
Proceedings of The First Workshop on Computational Approaches to Code Switching, pages 133–138,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Incremental N-gram Approach for Language Identification in
Code-Switched Text

Prajwol Shrestha
Kathmandu University

Department of Computer Science and Engineering
Dhulikhel, Nepal

prajwol.shrestha18@gmail.com

Abstract

A multilingual person writing a sentence
or a piece of text tends to switch be-
tween languages s/he is proficient in. This
alteration between languages, commonly
known as code-switching, presents us with
the problem of determining the correct
language of each word in the text. My
method uses a variety of techniques based
upon the observed differences in the for-
mation of words in these languages. My
system was able to obtain third position in
both tweet and token level for the main test
dataset as well as first position in the token
level evaluation for the surprise dataset
both consisting of Nepali-English code-
switched texts.

1 Introduction

Nowadays, it is common for people to be able to
speak in two or more languages. So, the propen-
sity to use code-switching in spoken as well as
in written text has increased. Code-switching oc-
curs when a person uses two or more than two
languages in a single piece of text. According to
Elfardy and Diab (2012), the phenomenon where
speakers switch between multiple languages be-
tween the same utterance or across utterances
within the same conversation is referred to as Lin-
guistic Code Switching. English, being an univer-
sal language is highly likely to be code-switched
with some other language. This is specially true
when English is studied or spoken in the com-
munity as the second language by a person. In
a such case, the person is likely to use English
words with his/her native language to form code-
switched, yet, syntactically correct and meaning-
ful sentences.

This paper deals with the code-switching that
occurs when English is used with Spanish or

Nepali. The problem of identifying code-
switching is closely tied with figuring out how a
language is acquired or learned. Auer (1988) iden-
tified the phenomenon of how Italians, who were
raised in Germany developed fluctuation and vari-
ation in their native language as well as in German.
They were also noticed to have a strong tendency
to have a conversation dominated by the Ger-
man words. This phenomenon was also observed
by Dey and Fung (2014). The strong influence
of Bollywood in the Indian culture and the high
amount of code-switching with English in movie
dialogues and song lyrics, led to Hindi-English
code-switching, being common for the average In-
dian. Finding out the points in the text where peo-
ple are most likely to code-switch, what word of a
certain language is more likely to be used than a
word with the same meaning of another language
and which languages are more likely to be used
in code-switching than others are all important re-
search questions. Although my paper deals only
with finding out the language a certain token in a
code-switched text belongs to, this is a first step
towards answering those other questions.

The main aim of this paper is to describe
my system submission to the Computational Ap-
proaches to Code Switching task (Solorio et al.,
2014). The training dataset provided for the clas-
sification task were tweets composed of Spanish
and English words or Nepali and English words.
The test dataset also consisted of similar tweets.
In addition to this, there was also a surprise dataset
consisting of Facebook posts and comments in the
place of tweets. My system for this task performs
language identification by using a number of tech-
niques. The first one is based upon an assump-
tion that words of different languages have vary-
ing sets of n-gram prefixes that occur predomi-
nantly throughout the language. There has been
prior research on language identification through
the use of n-grams. Cavnar et al. (1994) have ap-

133



proached the task of identifying the language of
an electronic mail taken from Usenet newsgroups
with the use of n-grams. They obtained train-
ing sets for each language to be classified, which
acted as language category samples. They com-
puted n-gram frequency profiles on these train-
ing sets. They found that the top 300 n-grams of
each language are used most frequently to form
the words of the language. Nguyen and Dogruoz
(2014) have used dictionary search and a n-gram
based language model to identify the language on
word-level of forum posts with Dutch and Turkish
code-switching.

Lignos and Marcus (2013) found that data col-
lected from social media to detect code-switching
contained a lot of non-standard spellings of words
and unnecessary capitalization. It was also true for
this dataset. So, I made use of a lightweight spell
checker in the event that the word was not spelled
correctly and hence not categorised into any lan-
guage. I have also used a rule based classification
system that can also be used for named entities and
non-alphanumeric language classes. With the sys-
tem that I built based on these ideas, I achieved
an accuracy of above 94% for English-Nepali and
above 80% for English-Spanish in the token level
evaluation. As the system works as a pipeline of
smaller systems, it was time consuming. So, in
order to improve speed, it is built to run on a mul-
tithreaded environment.

Language identification by using these tech-
niques overcomes the drawback of other simpler
methods like extracting a token’s characters and
then using its Unicode value to determine its lan-
guage. But most of the time the words are not writ-
ten in its own script by using Unicode, but rather,
its Romanized form is used. Some languages like
Spanish are almost fully written in roman letters,
with exception being only a small subset of ac-
cented characters. Precisely these kinds of words
require more robust classification techniques. An-
other alternative is manual classification but it has
the downside of being time consuming and an un-
economical alternative. There is a need of an ap-
plication that can overcome these drawbacks and
create a system that can be used for similar sets of
data.

2 Methodology

The classification of a token of a code-switched
text into one of the six classes: lang1, lang2, am-

biguous, named entity, mixed and other is per-
formed by using four techniques described shortly.
But before applying any of these techniques, the
first step was the creation of a dictionary for each
class by using the tokens from the training set. As
a preprocessing step, for any token that starts with
#, the # is removed. Also, any token that starts
with @ is given the ‘other’ class label. The tech-
niques used in my system are detailed below. They
are applied in a pipeline, in the same order as they
are mentioned.

2.1 Incremental N-Gram Occurrence Model
with Dictionary Search

This model is used for test tokens whose length
(L) is greater than three in the case of Nepali-
English code-switching task and is greater than
two in the case of Spanish-English code-switching
task. Tokens that are shorter are classified by us-
ing a simple dictionary lookup. If the occurrence
count of the token in the dictionary of class C is
the highest, then the token is classified as belong-
ing to class C.

In order to assign a class label to a particular to-
ken, this model uses only the first ngram of each
size n ranging from 3 (for Spanish-English) or 4
(for Nepali-English) to L-1. The count of oc-
currence of this ngram in each class dictionary is
taken as the score. The size n is increased itera-
tively and the score from each iteration is added at
the end to obtain the final score. For named entity
(NE) and ambiguous dictionary search, the whole
token is used instead of just the ngram since the
size of these dictionaries is small. Since a whole
token lookup was performed, the occurrence count
scores from these dictionaries are rated to be three
times higher. After obtaining the final scores for
each class, the one with the highest score gets as-
signed as the class label of the token.

This method is based on the hypothesis that to-
kens belonging to the same language will have
more overlap of the preceding characters. If two
tokens are from different languages, they might
start the same way but will start deviating in the
use of characters faster than two tokens of the
same language. The Incremental N-Gram Model
for Nepali-English Classification is shown in Al-
gorithm 1.

Consider that we have to find the language of
the Test token Parsin. The following assumptions
are made:

134



Algorithm 1 Incremental N-gram Classification
if len(token) > 3 then

n = 4
while n < len(token)− 1 do

if token ∈ dict[ambiguous, ne] then
Increment Respective Language
Occurrence Count by 3

end if
if FirstN-Gram ∈ Remaining Classes

then
Find the number of words in
each class dictionary that starts
with the First N-Gram.
Add this number with the previous
occurrence count for the
particular class

end if
end while

end if

N-gram
Size

First
N-gram English Nepali Ambiguous

4 PARS 2 6 3
5 PARSI 2 6 3
6 PARSIN 1 0 3

Total 7 12 9

Table 1: Incremental N-gram Classification Ex-
ample

• The Word Parsing occurs twice and Parsi-
mony once in the English Language Dictio-
nary.

• Word Parsi occurs 6 times in the Nepalese
Language Dictionary (Parsi means the day
after Tomorrow).

• Test token Parsin occurs 0 times in Other
Language and Named Entity Dictionary

• Test token Parsin occurs once each in Am-
biguous words Dictionary

The algorithm works as shown in Table 1.

2.2 Rule Based Classification

A small fraction of test tokens are left unclassi-
fied by the above method. These tokens are fur-
ther processed by using a rule based classification
system. It consists of the following handwritten
rules:

• Check if the token is an emoticon against an

emoticon list. If the token is found in the list,
it is of the class, ‘other’.

• It was hard to find an off-the-shelf named en-
tity recognizer for code-switched text. So,
a simple named entity recognition rule was
used. For a token consisting of only alpha-
betic characters, if there are more than one
uppercase letters in the token or if the token
starts with an uppercase letter, it is an NE.

• If the difference in the occurrence score of
a token in lang1 dictionary vs lang2 dictio-
nary is higher than three, the token is clas-
sified as belonging to the language with the
higher score.

• If the token occurs in lang1 and lang2 dictio-
naries equally, the token is ‘ambiguous’.

2.3 Lightweight Spell Checker

The test tokens that are still not classified are
checked for spelling errors using a simple spelling
checker, complementary to the idea of edit dis-
tance. If the above two classifiers were unable to
classify a token, it might be because these tokens
were misspelled. This method is based upon the
idea that misspelled tokens are still similar to the
language that they belong to. The spell checker
checks the test token against every token in the
dictionaries for similarity (defined below).

‘Similarity’ is defined as follows: First, a
‘similar count’ score (SC) is calculated as the
number of characters that match between two
tokens in order. A test token of length L1
is said to be similar to a dictionary token of
length L2 if: SC>max(L1,L2)-1 when L1<7 or
SC>max(L1,L2)-2 when L1 ≥ 7

Here, when the test token is checked against a
token in the Nepali dictionary, the characters ‘x’
and ‘6’ in both tokens are replaced with the char-
acter sequence ‘ch’. This normalization is per-
formed because it is very common for the latter
character sequence to be replaced by either of the
former two characters, in the Nepali language. If
a test token is found to be similar to a token in a
dictionary of a certain class, the similarity score to
the class is incremented. The class with the maxi-
mum similarity score is considered to be the class
of the test token.

135



2.4 Special Characters Check
At this stage, only a minimal number of tokens
are left to be labeled. These tokens are checked to
see if they contain characters not belonging to En-
glish Unicode or modifiers. If one such character
is found, the token is said to be from lang2, either
Spanish or Nepalese. All the remaining tokens are
categorized as ‘other’.

3 Experimental Settings

For all my experiments, I divided the training
data into a ratio of 70:30 for training and cross-
validation. In order to tune the different param-
eters, I had to repeat the experiments multiple
times. So, in order to improve the runtime per-
formance, I made use of multithreading.

I tested the application by setting the first n-
gram length in the Incremental N-Gram Model to
3 and 4. I varied the criteria of the least number of
characters that should match between two tokens,
in order for the two tokens to be similar. I observed
the highest accuracy of above 94% in Nepali- En-
glish classification when the First n-gram length
was 4. In the case of Spanish-English token clas-
sification, I observed the highest accuracy of 88%
when the n-gram length was 3. The spellchecker
gave the best results when it had the above men-
tioned similarity criteria.

The whole classifying task was sure to take a
long time so I built it to scale with the increas-
ing number of CPUs. I performed the experiments
on a 1st Generation Core i7 (Eight Logical Cores)
CPU and a Core 2 Duo CPU (2 logical Cores).

I observed the best performance when the ap-
plication created the number of threads equal to
the number of available CPU cores. The classifi-
cation task completed in the i7 CPU with 8 active
threads in 13 minutes compared to almost 35 min-
utes with 2 active threads on the Core 2 Duo CPU.
The task completed in around 38 minutes in the i7
CPU with 2 active threads.

4 Results and Analysis

Language
Pair Recall Precision F1-Score Accuracy

NE-EN 0.980 0.968 0.974 0.951
ES-EN 0.883 0.489 0.630 0.699

Table 2: Tweet level results on the test data.

My system obtained an accuracy of 95.1% in
the tweet-level evaluation and 79.4% accuracy in

Category Recall Precision F1-Score
lang1 0.944 0.949 0.947
lang2 0.965 0.964 0.965
mixed 0.000 1.000 0.000
ne 0.510 0.657 0.574
other 0.968 0.935 0.951

Table 3: Token level results on the test data for
Nepali-English.

Category Recall Precision F1-Score
lang1 0.866 0.761 0.810
lang2 0.750 0.861 0.802
mixed 0.000 1.000 0.000
ambiguous 0.000 0.000 0.000
ne 0.155 0.554 0.242
other 0.847 0.823 0.835

Table 4: Token level results on the test data for
Spanish-English.

the Facebook post-level evaluation of English-
Nepali test tweets. Although, it was third in tweet-
level evaluation, it was only 0.7% behind the best
tweet-level system in terms of accuracy. My sys-
tem was second in Facebook post-level evaluation
by 6.9%. It had an accuracy of 94.6% and 86.5%
in the token level evaluation of English-Nepali
test tweets and Facebook posts respectively. The
model was third in the tweet-token evaluation but
stood first in the Facebook-post token evaluation.
These results align with the hypothesis of the In-
cremental N-Gram Occurrence Model that token
belonging to the same language will have more
overlap of the preceding characters.

My system obtained an accuracy of 69.9% in
the tweet-level evaluation and 70.0% accuracy in
the Facebook post-level evaluation of the English-
Spanish test data. It was the least effective in both
the evaluation tasks. My system had an accuracy
of 80.3% and 87.6% in the token level evaluation
of English-Spanish test tweets and Facebook posts
respectively. The model was again the least ef-
fective in both the token level evaluation task but
by a smaller margin. The results do not exactly
follow the hypothesis, but we can say it supports
it because English and Spanish languages share a
lot of common word prefixes. Hence my method
is more likely to incorrectly predict some Spanish
words as English and vice-versa.

It is evident from the results that this model is
suitable when the languages being classified are

136



Language
Pair Recall Precision F1-Score Accuracy

NE-EN 0.900 0.486 0.632 0.794
ES-EN 0.882 0.493 0.633 0.700

Table 5: Tweet level results on the surprise data.

Category Recall Precision F1-Score
lang1 0.913 0.802 0.854
lang2 0.936 0.911 0.923
ne 0.394 0.833 0.535
other 0.886 0.696 0.780

Table 6: Token level results on the surprise data
for Nepali-English.

highly dissimilar in syntax and structure. As En-
glish and Nepali language do not have the same
ancestry they have very different syntax and struc-
ture. The word prefixes used frequently to form
Nepali words and the syntax of forming various
parts of speech in Nepali language is quite differ-
ent than in the English language.

In both the training and test datasets, the ratio of
code-switched to monolingual tweets is higher in
Nepali than in Spanish, which probably led to my
system performing worse on tweet level for Span-
ish. Although, this distribution can be anticipated
because English is taught from primary schooling
levels in Nepal. Almost all the literate population
can communicate pretty well in English. Nepal
is a country that relies heavily in the tourism in-
dustry, and English being a universal language is
a second language in major cities and travel desti-
nations of the country. All these factors have led
to a lot of code switching in tweets Nepali tweets.
On the other hand, Spanish is a widely spoken lan-
guage itself. The people who know Spanish rarely
need to learn a second language. This might be the
reason that there are less code-switched tweets for
Spanish.

My model also has a drawback, which is also
demonstrated by my evaluation results. Spanish
and English languages do share a lot of common
prefixes. This maybe due to their shared Indo-
European ancestry and the fact that English lan-
guage has borrowed a significant number of words
from the French language, which is very similar to
the Spanish language. The word ”precious” and
”bilingual” in English is spelled ”precioso” and
”bilingue” in Spanish. This similarity of prefixes
leads the Incremental N-gram model to classify
tokens wrongly based upon the recurrence of the

Category Recall Precision F1-Score
lang1 0.853 0.756 0.801
lang2 0.746 0.839 0.789
mixed 0.000 1.000 0.000
ambiguous 0.000 0.000 0.000
ne 0.145 0.550 0.230
other 0.826 0.808 0.817

Table 7: Token level results on the surprise data
for Spanish-English.

same prefixed words documented more frequently
in one language than the other. It further results
in a large number of English-Spanish tweets and
Facebook posts to be verified as code switched be-
cause, just one token in a tweet that is wrongly
classified as belonging to another language class,
will validate the tweet as code-switched. To
counter this drawback, when classifying words of
the language that have the same ancestry and sim-
ilar structure and syntax, only the prefixes should
not be considered.

Another important thing to note is that the task
of evaluation is very taxing on the CPU and takes
a lot of time. Various evaluation techniques are
applied to a token before its correct class is deter-
mined. This time consuming process can be ac-
celerated significantly by designing a system that
follows the data and task parallelism principles i.e.
multithreading. The redesign of the system to sup-
port multithreading made the training process al-
most 3 times faster.

5 Conclusion and Future Work

The method described in this paper is useful in
language identification of code-switched text. It
works especially well when the two languages in
question have different word formation syntax and
structure. For the languages that are similar in
ancestry and when one language contains many
words derived from the other language, like Span-
ish and English, this method is not very reliable.
For these types of languages, considering that they
have similar syntax and structure, the use of all
the possible n-grams of the tokens in the training
set and their frequencies might be useful. Also
considering the suffixes of the word rather than
just the prefixes might provide greater accuracy for
prediction of these types of languages. These tasks
are left as future improvements.

137



Acknowledgment

I would like to thank the organizers of the Compu-
tational Approaches to Code Switching Workshop
at EMNLP’14 who gave me an opportunity to par-
ticipate in this task.

References
Peter Auer. 1988. A conversation analytic ap-

proach to code-switching and transfer. Codeswitch-
ing: Anthropological and sociolinguistic perspec-
tives, 48:187–213.

William B Cavnar, John M Trenkle, et al. 1994.
N-gram-based text categorization. Ann Arbor MI,
48113(2):161–175.

Anik Dey and Pascale Fung. 2014. A hindi-english
code-switching corpus. In The 9th International
Conference on Language Resources and Evaluation
(LREC), Reykjavik.

Heba Elfardy and Mona T Diab. 2012. Token level
identification of linguistic code switching. In COL-
ING (Posters), pages 287–296, Mumbai, India.

Constantine Lignos and Mitch Marcus. 2013. To-
ward web-scale analysis of codeswitching. In An-
nual Meeting of the Linguistic Society of America.

Dong Nguyen and A Seza Dogruoz. 2014. Word
level language identification in online multilingual
communication. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steve
Bethard, Mona Diab, Mahmoud Gonheim, Abdelati
Hawwari, Fahad AlGhamdi, Julia Hirshberg, Alison
Chang, and Pascale Fung. 2014. Overview for the
first shared task on language identification in code-
switched data. In Proceedings of the First Workshop
on Computational Approaches to Code-Switching.
EMNLP 2014, Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar.

138


