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Abstract

This paper presents our latest investiga-
tions of the jointly trained maximum en-
tropy and recurrent neural network lan-
guage models for Code-Switching speech.
First, we explore extensively the integra-
tion of part-of-speech tags and language
identifier information in recurrent neu-
ral network language models for Code-
Switching. Second, the importance of
the maximum entropy model is demon-
strated along with a various of experi-
mental results. Finally, we propose to
adapt the recurrent neural network lan-
guage model to different Code-Switching
behaviors and use them to generate artifi-
cial Code-Switching text data.

1 Introduction

The term Code-Switching (CS) denotes speech
which contains more than one language. Speakers
switch their language while they are talking. This
phenomenon appears very often in multilingual
communities, such as in India, Hong Kong or Sin-
gapore. Furthermore, it increasingly occurs in for-
mer monolingual cultures due to the strong growth
of globalization. In many contexts and domains,
speakers switch more often between their native
language and English within their utterances than
in the past. This is a challenge for speech recog-
nition systems which are typically monolingual.
While there have been promising approaches to
handle Code-Switching in the field of acoustic
modeling, language modeling is still a great chal-
lenge. The main reason is a shortage of training
data. Whereas about 50h of training data might
be sufficient for the estimation of acoustic mod-
els, the transcriptions of these data are not enough
to build reliable language models. In this paper,
we focus on exploring and improving the language

model for Code-switching speech and as a result
improve the automatic speech recognition (ASR)
system on Code-Switching speech.

The main contribution of the paper is the exten-
sive investigation of jointly trained maximum en-
tropy (ME) and recurrent neural language models
(RNN LMs) for Code-Switching speech. We re-
visit the integration of part-of-speech (POS) tags
and language identifier (LID) information in recur-
rent neural network language models and the im-
pact of maximum entropy on the language model
performance. As follow-up to our previous work
in (Adel, Vu et al., 2013), here we investigate
whether a recurrent neural network alone without
using ME is a suitable model for Code-Switching
speech. Afterwards, to directly use the RNN LM
in the decoding process of an ASR system, we
convert the RNN LM into the n-gram language
model using the text generation approach (Deoras
et al., 2011; Adel et al., 2014); Furthermore moti-
vated by the fact that Code-Switching is speaker
dependent (Auer, 1999b; Vu et al., 2013), we
first adapt the recurrent neural network language
model to different Code-Switching behaviors and
then generate artificial Code-Switching text data.
This allows us to train an accurate n-gram model
which can be used directly during decoding to im-
prove ASR performance.

The paper is organized as follows: Section 2
gives a short overview of related works. In Sec-
tion 3, we describe the jointly trained maximum
entropy and recurrent neural network language
models and their extension for Code-Switching
speech. Section 4 gives a short description of the
SEAME corpus. In Section 5, we summarize the
most important experiments and results. The study
is concluded in Section 6 with a summary.

2 Related Work

This section gives a brief introduction about the
related research regarding Code-Switching and re-
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current language models.
In (Muysken, 2000; Poplack, 1978; Bokamba,
1989), the authors observed that code switches
occur at positions in an utterance following syn-
tactical rules of the involved languages. Code-
Switching can be regarded as a speaker depen-
dent phenomenon (Auer, 1999b; Vu et al., 2013).
However, several particular Code-Switching pat-
terns are shared across speakers (Poplack, 1980).
Furthermore, part-of-speech tags might be useful
features to predict Code-Switching points. The
authors of (Solorio et al., 2008b; Solorio et al.,
2008a) investigate several linguistic features, such
as word form, LID, POS tags or the position of
the word relative to the phrase for Code-Switching
prediction. Their best result is obtained by com-
bining all those features. (Chan et al., 2006)
compare four different kinds of n-gram langua-
ge models to predict Code-Switching. They dis-
cover that clustering all foreign words into their
POS classes leads to the best performance. In (Li
et al., 2012; Li et al., 2013), the authors propose
to integrate the equivalence constraint into lan-
guage modeling for Mandarin and English Code-
Switching speech recorded in Hong Kong.

In the last years, neural networks have been
used for a variety of tasks, including language
modeling (Mikolov et al., 2010). Recurrent neu-
ral networks are able to handle long-term contexts
since the input vector does not only contain the
current word but also the previous hidden layer.
It is shown that these networks outperform tradi-
tional language models, such as n-grams which
only contain very limited histories. In (Mikolov
et al., 2011a), the network is extended by factoriz-
ing the output layer into classes to accelerate the
training and testing processes. The input layer
can be augmented to model features, such as POS
tags (Shi et al., 2011; Adel, Vu et al., 2013). Fur-
thermore, artificial text can be automatically gen-
erated using recurrent neural networks to enlarge
the amount of training data (Deoras et al., 2011;
Adel et al., 2014).

3 Joint maximum entropy and recurrent
neural networks language models for
Code-Switching

3.1 Recurrent neural network language
models

The idea of RNN LMs is illustrated in Figure 1.
Vector w(t) forms the input of the recurrent neu-

Figure 1: RNN language model

ral network. It represents the current word using
1-of-N coding. Thus, its dimension equals the
size of the vocabulary. Vector s(t) contains the
state of the network - ’hidden layer’. The network
is trained using back-propagation through time
(BPTT), an extension of the back-propagation
algorithm for recurrent neural networks. With
BPTT, the error is propagated through recurrent
connections back in time for a specific number of
time steps t. Hence, the network is able to capture
a longer history than a traditional n-gram LM. The
matrices U , V and W contain the weights for the
connections between the layers. These weights are
learned during the training phase.

To accelerate the training process, (Mikolov et
al., 2011a) factorized the output layer into classes
based on simple frequency binning. Every word
belongs to exactly one class. Vector c(t) contains
the probabilities for each class and vector w(t)
provides the probabilities for each word given its
class. Hence, the probability P (wi|history) is
computed as shown in equation 1.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (1)

Furthermore in (Mikolov et al., 2011b), the au-
thors proposed to jointly train the RNN with ME
- RMM-ME - to improve the language model and
also ASR performance. The ME can be seen as
a weight matrix which directly connects the in-
put with the output layer as well as the input with
the class layer. This weight matrix can be trained
jointly with the recurrent neural network. “Direct-
order” and “direct connection” are the two impor-
tant parameters which define the length of history
and the number of the trained connections.
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3.2 Code-Switching language models

To adapt RNN LMs to the Code-Switching task,
(Adel, Vu et al., 2013) analyzed the SEAME cor-
pus and observed that there are words and POS
tags which might have a high potential to predict
Code-Switching points. Therefore, it has been
proposed to integrate the POS and LID informa-
tion into the RNN LM. The idea is to factorize
the output layer into classes which provide lan-
guage information. By doing that, it is intended
to not only predict the next word but also the
next language. Hence according to equation 1, the
probability of the next language is computed first
and then the probability of each word given the
language. In that work, four classes were used:
English, Mandarin, other languages and particles.
Moreover, a vector f(t) which contains the POS
information is added to the input layer. This vec-
tor provides the corresponding POS of the current
word. Thus, not only the current word is activated
but also its features. Since the POS tags are in-
tegrated into the input layer, they are also propa-
gated into the hidden layer and back-propagated
into its history s(t). Hence, not only the previous
features are stored in the history but also features
from several time steps in the past.

In addition to that previous work, the experi-
ments in this paper aim to explore the source of
the improvements observed in (Adel, Vu et al.,
2013). We now clearly distinguish between the
impacts due to the long but unordered history of
the RNN and the effects of the maximum entropy
model which also captures information about the
most recent word and POS tag in the history.

4 SEAME corpus

To conduct research on Code-Switching speech
we use the SEAME corpus (South East Asia
Mandarin-English). It is a conversational
Mandarin-English Code-Switching speech corpus
recorded by (D.C. Lyu et al., 2011). Originally, it
was used for the research project “Code-Switch”
which was jointly performed by Nanyang Tech-
nological University (NTU) and Karlsruhe Insti-
tute of Technology (KIT) from 2009 until 2012.
The corpus contains 63 hours of audio data which
has been recorded and manually transcribed in
Singapore and Malaysia. The recordings consist
of spontaneously spoken interviews and conver-
sations. The words can be divided into four lan-
guage categories: English words (34.3% of all to-

kens), Mandarin words (58.6%), particles (Singa-
porean and Malayan discourse particles, 6.8% of
all tokens) and others (other languages, 0.4% of
all tokens). In total, the corpus contains 9,210
unique English and 7,471 unique Mandarin words.
The Mandarin character sequences have been seg-
mented into words manually. The language dis-
tribution shows that the corpus does not contain a
clearly predominant language. Furthermore, the
number of Code-Switching points is quite high:
On average, there are 2.6 switches between Man-
darin and English per utterance. Additionally, the
duration of the monolingual segments is rather
short: More than 82% of the English segments and
73% of the Mandarin segments last less than one
second. The average duration of English and Man-
darin segments is only 0.67 seconds and 0.81 sec-
onds, respectively. This corresponds to an average
length of monolingual segments of 1.8 words in
English and 3.6 words in Mandarin.

For the task of language modeling and speech
recognition, the corpus has been divided into three
disjoint sets: training, development and evaluation
set. The data is assigned to the three different sets
based on the following criteria: a balanced distri-
bution of gender, speaking style, ratio of Singa-
porean and Malaysian speakers, ratio of the four
language categories, and the duration in each set.
Table 1 lists the statistics of the SEAME corpus.

Training Dev Eval
# Speakers 139 8 8
Duration(hours) 59.2 2.1 1.5
# Utterances 48,040 1,943 1,029
# Words 575,641 23,293 11,541

Table 1: Statistics of the SEAME corpus

5 Experiments and Results

This section presents all the experiments and re-
sults regarding language models and ASR on the
development and the evaluation set of the SEAME
corpus. However, the parameters were tuned only
on the development set.

5.1 LM experiments
5.1.1 Baseline n-gram
The n-gram language model served as the baseline
in this work. We used the SRI language model
toolkit (Stolcke, 2002) to build the CS 3-gram
baseline from the SEAME training transcriptions
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containing all words of the transcriptions. Modi-
fied Kneser-Ney smoothing (Rosenfeld, 2000) was
applied. In total, the vocabulary size is around
16k words. The perplexities (PPLs) are 268.4 and
282.9 on the development and evaluation set re-
spectively.

5.1.2 Exploration of ME and of the
integration of POS and LID in RNN

To investigate the effect of POS and LID integra-
tion into the RNN LM and the importance of the
ME, different RNN LMs were trained.

The first experiment aims at investigating the
importance of using LID information for output
layer factorization. All the results are summarized
in table 2. The first RNNLM was trained with a
hidden layer of 50 nodes and without using output
factorization and ME. The PPLs were 250.8 and
301.1 on the development and evaluation set, re-
spectively. We observed some gains in terms of
PPL on the development set but not on the eval-
uation set compared to the n-gram LM. Even us-
ing ME and factorizing the output layer into four
classes based on frequency binning (fb), the same
trend could be noticed - only the PPL on the devel-
opment set was improved. Four classes were used
to have a fair comparison with the output factor-
ization with LID. However after including the LID
information into the output layer, the PPLs were
improved on both data sets. On top of that, using
ME provides some additional gains. The results
indicate that LID is a useful information source
for the Code-Switching task. Furthermore, the im-
provements are independent of the application of
ME.

Model Dev Eval
CS 3-gram 268.4 282.9
RNN LM 250.8 301.1
RNN-ME LM 246.6 287.9
RNN LM with fb 246.0 287.3
RNN-ME LM with fb 256.0 294.0
RNN LM with LID 241.5 274.4
RNN-ME LM with LID 237.9 269.3

Table 2: Effect of output layer factorization

In the second experiment we investigated the
use of POS information and the effect of the ME.
The results in Table 3 show that an integration of
POS without ME did not give any further improve-
ment compared to RNN LM. The reason could lie
in the fact that a RNN can capture a long history

but not the information of the word order. Note
that in the syntactic context, the word order is one
of the most important information. However us-
ing ME allows using the POS of the previous time
step to predict the next language and also the next
word, the PPL was improved significantly on de-
velopment and evaluation set. These results reveal
that POS is a reasonable trigger event which can
be used to support Code-Switching prediction.

Model Dev Eval
CS 3-gram 268.4 282.9
RNN LM 250.8 301.1
RNN-ME LM 246.6 287.9
RNN LM with POS 250.6 298.3
RNN-ME LM with POS 233.5 268.0

Table 3: Effect of ME on the POS integration into
the input layer

Finally, we trained an LM by integrating the
POS tags and factorizing the output layer with LID
information. Again without applying ME, we ob-
served that POS information is not helpful to im-
prove the RNN LM. Using the ME provides a big
gain in terms of PPL on both data sets. We ob-
tained a PPL of 219.8 and 239.2 on the develop-
ment and evaluation set respectively.

Model Dev Eval
CS 3-gram 268.4 282.9
RNN LM 250.8 301.1
RNN-ME LM 246.6 287.9
RNN LM with POS + LID 243.9 277.1
RNN-ME LM with POS+ LID 219.8 239.2

Table 4: Effect of ME on the integration of POS
and the output layer factorization using LID

5.1.3 Training parameters
Moreover, we investigated the effect of different
parameters, such as the backpropagation through
time (BPTT) step, the direct connection order and
the amount of direct connections on the perfor-
mance of the RNN-ME LMs. Therefore, different
LMs were trained with varying values for these
parameters. For each parameter change, the re-
maining parameters were fixed to the most suitable
value which has been found so far.

First, we varied the BPTT step from 1 to 5. The
BPTT step defines the length of the history which
is incorporated to update the weight matrix of the
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RNN. The larger the BPTT step is, the longer is the
history which is used for learning. Table 5 shows
the perplexities on the SEAME development and
evaluation sets with different BPTT steps. The
results indicate that increasing BPTT might im-
prove the PPL. The best PPL can be obtained with
a BPTT step of 4. The big loss in terms of PPL
by using a BPTT step of 5 indicates that too long
histories might hurt the language model perfor-
mance. Another reason might be the limitation of
the training data.

BPTT 1 2 3 4 5
Dev 244.7 224.6 222.8 219.8 266.8
Eval 281.1 241.4 242.8 239.2 284.5

Table 5: Effect of the BPTT step

It has been shown in the previous section, that
ME is very important to improve the PPL espe-
cially for the Code-Switching task, we also trained
several RNN-ME LMs with various values for “di-
rect order” and “direct connection”. Table 6 and
7 summarize the PPL on the SEAME develop-
ment and evaluation set. The results reveal that
the larger the direct order is, the lower is the PPL.
We observed consistent PPL improvement by in-
creasing the direct order. However, the gain seems
to be saturated after a direct order of 3 or 4. In this
paper, we choose to use a direct order of 4 to train
the final model.

Direct order 1 2 3 4
Dev 238.6 231.7 220.5 219.8
Eval 271.8 261.4 240.7 239.2

Table 6: Effect of the direct order

Since the “direct order” is related to the length
of the context, the size of the “direct connection” is
a trade off between the size of the language model
and also the amount of the training data. Higher
“direct connection” leads to a larger model and
might improve the PPL if the amount of training
data is enough to train all the direct connection
weights. The results with four different data points
(50M, 100M, 150M and 200M) show that the best
model can be obtained on SEAME data set by us-
ing 100M of direct connection.

5.1.4 Artificial Code-Switching text
generation using RNN

The RNN LM demonstrates a great improvement
over the traditional n-gram language model. How-

#Connection 50M 100M 150M 200M
Dev 226.2 219.8 224.7 224.6
Eval 244.7 239.2 243.7 242.0

Table 7: Effect of the number of direct connections

ever, it is inefficient to use the RNN LM directly
in the decoding process of an ASR system. In or-
der to convert the RNN into a n-gram language
model, a text generation method which was pro-
posed in (Deoras et al., 2011) can be applied.
Moreover, it allows to generate more training data
which might be useful to improve the data sparsity
of the language modeling task for Code-Switching
speech. In (Deoras et al., 2011), the authors ap-
plied the Gibb sampling method to generate artifi-
cial text based on the probability distribution pro-
vided by the RNNs. We applied that technique
in (Adel et al., 2014) to generate Code-Switching
data and were able to improve the PPL and ASR
performance on CS speech. In addition to that pre-
vious work, we now propose to use several Code-
Switching attitude dependent language models in-
stead of the final best RNN LM.

Code-Switching attitude dependent language
modeling Since POS tags might have a potential
to predict Code-Switch points, (Vu et al., 2013)
performed an analysis of these trigger POS tags
on a speaker level. The CS rate for each tag was
computed for each speaker. Afterwards, we calcu-
lated the minimum, maximum and mean values as
well as standard deviations. We observed that the
spread between minimum and maximum values is
quite high for most of the tags. It indicates that al-
though POS information may trigger a CS event,
it is rather speaker dependent.

Motivated by this observation, we performed k-
mean clustering of the training text into three dif-
ferent portions of text data which describe differ-
ent Code-Switching behaviors (Vu et al., 2013).
Afterwards, the LM was adapted with each text
portion to obtain Code-Switching attitude depen-
dent language models. By using these models, we
could improve both PPL and ASR performance for
each speaker.

Artificial text generation To generate artificial
text, we first adapted the best RNN-ME LM de-
scribed in the previous section to three different
Code-Switching attitudes. Afterwards, we gen-
erated three different text corpora based on these
specific Code-Switching attitudes. Each corpus
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contains 100M tokens. We applied the SRILM
toolkit (Stolcke, 2002) to train n-gram language
model and interpolated them linearly with the
weight = 1

3 . Table 8 shows the perplexity of the
resulting n-gram models on the SEAME develop-
ment and evaluation set. To make a comparison,
we also used the unadapted best RNN-ME LM to
generate two different texts, one with 300M to-
kens and another one with 235M tokens (Adel et
al., 2014). The results show that the n-gram LMs
trained with only the artificial text data can not
outperform the baseline CS 3-gram. However they
provide some complementary information to the
baseline CS 3-gram LM. Therefore, when we in-
terpolated them with the baseline CS 3-gram, the
PPL was improved all the cases. Furthermore by
using the Code-Switching attitude dependent lan-
guage models to generate artificial CS text data,
the PPL was slightly improved compared to using
the unadapted one. The final 3-gram model (Final
3-gram) was built by interpolating all the Code-
Switching attitude dependent 3-gram and the base-
line CS 3-gram. It has a PPL of 249.3 and 266.9
on the development set and evaluation set.

Models Dev Eval
CS 3-gram 268.4 282.9
300M words text 391.3 459.5
+ CS 3-gram 250.0 270.9
235M words text 385.1 454.6
+ CS 3-gram 249.5 270.5
100M words text I 425.4 514.4
+ CS 3-gram 251.4 274.5
100M words text II 391.8 421.6
+ CS 3-gram 251.6 266.4
100M words text III 390.3 428.1
+ CS 3-gram 250.6 266.9
Interpolation of I, II and III 377.5 416.1
+ CS 3-gram (Final n-gram) 249.3 266.9
RNN-ME LM + POS + LID 219.8 239.2

Table 8: PPL of the N-gram models trained with
artificial text data

5.2 ASR experiments

For the ASR experiments, we applied BioKIT, a
dynamic one-pass decoder (Telaar et al., 2014).
The acoustic model is speaker independent and
has been trained with all the training data. To ex-
tract the features, we first trained a multilayer per-
ceptron (MLP) with a small hidden layer with 40

nodes. The output of this hidden layer is called
bottle neck features and is used to train the acous-
tic model. The MLP has been initialized with a
multilingual multilayer perceptron as described in
(Vu et al., 2012). The phone set contains English
and Mandarin phones, filler models for continu-
ous speech (+noise+, +breath+, +laugh+) and an
additional phone +particle+ for Singaporean and
Malayan particles. The acoustic model applied
a fully-continuous 3-state left-to-right HMM. The
emission probabilities were modeled with Gaus-
sian mixture models. We used a context dependent
acoustic model with 3,500 quintphones. Merge-
and-split training was applied followed by six it-
erations of Viterbi training. To obtain a dictio-
nary, the CMU English (CMU Dictionary, 2014)
and Mandarin (Hsiao et al., 2008) pronunciation
dictionaries were merged into one bilingual pro-
nunciation dictionary. Additionally, several rules
from (Chen et al., 2010) were applied which gen-
erate pronunciation variants for Singaporean En-
glish.

As a performance measure for decoding Code-
Switching speech, we used the mixed error rate
(MER) which applies word error rates to En-
glish and character error rates to Mandarin seg-
ments (Vu et al., 2012). With character error
rates for Mandarin, the performance can be com-
pared across different word segmentations. Ta-
ble 9 shows the results of the baseline CS 3-gram
LM, the 3-gram LM trained with 235M artificial
words interpolated with CS 3-gram LM and the fi-
nal 3-gram LM described in the previous section.
Compared to the baseline system, we are able to
improve the MER by up to 3% relative. Further-
more, a very small gain can be observed by using
the Code-Switching attitude dependent language
model compared to the unadapted best RNN-ME
LM.

Model Dev Eval
CS 3-gram 40.0% 34.3%
235M words text + CS-3gram 39.4% 33.4%
Final 3-gram 39.2% 33.3%

Table 9: ASR results on SEAME data

6 Conclusion

This paper presents an extensive investigation of
the impact of maximum entropy in recurrent neu-
ral network language models for Code-Switching
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speech. The experimental results reveal that fac-
torization of the output layer of the RNN us-
ing LID always improved the PPL independent
whether the ME is used. However, the integra-
tion of the POS tags into the input layer only im-
proved the PPL in combination with ME. The best
LM can be obtained by jointly training the ME
and the RNN LM with POS integration and fac-
torization using LID. Moreover, using the RNN-
ME LM allows generating artificial CS text data
and therefore training an n-gram LM which car-
ries the information of the RNN-ME LM. This can
be directly used during decoding to improve ASR
performance on Code-Switching speech. On the
SEAME development and evaluation set, we ob-
tained an improvement of up to 18% relative in
terms of PPL and 3% relative in terms of MER.
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