obtain the final scores. The averages of these
scores for the entire data set together with their
standard deviations are presented in Table 1. To
be easily comparable to human-targeted scores,
we scale these scores to the [0,1] range, i.e. ad-
equacy/fluency scores of 1 and 5 are mapped to 0
and 1 respectively and all the scores in between
are accordingly scaled.

The average Kappa inter-annotator agreement
for adequacy scores is 0.25 and for fluency scores
0.19. However, this measurement does not dif-
ferentiate between small and large differences in
agreement. In other words, the difference between

5The post-editing guidelines are based on the
TAUS/CNGL guidelines for achieving “good enough”
quality downloaded from https://evaluation.
taus.net/images/stories/guidelines/taus-
cngl-machine-translation-postediting-
guidelines.pdf.

6Version 13a of MTEval script was used at the segment
level which performs smoothing.

7Note that HTER scores have no upper limit and can be
higher than 1 when the number of errors is higher than the
segment length. In addition, the higher HTER indicates lower
translation quality. To be comparable to the other scores, we
cut-off them at 1 and convert to 1-HTER.

1-HTER HBLEU HMeteor Adq Flu
1-HTER - - - - -
HBLEU 0.9111 - - - -
HMeteor 0.9207 0.9314 - - -
Adq 0.6632 0.7049 0.6843 - -
Flu 0.6447 0.7213 0.6652 0.8824 -

Table 3: Pearson r between pairs of metrics on the
entire 4.5K data set

scores of 5 and 4 is the same as the difference
between 5 and 2. To account for this, we use
weighted Kappa instead. Specifically, we consider
two scores of difference 1 to represent 75% agree-
ment instead of 100%. All the other differences
are considered to be a disagreement. The aver-
age weighted Kappa computed in this way is 0.65
for adequacy and 0.63 for fluency. Though the
weighting used is quite strict, the weighted Kappa
values are in the substantial agreement range.

Once we have both human-targeted and manual
evaluation scores together, it is interesting to know
how they are correlated. We calculate the Pearson
correlation coefficient r between each pair of the
five scores and present them in Table 3. HBLEU
has the highest correlation with both adequacy and
fluency scores among the human-targeted metrics.
HTER on the other hand has the lowest correla-
tion. Moreover, HBLEU is more correlated with
fluency than with adequacy which is the opposite
to HMeteor. This is expected according to the
definition of BLEU and Meteor. There is also
a high correlation between adequacy and fluency
scores. Although this could be related to the fact
that both scores are from the same evaluators, it
indicates that if either the fluency and adequacy of
the MT output is low or high, the other tends to be
the same.

The data is split into train, development and test
sets of 3000, 500 and 1000 sentences respectively.

4 Semantic Role Labelling

The type of semantic information we use in this
work is the predicate-argument structure or se-
mantic role labelling of the sentence. This infor-
mation needs to be extracted from both sides of the
translation, i.e. English and French. Though the
SRL of English has been well-studied (Màrquez
et al., 2008) thanks to the existence of two major
hand-crafted resources, namely FrameNet (Baker
et al., 1998) and PropBank (Palmer et al., 2005),
French is one of the under-studied languages in
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1-HTER HBLEU HMeteor Adequacy Fluency
Average 0.6976 0.5517 0.7221 0.6230 0.4096
Standard Deviation 0.2446 0.2927 0.2129 0.2488 0.2780

Table 1: Average and standard deviation of the evaluation scores for the entire data set

this respect mainly due to a lack of such resources.
The only available gold standard resource is a

small set of 1000 sentences taken from Europarl
(Koehn, 2005) and manually annotated with Prop-
bank verb predicates (van der Plas et al., 2010).
van der Plas et al. (2011) attempt to tackle this
scarcity by automatically projecting SRL from the
English side of a large parallel corpus to its French
side. Our preliminary experiments (Kaljahi et al.,
2014a), however, show that SRL models trained
on the small manually annotated corpus have a
higher quality than ones trained on the much larger
projected corpus. We therefore use the 1K gold
standard set to train a French SRL model. For En-
glish, we use all the data provided in the CoNLL
2009 shared task (Hajič et al., 2009).

We use LTH (Björkelund et al., 2009), a
dependency-based SRL system, for both the En-
glish and French data. This system was among
the best performing systems in the CoNLL 2009
shared task and is straightforward to use. It comes
with a set of features tuned for each shared task
language (English, German, Japanese, Spanish,
Catalan, Czech, Chinese). We compared the per-
formance of the English and Spanish feature sets
on French and chose the former due to its higher
performance (by 1 F1 point).

It should be noted that the English SRL data
come with gold standard syntactic annotation. On
the other hand, for our QE data set, such anno-
tation is not available. Our preliminary experi-
ments show that, since the SRL system heavily
relies on syntactic features, the performance con-
siderably drops when the syntactic annotation of
the test data is obtained using a different parser
than that of the training data. We therefore re-
place the parses of the training data with those ob-
tained automatically by first parsing the data us-
ing the Lorg PCFG-LA parser8 (Attia et al., 2010)
and then converting them to dependencies using
Stanford converter (de Marneffe and Manning,
2008). The POS tags are also replaced with those
output by the parser. For the same reason, we re-

8https://github.com/CNGLdlab/LORG-
Release.

place the original POS tagging of the French 1K
data with those obtained by the MElt tagger (De-
nis and Sagot, 2012).

The English SRL achieves 77.77 and 67.02 la-
belled F1 points when trained only on the training
section of PropBank and tested on the WSJ and
Brown test sets respectively.9 The French SRL is
evaluated using 5-fold cross-validation on the 1K
data set and obtains an F1 average of 67.66. When
applied to the QE data set, these models identify
9133, 8875 and 8795 propositions on its source
side, post-edits and MT output respectively.

5 Baseline

We compare the results of our experiments to a
baseline built using the 17 baseline features of the
WMT QE shared task (Bojar et al., 2014). These
features provide a strong baseline and have been
used in all three years of the shared task. We
use support vector regression implemented in the
SVMLight toolkit10 with Radial Basis Function
(RBF) kernel to build this baseline. To extract
these features, a parallel English-French corpus
is required to build a lexical translation table us-
ing GIZA++ (Och and Ney, 2003). We use the
Europarl English-French parallel corpus (Koehn,
2005) plus around 1M segments of Symantec
translation memory.

Table 4 shows the performance of this system
(WMT17) on the test set measured by Root Mean
Square Error (RMSE) and Pearson correlation co-
efficient (r). We only report the results on predict-
ing four of the metrics introduced above, omitting
HMeteor due to space constraints. C and γ pa-
rameters are tuned on the development set with re-
spect to r. The results show a significant differ-
ence between manual and human-targeted metric
prediction. The higher r for the former suggests
that the patterns of these scores are easier to learn.
The RMSE seems to follow the standard deviation

9Although the English SRL data are annotated for noun
predicates as well as verb predicates, since the French data
has only verb predicate annotations, we only consider verb
predicates for English.

10http://svmlight.joachims.org/
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of the scores as the same ranking is seen in both.

6 Tree Kernels

Tree kernels (Moschitti, 2006) have been success-
fully used in QE by Hardmeier et al. (2012) and
in our previous work (Kaljahi et al., 2013; Kal-
jahi et al., 2014b), where syntactic trees are em-
ployed. Tree kernels eliminate the burden of man-
ual feature engineering by efficiently utilizing all
subtrees of a tree. We employ both syntactic and
semantic information in learning quality scores,
using the SVMLight-TK11, a support vector ma-
chine (SVM) implementation of tree kernels.

We implement a syntactic tree kernel QE sys-
tem with constituency and dependency trees of
the source and target side, following our previous
work (Kaljahi et al., 2013; Kaljahi et al., 2014b).
The performance of this system (TKSyQE) is
shown in Table 4. Unlike our previous results,
where the syntax-based system significantly out-
performed the WMT17 baseline, TKSyQE can only
beat the baseline in HTER and fluency prediction,
with neither difference being statistically signifi-
cant and it is below the baseline for HBLEU and
adequacy prediction.12 It should be noted that in
our previous work, a WMT News data set was
used as the QE data set which, unlike our new data
set, is well-formed and in the same domain as the
parsers’ training data. The discrepancy between
our new and old results suggests that the perfor-
mance is strongly dependent on the data set.

Unlike syntactic parsing, semantic role la-
belling does not produce a tree to be directly used
in the tree kernel framework. There can be var-
ious ways to accomplish this goal. We first try
a method inspired by the PAS format introduced
by Moschitti et al. (2006). In this format, a fixed
number of nodes are gathered under a dummy root
node as slots of one predicate and 6 arguments of
a proposition (one tree per predicate). Each node
dominates an argument label or a dummy label for
the predicate, which in turn dominates the POS
tag of the argument or the predicate lemma. If a
proposition has more than 6 arguments they are
ignored, if it has fewer than 6 arguments, the extra
slots are attached to a dummy null label. Note that
these trees are derived from the dependency-based
SRL of both the source and target side (Figure

11http://disi.unitn.it/moschitti/Tree-
Kernel.htm

12We use paired bootstrap resampling Koehn (2004) for
statistical significance testing.

1-HTER HBLEU Adq Flu
RMSE

WMT17 0.2310 0.2696 0.2219 0.2469
TKSyQE 0.2267 0.2721 0.2258 0.2431
D-PAS 0.2489 0.2856 0.2423 0.2652
D-PST 0.2409 0.2815 0.2383 0.2606
C-PST 0.2400 0.2809 0.2410 0.2615
CD-PST 0.2394 0.2795 0.2373 0.2578
TKSSQE 0.2269 0.2722 0.2253 0.2425

Pearson r
WMT17 0.3661 0.3806 0.4710 0.4769
TKSyQE 0.3693 0.3559 0.4306 0.5013
D-PAS 0.1774 0.1843 0.2770 0.3252
D-PST 0.2136 0.2450 0.3169 0.3670
C-PST 0.2319 0.2541 0.2966 0.3616
CD-PST 0.2311 0.2714 0.3303 0.3923
TKSSQE 0.3682 0.3537 0.4351 0.5046

Table 4: RMSE and Pearson r of the 17 base-
line features (WMT17) and tree kernel systems;
TKSyQE: syntax-based tree kernels, D-PAS:
dependency-based PAS tree kernels of Moschitti
et al. (2006), D-PST, C-PST and CD-PST:
dependency-based, constituency-based proposi-
tion subtree kernels and their combination,
TKSSQE: syntactic-semantic tree kernels

1(a)). The results are shown in Table 4 (D-PAS).
The performance is statistically significantly lower
than the baseline.13

In order to encode more information in the trees,
we propose another format in which proposition
subtrees (PST) of the sentence are gathered un-
der a dummy root node. A dependency PST (Fig-
ure 1(b)) is formed by the predicate label under
the root dominating its lemma and all its argu-
ments roles. Each of these nodes in turn dominates
three nodes: the argument word form (the predi-
cate word form for the case of a predicate lemma),
its syntactic dependency relation to its head and its
POS tag. We preserve the order of arguments and
predicate in the sentence.14 This system is named
D-PST in Table 4. Tree kernels in this format sig-
nificantly outperform D-PAS. However, the per-
formance is still far lower than the baseline.

The above formats are based on dependency
trees. We try another PST format derived from
constituency trees. These PSTs (Figure 1(c)) are
the lowest common subtrees spanning the predi-
cate node and its argument nodes and are gath-
ered under a dummy root node. The argument role

13Note that the only lexical information in this format is
the predicate lemma. We tried replacing the POS tags with
argument word forms, which led to a slight degradation.

14This format is chosen among several other variations due
to its higher performance.
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(a) D-PAS (b) D-PST (c) C-PST (d) D-TKSSQE (e) C-TKSSQE

Figure 1: Semantic tree kernel formats for the sentence: Can anyone help?

labels are concatenated with the syntactic non-
terminal category of the argument node. Predi-
cates are not marked. However, our dependency-
based SRL is required to be converted into a
constituency-based format. While constituency-
to-dependency conversion is straightforward us-
ing head-finding rules (Surdeanu et al., 2008),
the other way around is not. We therefore ap-
proximate the conversion using a heuristic we call
(D2C).15 As shown in Table 4, the system built us-
ing these PSTs C-PST improves over D-PST for
human-targeted metric prediction, but not man-
ual metric prediction. However, when they are
combined in CD-PST, we can see improvement
over the highest scores of both systems, except
for HTER prediction for Pearson r. The fluency
prediction improvement is statistically significant.
The other changes are not statistically significant.

An alternative approach to formulating seman-
tic tree kernels is to augment syntactic trees with
semantic information. We augment the trees in
TKSyQE with semantic role labels. We attach se-
mantic roles to dependency labels of the argument
nodes in the dependency trees as in Figure 1(d).
For constituency trees, we use the D2C heuristic
to elevate roles up the terminal nodes and attach
the labels to the syntactic non-terminal category
of the node as in Figure 1(e). The performance
of the resulting system, TKSSQE, is shown in Ta-
ble 4. It substantially outperforms its counterpart,
CD-PST, all differences being statistically signif-
icant. However, compared to the plain syntactic
tree kernels (TKSyQE), the changes are slight and
inconsistent, rendering the augmentation not use-
ful. We consider this system to be our syntactic-

15This heuristic (D2C) recursively elevates the argument
role already assigned to a terminal node (based on the
dependency-based argument position) to the parent node as
long as 1) the argument node is not a root node or is not
tagged as a POS (possessive), 2) the role is not an AM-NEG,
AM-MOD or AM-DIS adjunct, and 3) the argument does not
dominate its predicate’s node or another argument node of the
same proposition.

1-HTER HBLEU Adq Flu
RMSE

WMT17 0.2310 0.2696 0.2219 0.2469
HCSyQE 0.2435 0.2797 0.2334 0.2479
HCSeQE 0.2482 0.2868 0.2416 0.2612

Pearson r
WMT17 0.3661 0.3806 0.4710 0.4769
HCSyQE 0.2572 0.3080 0.3961 0.4696
HCSeQE 0.1794 0.1636 0.2972 0.3577

Table 5: RMSE and Pearson r of the 17 baseline
features (WMT17) and hand-crafted features

semantic tree kernel system.

7 Hand-crafted Features

In our previous work (Kaljahi et al., 2014b), we
experiment with a set of hand-crafted syntactic
features extracted from both constituency and de-
pendency trees on a different data set. We apply
the same feature set on the new data set here. The
results are reported in Table 5. The performance of
this system (HCSyQE) is significantly lower than
the baseline. This is opposite to what we ob-
serve with the same feature set on a different data
set, again showing that the role of data is funda-
mental in understanding system performance. The
main difference between these two data sets is that
the former is extracted from a well-formed text in
the news domain, the same domain on which our
parsers and SRL system have been trained, while
the new data set does not necessarily contain well-
formed text nor is it from the same domain.

We design another set of feature types aiming
at capturing the semantics of the source and trans-
lation via predicate-argument structure. The fea-
ture types are listed in Table 6. Feature types
1 to 8 each contain two features, one extracted
from the source and the other from the transla-
tion. To compute argument span sizes (feature
types 4 and 5), we use the constituency conver-
sion of SRL obtained using the D2C heuristic in-
troduced in Section 6. The proposition label se-
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1 Number of propositions
2 Number of arguments
3 Average number of arguments per proposition
4 Sum of span sizes of arguments
5 Ratio of sum of span sizes of arguments to sentence

length
6 Proposition label sequences
7 Constituency label sequences of proposition elements
8 Dependency label sequences of proposition elements
9 Percentage of predicate/argument word alignment

mapping types

Table 6: Semantic feature types

quence (feature type 6) is the concatenation of ar-
gument roles and predicate labels of the propo-
sition with their preserved order (e.g. A0-go.01-
A4). Similarly, constituency and dependency la-
bel sequences (feature types 4 and 5) are extracted
by replacing argument and predicate labels with
their constituency and dependency labels respec-
tively. Feature type 9 consists of three features
based on word alignment of source and target
sentences: number of non-aligned, one-to-many-
aligned and many-to-one-aligned predicates and
arguments. The word alignments are obtained us-
ing the grow-diag-final-and heuristic as
they performed slightly better than other types.16

As in the baseline system, we use SVMs to build
the QE systems using these hand-crafted features.
The nominal features are binarized to be usable by
SVM. However, the set of possible feature values
can be large, leading to a large number of binary
features. For example, there are more than 5000
unique proposition label sequences in our data.
Not only does this high dimensionality reduce the
efficiency of the system, it can also affect its per-
formance as these features are sparse. To tackle
this issue, we impose a frequency cutoff on these
features: we keep only frequent features using a
threshold set empirically on the development set.

Table 5 shows the performance of the system
(HCSeQE) built with these features. The semantic
features perform substantially lower than the syn-
tactic features and thus the baseline, especially in
predicting human-targeted scores. Since these fea-
tures are chosen from a comprehensive set of se-
mantic features, and as they should ideally capture
adequacy better than general features, a probable
reason for their low performance is the quality of

16It should be noted that a number of features in addition
to those presented here have been tried, e.g. the ratio and dif-
ference of the source and target values of numerical features.
However, through manual feature selection, we have removed
features which do not appear to contribute much.

the underlying syntactic and semantic analysis.

8 Predicate-Argument Match (PAM)

Translation adequacy measures how much of the
source meaning is preserved in the translated text.
Predicate-argument structure or semantic role la-
belling expresses a substantial part of the meaning.
Therefore, the matching between the predicate-
argument structure of the source and its transla-
tion could be an important clue to the translation
adequacy, independent of the language pair used.
We attempt to exploit predicate-argument match
(PAM) to create a metric that measures the trans-
lation adequacy.

The algorithm to compute PAM score starts
by aligning the predicates and arguments of the
source side to its target side using word align-
ments.17 It then treats the problem as one of SRL
scoring, similar to the scoring scheme used in the
CoNLL 2009 shared task (Hajič et al., 2009). As-
suming the source side SRL as a reference, it com-
putes unlabelled precision and recall of the target
side SRL with respect to it:

UPrec = # aligned preds and their args
# target side preds and args

URec = # aligned preds and their args
# source side preds and args

Labelled precision and recall are calculated in
the same way except that they also require argu-
ment label agreement. UF1 and LF1 are the har-
monic means of unlabelled and labelled scores re-
spectively. Inspired by the observation that most
source sentences with no identified proposition are
short and can be assumed to be easier to translate,
and based on experiments on the dev set, we assign
a score of 1 to such sentences. When no proposi-
tion is identified in the target side while there is a
proposition in the source, we assign a score of 0.5.

We obtain word alignments using the Moses
toolkit (Hoang et al., 2009), which can gener-
ate alignments in both directions and combine
them using a number of heuristics. We try in-
tersection, union, source-to-target only, as well
as the grow-diag-final-and heuristic, but
only the source-to-target results are reported here
as they slightly outperform the others.

Table 7 shows the RMSE and Pearson r for
each of the unlabelled and labelled F1 against ade-

17We also tried lexical and phrase translation tables for this
purpose in addition to word alignments but they do not out-
perform word alignments.
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1-HTER HBLEU Adq Flu
RMSE

1 UF1 0.3175 0.3607 0.3108 0.4033
LF1 0.4247 0.3903 0.3839 0.3586

Pearson r
UF1 0.2328 0.2179 0.2698 0.2865
LF1 0.1784 0.1835 0.2225 0.2688

Table 7: RMSE and Pearson r of PAM unlabelled
and labelled F1 scores as estimation of the MT
evaluation metrics

1-HTER HBLEU Adq Flu
RMSE

PAM 0.2414 0.2833 0.2414 0.2661
HCSeQE 0.2482 0.2868 0.2416 0.2612
HCSeQEpam 0.2445 0.2822 0.2370 0.2575

Pearson r
PAM 0.2292 0.2195 0.2787 0.3210
HCSeQE 0.1794 0.1636 0.2972 0.3577
HCSeQEpam 0.2387 0.2368 0.3571 0.3908

Table 8: RMSE and Pearson r of PAM scores as
features, alone and combined (PAM)

quacy and also fluency scores on the test data set.18

According to the results, the unlabelled F1 (UF1)
is a closer estimation than the labelled one. Its
Pearson correlation scores are overall competitive
to the hand-crafted semantic features (HCSeQE in
Table 5): they are better for the automatic metric
cases but lower for manual ones. However, the
RMSE scores are considerably larger. Overall, the
performance is not comparable to the baseline and
other well performing systems. We investigate the
reasons behind this result in the next section.

Another way to employ the PAM scores in QE
is to use them in a statistical framework. We build
a SVM model using all 6 PAM scores The per-
formance of this system (PAM) on the test set is
shown in Table 8. The performance is consider-
ably higher than when the PAM scores are used
directly as estimations. Interestingly, compared to
the 47 semantic hand-crafted features (HCSeQE),
this small feature set performs better in predicting
human-targeted metrics.

We add these features to our set of hand-
crafted features in Section 7 to yield a new sys-
tem (HCSeQEpam in Table 8). All scores improve
compared to the stronger of the two components.
However, only the manual metric prediction im-
provements are statistically significant. The per-
formance is still not close to the baseline.

18Precision and recall scores were also tried. Precision
proved to be the weakest estimator, whereas recall scores
were highest for some settings.

8.1 Analyzing PAM

Ideally, PAM scores should capture the adequacy
of translation with a high accuracy. The results
are however far from ideal. There are two fac-
tors involved in the PAM scoring procedure, the
quality of which can affect its performance: 1)
predicate-argument structure of the source and
target side of the translation, 2) alignment of
predicate-argument structures of source and target.

The SRL systems for both English and French
are trained on edited newswire. On the other
hand, our data is neither from the same domain nor
edited. The problem is exacerbated on the trans-
lation target side, where our French SRL system
is trained on only a small data set and applied to
machine translation output. To discover the con-
tribution of each of these factors in the accuracy
of PAM, we carry out a manual analysis. We ran-
domly select 10% of the development set (50 sen-
tences) and count the number of problems of each
of these two categories.

We find only 8 cases in which a wrong word
alignment misleads PAM scoring. On the other
hand, there are 219 cases of SRL problems, in-
cluding predicate and argument identification and
labelling: 82 cases (37%) in the source and 138
cases (63%) in the target.

We additionally look for the cases where a
translation divergence causes predicate-argument
mismatch in the source and translation. For ex-
ample, without sacrificing is translated into sans
impact sur (without impact on), a case of transpo-
sition, where the source side verb predicate is left
unaligned thus affecting the PAM score. We find
only 9 such cases in the sample, which is similar
to the proportion of word alignment problems.

As mentioned in the previous section, PAM
scoring has to assign default values for cases in
which there is no predicate in the source or tar-
get. This can be another source of estimation error.
In order to verify its effect, we find such cases in
the development set and manually categorize them
based on the reason causing the sentence to be left
without predicates. There are 79 (16%) source and
96 (19%) target sentences for which the SRL sys-
tems do not identify any predicate, out of which
64 cases have both sides without any predicate.
Among such source sentences, 20 (25%) have no
predicate due to a predicate identification error of
the SRL system, 57 (72%) because of the sentence
structure (e.g. copula verbs which are not labelled

74



1-HTER HBLEU Adq Flu
RMSE

WMT17 0.2310 0.2696 0.2219 0.2469
SyQE 0.2255 0.2711 0.2248 0.2419
SeQE 0.2249 0.2710 0.2242 0.2404
SSQE 0.2246 0.2696 0.2230 0.2402
SSQE+WMT17 0.2225 0.2673 0.2202 0.2379

Pearson r
WMT17 0.3661 0.3806 0.4710 0.4769
SyQE 0.3824 0.3650 0.4393 0.5087
SeQE 0.3884 0.3648 0.4447 0.5182
SSQE 0.3920 0.3768 0.4538 0.5196
SSQE+WMT17 0.4144 0.3953 0.4771 0.5331

Table 9: RMSE and Pearson r of the 17 baseline
features (WMT17) and system combinations

as predicates in the SRL training data, titles, etc.),
and the remaining 2 due to spelling errors mislead-
ing the SRL system. Among the target side sen-
tences, most of the cases are due to the sentence
structure (65 or 68%) and only 14 (15%) cases are
caused by an SRL error. In 13 cases, no verb pred-
icate in the source is translated correctly. Among
the remaining cases, two are due to untranslated
spelling errors in the source and the other two due
to tokenization errors misleading the SRL system.

These numbers show that the main reason lead-
ing to the sentences without verbal predicates is
the sentence structure. This problem can be al-
leviated by employing nominal predicates in both
sides. While this is possible for the English side,
there is currently no French resource where nomi-
nal predicates have been annotated.

9 Combining Systems

We now combine the systems we have built so
far (Table 9). We first combine syntax-based
and semantic-based systems individually. SyQE
is the combination of the syntactic tree kernel
system (TKSyQE) and the hand-crafted features
(HCSyQE). Likewise, SeQE is the combination
of the semantic tree kernel system (TKSSQE) and
the semantic hand-crafted features including PAM
features (HCSeQEpam). These two systems are
combined in SSQE but without syntactic tree ker-
nels (TKSyQE) to avoid redundancy with TKSSQE
as these are the augmented syntactic tree kernels.
We finally combine SSQE with the baseline.
SyQE significantly improves over its tree ker-

nel and hand-crafted components. It also outper-
forms the baseline in HTER and fluency predic-
tion, but is beaten by it in HBLEU and adequacy
prediction. None of these differences are statis-

tically significant however. SeQE also performs
better than the stronger of its components. Except
for adequacy prediction, the other improvements
are statistically significant. This system performs
slightly better than SyQE. Its comparison to the
baseline is the same as that of SyQE, except that
its superiority to the baseline in fluency prediction
is statistically significant.

The full syntactic-semantic system (SSQE) also
improves over its syntactic and semantic compo-
nents. However, the improvements are not statisti-
cally significant. Compared to the baseline, HTER
and fluency prediction perform better, the latter
being statistically significant. HBLEU prediction
is around the same as the baseline, but adequacy
prediction performance is lower, though not statis-
tically significantly.

Finally, when we combine the syntactic-
semantic system with the baseline system, the
combination continues to improve further. Com-
pared to the stronger component however, only the
HTER and fluency prediction improvements are
statistically significant.

10 Conclusion

We introduced a new QE data set drawn from cus-
tomer support forum text, machine translated and
both post-edited and manually evaluated for ad-
equacy and fluency. We used syntactic and se-
mantic QE systems via both tree kernels and hand-
crafted features. We found it hard to improve over
a baseline, albeit strong, using such information
which is extracted by applying parsers and seman-
tic role labellers on out-of-domain and unedited
text. We also defined a metric for estimating the
translation adequacy based on predicate-argument
structure match between source and target. This
metric relies on automatic word alignments and
semantic role labelling. We find that word align-
ment and translation divergence only have minor
effects on the performance of this metric, whereas
the quality of semantic role labelling is the main
hindering factor. Another major issue affecting the
performance of PAM is the unavailability of nom-
inal predicate annotation.

Our PAM scoring method is based on only word
matches as there are no constituent SRL resources
available for French – perhaps constituent-based
arguments can make a more accurate comparison
between the source and target predicate-argument
structure possible.
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Jesús Giménez and Lluı́s Màrquez. 2007. Linguistic
features for automatic evaluation of heterogenous mt
systems. In Proceedings of the Second Workshop on
Statistical Machine Translation.
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CIFAR Senior Fellow

Abstract

The authors of (Cho et al., 2014a) have
shown that the recently introduced neural
network translation systems suffer from
a significant drop in translation quality
when translating long sentences, unlike
existing phrase-based translation systems.
In this paper, we propose a way to ad-
dress this issue by automatically segment-
ing an input sentence into phrases that can
be easily translated by the neural network
translation model. Once each segment has
been independently translated by the neu-
ral machine translation model, the trans-
lated clauses are concatenated to form a
final translation. Empirical results show
a significant improvement in translation
quality for long sentences.

1 Introduction

Up to now, most research efforts in statistical ma-
chine translation (SMT) research have relied on
the use of a phrase-based system as suggested
in (Koehn et al., 2003). Recently, however, an
entirely new, neural network based approach has
been proposed by several research groups (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Cho et al., 2014b), showing promising re-
sults, both as a standalone system or as an addi-
tional component in the existing phrase-based sys-
tem. In this neural network based approach, an en-
coder ‘encodes’ a variable-length input sentence
into a fixed-length vector and a decoder ‘decodes’
a variable-length target sentence from the fixed-
length encoded vector.

It has been observed in (Sutskever et al., 2014),
(Kalchbrenner and Blunsom, 2013) and (Cho et
al., 2014a) that this neural network approach

∗ Research done while these authors were visiting Uni-
versité de Montréal

works well with short sentences (e.g., / 20
words), but has difficulty with long sentences (e.g.,
' 20 words), and particularly with sentences that
are longer than those used for training. Training
on long sentences is difficult because few available
training corpora include sufficiently many long
sentences, and because the computational over-
head of each update iteration in training is linearly
correlated with the length of training sentences.
Additionally, by the nature of encoding a variable-
length sentence into a fixed-size vector representa-
tion, the neural network may fail to encode all the
important details.

In this paper, hence, we propose to translate sen-
tences piece-wise. We segment an input sentence
into a number of short clauses that can be confi-
dently translated by the model. We show empiri-
cally that this approach improves translation qual-
ity of long sentences, compared to using a neural
network to translate a whole sentence without seg-
mentation.

2 Background: RNN Encoder–Decoder
for Translation

The RNN Encoder–Decoder (RNNenc) model is
a recent implementation of the encoder–decoder
approach, proposed independently in (Cho et al.,
2014b) and in (Sutskever et al., 2014). It consists
of two RNNs, acting respectively as encoder and
decoder.

The encoder of the RNNenc reads each word in
a source sentence one by one while maintaining a
hidden state. The hidden state computed at the end
of the source sentence then summarizes the whole
input sentence. Formally, given an input sentence
x = (x1, · · · , xTx), the encoder computes

ht = f (xt, ht−1) ,

where f is a nonlinear function computing the next
hidden state given the previous one and the current
input word.

78



x1 x2 xT

yT' y2 y1

c

Decoder

Encoder

Figure 1: An illustration of the RNN Encoder–
Decoder. Reprinted from (Cho et al., 2014b).

From the last hidden state of the encoder, we
compute a context vector c on which the decoder
will be conditioned:

c = g(hTx),

where g may simply be a linear affine transforma-
tion of hTx .

The decoder, on the other hand, generates each
target word at a time, until the end-of-sentence
symbol is generated. It generates a word at a time
given the context vector (from the encoder), a pre-
vious hidden state (of the decoder) and the word
generated at the last step. More formally, the de-
coder computes at each time its hidden state by

st = f (yt−1, st−1, c) .

With the newly computed hidden state, the de-
coder outputs the probability distribution over all
possible target words by:

p(ft,j = 1 | ft−1, . . . , f1, c) =

exp
(
wjh〈t〉

)∑K
j′=1 exp

(
wj′h〈t〉

) , (1)

where ft,j is the indicator variable for the j-th
word in the target vocabulary at time t and only
a single indicator variable is on (= 1) each time.

See Fig. 1 for the graphical illustration of the
RNNenc.

The RNNenc in (Cho et al., 2014b) uses a spe-
cial hidden unit that adaptively forgets or remem-
bers the previous hidden state such that the acti-
vation of a hidden unit h〈t〉j at time t is computed

by

h
〈t〉
j = zjh

〈t−1〉
j + (1− zj)h̃〈t〉j ,

where

h̃
〈t〉
j =f

(
[Wx]j +

[
U
(
r� h〈t−1〉

)])
,

zj =σ
(
[Wzx]j +

[
Uzh〈t−1〉

]
j

)
,

rj =σ
(
[Wrx]j +

[
Urh〈t−1〉

]
j

)
.

zj and rj are respectively the update and reset
gates. � is an element-wise multiplication. In
the remaining of this paper, we always assume that
this hidden unit is used in the RNNenc.

Although the model in (Cho et al., 2014b) was
originally trained on phrase pairs, it is straight-
forward to train the same model with a bilin-
gual, parallel corpus consisting of sentence pairs
as has been done in (Sutskever et al., 2014). In
the remainder of this paper, we use the RNNenc
trained on English–French sentence pairs (Cho et
al., 2014a).

3 Automatic Segmentation and
Translation

One hypothesis explaining the difficulty encoun-
tered by the RNNenc model when translating long
sentences is that a plain, fixed-length vector lacks
the capacity to encode a long sentence. When en-
coding a long input sentence, the encoder may lose
track of all the subtleties in the sentence. Con-
sequently, the decoder has difficulties recovering
the correct translation from the encoded represen-
tation. One solution would be to build a larger
model with a larger representation vector to in-
crease the capacity of the model at the price of
higher computational cost.

In this section, however, we propose to segment
an input sentence such that each segmented clause
can be easily translated by the RNN Encoder–
Decoder. In other words, we wish to find a
segmentation that maximizes the total confidence
score which is a sum of the confidence scores of
the phrases in the segmentation. Once the confi-
dence score is defined, the problem of finding the
best segmentation can be formulated as an integer
programming problem.

Let e = (e1, · · · , en) be a source sentence com-
posed of words ek. We denote a phrase, which is a
subsequence of e, with eij = (ei, · · · , ej).
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We use the RNN Encoder–Decoder to measure
how confidently we can translate a subsequence
eij by considering the log-probability log p(fk |
eij) of a candidate translation fk generated by the
model. In addition to the log-probability, we also
use the log-probability log p(eij | fk) from a re-
verse RNN Encoder–Decoder (translating from a
target language to source language). With these
two probabilities, we define the confidence score
of a phrase pair (eij , fk) as:

c(eij , fk) =
log p(fk | eij) + log q(eij | fk)

2 |log(j − i+ 1)| ,

(2)

where the denominator penalizes a short segment
whose probability is known to be overestimated by
an RNN (Graves, 2013).

The confidence score of a source phrase only is
then defined as

cij = max
k

c(eij , fk). (3)

We use an approximate beam search to search for
the candidate translations fk of eij , that maximize
log-likelihood log p(fk|eij) (Graves et al., 2013;
Boulanger-Lewandowski et al., 2013).

Let xij be an indicator variable equal to 1 if we
include a phrase eij in the segmentation, and oth-
erwise, 0. We can rewrite the segmentation prob-
lem as the optimization of the following objective
function:

max
x

∑
i≤j

cijxij = x · c (4)

subject to ∀k, nk = 1

nk =
∑
i,j
xij1i≤k≤j is the number of source

phrases chosen in the segmentation containing
word ek.

The constraint in Eq. (4) states that for each
word ek in the sentence one and only one of the
source phrases contains this word, (eij)i≤k≤j , is
included in the segmentation. The constraint ma-
trix is totally unimodular making this integer pro-
gramming problem solvable in polynomial time.

Let Sk
j be the first index of the k-th segment

counting from the last phrase of the optimal seg-
mentation of subsequence e1j (Sj := S1

j ), and sj

be the corresponding score of this segmentation

(s0 := 0). Then, the following relations hold:

sj = max
1≤i≤j

(cij + si−1), ∀j ≥ 1 (5)

Sj = arg max
1≤i≤j

(cij + si−1), ∀j ≥ 1 (6)

With Eq. (5) we can evaluate sj incrementally.
With the evaluated sj’s, we can compute Sj as
well (Eq. (6)). By the definition of Sk

j we find the
optimal segmentation by decomposing e1n into
e

Sk
n,Sk−1

n −1
, · · · , eS2

n,S1
n−1, eS1

n,n, where k is the

index of the first one in the sequence Sk
n. This

approach described above requires quadratic time
with respect to sentence length.

3.1 Issues and Discussion

The proposed segmentation approach does not
avoid the problem of reordering clauses. Unless
the source and target languages follow roughly the
same order, such as in English to French transla-
tions, a simple concatenation of translated clauses
will not necessarily be grammatically correct.

Despite the lack of long-distance reordering1 in
the current approach, we find nonetheless signifi-
cant gains in the translation performance of neural
machine translation. A mechanism to reorder the
obtained clause translations is, however, an impor-
tant future research question.

Another issue at the heart of any purely neu-
ral machine translation is the limited model vo-
cabulary size for both source and target languages.
As shown in (Cho et al., 2014a), translation qual-
ity drops considerably with just a few unknown
words present in the input sentence. Interestingly
enough, the proposed segmentation approach ap-
pears to be more robust to the presence of un-
known words (see Sec. 5). One intuition is that the
segmentation leads to multiple short clauses with
less unknown words, which leads to more stable
translation of each clause by the neural translation
model.

Finally, the proposed approach is computation-
ally expensive as it requires scoring all the sub-
phrases of an input sentence. However, the scoring
process can be easily sped up by scoring phrases
in parallel, since each phrase can be scored inde-
pendently. Another way to speed up the segmen-
tation, other than parallelization, would be to use

1Note that, inside each clause, the words are reordered
automatically when the clause is translated by the RNN
Encoder–Decoder.
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(a) RNNenc without
segmentation

(b) RNNenc with segmentation (c) Moses

Figure 2: The BLEU scores achieved by (a) the RNNenc without segmentation, (b) the RNNenc
with the penalized reverse confidence score, and (c) the phrase-based translation system Moses on a
newstest12-14.

an existing parser to segment a sentence into a set
of clauses.

4 Experiment Settings

4.1 Dataset

We evaluate the proposed approach on the task
of English-to-French translation. We use a bilin-
gual, parallel corpus of 348M words selected
by the method of (Axelrod et al., 2011) from
a combination of Europarl (61M), news com-
mentary (5.5M), UN (421M) and two crawled
corpora of 90M and 780M words respectively.2

The performance of our models was tested
on news-test2012, news-test2013, and
news-test2014. When comparing with the
phrase-based SMT system Moses (Koehn et al.,
2007), the first two were used as a development set
for tuning Moses while news-test2014 was
used as our test set.

To train the neural network models, we use only
the sentence pairs in the parallel corpus, where
both English and French sentences are at most 30
words long. Furthermore, we limit our vocabu-
lary size to the 30,000 most frequent words for
both English and French. All other words are con-
sidered unknown and mapped to a special token
([UNK]).

In both neural network training and automatic
segmentation, we do not incorporate any domain-
specific knowledge, except when tokenizing the
original text data.

2The datasets and trained Moses models can be down-
loaded from http://www-lium.univ-lemans.fr/
˜schwenk/cslm_joint_paper/ and the website of
ACL 2014 Ninth Workshop on Statistical Machine Transla-
tion (WMT 14).

4.2 Models and Approaches

We compare the proposed segmentation-based
translation scheme against the same neural net-
work model translations without segmentation.
The neural machine translation is done by an RNN
Encoder–Decoder (RNNenc) (Cho et al., 2014b)
trained to maximize the conditional probability
of a French translation given an English sen-
tence. Once the RNNenc is trained, an approxi-
mate beam-search is used to find possible transla-
tions with high likelihood.3

This RNNenc is used for the proposed
segmentation-based approach together with an-
other RNNenc trained to translate from French to
English. The two RNNenc’s are used in the pro-
posed segmentation algorithm to compute the con-
fidence score of each phrase (See Eqs. (2)–(3)).

We also compare with the translations of a con-
ventional phrase-based machine translation sys-
tem, which we expect to be more robust when
translating long sentences.

5 Results and Analysis

5.1 Validity of the Automatic Segmentation

We validate the proposed segmentation algorithm
described in Sec. 3 by comparing against two
baseline segmentation approaches. The first one
randomly segments an input sentence such that the
distribution of the lengths of random segments has
its mean and variance identical to those of the seg-
ments produced by our algorithm. The second ap-
proach follows the proposed algorithm, however,
using a uniform random confidence score.

From Table 1 we can clearly see that the pro-

3In all experiments, the beam width is 10.
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Model Test set

No segmentation 13.15
Random segmentation 16.60
Random confidence score 16.76
Proposed segmentation 20.86

Table 1: BLEU score computed on
news-test2014 for two control experi-
ments. Random segmentation refers to randomly
segmenting a sentence so that the mean and
variance of the segment lengths corresponded to
the ones our best segmentation method. Random
confidence score refers to segmenting a sentence
with randomly generated confidence score for
each segment.

posed segmentation algorithm results in signifi-
cantly better performance. One interesting phe-
nomenon is that any random segmentation was
better than the direct translation without any seg-
mentation. This indirectly agrees well with the
previous finding in (Cho et al., 2014a) that the
neural machine translation suffers from long sen-
tences.

5.2 Importance of Using an Inverse Model
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Figure 3: BLEU score loss vs. maximum number
of unknown words in source and target sentence
when translating with the RNNenc model with and
without segmentation.

The proposed confidence score averages the
scores of a translation model p(f | e) and an in-
verse translation model p(e | f) and penalizes for
short phrases. However, it is possible to use alter-
nate definitions of confidence score. For instance,

one may use only the ‘direct’ translation model or
varying penalties for phrase lengths.

In this section, we test three different confidence
score:

p(f | e) Using a single translation model

p(f | e) + p(e | f) Using both direct and reverse
translation models without the short phrase
penalty

p(f | e) + p(e | f) (p) Using both direct and re-
verse translation models together with the
short phrase penalty

The results in Table 2 clearly show the impor-
tance of using both translation and inverse trans-
lation models. Furthermore, we were able to get
the best performance by incorporating the short
phrase penalty (the denominator in Eq. (2)). From
here on, thus, we only use the original formula-
tion of the confidence score which uses the both
models and the penalty.

5.3 Quantitative and Qualitative Analysis

Model Dev Test

A
ll

RNNenc 13.15 13.92
p(f | e) 12.49 13.57

p(f | e) + p(e | f) 18.82 20.10
p(f | e) + p(e | f) (p) 19.39 20.86

Moses 30.64 33.30

N
o

U
N

K

RNNenc 21.01 23.45
p(f | e) 20.94 22.62

p(f | e) + p(e | f) 23.05 24.63
p(f | e) + p(e | f) (p) 23.93 26.46

Moses 32.77 35.63

Table 2: BLEU scores computed on the develop-
ment and test sets. See the text for the description
of each approach. Moses refers to the scores by
the conventional phrase-based translation system.
The top five rows consider all sentences of each
data set, whilst the bottom five rows includes only
sentences with no unknown words

As expected, translation with the proposed ap-
proach helps significantly with translating long
sentences (see Fig. 2). We observe that trans-
lation performance does not drop for sentences
of lengths greater than those used to train the
RNNenc (≤ 30 words).

Similarly, in Fig. 3 we observe that translation
quality of the proposed approach is more robust
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Source Between the early 1970s , when the Boeing 747 jumbo defined modern long-haul travel , and
the turn of the century , the weight of the average American 40- to 49-year-old male increased
by 10 per cent , according to U.S. Health Department Data .

Segmentation [[ Between the early 1970s , when the Boeing 747 jumbo defined modern long-haul travel ,]
[ and the turn of the century , the weight of the average American 40- to 49-year-old male] [
increased by 10 per cent , according to U.S. Health Department Data .]]

Reference Entre le début des années 1970 , lorsque le jumbo 747 de Boeing a défini le voyage long-courrier
moderne , et le tournant du siècle , le poids de l’ Américain moyen de 40 à 49 ans a augmenté
de 10 % , selon les données du département américain de la Santé .

With
segmentation

Entre les années 70 , lorsque le Boeing Boeing a défini le transport de voyageurs modernes ; et
la fin du siècle , le poids de la moyenne américaine moyenne à l’ égard des hommes a augmenté
de 10 % , conformément aux données fournies par le U.S. Department of Health Affairs .

Without
segmentation

Entre les années 1970 , lorsque les avions de service Boeing ont dépassé le prix du travail , le
taux moyen était de 40 % .

Source During his arrest Ditta picked up his wallet and tried to remove several credit cards but they
were all seized and a hair sample was taken fom him.

Segmentation [[During his arrest Ditta] [picked up his wallet and tried to remove several credit cards but they
were all seized and] [a hair sample was taken from him.]]

Reference Au cours de son arrestation , Ditta a ramassé son portefeuille et a tenté de retirer plusieurs cartes
de crédit , mais elles ont toutes été saisies et on lui a prélevé un échantillon de cheveux .

With
segmentation

Pendant son arrestation J’ ai utilisé son portefeuille et a essayé de retirer plusieurs cartes de
crédit mais toutes les pièces ont été saisies et un échantillon de cheveux a été enlevé.

Without
segmentation

Lors de son arrestation il a tenté de récupérer plusieurs cartes de crédit mais il a été saisi de tous
les coups et des blessures.

Source ”We can now move forwards and focus on the future and on the 90 % of assets that make up a
really good bank, and on building a great bank for our clients and the United Kingdom,” new
director general, Ross McEwan, said to the press .

Segmentation [[”We can now move forwards and focus on the future] [and] [on the 90 % of assets that make
up a really good bank, and on building] [a great bank for our clients and the United Kingdom,”]
[new director general, Ross McEwan, said to the press.]]

Reference ”Nous pouvons maintenant aller de l’avant , nous préoccuper de l’avenir et des 90 % des actifs
qui constituent une banque vraiment bonne et construire une grande banque pour la clientèle et
pour le Royaume Uni”, a dit le nouveau directeur général Ross McEwan à la presse .

With
segmentation

”Nous pouvons maintenant passer à l’avenir et se concentrer sur l avenir ou sur les 90 % d actifs
qui constituent une bonne banque et sur la construction une grande banque de nos clients et du
Royaume-Uni” Le nouveau directeur général Ross Ross a dit que la presse.

Without
segmentation

”Nous pouvons maintenant passer et étudier les 90 % et mettre en place une banque importante
pour la nouvelle banque et le directeur général” a souligné le journaliste .

Source There are several beautiful flashes - the creation of images has always been one of Chouinard’s
strong points - like the hair that is ruffled or the black fabric that extends the lines.

Segmentation [[There are several beautiful flashes - the creation of images has always been one of Chouinard’s
strong points -] [like the hair that is ruffled or the black fabric that extends the lines.]]

Reference Il y a quelques beaux flashs - la création d’images a toujours été une force chez Chouinard -
comme ces ch eveux qui s’ébouriffent ou ces tissus noirs qui allongent les lignes .

With
segmentation

Il existe plusieurs belles images - la création d images a toujours été l un de ses points forts .
comme les cheveux comme le vernis ou le tissu noir qui étend les lignes.

Without
segmentation

Il existe plusieurs points forts : la création d images est toujours l un des points forts .

Source Without specifying the illness she was suffering from, the star performer of ‘Respect’ confirmed
to the media on 16 October that the side effects of a treatment she was receiving were ‘difficult’
to deal with.

Segmentation [[Without specifying the illness she was suffering from, the star performer of ‘Respect’] [con-
firmed to the media on 16 October that the side effects of a treatment she was receiving were]
[‘difficult’ to deal with.]]

Reference Sans préciser la maladie dont elle souffrait , la célèbre interprète de Respect avait affirmé aux
médias le 16 octobre que les effets secondaires d’un traitement qu’elle recevait étaient ”diffi-
ciles”.

With
segmentation

Sans préciser la maladie qu’elle souffrait la star de l’ ‘œuvre’ de ‘respect’. Il a été confirmé
aux médias le 16 octobre que les effets secondaires d’un traitement ont été reçus. ”difficile” de
traiter .

Without
segmentation

Sans la précision de la maladie elle a eu l’impression de ”marquer le 16 avril’ les effets d’un tel
‘traitement’.

Table 3: Sample translations with the RNNenc model taken from the test set along with the source
sentences and the reference translations.
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Source He nevertheless praised the Government for responding to his request for urgent assis-
tance which he first raised with the Prime Minister at the beginning of May .

Segmentation [He nevertheless praised the Government for responding to his request for urgent assis-
tance which he first raised ] [with the Prime Minister at the beginning of May . ]

Reference Il a néanmoins félicité le gouvernement pour avoir répondu à la demande d’ aide urgente
qu’il a présentée au Premier ministre début mai .

With
segmentation

Il a néanmoins félicité le Gouvernement de répondre à sa demande d’ aide urgente qu’il
a soulevée . avec le Premier ministre début mai .

Without
segmentation

Il a néanmoins félicité le gouvernement de répondre à sa demande d’ aide urgente qu’il
a adressée au Premier Ministre début mai .

Table 4: An example where an incorrect segmentation negatively impacts fluency and punctuation.

to the presence of unknown words. We suspect
that the existence of many unknown words make
it harder for the RNNenc to extract the meaning of
the sentence clearly, while this is avoided with the
proposed segmentation approach as it effectively
allows the RNNenc to deal with a less number of
unknown words.

In Table 3, we show the translations of ran-
domly selected long sentences (40 or more words).
Segmentation improves overall translation quality,
agreeing well with our quantitative result. How-
ever, we can also observe a decrease in transla-
tion quality when an input sentence is not seg-
mented into well-formed sentential clauses. Addi-
tionally, the concatenation of independently trans-
lated segments sometimes negatively impacts flu-
ency, punctuation, and capitalization by the RN-
Nenc model. Table 4 shows one such example.

6 Discussion and Conclusion

In this paper we propose an automatic segmen-
tation solution to the ‘curse of sentence length’
in neural machine translation. By choosing an
appropriate confidence score based on bidirec-
tional translation models, we observed significant
improvement in translation quality for long sen-
tences.

Our investigation shows that the proposed
segmentation-based translation is more robust to
the presence of unknown words. However, since
each segment is translated in isolation, a segmen-
tation of an input sentence may negatively impact
translation quality, especially the fluency of the
translated sentence, the placement of punctuation
marks and the capitalization of words.

An important research direction in the future is
to investigate how to improve the quality of the
translation obtained by concatenating translated
segments.
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Abstract

We show that there are situations where
iteratively segmenting sentence pairs top-
down will fail to reach valid segments and
propose a method for alleviating the prob-
lem. Due to the enormity of the search
space, error analysis has indicated that it is
often impossible to get to a desired embed-
ded segment purely through binary seg-
mentation that divides existing segmental
rules in half – the strategy typically em-
ployed by existing search strategies – as
it requires two steps. We propose a new
method to hypothesize ternary segmenta-
tions in a single step, making the embed-
ded segments immediately discoverable.

1 Introduction

One of the most important improvements to sta-
tistical machine translation to date was the move
from token-basedmodel to segmental models (also
called phrasal). This move accomplishes two
things: it allows a flat surface-based model to
memorize some relationships between word real-
izations, but more importantly, it allows the model
to capture multi-word concepts or chunks. These
chunks are necessary in order to translate fixed ex-
pressions, or other multi-word units that do not
have a compositional meaning. If a sequence in
one language can be broken down into smaller
pieces which are then translated individually and
reassembled in another language, the meaning of
the sequence is compositional; if not, the only way
to translate it accurately is to treat it as a single unit
– a chunk. Existing surface-based models (Och et
al., 1999) have high recall in capturing the chunks,
but tend to over-generate, which leads to big mod-
els and low precision. Surface-based models have
no concept of hierarchical composition, instead
they make the assumption that a sentence consists

of a sequence of segments that can be individually
translated and reordered to form the translation.
This is counter-intuitive, as the who-did-what-to-
whoms of a sentence tends to be translated and re-
ordered as units, rather than have their components
mixed together. Transduction grammars (Aho and
Ullman, 1972; Wu, 1997), also called hierarchical
translation models (Chiang, 2007) or synchronous
grammars, address this through a mechanism sim-
ilar to context-free grammars. Inducing a segmen-
tal transduction grammar is hard, so the standard
practice is to use a similar method as the surface-
based models use to learn the chunks, which is
problematic, since that method mostly relies on
memorizing the relationships that the mechanics
of a compositional model is designed to general-
ize. A compositional translation model would be
able to translate lexical chunks, as well as gener-
alize different kinds of compositions; a segmen-
tal transduction grammar captures this by having
segmental lexical rules and different nonterminal
symbols for different categories of compositions.
In this paper, we focus on inducing the former:
segmental lexical rules in inversion transduction
grammars (ITGs).

One natural way would be to start with a token-
based grammar and chunk adjacent tokens to form
segments. The main problemwith chunking is that
the data becomes more and more likely as the seg-
ments get larger, with the degenerate end point of
all sentence pairs being memorized lexical items.
Zhang et al. (2008) combat this tendency by intro-
ducing a sparsity prior over the rule probabilities,
and variational Bayes to maximize the posterior
probability of the data subject to this symmetric
Dirichlet prior. To hypothesize possible chunks,
they examine the Viterbi biparse of the existing
model. Saers et al. (2012) use the entire parse for-
est to generate the hypotheses. They also boot-
strap the ITG from linear and finite-state transduc-
tion grammars (LTGs, Saers (2011), and FSTGs),
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rather than initialize the lexical probabilities from
IBM models.
Another way to arrive at a segmental ITG is to

start with the degenerate chunking case: each sen-
tence pair as a lexical item, and segment the exist-
ing lexical rules into shorter rules. Since the start
point is the degenerate case when optimizing for
data likelihood, this approach requires a different
objective function to optimize against. Saers et al.
(2013c) proposes to use description length of the
model and the data given the model, which is sub-
sequently expressed in a Bayesian form with the
addition of a prior over the rule probabilities (Saers
andWu, 2013). The way they generate hypotheses
is restricted to segmenting an existing lexical item
into two parts, which is problematic, because em-
bedded lexical items are potentially overlooked.
There is also the option of implicitly defining

all possible grammars, and sample from that dis-
tribution. Blunsom et al. (2009) do exactly that;
they induce with collapsed Gibbs sampling which
keeps one derivation for each training sentence
that is altered and then resampled. The operations
to change the derivations are split, join, delete
and insert. The split-operator corresponds to bi-
nary segmentation, the join-operator corresponds
to chunking; the delete-operator removes an inter-
nal node, resulting in its parent having three chil-
dren, and the insert-operator allows a parent with
three children to be normalized to have only two.
The existence of ternary nodes in the derivation
means that the learned grammar contains ternary
rules. Note that it still takes three operations: two
split-operations and one delete-operation for their
model to do what we propose to do in a single
ternary segmentation. Also, although we allow for
single-step ternary segmentations, our grammar
does not contain ternary rules; instead the results of
a ternary segmentation is immediately normalized
to the 2-normal form. Although their model can
theoretically sample from the entire model space,
the split-operation alone is enough to do so; the
other operations were added to get the model to do
so in practice. Similarly, we propose ternary seg-
mentation to be able to reach areas of the model
space that we failed to reach with binary segmen-
tation.
To illustrate the problem with embedded lexi-

cal items, we will introduce a small example cor-
pus. Although Swedish and English are relatively
similar, with the structure of basic sentences being

identical, they already illustrate the common prob-
lem of rare embedded correspondences. Imagine
a really simple corpus of three sentence pairs with
identical structure:
he has a red book / han har en röd bok

she has a biology book / hon har en biologibok

it has begun / det har börjat

The main difference is that Swedish concate-
nates rather than juxtaposes compounds such as
biologibok instead of biology book. A bilingual
person looking at this corpus would produce bilin-
gual parse trees like those in Figure 1. Inducing
this relatively simple segmental ITG from the data
is, however, quite a challenge.
The example above illustrates a problem with

the chunking approach, as one of the most com-
mon chunks is has a/har en, whereas the linguis-
tically motivated chunk biology book/biologibok
occurs only once. There is very little in this data
that would lead the chunking approach towards the
desired ITG. It also illustrates a problem with the
binary segmentation approach, as all the bilingual
prefixes and suffixes, the biaffixes, are unique;
there is no way of discovering that all the above
sentences have the exact same verb.
In this paper, we propose a method to al-

low bilingual infixes to be hypothesized and used
to drive the minimization of description length,
which would be able to induce the desired ITG
from the above corpus.
The paper is structured so that we start by giv-

ing a definition of the grammar formalism we use:
ITGs (Section 2). We then describe the notion
of description length that we use (Section 3), and
how ternary segmentation differs from and com-
plements binary segmentation (Section 4). We
then present our induction algorithm (Section 5)
and give an example of a run through (Section 6).
Finally we offer some concluding remarks (Sec-
tion 7).

2 Inversion transduction grammars

Inversion transduction grammars, or ITGs (Wu,
1997), are an expressive yet efficient way to
model translation. Much like context-free gram-
mars (CFGs), they allow for sentences to be ex-
plained through composition of smaller units into
larger units, but where CFGs are restricted to gen-
erate monolingual sentences, ITGs generate sets
of sentence pairs – transductions – rather than
languages. Naturally, the components of differ-
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hasshe a biology book

har en biologibokhon

hasit begun

har börjatdet

hashe a red

har en rödhan

book

bok

Figure 1: Possible inversion transduction trees over the example sentence pairs.

ent languages may have to be ordered differently,
which means that transduction grammars need to
handle these differences in order. Rather than al-
lowing arbitrary reordering and pay the price of ex-
ponential time complexity, ITGs allow only mono-
tonically straight or inverted order of the produc-
tions, which cuts the time complexity down to a
manageable polynomial.
Formally, an ITG is a tuple ⟨N,Σ,∆, R, S⟩,

where N is a finite nonempty set of nonterminal
symbols, Σ is a finite set of terminal symbols in
L0, ∆ is a finite set of terminal symbols in L1, R
is a finite nonempty set of inversion transduction
rules and S ∈ N is a designated start symbol. An
inversion transduction rule is restricted to take one
of the following forms:

S → [A] , A→ [
ψ+

]
, A→ ⟨ψ+⟩

where S ∈ N is the start symbol, A ∈ N is a non-
terminal symbol, and ψ+ is a nonempty sequence
of nonterminals and biterminals. A biterminal is
a pair of symbol strings: Σ∗ ×∆∗, where at least
one of the strings have to be nonempty. The square
and angled brackets signal straight and inverted or-
der respectively. With straight order, both the L0

and the L1 productions are generated left-to-right,
but with inverted order, theL1 production is gener-
ated right-to-left. The brackets are frequently left
out when there is only one element on the right-
hand side, which means that S → [A] is shortened
to S → A.
Like CFGs, ITGs also have a 2-normal form,

analogous to the Chomsky normal form for CFGs,
where the rules are further restricted to only the
following four forms:

S → A, A→ [BC] , A→ ⟨BC⟩, A→ e/f

where S ∈ N is the start symbol, A,B,C ∈ N

are nonterminal symbols and e/f is a biterminal
string.

A bracketing ITG, or BITG, has only one non-
terminal symbol (other than the dedicated start
symbol), which means that the nonterminals carry
no information at all other than the fact that their
yields are discrete unit. Rather than make a proper
analysis of the sentence pair they only produce a
bracketing, hence the name.

A transduction grammar such as ITG can be
used in three modes: generation, transduction
and biparsing. Generation derives a bisentence, a
sentence pair, from the start symbol. Transduction
derives a sentence in one language from a sentence
in the other language and the start symbol. Bipars-
ing verifies that a given bisentence can be derived
from the start symbol. Biparsing is an integral part
of any learning that requires expected counts such
as expectation maximization, and transduction is
the actual translation process.

3 Description length

We follow the definition of description length from
Saers et al. (2013b,c,d,a); Saers and Wu (2013),
that is: the size of the model is determined by
counting the number of symbols needed to encode
the rules, and the size of the data given the model
is determined by biparsing the data with the model.
Formally, given a grammarΦ its description length
DL (Φ) is the sum of the length of the symbols
needed to serialize the rule set. For convenience
later on, the symbols are assumed to be uniformly
distributed with a length of−lg 1

N bits each (where
N is the number of different symbols). The de-
scription length of the data D given the model is
defined as DL (D|Φ) = −lgP (D|Φ).
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Figure 2: The four different kinds of binary seg-
mentation hypotheses.

Figure 3: The two different hypotheses that can
be made from an infix-to-infix link.

4 Segmenting lexical items

With a background in computer science it is tempt-
ing to draw the conclusion that any segmentation
can be made as a sequence of binary segmenta-
tions. This is true, but only relevant if the entire
search space can be exhaustively explored. When
inducing transduction grammars, the search space
is prohibitively large; in fact, we are typically af-
forded only an estimate of a single step forward
in the search process. In such circumstances, the
kinds of steps you can take start to matter greatly,
and adding ternary segmentation to the typically
used binary segmentation adds expressive power.
Figure 2 contains a schematic illustration of bi-

nary segmentation: To the left is a lexical item
where a good biaffix (anL0 prefix or suffix associ-
ated with anL1 prefix or suffix) has been found, as
illustrated with the solid connectors. To the right is
the segmentation that can be inferred. For binary
segmentation, there is no uncertainty in this step.
When adding ternary segmentation, there are

five more situations: one situation where an in-

Figure 4: The eight different hypotheses that can
bemade from the four different infix-to-affix links.

fix is linked to an infix, and four situations where
an infix is linked to an affix. Figure 3 shows the
infix-to-infix situation, where there is one addi-
tional piece of information to be decided: are the
surroundings linked straight or inverted? Figure 4
shows the situations where one infix is linked to an
affix. In these situations, there are twomore pieces
of information that needs to be inferred: (a) where
the sibling of the affix needs to be segmented, and
(b) how the two pieces of the sibling of the affix
link to the siblings of the infix. The infix-to-affix
situations require a second monolingual segmen-
tations decision to be made. As this is beyond the
scope of this paper, we will limit ourselves to the
infix-to-infix situation.

5 Finding segmentation hypotheses

Previous work on binary hypothesis generation
makes assumptions that do not hold with ternary
segmentation; this section explains why that is and
how we get around it. The basic problem with bi-
nary segmentation is that any bisegment hypothe-
sized to be good on its own has to be anchored to
either the beginning or the end of an existing biseg-
ment. An infix, by definition, does not.
While recording all affixes is possible, even for

non-toy corpora (Saers and Wu, 2013; Saers et al.,
2013b,c), recording all bilingual infixes is not, so
collecting them all is not an option (while there are
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Algorithm 1 Pseudo code for segmenting an ITG.
Φ ▷ The ITG being induced.
Ψ ▷ The token-based ITG used to evaluate lexical rules.
hmax ▷ The maximum number of hypotheses to keep from a single lexical rule.
repeat
δ ← 0
H ′ ▷ Initial hypotheses
for all lexical rules A→ e/f do
p← parse(Ψ, e/f)
c ▷ Fractional counts of bispans
for all bispans s, t, u, v ∈ e/f do
c(s, t, u, v)← 0

H ′′ ← []
for all items Bs,t,u,v ∈ p do
c(s, t, u, v)← c(s, t, u, v) + α(Bs,t,u,v)β(Bs,t,u,v)/α(S0,T,0,V )
H ′′ ← [H ′′, ⟨s, t, u, v, c(s, t, u, v)⟩]

sort H ′′ on c(s, t, u, v)
for all ⟨s, t, u, v, c(s, t, u, v)⟩ ∈ H ′′[0..hmax] do
H ′(es..t/fu..v)← [H ′(es..t/fu..v), ⟨s, t, u, v, A→ e/f⟩]

H ▷ Evaluated hypotheses
for all bisegments es..t/fu..v ∈ keys(H ′) do

Φ′ ← Φ
R← []
for all bispan-rule pairs ⟨s, t, u, v, A→ e/f⟩ ∈ H ′(es..t/fu..v) do

Φ′ ← make_grammar_change(Φ′, e/f, s, t, u, v)
R← [R,A→ e/f ]

δ′ ← DL(Φ′)−DL(Φ) +DL(D|Φ′)−DL(D|Φ)
if δ′ < 0 then
H ← [H, ⟨es..t/fu..v, R, δ

′⟩]
sort H on δ′
for all ⟨es..t/fu..v, R, δ

′⟩ ∈ H do
Φ′ ← Φ
for all rules A→ e/f ∈ R ∩RΨ′ do

Φ′ ← make_grammar_change(Φ′, e/f, s, t, u, v)
δ′ ← DL(Φ′)−DL(Φ) +DL(D|Φ′)−DL(D|Φ)
if δ′ < 0 then

Φ← Φ′

δ ← δ + δ′

until δ ≤ 0
return Φ

only O
(
n2

)
possible biaffixes for a parallel sen-

tence of average length n, there are O
(
n4

)
possi-

ble bilingual infixes). A way to prioritize, within
the scope of a single bisegment, which infixes and
affixes to consider as hypotheses is crucial. In this
paper we use an approach similar to Saers et al.
(2013d), in which we use a token-based ITG to
evaluate the lexical rules in the ITG that is be-
ing induced. Using a transduction grammar has
the advantage of calculating fractional counts for

hypotheses, which allows both long and short hy-
potheses to compete on a level playing field.
In Algorithm 1, we start by parsing all the lex-

ical rules in the grammar Φ being learned using a
token-based ITG Ψ. For each rule, we only keep
the best hmax bispans. In the second part, all col-
lected bispans are evaluated as if they were the
only hypothesis being considered for changing Φ.
Any hypothesis with a positive effect is kept for
further processing. These hypotheses are sorted
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and applied. Since the grammarmay have changed
since the effect of the hypothesis was estimated,
we have to check that the hypothesis would have
a positive effect on the updated grammar before
committing to it. All this is repeated as long as
there are improvements that can be made.
Themake_grammar_changemethod deletes the

old rule, and distributes its probability mass to
the rules replacing it. For ternary segmentation,
this will be three lexical rules, and two structural
rules (which happens to be identical in a bracket-
ing grammar, giving that one rule two shares of
the probability mass being distributed). For binary
segmentation it is two lexical rules and one struc-
tural rule.
Rather than calculating DL (D|Φ)− DL (D|Φ)

explicitly by biparsing the entire corpus, we es-
timate the change. For binary rules, we use the
same estimate as Saers and Wu (2013): multiply-
ing in the new rule probabilities and dividing out
the old. For ternary rules, we make the assump-
tion that the three new lexical rules are combined
using structural rules the way they would during
parsing, which means two binary structural rules
being applied. The infix-to-infix situation must be
generated either by two straight combinations or
by two inverted combinations, so for a bracketing
grammar it is always two applications of a single
structural rule. We thus multiply in the three new
lexical rules and the structural rule twice, and di-
vide out the old rule. In essence, both these meth-
ods are recreating the situations in which the parser
would have used the old rule, but now uses the new
rules.
Having exhausted all the hypotheses, we also

run expectation maximization to stabilize the pa-
rameters. This step is not shown in the pseudo
code.
Examining the pseudocode closer reveals that

the outer loop will continue as long as the grammar
changes; since the only way the grammar changes
is by making lexical rules shorter, this loop is guar-
anteed to terminate. Inside the outer loop there are
three inner loops: one over the rule set, one over
the set of initial hypothesesH ′ and one over the set
of evaluated hypothesesH . The sets of hypotheses
are related such that |H| ≤ |H ′|, which means that
the size of the initial set of hypotheses will dom-
inate the time complexity. The size of this initial
set of hypotheses is itself limited so that it cannot
contain more than hmax hypotheses from any one

rule. The dominating factor is thus the size of the
rule set, which we will further analyze.

The first thing we do is to parse the right-hand
side of the rule, which requires O

(
n3

)
with the

Saers et al. (2009) algorithm, where n is the av-
erage length of the lexical items. We then initial-
ize the counts, which does not actually require a
specific step in implementation. We then iterate
over all bispans in the parse, which has the same
upper bound as the parsing process, since the ap-
proximate parsing algorithm avoids exploring the
entire search space. We then sort the set of hy-
potheses derived from the current rule only, which
is asymptotically bound byO

(
n3lgn

)
, since there

is exactly one hypothesis per parse item. Finally,
there is a selection being made from the set of hy-
potheses derived from the current rule. In prac-
tice, the parsing is more complicated than the sort-
ing, making the time complexity of the whole inner
loop be dominated by the time it takes to parse the
rules.

6 Example

In this section we will trace through how the ex-
ample from the introduction fails to go through
binary segmentation, but succeeds when infix-to-
infix segmentations are an option.

The initial grammar consists of all the sentence
pairs as segmental lexical rules:

S → A 1
A→ he has a red book

han har en röd bok 0.3

A→ she has a biology book
hon har en biologibok 0.3

A→ it has begun
det har börjat 0.3

As noted before, there are no shared biaffixes
among the three lexical rules, so binary segmen-
tation cannot break this grammar down further.
There are, however, three shared bisegments rep-
resenting three different segmentation hypotheses:
has a/har en, has/har and a/en. In this example it
does not matter which hypothesis you choose, so
we will go with the first one, since that is the one
our implementation chose. Breaking out all occur-
rences of has a/har en gives the following gram-
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mar:
S → A 1

A→ [AA] 0.36
A→ it has begun/det har börjat 0.09

A→ has a/har en 0.18
A→ he/han 0.09

A→ red book/röd bok 0.09
A→ she/hon 0.09

A→ biology book/biologibok 0.09

At this point there are two bisegments that occur
in more than one rule: has/har and a/en. Again,
it does not matter for the final outcome which of
the hypotheses we choose, so we will chose the
first one, again because that is the one our imple-
mentation chose. Breaking out all occurrences of
has/har gives the following grammar:

S → A 1
A→ [AA] 0.421
A→ he/han 0.053

A→ red book/röd bok 0.053
A→ she/hon 0.053

A→ biology book/biologibok 0.053
A→ has/har 0.158
A→ it/det 0.053

A→ begun/börjat 0.053
A→ a/en 0.105

There are no shared bisegments left in the gram-
mar now, so no more segmentations can be done.
Obviously, the probability of the data given this
new grammar is much smaller, but the grammar
itself has generalized far beyond the training data,
to the point where it largely agrees with the pro-
posed trees in Figure 1 (except that this grammar
binarizes the constituents, and treats red book/röd
bok as a segment).

7 Conclusions

We have shown that there are situations in which
a top-down segmenting approach that relies solely
on binary segmentation will fail to generalize, de-
spite there being ample evidence to a human that
a generalization is warranted. We have proposed
ternary segmentation as a solution to provide hy-
potheses that are considered good under a mini-
mum description length objective. And we have
shown that the proposed method could indeed per-
form generalizations that are clear to the human
eye, but not discoverable through binary segmen-
tation. The algorithm is comparable to previ-
ous segmentation approaches in terms of time and

space complexity, so scaling up to non-toy training
corpora is likely to work when the time comes.

Acknowledgements

This material is based upon work supported
in part by the Defense Advanced Research
Projects Agency (DARPA) under BOLT contract
nos. HR0011-12-C-0014 and HR0011-12-C-0016,
and GALE contract nos. HR0011-06-C-0022 and
HR0011-06-C-0023; by the European Union un-
der the FP7 grant agreement no. 287658; and by
the Hong Kong Research Grants Council (RGC)
research grants GRF620811, GRF621008, and
GRF612806. Any opinions, findings and conclu-
sions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the views of DARPA, the EU, or RGC.

References

Alfred V. Aho and Jeffrey D. Ullman. The The-
ory of Parsing, Translation, and Compiling.
Prentice-Halll, Englewood Cliffs, New Jersey,
1972.

Phil Blunsom, Trevor Cohn, Chris Dyer, andMiles
Osborne. A Gibbs sampler for phrasal syn-
chronous grammar induction. In Joint Confer-
ence of the 47th Annual Meeting of the Asso-
ciation for Computational Linguistics and 4th
International Joint Conference on Natural Lan-
guage Processing of the AFNLP (ACL-IJCNLP
2009), pp. 782–790, Suntec, Singapore, August
2009.

David Chiang. Hierarchical phrase-based trans-
lation. Computational Linguistics, 33(2):201–
228, 2007.

Frans Josef Och, Christoph Tillmann, and Her-
mann Ney. Improved alignment models for sta-
tistical machine translation. In 1999 Joint SIG-
DAT Conference on Empirical Methods in Nat-
ural Language Processing and Very Large Cor-
pora, pp. 20–28, University of Maryland, Col-
lege Park, Maryland, June 1999.

Markus Saers and Dekai Wu. Bayesian induc-
tion of bracketing inversion transduction gram-
mars. In Sixth International Joint Conference on
Natural Language Processing (IJCNLP2013),
pp. 1158–1166, Nagoya, Japan, October 2013.
Asian Federation of Natural Language Process-
ing.

92



Markus Saers, Joakim Nivre, and Dekai Wu.
Learning stochastic bracketing inversion trans-
duction grammars with a cubic time biparsing
algorithm. In 11th International Conference
on Parsing Technologies (IWPT’09), pp. 29–32,
Paris, France, October 2009.

Markus Saers, Karteek Addanki, and Dekai Wu.
From finite-state to inversion transductions: To-
ward unsupervised bilingual grammar induc-
tion. In 24th International Conference on
Computational Linguistics (COLING 2012), pp.
2325–2340, Mumbai, India, December 2012.

Markus Saers, Karteek Addanki, and Dekai Wu.
Augmenting a bottom-up ITG with top-down
rules by minimizing conditional description
length. In Recent Advances in Natural Lan-
guage Processing (RANLP 2013), Hissar, Bul-
garia, September 2013.

Markus Saers, Karteek Addanki, and Dekai Wu.
Combining top-down and bottom-up search for
unsupervised induction of transduction gram-
mars. In Seventh Workshop on Syntax, Se-
mantics and Structure in Statistical Translation
(SSST-7), pp. 48–57, Atlanta, Georgia, June
2013.

Markus Saers, Karteek Addanki, and Dekai Wu.
Iterative rule segmentation under minimum
description length for unsupervised transduc-
tion grammar induction. In Adrian-Horia
Dediu, Carlos Martín-Vide, Ruslan Mitkov, and
Bianca Truthe, editors, Statistical Language and
Speech Processing, First International Confer-
ence, SLSP 2013, Lecture Notes in Artificial In-
telligence (LNAI). Springer, Tarragona, Spain,
July 2013.

Markus Saers, Karteek Addanki, and Dekai Wu.
Unsupervised transduction grammar induction
via minimum description length. In Second
Workshop on Hybrid Approaches to Transla-
tion (HyTra), pp. 67–73, Sofia, Bulgaria, Au-
gust 2013.

Markus Saers. Translation as Linear Trans-
duction: Models and Algorithms for Efficient
Learning in Statistical Machine Translation.
PhD thesis, Uppsala University, Department of
Linguistics and Philology, 2011.

Dekai Wu. Stochastic inversion transduction
grammars and bilingual parsing of parallel cor-
pora. Computational Linguistics, 23(3):377–
403, 1997.

Hao Zhang, Chris Quirk, Robert C. Moore, and
Daniel Gildea. Bayesian learning of non-
compositional phrases with synchronous pars-
ing. In 46th Annual Meeting of the Association
for Computational Linguistics: Human Lan-
guage Technologies (ACL-08: HLT), pp. 97–
105, Columbus, Ohio, June 2008.

93



Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 94–102,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

A CYK+ Variant for SCFG Decoding Without a Dot Chart

Rico Sennrich
School of Informatics

University of Edinburgh
10 Crichton Street

Edinburgh EH8 9AB
Scotland, UK

v1rsennr@staffmail.ed.ac.uk

Abstract
While CYK+ and Earley-style variants are
popular algorithms for decoding unbina-
rized SCFGs, in particular for syntax-
based Statistical Machine Translation, the
algorithms rely on a so-called dot chart
which suffers from a high memory con-
sumption. We propose a recursive vari-
ant of the CYK+ algorithm that elimi-
nates the dot chart, without incurring an
increase in time complexity for SCFG de-
coding. In an evaluation on a string-to-
tree SMT scenario, we empirically demon-
strate substantial improvements in mem-
ory consumption and translation speed.

1 Introduction

SCFG decoding can be performed with monolin-
gual parsing algorithms, and various SMT sys-
tems implement the CYK+ algorithm or a close
Earley-style variant (Zhang et al., 2006; Koehn et
al., 2007; Venugopal and Zollmann, 2009; Dyer
et al., 2010; Vilar et al., 2012). The CYK+ algo-
rithm (Chappelier and Rajman, 1998) generalizes
the CYK algorithm to n-ary rules by performing a
dynamic binarization of the grammar during pars-
ing through a so-called dot chart. The construction
of the dot chart is a major cause of space ineffi-
ciency in SCFG decoding with CYK+, and mem-
ory consumption makes the algorithm impractical
for long sentences without artificial limits on the
span of chart cells.

We demonstrate that, by changing the traver-
sal through the main parse chart, we can elimi-
nate the dot chart from the CYK+ algorithm at no
computational cost for SCFG decoding. Our algo-
rithm improves space complexity, and an empiri-
cal evaluation confirms substantial improvements

in memory consumption over the standard CYK+
algorithm, along with remarkable gains in speed.

This paper is structured as follows. As mo-
tivation, we discuss some implementation needs
and complexity characteristics of SCFG decoding
We then describe our algorithm as a variant of
CYK+, and finally perform an empirical evalua-
tion of memory consumption and translation speed
of several parsing algorithms.

2 SCFG Decoding

To motivate our algorithm, we want to highlight
some important differences between (monolin-
gual) CFG parsing and SCFG decoding.

Grammars in SMT are typically several orders
of magnitude larger than for monolingual parsing,
partially because of the large amounts of training
data employed to learn SCFGs, partially because
SMT systems benefit from using contextually rich
rules rather than only minimal rules (Galley et al.,
2006). Also, the same right-hand-side rule on the
source side can be associated with many trans-
lations, and different (source and/or target) left-
hand-side symbols. Consequently, a compact rep-
resentation of the grammar is of paramount impor-
tance.

We follow the implementation in the Moses
SMT toolkit (Koehn et al., 2007) which encodes
an SCFG as a trie in which each node represents
a (partial or completed) rule, and a node has out-
going edges for each possible continuation of the
rule in the grammar, either a source-side termi-
nal symbol or pair of non-terminal-symbols. If a
node represents a completed rule, it is also asso-
ciated with a collection of left-hand-side symbols
and the associated target-side rules and probabil-
ities. A trie data structure allows for an efficient
grammar lookup, since all rules with the same pre-
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fix are compactly represented by a single node.
Rules are matched to the input in a bottom-up-

fashion as described in the next section. A single
rule or rule prefix can match the input many times,
either by matching different spans of the input, or
by matching the same span, but with different sub-
spans for its non-terminal symbols. Each produc-
tion is uniquely identified by a span, a grammar
trie node, and back-pointers to its subderivations.
The same is true for a partial production (dotted
item).

A key difference between monolingual parsing
and SCFG decoding, whose implications on time
complexity are discussed by Hopkins and Lang-
mead (2010), is that SCFG decoders need to con-
sider language model costs when searching for the
best derivation of an input sentence. This critically
affects the parser’s ability to discard dotted items
early. For CFG parsing, we only need to keep one
partial production per rule prefix and span, or k
for k-best parsing, selecting the one(s) whose sub-
derivations have the lower cost in case of ambigu-
ity. For SCFG decoding, the subderivation with
the higher local cost may be the globally better
choice after taking language model costs into ac-
count. Consequently, SCFG decoders need to con-
sider multiple possible productions for the same
rule and span.

Hopkins and Langmead (2010) provide a run-
time analysis of SCFG decoding, showing that
time complexity depends on the number of choice
points in a rule, i.e. rule-initial, consecutive, or
rule-final non-terminal symbols.1 The number of
choice points (or scope) gives an upper bound to
the number of productions that exist for a rule and
span. If we define the scope of a grammar G to
be the maximal scope of all rules in the grammar,
decoding can be performed in O(nscope(G)) time.
If we retain all partial productions of the same rule
prefix, this also raises the space complexity of the
dot chart from O(n2) to O(nscope(G)). 2

Crucially, the inclusion of language model costs
both increases the space complexity of the dot
chart, and removes one of its benefits, namely the
ability to discard partial productions early without
risking search errors. Still, there is a second way

1Assuming that there is a constant upper bound on the
frequency of each symbol in the input sentence, and on the
length of rules.

2In a left-to-right construction of productions, a rule pre-
fix of a scope-x rule may actually have scope x + 1, namely
if the rule prefix ends in a non-terminal, but the rule does not.
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Figure 1: Traditional CYK/CYK+ chart traversal
order (left) and proposed order (right).

in which a dot chart saves computational cost in
the CYK+ algorithm. The exact chart traversal or-
der is underspecified in CYK parsing, the only re-
quirement being that all subspans of a given span
need to be visited before the span itself. CYK+
or Earley-style parsers typically traverse the chart
bottom-up left-to-right, as in Figure 1 (left). The
same partial productions are visited throughout
time during chart parsing, and storing them in a
dot chart saves us the cost of recomputing them.
For example, step 10 in Figure 1 (left) re-uses par-
tial productions that were found in steps 1, 5 and
8.

We propose to specify the chart traversal order
to be right-to-left, depth-first, as illustrated on the
right-hand-side in Figure 1. This traversal order
groups all cells with the same start position to-
gether, and offers a useful guarantee. For each
span, all spans that start at a later position have
been visited before. Thus, whenever we generate
a partial production, we can immediately explore
all of its continuations, and then discard the par-
tial production. This eliminates the need for a dot
chart, without incurring any computational cost.
We could also say that the dot chart exists in a
minimal form with at most one item at a time, and
a space complexity of O(1). We proceed with a
description of the proposed algorithm, contrasted
with the closely related CYK+ algorithm.

3 Algorithm

3.1 The CYK+ algorithm

We here summarize the CYK+ algorithm, orig-
inally described by Chappelier and Rajman
(1998).3

3Chappelier and Rajman (1998) add the restriction that
rules may not be partially lexicalized; our description of
CYK+, and our own algorithm, do not place this restriction.
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The main data structure during decoding is a
chart with one cell for each span of words in an
input string w1...wn of length n. Each cell Ti,j

corresponding to the span from wi to wj contains
two lists of items:4

• a list of type-1 items, which are non-
terminals (representing productions).

• a list of type-2 items (dotted items), which
are strings of symbols α that parse the sub-
string wi...wj and for which there is a rule in
the grammar of the form A → αβ, with β
being a non-empty string of symbols. Such
an item may be completed into a type-1 item
at a future point, and is denoted α•.

For each cell (i, j) of the chart, we perform the
following steps:

1. if i = j, search for all rules A→ wiγ. If γ is
empty, add A to the type-1 list of cell (i, j);
otherwise, add wi• to the type-2 list of cell
(i, j).

2. if j > i, search for all combinations of a type-
2 item α• in a cell (i, k) and a type-1 item B
in a cell (k+1, j) for which a rule of the form
A→ αBγ exists.5 If γ is empty, add the rule
to the type-1 list of cell (i, j); otherwise, add
αB• to the type-2 list of cell (i, j).

3. for each item B in the type-1 list of the cell
(i, j), if there is a rule of the form A → Bγ,
and γ is non-empty, add B• to the type-2 list
of cell (i, j).

3.2 Our algorithm
The main idea behind our algorithm is that we can
avoid the need to store type-2 lists if we process
the individual cells in a right-to-left, depth-first or-
der, as illustrated in Figure 1. Rules are still com-
pleted left-to-right, but processing the rightmost
cells first allows us to immediately extend partial
productions into full productions instead of storing
them in memory.

We perform the following steps for each cell.

1. if i = j, if there is a rule A → wi, add A to
the type-1 list of cell (i, j).

However, our description excludes non-lexical unary rules,
and epsilon rules.

4For simplicity, we describe a monolingual acceptor.
5To allow mixed-terminal rules, we also search for B =

wj if j = k + 1.

2. if j > i, search for all combinations of a type-
2 item α• and a type-1 itemB in a cell (j, k),
with j ≤ k ≤ n for which a rule of the form
C → αBγ exists. In the initial call, we allow
α• = A• for any type-1 item A in cell (i, j−
1).6 If γ is empty, add C to the type-1 list of
cell (i, k); otherwise, recursively repeat this
step, using αB• as α• and k + 1 as j.

To illustrate the difference between the two al-
gorithms, let us consider the chart cell (1, 2), i.e.
the chart cell spanning the substring it is, in Fig-
ure 1, and let us assume the following grammar:

S → NP V NP

NP → ART NN

NP → it

V → is

ART → a

NN → trap

In both algorithms, we can combine the sym-
bols NP from cell (1, 1) and V from cell (2, 2) to
partially parse the rule S → NP V NP. How-
ever, in CYK+, we cannot yet know if the rule can
be completed with a cell (3, x) containing symbol
NP, since the cell (3, 4) may be processed after cell
(1, 2). Thus, the partial production is stored in a
type-2 list for later processing.

In our algorithm, we require all cells (3, x) to
be processed before cell (1, 2), so we can imme-
diately perform a recursion with α = NP V and
j = 3. In this recursive step, we search for a sym-
bol NP in any cell (3, x), and upon finding it in
cell (3, 4), add S as type-1 item to cell (1, 4).

We provide side-by-side pseudocode of the two
algorithms in Figure 2.7 The algorithms are
aligned to highlight their similarity, the main dif-
ference between them being that type-2 items are
added to the dot chart in CYK+, and recursively
consumed in our variant. An attractive property
of the dynamic binarization in CYK+ is that each
partial production is constructed exactly once, and
can be re-used to find parses for cells that cover
a larger span. Our algorithm retains this property.
Note that the chart traversal order is different be-
tween the algorithms, as illustrated earlier in Fig-
ure 1. While the original CYK+ algorithm works
with either chart traversal order, our recursive vari-

6To allow mixed-terminal rules, we also allow α• = wi•
if j = i+ 1, and B = wj if k = j.

7Some implementation details are left out for simplicity.
For instance, note that terminal and non-terminal grammar
trie edges can be kept separate to avoid iterating over all ter-
minal edges.
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Algorithm 1: CYK+
Input: array w of length N
initialize chart[N,N ], collections[N,N ],
dotchart[N ]
root← root node of grammar trie
for span in [1..N]:

for i in [1..(N-span+1)]:
j← i+span-1
if i = j: #step 1

if (w[i], X) in arc[root]:
addToChart(X, i, j)

else:
for B in chart[i, j-1]: #step 3

if (B, X) in arc[root]:
if arc[X] is not empty:

add (X, j-1) to dotchart[i]
for (a, k) in dotchart[i]: #step 2

if k+1 = j:
if (w[j], X) in arc[a]:

addToChart(X, i, j)
for (B, X) in arc[a]:

if B in chart[k+1, j]:
addToChart(X, i, j)

chart[i, j] = cube_prune(collections[i, j])

def addToChart(trie node X, int i, int j):
if X has target collection:

add X to collections[i, j]
if arc[X] is not empty:

add (X, j) to dotchart[i]

Algorithm 2: recursive CYK+
Input: array w of length N
initialize chart[N,N ], collections[N,N ]

root← root node of grammar trie
for i in [N..1]:

for j in [i..N]:

if i = j: #step 1
if (w[i], X) in arc[root]:

addToChart(X, i, j, false)
else: #step 2

consume(root, i, i, j-1)
chart[i, j] = cube_prune(collections[i, j])

def consume(trie node a, int i, int j, int k):
unary ← i = j
if j = k:

if (w[j], X) in arc[a]:
addToChart(X, i, k, unary)

for (B, X) in arc[a]:
if B in chart[j, k]:

addToChart(X, i, k, unary)

def addToChart(trie node X, int i, int j, bool u):
if X has target collection and u is false:

add X to collections[i, j]
if arc[X] is not empty:

for k in [(j+1)..N]:
consume(X, i, j+1, k)

Figure 2: side-by-side pseudocode of CYK+ (left) and our algorithm (right). Our algorithm uses a new
chart traversal order and recursive consume function instead of a dot chart.
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ant requires a right-to-left, depth-first chart traver-
sal.

With our implementation of the SCFG as a trie,
a type-2 is identified by a trie node, an array of
back-pointers to antecedent cells, and a span. We
distinguish between type-1 items before and after
cube pruning. Productions, or specifically the tar-
get collections and back-pointers associated with
them, are first added to a collections object, either
synchronously or asynchronously. Cube pruning
is always performed synchronously after all pro-
duction of a cell have been found. Thus, the choice
of algorithm does not change the search space in
cube pruning, or the decoder output. After cube
pruning, the chart cell is filled with a mapping
from a non-terminal symbol to an object that com-
pactly represents a collection of translation hy-
potheses and associated scores.

3.3 Chart Compression

Given a partial production for span (i, j), the num-
ber of chart cells in which the production can be
continued is linear to sentence length. The recur-
sive variant explicitly loops through all cells start-
ing at position j + 1, but this search also exists in
the original CYK+ in the form of the same type-2
item being re-used over time.

The guarantee that all cells (j+1, k) are visited
before cell (i, j) in the recursive algorithm allows
for a further optimization. We construct a com-
pressed matrix representation of the chart, which
can be incrementally updated in O(|V | ·n2), V be-
ing the vocabulary of non-terminal symbols. For
each start position and non-terminal symbol, we
maintain an array of possible end positions and
the corresponding chart entry, as illustrated in Ta-
ble 1. The array is compressed in that it does not
represent empty chart cells. Using the previous
example, instead of searching all cells (3, x) for
a symbol NP, we only need to retrieve the array
corresponding to start position 3 and symbol NP
to obtain the array of cells which can continue the
partial production.

While not affecting the time complexity of
the algorithm, this compression technique reduces
computational cost in two ways. If the chart is
sparsely populated, i.e. if the size of the arrays is
smaller than n − j, the algorithm iterates through
fewer elements. Even if the chart is dense, we only
perform one chart look-up per non-terminal and
partial production, instead of n− j.

cell S NP V ART NN
(3,3) 0x81
(3,4) 0x86

start symbol compressed column
3 ART [(3, 0x81)]
3 NP [(4, 0x86)]
3 S,V,NN []

Table 1: Matrix representation of all chart en-
tries starting at position 3 (top), and equivalent
compressed representation (bottom). Chart entries
are pointers to objects that represent collection of
translation hypotheses and their scores.

4 Related Work

Our proposed algorithm is similar to the work
by Leermakers (1992), who describe a recursive
variant of Earley’s algorithm. While they discuss
function memoization, which takes the place of
charts in their work, as a space-time trade-off, a
key insight of our work is that we can order the
chart traversal in SCFG decoding so that partial
productions need not be tabulated or memoized,
without incurring any trade-off in time complex-
ity.

Dunlop et al. (2010) employ a similar matrix
compression strategy for CYK parsing, but their
method is different to ours in that they employ ma-
trix compression on the grammar, which they as-
sume to be in Chomsky Normal Form, whereas we
represent n-ary grammars as tries, and use matrix
compression for the chart.

An obvious alternative to n-ary parsing is the
use of binary grammars, and early SCFG mod-
els for SMT allowed only binary rules, as in the
hierarchical models by Chiang (2007)8, or bina-
rizable ones as in inversion-transduction grammar
(ITG) (Wu, 1997). Whether an n-ary rule can be
binarized depends on the rule-internal reorderings
between non-terminals; Zhang et al. (2006) de-
scribe a synchronous binarization algorithm.

Hopkins and Langmead (2010) show that the
complexity of parsing n-ary rules is determined
by the number of choice points, i.e. non-terminals
that are initial, consecutive, or final, since terminal
symbols in the rule constrain which cells are pos-
sible application contexts of a non-terminal sym-
bol. They propose pruning of the SCFG to rules

8Specifically, Chiang (2007) allows at most two non-
terminals per rule, and no adjacent non-terminals on the
source side.
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with at most 3 decision points, or scope 3, as an
alternative to binarization that allows parsing in
cubic time. In a runtime evaluation, SMT with
their pruned, unbinarized grammar offers a bet-
ter speed-quality trade-off than synchronous bi-
narization because, even though both have the
same complexity characteristics, synchronous bi-
narization increases both the overall number of
rules, and the number of non-terminals, which in-
creases the grammar constant. In contrast, Chung
et al. (2011) compare binarization and Earley-style
parsing with scope-pruned grammars, and find
Earley-style parsing to be slower. They attribute
the comparative slowness of Earley-style parsing
to the cost of building and storing the dot chart
during decoding, which is exactly the problem that
our paper addresses.

Williams and Koehn (2012) describe a parsing
algorithm motivated by Hopkins and Langmead
(2010) in which they store the grammar in a com-
pact trie with source terminal symbols or a generic
gap symbol as edge labels. Each path through this
trie corresponds to a rule pattern, and is associated
with the set of grammar rules that share the same
rule pattern. Their algorithm initially constructs a
secondary trie that records all rule patterns that ap-
ply to the input sentence, and stores the position of
matching terminal symbols. Then, chart cells are
populated by constructing a lattice for each rule
pattern identified in the initial step, and traversing
all paths through this lattice. Their algorithm is
similar to ours in that they also avoid the construc-
tion of a dot chart, but they construct two other
auxiliary structures instead: a secondary trie and
a lattice for each rule pattern. In comparison, our
algorithm is simpler, and we perform an empirical
comparison of the two in the next section.

5 Empirical Results

We empirically compare our algorithm to the
CYK+ algorithm, and the Scope-3 algorithm as
described by Williams and Koehn (2012), in a
string-to-tree SMT task. All parsing algorithms
are equivalent in terms of translation output, and
our evaluation focuses on memory consumption
and speed.

5.1 Data

For SMT decoding, we use the Moses toolkit
(Koehn et al., 2007) with KenLM for language
model queries (Heafield, 2011). We use training

algorithm n = 20 n = 40 n = 80
Scope-3 0.02 0.04 0.34
CYK+ 0.32 2.63 51.64
+ recursive 0.02 0.04 0.15
+ compression 0.02 0.04 0.15

Table 2: Peak memory consumption (in GB) of
string-to-tree SMT decoder for sentences of dif-
ferent length n with different parsing algorithms.

data from the ACL 2014 Ninth Workshop on Sta-
tistical Machine Translation (WMT) shared trans-
lation task, consisting of 4.5 million sentence pairs
of parallel data and a total of 120 million sen-
tences of monolingual data. We build a string-
to-tree translation system English→German, us-
ing target-side syntactic parses obtained with the
dependency parser ParZu (Sennrich et al., 2013).
A synchronous grammar is extracted with GHKM
rule extraction (Galley et al., 2004; Galley et al.,
2006), and the grammar is pruned to scope 3.

The synchronous grammar contains 38 million
rule pairs with 23 million distinct source-side
rules. We report decoding time for a random sam-
ple of 1000 sentences from the newstest2013/4
sets (average sentence length: 21.9 tokens), and
peak memory consumption for sentences of 20,
40, and 80 tokens. We do not report the time
and space required for loading the SMT models,
which is stable for all experiments.9 The parsing
algorithm only accounts for part of the cost during
decoding, and the relative gains from optimizing
the parsing algorithm are highest if the rest of the
decoder is fast. For best speed, we use cube prun-
ing with language model boundary word grouping
(Heafield et al., 2013) in all experiments. We set
no limit to the maximal span of SCFG rules, but
only keep the best 100 productions per span for
cube pruning. The cube pruning limit itself is set
to 1000.

5.2 Memory consumption
Peak memory consumption for different sentence
lengths is shown in Table 2. For sentences of
length 80, we observe more than 50 GB in peak
memory consumption for CYK+, which makes
it impractical for long sentences, especially for
multi-threaded decoding. Our recursive variants
keep memory consumption small, as does the

9The language model consumes 13 GB of memory, and
the SCFG 37 GB. We leave the task of compacting the gram-
mar to future research.
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Figure 3: Decoding time per sentence as a func-
tion of sentence length for four parsing variants.
Regression curves use least squares fitting on cu-
bic function.

algorithm
length 80 random

parse total parse total
Scope-3 74.5 81.1 1.9 2.6
CYK+ 358.0 365.4 8.4 9.1
+ recursive 33.7 40.1 1.5 2.2
+ compression 15.0 21.2 1.0 1.7

Table 3: Parse time and total decoding time per
sentence (in seconds) of string-to-tree SMT de-
coder with different parsing algorithms.

Scope-3 algorithm. This is in line with our theoret-
ical expectation, since both algorithms eliminate
the dot chart, which is the costliest data structure
in the original CYK+ algorithm.

5.3 Speed

While the main motivation for eliminating the dot
chart was to reduce memory consumption, we also
find that our parsing variants are markedly faster
than the original CYK+ algorithm. Figure 3 shows
decoding time for sentences of different length
with the four parsing variants. Table 3 shows se-
lected results numerically, and also distinguishes
between total decoding time and time spent in the
parsing block, the latter ignoring the cost of cube
pruning and language model scoring. If we con-
sider parse time for sentences of length 80, we ob-
serve a speed-up by a factor of 24 between our
fastest variant (with recursion and chart compres-
sion), and the original CYK+.

The gains from chart compression over the re-
cursive variant – a factor 2 reduction in parse time

for sentences of length 80 – are attributable to a
reduction in the number of computational steps.
The large speed difference between CYK+ and
the recursive variant is somewhat more surpris-
ing, given the similarity of the two algorithms.
Profiling results show that the recursive variant is
not only faster because it saves the computational
overhead of creating and destroying the dot chart,
but that it also has a better locality of reference,
with markedly fewer CPU cache misses.

Time differences are smaller for shorter sen-
tences, both in terms of time spent parsing, and be-
cause the time spent outside of parsing is a higher
proportion of the total. Still, we observe a factor
5 speed-up in total decoding time on our random
translation sample from CYK+ to our fastest vari-
ant. We also observe speed-ups over the Scope-3
parser, ranging from a factor 5 speed-up (parsing
time on sentences of length 80) to a 50% speed-up
(total time on random translation sample). It is un-
clear to what extent these speed differences reflect
the cost of building the auxiliary data structures in
the Scope-3 parser, and how far they are due to
implementation details.

5.4 Rule prefix scope

For the CYK+ parser, the growth of both memory
consumption and decoding time exceeds our cubic
growth expectation. We earlier remarked that the
rule prefix of a scope-3 rule may actually be scope-
4 if the prefix ends in a non-terminal, but the rule
itself does not. Since this could increase space and
time complexity of CYK+ to O(n4), we did addi-
tional experiments in which we prune all scope-3
rules with a scope-4 prefix. This affected 1% of
all source-side rules in our model, and only had
a small effect on translation quality (19.76 BLEU

→ 19.73 BLEU on newstest2013). With this addi-
tional pruning, memory consumption with CYK+
is closer to our theoretical expectation, with a peak
memory consumption of 23 GB for sentences of
length 80 (≈ 23 times more than for length 40).
We also observe reductions in parse time as shown
in Table 4. While we do see marked reductions
in parse time for all CYK+ variants, our recursive
variants maintain their efficiency advantage over
the original algorithm. Rule prefix scope is irrel-
evant for the Scope-3 parsing algorithm10, and its

10Despite its name, the Scope-3 parsing algorithm al-
lows grammars of any scope, with a time complexity of
O(nscope(G)).
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algorithm
length 80 random

full pruned full pruned
Scope-3 74.5 70.1 1.9 1.8
CYK+ 358.0 245.5 8.4 6.4
+ recursive 33.7 24.5 1.5 1.2
+ compression 15.0 10.5 1.0 0.8

Table 4: Average parse time (in seconds) of string-
to-tree SMT decoder with different parsing algo-
rithms, before and after scope-3 rules with scope-4
prefix have been pruned from grammar.

speed is only marginally affected by this pruning
procedure.

6 Conclusion

While SCFG decoders with dot charts are still
wide-spread, we argue that dot charts are only of
limited use for SCFG decoding. The core contri-
butions of this paper are the insight that a right-
to-left, depth-first chart traversal order allows for
the removal of the dot chart from the popular
CYK+ algorithm without incurring any computa-
tional cost for SCFG decoding, and the presen-
tation of a recursive CYK+ variant that is based
on this insight. Apart from substantial savings
in space complexity, we empirically demonstrate
gains in decoding speed. The new chart traversal
order also allows for a chart compression strategy
that yields further speed gains.

Our parsing algorithm does not affect the search
space or cause any loss in translation quality,
and its speed improvements are orthogonal to im-
provements in cube pruning (Gesmundo et al.,
2012; Heafield et al., 2013). The algorithmic
modifications to CYK+ that we propose are sim-
ple, but we believe that the efficiency gains of
our algorithm are of high practical importance for
syntax-based SMT. An implementation of the al-
gorithm has been released as part of the Moses
SMT toolkit.
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Abstract

Neural machine translation is a relatively
new approach to statistical machine trans-
lation based purely on neural networks.
The neural machine translation models of-
ten consist of an encoder and a decoder.
The encoder extracts a fixed-length repre-
sentation from a variable-length input sen-
tence, and the decoder generates a correct
translation from this representation. In this
paper, we focus on analyzing the proper-
ties of the neural machine translation us-
ing two models; RNN Encoder–Decoder
and a newly proposed gated recursive con-
volutional neural network. We show that
the neural machine translation performs
relatively well on short sentences without
unknown words, but its performance de-
grades rapidly as the length of the sentence
and the number of unknown words in-
crease. Furthermore, we find that the pro-
posed gated recursive convolutional net-
work learns a grammatical structure of a
sentence automatically.

1 Introduction

A new approach for statistical machine transla-
tion based purely on neural networks has recently
been proposed (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014). This new approach, which
we refer to as neural machine translation, is in-
spired by the recent trend of deep representational
learning. All the neural network models used in
(Sutskever et al., 2014; Cho et al., 2014) consist of
an encoder and a decoder. The encoder extracts a
fixed-length vector representation from a variable-
length input sentence, and from this representation
the decoder generates a correct, variable-length
target translation.

∗ Research done while visiting Université de Montréal

The emergence of the neural machine transla-
tion is highly significant, both practically and the-
oretically. Neural machine translation models re-
quire only a fraction of the memory needed by
traditional statistical machine translation (SMT)
models. The models we trained for this paper
require only 500MB of memory in total. This
stands in stark contrast with existing SMT sys-
tems, which often require tens of gigabytes of
memory. This makes the neural machine trans-
lation appealing in practice. Furthermore, un-
like conventional translation systems, each and ev-
ery component of the neural translation model is
trained jointly to maximize the translation perfor-
mance.

As this approach is relatively new, there has not
been much work on analyzing the properties and
behavior of these models. For instance: What
are the properties of sentences on which this ap-
proach performs better? How does the choice of
source/target vocabulary affect the performance?
In which cases does the neural machine translation
fail?

It is crucial to understand the properties and be-
havior of this new neural machine translation ap-
proach in order to determine future research di-
rections. Also, understanding the weaknesses and
strengths of neural machine translation might lead
to better ways of integrating SMT and neural ma-
chine translation systems.

In this paper, we analyze two neural machine
translation models. One of them is the RNN
Encoder–Decoder that was proposed recently in
(Cho et al., 2014). The other model replaces the
encoder in the RNN Encoder–Decoder model with
a novel neural network, which we call a gated
recursive convolutional neural network (grConv).
We evaluate these two models on the task of trans-
lation from French to English.

Our analysis shows that the performance of
the neural machine translation model degrades
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quickly as the length of a source sentence in-
creases. Furthermore, we find that the vocabulary
size has a high impact on the translation perfor-
mance. Nonetheless, qualitatively we find that the
both models are able to generate correct transla-
tions most of the time. Furthermore, the newly
proposed grConv model is able to learn, without
supervision, a kind of syntactic structure over the
source language.

2 Neural Networks for Variable-Length
Sequences

In this section, we describe two types of neural
networks that are able to process variable-length
sequences. These are the recurrent neural net-
work and the proposed gated recursive convolu-
tional neural network.

2.1 Recurrent Neural Network with Gated
Hidden Neurons

z

rh h
~ x

(a) (b)

Figure 1: The graphical illustration of (a) the re-
current neural network and (b) the hidden unit that
adaptively forgets and remembers.

A recurrent neural network (RNN, Fig. 1 (a))
works on a variable-length sequence x =
(x1,x2, · · · ,xT ) by maintaining a hidden state h
over time. At each timestep t, the hidden state h(t)

is updated by

h(t) = f
(
h(t−1),xt

)
,

where f is an activation function. Often f is as
simple as performing a linear transformation on
the input vectors, summing them, and applying an
element-wise logistic sigmoid function.

An RNN can be used effectively to learn a dis-
tribution over a variable-length sequence by learn-
ing the distribution over the next input p(xt+1 |
xt, · · · ,x1). For instance, in the case of a se-
quence of 1-of-K vectors, the distribution can be
learned by an RNN which has as an output

p(xt,j = 1 | xt−1, . . . ,x1) =
exp

(
wjh〈t〉

)∑K
j′=1 exp

(
wj′h〈t〉

) ,

for all possible symbols j = 1, . . . ,K, where wj

are the rows of a weight matrix W. This results in
the joint distribution

p(x) =
T∏

t=1

p(xt | xt−1, . . . , x1).

Recently, in (Cho et al., 2014) a new activation
function for RNNs was proposed. The new activa-
tion function augments the usual logistic sigmoid
activation function with two gating units called re-
set, r, and update, z, gates. Each gate depends on
the previous hidden state h(t−1), and the current
input xt controls the flow of information. This is
reminiscent of long short-term memory (LSTM)
units (Hochreiter and Schmidhuber, 1997). For
details about this unit, we refer the reader to (Cho
et al., 2014) and Fig. 1 (b). For the remainder of
this paper, we always use this new activation func-
tion.

2.2 Gated Recursive Convolutional Neural
Network

Besides RNNs, another natural approach to deal-
ing with variable-length sequences is to use a re-
cursive convolutional neural network where the
parameters at each level are shared through the
whole network (see Fig. 2 (a)). In this section, we
introduce a binary convolutional neural network
whose weights are recursively applied to the input
sequence until it outputs a single fixed-length vec-
tor. In addition to a usual convolutional architec-
ture, we propose to use the previously mentioned
gating mechanism, which allows the recursive net-
work to learn the structure of the source sentences
on the fly.

Let x = (x1,x2, · · · ,xT ) be an input sequence,
where xt ∈ Rd. The proposed gated recursive
convolutional neural network (grConv) consists of
four weight matrices Wl, Wr, Gl and Gr. At
each recursion level t ∈ [1, T − 1], the activation
of the j-th hidden unit h(t)

j is computed by

h
(t)
j = ωch̃

(t)
j + ωlh

(t−1)
j−1 + ωrh

(t−1)
j , (1)

where ωc, ωl and ωr are the values of a gater that
sum to 1. The hidden unit is initialized as

h
(0)
j = Uxj ,

where U projects the input into a hidden space.
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Figure 2: The graphical illustration of (a) the recursive convolutional neural network and (b) the proposed
gated unit for the recursive convolutional neural network. (c–d) The example structures that may be
learned with the proposed gated unit.

The new activation h̃(t)
j is computed as usual:

h̃
(t)
j = φ

(
Wlh

(t)
j−1 + Wrh

(t)
j

)
,

where φ is an element-wise nonlinearity.
The gating coefficients ω’s are computed by ωc

ωl

ωr

 =
1
Z

exp
(
Glh

(t)
j−1 + Grh

(t)
j

)
,

where Gl,Gr ∈ R3×d and

Z =
3∑

k=1

[
exp

(
Glh

(t)
j−1 + Grh

(t)
j

)]
k
.

According to this activation, one can think of
the activation of a single node at recursion level t
as a choice between either a new activation com-
puted from both left and right children, the acti-
vation from the left child, or the activation from
the right child. This choice allows the overall
structure of the recursive convolution to change
adaptively with respect to an input sample. See
Fig. 2 (b) for an illustration.

In this respect, we may even consider the pro-
posed grConv as doing a kind of unsupervised
parsing. If we consider the case where the gat-
ing unit makes a hard decision, i.e., ω follows an
1-of-K coding, it is easy to see that the network
adapts to the input and forms a tree-like structure
(See Fig. 2 (c–d)). However, we leave the further
investigation of the structure learned by this model
for future research.

3 Purely Neural Machine Translation

3.1 Encoder–Decoder Approach
The task of translation can be understood from the
perspective of machine learning as learning the

Economic growth has slowed down in recent years .

La croissance économique a ralenti ces dernières années .

[z  ,z  , ... ,z  ]1 2 d

Encode

Decode

Figure 3: The encoder–decoder architecture

conditional distribution p(f | e) of a target sen-
tence (translation) f given a source sentence e.
Once the conditional distribution is learned by a
model, one can use the model to directly sample
a target sentence given a source sentence, either
by actual sampling or by using a (approximate)
search algorithm to find the maximum of the dis-
tribution.

A number of recent papers have proposed to
use neural networks to directly learn the condi-
tional distribution from a bilingual, parallel cor-
pus (Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014). For instance, the au-
thors of (Kalchbrenner and Blunsom, 2013) pro-
posed an approach involving a convolutional n-
gram model to extract a vector of a source sen-
tence which is decoded with an inverse convolu-
tional n-gram model augmented with an RNN. In
(Sutskever et al., 2014), an RNN with LSTM units
was used to encode a source sentence and starting
from the last hidden state, to decode a target sen-
tence. Similarly, the authors of (Cho et al., 2014)
proposed to use an RNN to encode and decode a
pair of source and target phrases.

At the core of all these recent works lies an
encoder–decoder architecture (see Fig. 3). The
encoder processes a variable-length input (source
sentence) and builds a fixed-length vector repre-
sentation (denoted as z in Fig. 3). Conditioned on
the encoded representation, the decoder generates
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a variable-length sequence (target sentence).
Before (Sutskever et al., 2014) this encoder–

decoder approach was used mainly as a part of the
existing statistical machine translation (SMT) sys-
tem. This approach was used to re-rank the n-best
list generated by the SMT system in (Kalchbren-
ner and Blunsom, 2013), and the authors of (Cho
et al., 2014) used this approach to provide an ad-
ditional score for the existing phrase table.

In this paper, we concentrate on analyzing the
direct translation performance, as in (Sutskever et
al., 2014), with two model configurations. In both
models, we use an RNN with the gated hidden
unit (Cho et al., 2014), as this is one of the only
options that does not require a non-trivial way to
determine the target length. The first model will
use the same RNN with the gated hidden unit as
an encoder, as in (Cho et al., 2014), and the second
one will use the proposed gated recursive convo-
lutional neural network (grConv). We aim to un-
derstand the inductive bias of the encoder–decoder
approach on the translation performance measured
by BLEU.

4 Experiment Settings

4.1 Dataset

We evaluate the encoder–decoder models on the
task of English-to-French translation. We use the
bilingual, parallel corpus which is a set of 348M
selected by the method in (Axelrod et al., 2011)
from a combination of Europarl (61M words),
news commentary (5.5M), UN (421M) and two
crawled corpora of 90M and 780M words respec-
tively.1 We did not use separate monolingual data.
The performance of the neural machien transla-
tion models was measured on the news-test2012,
news-test2013 and news-test2014 sets ( 3000 lines
each). When comparing to the SMT system, we
use news-test2012 and news-test2013 as our de-
velopment set for tuning the SMT system, and
news-test2014 as our test set.

Among all the sentence pairs in the prepared
parallel corpus, for reasons of computational ef-
ficiency we only use the pairs where both English
and French sentences are at most 30 words long to
train neural networks. Furthermore, we use only
the 30,000 most frequent words for both English
and French. All the other rare words are consid-

1All the data can be downloaded from http:
//www-lium.univ-lemans.fr/˜schwenk/cslm_
joint_paper/.

ered unknown and are mapped to a special token
([UNK]).

4.2 Models

We train two models: The RNN Encoder–
Decoder (RNNenc)(Cho et al., 2014) and the
newly proposed gated recursive convolutional
neural network (grConv). Note that both models
use an RNN with gated hidden units as a decoder
(see Sec. 2.1).

We use minibatch stochastic gradient descent
with AdaDelta (Zeiler, 2012) to train our two mod-
els. We initialize the square weight matrix (transi-
tion matrix) as an orthogonal matrix with its spec-
tral radius set to 1 in the case of the RNNenc and
0.4 in the case of the grConv. tanh and a rectifier
(max(0, x)) are used as the element-wise nonlin-
ear functions for the RNNenc and grConv respec-
tively.

The grConv has 2000 hidden neurons, whereas
the RNNenc has 1000 hidden neurons. The word
embeddings are 620-dimensional in both cases.2

Both models were trained for approximately 110
hours, which is equivalent to 296,144 updates and
846,322 updates for the grConv and RNNenc, re-
spectively.

4.2.1 Translation using Beam-Search
We use a basic form of beam-search to find a trans-
lation that maximizes the conditional probability
given by a specific model (in this case, either the
RNNenc or the grConv). At each time step of
the decoder, we keep the s translation candidates
with the highest log-probability, where s = 10
is the beam-width. During the beam-search, we
exclude any hypothesis that includes an unknown
word. For each end-of-sequence symbol that is se-
lected among the highest scoring candidates the
beam-width is reduced by one, until the beam-
width reaches zero.

The beam-search to (approximately) find a se-
quence of maximum log-probability under RNN
was proposed and used successfully in (Graves,
2012) and (Boulanger-Lewandowski et al., 2013).
Recently, the authors of (Sutskever et al., 2014)
found this approach to be effective in purely neu-
ral machine translation based on LSTM units.

2In all cases, we train the whole network including the
word embedding matrix. The embedding dimensionality was
chosen to be quite large, as the preliminary experiments
with 155-dimensional embeddings showed rather poor per-
formance.
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Model Development Test
A

ll
RNNenc 13.15 13.92
grConv 9.97 9.97
Moses 30.64 33.30

Moses+RNNenc? 31.48 34.64
Moses+LSTM◦ 32 35.65

N
o

U
N

K RNNenc 21.01 23.45
grConv 17.19 18.22
Moses 32.77 35.63

Model Development Test

A
ll

RNNenc 19.12 20.99
grConv 16.60 17.50
Moses 28.92 32.00

N
o

U
N

K RNNenc 24.73 27.03
grConv 21.74 22.94
Moses 32.20 35.40

(a) All Lengths (b) 10–20 Words

Table 1: BLEU scores computed on the development and test sets. The top three rows show the scores on
all the sentences, and the bottom three rows on the sentences having no unknown words. (?) The result
reported in (Cho et al., 2014) where the RNNenc was used to score phrase pairs in the phrase table. (◦)
The result reported in (Sutskever et al., 2014) where an encoder–decoder with LSTM units was used to
re-rank the n-best list generated by Moses.

When we use the beam-search to find the k best
translations, we do not use a usual log-probability
but one normalized with respect to the length of
the translation. This prevents the RNN decoder
from favoring shorter translations, behavior which
was observed earlier in, e.g., (Graves, 2013).

5 Results and Analysis

5.1 Quantitative Analysis

In this paper, we are interested in the properties
of the neural machine translation models. Specif-
ically, the translation quality with respect to the
length of source and/or target sentences and with
respect to the number of words unknown to the
model in each source/target sentence.

First, we look at how the BLEU score, reflect-
ing the translation performance, changes with re-
spect to the length of the sentences (see Fig. 4 (a)–
(b)). Clearly, both models perform relatively well
on short sentences, but suffer significantly as the
length of the sentences increases.

We observe a similar trend with the number of
unknown words, in Fig. 4 (c). As expected, the
performance degrades rapidly as the number of
unknown words increases. This suggests that it
will be an important challenge to increase the size
of vocabularies used by the neural machine trans-
lation system in the future. Although we only
present the result with the RNNenc, we observed
similar behavior for the grConv as well.

In Table 1 (a), we present the translation perfor-
mances obtained using the two models along with

the baseline phrase-based SMT system.3 Clearly
the phrase-based SMT system still shows the su-
perior performance over the proposed purely neu-
ral machine translation system, but we can see that
under certain conditions (no unknown words in
both source and reference sentences), the differ-
ence diminishes quite significantly. Furthermore,
if we consider only short sentences (10–20 words
per sentence), the difference further decreases (see
Table 1 (b).

Furthermore, it is possible to use the neural ma-
chine translation models together with the existing
phrase-based system, which was found recently in
(Cho et al., 2014; Sutskever et al., 2014) to im-
prove the overall translation performance (see Ta-
ble 1 (a)).

This analysis suggests that that the current neu-
ral translation approach has its weakness in han-
dling long sentences. The most obvious explana-
tory hypothesis is that the fixed-length vector rep-
resentation does not have enough capacity to en-
code a long sentence with complicated structure
and meaning. In order to encode a variable-length
sequence, a neural network may “sacrifice” some
of the important topics in the input sentence in or-
der to remember others.

This is in stark contrast to the conventional
phrase-based machine translation system (Koehn
et al., 2003). As we can see from Fig. 5, the
conventional system trained on the same dataset
(with additional monolingual data for the language
model) tends to get a higher BLEU score on longer

3We used Moses as a baseline, trained with additional
monolingual data for a 4-gram language model.
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Source She explained her new position of foreign affairs and security policy representative as a reply to a
question: ”Who is the European Union? Which phone number should I call?”; i.e. as an important step
to unification and better clarity of Union’s policy towards countries such as China or India.

Reference Elle a expliqué le nouveau poste de la Haute représentante pour les affaires étrangères et la politique de
défense dans le cadre d’une réponse à la question: ”Qui est qui à l’Union européenne?” ”A quel numéro
de téléphone dois-je appeler?”, donc comme un pas important vers l’unicité et une plus grande lisibilité
de la politique de l’Union face aux états, comme est la Chine ou bien l’Inde.

RNNEnc Elle a décrit sa position en matière de politique étrangère et de sécurité ainsi que la politique de l’Union
européenne en matière de gouvernance et de démocratie .

grConv Elle a expliqué sa nouvelle politique étrangère et de sécurité en réponse à un certain nombre de questions
: ”Qu’est-ce que l’Union européenne ? ” .

Moses Elle a expliqué son nouveau poste des affaires étrangères et la politique de sécurité représentant en
réponse à une question: ”Qui est l’Union européenne? Quel numéro de téléphone dois-je appeler?”;
c’est comme une étape importante de l’unification et une meilleure lisibilité de la politique de l’Union
à des pays comme la Chine ou l’Inde .

Source The investigation should be complete by the end of the year when the findings will be presented to
Deutsche Bank’s board of managing directors - with recommendations for action.

Reference L’examen doit être terminé d’ici la fin de l’année, ensuite les résultats du conseil d’administration de la
Deutsche Bank doivent être présentés - avec recommandation, d’ habitude.

RNNEnc L’étude devrait être terminée à la fin de l’ année, lorsque les conclusions seront présentées au conseil
d’administration de la Deutsche Bank, conseil d’association avec des mesures.

grConv L’enquête devrait être terminée à la fin de l’année où les conclusions seront présentées par le conseil
d’administration de la BCE à la direction des recommandations.

Moses L’enquête devrait être terminé d’ici la fin de l’année lorsque les résultats seront présentés à la Deutsche
Bank conseil des directeurs généraux - avec des recommandations .

Source And there are thorny mechanical questions that must be resolved during that time, like how to bal-
ance the state’s mandate of ”adequate access” to licensed marijuana with its prohibitions on cannabis
businesses within 1,000 feet of a school, park, playground or child care center.

Reference Pendant ce temps, des questions pratiques restent en suspens: comment équilibrer le mandat de l’état
qui garantit un accès approprié à la marijuana agréée et interdit l’installation de commerces de vente de
cannabis dans un rayon de 30 km autour d’une école, d’un parc, d’un terrain de jeu ou d’une crèche.

RNNEnc Il y a des questions préventives qui se posent quant à l’équilibre des droits de l’enfant dans les limites
d’une entreprise de collecte de sang.

grConv De façon générale, il y a des raisons de sécurité pour que les entreprises aient accès à des milliers de
centres de pêche, d’eau ou de recherche.

Moses Et il y a des problèmes mécaniques complexes qui doivent être résolues au cours de cette période,
comme la manière d’équilibrer le mandat de ”l’accès adéquat” permis de marijuana avec l’interdiction
du cannabis aux entreprises de 1000 pieds d’une école de jeu ou de parc, le service de garde.

(a) Long Sentences

Source There is still no agreement as to which election rules to follow.
Reference Toutefois il n’existe toujours pas d’accord selon quel règlement de vote il faut procéder.
RNNEnc Il n’y a pas encore d’accord sur les règles électorales.
grConv Il n’y a pas encore d’accord sur la question des élections à suivre.
Moses Il y a toujours pas d’accord sur l’élection des règles à suivre.

Source Many of these ideas may have been creative, but they didn’t necessarily work.
Reference Beaucoup de ces idées étaient créatives mais elles n’ont pas forcément fonctionné.
RNNEnc Bon nombre de ces idées ont peut-être été créatrices, mais elles ne s’appliquaient pas nécessairement.
grConv Beaucoup de ces idées peuvent être créatives, mais elles n’ont pas fonctionné.
Moses Beaucoup de ces idées ont pu être créatif, mais ils n’ont pas nécessairement.

Source There is a lot of consensus between the Left and the Right on this subject.
Reference C’est qu’il y a sur ce sujet un assez large consensus entre gauche et droite.
RNNEnc Il existe beaucoup de consensus entre la gauche et le droit à la question.
grConv Il y a un consensus entre la gauche et le droit sur cette question.
Moses Il y a beaucoup de consensus entre la gauche et la droite sur ce sujet.

Source According to them, one can find any weapon at a low price right now.
Reference Selon eux, on peut trouver aujourd’hui à Moscou n’importe quelle arme pour un prix raisonnable.
RNNEnc Selon eux, on peut se trouver de l’arme à un prix trop bas.
grConv En tout cas, ils peuvent trouver une arme à un prix très bas à la fois.
Moses Selon eux, on trouve une arme à bas prix pour l’instant.

(b) Short Sentences

Table 2: The sample translations along with the source sentences and the reference translations.
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Figure 4: The BLEU scores achieved by (a) the RNNenc and (b) the grConv for sentences of a given
length. The plot is smoothed by taking a window of size 10. (c) The BLEU scores achieved by the RNN
model for sentences with less than a given number of unknown words.

sentences.
In fact, if we limit the lengths of both the source

sentence and the reference translation to be be-
tween 10 and 20 words and use only the sentences
with no unknown words, the BLEU scores on the
test set are 27.81 and 33.08 for the RNNenc and
Moses, respectively.

Note that we observed a similar trend even
when we used sentences of up to 50 words to train
these models.

5.2 Qualitative Analysis

Although BLEU score is used as a de-facto stan-
dard metric for evaluating the performance of a
machine translation system, it is not the perfect
metric (see, e.g., (Song et al., 2013; Liu et al.,
2011)). Hence, here we present some of the ac-
tual translations generated from the two models,
RNNenc and grConv.

In Table. 2 (a)–(b), we show the translations of
some randomly selected sentences from the de-
velopment and test sets. We chose the ones that
have no unknown words. (a) lists long sentences
(longer than 30 words), and (b) short sentences
(shorter than 10 words). We can see that, despite
the difference in the BLEU scores, all three mod-
els (RNNenc, grConv and Moses) do a decent job
at translating, especially, short sentences. When
the source sentences are long, however, we no-
tice the performance degradation of the neural ma-
chine translation models.

Additionally, we present here what type of
structure the proposed gated recursive convolu-
tional network learns to represent. With a sample
sentence “Obama is the President of the United
States”, we present the parsing structure learned
by the grConv encoder and the generated transla-
tions, in Fig. 6. The figure suggests that the gr-
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Figure 5: The BLEU scores achieved by an SMT
system for sentences of a given length. The plot
is smoothed by taking a window of size 10. We
use the solid, dotted and dashed lines to show the
effect of different lengths of source, reference or
both of them, respectively.

Conv extracts the vector representation of the sen-
tence by first merging “of the United States” to-
gether with “is the President of” and finally com-
bining this with “Obama is” and “.”, which is
well correlated with our intuition. Note, however,
that the structure learned by the grConv is differ-
ent from existing parsing approaches in the sense
that it returns soft parsing.

Despite the lower performance the grConv
showed compared to the RNN Encoder–Decoder,4

we find this property of the grConv learning a
grammar structure automatically interesting and
believe further investigation is needed.

4However, it should be noted that the number of gradient
updates used to train the grConv was a third of that used to
train the RNNenc. Longer training may change the result,
but for a fair comparison we chose to compare models which
were trained for an equal amount of time. Neither model was
trained to convergence.
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Obama is the President of the United States .

++++++++

+++++++

++++++

+++++

++++

+++

++

+ Translations
Obama est le Président des États-Unis . (2.06)
Obama est le président des États-Unis . (2.09)
Obama est le président des Etats-Unis . (2.61)
Obama est le Président des Etats-Unis . (3.33)
Barack Obama est le président des États-Unis . (4.41)
Barack Obama est le Président des États-Unis . (4.48)
Barack Obama est le président des Etats-Unis . (4.54)
L’Obama est le Président des États-Unis . (4.59)
L’Obama est le président des États-Unis . (4.67)
Obama est président du Congrès des États-Unis .(5.09)

(a) (b)

Figure 6: (a) The visualization of the grConv structure when the input is “Obama is the President of
the United States.”. Only edges with gating coefficient ω higher than 0.1 are shown. (b) The top-10
translations generated by the grConv. The numbers in parentheses are the negative log-probability.

6 Conclusion and Discussion

In this paper, we have investigated the property
of a recently introduced family of machine trans-
lation system based purely on neural networks.
We focused on evaluating an encoder–decoder ap-
proach, proposed recently in (Kalchbrenner and
Blunsom, 2013; Cho et al., 2014; Sutskever et al.,
2014), on the task of sentence-to-sentence trans-
lation. Among many possible encoder–decoder
models we specifically chose two models that dif-
fer in the choice of the encoder; (1) RNN with
gated hidden units and (2) the newly proposed
gated recursive convolutional neural network.

After training those two models on pairs of
English and French sentences, we analyzed their
performance using BLEU scores with respect to
the lengths of sentences and the existence of un-
known/rare words in sentences. Our analysis re-
vealed that the performance of the neural machine
translation suffers significantly from the length of
sentences. However, qualitatively, we found that
the both models are able to generate correct trans-
lations very well.

These analyses suggest a number of future re-
search directions in machine translation purely
based on neural networks.

Firstly, it is important to find a way to scale up
training a neural network both in terms of com-
putation and memory so that much larger vocabu-
laries for both source and target languages can be
used. Especially, when it comes to languages with

rich morphology, we may be required to come up
with a radically different approach in dealing with
words.

Secondly, more research is needed to prevent
the neural machine translation system from under-
performing with long sentences. Lastly, we need
to explore different neural architectures, especially
for the decoder. Despite the radical difference in
the architecture between RNN and grConv which
were used as an encoder, both models suffer from
the curse of sentence length. This suggests that it
may be due to the lack of representational power
in the decoder. Further investigation and research
are required.

In addition to the property of a general neural
machine translation system, we observed one in-
teresting property of the proposed gated recursive
convolutional neural network (grConv). The gr-
Conv was found to mimic the grammatical struc-
ture of an input sentence without any supervision
on syntactic structure of language. We believe this
property makes it appropriate for natural language
processing applications other than machine trans-
lation.
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Abstract

We introduce TRAAM, or Transduction
RAAM, a fully bilingual generalization
of Pollack’s (1990) monolingual Recur-
sive Auto-Associative Memory neural net-
work model, in which each distributed vec-
tor represents a bilingual constituent—i.e.,
an instance of a transduction rule, which
specifies a relation between two monolin-
gual constituents and how their subcon-
stituents should be permuted. Bilingual
terminals are special cases of bilingual
constituents, where a vector represents ei-
ther (1) a bilingual token —a token-to-
token or “word-to-word” translation rule
—or (2) a bilingual segment—a segment-
to-segment or “phrase-to-phrase” transla-
tion rule. TRAAMs have properties that
appear attractive for bilingual grammar in-
duction and statistical machine translation
applications. Training of TRAAM drives
both the autoencoder weights and the vec-
tor representations to evolve, such that
similar bilingual constituents tend to have
more similar vectors.

1 Introduction

We introduce Transduction RAAM—or TRAAM
for short—a recurrent neural network model that
generalizes the monolingual RAAM model of Pol-
lack (1990) to a distributed vector representation
of compositionally structured transduction gram-
mars (Aho and Ullman, 1972) that is fully bilingual
from top to bottom. In RAAM, which stands for
Recursive Auto-Associative Memory, using fea-
ture vectors to characterize constituents at every
level of a parse tree has the advantages that (1)
the entire context of all subtrees inside the con-
stituent can be efficiently captured in the feature
vectors, (2) the learned representations generalize

well because similar feature vectors represent sim-
ilar constituents or segments, and (3) representa-
tions can be automatically learned so as to max-
imize prediction accuracy for various tasks using
semi-supervised learning. We argue that different,
but analogous, properties are desirable for bilin-
gual structured translation models.

Unlike RAAM, where each distributed vector
represents a monolingual token or constituent,
each distributed vector in TRAAM represents a
bilingual constituent or biconstituent—that is, an
instance of a transduction rule, which asserts a re-
lation between two monolingual constituents, as
well as specifying how to permute their subcon-
stituents in translation. Bilingual terminals, or
biterminals, are special cases of biconstituents
where a vector represents either (1) a bitoken—a
token-to-token or “word-to-word” translation rule
—or (2) a bisegment—a segment-to-segment or
“phrase-to-phrase” translation rule.

The properties of TRAAMs are attractive for
machine translation applications. As with RAAM,
TRAAMs can be trained via backpropagation
training, which simultaneously evolves both the
autoencoder weights and the biconstituent vector
representations. As with RAAM, the evolution
of the vector representations within the hidden
layer performs automatic feature induction, and for
many applications can obviate the need for man-
ual feature engineering. However, the result is
that similar vectors tend to represent similar bicon-
stituents, rather than monolingual constituents.

The learned vector representations thus tend to
form clusters of similar translation relations in-
stead of merely similar strings. That is, TRAAM
clusters represent soft nonterminal categories of
cross-lingual relations and translation patterns, as
opposed to soft nonterminal categories of mono-
lingual strings as in RAAM.

Also, TRAAMs inherently make full simulta-
neous use of both input and output language fea-
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tures, recursively, in an elegant integrated fash-
ion. TRAAM does not make restrictive a pri-
ori assumptions of conditional independence be-
tween input and output language features. When
evolving the biconstituent vector representations,
generalization occurs over similar input and out-
put structural characteristics simultaneously. In
most recurrent neural network applications to ma-
chine translation to date, only input side features
or only output language features are used. Even in
the few previous cases where recurrent neural net-
works have employed both input and output lan-
guage features for machine translation, the models
have typically been factored so that their recursive
portion is applied only to either the input or output
language, but not both.

As with RAAM, the objective criteria for train-
ing can be adjusted to reflect accuracy on nu-
merous different kinds of tasks, biasing the di-
rection that vector representations evolve toward.
But again, TRAAM’s learned vector representa-
tions support making predictions that simultane-
ously make use of both input and output struc-
tural characteristics. For example, TRAAM has
the ability to take into account the structure of
both input and output subtree characteristics while
making predictions on reordering them. Similarly,
for specific cross-lingual tasks such as word align-
ment, sense disambiguation, or machine transla-
tion, classifiers can simultaneously be trained in
conjunction with evolving the vector representa-
tions to optimize task-specific accuracy (Chris-
man, 1991).

In this paper we use as examples binary bi-
parse trees consistent with transduction grammars
in a 2-normal form, which by definition are in-
version transduction grammars (Wu, 1997) since
they are binary rank. This is not a requirement
for TRAAM, which in general can be formed for
transduction grammars of any rank. Moreover,
with distributed vector representations, the notion
of nonterminal categories in TRAAM is that of soft
membership, unlike in symbolically represented
transduction grammars. We start with bracketed
training data that contains no bilingual category
labels (like training data for Bracketing ITGs or
BITGs). Training results in self-organizing clus-
ters that have been automatically induced, repre-
senting soft nonterminal categories (unlike BITGs,
which do not have differentiated nonterminal cat-
egories).

2 Related work

TRAAM builds on different aspects of a spec-
trum of previous work. A large body of work ex-
ists on various different types of self-organizing
recurrent neural network approaches to model-
ing recursive structure, but mostly in monolin-
gual modeling. Even in applications to ma-
chine translation or cross-lingual modeling, the
typical practice has been to insert neural net-
work scoring components while still maintain-
ing older SMT modeling assumptions like bags-
of-words/phrases, “shake’n’bake” translation that
relies heavily on strong monolingual language
models, and log-linear models —in contrast to
TRAAM’s fully integrated bilingual approach.
Here we survey representative work across the
spectrum.

2.1 Monolingual related work

Distributed vector representations have long
been used for n-gram language modeling; these
continuous-valued models exploit the general-
ization capabilities of neural networks, although
there is no hidden contextual or hierarchical
structure as in RAAM. Schwenk (2010) applies
one such language model within an SMT system.

In the simple recurrent neural networks (RNNs
or SRNs) of Elman (1990), hidden layer represen-
tations are fed back to the input to dynamically rep-
resent an aggregate of the immediate contextual
history. More recently, the probabilistic NNLMs
of Bengio et al. (2003) and Bengio et al. (2009)
follow in this vein.

To represent hierarchical tree structure using
vector representations, one simple family of ap-
proaches employs convolutional networks, as in
Lee et al. (2009) for example. Collobert and We-
ston (2008) use a convolution neural network layer
quite effectively to learn vector representations for
words which are then used in a host of NLP tasks
such as POS tagging, chunking, and semantic role
labeling.

RAAM approaches, and related recursive au-
toencoder approaches, can be more flexible than
convolutional networks. Like SRNs, they can be
extended in numerous ways. The URAAM (Uni-
fication RAAM) model of Stolcke and Wu (1992)
extended RAAM to demonstrate the possibility of
using neural networks to perform more sophisti-
cated operations like unification directly upon the
distributed vector representations of hierarchical
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feature structures. Socher et al. (2011) used mono-
lingual recursive autoencoders for sentiment pre-
diction, with or without parse tree information; this
was perhaps the first use of a RAAM style ap-
proach on a large scale NLP task, albeit mono-
lingual. Scheible and Schütze (2013) automat-
ically simplified the monolingual tree structures
generated by recursive autoencoders, validated the
simplified structures via manual evaluation, and
showed that sentiment classification accuracy is
not affected.

2.2 Bilingual related work
The majority of work on learning bilingual dis-
tributed vector representations has not made use of
recursive approaches or hidden contextual or com-
positional structure, as in the bilingual word em-
bedding learning of Klementiev et al. (2012) or the
bilingual phrase embedding learning of Gao et al.
(2014). Schwenk (2012) uses a non-recursive neu-
ral network to predict phrase translation probabil-
ities in conventional phrase-based SMT.

Attempts have been made to generalize the dis-
tributed vector representations of monolingual n-
gram language models, avoiding any hidden con-
textual or hierarchical structure. Working within
the framework of n-gram translation models, Son
et al. (2012) generalize left-to-right monolingual
n-gram models to bilingual n-grams, and study
bilingual variants of class-based n-grams. How-
ever, their model does not allow tackling the chal-
lenge of modeling cross-lingual constituent order,
as TRAAM does; instead it relies on the assump-
tion that some other preprocessor has already man-
aged to accurately re-order the words of the input
sentence into exactly the order of words in the out-
put sentence.

Similarly, generalizations of monolingual SRNs
to the bilingual case have been studied. Zou
et al. (2013) generalize the monolingual recur-
rent NNLM model of Bengio et al. (2009) to
learn bilingual word embeddings using conven-
tional SMT word alignments, and demonstrate that
the resulting embeddings outperform the baselines
in word semantic similarity. They also add a sin-
gle semantic similarity feature induced with bilin-
gual embeddings to a phrase-based SMT log-linear
model, and report improvements in BLEU. Com-
pared to TRAAM, however, they only learn non-
compositional features, with distributed vectors
only representing biterminals (as opposed to bi-
constituents or bilingual subtrees), and so other

mechanisms for combining biterminal scores still
need to be used to handle hierarchical structure,
as opposed to seamlessly being integrated into
the distributed vector representation model. De-
vlin et al. (2014) obtain translation accuracy im-
provements by extending the probabilistic NNLMs
of Bengio et al. (2003), which are used for the
output language, by adding input language con-
text features. Unlike TRAAM, neither of these
approaches symmetrically models the recursive
structure of both the input and output language
sides.

For convolutional network approaches, Kalch-
brenner and Blunsom (2013) use a recurrent prob-
abilistic model to generate a representation of the
source sentence and then generate the target sen-
tence from this representation. This use of in-
put language context to bias translation choices
is in some sense a neural network analogy to
the PSD (phrase sense disambiguation) approach
for context-dependent translation probabilities of
Carpuat and Wu (2007). Unlike TRAAM, the
model does not contain structural constraints, and
permutation of phrases must still be done in con-
ventional PBSMT “shake’n’bake” style by rely-
ing mostly on a language model (in their case, a
NNLM).

A few applications of monolingual RAAM-style
recursive autoencoders to bilingual tasks have also
appeared. For cross-lingual document classifica-
tion, Hermann and Blunsom (2014) use two sep-
arate monolingual fixed vector composition net-
works, one for each language. One provides the
training signal for the other, and training is only
on the embeddings.

Li et al. (2013) described a use of monolingual
recursive autoencoders within maximum entropy
ITGs. They replace their earlier model for pre-
dicting reordering based on the first and the last
tokens in a constituent, by instead using the con-
text vector generated using the recursive autoen-
coder. Only input language context is used, unlike
TRAAM which can use the input and output lan-
guage contexts equally.

Autoencoders have also been applied to SMT in
a very different way by Zhao et al. (2014) but with-
out recursion and not for learning distributed vec-
tor representations of words; rather, they used non-
recursive autoencoders to compress very high-
dimensional bilingual sparse features down to low-
dimensional feature vectors, so that MIRA or PRO

114



could be used to optimize the log-linear model
weights.

3 Representing transduction grammars
with TRAAM

As a recurrent neural network representation of a
transduction grammar, TRAAM learns bilingual
distributed representations that parallel the struc-
tural composition of a transduction grammar. As
with transduction grammars, the learned represen-
tations are symmetric and model structured rela-
tional correlations between the input and output
languages. The induced feature vectors in effect
represent soft categories of cross-lingual relations
and translations. The TRAAM model integrates
elegantly with the transduction grammar formal-
ism and aims to model the compositional struc-
ture of the transduction grammar as opposed to
incorporating external alignment information. It
is straightforward to formulate TRAAMs for arbi-
trary syntax directed transduction grammars; here
we shall describe an example of a TRAAM model
for an inversion transduction grammar (ITG).

Formally, an ITG is a tuple ⟨N, Σ,∆, R, S⟩,
where N is a finite nonempty set of nonterminal
symbols, Σ is a finite set of terminal symbols in L0,
∆ is a finite set of terminal symbols in  L1, R is a
finite nonempty set of inversion transduction rules
and S ∈ N is a designated start symbol. A normal-
form ITG consists of rules in one of the following
four forms:

S → A, A → [BC] , A → ⟨BC⟩, A → e/f

where S ∈ N is the start symbol, A, B,C ∈
N  are nonterminal symbols and e/f  is a biter-
minal. A biterminal is a pair of symbol strings:
Σ∗ ×∆∗, where at least one of the strings have to
be nonempty. The square and angled brackets sig-
nal straight and inverted order respectively. With
straight order, both the L0 and the L1 productions
are generated left-to-right, but with inverted order,
the L1 production is generated right-to-left.

In the distributed TRAAM representation of the
ITG, we represent each bispan, using a feature vec-
tor v of dimension d that represents a fuzzy encod-
ing of all the nonterminals that could generate it.
This is in contrast to the ITG model where each
nonterminal that generates a bispan has to be enu-
merated separately. Feature vectors correspond-
ing to larger bispans are compositionally generated
from smaller bispans using a compressor network

which takes two feature vectors of dimension d,
corresponding to the smaller bispans and gener-
ates the feature vector of dimension d correspond-
ing to the larger bispan. A single bit correspond-
ing to straight or inverted order is also fed as an
input to the compressor network. The compres-
sor network in TRAAM serves a similar role as
the syntactic rules in the symbolic ITG, but keeps
the encoding fuzzy. Figure 2 shows the straight
and inverted syntactic rules and the correspond-
ing inputs to the compressor network. Modeling
of unary rules (with start symbol on the left hand
side) although similar, is beyond the scope of this
paper.

It is easy to demonstrate that TRAAM mod-
els are capable of representing any symbolic ITG
model. All the nonterminals representing a bispan
can be encoded as a bit vector in the feature vector
of the bispan. Using the universal approximation
theorem of neural networks (Hornik et al., 1989),
an encoder with a single hidden layer can represent
any set of syntactic rules. Similarly, all TRAAM
models can be represented using a symbolic ITG
by assuming a unique nonterminal label for every
feature vector. Therefore, TRAAM and ITGs rep-
resent two equivalent classes of models for repre-
senting compositional bilingual relations.

It is important to note that although both
TRAAM and ITG models might be equivalent, the
fuzzy encoding of nonterminals in TRAAM is suit-
able for modeling the generalizations in bilingual
relations without exploding the search space unlike
the symbolic models. This property of TRAAM
makes it attractive for bilingual category learning
and machine translation applications as long as ap-
propriate language bias and objective functions are
determined.

Given our objective of inducing categories of
bilingual relations in an unsupervised manner, we
bias our TRAAM model by using a simple non-
linear activation function to be our compressor,
similar to the monolingual recursive autoencoder
model proposed by Socher et al. (2011). Having a
single layer in our compressor provides the neces-
sary language bias by forcing the network to cap-
ture the generalizations while reducing the dimen-
sions of the input vectors. We use tanh as the non-
linear activation function and the compressor ac-
cepts two vectors c1 and c2 of dimension d corre-
sponding to the nonterminals of the smaller bis-
pans and a single bit o corresponding to the in-
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Figure 1: Example of English-Telugu biparse trees where inversion depends on output language sense.
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Figure 2: Architecture of TRAAM.

version order and generates a vector p of dimen-
sion d corresponding to the larger bispan generated
by combining the two smaller bispans as shown in
Figure 2. The vector p then serves as the input for
the successive combinations of the larger bispan
with other bispans.

p = tanh(W1[o; c1; c2] + b1) (1)

where W1 and b1 are the weight matrix and the bias
vector of the encoder network.

To ensure that the computed vector p captures
the fuzzy encodings of its children and the inver-
sion order, we use a reconstructor network which
attempts to reconstruct the inversion order and the
feature vectors corresponding of its children. We
use the error in reconstruction as our objective
function and train our model to minimize the re-
construction error over all the nodes in the biparse

tree. The reconstructor network in our TRAAM
model can be replaced by any other network that
enables the computed feature vector representa-
tions to be optimized for the given task. In our
current implementation, we reconstruct the inver-
sion order o′ and the child vectors c′1 and c′2 using
another nonlinear activation function as follows:

[o′; c′1; c
′
2] = tanh(W2p + b2) (2)

where W2 and b2 are the weight matrix and the bias
vector of the reconstructor network.

4 Bilingual training

4.1 Initialization
The weights and the biases of the compressor and
the reconstructor networks of the TRAAM model
are randomly initialized. Bisegment embeddings
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corresponding to the leaf nodes (biterminals in the
symbolic ITG notation) in the biparse trees are also
initialized randomly. These constitute the model
parameters and are optimized to minimize our ob-
jective function of reconstruction error. The parse
trees for providing the structural constraints are
generated by a bracketing inversion transduction
grammar (BITG) induced in a purely unsupervised
fashion, according to the algorithm in Saers et al.
(2009). Due to constraints on the training time, we
consider only the Viterbi biparse trees according
to the BITG instead of all the biparse trees in the
forest.

4.2 Computing feature vectors
We compute the feature vectors at each internal
node in the biparse tree, similar to the feedforward
pass in a neural network. We topologically sort all
the nodes in the biparse tree and set the feature vec-
tor of each node in the topologically sorted order
as follows:

• If the node is a leaf node, the feature vector is
the corresponding bisegment embedding.

• Else, the biconstituent embedding corre-
sponding to the internal node is generated us-
ing the feature vectors of the children and the
inversion order using Equation 1. We also
normalize the length of the computed fea-
ture vector so as to prevent the network from
making the biconstituent embedding arbitrar-
ily small in magnitude (Socher et al., 2011).

4.3 Feature vector optimization
We train our current implementation of TRAAM,
by optimizing the model parameters to minimize
an objective function based on the reconstruction
error over all the nodes in the biparse trees. The
objective function is defined as a linear combina-
tion of the l2 norm of the reconstruction error of
the children and the cross-entropy loss of recon-
structing the inversion order. We define the error
at each internal node n as follows:

En =
α

2
|[c1; c2]− [c′1; c

′
2]|2 − (1− α)

[(1− o) log(1− o′) + (1 + o) log(1 + o′)]

where c1, c2, o correspond to the left child, right
child and inversion order, c′1, c

′
2, o

′ are the respec-
tive reconstructions and α is the linear weighting
factor. The global objective function J is the sum

of the error function at all internal nodes n in the bi-
parse trees averaged over the total number of sen-
tences T in the corpus. A regularization parameter
λ is used on the norm of the model parameters θ to
avoid overfitting.

J =
1
T

ΣnEn + λ||θ||2 (3)

As the bisegment embeddings are also a part of
the model parameters, the optimization objective
is similar to a moving target training objective Ro-
hwer (1990). We use backpropagation with struc-
ture Goller and Kuchler (1996) to compute the gra-
dients efficiently. L-BFGS algorithm Liu and No-
cedal (1989) is used in order to minimize the loss
function.

5 Bilingual representation learning

We expect the TRAAM model to generate clus-
ters over cross-lingual relations similar to RAAM
models on monolingual data. We test this hypoth-
esis by bilingually training our model using a par-
allel English-Telugu blocks world dataset. The
dataset is kept simple to better understand the na-
ture of clusters. Our dataset comprises of com-
mands which involves manipulating different col-
ored objects over different shapes.

5.1 Example

Figure 1 shows the biparse trees for two English-
Telugu sentence pairs. The preposition on in En-
glish translates to ĳ¿ౖనునŤ(pinunna) and ĳ¿ౖన(pina) re-
spectively in the first and second sentence pairs be-
cause in the first sentence block is described by its
position on the square, whereas in the second sen-
tence block is the subject and square is the object.
Since Telugu is a language with an SOV structure,
the verbs ఉంచు(vunchu) and Ǵసుĥą(teesuko) occur at
the end for both sentences.

The sentences in 1 illustrate the importance of
modeling bilingual relations simultaneously in-
stead of focusing only on the input or output lan-
guage as the cross-lingual structural relations are
sensitive to both the input and output language
context. For example, the constituent whose input
side is block on the square, the corresponding output
language tree structure is determined by whether
or not on is translated to ĳ¿ౖనునŤ (pinunna) or ĳ¿ౖన(pina).

In symbolic frameworks such as ITGs, such
relations are encoded using different nontermi-
nal categories. However, inducing such cate-

117



Figure 3: Clustering of biconstituents in the Telugu-English data.

gories within a symbolic framework in an un-
supervised manner creates extremely challenging
combinatorial scaling issues. TRAAM models
are a promising approach for tackling this prob-
lem, since the vector representations learned us-
ing the TRAAM model inherently yield soft syn-
tactic category membership properties, despite be-
ing trained only with the unlabeled structural con-
straints of simple BITG-style data.

5.2 Biconstituent clustering

The soft membership properties of learned dis-
tributed vector representations can be explored
via cluster analysis. To illustrate, we trained a
TRAAM network bilingually using the algorithm
in Section 4, and obtained feature vector represen-
tations for each unique biconstituent. Clustering
the obtained feature vectors reveals emergence of
fuzzy nonterminal categories, as shown in Figure
3. It is important to note that each point in the
vector space corresponds to a tree-structured bi-
constituent as opposed to merely a flat bilingual
phrase, as same surface forms with different tree
structures will have different vectors.

As the full cluster tree is too unwieldy, Figure
4 zooms in to shows an enlarged version of a por-
tion of the clustering, along with the corresponding
bracketed bilingual structures. One can observe
that the cluster represents the biconstituents that
describe the object by its position on another ob-
ject. We can deduce this from the fact that only a

single sense of on/ĳ¿ౖనునŤ(pinnuna) seems to be occur-
ing in all the biconstituents of the cluster. Manual
inspection of other clusters reveals such similari-
ties despite noise expected to be introduced by the
sparsity of our dataset.

6 Conclusion

We have introduced a fully bilingual generaliza-
tion of Pollack’s (1990) monolingual Recursive
Auto-Associative Memory neural network model,
TRAAM, in which each distributed vector repre-
sents a bilingual constituent—i.e., an instance of
a transduction rule, which specifies a relation be-
tween two monolingual constituents and how their
subconstituents should be permuted. Bilingual ter-
minals are special cases of bilingual constituents,
where a vector represents either (1) a bilingual to-
ken—a token-to-token or “word-to-word” transla-
tion rule—or (2) a bilingual segment—a segment-
to-segment or “phrase-to-phrase” translation rule.

TRAAMs can be used for arbitrary rank SDTGs
(syntax-directed transduction grammars, a.k.a.
synchronous context-free grammars). Although
our discussions in this paper have focused on bi-
parse trees from SDTGs in a 2-normal form, which
by definition are ITGs due to the binary rank,
nothing prevents TRAAMs from being applied to
higher-rank transduction grammars.

We believe TRAAMs are worth detailed ex-
ploration as their intrinsic properties address key
problems in bilingual grammar induction and sta-
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Figure 4: Typical zoomed view into the Telugu-English biconstituent clusters from Figure 3.

tistical machine translation —their sensitivity to
both input and output language context means that
the learned vector representations tend to reflect
the similarity of bilingual rather than monolingual
constituents, which is what is needed to induce dif-
ferentiated bilingual nonterminal categories.
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Abstract

Dependency structure provides grammat-
ical relations between words, which have
shown to be effective in Statistical Ma-
chine Translation (SMT). In this paper, we
present an open source module in Moses
which implements a dependency-to-string
model. We propose a method to trans-
form the input dependency tree into a cor-
responding constituent tree for reusing the
tree-based decoder in Moses. In our ex-
periments, this method achieves compara-
ble results with the standard model. Fur-
thermore, we enrich this model via the
decomposition of dependency structure,
including extracting rules from the sub-
structures of the dependency tree during
training and creating a pseudo-forest in-
stead of the tree per se as the input dur-
ing decoding. Large-scale experiments
on Chinese–English and German–English
tasks show that the decomposition ap-
proach improves the baseline dependency-
to-string model significantly. Our sys-
tem achieves comparable results with the
state-of-the-art hierarchical phrase-based
model (HPB). Finally, when resorting to
phrasal rules, the dependency-to-string
model performs significantly better than
Moses HPB.

1 Introduction

Dependency structure models relations between
words in a sentence. Such relations indicate
the syntactic function of one word to another
word. As dependency structure directly encodes

semantic information and has the best inter-lingual
phrasal cohesion properties (Fox, 2002), it is be-
lieved to be helpful to translation.

In recent years, dependency structure has been
widely used in SMT. For example, Shen et al.
(2010) present a string-to-dependency model by
using the dependency fragments of the neighbour-
ing words on the target side, which makes it easier
to integrate a dependency language model. How-
ever such string-to-tree systems run slowly in cu-
bic time (Huang et al., 2006).

Another example is the treelet approach
(Menezes and Quirk, 2005; Quirk et al., 2005),
which uses dependency structure on the source
side. Xiong et al. (2007) extend the treelet ap-
proach to allow dependency fragments with gaps.
As the treelet is defined as an arbitrary connected
sub-graph, typically both substitution and inser-
tion operations are adopted for decoding. How-
ever, as translation rules based on the treelets
do not encode enough reordering information di-
rectly, another heuristic or separate reordering
model is usually needed to decide the best target
position of the inserted words.

Different from these works, Xie et al. (2011)
present a dependency-to-string (Dep2Str) model,
which extracts head-dependent (HD) rules from
word-aligned source dependency trees and target
strings. As this model specifies reordering infor-
mation in the HD rules, during translation only the
substitution operation is needed, because words
are reordered simultaneously with the rule being
applied. Meng et al. (2013) and Xie et al. (2014)
extend the model by augmenting HD rules with the
help of either constituent tree or fixed/float struc-
ture (Shen et al., 2010). Augmented rules are cre-
ated by the combination of two or more nodes in
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the HD fragment, and are capable of capturing
translations of non-syntactic phrases. However,
the decoder needs to be changed correspondingly
to handle these rules.

Attracted by the simplicity of the Dep2Str
model, in this paper we describe an easy way to
integrate the model into the popular translation
framework Moses (Koehn et al., 2007). In or-
der to share the same decoder with the conven-
tional syntax-based model, we present an algo-
rithm which transforms a dependency tree into a
corresponding constituent tree which encodes de-
pendency information in its non-leaf nodes and is
compatible with the Dep2Str model. In addition,
we present a method to decompose a dependency
structure (HD fragment) into smaller parts which
enrich translation rules and also allow us to cre-
ate a pseudo-forest as the input. “Pseudo” means
the forest is not obtained by combining several
trees from a parser, but rather that it is created
based on the decomposition of an HD fragment.
Large-scale experiments on Chinese–English and
German–English tasks show that the transforma-
tion and decomposition are effective for transla-
tion.

In the remainder of the paper, we first describe
the Dep2Str model (Section 2). Then we describe
how to transform a dependency tree into a con-
stituent tree which is compatible with the Dep2Str
model (Section 3). The idea of decomposition in-
cluding extracting sub-structural rules and creat-
ing a pseudo-forest is presented in Section 4. Then
experiments are conducted to compare translation
results of our approach with the state-of-the-art
HPB model (Section 5). We conclude in Section 6
and present avenues for future work.

2 Dependency-to-String Model

In the Dep2Str model (Xie et al., 2011), the HD
fragment is the basic unit. As shown in Figure
1, in a dependency tree, each non-leaf node is the
head of some other nodes (dependents), so an HD
fragment is composed of a head node and all of its
dependents.1

In this model, there are two kinds of rules for
translation. One is the head rule which specifies
the translation of a source word:

Juxing

举行→ holds
1In this paper, HD fragment of a node means the HD frag-

ment with this node as the head. Leaf nodes have no HD
fragments.

Boliweiya

玻利维亚/NN

Juxing

举行/VV

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NN

Xuanju

选举/NN

Figure 1: Example of a dependency tree, with
head-dependent fragments being indicated by dot-
ted lines.

The other one is the HD rule which consists of
three parts: the HD fragment s of the source
side (maybe containing variables), a target string
t (maybe containing variables) and a one-to-one
mapping φ from variables in s to variables in t, as
in:

s = (
Boliweiya

玻利维亚)
Juxing

举行 (x1:
Xuanju

选举 )

t = Bolivia holds x1

φ = {x1 :
Xuanju

选举→ x1}
where the underlined element denotes the leaf
node. Variables in the Dep2Str model are con-
strained either by words (like x1:选举) or Part-of-
Speech (POS) tags (like x1:NN).

Given a source sentence with a dependency tree,
a target string and the word alignment between the
source and target sentences, this model first an-
notates each node N with two annotations: head
span and dependency span.2 These two spans
specify the corresponding target position of a node
(by the head span) or sub-tree (by the depen-
dency span). After annotation, acceptable HD
fragments3 are utilized to induce lexicalized HD

2Some definitions: Closure clos(S) of set S is the small-
est superset of S in which the elements (integers) are contin-
uous. Let H be the set of indexes of target words aligned to
node N . Head span hsp(N) of node N is clos(H). Head
span hsp(N) is consistent if it does not overlap with head
span of any other node. Dependency span dsp(N) of node
N is the union of all consistent head spans in the subtree
rooted at N .

3A head-dependent fragment is acceptable if the head
span of the head node is consistent and none of the depen-
dency spans of its dependents is empty. We could see that
in an acceptable fragment, the head span of the head node
and dependency spans of dependents are not overlapped with
each other.
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          Boliweiya Juxing  Xuanju

Rule: (玻利维亚) 举行 (x1:选举) Bolivia holds x1

                       Xuanju

Rule: (x1:NN) 选举 x1 elections

           Guohui

Rule: 国会 parliament

           Zongtong Yu      Guohui

Rule:   (总统)   (与) x1:国会 presidential and x1

Boliweiya

玻利维亚/NN

Juxing

举行/VV

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NN

Xuanju

选举/NN

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NNBolivia holds elections

Bolivia holds

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NN

Xuanju

选举/NN

Bolivia holds presidential and parliament elections

Bolivia holds presidential and

Guohui

国会/NN elections

(a)

(b)

(c)

(d)

(e)

Figure 2: Example of a derivation. Underlined el-
ements indicate leaf nodes.

rules (the head node and leaf node are represented
by words, while the internal nodes are replaced by
variables constrained by word) and unlexicalized
HD rules (nodes are replaced by variables con-
strained by POS tags).

In HD rules, an internal node denotes the whole
sub-tree and is always a substitution site. The head
node and leaf nodes can be represented by either
words or variables. The target side corresponding
to an HD fragment and the mapping between vari-
ables are determined by the head span of the head
node and the dependency spans of the dependents.

A translation can be obtained by applying rules
to the input dependency tree. Figure 2 shows a
derivation for translating a Chinese sentence into
an English string. The derivation proceeds from
top to bottom. Variables in the higher-level HD
rules are substituted by the translations of lower
HD rules recursively.

The final translation is obtained by finding the
best derivation d∗ from all possible derivations
D which convert the source dependency structure
into a target string, as in Equation (1):

d∗ = argmax
d∈D

p(d) ≈ argmax
d∈D

∏
i

φi(d)
λi (1)

where φi(d) is the ith feature defined in the deriva-
tion d, and λi is the weight of the feature.

3 Transformation of Dependency Trees

In this section, we introduce an algorithm to trans-
form a dependency tree into a corresponding con-
stituent tree, where words of the source sentence
are leaf nodes and internal nodes are labelled with
head words or POS tags which are constrained by
dependency information. Such a transformation
makes it possible to use the traditional tree-based
decoder to translate a dependency tree, so we can
easily integrate the Dep2Str model into the popu-
lar framework Moses.

In a tree-based system, the CYK algorithm
(Kasami, 1965; Younger, 1967; Cocke and
Schwartz, 1970) is usually employed to translate
the input sentence with a tree structure. Each time
a continuous sequence of words (a phrase) in the
source sentence is translated. Larger phrases can
be translated by combining translations of smaller
phrases.

In a constituent tree, the source words are leaf
nodes and all non-leaf nodes covering a phrase are
labelled with categories which are usually vari-
ables defined in the tree-based model. For trans-
lating a phrase covered by a non-leaf node, the de-
coder for the constituent tree can easily find ap-
plied rules by directly matching variables in these
rules to tree nodes. However, in a dependency tree,
each internal node represents a word of the source
sentence. Variables covering a phrase cannot be
recognized directly. Therefore, to share the same
decoder with the constituent tree, the dependency
tree needs to be transformed into a constituent-
style tree.

As we described in Section 2, each variable in
the Dep2Str model represents a word (for the head
and leaf node) or a sequence of continuous words
(for the internal node). Thus it is intuitive to use
these variables to label non-leaf nodes of the pro-
duced constituent tree. Furthermore, in order to
preserve the dependency information of each HD
fragment, the created constituent node needs to be
constrained by the dependency information in the
HD fragment.

Our transformation algorithm is shown in Al-
gorithm 1, which proceeds recursively from top to
bottom on each HD fragment. There are a maxi-
mum of three types of nodes in an HD fragment:
head node, leaf nodes, and internal nodes. The
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Algorithm 1 Algorithm for transforming a depen-
dency tree to constituent tree. Dnode means node
in dependency tree. Cnode means node in con-
stituent tree.

function CNODE(label, span)
create a new Cnode CN
CN.label← label
CN.span← span

end function
function TRANSFNODE(Dnode H)

pos← POS of H
constrain pos . with H0, like: NN:H0

CNODE(label,H.position)
for each dependent N of H do

pos← POS of N
word← word of N
constrain pos . with Li or Ri, like: NN:R1

constrain word . with Li or Ri

if N is leaf then
CNODE(pos,N.position)

else
CNODE(word,H.span)
CNODE(pos,H.span)
TRANSFNODE(N )

end if
end for

end function

leaf nodes and internal nodes are dependents of
the head node. For the leaf node and head node,
we create constituent nodes that just cover one
word. For an internal node N , we create con-
stituent nodes that cover all the words in the sub-
tree rooted at N . In Algorithm 1, N.position
means the position of the word represented by the
node N . N.span denotes indexes of words cov-
ered by the sub-tree rooted at node N .

Taking the dependency tree in Figure 1 as an
example, its transformation result for integration
with Moses is shown in Figure 3. In the Dep2Str
model, leaf nodes can be replaced by a vari-
able constrained by its POS tag, so for leaf node

“
Zongtong

总统 ” in HD fragment “
Zongtong

(总统)
Yu

(与)
Guohui
国会”,

we create a constituent node “NN:L2”, where
“NN” is the POS tag and “L2” denotes that the leaf
node is the second left dependent of the head node.

For the internal node “
Guohui
国会” in the HD fragment

“
Guohui
(国会)

Xuanju

选举”, we create two constituent nodes

Boliweiya

玻利维亚
Juxing

举行
Zongtong

总统
Yu

与
Guohui

国会
Xuanju

选举

NN:L1 VV:H0 NN:L2 CC:L1 NN:H0NN:H0

NN:L1

NN:R1

S

Guohui

国会:L1

Xuanju

选举:R1

Figure 3: The corresponding constituent tree af-
ter transforming the dependency tree in Figure 1.
Note in our implementation, we do not distinguish
the leaf node and internal node of a dependency
tree in the produced constituent tree and induced
rules.

which cover all words in the dependency sub-tree
rooted at this node, with one of them labelled by
the word itself. Both nodes are constrained by de-
pendency information “L1”. After such a transfor-
mation is conducted on each HD fragment recur-
sively, we obtain a constituent tree.

This transformation makes our implementation
of the Dep2Str model easier, because we can use
the tree-to-string decoder in Moses. All we need
to do is to write a new rule extractor which extracts
head rules and HD rules (see Section 2) from the
word-aligned source dependency trees and target
strings, and represents these rules in the format de-
fined in Moses.4

Note that while this conversion is performed
on an input dependency tree during decoding, the
training part, including extracting rules and cal-
culating translation probabilities, does not change,
so the model is still a dependency-to-string model.

4Taking the rule in Section 2 as an example, its represen-
tation in Moses is:

s =
Boliweiya

玻利维亚
Juxing

举行
Xuanju

[选举:R1][X] [H1]

t = Bolivia holds
Xuanju

[选举:R1][X] [X]
φ = {2 → 2}

where “H1” denotes the position of the head word is 1, “R1”
indicates the first right dependent of the head word, “X” is the
general label for the target side and φ is the set of alignments
(the index-correspondences between s and t). The format has
been described in detail at http://www.statmt.org/
moses/?n=Moses.SyntaxTutorial.
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In addition, our transformation is different from
other works which transform a dependency tree
into a constituent tree (Collins et al., 1999; Xia and
Palmer, 2001). In this paper, the produced con-
stituent tree still preserves dependency relations
between words, and the phrasal structure is di-
rectly derived from the dependency structure with-
out refinement. Accordingly, the constituent tree
may not be a linguistically well-formed syntactic
structure. However, it is not a problem for our
model, because in this paper what matters is the
dependency structure which has already been en-
coded into the (ill-formed) constituent tree.

4 Decomposition of Dependency
Structure

The Dep2Str model treats a whole HD fragment
as the basic unit, which may result in a sparse-
data problem. For example, an HD fragment with
a verb as head typically consists of more than four
nodes (Xie et al., 2011). Thus in this section, in-
spired by the treelet approach, we describe a de-
composition method to make use of smaller frag-
ments.

In an HD fragment of a dependency tree, the
head determines the semantic category, while
the dependent gives the semantic specification
(Zwicky, 1985; Hudson, 1990). Accordingly, it
is reasonable to assume that in an HD fragment,
dependents could be removed or new dependents
could be attached as needed. Thus, in this paper,
we assume that a large HD fragment is formed by
attaching dependents to a small HD fragment. For
simplicity and reuse of the decoder, such an at-
tachment is carried out in one step. This means
that an HD fragment is decomposed into two
smaller parts in a possible decomposition. This
decomposition can be formulated as Equation (2):

Li · · ·L1HR1 · · ·Rj
= Lm · · ·L1HR1 · · ·Rn
+ Li · · ·Lm+1HRn+1 · · ·Rj

subject to

i ≥ 0, j ≥ 0
i ≥ m ≥ 0, j ≥ n ≥ 0
i+ j > m+ n > 0

(2)

whereH denotes the head node, Li denotes the ith
left dependent and Rj denotes the jth right depen-
dent. Figure 4 shows an example.

smart/JJ

very/RBShe/PRP

smart/JJ

is/VBZ

She/PRP

smart/JJ

is/VBZ very/RB

+

Figure 4: An example of decomposition on a head-
dependent fragment.

Algorithm 2 Algorithm for the decomposition of
an HD fragment into two sub-fragments. Index of
nodes in a fragment starts from 0.

function DECOMP(HD fragment frag)
fset ← {}
len← number of nodes in frag
hidx← the index of head node in frag
for s = 0 to hidx do

for e = hidx to len− 1 do
if 0 < e− s < len− 1 then

create sub-fragment core
core← nodes from s to e
add core to fset
create sub-fragment shell
initialize shell with head node
shell← nodes not in core
add shell to fset

end if
end for

end for
end function

Such a decomposition of an HD fragment en-
ables us to create translation rules extracted from
sub-structures and create a pseudo-forest from
the input dependency tree to make better use of
smaller rules.

4.1 Sub-structural Rules

In the Dep2Str model, rules are extracted on
an entire HD fragment. In this paper, when
the decomposition is considered, we also extract
sub-structural rules by taking each possible sub-
fragment as a new HD fragment. The algorithm
for recognizing the sub-fragments is shown in Al-
gorithm 2.

In Algorithm 2, we find all possible decom-
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positions of an HD fragment. Each decom-
position produces two sub-fragments: core and
shell. Both core and shell include the head node.
core contains the dependents surrounding the head
node, with the remaining dependents belonging to
shell. Taking Figure 4 as an example, the bottom-
right part is core, while the bottom-left part is
shell. Each core and shell could be seen as a
new HD fragment. Then HD rules are extracted as
defined in the Dep2Str model.

Note that different from the augmented HD
rules, where Meng et al. (2013) annotate rules with
combined variables and Xie et al. (2014) create
special rules from HD rules at runtime by com-
bining several nodes, our sub-structural rules are
standard HD rules, which are extracted from the
connected sub-structures of a larger HD fragment
and can be used directly in the model.

4.2 Pseudo-Forest

Although sub-structural rules are effective in our
experiments (see Section 5), we still do not use
them to their best advantage, because we only en-
rich smaller rules in our model. During decod-
ing, for a large input HD fragment, the model is
still more likely to resort to glue rules. However,
the idea of decomposition allows us to create a
pseudo-forest directly from the dependency tree to
alleviate this problem to some extent.

As described above, an HD fragment can be
seen as being created by combining two smaller
fragments. This means, for an HD fragment in the
input dependency tree, we can translate one of its
sub-fragments first, then obtain the whole trans-
lation by combining with translations of another
sub-fragment. From Algorithm 2, we know that
the sub-fragment core covers a continuous phrase
of the source sentence. Accordingly, we can trans-
late this fragment first and then build the whole
translation by translating another sub-fragment
shell. Figure 5 gives an example of translating
an HD fragment by combining the translations of
its sub-fragments.

Instead of taking the dependency tree as the in-
put and looking for all rules for translating sub-
fragments of a whole HD, we directly encode the
decomposition into the input dependency tree with
the result being a pseudo-forest. Based on the
transformation algorithm in Section 3, the pseudo-
forest can also be represented in the constituent-
tree style, as shown in Figure 6.

          Yu  Guohui

Rule: (与) 国会
and parliment

Zongtong

总统/NN
Yu

与/CC

Guohui

国会/NN

Zongtong

Rule: (总统) x1:NN
presidential x1

presidential and parliament

Zongtong

总统        and parliament

Guohui

国会/NN

(a)

(b)

(c)

Figure 5: An example of translating a large HD
fragment with the help of translations of its de-
composed fragments.

S

NN:L1 VV:H0

NN:L2 CC:L1 NN:H0NN:H0

NN:R1

Xuanju

选举:R1

NN:L1

Guohui

国会:L1

Boliweiya

玻利维亚
Juxing

举行
Zongtong

总统
Yu

与
Guohui

国会
Xuanju

选举

NN:L1

NN:H0

VV:H0

VV:H0

Figure 6: An example of a pseudo-forest for the
dependency tree in Figure 1. It is represented us-
ing the constituent-tree style described in Section
3. Edges drawn in the same type of line are owned
by the same sub-tree. Solid lines are shared edges.

In the pseudo-forest, we actually only create a
forest structure for each HD fragment. For ex-
ample, based on Figure 5, we create a constituent
node labelled with “NN:H0” that covers the sub-

fragment “
Yu

(与)
Guohui
国会”. In so doing, a new node la-

belled with “NN:L1” is also created, which covers

the Node “
Zongtong

总统 ”, because it is now the first left

dependent in the sub-fragment “
Zongtong

(总统)
Guohui
国会 ”.

Compared to the forest-based model (Mi et al.,
2008), such a pseudo-forest cannot efficiently re-
duce the influence of parsing errors, but it is easily
available and compatible with the Dep2Str Model.
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corpus sentences words(ch) words(en)
train 1,501,652 38,388,118 44,901,788
dev 878 22,655 26,905
MT04 1,597 43,719 52,705
MT05 1,082 29,880 35,326

Table 1: Chinese–English corpus. For the English
dev and test sets, words counts are averaged across
4 references.

corpus sentences words(de) words(en)
train 2,037,209 52,671,991 55,023,999
dev 3,003 72,661 74,753
test12 3,003 72,603 72,988
test13 3,000 63,412 64,810

Table 2: German–English corpus. In the dev and
test sets, there is only one English reference for
each German sentence.

5 Experiments

We conduct large-scale experiments to exam-
ine our methods on the Chinese–English and
German–English translation tasks.

5.1 Data
The Chinese–English training corpus is from
the LDC data, including LDC2002E18,
LDC2003E07, LDC2003E14, LDC2004T07,
the Hansards portion of LDC2004T08 and
LDC2005T06. We take NIST 2002 as the de-
velopment set to tune weights, and NIST 2004
(MT04) and NIST 2005 (MT05) as the test data to
evaluate the systems. Table 1 provides a summary
of the Chinese–English corpus.

The German–English training corpus is from
WMT 2014, including Europarl V7 and News
Commentary. News-test 2011 is taken as the de-
velopment set, while News-test 2012 (test12) and
News-test 2013 (test13) are our test sets. Table 2
provides a summary of the German–English cor-
pus.

5.2 Baseline
For both language pairs, we filter sentence pairs
longer than 80 words and keep the length ratio
less than or equal to 3. English sentences are to-
kenized with scripts in Moses. Word alignment is
performed by GIZA++ (Och and Ney, 2003) with
the heuristic function grow-diag-final-and (Koehn
et al., 2003). We use SRILM (Stolcke, 2002) to

Systems MT05
XJ 33.91
D2S 33.79

Table 3: BLEU score [%] of the Dep2Str model
before (XJ) and after (D2S) dependency tree be-
ing transformed. Systems are trained on a selected
1.2M Chinese–English corpus.

train a 5-gram language model on the Xinhua por-
tion of the English Gigaword corpus 5th edition
with modified Kneser-Ney discounting (Chen and
Goodman, 1996). Minimum Error Rate Train-
ing (Och, 2003) is used to tune weights. Case-
insensitive BLEU (Papineni et al., 2002) is used to
evaluate the translation results. Bootstrap resam-
pling (Koehn, 2004) is also performed to compute
statistical significance with 1000 iterations.

We implement the baseline Dep2Str model
in Moses with methods described in this paper,
which is denoted as D2S. The first experiment we
do is to sanity check our implementation. Thus
we take a separate system (denoted as XJ) for
comparison which implements the Dep2Str model
based on (Xie et al., 2011). As shown in Table
3, using the transformation of dependency trees,
the Dep2Str model implemented in Moses (D2S)
is comparable with the standard implementation
(XJ).

In the rest of this section, we describe exper-
iments which compare our system with Moses
HPB (default setting), and test whether our de-
composition approach improves performance over
the baseline D2S.

As described in Section 2, the Dep2Str model
only extracts phrase rules for translating a source
word (head rule). This model could be enhanced
by including phrase rules that cover more than one
source word. Thus we also conduct experiments
where phrase pairs5 are added into our system. We
set the length limit for phrase 7.

5.3 Chinese–English

In the Chinese–English translation task, the Stan-
ford Chinese word segmenter (Chang et al., 2008)
is used to segment Chinese sentences into words.
The Stanford dependency parser (Chang et al.,
2009) parses a Chinese sentence into the projec-
tive dependency tree.

5In this paper, the use of phrasal rules is similar to that of
the HPB model, so they can be handled by Moses directly.
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Systems MT04 MT05
Moses HPB 35.56 33.99
D2S 33.93 32.56

+pseudo-forest 34.28 34.10
+sub-structural rules 34.78 33.63

+pseudo-forest 35.46 34.13
+phrase 36.76* 34.67*

Table 4: BLEU score [%] of our method and
Moses HPB on the Chinese–English task. We use
bold font to indicate that the result of our method
is significantly better than D2S at p ≤ 0.01 level,
and * to indicate the result is significantly better
than Moses HPB at p ≤ 0.01 level.

Table 4 shows the translation results. We find
that the decomposition approach proposed in this
paper, including sub-structural rules and pseudo-
forest, improves the baseline system D2S sig-
nificantly (absolute improvement of +1.53/+1.57
(4.5%/4.8%, relative)). As a result, our sys-
tem achieves comparable (-0.1/+0.14) results with
Moses HPB. After including phrasal rules, our
system performs significantly better (absolute im-
provement of +1.2/+0.68 (3.4%/2.0%, relative))
than Moses HPB on both test sets.6

5.4 German–English

We tokenize German sentences with scripts in
Moses and use mate-tools7 to perform morpho-
logical analysis and parse the sentence (Bohnet,
2010). Then the MaltParser8 converts the parse
result into the projective dependency tree (Nivre
and Nilsson, 2005).

Experimental results in Table 5 show that incor-
porating sub-structural rules improves the base-
line D2S system significantly (absolute improve-
ment of +0.47/+0.63, (2.3%/2.8%, relative)), and
achieves a slightly better (+0.08) result on test12
than Moses HPB. However, in the German–
English task, the pseudo-forest produces a neg-
ative effect on the baseline system (-0.07/-0.45),
despite the fact that our system combining both
methods together is still better (+0.2/+0.11) than
the baseline D2S. In the end, by resorting to

6In our preliminary experiments, phrasal rules are also
able to significantly improve our system on their own on both
Chinese–English and German–English tasks, but the best per-
formance is achieved by combining them with sub-structural
rules and/or pseudo-forest.

7http://code.google.com/p/mate-tools/
8http://www.maltparser.org/

Systems test12 test13
Moses HPB 20.44 22.77
D2S 20.05 22.13

+pseudo-forest 19.98 21.68
+sub-structural rules 20.52 22.76

+phrase 20.91* 23.46*
+pseudo-forest 20.25 22.24

+phrase 20.75* 23.20*

Table 5: BLEU score [%] of our method and
Moses HPB on German–English task. We use
bold font to indicate that the result of our method
is significantly better than baseline D2S at p ≤
0.01 level, and * to indicate the result is signifi-
cantly better than Moses HPB at p ≤ 0.01 level.

Systems
# Rules

CE task DE task
Moses HPB 388M 684M
D2S 27M 41M

+sub-structural rules 116M 121M
+phrase 215M 274M

Table 6: The number of rules in different sys-
tems On the Chinese–English (CE) and German–
English (DE) corpus. Note that pseudo-forest (not
listed) does not influence the number of rules.

phrasal rules, our system achieves the best perfor-
mance overall which is significantly better (abso-
lute improvement of +0.47/+0.59 (2.3%/2.6%, rel-
ative)) than Moses HPB.

5.5 Discussion
Besides long-distance reordering (Xie et al.,
2011), another attraction of the Dep2Str model is
its simplicity. It can perform fast translation with
fewer rules than HPB. Table 6 shows the number
of rules in each system. It is easy to see that all of
our systems use fewer rules than HPB. However,
the number of rules is not proportional to transla-
tion quality, as shown in Tables 4 and 5.

Experiments on the Chinese–English corpus
show that it is feasible to translate the dependency
tree via transformation for the Dep2Str model de-
scribed in Section 2. Such a transformation causes
the model to be easily integrated into Moses with-
out making changes to the decoder, while at the
same time producing comparable results with the
standard implementation (shown in Table 3).

The decomposition approach proposed in this

129



paper also shows a positive effect on the base-
line Dep2Str system. Especially, sub-structural
rules significantly improve the Dep2Str model on
both Chinese–English and German–English tasks.
However, experiments show that the pseudo-forest
significantly improves the D2S system on the
Chinese–English data, while it causes translation
quality to decline on the German–English data.

Since using the pseudo-forest in our system is
aimed at translating larger HD fragments via split-
ting it into pieces, we hypothesize that when trans-
lating German sentences, the pseudo-forest ap-
proach more likely results in much worse rules be-
ing applied. This is probably due to the shorter
Mean Dependency Distance (MDD) and freer
word order of German sentences(Eppler, 2013).

6 Conclusion

In this paper, we present an open source mod-
ule which integrates a dependency-to-string model
into Moses.

This module transforms an input depen-
dency tree into a corresponding constituent tree
during decoding which makes Moses perform
dependency-based translation without necessitat-
ing any changes to the decoder. Experiments on
Chinese–English show that the performance if our
system is comparable with that of the standard
dependency-based decoder.

Furthermore, we enhance the model by de-
composing head-dependent fragments into smaller
pieces. This decomposition enriches the Dep2Str
model with more rules during training and allows
us to create a pseudo-forest as input instead of
a dependency tree during decoding. Large-scale
experiments on Chinese–English and German–
English tasks show that this decomposition can
significantly improve the baseline dependency-
to-string model on both language pairs. On
the German–English task, sub-structural rules are
more useful than the pseudo-forest input. In the
end, by resorting to phrasal rules, our system
performs significantly better than the hierarchical
phrase-based model in Moses.

Our implementation of the dependency-to-
string model with methods described in this pa-
per is available at http://computing.dcu.
ie/˜liangyouli/dep2str.zip. In the fu-
ture, we would like to conduct more experiments
on other language pairs to examine this model,
as well as reducing the restrictions on decompo-

sition.
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Abstract

Distributed vector representations of
words are useful in various NLP tasks.
We briefly review the CBOW approach
and propose a bilingual application of
this architecture with the aim to improve
consistency and coherence of Machine
Translation. The primary goal of the bilin-
gual extension is to handle ambiguous
words for which the different senses are
conflated in the monolingual setup.

1 Introduction

Machine Translation (MT) systems are nowadays
achieving a high-quality performance. However,
they are typically developed at sentence level
using only local information and ignoring the
document-level one. Recent work claims that
discourse-wide context can help to translate indi-
vidual words in a way that leads to more coherent
translations (Hardmeier et al., 2013; Hardmeier et
al., 2012; Gong et al., 2011; Xiao et al., 2011).

Standard SMT systems usen-gram models to
represent words in the target language. How-
ever, there are other word representation tech-
niques that use vectors of contextual information.
Recently, several distributed word representation
models have been introduced that have interesting
properties regarding to the semantic information
that they capture. In particular, we are interested
in theword2vec package available in (Mikolov et
al., 2013a). These models proved to be robust
and powerful for predicting semantic relations be-
tween words and even across languages. However,
they are not able to handle lexical ambiguity as
they conflate word senses of polysemous words
into one common representation. This limitation is
already discussed in (Mikolov et al., 2013b) and in
(Wolf et al., 2014), in which bilingual extensions
of the word2vec architecture are proposed. In con-
trast to their approach, we are not interested in

monolingual applications but instead like to con-
centrate directly on the bilingual case in connec-
tion with MT.

We built bilingual word representation mod-
els based on word-aligned parallel corpora by
an application of the Continuous Bag-of-Words
(CBOW) algorithm to the bilingual case (Sec-
tion 2). We made a twofold preliminary evalua-
tion of the acquired word-pair representations on
two different tasks (Section 3): predicting seman-
tically related words (3.1) and cross-lingual lexical
substitution (3.2). Section 4 draws the conclusions
and sets the future work in a direct application of
these models to MT.

2 Semantic Models using CBOW

The basic architecture that we use to build our
models is CBOW (Mikolov et al., 2013a). The
algorithm uses a neural network (NN) to predict
a word taking into account its context, but without
considering word order. Despite its drawbacks, we
chose to use it since we presume that the transla-
tion task applies the same strategy as the CBOW
architecture, i.e., from a set of context words try to
predict a translation of a specific given word.

In the monolingual case, the NN is trained using
a monolingual corpus to obtain the corresponding
projection matrix that encloses the vector repre-
sentations of the words. In order to introduce the
semantic information in a bilingual scenario, we
use a parallel corpus and automatic word align-
ment to extract a training corpus of word pairs:
(wi,S |wi,T ). This approach is different from (Wolf
et al., 2014) who build an independent model for
each language. With our method, we try to cap-
ture simultaneously the semantic information as-
sociated to the source word and the information
in the target side of the translation. In this way,
we hope to better capture the semantic informa-
tion that is implicitly given by translating a text.
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Model Accuracy Known words
monoen 32.47 % 64.67 %
monoes 10.24 % 44.96 %
bi en-es 23.68 % 13.74 %

Table 1: Accuracy on the Word Relationship set.

3 Experiments

The semantic models are built using a combination
of freely available corpora for English and Span-
ish (EuropalV7, United Nations and Multilingual
United Nations, and Subtitles2012). They can
be found in the Opus site (Tiedemann, 2012).We
trained vectors to represent word pairs forms us-
ing this corpora with theword2vec CBOW imple-
mentation. We built a training set of almost600
million words and used600-dimension vectors in
the training. Regarding to the alignments, we only
used word-to-word ones to avoid noise.

3.1 Accuracy of the Semantic Model

We first evaluate the quality of the models based
on the task of predicting semantically related
words. A Spanish native speaker built the bilin-
gual test set similarly to the process done to the
training data from a list of19, 544 questions intro-
duced by (Mikolov et al., 2013c). In our bilingual
scenario, the task is to predict a pair of words given
two pairs of related words. For instance, given the
pair Athens|Atenas Greece|Grecia and
the questionLondon|Londres, the task is to
predictEngland|Inglaterra.

Table1 shows the results, both overall accuracy
and accuracy over the known words for the mod-
els. Using the first30, 000 entries of the model
(the most frequent ones), we obtain32% of ac-
curacy for English (monoen) and10% for Span-
ish (monoes). We chose these parameters for our
system to obtain comparable results to the ones
in (Mikolov et al., 2013a) for a CBOW architec-
ture but trained with783 million words (50.4%).
Decay for the model in Spanish can be due to the
fact that it was built from automatic translations.
In the bilingual case (bien-es), the accuracy is
lower than for English probably due to the noise
in translations and word alignment.

3.2 Cross-Lingual Lexical Substitution

Another way to evaluate the semantic models is
through the effect they have in translation. We im-
plemented the Cross-Lingual Lexical Substitution
task carried out in SemEval-2010 (Task2, 2010)

and applied it to a test set of news data from the
News Commentary corpus of 2011.

We identify those content words which are
translated in more than one way by a baseline
translation system (Moses trained with Europarl
v7). Given one of these content words, we take the
two previous and two following words and look
for their vector representations using our bilingual
models. We compute a linear combination of these
vectors to obtain a context vector. Then, to chose
the best translation option, we calculate a score
based on the similarity among the vector of every
possible translation option seen in the document
and the context vector.

In average there are615 words per document
within the test set and7% are translated in more
than one way by the baseline system. Our bilin-
gual models know in average87.5% of the words
and 83.9% of the ambiguous ones, so although
there is a good coverage for this test set, still, some
of the candidates cannot be retranslated or some
of the options cannot be used because they are
missing in the models. The accuracy obtained af-
ter retranslation of the known ambiguous words
is 62.4% and this score is slightly better than the
result obtained by using the most frequent transla-
tion for ambiguous words (59.8%). Even though
this improvement is rather modest, it shows poten-
tial benefits of our model in MT.

4 Conclusions

We implemented a new application of word vec-
tor representations for MT. The system uses word
alignments to build bilingual models with the final
aim to improve the lexical selection for words that
can be translated in more than one sense.

The models have been evaluated regarding their
accuracy when trying to predict related words
(Section 3.1) and also regarding its possible effect
within a translation system (Section 3.2). In both
cases one observes that the quality of the transla-
tion and alignments previous to building the se-
mantic models are bottlenecks for the final perfor-
mance: part of the vocabulary, and therefore trans-
lation pairs, are lost in the training process.

Future work includes studying different kinds
of alignment heuristics. We plan to develop
new features based on the semantic models to
use them inside state-of-the-art SMT systems like
Moses (Koehn et al., 2007) or discourse-oriented
decoders like Docent (Hardmeier et al., 2013).

133



References

Z. Gong, M. Zhang, and G. Zhou. 2011. Cache-based
document-level statistical machine translation. In
Proc. of the 2011 Conference on Empirical Methods
in NLP, pages 909–919, UK.

C. Hardmeier, J. Nivre, and J. Tiedemann. 2012.
Document-wide decoding for phrase-based statisti-
cal machine translation. InProc. of the Joint Con-
ference on Empirical Methods in NLP and Compu-
tational Natural Language Learning, pages 1179–
1190, Korea.

C. Hardmeier, S. Stymne, J. Tiedemann, and J. Nivre.
2013. Docent: A document-level decoder for
phrase-based statistical machine translation. In
Proc. of the 51st ACL Conference, pages 193–198,
Bulgaria.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: open source toolkit for
statistical machine translation. InProc. of the 45th
ACL Conference, pages 177–180, Czech Republic.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013a.
Efficient estimation of word representations in vec-
tor space. InProceedings of Workshop at ICLR.
http://code.google.com/p/word2vec.

T. Mikolov, Q. V. Le, and I. Sutskever. 2013b. Ex-
ploiting similarities among languages for machine
translation. InarXiv.

T. Mikolov, I. Sutskever, G. Corrado, and J. Dean.
2013c. Distributed representations of words and
phrases and their compositionality. InProceedings
of NIPS.

Task2. 2010. Cross-lingual lexi-
cal substitution task, semeval-2010.
http://semeval2.fbk.eu/semeval2.php?location=tasksT24.

J. Tiedemann. 2009. News from opus - a collection
of multilingual parallel corpora with tools and in-
terfaces. InN. Nicolov and K. Bontcheva and G.
Angelova and R. Mitkov (eds.) Recent Advances in
Natural Language Processing (vol V), pages 237–
248, Amsterdam/Philadelphia. John Benjamins.

J. Tiedemann. 2012. Parallel data, tools and interfaces
in opus. InProceedings of the 8th International
Conference on Language Resources and Evaluation
(LREC’2012). http://opus.lingfil.uu.se/.

L. Wolf, Y. Hanani, K. Bar, and N. Derschowitz. 2014.
Joint word2vec networks for bilingual semantic rep-
resentations. InPoster sessions at CICLING.

T. Xiao, J. Zhu, S. Yao, and H. Zhang. 2011.
Document-level consistency verification in machine
translation. InProc. of Machine Translation Summit
XIII, pages 131–138, China.

134



Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 135–137,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Context Sense Clustering for Translation

João Casteleiro
Universidade Nova de Lisboa
Departamento de Informática
2829-516 Caparica, Portugal
casteleiroalves@gmail.com

Gabriel Lopes
Universidade Nova de Lisboa
Departamento de Informática
2829-516 Caparica, Portugal

gpl@fct.unl.pt

Joaquim Silva
Universidade Nova de Lisboa
Departamento de Informática
2829-516 Caparica, Portugal

jfs@fct.unl.pt

Extended Abstract

Word sense ambiguity is present in all words 
with more than one meaning in several natural 
languages and is a fundamental characteristic of 
human language. This has consequences in trans-
lation as it is necessary to find the right sense and 
the correct translation for each word. For this 
reason, the English word fair can mean reasona-
ble or market such as plant also can mean factory
or herb.

The disambiguation problem has been recog-
nize as a major problem in natural languages 
processing research. Several words have several 
meanings or senses. The disambiguation task 
seeks to find out which sense of an ambiguous 
word is invoked in a particular use of that word. 
A system for automatic translation from English
to Portuguese should know how to translate the 
word bank as banco (an institution for receiving, 
lending, exchanging, and safeguarding money), 
and as margem (the land alongside or sloping 
down to a river or lake), and also should know 
that the word banana may appear in the same 
context as acerola and that these two belongs to 
hyperonym fruit. Whenever a translation systems 
depends on the meaning of the text being pro-
cessed, disambiguation is beneficial or even nec-
essary. Word Sense Disambiguation is thus es-
sentially a classification problem; given a word X
and an inventory of possible semantic tags for 
that word that might be translation, we seek 
which tag is appropriate for each individual in-
stance of that word in a particularly context.

In recent years research in the field has 
evolved in different directions. Several studies 
that combine clustering processes with word 
senses has been assessed by several. Apidianaki 
in (2010) presents a clustering algorithm for 
cross-lingual sense induction that generates bi-
lingual semantic inventories from parallel corpo-

ra. Li and Church in (2007) state that should not 
be necessary to look at the entire corpus to know 
if two words are strongly associated or not, thus, 
they proposed an algorithm for efficiently com-
puting word associations. In (Bansal et al., 
2012), authors proposed an unsupervised method 
for clustering translations of words through 
point-wise mutual information, based on a mono-
lingual and a parallel corpora. Gamallo, Agustini 
and Lopes presented in (2005) an unsupervised 
strategy to partially acquire syntactic-semantic 
requirements of nouns, verbs and adjectives from 
partially parsed monolingual text corpora. The 
goal is to identify clusters of similar positions by 
identifying the words that define their require-
ments extensionally. In (1991) Brown et al. de-
scribed a statistical technique for assigning sens-
es to words based on the context in which they 
appear. Incorporating the method in a machine 
translation system, they have achieved to signifi-
cantly reduce translation error rate. Tufis et al. in
(2004) presented a method that exploits word 
clustering based on automatic extraction of trans-
lation equivalents, being supported by available 
aligned wordnets. In (2013), Apidianaki de-
scribed a system for SemEval-2013 Cross-
lingual Word Sense Disambiguation task, where 
word senses are represented by means of transla-
tion clusters in a cross-lingual strategy.

In this article, a Sense Disambiguation ap-
proach, using Context Sense Clustering, within a 
mono-lingual strategy of neighbor features is 
proposed. We described a semi-supervised meth-
od to classify words based on clusters of contexts 
strongly correlated. For this purpose, we used a 
covariance-based correlation measure (Equation 
1). Covariance (Equation 2) measure how much 
two random variables change together. If the 
values of one variable (sense x) mainly corre-
spond to the values of the other variable (sense 
y), the variables tend to show similar behavior 
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and the covariance is positive. In the opposite 
case, covariance is negative. Note that this pro-
cess is computationally heavy. The system needs 
to compute all relations between all features of 
all left words. If the number of features is very 
large, the processing time increases proportional-
ly.

,ݔ) ݎݎܥ (ݕ = ,ݔ )ݒܥ  ( ݕ
ඥݔ)ݒܥ, (ݔ + ඥݕ)ݒܥ, (ݕ

(1)

,ݔ)ݒܥ (ݕ = 1݉ − 1  ,ݔ)ݐݏ݅݀) ݂). ,ݕ)ݐݏ݅݀ ݂))


ୀଵ
 

(2)

Our goal is to join similar senses of the same 
ambiguous word in the same cluster, based on 
features correlation. Through the analysis of cor-
relation data, we easily induce sense relations. In 
order to streamline the task of creating clusters, 
we opted to use WEKA tool (Hall et al., 2009)
with X-means (Pelleg et al., 2000) algorithm.

Clusters
fructose, glucose
football, chess
title, appendix, annex
telephone, fax
liver, hepatic, kidney
aquatic, marine
disciplinary, infringement, criminal

Table 1. Well-formed resulting clusters

In order to determine the consistence of the 
obtained clusters, all of these were evaluated 
with V-measure. V-measure introduce two crite-
ria presented in (Rosenberg and Hirschberg, 
2007), homogeneity (h) and completeness (c). A 
clustering process is considered homogeneously 
well-formed if all of its clusters contain only data 
points which are members of a single class. 
Comparatively, a clustering result satisfies com-
pleteness if all data points that are members of a 
given class are elements of the same cluster.

Analysing the results of context sense clusters 
obtained (Table 1) we easily understand that al-

most all clusters are generally well formed, get-
ting a final V-measure average rating of 67%.

Finally, in order to train a classifier we choose 
to use a training data set with 60 well formed 
clusters (with V-measure value ranging between 
0.9 and 1). Our testing data set is composed by 
60 words related to the clusters but which are not 
contained there. The classifier used was a Sup-
port Vector Machine (SVM) (2011). The kernel 
type applied was the Radial Basis Function
(RBF). This kernel non linearly maps samples 
into a higher dimensional space, so it can handle 
the case when the relation between class labels 
and attributes is nonlinear, that is the case. Each 
word of training and testing data sets were en-
coded according the frequency in a corpora of all 
characteristics contained in the clusters. Our pur-
pose was to classify each one of the new poten-
tial ambiguous words, and fit it in the corre-
sponding cluster (Table 2 and Table 3).

Test Words Label assigned by (SVM)
Fruit Cluster 29
Infectious Cluster 7
Kiwi Cluster 60
Back Cluster 57
Legislative Cluster 34
Grape Cluster 29
Russian Cluster 59

Table 2. Results generated by (SVM)

Clusters Content of Clusters 
Cluster 7 Viral, contagious, hepatic
Cluster 29 Banana, apple
Cluster 34 Legal, criminal, infringement
Cluster 57 Cervical, lumbar
Cluster 59 French, Italian, Belgian, German
Cluster 60 Thyroid, mammary

Table 3. Cluster correspondence

The obtained results showed that almost all 
words were tagged in the corresponding cluster. 
Evaluating system accuracy we obtained an av-
erage value of 78%, which means that from the 
60 tested words, 47 words were assigned to the 
corresponding context cluster.
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Abstract

Automatically evaluating word order of
MT system output at the sentence-level is
challenging. At the sentence-level, ngram
counts are rather sparse which makes it
difficult to measure word order quality ef-
fectively using lexicalized units. Recent
approaches abstract away from lexicaliza-
tion by assigning a score to the permuta-
tion representing how word positions in
system output move around relative to a
reference translation. Metrics over per-
mutations exist (e.g., Kendal tau or Spear-
man Rho) and have been shown to be
useful in earlier work. However, none
of the existing metrics over permutations
groups word positions recursively into
larger phrase-like blocks, which makes it
difficult to account for long-distance re-
ordering phenomena. In this paper we ex-
plore novel metrics computed over Per-
mutation Forests (PEFs), packed charts
of Permutation Trees (PETs), which are
tree decompositions of a permutation into
primitive ordering units. We empirically
compare PEFs metric against five known
reordering metrics on WMT13 data for ten
language pairs. The PEFs metric shows
better correlation with human ranking than
the other metrics almost on all language
pairs. None of the other metrics exhibits
as stable behavior across language pairs.

1 Introduction

Evaluating word order (also reordering) in MT is
one of the main ingredients in automatic MT eval-
uation, e.g., (Papineni et al., 2002; Denkowski

and Lavie, 2011). To monitor progress on eval-
uating reordering, recent work explores dedicated
reordering evaluation metrics, cf. (Birch and Os-
borne, 2011; Isozaki et al., 2010; Talbot et al.,
2011). Existing work computes the correlation be-
tween the ranking of the outputs of different sys-
tems by an evaluation metric to human ranking, on
e.g., the WMT evaluation data.

For evaluating reordering, it is necessary to
word align system output with the correspond-
ing reference translation. For convenience, a 1:1
alignment (a permutation) is induced between the
words on both sides (Birch and Osborne, 2011),
possibly leaving words unaligned on either side.
Existing work then concentrates on defining mea-
sures of reordering over permutations, cf. (Lap-
ata, 2006; Birch and Osborne, 2011; Isozaki et al.,
2010; Talbot et al., 2011). Popular metrics over
permutations are: Kendall’s tau, Spearman, Ham-
ming distance, Ulam and Fuzzy score. These met-
rics treat a permutation as a flat sequence of inte-
gers or blocks, disregarding the possibility of hier-
archical grouping into phrase-like units, making it
difficult to measure long-range order divergence.
Next we will show by example that permutations
also contain latent atomic units that govern the re-
cursive reordering of phrase-like units. Account-
ing for these latent reorderings could actually be
far simpler than the flat view of a permutation.

Isozaki et al. (2010) argue that the conventional
metrics cannot measure well the long distance
reordering between an English reference sentence
“A because B” and a Japanese-English hypothesis
translation “B because A”, where A and B are
blocks of any length with internal monotonic
alignments. In this paper we explore the idea of
factorizing permutations into permutation-trees
(PETs) (Gildea et al., 2006) and defining new
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〈2,4,1,3〉

2 〈1,2〉

4 〈1,2〉

5 6

1 3

Figure 1: A permutation tree for 〈2, 4, 5, 6, 1, 3〉

tree-based reordering metrics which aims at
dealing with this type of long range reorderings.
For the Isozaki et al. (2010) Japanese-English
example, there are two PETs (when leaving A and
B as encapsulated blocks):

〈2,1〉

A 〈2,1〉

because B

〈2,1〉

〈2,1〉

A because

B

Our PET-based metrics interpolate the scores over
the two inversion operators 〈2, 1〉 with the internal
scores for A and B, incorporating a weight
for subtree height. If both A and B are large
blocks, internally monotonically (also known as
straight) aligned, then our measure will not count
every single reordering of a word in A or B,
but will consider this case as block reordering.
From a PET perspective, the distance of the
reordering is far smaller than when looking at a
flat permutation. But does this hierarchical view
of reordering cohere better with human judgement
than string-based metrics?

The example above also shows that a permuta-
tion may factorize into different PETs, each corre-
sponding to a different segmentation of a sentence
pair into phrase-pairs. In this paper we introduce
permutation forests (PEFs); a PEF is a hypergraph
that compactly packs the set of PETs that factorize
a permutation.

There is yet a more profoud reasoning behind
PETs than only accounting for long-range reorder-
ings. The example in Figure 1 gives the flavor of
PETs. Observe how every internal node in this
PET dominates a subtree whose fringe1 is itself a
permutation over an integer sub-range of the orig-
inal permutation. Every node is decorated with a
permutation over the child positions (called oper-
ator). For example 〈4, 5, 6〉 constitutes a contigu-
ous range of integers (corresponding to a phrase
pair), and hence will be grouped into a subtree;

1Ordered sequence of leaf nodes.

which in turn can be internally re-grouped into a
binary branching subtree. Every node in a PET is
minimum branching, i.e., the permutation factor-
izes into a minimum number of adjacent permuta-
tions over integer sub-ranges (Albert and Atkin-
son, 2005). The node operators in a PET are
known to be the atomic building blocks of all per-
mutations (called primal permutations). Because
these are building atomic units of reordering, it
makes sense to want to measure reordering as a
function of the individual cost of these operators.
In this work we propose to compute new reorder-
ing measures that aggregate over the individual
node-permutations in these PETs.

While PETs where exploited rather recently for
extracting features used in the BEER metric sys-
tem description (Stanojević and Sima’an, 2014) in
the official WMT 2014 competition, this work is
the first to propose integral recursive metrics over
PETs and PEFs solely for measuring reordering
(as opposed to individual non-recursive features in
a full metric that measures at the same time both
fluency and adequacy). We empirically show that
a PEF-based evaluation measure correlates better
with human rankings than the string-based mea-
sures on eight of the ten language pairs in WMT13
data. For the 9th language pair it is close to best,
and for the 10th (English-Czech) we find a likely
explanation in the Findings of the 2013 WMT (Bo-
jar et al., 2013). Crucially, the PEF-based mea-
sure shows more stable ranking across language
pairs than any of the other measures. The metric
is available online as free software2.

2 Measures on permutations: Baselines

In (Birch and Osborne, 2010; Birch and Osborne,
2011) Kendall’s tau and Hamming distance are
combined with unigram BLEU (BLEU-1) leading
to LRscore showing better correlation with human
judgment than BLEU-4. Birch et al. (2010) ad-
ditionally tests Ulam distance (longest common
subsequence – LCS – normalized by the permu-
tation length) and the square root of Kendall’s tau.
Isozaki et al. (2010) presents a similar approach
to (Birch and Osborne, 2011) additionally test-
ing Spearman rho as a distance measure. Talbot
et al. (2011) extracts a reordering measure from
METEOR (Denkowski and Lavie, 2011) dubbed
Fuzzy Reordering Score and evaluates it on MT
reordering quality.

2https://github.com/stanojevic/beer
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For an evaluation metric we need a function
which would have the standard behaviour of evalu-
ation metrics - the higher the score the better. Bel-
low we define the baseline metrics that were used
in our experiments.

Baselines A permutation over [1..n] (subrange
of the positive integers where n > 1) is a bijective
function from [1..n] to itself. To represent permu-
tations we will use angle brackets as in 〈2, 4, 3, 1〉.
Given a permutation π over [1..n], the notation πi
(1 ≤ i ≤ n) stands for the integer in the ith posi-
tion in π; π(i) stands for the index of the position
in π where integer i appears; and πji stands for the
(contiguous) sub-sequence of integers πi, . . . πj .

The definitions of five commonly used met-
rics over permutations are shown in Figure 2.
In these definitions, we use LCS to stand for
Longest Common Subsequence, and Kronecker
δ[a] which is 1 if (a == true) else zero, and
An1 = 〈1, · · · , n〉 which is the identity permuta-
tion over [1..n]. We note that all existing metrics

kendall(π) =

∑n−1
i=1

∑n
j=i+1 δ[π(i) < π(j)]
(n2 − n)/2

hamming(π) =
∑n

i=1 δ[πi == i]
n

spearman(π) = 1− 3
∑n

i=1(πi − i)2
n(n2 − 1)

ulam(π) =
LCS(π,An1 )− 1

n− 1

fuzzy(π) = 1− c− 1
n− 1

where c is # of monotone sub-permutations

Figure 2: Five commonly used metrics over per-
mutations

are defined directly over flat string-level permuta-
tions. In the next section we present an alternative
view of permutations are compositional, recursive
tree structures.

3 Measures on Permutation Forests

Existing work, e.g., (Gildea et al., 2006), shows
how to factorize any permutation π over [1..n]
into a canonical permutation tree (PET). Here we
will summarize the relevant aspects and extend

PETs to permutation forests (PEFs).
A non-empty sub-sequence πji of a permutation

π is isomorphic with a permutation over [1..(j −
i + 1)] iff the set {πi, . . . , πj} is a contiguous
range of positive integers. We will use the term
a sub-permutation of π to refer to a subsequence
of π that is isomorphic with a permutation. Note
that not every subsequence of a permutation π is
necessarily isomorphic with a permutation, e.g.,
the subsequence 〈3, 5〉 of 〈1, 2, 3, 5, 4〉 is not a
sub-permutation. One sub-permutation π1 of π is
smaller than another sub-permutation π2 of π iff
every integer in π1 is smaller than all integers in
π2. In this sense we can put a full order on non-
overlapping sub-permutations of π and rank them
from the smallest to the largest.

For every permutation π there is a minimum
number of adjacent sub-permutations it can be fac-
torized into (see e.g., (Gildea et al., 2006)). We
will call this minimum number the arity of π and
denote it with a(π) (or simply a when π is un-
derstood from the context). For example, the arity
of π = 〈5, 7, 4, 6, 3, 1, 2〉 is a = 2 because it can
be split into a minimum of two sub-permutations
(Figure 3), e.g. 〈5, 7, 4, 6, 3〉 and 〈1, 2〉 (but alter-
natively also 〈5, 7, 4, 6〉 and 〈3, 1, 2〉). In contrast,
π = 〈2, 4, 1, 3〉 (also known as the Wu (1997) per-
mutation) cannot be split into less than four sub-
permutations, i.e., a = 4. Factorization can be
applied recursively to the sub-permutations of π,
resulting in a tree structure (see Figure 3) called a
permutation tree (PET) (Gildea et al., 2006; Zhang
and Gildea, 2007; Maillette de Buy Wenniger and
Sima’an, 2011).

Some permutations factorize into multiple alter-
native PETs. For π = 〈4, 3, 2, 1〉 there are five
PETs shown in Figure 3. The alternative PETs
can be packed into an O(n2) permutation forest
(PEF). For many computational purposes, a sin-
gle canonical PET is sufficient, cf. (Gildea et al.,
2006). However, while different PETs of π exhibit
the same reordering pattern, their different binary
branching structures might indicate important dif-
ferences as we show in our experiments.

A permutation forest (akin to a parse forest)
F for π (over [1..n]) is a data structure consisting
of a subset of {[[i, j, Iji , Oji ]] | 0 ≤ i ≤ j ≤ n},
where Iji is a (possibly empty) set of inferences
(sets of split points) for πji+1 and Oji is an oper-
ator shared by all inferences of πji+1. If πji+1 is
a sub-permutation and it has arity a ≤ (j − (i +
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〈2,1〉

〈2,1〉

〈2,4,1,3〉

5 7 4 6

3

〈1,2〉

1 2

〈2,1〉

4 〈2,1〉

3 〈2,1〉

2 1

〈2,1〉

4 〈2,1〉

〈2,1〉

3 2

1

〈2,1〉

〈2,1〉

4 3

〈2,1〉

2 1

〈2,1〉

〈2,1〉

〈2,1〉

4 3

2

1

〈2,1〉

〈2,1〉

4 〈2,1〉

3 2

1

Figure 3: A PET for π = 〈5, 7, 4, 6, 3, 1, 2〉. And five different PETs for π = 〈4, 3, 2, 1〉.

1)), then each inference consists of a a − 1-tuple
[l1, . . . , la−1], where for each 1 ≤ x ≤ (a− 1), lx
is a “split point” which is given by the index of the
last integer in the xth sub-permutation in π. The
permutation of the a sub-permutations (“children”
of πji+1) is stored in Oji and it is the same for all
inferences of that span (Zhang et al., 2008).

〈2,1〉

4
3 2 1

〈2,1〉

4 3 2 1

〈2,1〉

4 3 2
1

Figure 4: The factorizations of π = 〈4, 3, 2, 1〉.

Let us exemplify the inferences on π =
〈4, 3, 2, 1〉 (see Figure 4) which factorizes into
pairs of sub-permutations (a = 2): a split point
can be at positions with index l1 ∈ {1, 2, 3}.
Each of these split points (factorizations) of π will
be represented as an inference for the same root
node which covers the whole of π (placed in entry
[0, 4]); the operator of the inference here consists
of the permutation 〈2, 1〉 (swapping the two ranges
covered by the children sub-permutations) and in-
ference consists of a− 1 indexes l1, . . . , la−1 sig-
nifying the split points of π into sub-permutations:
since a = 2 for π, then a single index l1 ∈
{1, 2, 3} is stored with every inference. For the
factorization ((4, 3), (2, 1)) the index l1 = 2 sig-
nifying that the second position is a split point into
〈4, 3〉 (stored in entry [0, 2]) and 〈2, 1〉 (stored in
entry [2, 4]). For the other factorizations of π sim-
ilar inferences are stored in the permutation forest.

Figure 5 shows a simple top-down factorization
algorithm which starts out by computing the ar-
ity a using function a(π). If a = 1, a single leaf
node is stored with an empty set of inferences. If
a > 1 then the algorithm computes all possible
factorizations of π into a sub-permutations (a se-
quence of a− 1 split points) and stores their infer-
ences together as Iji and their operator Oji asso-
ciated with a node in entry [[i, j, Iji , Oji ]]. Subse-
quently, the algorithm applies recursively to each
sub-permutation. Efficiency is a topic beyond

the scope of this paper, but this naive algorithm
has worst case time complexity O(n3), and when
computing only a single canonical PET this can be
O(n) (see e.g., (Zhang and Gildea, 2007)).

Function PEF (i, j, π,F);
# Args: sub-perm. π over [i..j] and forest F
Output: Parse-Forest F(π) for π;

begin
if ([[i, j, ?]] ∈ F) then return F ; #memoization
a := a(π);
if a = 1 return F := F ∪ {[[i, j, ∅]]};
For each set of split points {l1, . . . , la−1} do

Oji := RankListOf(πl1(l0+1), π
l2
(l1+1), . . . , π

la
(la−1+1));

Iji := Iji ∪ [l1, . . . , la−1];
For each πv ∈ {πl1l0+1, π

l2
(l1+1), . . . , π

la
(la−1+1)} do

F := F ∪ PermForest(πv);
F := F ∪ {[[i, j, Iji , Oji ]]};
Return F ;
end;

Figure 5: Pseudo-code of permutation-forest fac-
torization algorithm. Function a(π) returns the ar-
ity of π. Function RankListOf(r1, . . . , rm) re-
turns the list of rank positions (i.e., a permutation)
of sub-permutations r1, . . . , rm after sorting them
smallest first. The top-level call to this algorithm
uses π, i = 0, j = n and F = ∅.

Our measure (PEFscore) uses a function
opScore(p) which assigns a score to a given oper-
ator, which can be instantiated to any of the exist-
ing scoring measures listed in Section 2, but in this
case we opted for a very simple function which
gives score 1 to monotone permutation and score
0 to any other permutation.

Given an inference l ∈ Iji where l =
[l1, . . . , la−1], we will use the notation lx to refer
to split point lx in l where 1 ≤ x ≤ (a − 1), with
the convenient boundary assumption that l0 = i
and la = j.
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PEFscore(π) = φnode(0, n, PEF (π))

φnode(i, j,F) =



if (Iji == ∅) then 1
else if (a(πji+1) = j − i) then opScore(Oji )

else β × opScore(Oji ) + (1− β)×
∑

l∈Ij
i

φinf (l,F ,a(πj
i+1))

|Ij
i |︸ ︷︷ ︸

Avg. inference score over Ij
i

φinf (l,F , a) =
∑a

x=1 δ[lx−lx−1>1]×φnode(l(x−1),lx,F)∑a
x=1 δ[lx−l(x−1)>1]︸ ︷︷ ︸

Avg. score for non-terminal children

opScore(p) =
{

if (p == 〈1, 2〉) then 1
else 0

Figure 6: The PEF Score

The PEF-score, PEFscore(π) in Figure 6,
computes a score for the single root node
[[0, n, In0 , On0 ]]) in the permutation forest. This
score is the average inference score φinf over all
inferences of this node. The score of an inference
φinf interpolates (β) between the opScore of the
operator in the current span and (1− β) the scores
of each child node. The interpolation parameter β
can be tuned on a development set.

The PET-score (single PET) is a simplification
of the PEF-score where the summation over all in-
ferences of a node

∑
l∈Ij

i
in φnode is replaced by

“Select a canonical l ∈ Iji ”.

4 Experimental setting

Data The data that was used for experiments are
human rankings of translations from WMT13 (Bo-
jar et al., 2013). The data covers 10 language pairs
with a diverse set of systems used for translation.
Each human evaluator was presented with 5 differ-
ent translations, source sentence and a reference
translation and asked to rank system translations
by their quality (ties were allowed).3

Meta-evaluation The standard way for doing
meta-evaluation on the sentence level is with
Kendall’s tau correlation coefficient (Callison-
Burch et al., 2012) computed on the number of
times an evaluation metric and a human evaluator
agree (and disagree) on the rankings of pairs of

3We would like to extend our work also to English-
Japanese but we do not have access to such data at the mo-
ment. In any case, the WMT13 data is the largest publicly
available data of this kind.

translations. We extract pairs of translations from
human evaluated data and compute their scores
with all metrics. If the ranking assigned by a met-
ric is the same as the ranking assigned by a hu-
man evaluator then that pair is considered concor-
dant, otherwise it is a discordant pair. All pairs
which have the same score by the metric or are
judged as ties by human evaluators are not used
in meta-evaluation. The formula that was used for
computing Kendall’s tau correlation coefficient is
shown in Equation 1. Note that the formula for
Kendall tau rank correlation coefficient that is used
in meta-evaluation is different from the Kendall
tau similarity function used for evaluating permu-
tations. The values that it returns are in the range
[−1, 1], where −1 means that order is always op-
posite from the human judgment while the value 1
means that metric ranks the system translations in
the same way as humans do.

τ =
#concordant pairs−#discordant pairs

#concordant pairs+#discordant pairs
(1)

Evaluating reordering Since system transla-
tions do not differ only in the word order but also
in lexical choice, we follow Birch and Osborne
(2010) and interpolate the score given by each re-
ordering metric with the same lexical score. For
lexical scoring we use unigram BLEU. The param-
eter that balances the weights for these two metrics
α is chosen to be 0.5 so it would not underesti-
mate the lexical differences between translations
(α � 0.5) but also would not turn the whole met-
ric into unigram BLEU (α � 0.5). The equation
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for this interpolation is shown in Equation 2.4

FullMetric(ref, sys) = α lexical(ref, sys) +
(1− α)× bp(|ref |, |π|)× ordering(π) (2)

Where π(ref, sys) is the permutation represent-
ing the word alignment from sys to ref . The ef-
fect of α on the German-English evaluation is vis-
ible on Figure 7. The PET and PEF measures have
an extra parameter β that gives importance to the
long distance errors that also needs to be tuned. On
Figure 8 we can see the effect of β on German-
English for α = 0.5. For all language pairs for
β = 0.6 both PETs and PEFs get good results so
we picked that as value for β in our experiments.

Figure 7: Effect of α on German-English evalua-
tion for β = 0.6

Choice of word alignments The issue we did
not discuss so far is how to find a permutation
from system and reference translations. One way
is to first get alignments between the source sen-
tence and the system translation (from a decoder
or by automatically aligning sentences), and also
alignments between the source sentence and the
reference translation (manually or automatically
aligned). Subsequently we must make those align-
ments 1-to-1 and merge them into a permutation.
That is the approach that was followed in previ-
ous work (Birch and Osborne, 2011; Talbot et al.,

4Note that for reordering evaluation it does not make
sense to tune α because that would blur the individual contri-
butions of reordering and adequacy during meta evaluation,
which is confirmed by Figure 7 showing that α � 0.5 leads
to similar performance for all metrics.

Figure 8: Effect of β on German-English evalua-
tion for α = 0.5

2011). Alternatively, we may align system and ref-
erence translations directly. One of the simplest
ways to do that is by finding exact matches be-
tween words and bigrams between system and ref-
erence translation as done in (Isozaki et al., 2010).
The way we align system and reference transla-
tions is by using the aligner supplied with ME-
TEOR (Denkowski and Lavie, 2011) for finding
1-to-1 alignments which are later converted to a
permutation. The advantage of this method is that
it can do non-exact matching by stemming or us-
ing additional sources for semantic similarity such
as WordNets and paraphrase tables. Since we will
not have a perfect permutation as input, because
many words in the reference or system transla-
tions might not be aligned, we introduce a brevity
penalty (bp(·, ·) in Equation 2) for the ordering
component as in (Isozaki et al., 2010). The brevity
penalty is the same as in BLEU with the small
difference that instead of taking the length of sys-
tem and reference translation as its parameters, it
takes the length of the system permutation and the
length of the reference.

5 Empirical results

The results are shown in Table 1 and Table 2.
These scores could be much higher if we used
some more sophisticated measure than unigram
BLEU for the lexical part (for example recall is
very useful in evaluation of the system translations
(Lavie et al., 2004)). However, this is not the issue
here since our goal is merely to compare different
ways to evaluate word order. All metrics that we
tested have the same lexical component, get the
same permutation as their input and have the same
value for α.
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Kendall 0.16 0.170 0.183 0.193 0.218
Spearman 0.157 0.170 0.181 0.192 0.215
Hamming 0.150 0.163 0.168 0.187 0.196
FuzzyScore 0.155 0.166 0.178 0.189 0.215
Ulam 0.159 0.170 0.181 0.189 0.221
PEFs 0.156 0.173 0.185 0.196 0.219
PETs 0.157 0.165 0.182 0.195 0.216

Table 1: Sentence level Kendall tau scores for
translation out of English with α = 0.5 and β =
0.6
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Kendall 0.196 0.265 0.235 0.173 0.223
Spearman 0.199 0.265 0.236 0.173 0.222
Hamming 0.172 0.239 0.215 0.157 0.206
FuzzyScore 0.184 0.263 0.228 0.169 0.216
Ulam 0.188 0.264 0.232 0.171 0.221
PEFs 0.201 0.265 0.237 0.181 0.228
PETs 0.200 0.264 0.234 0.174 0.221

Table 2: Sentence level Kendall tau scores for
translation into English with α = 0.5 and β = 0.6

5.1 Does hierarchical structure improve
evaluation?

The results in Tables 1, 2 and 3 suggest that the
PEFscore which uses hierarchy over permutations
outperforms the string based permutation metrics
in the majority of the language pairs. The main
exception is the English-Czech language pair in
which both PETs and PEFs based metric do not
give good results compared to some other met-
rics. For discussion about English-Czech look at
the section 6.1.

5.2 Do PEFs help over one canonical PET?

From Figures 9 and 10 it is clear that using all
permutation trees instead of only canonical ones
makes the metric more stable in all language pairs.
Not only that it makes results more stable but it

metric avg rank avg Kendall
PEFs 1.6 0.2041
Kendall 2.65 0.2016
Spearman 3.4 0.201
PETs 3.55 0.2008
Ulam 4 0.1996
FuzzyScore 5.8 0.1963
Hamming 7 0.1853

Table 3: Average ranks and average Kendall
scores for each tested metrics over all language
pairs

Figure 9: Plot of scaled Kendall tau correlation for
translation from English

also improves them in all cases except in English-
Czech where both PETs and PEFs perform badly.
The main reason why PEFs outperform PETs is
that they encode all possible phrase segmentations
of monotone and inverted sub-permutations. By
giving the score that considers all segmentations,
PEFs also include the right segmentation (the one
perceived by human evaluators as the right seg-
mentation), while PETs get the right segmentation
only if the right segmentation is the canonical one.

5.3 Is improvement consistent over language
pairs?

Table 3 shows average rank (metric’s position af-
ter sorting all metrics by their correlation for each
language pair) and average Kendall tau correlation
coefficient over the ten language pairs. The table
shows clearly that the PEFs metric outperforms all
other metrics. To make it more visible how met-
rics perform on the different language pairs, Fig-
ures 9 and 10 show Kendall tau correlation co-
efficient scaled between the best scoring metric
for the given language (in most cases PEFs) and
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Figure 10: Plot of scaled Kendall tau correlation
for translation into English

the worst scoring metric (in all cases Hamming
score). We can see that, except in English-Czech,
PEFs are consistently the best or second best (only
in English-French) metric in all language pairs.
PETs are not stable and do not give equally good
results in all language pairs. Hamming distance
is without exception the worst metric for evalua-
tion since it is very strict about positioning of the
words (it does not take relative ordering between
words into account). Kendall tau is the only string
based metric that gives relatively good scores in
all language pairs and in one (English-Czech) it is
the best scoring one.

6 Further experiments and analysis

So far we have shown that PEFs outperform the
existing metrics over the majority of language
pairs. There are two pending issues to discuss.
Why is English-Czech seemingly so difficult?
And does preferring inversion over non-binary
branching correlate better with human judgement.

6.1 The results on English-Czech

The English-Czech language pair turned out to
be the hardest one to evaluate for all metrics.
All metrics that were used in the meta-evaluation
that we conducted give much lower Kendall tau
correlation coefficient compared to the other lan-
guage pairs. The experiments conducted by other
researchers on the same dataset (Macháček and
Bojar, 2013), using full evaluation metrics, also
get far lower Kendall tau correlation coefficient
for English-Czech than for other language pairs.
In the description of WMT13 data that we used
(Bojar et al., 2013), it is shown that annotator-

agreement for English-Czech is a few times lower
than for other languages. English-Russian, which
is linguistically similar to English-Czech, does
not show low numbers in these categories, and is
one of the language pairs where our metrics per-
form the best. The alignment ratio is equally high
between English-Czech and English-Russian (but
that does not rule out the possibility that the align-
ments are of different quality). One seemingly
unlikely explanation is that English-Czech might
be a harder task in general, and might require a
more sophisticated measure. However, the more
plausible explanation is that the WMT13 data for
English-Czech is not of the same quality as other
language pairs. It could be that data filtering, for
example by taking only judgments for which many
evaluators agree, could give more trustworthy re-
sults.

6.2 Is inversion preferred over non-binary
branching?

Since our original version of the scoring function
for PETs and PEFs on the operator level does not
discriminate between kinds of non-monotone op-
erators (all non-monotone get zero as a score) we
also tested whether discriminating between inver-
sion (binary) and non-binary operators make any
difference.
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PEFs γ = 0.0 0.156 0.173 0.185 0.196 0.219
PEFs γ = 0.5 0.157 0.175 0.183 0.195 0.219
PETs γ = 0.0 0.157 0.165 0.182 0.195 0.216
PETs γ = 0.5 0.158 0.165 0.183 0.195 0.217

Table 4: Sentence level Kendall tau score for
translation out of English different γ with α = 0.5
and β = 0.6

Intuitively, we might expect that inverted binary
operators are preferred by human evaluators over
non-binary ones. So instead of assigning zero as a
score to inverted nodes we give them 0.5, while for
non-binary nodes we remain with zero. The ex-
periments with the inverted operator scored with
0.5 (i.e., γ = 0.5) are shown in Tables 4 and 5.
The results show that there is no clear improve-
ment by distinguishing between the two kinds of
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PEFs γ = 0.0 0.201 0.265 0.237 0.181 0.228
PEFs γ = 0.5 0.201 0.264 0.235 0.179 0.227
PETs γ = 0.0 0.200 0.264 0.234 0.174 0.221
PETs γ = 0.5 0.202 0.263 0.235 0.176 0.224

Table 5: Sentence level Kendall tau score for
translation into English for different γ with α =
0.5 and β = 0.6

non-monotone operators on the nodes.

7 Conclusions

Representing order differences as compact permu-
tation forests provides a good basis for develop-
ing evaluation measures of word order differences.
These hierarchical representations of permutations
bring together two crucial elements (1) grouping
words into blocks, and (2) factorizing reorder-
ing phenomena recursively over these groupings.
Earlier work on MT evaluation metrics has of-
ten stressed the importance of the first ingredient
(grouping into blocks) but employed it merely in a
flat (non-recursive) fashion. In this work we pre-
sented novel metrics based on permutation trees
and forests (the PETscore and PEFscore) where
the second ingredient (factorizing reordering phe-
nomena recursively) plays a major role. Permuta-
tion forests compactly represent all possible block
groupings for a given permutation, whereas per-
mutation trees select a single canonical grouping.
Our experiments with WMT13 data show that our
PEFscore metric outperforms the existing string-
based metrics on the large majority of language
pairs, and in the minority of cases where it is not
ranked first, it ranks high. Crucially, the PEFs-
core is by far the most stable reordering score over
ten language pairs, and works well also for lan-
guage pairs with long range reordering phenom-
ena (English-German, German-English, English-
Russian and Russian-English).
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Abstract

In this work, we investigate the effec-
tiveness of two techniques for a feature-
based integration of syntactic information
into GHKM string-to-tree statistical ma-
chine translation (Galley et al., 2004):
(1.) Preference grammars on the tar-
get language side promote syntactic well-
formedness during decoding while also al-
lowing for derivations that are not linguis-
tically motivated (as in hierarchical trans-
lation). (2.) Soft syntactic constraints aug-
ment the system with additional source-
side syntax features while not modifying
the set of string-to-tree translation rules or
the baseline feature scores.

We conduct experiments with a state-
of-the-art setup on an English→German
translation task. Our results suggest that
preference grammars for GHKM trans-
lation are inferior to the plain target-
syntactified model, whereas the enhance-
ment with soft source syntactic constraints
provides consistent gains. By employ-
ing soft source syntactic constraints with
sparse features, we are able to achieve im-
provements of up to 0.7 points BLEU and
1.0 points TER.

1 Introduction

Previous research in both formally syntax-based
(i.e., hierarchical) and linguistically syntax-based
statistical machine translation has demonstrated
that significant quality gains can be achieved via
integration of syntactic information as features in
a non-obtrusive manner, rather than as hard con-
straints.

We implemented two feature-based extensions
for a GHKM-style string-to-tree translation sys-
tem (Galley et al., 2004):

• Preference grammars to soften the hard
target-side syntactic constraints that are im-
posed by the target non-terminal labels.

• Soft source-side syntactic constraints that
enhance the string-to-tree translation model
with input tree features based on source syn-
tax labels.

The empirical results on an English→German
translation task are twofold. Target-side prefer-
ence grammars do not show an improvement over
the string-to-tree baseline with syntactified trans-
lation rules. Source-side syntactic constraints, on
the other hand, yield consistent moderate gains if
applied as supplementary features in the string-to-
tree setup.

2 Outline

The paper is structured as follows: First we give an
overview of important related publications (Sec-
tion 3). In Section 4, we review the fundamentals
of syntax-based translation in general, and in par-
ticular those of GHKM string-to-tree translation.

We present preference grammars for GHKM
translation in Section 5. Our technique for ap-
plying soft source syntactic constraints in GHKM
string-to-tree translation is described in Section 6.

Section 7 contains the empirical part of the pa-
per. We first describe our experimental setup (7.1),
followed by a presentation and discussion of the
translation results (7.2). We conclude the paper in
Section 8.

3 Related Work

Our syntactic translation model conforms to the
GHKM syntax approach as proposed by Galley,
Hopkins, Knight, and Marcu (Galley et al., 2004)
with composed rules as in (Galley et al., 2006)
and (DeNeefe et al., 2007). Systems based on
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this paradigm have recently been among the top-
ranked submissions to public evaluation cam-
paigns (Williams et al., 2014; Bojar et al., 2014).

Our soft source syntactic constraints features
borrow ideas from Marton and Resnik (2008) who
proposed a comparable approach for hierarchical
machine translation. The major difference is that
the features of Marton and Resnik (2008) are only
based on the labels from the input trees as seen in
tuning and decoding. They penalize violations of
constituent boundaries but do not employ syntactic
parse annotation of the source side of the training
data. We, in contrast, equip the rules with latent
source label properties, allowing for features that
can check for conformance of input tree labels and
source labels that have been seen in training.

Other groups have applied similar techniques
to a string-to-dependency system (Huang et al.,
2013) and—like in our work—a GHKM string-
to-tree system (Zhang et al., 2011). Both Huang
et al. (2013) and Zhang et al. (2011) store source
labels as additional information with the rules.
They however investigate somewhat different fea-
ture functions than we do.

Marton and Resnik (2008) evaluated their
method on the NIST Chinese→English and
Arabic→English tasks. Huang et al. (2013) and
Zhang et al. (2011) present results on the NIST
Chinese→English task. We focus our attention on
a very different task: English→German.

4 Syntax-based Translation

In syntax-based translation, a probabilistic syn-
chronous context-free grammar (SCFG) is in-
duced from bilingual training corpora. The par-
allel training data is word-aligned and annotated
with syntactic parses on either target side (string-
to-tree), source side (tree-to-string), or both (tree-
to-tree). A syntactic rule extraction procedure ex-
tracts rules which are consistent with the word-
alignment and comply with certain syntactic va-
lidity constraints.

Extracted rules are of the form A,B→〈α,β ,∼ 〉.
The right-hand side of the rule 〈α,β 〉 is a bilingual
phrase pair that may contain non-terminal sym-
bols, i.e. α ∈ (VF ∪ NF)+ and β ∈ (VE ∪ NE)+,
where VF and VE denote the source and target
terminal vocabulary, and NF and NE denote the
source and target non-terminal vocabulary, respec-
tively. The non-terminals on the source side and
on the target side of rules are linked in a one-to-

one correspondence. The ∼ relation defines this
one-to-one correspondence. The left-hand side
of the rule is a pair of source and target non-
terminals, A ∈ NF and B ∈ NE .

Decoding is typically carried out with a parsing-
based algorithm, in our case a customized version
of CYK+ (Chappelier and Rajman, 1998). The
parsing algorithm is extended to handle transla-
tion candidates and to incorporate language model
scores via cube pruning (Chiang, 2007).

4.1 GHKM String-to-Tree Translation

In GHKM string-to-tree translation (Galley et al.,
2004; Galley et al., 2006; DeNeefe et al., 2007),
rules are extracted from training instances which
consist of a source sentence, a target sentence
along with its constituent parse tree, and a word
alignment matrix. This tuple is interpreted as a
directed graph (the alignment graph), with edges
pointing away from the root of the tree, and word
alignment links being edges as well. A set of
nodes (the frontier set) is determined that con-
tains only nodes with non-overlapping closure of
their spans.1 By computing frontier graph frag-
ments—fragments of the alignment graph such
that their root and all sinks are in the frontier set—
the GHKM extractor is able to induce a minimal
set of rules which explain the training instance.
The internal tree structure can be discarded to ob-
tain flat SCFG rules. Minimal rules can be assem-
bled to build larger composed rules.

Non-terminals on target sides of string-to-tree
rules are syntactified. The target non-terminal vo-
cabulary of the SCFG contains the set of labels of
the frontier nodes, which is in turn a subset of (or
equal to) the set of constituent labels in the parse
tree. The target non-terminal vocabulary further-
more contains an initial non-terminal symbol Q.
Source sides of the rules are not decorated with
syntactic annotation. The source non-terminal vo-
cabulary contains a single generic non-terminal
symbol X.

In addition to the extracted grammar, the trans-
lation system makes use of a special glue grammar
with an initial rule, glue rules, a final rule, and top
rules. The glue rules provide a fall back method
to just monotonically concatenate partial deriva-
tions during decoding. As we add tokens which

1The span of a node in the alignment graph is defined
as the set of source-side words that are reachable from this
node. The closure of a span is the smallest interval of source
sentence positions that covers the span.
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mark the sentence start (“<s>”) and the sentence
end (“</s>”), the rules in the glue grammar are of
the following form:

Initial rule:
X,Q→ 〈<s> X∼0,<s> Q∼0〉

Glue rules:
X,Q→ 〈X∼0X∼1,Q∼0B∼1〉

for all B ∈ NE

Final rule:
X,Q→ 〈X∼0 </s>,Q∼0 </s>〉

Top rules:
X,Q→ 〈<s> X∼0 </s>,<s> B∼0 </s>〉

for all B ∈ NE

5 Preference Grammars

Preference grammars store a set of implicit label
vectors as additional information with each SCFG
rule, along with their relative frequencies given
the rule. Venugopal et al. (2009) have introduced
this technique for hierarchical phrase-based trans-
lation. The implicit label set refines the label set
of the underlying synchronous context-free gram-
mar.

We apply this idea to GHKM translation by
not decorating the target-side non-terminals of the
extracted GHKM rules with syntactic labels, but
with a single generic label. The (explicit) tar-
get non-terminal vocabulary NE thus also con-
tains only the generic non-terminal symbol X, just
like the source non-terminal vocabulary NF . The
extraction method remains syntax-directed and is
still guided by the syntactic annotation over the
target side of the data, but the syntactic labels are
stripped off from the SCFG rules. Rules which
differ only with respect to their non-terminal la-
bels are collapsed to a single entry in the rule ta-
ble, and their rule counts are pooled. However,
the syntactic label vectors that have been seen with
this rule during extraction are stored as implicit la-
bel vectors of the rule.

5.1 Feature Computation

Two features are added to the log-linear model
combination in order to rate the syntactic well-
formedness of derivations. The first feature is
similar to the one suggested by Venugopal et al.
(2009) and computes a score based on the relative
frequencies of implicit label vectors of those rules
which are involved in the derivation. The second

feature is a simple binary feature which supple-
ments the first one by penalizing a rule application
if none of the implicit label vectors match.

We will now formally specify the first feature.2

We give a recursive definition of the feature score
hsyn(d) for a derivation d.

Let r be the top rule in derivation d, with n
right-hand side non-terminals. Let d j denote the
sub-derivation of d at the j-th right-hand side non-
terminal of r, 1 ≤ j ≤ n. hsyn(d) is recursively
defined as

hsyn(d) = t̂syn(d)+
n

∑
j=1

hsyn(d j) . (1)

In this equation, t̂syn(d) is a simple auxiliary
function:

t̂syn(d) =

{
log tsyn(d) if tsyn(d) 6= 0
0 otherwise

(2)

Denoting with S the implicit label set of the
preference grammar, we define tsyn(d) as a func-
tion that assesses the degree of agreement of
the preferences of the current rule with the sub-
derivations:

tsyn(d) = ∑
s∈Sn+1

(
p(s|r) ·

n+1

∏
k=2

t̂h(s[k]|dk−1)

)
(3)

We use the notation [·] to address the elements of a
vector. The first element of an n + 1-dimensional
vector s of implicit labels is an implicit label bind-
ing of the left-hand side non-terminal of the rule r.
p(s|r) is the preference distribution of the rule.

Here, t̂h(Y |d) is another auxiliary function that
renormalizes the values of th(Y |d):

t̂h(Y |d) =
th(Y |d)

∑Y ′∈S th(Y ′|d)
(4)

It provides us with a probability that the derivation
d has the implicit label Y ∈ S as its root. Finally,
the function th(Y |d) is defined as

th(Y |d) =

∑
s∈Sn+1:s[1]=Y

(
p(s|r) ·

n+1

∏
k=2

ph(s[k]|dk−1)

)
.

(5)

Note that the denominator in Equation (4) thus
equals tsyn(d).

2Our notational conventions roughly follow the ones by
Stein et al. (2010).
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This concludes the formal specification of the
first features. The second feature hauxSyn(d) penal-
izes rule applications in cases where tsyn(d) evalu-
ates to 0:

hauxSyn(d) =

{
0 if tsyn(d) 6= 0
1 otherwise

(6)

Its intuition is that rule applications that do not
contribute to hsyn(d) should be punished. Deriva-
tions with tsyn(d) = 0 could alternatively be
dropped completely, but our approach is to avoid
hard constraints. We will later demonstrate empir-
ically that discarding such derivations harms trans-
lation quality.

6 Soft Source Syntactic Constraints

Similar to the implicit target-side label vectors
which we store in preference grammars, we can
likewise memorize sets of source-side syntactic la-
bel vectors with GHKM rules. In contrast to pref-
erence grammars, the rule inventory of the string-
to-tree system remains untouched. The target non-
terminals of the SCFG stay syntactified, and the
source non-terminal vocabulary is not extended
beyond the single generic non-terminal.

Source-side syntactic labels are an additional la-
tent property of the rules. We obtain this property
by parsing the source side of the training data and
collecting the source labels that cover the source-
side span of non-terminals during GHKM rule ex-
traction. As the source-side span is frequently not
covered by a constituent in the syntactic parse tree,
we employ the composite symbols as suggested
by Zollmann and Venugopal (2006) for the SAMT
system.3 In cases where a span is still not covered
by a symbol, we nevertheless memorize a source-
side syntactic label vector but indicate the failure
for the uncovered non-terminal with a special la-
bel. The set of source label vectors that are seen
with a rule during extraction is stored with it in the
rule table as an additional property. This informa-
tion can be used to implement feature-based soft
source syntactic constraints.

Table 1 shows an example of a set of source
label vectors stored with a grammar rule. The
first element of each vector is an implicit source-
syntactic label for the left-hand side non-terminal
of the rule, the remaining elements are implicit

3Specifically, we apply relax-parse --SAMT 2 as
implemented in the Moses toolkit (Koehn et al., 2007).

source label vector frequency
(IN+NP,NN,NN) 7
(IN+NP,NNP,NNP) 3
(IN++NP,NNS,NNS) 2
(IN+NP,NP,NP) 2
(PP//SBAR,NP,NP) 1

Table 1: The set of source label vec-
tors (along with their frequencies in the
training data) for the rule X,PP-MO →
〈between X∼1 and X∼0,zwischen NN∼0 und NN∼1〉.
The overall rule frequency is 15.

source-syntactic labels for the right-hand side
source non-terminals.

The basic idea for soft source syntactic con-
straints features is to also parse the input data in
a preprocessing step and try to match input labels
and source label vectors that are associated with
SCFG rules.

6.1 Feature Computation
Upon application of an SCFG rule, each of the
non-terminals of the rule covers a distinct span of
the input sentence. An input label from the input
parse may be available for this span. We say that
a non-terminal has a match in a given source la-
bel vector of the rule if its label in the vector is the
same as a corresponding input label over the span.

We define three simple features to score
matches and mismatches of the impicit source syn-
tactic labels with the labels from the input data:

• A binary feature that fires if a rule is applied
which possesses a source syntactic label vec-
tor that fully matches the input labels. This
feature rewards exact source label matches of
complete rules, i.e., the existance of a vector
in which all non-terminals of the rule have
matches.

• A binary feature that fires if a rule is applied
which does not possess any source syntactic
label vector with a match of the label for the
left-hand side non-terminal. This feature pe-
nalizes left-hand side mismatches.

• A count feature that for each rule application
adds a cost equal to the number of right-hand
side non-terminals that do not have a match
with a corresponding input label in any of the
source syntactic label vectors. This feature
penalizes right-hand side mismatches.
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The second and third feature are less strict than the
first one and give the system a more detailed clue
about the magnitude of mismatch.

6.2 Sparse Features

We can optionally add a larger number of sparse
features that depend on the identity of the source-
side syntactic label:

• Sparse features which fire if a specific input
label is matched. We say that the input la-
bel is matched in case the corresponding non-
terminal that covers the span has a match in
any of the source syntactic label vectors of
the applied rule. We distinguish input label
matches via left-hand side and via right-hand
side non-terminals.

• Sparse features which fire if the span of a spe-
cific input label is covered by a non-terminal
of an applied rule, but the input label is not
matched.

The first set of sparse features rewards matches,
the second set of sparse features penalizes mis-
matches.

All sparse features have individual scaling fac-
tors in the log-linear model combination. We how-
ever implemented a means of restricting the num-
ber of sparse features by providing a core set of
source labels. If such a core set is specified, then
only those sparse features are active that depend
on the identity of labels within this set. All sparse
features for source labels outside of the core set
are inactive.

7 Experiments

We empirically evaluate the effectiveness of
preference grammars and soft source syntac-
tic constraints for GHKM translation on the
English→German language pair using the stan-
dard newstest sets of the Workshop on Statisti-
cal Machine Translation (WMT) for testing.4 The
experiments are conducted with the open-source
Moses implementations of GHKM rule extraction
(Williams and Koehn, 2012) and decoding with
CYK+ parsing and cube pruning (Hoang et al.,
2009).

4http://www.statmt.org/wmt14/
translation-task.html

7.1 Experimental Setup

We work with an English–German parallel train-
ing corpus of around 4.5 M sentence pairs (af-
ter corpus cleaning). The parallel data origi-
nates from three different sources which have
been eligible for the constrained track of the
ACL 2014 Ninth Workshop on Statistical Ma-
chine Translation shared translation task: Europarl
(Koehn, 2005), News Commentary, and the Com-
mon Crawl corpus as provided on the WMT web-
site. Word alignments are created by aligning the
data in both directions with MGIZA++ (Gao and
Vogel, 2008) and symmetrizing the two trained
alignments (Och and Ney, 2003; Koehn et al.,
2003). The German target side training data is
parsed with BitPar (Schmid, 2004). We remove
grammatical case and function information from
the annotation obtained with BitPar and apply
right binarization of the German parse trees prior
to rule extraction (Wang et al., 2007; Wang et al.,
2010; Nadejde et al., 2013). For the soft source
syntactic constraints, we parse the English source
side of the parallel data with the English Berkeley
Parser (Petrov et al., 2006) and produce composite
SAMT-style labels as discussed in Section 6.

When extracting syntactic rules, we impose sev-
eral restrictions for composed rules, in particular
a maximum number of 100 tree nodes per rule,
a maximum depth of seven, and a maximum size
of seven. We discard rules with non-terminals on
their right-hand side if they are singletons in the
training data.

For efficiency reasons, we also enforce a limit
on the number of label vectors that are stored
as additional properties. Label vectors are only
stored if they occur at least as often as the 50th
most frequent label vector of the given rule. This
limit is applied separately for both source-side la-
bel vectors (which are used by the soft syntactic
contraints) and target-side label vectors (which are
used by the preference grammar).

Only the 200 best translation options per dis-
tinct rule source side with respect to the weighted
rule-level model scores are loaded by the decoder.
Search is carried out with a maximum chart span
of 25, a rule limit of 500, a stack limit of 200, and
a k-best limit of 1000 for cube pruning.

A standard set of models is used in the base-
line, comprising rule translation probabilities and
lexical translation probabilities in both directions,
word penalty and rule penalty, an n-gram language
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system dev newstest2013 newstest2014
BLEU TER BLEU TER BLEU TER

GHKM string-to-tree baseline 34.7 47.3 20.0 63.3 19.4 65.6
+ soft source syntactic constraints 35.1 47.0 20.3 62.7 19.7 64.9

+ sparse features 35.8 46.5 20.3 62.8 19.6 65.1
+ sparse features (core = non-composite) 35.4 46.8 20.2 62.9 19.6 65.1
+ sparse features (core = dev-min-occ100) 35.6 46.7 20.2 62.9 19.6 65.2
+ sparse features (core = dev-min-occ1000) 35.4 46.9 20.3 62.8 19.6 65.2

+ hard source syntactic constraints 34.6 47.4 19.9 63.4 19.4 65.6
string-to-string (GHKM syntax-directed rule extraction) 33.8 48.0 19.3 63.8 18.7 66.2

+ preference grammar 33.9 47.7 19.3 63.7 18.8 66.0
+ soft source syntactic constraints 34.6 47.0 19.8 62.9 19.5 65.2

+ drop derivations with tsyn(d) = 0 34.0 47.5 19.7 63.0 18.8 65.8

Table 2: English→German experimental results (truecase). BLEU scores are given in percentage.
A selection of 2000 sentences from the newstest2008-2012 sets is used as development set.

model, a rule rareness penalty, and the monolin-
gual PCFG probability of the tree fragment from
which the rule was extracted (Williams et al.,
2014). Rule translation probabilities are smoothed
via Good-Turing smoothing.

The language model (LM) is a large inter-
polated 5-gram LM with modified Kneser-Ney
smoothing (Kneser and Ney, 1995; Chen and
Goodman, 1998). The target side of the parallel
corpus and the monolingual German News Crawl
corpora are employed as training data. We use
the SRILM toolkit (Stolcke, 2002) to train the LM
and rely on KenLM (Heafield, 2011) for language
model scoring during decoding.

Model weights are optimized to maximize
BLEU (Papineni et al., 2002) with batch MIRA
(Cherry and Foster, 2012) on 1000-best lists. We
selected 2000 sentences from the newstest2008-
2012 sets as a development set. The selected sen-
tences obtained high sentence-level BLEU scores
when being translated with a baseline phrase-
based system, and do each contain less than
30 words for more rapid tuning. newstest2013 and
newstest2014 are used as unseen test sets. Trans-
lation quality is measured in truecase with BLEU

and TER (Snover et al., 2006).5

7.2 Translation Results

The results of the empirical evaluation are given in
Table 2. Our GHKM string-to-tree system attains
state-of-the-art performance on newstest2013 and
newstest2014.

5TER scores are computed with tercom version 0.7.25
and parameters -N -s.

7.2.1 Soft Source Syntactic Constraints

Adding the three dense soft source syntactic con-
straints features from Section 6.1 improves the
baseline scores by 0.3 points BLEU and 0.6 points
TER on newstest2013 and by 0.3 points BLEU and
0.7 points TER on newstest2014.

Somewhat surprisingly, the sparse features from
Section 6.2 do not boost translation quality further
on any of the two test sets. We observe a consid-
erable improvement on the development set, but it
does not carry over to the test sets. We attributed
this to an overfitting effect. Our source-side soft
syntactic label set of composite SAMT-style la-
bels comprises 8504 different labels that appear on
the source-side of the parallel training data. Four
times the amount of sparse features are possible
(left-hand side/right-hand side matches and mis-
matches for each label), though not all of them fire
on the development set. 3989 sparse weights are
tuned to non-zero values in the experiment. Due to
the sparse nature of the features, overfitting cannot
be ruled out.

We attempted to take measures in order to avoid
overfitting by specifying a core set of source la-
bels and deactivating all sparse features for source
labels outside of the core set (cf. Section 6.2).
First we specified the core label set as all non-
composite labels. Non-composite labels are the
plain constituent labels as given by the syntactic
parser. Complex SAMT-style labels are not in-
cluded. The size of this set is 71 (non-composite
labels that have been observed during rule extrac-
tion). Translation performance on the develop-
ment set drops in the sparse features (core = non-
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system (tuned on newstest2012) newstest2012 newstest2013 newstest2014
BLEU TER BLEU TER BLEU TER

GHKM string-to-tree baseline 17.9 65.7 19.9 63.2 19.4 65.3
+ soft source syntactic constraints 18.2 65.3 20.3 62.6 19.7 64.7

+ sparse features 18.6 64.9 20.4 62.5 19.8 64.7
+ sparse features (core = non-composite) 18.4 65.1 20.3 62.7 19.8 64.7
+ sparse features (core = dev-min-occ100) 18.4 64.8 20.6 62.2 19.9 64.4

Table 3: English→German experimental results (truecase). BLEU scores are given in percentage.
newstest2012 is used as development set.

composite) setup, but performance does not in-
crease on the test sets.

Next we specified the core label set in another
way: We counted how often each source label oc-
curs in the input data on the development set. We
then applied a minimum occurrence count thresh-
old and added labels to the core set if they did not
appear more rarely than the threshold. We tried
values of 100 and 1000 for the minimum occur-
rence, resulting in 277 and 37 labels being in the
core label set, respectively. Neither the sparse fea-
tures (core = dev-min-occ100) experiment nor the
sparse features (core = dev-min-occ1000) experi-
ment yields better translation quality than what we
see in the setup without sparse features.

We eventually conjectured that the choice of our
development set might be a reason for the ineffec-
tiveness of the sparse features, as on a fine-grained
level it could possibly be too different from the
test sets with respect to its syntactic properties.
We therefore repeated some of the experiments
with scaling factors optimized on newstest2012
(Table 3). The sparse features (core = dev-min-
occ100) setup indeed performs better when tuned
on newstest2012, with improvements of 0.7 points
BLEU and 1.0 points TER on newstest2013 and
of 0.5 points BLEU and 0.9 points TER on news-
test2014 over the baseline tuned on the same set.

Finally, we were interested in demonstrating
that soft source syntactic constraints are superior
to hard source syntactic constraints. We built a
setup that forces the decoder to match source-side
syntactic label vectors in the rules with input la-
bels.6 Hard source syntactic constraints are in-
deed worse than soft source syntactic constraints
(by 0.4 BLEU on newstest2013 and 0.3 BLEU on
newstest2014). The setup with hard source syntac-
tic constraints performs almost exactly at the level
of the baseline.

6Glue rules are an exception. They do not need to match
the input labels.

7.2.2 Preference Grammar

In the series of experiments with a preference
grammar, we first evaluated a setup with the un-
derlying SCFG of the preference grammar sys-
tem, but without preference grammar. We de-
note this setup as string-to-string (GHKM syntax-
directed rule extraction) in Table 2. The ex-
traction method for this string-to-string system is
GHKM syntax-directed with right-binarized syn-
tactic target-side parses from BitPar, as in the
string-to-tree setup. The constituent labels from
the syntactic parses are however not used to dec-
orate non-terminals. The grammar contains rules
with a single generic non-terminal instead of syn-
tactic ones. The string-to-string (GHKM syntax-
directed rule extraction) setup is on newstest2013
0.7 BLEU (0.5 TER) worse and on newstest2014
0.7 BLEU (0.6 TER) worse than the standard
GHKM string-to-tree baseline.

We then activated the preference grammar as
described in Section 5. GHKM translation with a
preference grammar instead of a syntactified target
non-terminal vocabulary in the SCFG is consider-
ably worse than the standard GHKM string-to-tree
baseline and barely improves over the string-to-
string setup.

We added soft source syntactic constraints on
top of the preference grammar system, thus com-
bining the two techniques. Soft source syntactic
constraints give a nice gain over the preference
grammar system, but the best setup without a pref-
erence grammar is not outperformed. In another
experiment, we investigated the effect of dropping
derivations with tsyn(d) = 0 (cf. Section 5.1). Note
that the second feature hauxSyn(d) is not useful in
this setup, as the system is forced to discard all
derivations that would be penalized by that fea-
ture. We deactivated hauxSyn(d) for the experi-
ment. The hard decision of dropping derivations
with tsyn(d) = 0 leads to a performance loss of
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0.1 BLEU on newstest2013 and a more severe de-
terioration of 0.7 BLEU on newstest2014.

8 Conclusions

We investigated two soft syntactic extensions for
GHKM translation: Target-side preference gram-
mars and soft source syntactic constraints.

Soft source syntactic constraints proved to be
suitable for advancing the translation quality over
a strong string-to-tree baseline. Sparse features
are beneficial beyond just three dense features, but
they require the utilization of an appropriate devel-
opment set. We also showed that the soft integra-
tion of source syntactic constraints is crucial: Hard
constraints do not yield gains over the baseline.

Preference grammars did not perform well in
our experiments, suggesting that translation mod-
els with syntactic target non-terminal vocabular-
ies are a better choice when building string-to-tree
systems.

Acknowledgements

The research leading to these results has re-
ceived funding from the European Union Sev-
enth Framework Programme (FP7/2007-2013) un-
der grant agreements no 287658 (EU-BRIDGE)
and no 288487 (MosesCore).

References
Ondrej Bojar, Christian Buck, Christian Federmann,

Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 Work-
shop on Statistical Machine Translation. In Proc. of
the Workshop on Statistical Machine Translation
(WMT), pages 12–58, Baltimore, MD, USA, June.

Jean-Cédric Chappelier and Martin Rajman. 1998. A
Generalized CYK Algorithm for Parsing Stochas-
tic CFG. In Proc. of the First Workshop on Tab-
ulation in Parsing and Deduction, pages 133–137,
Paris, France, April.

Stanley F. Chen and Joshua Goodman. 1998. An
Empirical Study of Smoothing Techniques for Lan-
guage Modeling. Technical Report TR-10-98, Com-
puter Science Group, Harvard University, Cam-
bridge, MA, USA, August.

Colin Cherry and George Foster. 2012. Batch Tun-
ing Strategies for Statistical Machine Translation. In
Proc. of the Human Language Technology Conf. /
North American Chapter of the Assoc. for Compu-
tational Linguistics (HLT-NAACL), pages 427–436,
Montréal, Canada, June.

David Chiang. 2007. Hierarchical Phrase-Based
Translation. Computational Linguistics, 33(2):201–
228, June.

Steve DeNeefe, Kevin Knight, Wei Wang, and Daniel
Marcu. 2007. What Can Syntax-Based MT Learn
from Phrase-Based MT? In Proc. of the 2007
Joint Conf. on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 755–763,
Prague, Czech Republic, June.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proc. of the Human Language Technology Conf.
/ North American Chapter of the Assoc. for Compu-
tational Linguistics (HLT-NAACL), pages 273–280,
Boston, MA, USA, May.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable Inference and Training
of Context-Rich Syntactic Translation Models. In
Proc. of the 21st Int. Conf. on Computational Lin-
guistics and 44th Annual Meeting of the Assoc. for
Computational Linguistics, pages 961–968, Sydney,
Australia, July.

Qin Gao and Stephan Vogel. 2008. Parallel Implemen-
tations of Word Alignment Tool. In Software Engi-
neering, Testing, and Quality Assurance for Natural
Language Processing, SETQA-NLP ’08, pages 49–
57, Columbus, OH, USA, June.

Kenneth Heafield. 2011. KenLM: Faster and Smaller
Language Model Queries. In Proc. of the Workshop
on Statistical Machine Translation (WMT), pages
187–197, Edinburgh, Scotland, UK, July.

Hieu Hoang, Philipp Koehn, and Adam Lopez. 2009.
A Unified Framework for Phrase-Based, Hierarchi-
cal, and Syntax-Based Statistical Machine Transla-
tion. In Proc. of the Int. Workshop on Spoken Lan-
guage Translation (IWSLT), pages 152–159, Tokyo,
Japan, December.

Zhongqiang Huang, Jacob Devlin, and Rabih Zbib.
2013. Factored Soft Source Syntactic Constraints
for Hierarchical Machine Translation. In Proc. of
the Conf. on Empirical Methods for Natural Lan-
guage Processing (EMNLP), pages 556–566, Seat-
tle, WA, USA, October.

Reinhard Kneser and Hermann Ney. 1995. Improved
Backing-Off for M-gram Language Modeling. In
Proceedings of the Int. Conf. on Acoustics, Speech,
and Signal Processing, volume 1, pages 181–184,
Detroit, MI, USA, May.

Philipp Koehn, Franz Joseph Och, and Daniel Marcu.
2003. Statistical Phrase-Based Translation. In Proc.
of the Human Language Technology Conf. / North
American Chapter of the Assoc. for Computational
Linguistics (HLT-NAACL), pages 127–133, Edmon-
ton, Canada, May/June.

155



P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Con-
stantin, and E. Herbst. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In Proc.
of the Annual Meeting of the Assoc. for Computa-
tional Linguistics (ACL), pages 177–180, Prague,
Czech Republic, June.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proc. of the MT
Summit X, Phuket, Thailand, September.

Yuval Marton and Philip Resnik. 2008. Soft Syn-
tactic Constraints for Hierarchical Phrased-Based
Translation. In Proc. of the Annual Meeting of the
Assoc. for Computational Linguistics (ACL), pages
1003–1011, Columbus, OH, USA, June.

Maria Nadejde, Philip Williams, and Philipp Koehn.
2013. Edinburgh’s Syntax-Based Machine Transla-
tion Systems. In Proc. of the Workshop on Statistical
Machine Translation (WMT), pages 170–176, Sofia,
Bulgaria, August.

Franz Josef Och and Hermann Ney. 2003. A System-
atic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51,
March.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Proc. of the
Annual Meeting of the Assoc. for Computational
Linguistics (ACL), pages 311–318, Philadelphia, PA,
USA, July.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and In-
terpretable Tree Annotation. In Proc. of the 21st Int.
Conf. on Computational Linguistics and 44th An-
nual Meeting of the Assoc. for Computational Lin-
guistics, pages 433–440, Sydney, Australia, July.

Helmut Schmid. 2004. Efficient Parsing of Highly
Ambiguous Context-Free Grammars with Bit Vec-
tors. In Proc. of the Int. Conf. on Computational
Linguistics (COLING), Geneva, Switzerland, Au-
gust.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study
of Translation Edit Rate with Targeted Human An-
notation. In Proc. of the Conf. of the Assoc. for
Machine Translation in the Americas (AMTA), pages
223–231, Cambridge, MA, USA, August.

Daniel Stein, Stephan Peitz, David Vilar, and Hermann
Ney. 2010. A Cocktail of Deep Syntactic Fea-
tures for Hierarchical Machine Translation. In Proc.
of the Conf. of the Assoc. for Machine Translation
in the Americas (AMTA), Denver, CO, USA, Octo-
ber/November.

Andreas Stolcke. 2002. SRILM – an Extensible Lan-
guage Modeling Toolkit. In Proc. of the Int. Conf.
on Spoken Language Processing (ICSLP), volume 3,
Denver, CO, USA, September.

Ashish Venugopal, Andreas Zollmann, Noah A. Smith,
and Stephan Vogel. 2009. Preference Grammars:
Softening Syntactic Constraints to Improve Statis-
tical Machine Translation. In Proc. of the Hu-
man Language Technology Conf. / North American
Chapter of the Assoc. for Computational Linguistics
(HLT-NAACL), pages 236–244, Boulder, CO, USA,
June.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007.
Binarizing Syntax Trees to Improve Syntax-Based
Machine Translation Accuracy. In Proc. of the 2007
Joint Conf. on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 746–754,
Prague, Czech Republic, June.

Wei Wang, Jonathan May, Kevin Knight, and Daniel
Marcu. 2010. Re-structuring, Re-labeling, and
Re-aligning for Syntax-based Machine Translation.
Computational Linguistics, 36(2):247–277, June.

Philip Williams and Philipp Koehn. 2012. GHKM
Rule Extraction and Scope-3 Parsing in Moses. In
Proc. of the Workshop on Statistical Machine Trans-
lation (WMT), pages 388–394, Montréal, Canada,
June.

Philip Williams, Rico Sennrich, Maria Nadejde,
Matthias Huck, Eva Hasler, and Philipp Koehn.
2014. Edinburgh’s Syntax-Based Systems at
WMT 2014. In Proc. of the Workshop on Statis-
tical Machine Translation (WMT), pages 207–214,
Baltimore, MD, USA, June.

Jiajun Zhang, Feifei Zhai, and Chengqing Zong. 2011.
Augmenting String-to-Tree Translation Models with
Fuzzy Use of Source-side Syntax. In Proc. of the
Conf. on Empirical Methods for Natural Language
Processing (EMNLP), pages 204–215, Edinburgh,
Scotland, UK, July.

Andreas Zollmann and Ashish Venugopal. 2006. Syn-
tax Augmented Machine Translation via Chart Pars-
ing. In Proc. of the Workshop on Statistical Machine
Translation (WMT), pages 138–141, New York City,
NY, USA, June.

156



Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 157–165,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

How Synchronous are Adjuncts in Translation Data?

Sophie Arnoult
ILLC

University of Amsterdam
s.i.arnoult@uva.nl

Khalil Sima’an
ILLC

University of Amsterdam
k.simaan@uva.nl

Abstract

The argument-adjunct distinction is cen-
tral to most syntactic and semantic the-
ories. As optional elements that refine
(the meaning of) a phrase, adjuncts are
important for recursive, compositional ac-
counts of syntax, semantics and transla-
tion. In formal accounts of machine trans-
lation, adjuncts are often treated as modi-
fiers applying synchronously in source and
target derivations. But how well can the
assumption of synchronous adjunction ex-
plain translation equivalence in actual par-
allel data? In this paper we present the
first empirical study of translation equiva-
lence of adjuncts on a variety of French-
English parallel corpora, while varying
word alignments so we can gauge the ef-
fect of errors in them. We show that for
proper measurement of the types of trans-
lation equivalence of adjuncts, we must
work with non-contiguous, many-to-many
relations, thereby amending the traditional
Direct Correspondence Assumption. Our
empirical results show that 70% of manu-
ally identified adjuncts have adjunct trans-
lation equivalents in training data, against
roughly 50% for automatically identified
adjuncts.

1 Introduction

Most syntactic and semantic theories agree on the
argument-adjunct distinction, although they vary
on the specifics of this distinction. Common to
these theories is that adjunction is a central de-
vice for language recursion, as adjunction modi-
fies initial but complete sentences by adding op-
tional phrases; adjunction also contributes to se-
mantic compositionality, albeit in various ways,
as syntactic adjuncts may take different seman-
tic roles. Shieber and Schabes (1990) transfer the

role of adjuncts from monolingual syntax (Joshi
et al., 1975) to the realm of translation equiva-
lence using a Synchronous Tree Adjoining Gram-
mars (STAG), and propose to view adjunction as
a synchronous operation for recursive, composi-
tional translation. STAG therefore relies substan-
tially on what Hwa (2002) calls the Direct Corre-
spondence Assumption, the notion that semantic
or syntactic relations correspond across a bitext.
We know from various works–notably by Hwa et
al. (2002) for dependency relations, Arnoult and
Sima’an (2012) for adjuncts, and Padó and Lap-
ata (2009) and Wu and Fung (2009) for semantic
roles–that the Direct Correspondence Assumption
does not always hold.

A question that has not received much atten-
tion is the degree to which the assumption of
synchronous adjunction is supported in human
translation data. This is crucial for the succes-
ful application of linguistically-motivated STAG,
but attempts at answering this question empirically
are hampered by a variety of difficulties. Lin-
guistic structures may diverge between languages
(Dorr, 1994), translations may be more or less lit-
eral, and annotation resources may be inaccurate,
when they are available at all. Besides, automatic
word alignments are known to be noisy and man-
ual alignments are rather scarse. The work of
Arnoult and Sima’an (2012) reports lower and up-
per bounds of one-to-one adjunct correspondence,
using rather limited resources to identify French
adjuncts making their results not directly applica-
ble for measuring the stability of the synchronous
adjunction assumption.

In this paper we aim at redefining the transla-
tion equivalence of adjuncts in ways that allow us
to report far more accurate bounds on their cross-
linguistic correspondence. In particular, we are in-
terested in measuring adjunct correspondence ro-
bustly, in training data.

Consider for example the sentence pair of Fig-
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ure 1. Most adjuncts in each sentence translate
as adjuncts in the other sentence, but one of these
translation equivalences appears to be many-to-
many, because of parsing mismatches across the
bitext; both parses and adjunct labellers on both
sides of the bitext must be on par for adjunct trans-
lation equivalences to be established. Besides, one
generally establishes translation equivalence using
word alignments, which may be noisy. Another
factor is that of the degree of translation equiva-
lence in the data in general; while parallel bitexts
express the same meaning, meaning may diverge
locally.

I think that the time Ae1 Ae6 has been Ae7 long

taken Ae2 , for example , too

in handling Ae3 applications Ae4

routine for changes of facilities Ae5

along a pipeline

je crois qu’il a pris Af1 de temps Af2

trop

à étudier des demandes Af3 de changements d’installations Af4 , Af5

courantes le long d’un pipe-line par exemple

Figure 1: Example sentence pair

This paper contributes the first study to mea-
sure the degree of adjunction synchronicity: we
derive many-to-many pairings between adjuncts
across a bitext, thus supporting a generic view
of translation equivalence, where meaning can
be expressed by distinct entities and redistributed
freely in translation; practically, this also allows
us to capture equivalence in spite of mismatched
parses. We abstract away from word alignments
to a certain degree, as we directly pair adjuncts
across a bitext, but we still use word alignments–
namely the overlap of adjunct projections with tar-
get adjuncts–to decide on these pairings. We fur-
ther distinguish between adjunct pairings that are
bijective through the word alignment, and other
pairings, where the translation equivalence does
not exactly agree with the word alignment; we
qualify these pairings as weakly equivalent.

Under this new view of adjunct translation
equivalence, we perform measures in French-

English data. We show that adjunction is pre-
served in 40% to 50% of the cases with automati-
cally labelled adjuncts, with differences between
data sets, word aligners and sentence length;
about 25% more adjuncts form weakly translation-
equivalent pairings. With gold adjunct annota-
tions, the proportion of translation-equivalent ad-
juncts increases to 70%.

These results show that adjunct labelling accu-
racy on both sides of the data is crucial for adjunct
alignment, while suggesting that applications that
exploit adjunction can gain from decreasing their
dependence on word alignments and idealized ex-
perimental conditions , and identifying favorable
contexts for adjunct preservation.

2 Alignment-based role pairing

How can one find translation-equivalent adjuncts
using word alignments, without being too con-
strained by the latter? Obviously, adjunct pairs
that are consistent with the word alignments are
translation equivalent, but we also want to be able
to identify translation-equivalent adjuncts that are
not exactly aligned to each other, and also to ac-
cept many-to-many pairings; not only to get lin-
guistically justified discontinuous pairs, as with
the French double negation particle, but also for
robustness with regard to dissimilar attachments
in the French and English parses.

2.1 Translation equivalence under the
alignment-consistency constraint

Consider for instance Figure 2, which represents
a word alignment for part of the sentence pair of
Figure 1. We would like to match f̄2 to ē2 and ē6,
f̄3 to ē3, f̄4 to ē5, and f̄5 to ē6. If one only pairs
adjuncts that are consistent with the word align-
ment, one obtains only half of these adjunct pairs:
〈f̄3, ē3〉 and 〈f̄4, ē5〉; one cannot pair up f̄5 and
ē6 because the latter is also aligned outside of the
former; and one can also not find the equivalence
between f̄2 on one hand and ē2 and ē6 on the other
hand if one assumes one-to-one correspondence
between adjuncts.

2.2 Translation equivalence through
projection

We align adjuncts across the bitext by projecting
them through the word alignment and finding, for
each adjunct, the shortest adjunct or sequence of
adjuncts that overlaps the most with that adjunct’s
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Figure 2: Example with word alignment

projection. To prevent source adjuncts from be-
ing aligned to the first target adjunct that sub-
sumes their projection, we also enforce that only
non-overlapping source adjuncts may be aligned
to a same target sequence, as explained in sec-
tion 2.2.1.

This procedure results in a many-to-many align-
ment between adjuncts on either side. We distin-
guish several types of adjunct pairings through this
alignment, which we interpret as divergent, equiv-
alent or weakly equivalent, as described in sec-
tion 2.2.2.

We perform this alignment in both source-target
and target-source directions to measure the pro-
portion of source, respectively target, adjuncts that
fall in each category.

2.2.1 Adjunct pairing procedure
We define the projection of an adjunct σ as the
unique tuple of maximal, non-overlapping phrases
φn

1 that are aligned to σ through the word align-
ment. Each phrase φi in this tuple is understood
as being extended with possible surrounding un-
aligned positions–phrases are primarily identified
by the aligned positions they cover. And each φi

is maximal as any larger phrase distinct from φi

would also include (aligned) positions not aligned
to σ. Let I(φi) be the set of aligned positions
in each φi, and I(φn

1 ) the set of aligned positions

covered by φn
1 .

We align σ to the non-overlapping sequence
of target adjuncts τm

1 that has the smallest set of
aligned positions while having the largest over-
lap with φn

1 ; the overlap of a projection and a tar-
get sequence is the intersection of their respective
sets of aligned positions. For instance in Figure 2,
the projection of f̄4 is maximally covered by ē2,
ē4, and ē5; we align the latter to f̄4 as it covers
the least aligned positions. In practice, we search
through the tree of target adjuncts for adjuncts that
overlap with φn

1 , and for each such adjunct τ we
compare its overlap with φn

1 to that of the sequence
of its children γk

1 to determine which (of τ or γk
1 )

should be part of the final target sequence.
We perform a similar selection on overlapping

source adjuncts that point to the same target se-
quence. For each source adjunct σ, we determine
if its target sequence τm

1 is also aligned to adjuncts
dominated by σ, in which case we compare the
overlap of σ’s projection with τn

1 to that of its chil-
dren in the source adjunct tree to determine which
should be aligned to τm

1 . For instance in Figure 2,
ē4 is aligned to f̄2 (when projecting from English
to French), but so is ē2; as ē2’s projection overlaps
more with f̄2, we discard the alignment between
ē4 and f̄2.

The final alignments for our example are repre-
sented in Table 1.

Table 1: Adjunct pairings for the alignment of
Figure 2

f → e e→ f

f̄2 ē2, ē6 ē2 f̄2

f̄3 ē3 ē3 f̄3

f̄4 ē5 ē4 -
f̄5 ē6 ē5 f̄4

ē6 f̄2

2.2.2 Types of adjunct pairings
We distinguish three main classes of adjunct
translation equivalence: divergent, equivalent and
weakly equivalent. We further subdivide each
class into two types, as shown in Table 2. Ad-
junct pairings fall into one of these types depend-
ing on their configuration (unaligned, one-to-one
or many-to-many) and their agreement with the
word alignments. Equivalent types notably differ
from weakly equivalent ones by being bijectively
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aligned; With the notations of section 2.2.1, two
adjunct sequences σn

1 and τm
1 with respective pro-

jections φn′
1 and ψm′

1 are translation equivalent iff
I(φn′

1 ) = I(τm
1 ) and I(ψm′

1 ) = I(σn
1 ).

Table 2: Adjunct pairing types

divergent
null empty projection
div no aligned target adjuncts
weakly equivalent
we-nm many-to-many non-bijective
we-11 one-to-one non-bijective
equivalent
eq-nm many-to-many bijective
eq-11 one-to-one bijective

In Table 1, ē4’s translation is divergent as it is
not aligned to any adjunct; f̄5 and ē6 are weakly
equivalent as the projection of f̄5 does not cover
all the aligned positions of ē6. The pairing from f̄2

to ē2, ē6 is many-to-many equivalent, and so are
the pairings from ē2 and ē6 to f̄2; the remaining
pairings are one-to-one equivalent.

As Table 3 shows, the divergent types null and
div regroup untranslated adjuncts (Example 1)
and divergent adjuncts: Examples (2) and (3) show
cases of conflational divergence (Dorr, 1994), that
appear in different types because of the underly-
ing word alignments; in Example (4), the prepo-
sitional phrase with this task has been wrongly
labelled as an adjunct, leading to a falsely diver-
gent pairing. The weakly-equivalent types we-nm
and we-11 regroup both divergent and equiva-
lent pairings: the adjuncts of Examples (5) and (8)
are aligned by our method to adjuncts that are not
their translation equivalent, the adjunct in Exam-
ple (6) cannot be aligned to its equivalent because
of a parsing error, and the equivalences in Exam-
ples (7) and (9) cannot be identified because of a
word-alignment error. Finally, we show a number
of equivalent pairings (eq-nm and eq-11): in
Example (10), an attachment error in the French
parse induces a many-to-one equivalence where
there should be two one-to-one equivalences; Ex-
amples (11) to (13) show a number of true many-
to-many equivalences, while Examples (14) and
(15) show that adjuncts may be equivalent across a
bitext while belonging to a different syntactic cate-
gory and modifying a different type of phrase (15).

3 Adjunct identification

We identify adjuncts in dependency trees obtained
by conversion from phrase-structure trees: we map
modifier labels to adjuncts, except when the de-
pendent is a closed-class word. For English, we
use the Berkeley parser and convert its output with
the pennconverter (Johansson and Nugues, 2007;
Surdeanu et al., 2008); for French, we use the
Berkeley parser and the functional role labeller of
Candito et al. (2010). The pennconverter with de-
fault options and the French converter make sim-
ilar structural choices concerning the representa-
tion of coordination and the choice of heads.

3.1 English adjuncts
We first identify closed-class words by their POS
tag: CC, DT, EX, IN, POS, PRP, PRP$, RP, SYM,
TO, WDT, WP, WP$, WRB. Punctuation marks,
identified by the P dependency relation, and name
dependencies, identified by NAME, POSTHON, or
TITLE, are also treated as closed-class words.

Adjuncts are identified by the dependency rela-
tion: ADV, APPO, NMOD (except determiners, pos-
sessives and ‘of’ complements), PRN, AMOD (ex-
cept when the head is labeled with ADV) and PMOD
left of its head. Cardinals, identified by the CD
POS tag, and remaining dependents are classified
as arguments.

3.2 French adjuncts
Closed-class words are identified by the (coarse)
POS tags: C, D, CL, P, PONCT, P+D, PRO. Aux-
iliary verbs, identified by the dependency relations
aux tps and aux pass, are also included.

Adjuncts are identified by the dependency re-
lations mod rel and mod (except if the depen-
dent’s head is a cardinal number, identified by the
s=card label).

3.3 Evaluation
We evaluate adjunct identification accuracy using
a set of 100 English and French sentences, drawn
randomly from the Europarl corpus. A single an-
notator marked adjuncts in both sets, identifying
slightly more than 500 adjuncts in both sets. We
find F scores of 71.3 and 72.2 for English and
French respectively, as summarized in Table 4. We
find that about a quarter of errors are related to
parse attachment, yielding scores of 77.7 and 78.6
if one corrects them.
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Table 3: Examples of adjunct pairing types

null
(1) it is indeed a great honour vous me faites un grand honneur

(2) the polling booths les isoloirs

div
(3) the voting stations les isoloirs

(4) to be entrusted with this task en me confiant cette tâche

we-nm
(5) reforms to the Canadian military réformes des forces [armées] [canadiennes]
(6) an even greater country un pays [encore] [plus] magnifique

(7) in safe communities [en sécurité] [dans nos communautés]
we-11
(8) across the land de tout le pays

(9) strong opinions des opinions bien arrêtées
eq-nm
(10) a proud moment for Canada un moment heureux pour le Canada
(11) we have used the wrong process nous ne suivons pas le bon processus

(12) our common space and our common means un espace et des moyens communs
(13) the [personal] [protected] files les dossiers confidentiels et protégés
eq-11
(14) the names just announced les noms que je viens de mentionner
(15) one in three Canadian jobs au Canada , un emploi sur trois

Table 4: Adjunct identification F scores

prec. recall F

En
auto. 66.2 77.2 71.3
corr. 72.3 84.0 77.7

Fr
auto. 68.1 76.7 72.2
corr. 74.7 83.0 78.6

4 Experiments

4.1 Experimental set-up
We measure adjunct translation equivalence in
four data sets: the manually-aligned Canadian
Hansards corpus (Och and Ney, 2003), contain-
ing 447 sentence pairs, the house and senate train-
ing data of the Canadian Hansards (1.13M sen-
tence pairs), the French-English Europarl training
set (1.97M sentence pairs) and the Moses news-
commentaries corpus (156k sentence pairs). Be-
sides, we randomly selected 100 sentence pairs
from the Europarl set to measure adjunct identi-
fication accuracy as reported in section 3 and ad-
junct correspondence with gold adjunct annota-

tions.
All four corpora except the manual Hansards

are preprocessed to keep sentences with up to
80 words, and all four data sets are used jointly
to train unsupervised alignments, both with the
Berkeley aligner (Liang et al., 2006) and GIZA++
(Brown et al., 1993; Och and Ney, 2003) through
mgiza (Gao and Vogel, 2008), using 5 iterations of
Model 1 and 5 iterations of HMM for the Berkeley
aligner, and 5 iterations of Model 1 and HMM and
3 iterations of Model 3 and Model 4 for GIZA++.
The GIZA++ alignments are symmetrized using
the grow-diag-final heuristics. Besides, the man-
ual Hansards corpus is aligned with Sure Only
(SO) and Sure and Possible (SP) manual align-
ments.

4.2 Measurements with gold adjunct
annotations

We compared adjunct translation equivalence of
automatically identified adjuncts and gold anno-
tations using 100 manually annotated sentence
pairs from the Europarl corpus; adjuncts were
aligned automatically, using the Berkeley word
alignments. We also measured adjunct equiv-
alence using automatic adjunct annotations cor-
rected for parse attachment errors, as introduced
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in section 3.3. Table 5 reports harmonic mean fig-
ures (mh) for each adjunct projection type. For
information, we also report their decomposition in
the case of gold annotations, showing some depen-
dence on the projection direction.

Table 5: Translation equivalence of auto-
matic, rebracketed and gold adjuncts

auto. corr. gold
mh mh ef fe mh

null 7.6 7.7 8.1 7.3 7.7
div 22.3 22.5 14.7 12.0 13.2

we-nm 10.8 9.6 2.7 4.6 3.4
we-11 12.5 10.8 7.4 8.5 7.9

eq-nm 3.5 2.2 2.5 3.3 2.9
eq-11 41.8 45.8 64.5 64.3 64.4

About two thirds of manually identified ad-
juncts form equivalent pairs, representing a gain
of 20 points with regard to automatically identi-
fied adjuncts. This is accompanied by a halving of
divergent pairings and of weakly equivalent ones.
Further, we find that about half of the remaining
weak equivalences can be interpreted as transla-
tion equivalent (to compare to an estimated third
for automatically identified adjuncts), allowing us
to estimate to 70% the degree of translation equiv-
alence given Berkeley word alignments in the Eu-
roparl corpus.

4.3 Measurements with manual and
automatic alignments

We aligned adjuncts in the manual Hansards cor-
pus using all four word alignments. Table 6
presents the mean proportions for each category
of adjunct projection.

Table 6: Translation-equivalence of adjuncts
in the manual Hansards

SO SP bky giza

null 32.1 2.8 8.7 3.3
div 19.7 29.3 27.1 30.3

we-nm 3.4 14.6 8.5 11.4
we-11 5.7 13.8 13.5 15.3

eq-nm 4.1 7.3 4.1 4.2
eq-11 33.7 31.8 37.6 35.3

Comparing the mean proportions per type be-

tween the four alignments, we see that a third of
adjuncts on either side are not aligned at all with
the sure-only manual alignments. In the example
of Figure 2 for instance, these alignments do not
link f̄3 to ē3. On the other hand, the sure and
possible manual alignments lead to many diver-
gent or weakly equivalent pairings, a result of their
dense phrasal alignments. In comparison, the au-
tomatic alignments connect more words than the
sure-only alignments, leading to a mixed result for
the adjunct pairings: one gains more translation-
equivalent, but also more divergent and weakly
equivalent pairs. In this, the Berkeley aligner ap-
pears less noisy than GIZA++, as it captures more
translation equivalent pairs and less weakly equiv-
alent ones. This is confirmed in the other data sets
too, as Table 7 shows.

Table 7: Mean proportions of adjunct-pairing
types in automatically aligned data

hans-hst europarl news
bky giza bky giza bky giza

null 7.5 2.7 6.3 2.3 8.3 3.3
div 28.1 30.8 21.8 24.2 21.0 23.9

we-nm 10.4 12.2 11.0 12.7 10.6 12.6
we-11 13.4 15.5 12.4 14.6 11.7 14.2

eq-nm 3.2 4.0 3.2 4.0 3.1 3.8
eq-11 37.1 34.6 45.0 42.0 44.9 41.8

Comparing figures between the different data
sets, we see that the Europarl and the News
data have more translation-equivalent and less di-
vergent adjuncts than the Hansards training data
(hans-hst). Taking the harmonic mean for both
equivalent types (eq-nm and eq-11), we find
that 48.2% of adjuncts have an adjunct translation
equivalent in the Europarl data (with the Berke-
ley aligner) and 48.0% in the News corpus, against
40.3% the Hansards training set and 41.6% in the
manual Hansards set. This suggests that transla-
tions in the Hansards data are less literal than in
the Europarl or the News corpus.

4.4 Effect of sentence length
We explore the relation between sentence length
and translation equivalence by performing mea-
surements in bucketed data. We bucket the data
using the length of the English sentences. Mea-
surements are reported in Table 8 for the Hansards
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Table 8: Adjunct translation equivalence with the Berkeley aligner in bucketed
data

hans-man hansard-hst europarl
1-15 16-30 1-15 16-30 31-50 51-80 1-15 16-30 31-50 51-80

null 9.3 8.5 6.5 7.6 7.8 8.0 6.4 6.0 6.2 6.6
div 28.1 25.9 39.5 25.3 23.5 22.6 25.3 22.2 21.2 20.6

we-nm 6.1 9.4 5.3 10.1 13.6 16.7 5.0 9.3 12.5 14.9
we-11 11.8 14.1 12.2 13.4 14.2 14.8 10.0 11.7 13.0 13.9

eq-nm 3.1 4.5 2.8 3.4 3.3 3.1 3.4 3.3 3.1 2.9
eq-11 40.6 36.3 32.5 39.6 37.3 34.4 49.1 47.1 43.7 40.7

and the Europarl sets (the News set yields similar
results to the Europarl data).

All data sets show a dramatic increase of the
proportion of adjuncts involved in many-to-many,
and to a lesser extent one-to-one weakly equiva-
lent translations. This increase is accompanied by
a decrease of all other adjunct-pairing types (un-
aligned adjuncts excepted), and is likely to result
from increased word-alignment and parsing errors
with sentence length.

A rather surprising result is the high proportion
of divergent adjunct translations in the shorter sen-
tences of the Hansards training set; we find the
same phenomenon with the GIZA++ alignment.
We attribute this effect to the Hansards set having
less literal translations than the other sets. That
we see this effect mostly in shorter sentences may
result from translation mismatches being mostly
local. As sentence length increases however, word
and adjunct alignment errors are also likely to link
more unrelated adjuncts, resulting in a drop of di-
vergent adjuncts.

4.5 Simplifying alignments
We perform a simple experiment to test the effect
of word-alignment simplification of adjunct trans-
lation equivalence. For this we remove alignment
links between function words (as defined in sec-
tion 3) on both sides of the data, and we realign
adjuncts using these simplified alignments. Ta-
ble 9 shows that this simplification (column ‘-fw’)
slightly decreases the proportion of weakly equiv-
alent pairings with regard to the standard align-
ment (‘std’), mostly to the benefit of translation-
equivalent pairings. This suggests that further
gains may be obtained with better alignments.

Table 9: Effect of alignment simplification
on adjunct translation equivalence in the Eu-
roparl data

bky giza
std -fw std -fw

null 6.3 7.5 2.3 3.1
div 21.8 21.5 24.2 24.0

we-nm 11.0 9.1 12.7 10.8
we-11 12.4 10.0 14.6 13.2

eq-nm 3.2 4.0 4.0 4.8
eq-11 45.0 47.5 42.0 43.7

5 Related work

While adjunction is a formal operation that may be
applied to non-linguistic adjuncts in STAG, De-
Neefe and Knight (2009) restrict it to syntactic
adjuncts in a Synchronous Tree Insertion Gram-
mar. They identify complements using (Collins,
2003)’s rules, and regard all other non-head con-
stituents as adjuncts. Their model is able to gen-
eralize to unseen adjunction patterns, and to beat a
string-to-tree baseline in an Arabic-English trans-
lation task.

Arnoult and Sima’an (2012) exploit adjunct op-
tionality to generate new training data for a phrase-
based model, by removing phrase pairs with an
English adjunct from the training data. They iden-
tify adjuncts using syntactic heuristics in phrase-
structure parses. They found that few of the gener-
ated phrase pairs were actually used at decoding,
leading to marginal improvement over the base-
line in a French-English task. They also report
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figures of role preservation for different categories
of adjuncts, with lower bounds between 29% and
65% and upper bounds between 61% and 78%, in
automatically aligned Europarl data. The upper
bounds are limited by discontinuous adjunct pro-
jections, while the estimation of lower bounds is
limited by the lack of adjunct-identification means
for French.

There has been a growing body of work on ex-
ploiting semantic annotations for SMT. In many
cases, predicate-argument structures are used to
provide source-side contextual information for
lexical selection and/or reordering (Xiong et al.,
2012; Li et al., 2013), without requiring cross-
linguistic correspondence. When correspondence
between semantic roles is required, predicates are
commonly aligned first. For instance, Lo et al.
(2012) use a maximum-weighted bipartite match-
ing algorithm to align predicates with a lexical-
similarity measure to evaluate semantic-role corre-
spondence. Padó and Lapata (2009) use the same
algorithm with a similarity measure based on con-
stituent overlap to project semantic roles from En-
glish to German.

6 Conclusion

In this paper we presented the first study of trans-
lation equivalence of adjuncts on a variety of
French-English parallel corpora and word align-
ments. We use a method based on overlap to de-
rive many-to-many adjunct pairings, that are inter-
pretable in terms of translation equivalence.

We found through measurements in French-
English data sets that 40% to 50% of adjuncts–
depending on the data–are bijectively aligned
across a bitext, whereas about 25% more adjuncts
align to adjuncts, albeit not bijectively. We esti-
mate that a third of these weakly equivalent links
represent true, adjunct translation equivalences.

With manually identified adjuncts, we found
that about 70% have adjunct translation-
equivalents in automatically aligned data.
These are fairly low results if one considers that
French and English are relatively close syntacti-
cally. So while they show that adjunct labelling
accuracy on both sides of the data is crucial for
adjunct alignment, and that applications that
exploit adjunction can gain from decreasing their
dependence on word alignments and idealized
experimental conditions, they call for better
understanding of the factors behind translation

divergence.
In fact, as a remaining quarter of adjuncts have

divergent translations, it would be interesting to
determine, for instance, the degree to which diver-
gence is caused by lexical conflation, or reflects
non-literal translations.
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