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Abstract
We describe the IUCL+ system for the shared
task of the First Workshop on Computational
Approaches to Code Switching (Solorio et al.,
2014), in which participants were challenged
to label each word in Twitter texts as a named
entity or one of two candidate languages. Our
system combines character n-gram probabili-
ties, lexical probabilities, word label transition
probabilities and existing named entity recog-
nition tools within a Markov model framework
that weights these components and assigns a
label. Our approach is language-independent,
and we submitted results for all data sets
(five test sets and three “surprise” sets, cov-
ering four language pairs), earning the high-
est accuracy score on the tweet level on two
language pairs (Mandarin-English, Arabic-
dialects 1 & 2) and one of the surprise sets
(Arabic-dialects).

1 Introduction
This shared task challenged participants to perform
word level analysis on short, potentially bilingual Twit-
ter and blog texts covering four language pairs: Nepali-
English, Spanish-English, Mandarin-English and Mod-
ern Standard Arabic-Arabic dialects. Training sets
ranging from 1,000 to roughly 11,000 tweets were pro-
vided for the language pairs, where the content of the
tweets was tokenized and labeled with one of six la-
bels. The goal of the task is to accurately replicate
this annotation automatically on pre-tokenized texts.
With an inventory of six labels, however, the task is
more than a simple binary classification task. In gen-
eral, the most common labels observed in the train-
ing data are lang1 and lang2, with other (mainly
covering punctuation and emoticons) also common.
Named entities (ne) are also frequent, and accounting
for them adds a significant complication to the task.
Less common are mixed (to account for words that
may e.g., apply L1 morphology to an L2 word), and
ambiguous (to cover a word that could exist in either
language, e.g., no in the Spanish-English data).

Traditionally, language identification is performed
on the document level, i.e., on longer segments of
text than what is available in tweets. These methods

are based on variants of character n-grams. Seminal
work in this area is by Beesley (1988) and Grefenstette
(1995). Lui and Baldwin (2014) showed that character
n-grams also perform on Twitter messages. One of a
few recent approaches working on individual words is
by King et al. (2014), who worked on historical data;
see also work by Nguyen and Dogruz (2013) and King
and Abney (2013).

Our system is an adaptation of a Markov model,
which integrates lexical, character n-gram, and la-
bel transition probabilities (all trained on the provided
data) in addition to the output of pre-existing NER
tools. All the information sources are weighted in the
Markov model.

One advantage of our approach is that it is language-
independent. We use the exact same architecture for
all language pairs, and the only difference for the indi-
vidual language pairs lies in a manual, non-exhaustive
search for the best weights. Our results show that the
approach works well for the one language pair with dif-
ferent writing systems (Mandarin-English) as well as
for the most complex language pair, the Arabic set. In
the latter data set, the major difficulty consists in the
extreme skewing with an overwhelming dominance of
words in Modern Standard Arabic.

2 Method
Our system uses an extension of a Markov model to
perform the task of word level language identification.
The system consists of three main components, which
produce named entity probabilities, emission probabil-
ities and label transition probabilities. The outputs of
these three components are weighted and combined in-
side the extended Markov model (eMM), where the
best tag sequence for a given tweet (or sentence) is de-
termined via the Viterbi algorithm.

In the following sections, we will describe these
components in more detail.

2.1 Named Entity Recognition
We regard named entity recognition (NER) as a stand-
alone task, independent of language identification. For
this reason, NER is performed first in our system.
In order to classify named entities in the tweets, we
employ two external tools, Stanford-NER and Twit-
terNLP. Both systems are used in a black box approach,
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without any attempt at optimization. I.e., we use the
default parameters where applicable.

Stanford NER (Finkel et al., 2005) is a state-of-the-
art named entity recognizer based on conditional ran-
dom fields (CRF), which can easily be trained on cus-
tom data.1 For all of the four language pairs, we train a
NER model on a modified version of the training data
in which we have kept the label “ne” as our target la-
bel, but replaced all others with the label “O”. Thus, we
create a binary classification problem of distinguishing
named entities from all other words. This method is
applicable for all data sets.

For the Arabic data, we additionally employ a
gazetteer, namely ANERgazet (Benajiba and Rosso,
2008).2 However, we do not use the three classes (per-
son, location, organization) available in this resource.

The second NER tool used in our system is the Twit-
terNLP package. 3 This system was designed specifi-
cally for Twitter data. It deals with the particular dif-
ficulties that Twitter-specific language (due to spelling,
etc.) poses to named entity recognition. The system has
been shown to be very successful: Ritter et al. (2011,
table 6) achieve an improvement of 52% on segmen-
tation F-score in comparison with Stanford NER on
hand-annotated Twitter data, which is mainly due to a
considerably increased recall.

The drawback of using TwitterNLP for our task is
that it was developed for English, and adapting it to
other languages would involve a major redesign and
adaptation of the system. For this reason, we decided
to use it exclusively on the language pairs that include
English. An inspection of the training data showed that
for all language pairs involving English, a majority of
the NEs are written in English and should thus be rec-
ognizable by the system.

TwitterNLP is an IOB tagger. Since we do not dis-
tinguish between the beginning and the rest of a named
entity, we change all corresponding labels to “ne” in
the output of the NER system.

In testing mode, the NER tools both label each word
in a tweet as either “O” or “ne”. We combine the output
such that “ne” overrides “O” in case of any disagree-
ments, and pass this information to the eMM. This out-
put is weighted with optimized weights unique to each
language pair that were obtained through 10-fold cross
validation, as discussed below. Thus, the decisions of
the NER systems is not final, but they rather provide
evidence that can be overruled by other system compo-
nents.

2.2 Label Transition Models
The label transition probability component models lan-
guage switches on the sequence of words. It is also

1See http://nlp.stanford.edu/software/
CRF-NER.shtml.

2As available from http://users.dsic.upv.es/
grupos/nle/.

3See https://github.com/aritter/
twitter_nlp.

trained on the provided training data. In effect, this
component consists of unigram, bigram, and trigram
probability models of the sequences of labels found
in the training data. Our MM is second order, thus
the transition probabilities are linear interpolations of
the uni-, bi-, and trigram label transition probabili-
ties that were observed in the training data. We add
two beginning-of-sentence buffer labels and one end-
of-sentence buffer label to assist in deriving the start-
ing and ending probabilities of each label during the
training.

2.3 Emission Probabilities

The emission probability component is comprised of
two subcomponents: a lexical probability component
and a character n-gram probability component. Both
are trained on the provided training data.

Lexical probabilities: The lexical probability com-
ponent consists of a dictionary for each label contain-
ing the words found under that label and their rel-
ative frequencies. Each word type and its count of
tokens are added to the total for each respective la-
bel. After training, the probability of a given label
emitting a word (i.e., P (word|label)) is derived from
these counts. To handle out-of-vocabulary words, we
use Chen-Goodman “one-count” smoothing, which ap-
proximates the probabilities of unknown words as com-
pared to the occurrence of singletons (Chen and Good-
man, 1996).

Character n-gram probabilities: The character-
based n-gram model serves mostly as a back-off in case
a word is out-of-vocabulary, in which case the lexi-
cal probability may not be reliable. However, it also
provides important information in the case of mixed
words, which may use morphology from one language
added to a stem from the other one. In this setting, un-
igrams are not informative. For this reason, we select
longer n-grams, with n ranging between 2 and 5.

Character n-gram probabilities are calculated as fol-
lows: For each training set, the words in that training
set are sorted into lists according to their labels. In
training models for each value of n, n − 1 buffer char-
acters are added to the beginning and end of each word.
For example, in creating a trigram character model
for the lang1 (English) words in the Nepali-English
training set, we encounter the word star. We first gen-
erate the form $$star##, then derive the trigrams. The
trigrams from all training words are counted and sorted
into types, and the counts are converted to relative fre-
quencies.Thus, using four values of n for a data set
containing six labels, we obtain 24 character n-gram
models for that language pair. Note that because this
component operates on individual words, character n-
grams never cross a word boundary.

In testing mode, for each word and for each value of
n, the component generates a probability that the word
occurred under each of the six labels. These values
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are passed to the eMM, which uses manually optimized
weights for each value of n to combine the four n-gram
scores for each label into a single n-gram score for each
label. In cases where an n-gram from the test word
was not present in the training data, we use a primitive
variant of LaPlace smoothing, which returns a fixed,
extremely low non-zero probability for that n-gram.

2.4 The Extended Markov Model

Our approach is basically a trigram Markov model
(MM), in which the observations are the words in
the tweet (or blog sentence) and the underlying states
correspond to the sequence of codeswitching labels
(lang1, lang2, ne, mixed, ambiguous,
other). The MM, as usual, also uses starting
and ending probabilities (in our case, derived from
standard training of the label transition model, due
to our beginning- and end-of-sentence buffer labels),
label/state transition probabilities, and probabilities
that the state labels will emit particular observations.
The only difference is that we modify the standard
HMM emission probabilities. We call this resulting
Markov model extended (eMM).

First, for every possible state/label in the sequence,
we linearly interpolate “lexical (emission) probabil-
ities” Plex (the standard emission probabilities for
HMMs) with character n-gram probabilities Pchar.
That is, we choose 0 ≤ λlex ≤ 1 and 0 ≤ λchar ≤ 1
such that λlex + λchar = 1. We use them to derive
a new emission probability Pcombined = λlex · Plex +
λchar ·Pchar. This probability represents the likelihood
that the given label in the hidden layer will emit the lex-
ical observation, along with its corresponding character
n-gram sequence.

Second, only for ne labels in the hidden layer, we
modify the probabilities that they will emit the ob-
served word if that word has been judged by our NER
module to be a named entity. Since the NER compo-
nent exhibits high precision but comparatively low re-
call, we boost the Pcombined(label = ne|word) if the
observed word is judged to be a named entity, but we do
not penalize the regular Pcombined if not. This boosting
is accomplished via linear interpolation and another set
of parameters, 0 ≤ λne ≤ 1 and 0 ≤ λcombined ≤ 1
such that λne + λcombined = 1. Given a positive de-
cision from the NER module, the new probability for
the ne label emitting the observed word is derived as
Pne+combined = λne · 0.80 + λcombined · Pcombined,
i.e., we simply interpolate the original probability with
a high probability. All lambda values, as well as the
weights for the character n-gram probabilities, were set
via 10-fold cross-validation, discussed below.

2.5 Cross Validation & Optimization

In total, the system uses 11 weights, each of which is
optimized for each language pair. In labeling named
entities, the output of the NER component is given one
weight and the named entity probabilities of the other

sources (emission and label transition components) is
given another weight, with these weights summing to
one. For the label transition component, the uni-, bi-
and trigram scores receive weights that sum to one.
Likewise, the emission probability component is com-
prised of the lexical probability and the character n-
gram probability, with weights that sum to one. The
character n-gram component is itself comprised of the
bi-, tri-, four- and five-gram scores, again with weights
that sum to one.

For each language pair, these weights were opti-
mized using a 10-fold cross validation script that splits
the original training data into a training file and a test
file, runs the split files through the system and averages
the output. As time did not allow an exhaustive search
for optimal weights in this multi-dimensional space, we
narrowed the space by first manually optimizing each
subset of weights independently, then exploring com-
binations of weights in the resulting neighborhood.

3 Results
3.1 Main Results
The results presented in this section are the official re-
sults provided by the organizers. The evaluation is split
into two parts: a tweet level evaluation and a token level
evaluation. On the tweet level, the evaluation concen-
trates on the capability of systems to distinguish mono-
lingual from multilingual tweets. The token level eval-
uation is concerned with the classification of individ-
ual words into the different classes: lang1, lang2,
ambiguous, mixed, ne, and other.

Our results for the tweet level evaluation, in com-
parison to the best or next-best performing system are
shown in table 1. They show that our system is ca-
pable of discriminating monolingual from multilingual
tweets with very high precision. This resulted in the
best results in the evaluation with regard to accuracy
for Mandarin-English and for both Arabic-dialects set-
tings. We note that for the latter setting, reaching good
results is exceedingly difficult without any Arabic re-
sources. This task is traditionally approached by us-
ing a morphological analyzer, but we decided to use
a knowledge poor approach. This resulted in a rather
high accuracy but in low precision and recall, espe-
cially for the first Arabic test set, which was extremely
skewed, with only 32 out of 2332 tweets displaying
codeswitching.

Our results for the token level evaluation, in com-
parison to the best performing system per language,
are shown in table 2. They show that our system sur-
passed the baseline for both language pairs for which
the organizers provided baselines. In terms of accu-
racy, our system is very close to the best performing
system for the pairs Spanish-English and Mandarin En-
glish. For the other language pairs, we partially suffer
from a weak NER component. This is especially obvi-
ous for the Arabic dialect sets. However, this is also a
problem that can be easily fixed by using a more com-
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lang. pair system Acc. Recall Precision F-score
Nep.-Eng. IUCL+ 91.2 95.6 94.9 95.2

dcu-uvt 95.8 99.4 96.1 97.7
Span.-Eng. IUCL+ 83.8 51.4 87.7 64.8

TAU 86.8 72.0 80.3 75.9
Man.-Eng. IUCL+ 82.4 94.3 85.0 89.4

MSR-India 81.8 95.5 83.7 89.2
Arab. dia. IUCL+ 97.4 12.5 11.1 11.8

MSR-India 94.7 34.4 9.7 15.2
Arab. dia. 2 IUCL+ 76.6 24.9 27.1 26.0

MSR-India 71.4 21.2 18.3 19.6

Table 1: Tweet level results in comparison to the system with (next-)highest accuracy.

lang1 lang2 mixed ne
lang. pair system Acc. R P F R P F R P F R P F
Nep.-Eng. IUCL+ 75.2 85.1 89.1 87.1 68.9 97.6 80.8 1.7 100 3.3 55.1 48.7 51.7

dcu-uvt 96.3 97.9 95.2 96.5 98.8 96.1 97.4 3.3 50.0 6.3 45.6 80.4 58.2
base 70.0 57.1 76.5 65.4 92.3 62.8 74.7 0.0 100 0.0 0.0 100 0.0

Span.-Eng. IUCL+ 84.4 88.9 82.3 85.5 85.1 89.9 87.4 0.0 100 0.0 30.4 48.5 37.4
TAU 85.8 90.0 83.0 86.4 86.9 91.4 89.1 0.0 100 0.0 31.3 54.1 39.6
base 70.3 85.1 67.6 75.4 78.1 72.8 75.4 0.0 100 0.0 0.0 100 0.0

Man.-Eng. IUCL+ 89.5 98.3 97.8 98.1 83.9 66.6 74.2 0.0 100 0.0 70.1 50.3 58.6
MSR-India 90.4 98.4 97.6 98.0 89.1 66.6 76.2 0.0 100 0.0 67.7 65.2 66.4

Arab. dia. IUCL+ 78.8 96.1 81.6 88.2 34.8 8.9 14.2 – – – 3.3 23.4 5.8
CMU 91.0 92.2 97.0 94.6 57.4 4.9 9.0 – – – 77.8 70.6 74.0

Arab. dia. 2 IUCL+ 51.9 90.7 43.8 59.0 47.7 78.3 59.3 0.0 0.0 0.0 8.5 28.6 13.1
CMU 79.8 85.4 69.0 76.3 76.1 87.3 81.3 0.0 100 0.0 68.7 78.8 73.4

Table 2: Token level results in comparison to the system with highest accuracy (results for ambiguous and
other are not reported).

lang1 lang2 ne
lang. pair system Acc. R P F R P F R P F
Nep.-Eng. IUCL+ 80.5 86.1 78.8 82.3 97.6 80.9 88.5 29.9 80.9 43.7

JustAnEagerStudent 86.5 91.3 80.2 85.4 93.6 91.1 92.3 39.4 83.3 53.5
Span.-Eng. IUCL+ 91.8 87.4 81.9 84.5 84.5 87.4 85.9 28.5 47.4 35.6

dcu-uvt 94.4 87.9 80.5 84.0 84.1 86.7 85.4 22.4 55.2 31.9
Arab. dia. IUCL+ 48.9 91.7 33.3 48.8 48.4 81.9 60.9 3.3 17.6 5.5

CMU 77.5 87.6 55.5 68.0 75.6 89.8 82.1 52.3 73.8 61.2

Table 3: Token level results for the out-of-domain data.

petitive, language dependent system. Another problem
constitutes the mixed cases, which cannot be reliably
annotated.

3.2 Out-Of-Domain Results

The shared task organizers provided “surprise” data,
from domains different from the training data. Our re-
sults on those data sets are shown in table 3. For space
reasons, we concentrate on the token level results only.
The results show that our system is very robust with
regard to out-of-domain settings. For Nepali-English
and Spanish-English, we reach higher results than on
the original test sets, and for the Arabic dialects, the re-
sults are only slightly lower. These results need further

analysis for us to understand how our system performs
in such situations.

4 Conclusions

We have presented the IUCL+ system for word level
language identification. Our system is based on a
Markov model, which integrates different types of in-
formation, including the named entity analyses, lexical
and character n-gram probabilities as well as transition
probabilities. One strength of the system is that it is
completely language independent. The results of the
shared task have shown that the system generally pro-
vides reliable results, and it is fairly robust in an out-
of-domain setting.
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