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Introduction

Code-switching (CS) is the phenomenon by which multilingual speakers switch back and forth
between their common languages in written or spoken communication. CS is pervasive in informal
text communications such as news groups, tweets, blogs, and other social media of multilingual
communities. Such genres are increasingly being studied as rich sources of social, commercial and
political information. Apart from the informal genre challenge associated with such data within a single
language processing scenario, the CS phenomenon adds another significant layer of complexity to the
processing of the data. Efficiently and robustly processing CS data presents a new frontier for our NLP
algorithms on all levels. The goal of this workshop is to bring together researchers interested in exploring
these new frontiers, discussing state of the art research in CS, and identifying the next steps in this
fascinating research area.

The workshop program includes exciting papers discussing new approaches for CS data and the
development of linguistic resources needed to process and study CS. We received a total of 17 regular
workshop submissions of which we accepted eight for publication (47% acceptance rate), five of them
as workshop talks and three as posters. The accepted workshop submissions cover a wide variety of
language combinations from languages such as English, Hindi, Bengali, Turkish, Dutch, German, Italian,
Romansh, Mandarin, Dialectical Arabic and Modern Standard Arabic. Although most papers focus on
some kind of social media data, there is also work on more formal genres, such as that from the Canadian
Hansard.

Another component of the workshop is the First Shared Task on Language Identification of CS Data.
The shared task focused on social media and included four language pairs: Mandarin-English, Modern
Standard Arabic-Dialectal Arabic, Nepali-English, and Spanish-English. We received a total of 42
system runs from seven different teams. Each team submitted a shared task paper describing their system.
All shared task systems will be presented during the workshop poster session and a subset of them will
also present a talk.

We would like to thank all authors who submitted their contributions to this workshop and all shared task
participants for taking on the challenge of language identification in code switched data. We also thank
the program committee members for their help in providing meaningful reviews. Lastly, we thank the
EMNLP 2014 organizers for the opportunity to put together this workshop.

See you all in Qatar, see ypu al in Qatar at EMNLP 2014!
Workshop co-chairs,

Mona Diab
Julia Hirschberg
Pascale Fung
Thamar Solorio
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Abstract

Arabic on social media has all the prop-
erties of any language on social media
that make it tough for natural language
processing, plus some specific problems.
These include diglossia, the use of an
alternative alphabet (Roman), and code
switching with foreign languages. In this
paper, we present a system which can
process Arabic written in Roman alpha-
bet (“Arabizi”). It identifies whether each
word is a foreign word or one of an-
other four categories (Arabic, name, punc-
tuation, sound), and transliterates Arabic
words and names into the Arabic alphabet.
We obtain an overall system performance
of 83.8% on an unseen test set.

1 Introduction

Written language used in social media shows dif-
ferences from that in other written genres: the
vocabulary is informal (and sometimes the syn-
tax is as well); there are intentional deviations
from standard orthography (such as repeated let-
ters for emphasis); there are typos; writers use
non-standard abbreviations; non-linguistic sounds
are written (haha); punctuation is used creatively;
non-linguistic signs such as emoticons often com-
pensate for the absence of a broader communica-
tion channel in written communication (which ex-
cludes, for example, prosody or visual feedback);
and, most importantly for this paper, there fre-
quently is code switching. These facts pose a well-
known problem for natural language processing of
social media texts, which has become an area of
interest as applications such as sentiment analy-
sis, information extraction, and machine transla-
tion turn to this genre.

This situation is exacerbated in the case of Ara-
bic social media. There are three principal rea-
sons. First, the Arabic language is a collection of
varieties: Modern Standard Arabic (MSA), which
is used in formal settings, and different forms of
Dialectal Arabic (DA), which are commonly used
informally. This situation is referred to as “diglos-
sia”. MSA has a standard orthography, while
the dialects do not. What is used in Arabic so-
cial media is typically DA. This means that there
is no standard orthography to begin with, result-
ing in an even broader variation in orthographic
forms found. Diglossia is seen in other linguistic
communities as well, including German-speaking
Switzerland, in the Czech Republic, or to a some-
what lesser extent among French speakers. Sec-
ond, while both MSA and DA are commonly writ-
ten in the Arabic script, DA is sometimes writ-
ten in the Roman script. Arabic written in Roman
is often called “Arabizi”. It is common in other
linguistic communities as well to write informal
communication in the Roman alphabet rather than
in the native writing system, for example, among
South Asians. And third, educated speakers of
Arabic are often bilingual or near-bilingual speak-
ers of another language as well (such as English
or French), and will code switch between DA and
the foreign language in the same utterance (and
sometimes MSA as well). As is well known, code
switching is common in many linguistic commu-
nities, for example among South Asians.

In this paper, we investigate the issue of pro-
cessing Arabizi input with code switching. There
are two tasks: identification of tokens that are
not DA or MSA (and should not be transliterated
into Arabic script for downstream processing), and
then the transliteration into Arabic script of the
parts identified as DA or MSA. In this paper, we
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use as a black box an existing component that we
developed to transliterate from Arabizi to Arabic
script (Al-Badrashiny et al., 2014). This paper
concentrates on the task of identifying which to-
kens should be transliterated. A recent release
of annotated data by the Linguistic Data Consor-
tium (LDC, 2014c; Bies et al., 2014) has enabled
novel research on this topic. The corpus pro-
vides each token with a tag, as well as a translit-
eration if appropriate. The tags identify foreign
words, as well as Arabic words, names, punctua-
tion, and sounds. Only Arabic words and names
are transliterated. (Note that code switching is not
distinguished from borrowing.) Emoticons, which
may be isolated or part of an input token, are also
identified, and converted into a conventional sym-
bol (#). This paper presents taggers for the tags,
and an end-to-end system which takes Arabizi in-
put and produces a complex output which consists
of a tag for each input token and a transliteration
of Arabic words and names into the Arabic script.
To our knowledge, this is the first system that han-
dles the complete task as defined by the LDC data.
This paper focuses on the task of identifying for-
eign words (as well as the other tags), on creating
a single system, and on evaluating the system as a
whole.

This paper makes three main contributions.
First, we clearly define the computational prob-
lem of dealing with social media Arabizi, and pro-
pose a new formulation of the evaluation metric
for the LDC corpus. Second, we present novel
modules for the detection of foreign words as well
as of emoticons, sounds, punctuation marks, and
names in Arabizi. Third, we compose a single sys-
tem from the various components, and evaluate the
complete system.

This paper is structured as follows. We start by
presenting related work (Section 2), and then we
present relevant linguistic facts and explain how
the data is annotated (Section 3). After summariz-
ing our system architecture (Section 4) and exper-
imental setup (Section 5), we present our systems
for tagging in Sections 6, 7 and 8. The evaluation
results are presented in Section 9.

2 Related Work

While natural language processing for English in
social media has attracted considerable attention
recently (Clark and Araki, 2011; Gimpel et al.,
2011; Gouws et al., 2011; Ritter et al., 2011; Der-
czynski et al., 2013), there has not been much

work on Arabic yet. We give a brief summary of
relevant work on Arabic.

Darwish et al. (2012) discuss NLP problems in
retrieving Arabic microblogs (tweets). They dis-
cuss many of the same issues we do, notably the
problems arising from the use of DA such as the
lack of a standard orthography. However, they do
not deal with DA written in the Roman alphabet
(though they do discuss non-Arabic characters).

There is some work on code switching be-
tween Modern Standard Arabic (MSA) and di-
alectal Arabic (DA). Zaidan and Callison-Burch
(2011) are interested in this problem at the inter-
sentence level. They crawl a large dataset of
MSA-DA news commentaries. They use Ama-
zon Mechanical Turk to annotate the dataset at the
sentence level. Then they use a language model-
ing approach to predict the class (MSA or DA)
for an unseen sentence. There is other work on
dialect identification, such as AIDA (Elfardy et
al., 2013; Elfardy et al., 2014). In AIDA, some
statistical and morphological analyses are applied
to capture code switching between MSA and DA
within the same sentence. Each word in the sen-
tence is tagged to be either DA or MSA based
on the context. The tagging process mainly de-
pends on the language modeling (LM) approach,
but if a word is unknown in the LM, then its tag is
assigned through MADAMIRA, a morphological
disambiguator Pasha et al. (2014).

Lui et al. (2014) proposed a system that does
language identification in multilingual documents,
using a generative mixture model that is based
on supervised topic modeling algorithms. This is
similar to our work in terms of identifying code
switching. However, our system deals with Ara-
bizi, a non-standard orthography with high vari-
ability, making the identification task much harder.

Concerning specifically NLP for Arabizi, Dar-
wish (2013) (published in an updated version as
(Darwish, 2014)) is similar to our work in that
he identifies English in Arabizi text and he also
transliterates Arabic text from Arabizi to Arabic
script. We compare our transliteration method to
his in Al-Badrashiny et al. (2014). For identifi-
cation of non-Arabic words in Arabizi, Darwish
(2013) uses word and sequence-level features with
CRF modeling; while we use SVMs and decision
trees. Darwish (2013) identifies three tags: Ara-
bic, foreign and others (such as email addresses
and URLs). In contrast, we identify a bigger
set: Arabic, foreign, names, sounds, punctuation
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and emoticons. Furthermore, Darwish (2013) uses
around 5K words for training his taggers and 3.5K
words for testing; this is considerably smaller than
our training and test sets of 113K and 32K words,
respectively.

Chalabi and Gerges (2012) presented a hybrid
approach for Arabizi transliteration. Their work
does not address the detection of English words,
punctuation, emoticons, and so on. They also do
not handle English when mixed with Arabizi.

Voss et al. (2014) deal with exactly the prob-
lem of classifying tokens in Arabizi as Arabic or
not. More specifically, they deal with Moroccan
Arabic, and with both French and English, mean-
ing they do a three-way classification. There are
many differences between our work and theirs:
they have noisy training data, and they have a
much more balanced test set. They also only deal
with foreignness, and do not address the other tags
we deal with, nor do they actually discuss translit-
eration itself.

3 Linguistic Facts and Data Annotation

3.1 Arabizi

Arabizi refers to Arabic written using the Roman
script (Darwish, 2013; Voss et al., 2014). Ara-
bizi orthography is spontaneous and has no stan-
dard references, although there are numerous com-
monly used conventions making specific usage of
the so-called Arabic numerals and punctuation in
addition to Roman script letters. Arabizi is com-
monly used by Arabic speakers to write mostly in
dialectal Arabic in social media, SMS and chat ap-
plications.

Arabizi orthography decisions mainly depend
on a phoneme-to-grapheme mapping between the
Arabic pronunciation and the Roman script. This
is largely based on the phoneme-to-grapheme
mapping used in English (in Middle Eastern Arab
countries) or French (in Western North African
Arab countries). Since there is no standard or-
thography for Arabizi, it is not a simple translit-
eration of Arabic. For example, in Arabizi, words
omit vowels far less frequently than is done when
writers follow standard Arabic orthography. Fur-
thermore, there are several cases of many-to-many
mappings between Arabic phonemes and Roman
script letters: for example, the letter “t” is used to
represent the sound of the Arabic letters �H t1 and

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007): (in alphabetical

  T (which itself can be also be represented using
the digit “6”).

Text written in Arabizi also tends to have a large
number of foreign words, that are either borrow-
ings such as telephone, or code switching, such
as love you!. Note that Arabizi often uses the
source language orthography for borrowings (es-
pecially recent borrowings), even if the Arabic
pronunciation is somewhat modified. As a re-
sult, distinguishing borrowings from code switch-
ing is, as is usually the case, hard. And, as in any
language used in social media and chat, Arabizi
may also include abbreviations, such as isa which
means é<Ë @ Z A �� 	à@ Ǎn šA’ Allh ‘God willing’ and
lol ‘laugh out loud’.

The rows marked with Arabizi in Figure 1
demonstrate some of the salient features of Ara-
bizi. The constructed example in the figure is of
an SMS conversation in Egyptian Arabic.

3.2 Data Annotation
The data set we use in this paper was created by
the Linguistic Data Consortium (Bies et al., 2014;
LDC, 2014a; LDC, 2014b; LDC, 2014c). We
summarize below the annotation decisions. The
system we present in this paper aims at predicting
exactly this annotation automatically. The input
text is initially segregated into Arabic script and
Arabizi. Arabic script text is not modified in any
way. Arabizi text undergoes two sets of annotation
decisions: Arabizi word tagging and Arabizi-to-
Arabic transliteration. All of the Arabizi annota-
tions are initially done using an automatic process
(Al-Badrashiny et al., 2014) and then followed by
manual correction and validation.

Arabizi Word Tagging Each Arabizi word re-
ceives one of the following five tags:

• Foreign All words from languages other than
Arabic are tagged as Foreign if they would
be kept in the same orthographic form when
translated into their source language (which
in our corpus is almost always English).
Thus, non-Arabic words that include Arabic
affixes are not tagged as Foreign. The defini-
tion of “foreign” thus means that uninflected
borrowings spelled as in the source language
orthography are tagged as “foreign”, while
borrowings that are spelled differently, as
well as borrowing that have been inflected

order) AbtθjHxdðrzsšSDTĎςγfqklmnhwy and the additional
symbols: ’ Z, Â


@, Ǎ @, Ā

�
@, ŵ ð', ŷ Zø', h̄ �è, ý ø.
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(1) Arabizi Youmna i need to know anti gaya wala la2 ?
Tag Name Foreign Foreign Foreign Foreign Arabic Arabic Arabic Arabic Punct

Arabic ú 	æÖß
 ø
 @ YJ
 	K ñ�K ñ 	K ú

�æ 	K @ �éK
Ag. Bð


B ?

ymný Ay nyd tw nw Anty jAyh̄ wlA lÂ ?
English Youmna I need to know you coming or not ?

(2) Arabizi Mmmm ok ana 7aseb el sho3’l now w ageelk isa :-)
Tag Sound Foreign Arabic Arabic Arabic Arabic Foreign Arabic Arabic Arabic Arabic

Arabic ÕÜØ éJ
»ð@ A 	K @ I. �
�Ag [+]È@ É 	ª �� ðA 	K [+]ð ½Ë[-]ú
k. @ é<Ë @[-]ZA ��[-] 	à@ #

mmm Awkyh AnA HAsyb Al[+] šgl nAw w[+] Ajy[-]lk An[-]šA’[-]Allh #
English mmm OK I will-leave the work now and I-come-to-you God-willing :-)

(3) Arabizi qishta!:D
Tag Arabic

Arabic #[-]! �é¢ ���̄
qšTh̄![-]#

English cream!:D (slang for cool!)

Figure 1: A short constructed SMS conversation written in Arabizi together with annotation of word
tags and transliteration into Arabic script. A Romanized transliteration of the Arabic script and English
glosses are provided for clarity. The cells with gray background are the parts of the output that we
evaluate.

following Arabic morphology, are not tagged
as “foreign” (even if the stem is spelled as in
the source language, such as Almobile). The
Arabic transliterations of these words are not
manually corrected.

• Punct Punctuation marks are a set of conven-
tional signs that are used to aid interpretation
by indicating division of text into sentences
and clauses, etc. Examples of punctuation
marks are the semicolon ;, the exclamation
mark ! and the right brace }. Emoticons are
not considered punctuation and are handled
as part of the transliteration task discussed
below.

• Sound Sounds are a list of interjections that
have no grammatical meaning, but mimic
non-linguistic sounds that humans make, and
that often signify emotions. Examples of
sounds are hahaha (laughing), hmm (wonder-
ing) and eww (being disgusted). It is common
to stretch sounds out to make them stronger,
i.e., to express more intense emotions. For
example, hmm could be stretched out into
hmmmmm to express a stronger feeling of
wondering. The Arabic transliterations of
these words are not manually corrected.

• Name Proper names are tagged as such and
later manually corrected.

• Arabic All other words are tagged as Arabic
and are later manually corrected.

See the rows marked with Tag in Figure 1 for
examples of these different tags. It is impor-
tant to point out that the annotation of this data

was intended to serve a project focusing on ma-
chine translation from dialectal Arabic into En-
glish. This goal influenced some of the annotation
decisions and was part of the reason for this selec-
tion of word tags.

Arabizi-to-Arabic Transliteration The second
annotation task is about converting Arabizi to an
Arabic-script-based orthography. Since, dialectal
Arabic including Egyptian Arabic has no standard
orthography in Arabic script, the annotation uses a
conventionalized orthography for Dialectal Arabic
called CODA (Habash et al., 2012a; Eskander et
al., 2013; Zribi et al., 2014). Every word has a
single orthographic representation in CODA.

In the corpus we use, only words tagged as
Arabic or Name are manually checked and cor-
rected. The transliteration respects the white-
space boundaries of the original Arabizi words. In
cases where an Arabizi word represents a prefix
or suffix that should be joined in CODA to the
next or previous word, a [+] symbol is added to
mark this decision. Similarly, for Arabizi words
that should be split into multiple CODA words,
the CODA words are written with added [-] sym-
bol delimiting the word boundaries.

The Arabic transliteration task also includes
handling emoticons. Emoticons are digital icons
or sequences of keyboard symbols serving to rep-
resent facial expressions or to convey the writer’s
emotions. Examples of emoticons are :d, :-(, O.O
and ♥ used to represent laughing, sadness, being
surprised and positive emotion, respectively. All
emoticons, whether free-standing or attached to a
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word, are replaced by a single hash symbol (#).
Free-standing emoticons are tagged as Arabic. At-
tached emoticons are not tagged separately; the
word they are attached to is tagged according to
the usual rules. See Figure 1 for examples of these
different decisions.

Since words tagged as Foreign, Punct, or Sound
are not manually transliterated in the corpus, in
our performance evaluation we combine the de-
cisions of tags and transliteration. For foreign
words, punctuation and sounds, we only consider
the tags for accuracy computations; in contrast, for
names and Arabic words, we consider both the tag
and transliteration.

4 System Architecture

Figure 2 represent the overall architecture of our
system. We distinguish below between existing
components that we use and novel extensions that
we contribute in this paper.

4.1 Existing Arabization System
For the core component of Arabizi-to-Arabic
transliteration, we use a previously published sys-
tem (Al-Badrashiny et al., 2014), which converts
Arabizi into Arabic text following CODA conven-
tions (see Section 3). The existing system uses a
finite state transducer trained on 8,500 Arabizi-to-
Arabic transliteration pairs at the character level to
obtain a large number of possible transliterations
for the input Arabizi words. The generated list is
then filtered using a dialectal Arabic morphologi-
cal analyzer. Finally, the best choice for each input
word is selected using a language model. We use
this component as a black box except that we re-
train it using additional training data. In Figure 2,
this component is represented using a central black
box.

4.2 Novel Extension
In this paper, we add Word Type Tagging as a
new set of modules. We tag the Arabizi words into
five categories as discussed above: Arabic, For-
eign, Names, Sounds, and Punctuation. Figure 2
illustrates the full proposed system. First, we pro-
cess the Arabizi input to do punctuation and sound
tagging, along with emoticon detection. Then we
run the transliteration system to produce the cor-
responding Arabic transliteration. The Arabizi in-
put and Arabic output are then used together to
do name tagging and foreign word tagging. The
Arabic tag is assigned to all untagged words, i.e.,

words not tagged as Foreign, Names, Sounds, or
Punctuation. The outputs from all steps are then
combined to produce the final Arabic translitera-
tion along with the tag.

5 Experimental Setup

5.1 Data Sets
We define the following sets of data:

• Train-S: A small size dataset that is used to
train all taggers in all experiments to deter-
mine the best performing setup (feature engi-
neering).

• Train-L: A larger size dataset that is used to
train the best performing setup.

• Dev: The development set that is used to
measure the system performance in all exper-
iments

• Test: A blind set that is used to test the best
system (LDC, 2014a).

The training and development sets are extracted
from (LDC, 2014b). Table 1 represents the tags
distribution in each dataset. Almost one of every
five words is not Arabic text and around one of
every 10 words is foreign.

5.2 Arabizi-to-Arabic Transliteration
Accuracy

For the Arabizi-to-Arabic transliteration system,
we report on using the two training data sets
with two modifications. First, we include the
8,500 word pairs from Al-Badrashiny et al. (2014),
namely 2,200 Arabizi-to-Arabic script pairs from
the training data used by Darwish (2013) (man-
ually revised to be CODA-compliant) and about
6,300 pairs of proper names in Arabic and En-
glish from the Buckwalter Arabic Morphologi-
cal Analyzer (Buckwalter, 2004). (Since these
pairs are not tagged, we do not use them to train
the taggers.) Second, we exclude all the foreign
tagged words from training the transliteration sys-
tem since they were not manually corrected.

Table 2 shows the overall transliteration accu-
racy of Arabic words and names only, using dif-
ferent training data sets and evaluating on Dev
(as determined by the gold standard). The ac-
curacy when using the original Arabizi-to-Arabic
transliteration system from Al-Badrashiny et al.
(2014) gives an accuracy of 68.6%. Retraining it
on Train-S improves the accuracy to 76.9%. The
accuracy goes up further to 79.5% when using the
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Figure 2: The architecture of our complete Arabizi processing system. The "Punctuation, Sound and
Emoticon Detection" component does labeling that is read by the "Name" and "Foreign Word" taggers,
While the actual Aribizi-to-Arabic transliteration system is used as a black box.

Data # Words Arabic Foreign Name Sound Punct Emoticon
Train-S 21,950 80.5% 12.1% 2.8% 1.7% 1.3% 1.6%
Train-L 113,490 82.3% 9.8% 2.4% 1.8% 1.1% 2.6%
Dev 5,061 76.3% 16.2% 2.9% 1.8% 1.2% 1.5%
Test 31,717 86.1% 6.0% 2.7% 1.6% 0.9% 2.8%

Table 1: Dataset Statistics

Data Translit. Acc.
Al-Badrashiny et al. (2014) 68.6%
Train-S 76.9%
Train-L 79.5%

Table 2: Transliteration accuracy of Arabic words
and names when using different training sets and
evaluating on Dev

bigger training set Train-L. The overall transliter-
ation accuracy of Arabic words and names on Test
using the bigger training set Train-L is 83.6%.

6 Tagging Punctuation, Emoticons and
Sounds

6.1 Approach
We start the tagging process by detecting three
types of closed classes: punctuation, sounds and
emoticons. Simple regular expressions perform
very well at detecting their occurrence in text. The
regular expressions are applied to the Arabizi in-
put, word by word, after lower-casing, since both
emoticons and sounds could contain either small
or capital letters.

Since emoticons can be composed of just con-
catenated punctuation marks, their detection is re-
quired before punctuation is tagged. Once de-
tected, emoticons are replaced by #. Then punctu-
ation marks are detected. If a non-emoticon word
is only composed of punctuation marks, then it
gets tagged as Punct. Sounds are targeted next.

A word gets tagged as Sound if it matches the
sound detection expression, after stripping out any
attached punctuation marks and/or emoticons.

6.2 Results

Table 6 in Section 9 shows the accuracy, recall,
precision and F-score for the classification of the
Punct and Sound tags and detection of emoticons.
Since emoticons can be part of another word, and
in that case do not receive a specific tag (as spec-
ified in the annotation guidelines by the LDC),
emoticon evaluation is concerned with the num-
ber of detected emoticons within an Arabizi word,
as opposed to a binary tagging decision. In other
words, emoticon identification is counted as cor-
rect (“positive”) if the number of detected emoti-
cons in a word is correct in the test token. The
Punct and Sound tags represent standard binary
classification tasks and are evaluated in the usual
way.

7 Tagging Names

7.1 Approach

We consider the following set of binary features
for learning a model of name tagging. The fea-
tures are used either separately or combined using
a modeling classifier implemented with decision
trees.

• Capitalization A word is considered a name
if the first letter in Arabizi is capitalized.
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• MADAMIRA MADAMIRA is a system for
morphological analysis and disambiguation
of Arabic (Pasha et al., 2014). We run
MADAMIRA on the Arabic output after run-
ning the Arabizi-to-Arabic transliteration. If
the selected part-of-speech (POS) of a word
is proper noun (NOUN_PROP), then the
word is tagged as Name.

• CALIMA CALIMA is a morphological an-
alyzer for Egyptian Arabic (Habash et al.,
2012b). If the Arabic transliteration of a
given Arabizi word has a possible proper
noun analysis in CALIMA, then the word is
tagged as Name.

• Maximum Likelihood Estimate (MLE) An
Arabizi word gets assigned the Name tag if
Name is the most associated tag for that word
in the training set.

• Tharwa Tharwa is a large scale Egyptian
Arabic-MSA-English lexicon that includes
POS tag information (Diab et al., 2014). If
an Arabizi word appears in Tharwa as an En-
glish gloss with a proper noun POS, then it is
tagged as Name.

• Name Language Model We use a list of
280K unique lower-cased English words as-
sociated with their probability of appearing
capitalized (Habash, 2009). When using this
feature, any probability that is not equal to
one is rounded to zero.

All the features above are modeled after case-
lowering the Arabizi input, and removing speech
effects. Any attached punctuation marks and/or
emoticons are stripped out. One exception is the
capitalization feature, where the case of the first
letter of the Arabizi word is preserved. The tech-
niques above are then combined together using de-
cision trees. In this approach, the words tagged as
Name are given a weight that balances their infre-
quent occurrence in the data.

7.2 Results

Table 3 shows the performance of the Name tag-
ging on Dev using Train-S. The best results are
obtained when looking up the MLE value in the
training data, with an accuracy and F-score of
97.8% and 56.0%, respectively. When using
Train-L, the accuracy and F-score given by MLE
go up to 98.1% and 63.9%, respectively. See Ta-
ble 6. The performance of the combined approach

Feature Accuracy Recall Precision F-Score
Capitalization 85.6 28.3 6.4 10.4
MADAMIRA 95.9 24.8 28.3 26.5
CALIMA 86.3 50.3 10.9 17.9
MLE 97.8 46.9 69.4 56.0
THARWA 96.3 22.8 33.0 26.9
NAME-LM 84.5 30.3 6.3 10.4
All Combined 97.7 49.7 63.2 55.6
(Decision Trees)

Table 3: Name tagging results on Dev with Train-S

does not outperform the most effective single clas-
sifier, MLE. This is because adding other features
decreases the precision by an amount that exceeds
the increase in the recall.

8 Tagging Foreign Words

As shown earlier, around 10% of all words in Ara-
bizi text are foreign, mostly English in our data set.
Tagging foreign words is challenging since there
are many words that can be either Arabic (in Ara-
bizi) or a word in a foreign languages. For exam-
ple the Arabizi word mesh can refer to the English
reading or the Arabic word ��Ó mš ‘not’. There-
fore, simple dictionary lookup is not sufficient to
determine whether a word is Arabic or Foreign.
Our target in this section is to identify the foreign
words in the input Arabizi text .

8.1 Baseline Experiments
We define a foreignness index formula that gives
each word a score given its unigram probabili-
ties against Arabic and English language models
(LMs).

ε (w) = αPE (w) + (1− α) (1− PA (wt)) (1)

ε(w) is the foreignness score of the Arabizi word
w. PE(w) is the unigram probability of w in the
English LM, and PA(wt) is the unigram proba-
bility in the Arabic LM of the transliteration into
Arabic (wt) proposed by our system for the Ara-
bizi word w. α is a tuning parameter varying from
zero to one. From equation 1 we define the mini-
mum and maximum ε values as follows:

εmin = αPEmin + (1− α) (1− PAmax)
εmax = αPEmax + (1− α) (1− PAmin)

(2)

Where PEmin and PEmax are the minimum and
maximum uni-gram probabilities in the English
LM. And PAmin and PAmax are the minimum
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and maximum uni-gram probabilities in the Ara-
bic LM. The foreignness index Foreignness(w)
is the normalized foreignness score derived using
equations 1 and 2 as follow:

Foreignness (w) =
ε (w)− εmin

εmax − εmin
(3)

If the foreignness index of a word is higher than
a certain threshold β, we consider the word For-
eign. We define three baseline experiments as fol-
lows:

• FW-index-manual: Use brute force search
to find the best α and β that maximize the
foreign words tagging on Dev.

• FW-index-SVM: Use the best α from above
and train an SVM model using the foreign-
ness index as sole feature. Then use this
model to classify each word in Dev.

• LM-lookup: The word is said to be Foreign
if it exists in the English LM and does not
exist in the Arabic LM.

8.2 Machine Learning Experiments
We conducted a suite of experiments by train-
ing different machine learning techniques using
WEKA (Hall et al., 2009) on the following groups
of features. We performed a two-stage feature ex-
ploration, where we did an exhaustive search over
all features in each group in the first phase, and
then exhaustively searched over all retained fea-
ture groups. In addition, we also performed an ex-
haustive search over all features in the first three
groups.

• Word n-gram features: Run the input Ara-
bizi word through an English LM and the cor-
responding Arabic transliteration through an
Arabic LM to get the set of features that are
defined in "Group1" in Table 4. Then find the
best combination of features that maximizes
the F-score on Dev.

• FW-char-n-gram features: Run the input
Arabizi word through a character-level n-
gram LM of the Arabizi words that are tagged
as foreign in the training data. We get the set
of features that are defined in "Group2" in Ta-
ble 4. Then find the best feature combination
from this group that maximizes the F-score
on Dev.

• AR-char-n-gram features: Run the input
Arabizi word through a character-level n-
gram LM of the Arabizi words that are tagged

Group Description
Group1 Uni and bi-grams probabilities from English and

Arabic LMs
Group2 1,2,3,4, and 5 characters level n-grams of foreign

words
Group3 1,2,3,4, and 5 characters level n-grams of Arabic

words
Use the Arabizi word itself as a feature

Group4 Was the input Arabizi word tagged as foreign in
the gold training data?
Was the input Arabizi word tagged as Arabic in the
gold training data?
Does the input word has speech effects?

Group5 Word length
Is the Arabizi word capitalized?

Table 4: List of the different features that are used
in the foreign word tagging

as non-foreign in the training data. We get the
set of features that are defined in "Group3" in
Table 4. Then find the best feature that maxi-
mizes the F-score on Dev.

• Word identity: Use the input Arabizi word
to get all features that are defined in "Group4"
in Table 4. Then find the best combination of
features that maximizes the F-score on Dev.

• Word properties: Use the input Arabizi
word to get all features that are defined in
"Group5" in Table 4. Then find the best com-
bination of features that maximizes the F-
score on Dev.

• Best-of-all-groups: Use the best selected set
of features from each of the above experi-
ments. Then find the best combination of
these features that maximizes the F-score on
Dev.

• All-features: Use all features from all
groups.

• Probabilistic-features-only: Find the best
combination of features from "Group1",
"Group2", and "Group3" in Table 4 that max-
imizes the F-score on Dev.

8.3 Results
Table 5 shows the results on Dev using Train-S.
It can be seen that the decision tree classifier is
doing better than the SVM except in the "Word
properties" and "All-features" experiments. The
best performing setup is "Probabilistic-features-
only" with decision trees which has 87.3% F-
score. The best selected features are EN-Unigram,
AR-char-2-grams, FW-char-1-grams, FW-char-2-
grams, FW-char-5-grams.
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Experiment Recall Precision F-Score Classifier Selected Features
LM-lookup 7.6 95.4 14.1
FW-index-manual 75.0 51.0 60.7 α =0.8 , β = 0.23
FW-index-SVM 4.0 89.0 7.7 SVM
Word n-gram features 76.7 73.2 74.9 AR-unigram, EN-unigram
AR-char-n-gram features 55.4 34.8 42.8 AR-char-4-grams
FW-char-n-gram features 42.4 52.2 46.8 FW-char-3-grams
Word properties 2.4 28.6 4.5 Has-speech-effect, Word-length, Is-capitalized
Word identity 70.3 63.0 66.4 SVM FW-tagged-list
Best-of-all-groups 82.1 76.1 79.0 AR-unigram, EN-unigram, Word-length
All-features 69.4 87.7 77.5 All features from all groups
Probabilistic-features-only 84.5 80.6 82.5 AR-unigram, EN-unigram, AR-char-3-grams, FW-

char-3-grams
Word n-gram features 82.8 80.5 81.6 AR-unigram, EN-unigram
AR-char-n-gram features 80.6 63.2 70.8 AR-char-5-grams
FW-char-n-gram features 73.8 76.3 75.0 FW-char-3-grams
Word properties 1.9 25.4 3.6 Has-speech-effect, Word-length
Word identity 73.2 60.9 66.5 Decision-Tree FW-tagged-list
Best-of-all-groups 87.0 81.5 84.1 AR-unigram, EN-unigram, AR-char-5-grams, FW-

char-3-grams
All-features 92.0 53.4 67.6 All features from all groups
Probabilistic-features-
only

89.9 84.9 87.3 EN-Unigram, AR-char-2-grams, FW-char-1-
grams, FW-char-2-grams, FW-char-5-grams

Table 5: Foreign words tagging results on Dev in terms of F-score (%).

9 System Evaluation

9.1 Development and Blind Test Results

We report the results on Dev using Train-L and
with the best settings determined in the previous
three sections. Table 6 summarizes the recall, pre-
cision and F-score results for the classification of
the Punct, Sound, Foreign, Name and Arabic tags,
in addition to emoticon detection.

We report our results on Test, our blind test
set, using Train-L and with the best settings de-
termined in the previous three sections in Table 7.

The punctuation, sounds and emoticons have
high F-scores but lower than expected. This is
likely due to the limitations of the regular expres-
sions used. The performance on these tags drops
further on the test set. A similar drop is seen for
the Foreign tag. Name is the hardest tag overall.
But it performs slightly better in test compared to
the development set, and so does the Arabic tag.

Tag Accuracy Recall Precision F-Score
Punct 99.8 100.0 88.7 94.0
Sound 99.4 93.5 78.9 85.6

Foreign 95.8 91.6 84.0 87.6
Name 98.1 57.5 71.8 63.9
Arabic 94.5 95.6 97.3 96.4

Emoticon 100.0 97.5 98.7 98.1
Detection

Table 6: Tagging results on Dev using Train-L

Tag Accuracy Recall Precision F-Score
Punct 99.8 98.2 80.1 88.3
Sound 99.3 87.4 74.2 80.3

Foreign 96.5 92.3 64.3 75.8
Name 98.6 53.7 90.2 67.3
Arabic 95.4 96.3 98.5 97.4

Emoticon 99.2 85.3 93.6 89.3
Detection

Table 7: Tagging results on Test using Train-L

9.2 Overall System Evaluation

In this subsection we report on evaluating the over-
all system accuracy. This includes the correct tag-
ging and Arabizi to Arabic transliteration. How-
ever, since there is no manually annotated gold
transliteration for foreign words, punctuation, or
sounds into Arabic, we cannot compare the system
transliteration of foreign words to the gold translit-
eration. Thus, we define the following metric to
judge the overall system accuracy.

Overall System Accuracy Metric A word is
said to be correctly transliterated according to the
following rules:

1. If the gold tag is anything other than Arabic
and Name, the produced tag must match the
gold tag.

2. If the gold tag is either Arabic or Name, the
produced tag and the produced transliteration
must both match the gold.
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Data Baseline Accuracy System Accuracy
Dev 65.7% 82.5%
Test 76.8% 83.8%

Table 8: Baseline vs. System Accuracy

Tag Gold Errors System Errors TyposNot Over Not Over
Tagged generated Tagged generated

Punct 100.0 0.0 0.0 0.0 0.0
Sound 79.3 10.3 10.3 0.0 0.0

Foreign 47.2 1.9 12.3 20.3 18.4
Name 26.3 13.7 45.3 8.4 6.3

Table 9: Error Analysis of tag classification errors

As a baseline, we use the most frequent tag,
which is Arabic in our case, along with the translit-
eration of the word using our black box system.
Then we apply the above evaluation metric on both
Dev and Test. The results are shown in table 8. The
baseline accuracies on Dev and Test are 65.7% and
76.8% respectively. By considering the actual out-
put of our system, the accuracy on the Dev and Test
data increases to 82.5% and 83.8% respectively.

9.3 Error Analysis
We conducted an error analysis for tag classifica-
tion on the development set. The analysis is done
for the tags that we built models for, which are
Punct, Sound, Foreign and Name.2 Table 9 shows
the different error types for classifying the tags.
Tagging errors could be either gold errors or sys-
tem errors. These errors could be either due to
tag over-generation or because the correct tag is
not detected. Additionally, there are typos in the
input Arabizi that sometimes prevent the system
from assigning the correct tags. Gold errors con-
tribute to a large portion of the tagging errors, rep-
resenting 100.0%, 89.6%, 49.1% and 40.0% for
the Punct, Sound, Foreign and Name tags, respec-
tively.

10 Conclusion and Future Work

We presented a system for automatic processing of
Arabic social media text written in Roman script,
or Arabizi. Our system not only transliterates the
Arabizi text in the Egyptian Arabic dialect but also
classifies input Arabizi tokens as sounds, punc-
tuation marks, names, foreign words, or Arabic
words, and detects emoticons. We define a new

2As mentioned in Section 4, the Arabic tag is assigned to
any remaining untagged words after running the classification
models.

task-specific metric for evaluating the complete
system. Our best setting achieves an overall per-
formance accuracy of 83.8% on a blind test set.

In the future, we plan to extend our work to
other Arabic dialects and other language contexts
such as Judeo-Arabic (Arabic written in Hebrew
script with code switching between Arabic and
Hebrew). We plan to explore the use of this com-
ponent in the context of specific applications such
as machine translation from Arabizi Arabic to En-
glish, and sentiment analysis in social media. We
also plan to make the system public so it can be
used by other people working on Arabic NLP tasks
related to Arabizi.
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Abstract

In social media communication, multilin-
gual speakers often switch between lan-
guages, and, in such an environment, au-
tomatic language identification becomes
both a necessary and challenging task.
In this paper, we describe our work in
progress on the problem of automatic
language identification for the language
of social media. We describe a new
dataset that we are in the process of cre-
ating, which contains Facebook posts and
comments that exhibit code mixing be-
tween Bengali, English and Hindi. We
also present some preliminary word-level
language identification experiments using
this dataset. Different techniques are
employed, including a simple unsuper-
vised dictionary-based approach, super-
vised word-level classification with and
without contextual clues, and sequence la-
belling using Conditional Random Fields.
We find that the dictionary-based approach
is surpassed by supervised classification
and sequence labelling, and that it is im-
portant to take contextual clues into con-
sideration.

1 Introduction

Automatic processing and understanding of Social
Media Content (SMC) is currently attracting much
attention from the Natural Language Processing
research community. Although English is still by
far the most popular language in SMC, its domi-
nance is receding. Hong et al. (2011), for exam-
ple, applied an automatic language detection algo-
rithm to over 62 million tweets to identify the top
10 most popular languages on Twitter. They found

that only half of the tweets were in English. More-
over, mixing multiple languages together (code
mixing) is a popular trend in social media users
from language-dense areas (Cárdenas-Claros and
Isharyanti, 2009; Shafie and Nayan, 2013). In
a scenario where speakers switch between lan-
guages within a conversation, sentence or even
word, the task of automatic language identifica-
tion becomes increasingly important to facilitate
further processing.

Speakers whose first language uses a non-
Roman alphabet write using the Roman alphabet
for convenience (phonetic typing) which increases
the likelihood of code mixing with a Roman-
alphabet language. This can be especially ob-
served in South-East Asia and in the Indian sub-
continent. The following is a code mixing com-
ment taken from a Facebook group of Indian uni-
versity students:

Original: Yaar tu to, GOD hain. tui JU
te ki korchis? Hail u man!

Translation: Buddy you are GOD. What
are you doing in JU? Hail u man!

This comment is written in three languages: En-
glish, Hindi (italics), and Bengali (boldface). For
Bengali and Hindi, phonetic typing has been used.

We follow in the footsteps of recent work on
language identification for SMC (Hughes et al.,
2006; Baldwin and Lui, 2010; Bergsma et al.,
2012), focusing specifically on the problem of
word-level language identification for code mixing
SMC. Our corpus for this task is collected from
Facebook and contains instances of Bengali(BN)-
English(EN)-Hindi(HI) code mixing.

The paper is organized as follows: in Section 2,
we review related research in the area of code
mixing and language identification; in Section 3,
we describe our code mixing corpus, the data it-
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self and the annotation process; in Section 4, we
list the tools and resources which we use in our
language identification experiments, described in
Section 5. Finally, in Section 6, we conclude
and provide suggestions for future research on this
topic.

2 Background and Related Work

The problem of language identification has been
investigated for half a century (Gold, 1967) and
that of computational analysis of code switching
for several decades (Joshi, 1982), but there has
been less work on automatic language identifi-
cation for multilingual code-mixed texts. Before
turning to that topic, we first briefly survey studies
on the general characteristics of code mixing.

Code mixing is a normal, natural product of
bilingual and multilingual language use. Signif-
icant studies of the phenomenon can be found
in the linguistics literature (Milroy and Muysken,
1995; Alex, 2008; Auer, 2013). These works
mainly discuss the sociological and conversational
necessities behind code mixing as well as its lin-
guistic nature. Scholars distinguish between inter-
sentence, intra-sentence and intra-word code mix-
ing.

Several researchers have investigated the rea-
sons for and the types of code mixing. Initial stud-
ies on Chinese-English code mixing in Hong Kong
(Li, 2000) and Macao (San, 2009) indicated that
mainly linguistic motivations were triggering the
code mixing in those highly bilingual societies.
Hidayat (2012) showed that Facebook users tend
to mainly use inter-sentential switching over intra-
sentential, and report that 45% of the switching
was instigated by real lexical needs, 40% was used
for talking about a particular topic, and 5% for
content clarification. The predominance of inter-
sentential code mixing in social media text was
also noted in the study by San (2009), which com-
pared the mixing in blog posts to that in the spoken
language in Macao. Dewaele (2010) claims that
‘strong emotional arousal’ increases the frequency
of code mixing. Dey and Fung (2014) present
a speech corpus of English-Hindi code mixing in
student interviews and analyse the motivations for
code mixing and in what grammatical contexts
code mixing occurs.

Turning to the work on automatic analysis of
code mixing, there have been some studies on de-
tecting code mixing in speech (Solorio and Liu,

2008a; Weiner et al., 2012). Solorio and Liu
(2008b) try to predict the points inside a set of spo-
ken Spanish-English sentences where the speak-
ers switch between the two languages. Other
studies have looked at code mixing in differ-
ent types of short texts, such as information re-
trieval queries (Gottron and Lipka, 2010) and SMS
messages (Farrugia, 2004; Rosner and Farrugia,
2007). Yamaguchi and Tanaka-Ishii (2012) per-
form language identification using artificial mul-
tilingual data, created by randomly sampling text
segments from monolingual documents. King
and Abney (2013) used weakly semi-supervised
methods to perform word-level language identifi-
cation. A dataset of 30 languages has been used
in their work. They explore several language
identification approaches, including a Naive Bayes
classifier for individual word-level classification
and sequence labelling with Conditional Random
Fields trained with Generalized Expectation crite-
ria (Mann and McCallum, 2008; Mann and Mc-
Callum, 2010), which achieved the highest scores.
Another very recent work on this topic is (Nguyen
and Doğruöz, 2013). They report on language
identification experiments performed on Turkish
and Dutch forum data. Experiments have been
carried out using language models, dictionaries,
logistic regression classification and Conditional
Random Fields. They find that language models
are more robust than dictionaries and that contex-
tual information is helpful for the task.

3 Corpus Acquisition

Taking into account the claim that code mixing is
frequent among speakers who are multilingual and
younger in age (Cárdenas-Claros and Isharyanti,
2009), we choose an Indian student community
between the 20-30 year age group as our data
source. India is a country with 30 spoken lan-
guages, among which 22 are official. code mix-
ing is very frequent in the Indian sub-continent
because languages change within very short geo-
distances and people generally have a basic knowl-
edge of their neighboring languages.

A Facebook group1 and 11 Facebook users
(known to the authors) were selected to obtain
publicly available posts and comments. The Face-
book graph API explorer was used for data collec-
tion. Since these Facebook users are from West
Bengal, the most dominant language is Bengali

1https://www.facebook.com/jumatrimonial
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(Native Language), followed by English and then
Hindi (National Language of India). The posts
and comments in Bengali and Hindi script were
discarded during data collection, resulting in 2335
posts and 9813 comments.

3.1 Annotation

Four annotators took part in the annotation task.
Three were computer science students and the
other was one of the authors. The annotators are
proficient in all three languages of our corpus. A
simple annotation tool was developed which en-
abled these annotators to identify and distinguish
the different languages present in the content by
tagging them. Annotators were supplied with 4
basic tags (viz. sentence, fragment, inclusion and
wlcm (word-level code mixing)) to annotate differ-
ent levels of code mixing. Under each tag, six at-
tributes were provided, viz. English (en), Bengali
(bn), Hindi (hi), Mixed (mixd), Universal (univ)
and Undefined (undef). The attribute univ is as-
sociated with symbols, numbers, emoticons and
universal expressions (e.g. hahaha, lol). The at-
tribute undef is specified for a sentence or a word
for which no language tags can be attributed or
cannot be categorized as univ. In addition, anno-
tators were instructed to annotate named entities
separately. What follows are descriptions of each
of the annotation tags.

Sentence (sent): This tag refers to a sentence
and can be used to mark inter-sentential code mix-
ing. Annotators were instructed to identify a sen-
tence with its base language (e.g. en, bn, hi and
mixd) or with other types (e.g. univ, undef ) as the
first task of annotation. Only the attribute mixd is
used to refer to a sentence which contains multi-
ple languages in the same proportion. A sentence
may contain any number of inclusions, fragments
and word-level code mixing. A sentence can be at-
tributed as univ if and only if it contains symbols,
numbers, emoticons, chat acronyms and no other
words (Hindi, English or Bengali). A sentence can
be attributed as undef if it is not a sentence marked
as univ and has words/tokens that can not be cate-
gorized as Hindi, English or Bengali. Some exam-
ples of sentence-level annotations are the follow-
ing:

1. English-Sentence:
[sent-lang=“en”] what a.....6 hrs long...but re-
ally nice tennis.... [/sent]

2. Bengali-Sentence:
[sent-lang=“bn”] shubho nabo borsho.. :)
[/sent]

3. Hindi Sentence:
[sent-lang=“hi”] karwa sachh ..... :( [/sent]

4. Mixed-Sentence:
[sent-lang=“mixd”] [frag-lang=“hi”] oye
hoye ..... angreji me kahte hai ke [/frag]
[frag-lang=“en”] I love u.. !!! [/frag] [/sent]

5. Univ-Sentence:
[sent-lang=“univ”] hahahahahahah....!!!!!
[/sent]

6. Undef-Sentence:
[sent-lang=“undef”] Hablando de una triple
amenaza. [/sent]

Fragment (frag): This refers to a group of for-
eign words, grammatically related, in a sentence.
The presence of this tag in a sentence conveys that
intra-sentential code mixing has occurred within
the sentence boundary. Identification of fragments
(if present) in a sentence was the second task of
annotation. A sentence (sent) with attribute mixd
must contain multiple fragments (frag) with a spe-
cific language attribute. In the fourth example
above, the sentence contains a Hindi fragment oye
hoye ..... angreji me kahte hai ke and an English
fragment I love u.. !!!, hence it is considered as a
mixd sentence. A fragment can have any number
of inclusions and word-level code mixing. In the
first example below, Jio is a popular Bengali word
appearing in the English fragment Jio.. good joke,
hence tagged as a Bengali inclusion. One can ar-
gue that the word Jio could be a separate Bengali
inclusion (i.e. can be tagged as a Bengali inclu-
sion outside the English fragment). But looking
at the syntactic pattern and the sense expressed by
the comment, the annotator kept it as a single unit.
In the second example below, an instance of word-
level code mixing, typer, has been found in an En-
glish fragment (where the root English word type
has the Bengali suffix r).

1. Fragment with Inclusion:
[sent-lang=“mixd”] [frag-lang=“en”] [incl-
lang=“bn”] Jio.. [/incl] good joke [/frag] [frag
lang=“bn”] ”amar Babin” [/frag] [/sent]

2. Fragment with Word-Level code mixing:
[sent-lang=“mixd”] [frag-lang=“en”] ” I will
find u and marry you ” [/frag] [frag-
lang=“bn”] [wlcm-type=“en-and-bn-suffix”]
typer [/wlcm] hoe glo to! :D [/frag] [/sent]
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Inclusion (incl): An inclusion is a foreign word
or phrase in a sentence or in a fragment which
is assimilated or used very frequently in native
language. Identification of inclusions can be per-
formed after annotating a sentence and fragment
(if present in that sentence). An inclusion within a
sentence or fragment also denotes intra-sentential
code mixing. In the example below, seriously is an
English inclusion which is assimilated in today’s
colloquial Bengali and Hindi. The only tag that an
inclusion may contain is word-level code mixing.

1. Sentence with Inclusion:
[sent-lang=“bn”] Na re [incl-lang=“en”] seri-
ously [/incl] ami khub kharap achi. [/sent]

Word-Level code mixing (wlcm): This is the
smallest unit of code mixing. This tag was in-
troduced to capture intra-word code mixing and
denotes cases where code mixing has occurred
within a single word. Identifying word-level code
mixing is the last task of annotation. Annotators
were told to mention the type of word-level code
mixing in the form of an attribute (Base Language
+ Second Language) format. Some examples are
provided below. In the first example below, the
root word class is English and e is an Bengali suf-
fix that has been added. In the third example be-
low, the opposite can be observed – the root word
Kando is Bengali, and an English suffix z has been
added. In the second example below, a named en-
tity suman is present with a Bengali suffix er.

1. Word-Level code mixing (EN-BN):
[wlcm-type=“en-and-bn-suffix”] classe
[/wlcm]

2. Word-Level code mixing (NE-BN):
[wlcm-type=“NE-and-bn-suffix”] sumaner
[/wlcm]

3. Word-Level code mixing (BN-EN):
[wlcm-type=“bn-and-en-suffix”] kandoz
[/wlcm]

3.1.1 Inter Annotator Agreement
We calculate word-level inter annotator agreement
(Cohen’s Kappa) on a subset of 100 comments
(randomly selected) between two annotators. Two
annotators are in agreement about a word if they
both annotate the word with the same attribute
(en, bn, hi, univ, undef ), regardless of whether
the word is inside an inclusion, fragment or sen-
tence. Our observations that the word-level anno-
tation process is not a very ambiguous task and

that annotation instruction is also straightforward
are confirmed in a high inter-annotator agreement
(IAA) with a Kappa value of 0.884.

3.2 Data Characteristics
Tag-level and word-level statistics of annotated
data that reveal the characteristics of our data set
are described in Table 1 and in Table 2 respec-
tively. More than 56% of total sentences and al-
most 40% of total tokens are in Bengali, which is
the dominant language of this corpus. English is
the second most dominant language covering al-
most 33% of total tokens and 35% of total sen-
tences. The amount of Hindi data is substantially
lower – nearly 1.75% of total tokens and 2% of to-
tal sentences. However, English inclusions (84%
of total inclusions) are more prominent than Hindi
or Bengali inclusions and there are a substantial
number of English fragments (almost 52% of total
fragments) present in our corpus. This means that
English is the main language involved in the code
mixing.

Statistics of Different Tags
Tags En Bn Hi Mixd Univ Undef
sent 5,370 8,523 354 204 746 15
frag 288 213 40 0 6 0
incl 7,377 262 94 0 1,032 1

wlcm 477
Name Entity 3,602

Acronym 691

Table 1: Tag-level statistics

Word-Level Tag Count
EN 66,298
BN 79,899
HI 3,440
WLCM 633
NE 5,233
ACRO 715
UNIV 39,291
UNDEF 61

Table 2: Word-level statistics

3.2.1 Code Mixing Types
In our corpus, inter- and intra-sentential code mix-
ing are more prominent than word-level code mix-
ing, which is similar to the findings of (Hidayat,
2012) . Our corpus contains every type of code
mixing in English, Hindi and Bengali viz. in-
ter/intra sentential and word-level as described in
the previous section. Some examples of different
types of code mixing in our corpus are presented
below.
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1. Inter-Sentential:
[sent-lang=“hi”] Itna izzat diye aapne mujhe
!!! [/sent]
[sent-lang=“en”] Tears of joy. :’( :’( [/sent]

2. Intra-Sentential:
[sent-lang=“bn”] [incl-lang=“en”] by d way
[/incl] ei [frag-lang=“en”] my craving arms
shall forever remain empty .. never hold u
close .. [/frag] line ta baddo [incl-lang=“en”]
cheezy [/incl] :P ;) [/sent]

3. Word-Level:
[sent-lang=“bn”] [incl-lang=“en”] 1st yr
[/incl] eo to ei [wlcm-type=“en+bnSuffix”]
tymer [/wlcm] modhye sobar jute jay ..
[/sent]

3.2.2 Ambiguous Words
Annotators were instructed to tag an English word
as English irrespective of any influence of word
borrowing or foreign inclusion but an inspection of
the annotations revealed that English words were
sometimes annotated as Bengali or Hindi. To un-
derstand this phenomenon we processed the list
of language (EN,BN and HI) word types (total
26,475) and observed the percentage of types that
were not always annotated with the one language
throughout the corpus. The results are presented in
Table 3. Almost 7% of total types are ambiguous
(i.e. tagged in different languages during annota-
tion). Among them, a substantial amount (5.58%)
are English/Bengali.

Label(s) Count Percentage
EN 9,109 34.40
BN 14,345 54.18
HI 1,039 3.92
EN or BN 1,479 5.58
EN or HI 61 0.23
BN or HI 277 1.04
EN or BN or HI 165 0.62

Table 3: Statistics of ambiguous and monolingual
word types

There are two reasons why this is happening:

Same Words Across Languages Some words
are the same (e.g. baba, maa, na, khali) in Hindi
and Bengali because both of the languages orig-
inated from a single language Sanskrit and share
a good amount of common vocabulary. It also
occurred in English-Hindi and English-Bengali as
a result of word borrowing. Most of these are
commonly used inclusions like clg, dept, ques-
tion, cigarette, and topic. Sometimes the anno-

tators were careful enough to tag such words as
English and sometimes these words were tagged
in the annotators’ native languages. During cross
checking of the annotated data the same error pat-
terns were observed for multiple annotators, i.e.
tagging commonly used foreign words into native
language. It only demonstrates that these English
words are highly assimilated in the conversational
vocabulary of Bengali and Hindi.

Phonetic Similarity of Spellings Due to pho-
netic typing some words share the same surface
form across two and sometimes across three lan-
guages. As an example, to is a word in the three
languages: it has occurred 1209 times as English,
715 times as Bengali and 55 times as Hindi in our
data. The meaning of these words (e.g. to, bolo,
die) are different in different languages. This phe-
nomenon is perhaps exacerbated by the trend to-
wards short and noisy spelling in SMC.

4 Tools and Resources

We have used the following resources and tools in
our experiment.

Dictionaries

1. British National Corpus (BNC): We com-
pile a word frequency list from the BNC (As-
ton and Burnard, 1998).

2. SEMEVAL 2013 Twitter Corpus (Se-
mevalTwitter): To cope with the language
of social media we use the SEMEVAL 2013
(Nakov et al., 2013) training data for the
Twitter sentiment analysis task. This data
comes from a popular social media site and
hence is likely to reflect the linguistic proper-
ties of SMC.

3. Lexical Normalization List (LexNorm-
List): Spelling variation is a well-known
phenomenon in SMC. We use a lexical nor-
malization dictionary created by Han et al.
(2012) to handle the different spelling vari-
ations in our data.

Machine Learning Toolkits

1. WEKA: We use the Weka toolkit (Hall et
al., 2009) for our experiments in decision tree
training.

2. MALLET: CRF learning is applied using the
MALLET toolkit (McCallum, 2002).
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3. Liblinear: We apply Support Vector Ma-
chine (SVM) learning with a linear kernel us-
ing the Liblinear package (Fan et al., 2008).

NLP Tools For data tokenization we used the
CMU Tweet-Tokenizer (Owoputi et al., 2013).

5 Experiments

Since our training data is entirely labelled at the
word-level by human annotators, we address the
word-level language identification task in a fully
supervised way.

Out of the total data, 15% is set aside as a
blind test set, while the rest is employed in our ex-
periments through a 5-fold cross-validation setup.
There is a substantial amount of token overlap be-
tween the cross-validation data and the test set –
88% of total EN tokens, 86% of total Bengali to-
kens and 57% of total Hindi tokens of the test set
are present in the cross-validation data.2

We address the problem of word-level in three
different ways:

1. A simple heuristic-based approach which
uses a combination of our dictionaries to clas-
sify the language of a word

2. Word-level classification using supervised
machine learning with SVMs but no contex-
tual information

3. Word-level classification using supervised
machine learning with SVMs and sequence
labelling using CRFs, both employing con-
textual information

Named entities and instances of word-level
code mixing are excluded from evaluation. For
systems which do not take the context of a word
into account, i.e. the dictionary-based approach
(Section 5.1) and the SVM approach without con-
textual clues (Section 5.2), named entities and in-
stances of word-level code mixing can be safely
excluded from training. For systems which do
take context into account, the CRF system (Sec-
tion 5.3.1) and the SVM system with contextual
clues (Section 5.3.2), these are included in train-
ing, because to exclude them would result in un-
realistic contexts. This means that these systems

2We found 25 comments and 17 posts common between
the cross-validation data and the test set. The reason for this
is that users of social media often express themselves in a
concise way. Almost all of these common data consisted of 1
to 3 token(s). In most of the cases these tokens were emoti-
cons, symbols or universal expressions such as wow and lol.
As the percentage of these comments is low, we keep these
comments as they are.

can classify a word to be a named entity or an in-
stance of word-level code mixing. To avoid this,
we implement a post-processor which backs off in
these cases to a system which hasn’t seen named
entities or word-level code mixing in training (see
Section 5.3).

5.1 Dictionary-Based Detection

We start with dictionary-based language detec-
tion. Generally a dictionary-based language de-
tector predicts the language of a word based on
its frequency in multiple language dictionaries. In
our data the Bengali and Hindi tokens are phoneti-
cally typed. As no such transliterated dictionary is,
to our knowledge, available for Bengali and Hindi,
we use the training set words as dictionaries. For
words that have multiple annotations in training
data (ambiguous words), we select the majority
tag based on frequency, e.g. the word to will al-
ways be tagged as English.

Our English dictionaries are those described
in Section 4 (BNC, LexNormList, SemEvalTwit-
ter) and the training set words. For LexNorm-
List, we have no frequency information, and so
we consider it as a simple word list. To pre-
dict the language of a word, dictionaries with nor-
malized frequency were considered first (BNC,
SemEvalTwitter, Training Data), if not found,
word list look-up was performed. The predicted
language is chosen based on the dominant lan-
guage(s) of the corpus if the word appears in mul-
tiple dictionaries with same frequency or if the
word does not appear in any dictionary or list.

A simple rule-based method is applied to pre-
dict universal expressions. A token is considered
as univ if any of the following conditions satisfies:

• All characters of the token are symbols or
numbers.
• The token contains certain repetitions identi-

fied by regular expressions.(e.g. hahaha).
• The token is a hash-tag or an URL or

mention-tags (e.g. @Sumit).
• Tokens (e.g. lol) identified by a word list

compiled from the relevant 4/5th of the train-
ing data.

Table 4 shows the results of dictionary-based
detection obtained from 5-fold cross-validation
averaging. We try different combinations and fre-
quency thresholds of the above dictionaries. We
find that using a normalized frequency is helpful
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and that a combination of LexNormList and Train-
ing Data dictionaries is suited best for our data.
Hence, we consider this as our baseline language
identification system.

Dictionary Accuracy(%)
BNC 80.09
SemevalTwitter 77.61
LexNormList 79.86
Training Data 90.21
LexNormList+TrainingData (Baseline) 93.12

Table 4: Average cross-validation accuracy of
dictionary-based detection

5.2 Word-Level Classification without
Contextual Clues

The following feature types are employed:

1. Char-n-grams (G): We start with a character
n-gram-based approach (Cavnar and Tren-
kle, 1994), which is most common and fol-
lowed by many language identification re-
searchers. Following the work of King and
Abney (2013), we select character n-grams
(n=1 to 5) and the word as the features in our
experiments.

2. Presence in Dictionaries (D): We use pres-
ence in a dictionary as a features for all avail-
able dictionaries in previous experiments.

3. Length of words (L): Instead of using the
raw length value as a feature, we follow our
previous work (Rubino et al., 2013; Wagner
et al., 2014) and create multiple features for
length using a decision tree (J48). We use
length as the only feature to train a decision
tree for each fold and use the nodes obtained
from the tree to create boolean features.

4. Capitalization (C): We use 3 boolean fea-
tures to encode capitalization information:
whether any letter in the word is capitalized,
whether all letters in the word are capitalized
and whether the first letter is capitalized.

We perform experiments with an SVM classifier
(linear kernel) for different combination of these
features.3 Parameter optimizations (C range 2-15

to 210) for SVM are performed for each feature
3According to (Hsu et al., 2010) the SVM linear kernel

with parameter C optimization is good enough when dealing
with a large number of features. Though an RBF kernel can
be more effective than a linear one, it is possible only after
proper optimization of C and γ parameters, which is compu-
tational expensive for such a large feature set.

Features Accuracy Features Accuracy
G 94.62 GD 94.67
GL 94.62 GDL 94.73
GC 94.64 GDC 94.72
GLC 94.64 GDLC 94.75

Table 5: Average cross-validation accuracy for
SVM word-level classification (without context),
G = char-n-gram, L = binary length features, D
= presence in dictionaries and C = capitalization
features

GDLC: 94.75%

GLC: 94.64% GDL: 94.73% GDC: 94.72%

GL: 94.62% GC: 94.64% GD: 94.67%

G: 94.62%

Figure 1: Average cross-validation accuracy for
SVM word-level classification (without context),
G = char-n-gram, L = binary length features, D
= presence in dictionaries and C = capitalization
features: cube visualization

set and best cross-validation accuracy is found for
the GDLC-based run (94.75%) at C=1 (see Table 5
and Fig. 1).

We also investigate the use of a dictionary-to-
char-n-gram back-off model – the idea is to ap-
ply the char-n-gram model SVM-GDLC for those
words for which a majority-based decision is taken
during dictionary-based detection. However, it
does not outperform the SVM. Hence, we select
SVM-GDLC for the next steps of our experiments
as the best exemplar of our individual word-level
classifier (without contextual clues).

5.3 Language Identification with Contextual
Clues

Contextual clues can play a very important role in
word-level language identification. As an exam-
ple, a part of a comment is presented from cross-
validation fold 1 that contains the word die which
is wrongly classified by the SVM classifier. The
frequency of die in the training set of fold 1 is 6
for English, 31 for Bengali and 0 for Hindi.

Gold Data: ..../univ the/en movie/en
for/en which/en i/en can/en die/en for/en
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Features Order-0 Order-1 Order-2
G 92.80 95.16 95.36
GD 93.42 95.59 95.98
GL 92.82 95.14 95.41
GDL 93.47 95.60 95.94
GC 92.07 94.60 95.05
GDC 93.47 95.62 95.98
GLC 92.36 94.53 95.02
GDLC 93.47 95.58 95.98

Table 6: Average cross-validation accuracy of
CRF-based predictions where G = char-n-gram, L
= length feature, D = single dictionary-based la-
bels (baseline system) and C = capitalization fea-
tures

...../univ

SVM Output: ..../univ the/en
movie/en for/en which/en i/en can/en
die/bn for/en ...../univ

We now investigate whether contextual informa-
tion can correct the mis-classified tags.

Although named entities and word-level code
mixing are excluded from evaluation, when deal-
ing with context it is important to consider named
entity and word-level code mixing during training
because these may contain some important infor-
mation. We include these tokens in the training
data for our context-based experiments, labelling
them as other. The presence of this new label may
affect the prediction for a language token during
classification and sequence labelling. To avoid this
situation, a 4-way (bn, hi, en, univ) backoff classi-
fier is trained separately on English, Hindi, Ben-
gali and universal tokens. During evaluation of
any context-based system we discard named en-
tity and word-level code mixing from the predic-
tion of that system. If any of the remaining tokens
is predicted as other we back off to the decision
of the 4-way classifier for that token. For the CRF
experiments (Section 5.3.1), the backoff classifier
is a CRF system, and, for the SVM experiments
(Section 5.3.2), the backoff classifier is an SVM
system.

5.3.1 Conditional Random Fields (CRF)
As our goal is to apply contextual clues, we first
employ Conditional Random Fields (CRF), an ap-
proach which takes history into account in pre-
dicting the optimal sequence of labels. We em-
ploy a linear chain CRF with an increasing or-
der (Order-0, Order-1 and Order-2) with 200 it-
erations for different feature combinations (used

GDLC: 95.98%

GLC: 95.02% GDL: 95.94% GDC: 95.98%

GL: 95.41% GC: 95.05% GD: 95.98%

G: 95.36%

Figure 2: CRF Order-2 results: cube visualisation
G = char-n-gram, L = binary length features, D
= presence in dictionaries and C = capitalization
features

Context Accuracy (%)
GDLC + P1 94.66
GDLC + P2 94.55
GDLC + N1 94.53
GDLC + N2 94.37
GDLC + P1N1 95.14
GDLC + P2N2 94.55

Table 7: Average cross-validation accuracy of
SVM (GDLC) context-based runs, where P-i =
previous i word(s) , N-i = next i word(s)

in SVM-based runs). However, we observe that
accuracy of CRF based runs decreases when bi-
narized length features (see Section 5.2 and dic-
tionary features (a feature for each dictionary) are
involved. Hence, we use the dictionary-based pre-
dictions of the baseline system to generate a single
dictionary feature for each token and only the raw
length value of a token instead of binarized length
features. The results are presented in Table 6 and
the second order results are visualized in Fig. 2.

As expected, the performance increases as the
order increases from zero to one and two. The use
of a single dictionary feature is also helpful. The
results for GDC, GDLC, and GD based runs are
almost similar (95.98%). However, we choose the
GDC system because it performed slightly better
(95.989%) than the GDLC (95.983%) and the GD
(95.983%) systems.

5.3.2 SVM with Context
We also add contextual clues to our SVM classi-
fier. To obtain contextual information we include
the previous and next two words as features in
the SVM-GDLC-based run.4 All possible com-

4We also experimented with extracting all GDLC features
for the context words but this did not help.
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binations are considered during experiments (Ta-
ble 7). After C parameter optimization, the best
cross-validation accuracy is found for the P1N1

(one word previous and one word next) run with
C=0.125 (95.14%).

5.4 Test Set Results

We apply our best dictionary-based system, our
best SVM system (with and without context) and
our best CRF system to the held-out test set. The
results are shown in Table 8. Our best result is
achieved using the CRF model (95.76%).

5.5 Error Analysis

Manual error analysis shows the limitations of
these systems. The word-level classifier without
contextual clues does not perform well with Hindi
data. The number of Hindi tokens is quite low.
Only 2.4% (4,658) of total tokens of the training
data are Hindi, out of which 55.36% are bilin-
gually ambiguous and 29.51% are tri-lingually
ambiguous tokens. Individual word-level systems
often fail to assign proper labels to ambiguous
words, but adding context information helps to
overcome this problem. Considering the previ-
ous example of die, both context-based SVM and
CRF systems classify it properly. Though the final
system CRF-GDC performs well, it also has some
limitations, failing to identify the language for the
tokens which appear very frequently in three lan-
guages (e.g. are, na, pic).

6 Conclusion

We have presented an initial study on automatic
language identification with Indian language code
mixing from social media communication. We
described our dataset of Bengali-Hindi-English
Facebook comments and we presented the results
of our word-level classification experiments on
this dataset. Our experimental results lead us to
conclude that character n-gram features are useful
for this task, contextual information is also impor-
tant and that information from dictionaries can be
effectively incorporated as features.

In the future we plan to apply the techniques
and feature sets that we used in these experiments
to other datasets. We have already started this by
applying variants of the systems presented here to
the Nepali-English and Spanish-English datasets
which were introduced as part of the 2014 code
mixing shared task (Solorio et al., 2014; Barman

et al., 2014).
We did not include word-level code mixing in

our experiments – in our future experiments we
will explore ways to identify and segment this type
of code mixing. It will be also important to find the
best way to handle inclusions since there is a fine
line between word borrowing and code mixing.
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Abstract
This paper describes experiments in de-
tecting and annotating code-switching in
a large multilingual diachronic corpus of
Swiss Alpine texts. The texts are in En-
glish, French, German, Italian, Romansh
and Swiss German. Because of the mul-
tilingual authors (mountaineers, scientists)
and the assumed multilingual readers, the
texts contain numerous code-switching
elements. When building and annotating
the corpus, we faced issues of language
identification on the sentence and sub-
sentential level. We present our strategy
for language identification and for the an-
notation of foreign language fragments
within sentences. We report 78% precision
on detecting a subset of code-switches
with correct language labels and 92% un-
labeled precision.

1 Introduction

In the Text+Berg project we have digitized the
yearbooks of the Swiss Alpine Club (SAC) from
its first edition in 1864 until today. They contain
articles about mountain expeditions, the flora and
fauna of the Alpes and other mountain regions,
glacier and climate observations, geology and his-
tory papers, book reviews, accident and security
reports, as well as the protocols of the annual
club gatherings. The texts are in the four official
languages of Switzerland French, German, Italian
and Romansh 1 plus a few in English and Swiss
German dialects.

Because of the multilinguality of the authors
and readers, many articles are mixed-language
texts with inter-sentential and intra-sentential

1. Romansh is the 4th official language in Switzerland. It
is spoken by around 25,000 people in the mountainous South-
Eastern canton of Graubünden.

code-switching. This poses a challenge for auto-
matically processing the texts. When we apply
Part-of-Speech (PoS) tagging, named entity recog-
nition or parsing, our systems need to know the
language that they are dealing with. Therefore we
had used a language identifier from the start of the
project to mark the language of each sentence. We
report on our experiences with sentence-based lan-
guage identification in section 3. Figure 1 shows
an example of a French text with an English ap-
pendix title plus an English quote from this book.

Lately we discovered that our corpus also
contains many intra-sentential code-switches. For
example, we find sentences like

... und ich finde es �very nice and de-
lightful� einen Vortrag halten zu dürfen.
(Die Alpen, 1925) (EN : ... and I find it
very nice and delightful to be allowed to
give a talk.)

where the German sentence contains an English
phrase in quotation marks. Obviously, a German
PoS tagger will produce nonsense tags for the En-
glish phrase as the words will be unknown to it.
PoS taggers are good at tagging single unknown
words based on the surrounding context, but most
taggers fail miserably when a sequence of two
or more words is unknown. The upper half of fi-
gure 2 shows the PoS tagger output for the above
example. The words very, nice, delightful are sen-
selessly tagged as proper names (NE), only and is
tagged as foreign word (FM).

Our goal is to detect all intra-sentential code-
switches and to annotate them as exemplified in
the lower half of figure 2. They shall be framed
with the TEI-conformant tag <foreign> which
also shall specify the language of the foreign lan-
guage segment. All tokens in the segment shall be
tagged as foreign words (e.g. FM in the German
STTS tag set, ET in the French Le Monde tag set
(Abeillé et al., 2003)), and each lemma shall get
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the special symbol @fn@ to set it apart from lem-
mas of the surrounding sentence. In this paper we
report on our experiments towards this goal and
suggest an algorithm for detecting code-switching.

We adopt a wide definition of code-switching.
We are interested in detecting all instances where
a text is in a dominant language and contains
words, phrases and sentences in another language.
Though our definition is broad, it is clearly more
restricted than others, as e.g. the definition by
Kracht and Klein (2014) which includes special
purpose codes like bank account numbers or shoe
sizes.

In this paper we will give an overview of the
language mix in the yearbooks of the Swiss Al-
pine Club over the 150 years, and we will illus-
trate how we identified inter-sentential and intra-
sentential code-switching. We will give a quanti-
tative overview of the number of code-switching
candidates that we automatically located.

2 The Text+Berg Corpus

The Text+Berg corpus comprises the annual pu-
blications of the Swiss Alpine Club (SAC) from
its first edition in 1864 until 2013. From the start
until 1923 the official yearbook was called “Jahr-
buch des Schweizer Alpen-Club” (EN : yearbook
of the Swiss Alpine Club), and it typically consis-
ted of 500 to 700 pages. The articles of these first
60 years were mostly in German (with 86% of
the words), but some also in French (13% of the
words) and few in Italian and Romansh (Volk et
al., 2010).

Interestingly, the German articles contained
passages in French and sometimes other languages
(e.g. English, Swiss German, Latin) without trans-
lations, and vice versa. Obviously, the article au-
thors and yearbook editors assumed that the rea-
ders of the yearbook were polyglott at least in En-
glish, French, German and Latin during that time.
In fact, the members of the SAC in the 19th cen-
tury came from an academic elite. Mountain ex-
ploration was a past-time of the rich and educated.

Still, during that same time the French-speaking
sections of the Swiss Alpine Club published their
own yearbook in parallel to the official yearbook
and called it “Echo des Alpes”. It started shortly
after the official yearbook in the late 1860s and
continued until 1923. Each “Echo des Alpes” year-
book contained between 300 to 600 pages adding
up to a total of 22,582 pages with 7.4 million to-

kens, almost all in French with rare quotes in Ger-
man.

As of 1925 the official SAC yearbook and the
“Echo des Alpes” were merged into a new publi-
cation called “Die Alpen. Les Alpes. Le Alpi” (in
German, French, Italian) which has been publi-
shed ever since. Over the years it sometimes ap-
peared as quarterly and sometimes as monthly ma-
gazine. Today it appears 12 times per year in ma-
gazine format. For the sake of simplicity we conti-
nue to call each annual volume a yearbook.

The merger in 1925 resulted in a higher per-
centage of French texts in the new yearbook. For
example, the 1925 yearbook had around 143,000
words in German and 112,000 in French (56% to
44%). The ratio varied somewhat but was still at
64% to 36% in 1956.

From 1957 onwards, the SAC has published pa-
rallel (i.e. translated) French and German versions
of the yearbooks. At the start of this new era only
half of the articles were translated, the rest was
printed in the original language in identical ver-
sions in the two language copies.

Over the next decade the number of translations
increased and as of 1983 the yearbooks were com-
pletely translated between German and French.
Few Italian articles were still published verbatim
in both the French and German yearbooks. As of
2012 the SAC has launched an Italian language
version of its monthly magazine so that now it pro-
duces French, German and Italian parallel texts.

In its latest release the Text+Berg corpus (com-
prising the SAC yearbooks, the ALPEN maga-
zine and the Echo des Alpes) contains around
45.8 million tokens (after tokenization). French
and German account for around 22 million tokens
each, Italian accounts for 0.8 million tokens. The
remainder goes to English, Latin, Romansh and
Swiss German. The corpus is freely available for
research purposes upon request.

3 Language Identification in the
Text+Berg Corpus

We compiled the Text+Berg corpus by scanning
all SAC yearbooks from 1864 until 2000 (around
100,000+ pages). Afterwards we employed com-
mercial OCR software to convert the scan images
into electronic text. We developed and applied
techniques to automatically reduce the number of
OCR errors (Volk et al., 2011).

We obtained the yearbooks from 2001 to
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FIGURE 1 – Example of an English title and an English quote in a French text (Die Alpen, 1955)

FIGURE 2 – Example of an annotated German sentence with English segment, before and after code-
switch detection (Die Alpen, 1925)
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2009 as PDF documents which we automatically
converted to text. The subsequent yearbooks from
2010 until 2013 we received as XML files from
the SAC.

We have turned the whole corpus into a uniform
XML format. For this, the OCR output texts as
well as the texts converted from PDF and XML
are structured and annotated by automatically mar-
king article boundaries, by tokenization, language
identification, Part-of-Speech tagging and lemma-
tization. Our processing pipeline also includes to-
ponym recognition and geo-coding of mountains,
glaciers, cabins, valleys, lakes and towns. Further-
more we recognize and co-reference person names
(Ebling et al., 2011), and we annotate temporal
expressions (date, time, duration and set) with a
variant of HeidelTime (Rettich, 2013). Finally we
analyze the parallel parts of our corpus and pro-
vide sentence alignment information that is com-
puted via BLEUalign (Sennrich and Volk, 2011).

In order to process our texts with language-
specific tools (e.g. PoS tagging and person name
recognition) we employed automatic language
identification on the sentence level. We used
Lingua-Ident 2 (developed by Michael Piotrowski)
to determine for each sentence in our corpus whe-
ther it is in English, French, German, Italian or Ro-
mansh. Lingua-Ident is a statistical language iden-
tifier based on letter n-gram frequencies. For long
sentences it reliably distinguishes between the lan-
guages. Unfortunately it often misclassifies short
sentences. Therefore we decided to use it only for
sentences with more than 40 characters. Shorter
sentences are assigned the language of the article.
This can be problematic for mixed language ar-
ticles. An alternative strategy would be to assign
the language of the previous sentence to short sen-
tences.

For sentences that Lingua-Ident judges as Ger-
man we run a second classifier that distinguishes
between Standard German and Swiss German dia-
lect text. Since there are no writing rules for Swiss
German dialects, they come in a variety of spel-
lings. We have compiled a list of typical Swiss
German words (e.g. Swiss-German : chli, chlii,
chlini, chline = German : klein, kleine = English :
small) that are not used in Standard German in or-
der to identify Swiss German sentences. 3

2. http ://search.cpan.org/dist/Lingua-Ident/
3. We are aware that the Text+Berg corpus contains also

occasional sentences (or sentence fragments) in other Ger-
man dialects (e.g. Austrian German, Bavarian German) and

Based on the language tag of each sentence
we are able to investigate coarse-grained code-
switching. Whenever the language of a sentence
deviates from the language of the article, we have a
candidate for code-switching. For example, in the
yearbook 1867 we find a German text (describing
the activities of the club) with a French quote :

Der Berichterstatter bemerkt darüber :
“On peut remarquer à cette occasion
qu’il est rare que par un effort de l’es-
prit on puisse mettre du brouillard en
bouteille, et . . . ” Die etwas ältere Sek-
tion Diablerets, deren Steuer Herr Au-
gust Bernus mit kundiger Hand . . .

Most code-switching occurs with direct speech,
quotes and book titles. The communicative goal is
obviously to make the text more authentic.

4 Related Work on Detection of
Code-Switching

Most previous work on automatically detecting
code-switching focused on the switches between
two known languages (whereas we have to deal
with a mix of 6 languages).

Solorio and Liu (2008) worked on real-time
prediction of code-switching points in Spanish-
English conversations. This means that the judge-
ment whether the current word is in a different lan-
guage than the language of the matrix clause can
only be based on the previous words. They use the
PoS tag and its probability plus the lemma as pro-
vided by both the Spanish and the English Tree-
Tagger as well as the position of the word in the
Beginning-Inside-Outside scheme as features for
making the decision. In order to keep the number
of experiments manageable they restricted their
history to one or two preceding words. As an inter-
esting experiment they generated code-switching
sentences Spanish-English based on their different
predictors and asked human judges to rate the na-
turalness of the resulting sentences. This helped
them to identify the most useful code-switching
predictor.

Vu et al. (2013) and Adel et al. (2013) consi-
der English-Mandarin code-switching in speech
recognition. They investigate recurrent neural net-
work language models and factored language mo-
dels to the task in an attempt to integrate syntac-
tic features. For the experiments they use SEAME,

in old German spellings. Since these varieties are rare in the
corpus, we do not deal with them explicitly.
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the South East Asia Mandarin-English speech cor-
pus compiled from Singaporean and Malaysian
speakers. It consists of spontaneous interviews
and conversations. The transcriptions were clea-
ned and each word was manually tagged as En-
glish, Mandarin or other. The data consists of an
intensive mix of the two languages with the ave-
rage duration of both English and Mandarin seg-
ments to be less than a second ( !). In order to as-
sign PoS tags to this mixed language corpus, the
authors applied two monolingual taggers and com-
bined the results.

Huang and Yates (2014) also work on the de-
tection of English-Chinese code-switching but not
on speech but rather on web forum texts produ-
ced by Chinese speakers living in the US. They
use statistical word alignment and a Chinese lan-
guage model to substitute English words in Chi-
nese sentences with suitable Chinese words. Pre-
paring the data in this way significantly improved
Machine Translation quality. Their approach is li-
mited to two known languages and to very short
code-switching phrases (typically only one word).

Tim Baldwin and his group (Hughes et al.,
2006) have surveyed the approaches to language
identification at the time. They found a number of
missing issues, such as language identification for
minority languages, open class language identifi-
cation (in contrast to identification within a fixed
set of languages), sparse training data, varying
encodings, and multilingual documents. Subse-
quently they (Lui and Baldwin, 2011) introduced a
system for language identification of 97 languages
trained on a mixture of corpora from different
domains. They claim that their system Langid is
particularly well suited for classifying short input
strings (as in Twitter messages). We therefore tes-
ted Langid in our experiments for code-switching
detection.

5 Exploratory Experiments with the
SAC Yearbook 1925

In order to assess the performance of Langid
for the detection of code-switching we performed
an exploratory experiment with the SAC yearbook
1925. We extracted all word sequences between
pairs of quotation marks where at least one token
had been assigned the “unknown” lemma by our
PoS tagger. The “unknown” lemma indicates that
this word sequence may come from a different lan-
guage.

The word sequence had to be at least 4 cha-
racters long, thus skipping single letters and ab-
breviations. In this way we obtained 333 word
sequences that are potential candidates for intra-
sentential code-switching. We then ran these word
sequences through the Langid language identifica-
tion system with the restriction that we expect the
word sequences only to be either English, French,
German, Italian or Latin (Romansh and Swiss Ger-
man are not included in Langid). For a given string
Langid delivers the most likely language together
with a confidence score.

We then compared the language predicted by
the Langid system with the (automatically) com-
puted language of the complete sentence. In 189
out of the 333 sentences the Langid output pre-
dicted a code-switch. We then manually graded all
Langid judgements and found that 225 language
judgements (67.5%) were correct. But only 89 of
the 189 predicted code-switches came with the
correct language. 40 of the 100 incorrect judge-
ments were actually code-switches but with a dif-
ferent language. The remaining ones should have
been classified with the same language as the sur-
rounding sentence and are thus no examples of
code-switching.

A closer inspection of the results revealed that
the book contained not only code-switches in the
expected 5 languages, but also into Romansh (6),
Spanish (4) and Swiss-German (13). Obviously all
of these were incorrectly classified. Most (8) of
the Swiss-German word sequences were classified
as German which could count as half correct, but
the others were misclassified as English (among
them a variant of the popular Swiss German fare-
well phrase uf Wiederluege spelled as uf’s Wieder-
luege).

The Langid system has a tendency to classify
word sequences as English. Many of the short, in-
correctly classified word sequences were judged
as English. It turns out that Langid judges even the
empty string as English with a score of 9.06. The-
refore all judgements with this score are dubious.
We found that 56 short word sequences were clas-
sified as English with this score, out of which 35
were erroneously judged as English. Only strings
with a length of 15 and more characters that are
classified as English should be trusted. All others
need to be discarded.

In general, if precision is the most important as-
pect, then Langid should only be used for strings
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SAC yearbooks candidates predicted code-sw correct wrong lang no code-sw
1868 to 1878 388 121 88 33 13
1926 to 1935 792 335 266 69 23

Total 1180 456 354 102 36

TABLE 1 – Recognition of code-switches in the Text+Berg corpus

with 20 or more characters. In our test set only 4
strings that were longer than 20 characters were
incorrectly classified within the selected language
set. Among the errors was the famous Latin phrase
conditio sine qua non (length : 21 characters inclu-
ding blanks) which Langid incorrectly classified
as Italian.

Another reason for the considerable number of
misclassifications can be repeated occurrences of
a word sequence. Our error count is a token-based
count and thus prone to misclassified recurring
phrases. In our experiment, Langid misclassified
the French book name Echo des Alpes as Italian.
Unfortunately this name occurs 18 times in our
test set and thus accounts for 18 errors. We suspect
that an -o at the end of a word is a strong indicator
for Italian. In a short string like Echo des Alpes (14
characters), this can make the difference.

Another interesting observation is that hyphens
speak for German. Our test set contains the hy-
phenated French string vesse-de-neige which Lan-
gid misclassifies as German with a clear margin
over French. When the same string is analyzed
without hyphens, then Langid correctly computes
a preference for French over German. A similar
observation comes from the Swiss German phrase
uf’s Wiederluege being classified as English when
spelled with the apostrophe (which is less frequent
in German than in English). Without the apos-
trophe Langid would count the string as German.
With short strings like this, special symbols have a
visible impact on the language identification.

We also observed that Langid is sensitive to
all-caps capitalization. For example, AUS DEM
LEBEN DER GEBIRGSMUNDARTEN (EN : The
Lives of Mountain Dialects) is misclassified as En-
glish (with the default score) while Aus dem Le-
ben der Gebirgsmundarten is correctly classified
as German.

Overall, we found that code-switching within
the same article rarely targets different languages.
For example, if the article is in German and
contains code-switches into English, then it hardly
ever contains code-switches into other languages.

In analogy to the one-sense-per-discourse hypo-
thesis we might call this the one-code-switch-
language-per-discourse hypothesis.

6 Detecting Intra-sentential
Code-Switching

Based on exploratory studies and observations
we decided on the following algorithm for detec-
ting and annotating intra-sentential foreign lan-
guage segments in the Text+Berg corpus. We
search for sub-sentential token sequences (possi-
bly of length 1) that are framed by a pair of quota-
tion marks and that contain at least one “unknown”
lemma. There must be at least two tokens outside
of the quotation marks in the same sentence. As
a compromise we restrict our detection to strings
longer than 15 characters so that we get relati-
vely reliable language judgements by Langid. The
strings may consist of one token that is longer than
15 characters (e.g. Matterhornhochtourist) or a se-
quence of tokens whose sum of characters inclu-
ding blanks is more than 15. We feed these can-
didate strings to Langid for language identifica-
tion and compare the output language with the lan-
guage attribute of the surrounding sentence. If the
languages are different, then we regard the token
sequence as code-switch and mark it accordingly
in XML as shown in figure 2.

In order to determine the precision of this al-
gorithm, we checked 10 yearbooks from 1868 to
1878 (there was no yearbook in 1870) and from
1926 to 1935. The results are in table 1. From
the 1180 code-switch candidates that we compu-
ted based on the above restrictions, Langid predic-
ted 456 code-switches (39%). This means that in
39% of the cases Langid predicted a language that
was different from the language of the surrounding
sentence.

We manually evaluated all 456 predicted code-
switches and found that 354 of them (78%) were
correctly classified and labeled. These segments
were indeed in a different language than the sur-
rounding sentence and their language was cor-
rectly determined. For example, the French seg-
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SAC yearbooks
> 15 characters

without unknowns
≤ 15 characters

all sample : TN/FN all sample : TN/FP
1868 to 1878 322 20/1 404 15/8
1926 to 1935 1944 78/1 1136 54/23

Total 2266 (2%) 98/2 1540 (31%) 69/31

TABLE 2 – Estimation of the loss of recall due to the filtering approach based on a random sample of 100
quotations for each filtering category (TN : true negatives, FN : false negatives)

ment in the following German sentence is cor-
rectly detected and classified :

Anschliessend führte Ambros dasselbe
Bergsteigertrio �dans des circonstances
très défavorables� auf den Monte Rosa
... (Die Alpen, 1935) (EN : After-
wards Ambros led the same 3 mountai-
neers �under very unfavorable condi-
tions� onto Monte Rosa.)

Out of the 102 segments whose language
was wrongly classified, only 36 were no code-
switches. For example, the Latin segment cum
grano salis africani is indeed a code-switch in
a German sentence although Langid incorrectly
classifies it as English. In fact, our evaluation sho-
wed that Langid is “reluctant” to classify strings as
Latin. Latin strings are often misclassified as En-
glish or Italian.

Overall this means that only 8% of the predicted
code-switches are no code-switches. Therefore we
can safely add the module for code-switch detec-
tion into our processing and annotation pipeline.

In order to estimate the recall of our quota-
tion filtering approach we manually evaluated a
sample of the quotations that our algorithm exclu-
ded. Table 2 presents the numbers for the two time
periods for two cases : first for sequences that are
longer than 15 characters and contain only known
lemmas, second for sequences that are shorter than
16 characters and contain at least one “unknown”
lemma. For both cases we checked 100 instances.

The evaluation for the quotations with more
than 15 characters but with all known lemmas (no
“unknown” lemma) shows only 2 false negatives.
Therefore, we can conclude safely that most of the
code-switches with more than 15 characters were
included in our candidate set.

Table 2 also shows that there were 1540 quota-
tions with 15 or less characters. The manual ins-
pection of 100 randomly selected quotations re-

vealed that 31 indeed include foreign material.
Some of these quotations are geographic names,
e.g. the valley Bergell (EN/IT : Val Bregaglia),
where it is difficult to decide whether this should
be regarded as a code-switch. For this evaluation,
we sticked to the principle that a foreign geogra-
phic name in quotation marks counts as a code-
switch. The number of missed code-switches is
high (31%). However, due to the limited preci-
sion of Langid (and other character-based lan-
guage identifiers) for short character sequences,
we still consider our length threshold appropriate.
A different approach to language identification is
needed to reliably classify these short quotes.

7 Discussion

The correctly marked code-switches in our test
periods can be split by language of the matrix sen-
tence and the language of the sub-sentential seg-
ment (= the code-switch segment). Table 3 gives
an overview of the types of code-switches for the
two periods under investigation. We see clearly
that code-switches from German to English were
rare in the 19th century (8 out of 89 = 9%) but be-
came much more popular in the 1920s and 1930s
(61 out of 265 = 23%). This came at the cost of
French which lost ground from 54% (48 out of 89)
to 40% (106 out of 265).

One can only compare the code-switch num-
bers from German with the corresponding num-
bers from French after normalizing the numbers
in relation to the overall amount of text in Ger-
man and French. During the first period (1868 to
1878) we count roughly 200,000 tokens in French
and 1.4 million tokens in German, whereas in the
second period (1926 to 1935) we have around 1
million tokens in French and again 1.4 million
tokens in German. For the first period we find
87 code-switches (triggered by quotation marks)
in the 1.4 million German tokens compared to
189 code-switches in the second period. The num-
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sent
lang

segm
lang

1868 to
1878

1926 to
1935

de en 8 61
de fr 48 106
de it 24 19
de la 7 3
fr de 2 35
fr en - 20
fr it - 11
fr la - 2
it de - 3
it en - 2
it fr - 3

Total 89 265

TABLE 3 – Correctly detected code-switches in the
Text+Berg corpus

sent
lang

segm
lang

1868 to
1878

1926 to
1935

de en 13 23
de fr 9 5
de it 8 12
de la 2 1
fr de - 7
fr en 1 10
fr it - 8
fr la - 1
it en - 2

Total 33 69

TABLE 4 – Incorrectly labeled code-switches in
the Text+Berg corpus

ber of code-switches have clearly increased. For
French we observe the same trend with 2 code-
switches in 200’000 words in the first period com-
pared to 68 code-switches in the 1 million tokens
in the second period.

There is also a striking difference between
French and German with many more code-
switches in German than in French. For instance,
for German we find 135 code-switches per 1 mil-
lion tokens in the second period vs. 68 code-
switches per 1 million tokens for French.

One surprising finding were the code-switches
into Latin. We had not noticed them before, since
our corpus does not contain longer passages of La-
tin text. But this study shows that code-switches

correct
segm Langid prediction
lang en it fr la de Total
la 15 12 3 1 31
de 7 5 5 1 18
fr 7 3 10
it 6 6
es 3 1 2 6
rm 1 2 3
ru 1 1
id 1 1

Total 40 22 10 3 1 76

TABLE 5 – Confusion matrix for incorrectly labe-
led code-switches in the periods 1868 to 1878 and
1926 to 1935

into Latin persisted into the 1920s (3 out of Ger-
man and 2 out of French).

On the negative side (cf. table 4), misclassi-
fying segments as English is the most frequent
cause for a wrong language assignment in both
periods. Table 5 shows the confusion matrix which
contrasts the manually determined segment lan-
guage with the incorrect language predicted by
Langid. This confirms that Langid has a tendency
to classify short text segments as English. But
there are also a number of errors for Latin being
mistaken for Italian, and German being mistaken
for Italian or French.

As a general remark, it should be noted that an
n-gram-based language identifier has advantages
over a lexicon-based language identifier in the face
of OCR errors. In the yearbook 1926 we observed
the rare case of a whole English sentence having
been contracted to one token Ilovetobemothered.
Still, our code-switch detector recognizes this as
an English string. 4

8 Conclusions

We have described our efforts in language iden-
tification in a multilingual corpus of Alpine texts.
As part of corpus annotation we have identified
the language of each corpus sentence amongst En-
glish, French, Standard German, Swiss German,

4. The complete sentence is : Un long Anglais, avec le-
quel, dans le hall familial, je m’essaie à échanger laborieu-
sement quelques impressions à ce sujet, me dit :�I love to be
mothered.�
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Italian and Romansh. Furthermore we have de-
veloped an algorithm to identify intra-sentential
code-switching by analyzing sentence parts in
quotation marks that contain “unknown” lemmas.

We have shown that token sequences that
amount to 15 or more characters can be judged by
a state-of-the-art language identifier and will result
in 78% correctly labeled code-switches. Another
14% are code-switches but with a language dif-
ferent from the auto-assigned language. Only 8%
are not code-switches at all.

There are many ways to continue and extend
this research. We have not included language iden-
tification for Swiss German nor for Romansh in
the intra-sentential code-switch experiments re-
ported in this paper. We will train language models
for these two languages and add them to Langid
to check the impact on the recognition accuracy.
Since code-switches into Romansh are rare, and
since Romansh can easily be confused with Ita-
lian, it is questionable whether the addition of this
language model will have a positive influence.

We have used the “general-purpose” language
identifier Langid in these experiments. It will be
interesting to investigate language identifiers that
are optimized for short text fragments as discus-
sed by Vatanen et al. (2010). Given the relati-
vely high number of short quotations (31%) that
contain code-switches, recall could improve consi-
derably.

In this paper we have focused solely on code-
switching candidates that are triggered by pairs of
quotation marks. In order to increase the recall we
will certainly enlarge the set of triggers to other in-
dicators such as parentheses or commas. We have
briefly looked at parentheses as trigger symbols
and found them clearly less productive than quo-
tation marks. To also find code-switches that have
no overt marker remains the ultimate goal.

Finally, we will exploit the parallel parts of our
corpus. If a sentence in German contains a French
segment, then it is likely that this French segment
occurs verbatim in the parallel French sentence.
Based on sentence and word alignment we will
search for identical phrases in both language ver-
sions. We hope that this will lead to high accuracy
code-switch data that we can use as training mate-
rial for machine learning experiments.
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Abstract

This paper presents our latest investiga-
tions of the jointly trained maximum en-
tropy and recurrent neural network lan-
guage models for Code-Switching speech.
First, we explore extensively the integra-
tion of part-of-speech tags and language
identifier information in recurrent neu-
ral network language models for Code-
Switching. Second, the importance of
the maximum entropy model is demon-
strated along with a various of experi-
mental results. Finally, we propose to
adapt the recurrent neural network lan-
guage model to different Code-Switching
behaviors and use them to generate artifi-
cial Code-Switching text data.

1 Introduction

The term Code-Switching (CS) denotes speech
which contains more than one language. Speakers
switch their language while they are talking. This
phenomenon appears very often in multilingual
communities, such as in India, Hong Kong or Sin-
gapore. Furthermore, it increasingly occurs in for-
mer monolingual cultures due to the strong growth
of globalization. In many contexts and domains,
speakers switch more often between their native
language and English within their utterances than
in the past. This is a challenge for speech recog-
nition systems which are typically monolingual.
While there have been promising approaches to
handle Code-Switching in the field of acoustic
modeling, language modeling is still a great chal-
lenge. The main reason is a shortage of training
data. Whereas about 50h of training data might
be sufficient for the estimation of acoustic mod-
els, the transcriptions of these data are not enough
to build reliable language models. In this paper,
we focus on exploring and improving the language

model for Code-switching speech and as a result
improve the automatic speech recognition (ASR)
system on Code-Switching speech.

The main contribution of the paper is the exten-
sive investigation of jointly trained maximum en-
tropy (ME) and recurrent neural language models
(RNN LMs) for Code-Switching speech. We re-
visit the integration of part-of-speech (POS) tags
and language identifier (LID) information in recur-
rent neural network language models and the im-
pact of maximum entropy on the language model
performance. As follow-up to our previous work
in (Adel, Vu et al., 2013), here we investigate
whether a recurrent neural network alone without
using ME is a suitable model for Code-Switching
speech. Afterwards, to directly use the RNN LM
in the decoding process of an ASR system, we
convert the RNN LM into the n-gram language
model using the text generation approach (Deoras
et al., 2011; Adel et al., 2014); Furthermore moti-
vated by the fact that Code-Switching is speaker
dependent (Auer, 1999b; Vu et al., 2013), we
first adapt the recurrent neural network language
model to different Code-Switching behaviors and
then generate artificial Code-Switching text data.
This allows us to train an accurate n-gram model
which can be used directly during decoding to im-
prove ASR performance.

The paper is organized as follows: Section 2
gives a short overview of related works. In Sec-
tion 3, we describe the jointly trained maximum
entropy and recurrent neural network language
models and their extension for Code-Switching
speech. Section 4 gives a short description of the
SEAME corpus. In Section 5, we summarize the
most important experiments and results. The study
is concluded in Section 6 with a summary.

2 Related Work

This section gives a brief introduction about the
related research regarding Code-Switching and re-
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current language models.
In (Muysken, 2000; Poplack, 1978; Bokamba,
1989), the authors observed that code switches
occur at positions in an utterance following syn-
tactical rules of the involved languages. Code-
Switching can be regarded as a speaker depen-
dent phenomenon (Auer, 1999b; Vu et al., 2013).
However, several particular Code-Switching pat-
terns are shared across speakers (Poplack, 1980).
Furthermore, part-of-speech tags might be useful
features to predict Code-Switching points. The
authors of (Solorio et al., 2008b; Solorio et al.,
2008a) investigate several linguistic features, such
as word form, LID, POS tags or the position of
the word relative to the phrase for Code-Switching
prediction. Their best result is obtained by com-
bining all those features. (Chan et al., 2006)
compare four different kinds of n-gram langua-
ge models to predict Code-Switching. They dis-
cover that clustering all foreign words into their
POS classes leads to the best performance. In (Li
et al., 2012; Li et al., 2013), the authors propose
to integrate the equivalence constraint into lan-
guage modeling for Mandarin and English Code-
Switching speech recorded in Hong Kong.

In the last years, neural networks have been
used for a variety of tasks, including language
modeling (Mikolov et al., 2010). Recurrent neu-
ral networks are able to handle long-term contexts
since the input vector does not only contain the
current word but also the previous hidden layer.
It is shown that these networks outperform tradi-
tional language models, such as n-grams which
only contain very limited histories. In (Mikolov
et al., 2011a), the network is extended by factoriz-
ing the output layer into classes to accelerate the
training and testing processes. The input layer
can be augmented to model features, such as POS
tags (Shi et al., 2011; Adel, Vu et al., 2013). Fur-
thermore, artificial text can be automatically gen-
erated using recurrent neural networks to enlarge
the amount of training data (Deoras et al., 2011;
Adel et al., 2014).

3 Joint maximum entropy and recurrent
neural networks language models for
Code-Switching

3.1 Recurrent neural network language
models

The idea of RNN LMs is illustrated in Figure 1.
Vector w(t) forms the input of the recurrent neu-

Figure 1: RNN language model

ral network. It represents the current word using
1-of-N coding. Thus, its dimension equals the
size of the vocabulary. Vector s(t) contains the
state of the network - ’hidden layer’. The network
is trained using back-propagation through time
(BPTT), an extension of the back-propagation
algorithm for recurrent neural networks. With
BPTT, the error is propagated through recurrent
connections back in time for a specific number of
time steps t. Hence, the network is able to capture
a longer history than a traditional n-gram LM. The
matrices U , V and W contain the weights for the
connections between the layers. These weights are
learned during the training phase.

To accelerate the training process, (Mikolov et
al., 2011a) factorized the output layer into classes
based on simple frequency binning. Every word
belongs to exactly one class. Vector c(t) contains
the probabilities for each class and vector w(t)
provides the probabilities for each word given its
class. Hence, the probability P (wi|history) is
computed as shown in equation 1.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (1)

Furthermore in (Mikolov et al., 2011b), the au-
thors proposed to jointly train the RNN with ME
- RMM-ME - to improve the language model and
also ASR performance. The ME can be seen as
a weight matrix which directly connects the in-
put with the output layer as well as the input with
the class layer. This weight matrix can be trained
jointly with the recurrent neural network. “Direct-
order” and “direct connection” are the two impor-
tant parameters which define the length of history
and the number of the trained connections.
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3.2 Code-Switching language models

To adapt RNN LMs to the Code-Switching task,
(Adel, Vu et al., 2013) analyzed the SEAME cor-
pus and observed that there are words and POS
tags which might have a high potential to predict
Code-Switching points. Therefore, it has been
proposed to integrate the POS and LID informa-
tion into the RNN LM. The idea is to factorize
the output layer into classes which provide lan-
guage information. By doing that, it is intended
to not only predict the next word but also the
next language. Hence according to equation 1, the
probability of the next language is computed first
and then the probability of each word given the
language. In that work, four classes were used:
English, Mandarin, other languages and particles.
Moreover, a vector f(t) which contains the POS
information is added to the input layer. This vec-
tor provides the corresponding POS of the current
word. Thus, not only the current word is activated
but also its features. Since the POS tags are in-
tegrated into the input layer, they are also propa-
gated into the hidden layer and back-propagated
into its history s(t). Hence, not only the previous
features are stored in the history but also features
from several time steps in the past.

In addition to that previous work, the experi-
ments in this paper aim to explore the source of
the improvements observed in (Adel, Vu et al.,
2013). We now clearly distinguish between the
impacts due to the long but unordered history of
the RNN and the effects of the maximum entropy
model which also captures information about the
most recent word and POS tag in the history.

4 SEAME corpus

To conduct research on Code-Switching speech
we use the SEAME corpus (South East Asia
Mandarin-English). It is a conversational
Mandarin-English Code-Switching speech corpus
recorded by (D.C. Lyu et al., 2011). Originally, it
was used for the research project “Code-Switch”
which was jointly performed by Nanyang Tech-
nological University (NTU) and Karlsruhe Insti-
tute of Technology (KIT) from 2009 until 2012.
The corpus contains 63 hours of audio data which
has been recorded and manually transcribed in
Singapore and Malaysia. The recordings consist
of spontaneously spoken interviews and conver-
sations. The words can be divided into four lan-
guage categories: English words (34.3% of all to-

kens), Mandarin words (58.6%), particles (Singa-
porean and Malayan discourse particles, 6.8% of
all tokens) and others (other languages, 0.4% of
all tokens). In total, the corpus contains 9,210
unique English and 7,471 unique Mandarin words.
The Mandarin character sequences have been seg-
mented into words manually. The language dis-
tribution shows that the corpus does not contain a
clearly predominant language. Furthermore, the
number of Code-Switching points is quite high:
On average, there are 2.6 switches between Man-
darin and English per utterance. Additionally, the
duration of the monolingual segments is rather
short: More than 82% of the English segments and
73% of the Mandarin segments last less than one
second. The average duration of English and Man-
darin segments is only 0.67 seconds and 0.81 sec-
onds, respectively. This corresponds to an average
length of monolingual segments of 1.8 words in
English and 3.6 words in Mandarin.

For the task of language modeling and speech
recognition, the corpus has been divided into three
disjoint sets: training, development and evaluation
set. The data is assigned to the three different sets
based on the following criteria: a balanced distri-
bution of gender, speaking style, ratio of Singa-
porean and Malaysian speakers, ratio of the four
language categories, and the duration in each set.
Table 1 lists the statistics of the SEAME corpus.

Training Dev Eval
# Speakers 139 8 8
Duration(hours) 59.2 2.1 1.5
# Utterances 48,040 1,943 1,029
# Words 575,641 23,293 11,541

Table 1: Statistics of the SEAME corpus

5 Experiments and Results

This section presents all the experiments and re-
sults regarding language models and ASR on the
development and the evaluation set of the SEAME
corpus. However, the parameters were tuned only
on the development set.

5.1 LM experiments
5.1.1 Baseline n-gram
The n-gram language model served as the baseline
in this work. We used the SRI language model
toolkit (Stolcke, 2002) to build the CS 3-gram
baseline from the SEAME training transcriptions
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containing all words of the transcriptions. Modi-
fied Kneser-Ney smoothing (Rosenfeld, 2000) was
applied. In total, the vocabulary size is around
16k words. The perplexities (PPLs) are 268.4 and
282.9 on the development and evaluation set re-
spectively.

5.1.2 Exploration of ME and of the
integration of POS and LID in RNN

To investigate the effect of POS and LID integra-
tion into the RNN LM and the importance of the
ME, different RNN LMs were trained.

The first experiment aims at investigating the
importance of using LID information for output
layer factorization. All the results are summarized
in table 2. The first RNNLM was trained with a
hidden layer of 50 nodes and without using output
factorization and ME. The PPLs were 250.8 and
301.1 on the development and evaluation set, re-
spectively. We observed some gains in terms of
PPL on the development set but not on the eval-
uation set compared to the n-gram LM. Even us-
ing ME and factorizing the output layer into four
classes based on frequency binning (fb), the same
trend could be noticed - only the PPL on the devel-
opment set was improved. Four classes were used
to have a fair comparison with the output factor-
ization with LID. However after including the LID
information into the output layer, the PPLs were
improved on both data sets. On top of that, using
ME provides some additional gains. The results
indicate that LID is a useful information source
for the Code-Switching task. Furthermore, the im-
provements are independent of the application of
ME.

Model Dev Eval
CS 3-gram 268.4 282.9
RNN LM 250.8 301.1
RNN-ME LM 246.6 287.9
RNN LM with fb 246.0 287.3
RNN-ME LM with fb 256.0 294.0
RNN LM with LID 241.5 274.4
RNN-ME LM with LID 237.9 269.3

Table 2: Effect of output layer factorization

In the second experiment we investigated the
use of POS information and the effect of the ME.
The results in Table 3 show that an integration of
POS without ME did not give any further improve-
ment compared to RNN LM. The reason could lie
in the fact that a RNN can capture a long history

but not the information of the word order. Note
that in the syntactic context, the word order is one
of the most important information. However us-
ing ME allows using the POS of the previous time
step to predict the next language and also the next
word, the PPL was improved significantly on de-
velopment and evaluation set. These results reveal
that POS is a reasonable trigger event which can
be used to support Code-Switching prediction.

Model Dev Eval
CS 3-gram 268.4 282.9
RNN LM 250.8 301.1
RNN-ME LM 246.6 287.9
RNN LM with POS 250.6 298.3
RNN-ME LM with POS 233.5 268.0

Table 3: Effect of ME on the POS integration into
the input layer

Finally, we trained an LM by integrating the
POS tags and factorizing the output layer with LID
information. Again without applying ME, we ob-
served that POS information is not helpful to im-
prove the RNN LM. Using the ME provides a big
gain in terms of PPL on both data sets. We ob-
tained a PPL of 219.8 and 239.2 on the develop-
ment and evaluation set respectively.

Model Dev Eval
CS 3-gram 268.4 282.9
RNN LM 250.8 301.1
RNN-ME LM 246.6 287.9
RNN LM with POS + LID 243.9 277.1
RNN-ME LM with POS+ LID 219.8 239.2

Table 4: Effect of ME on the integration of POS
and the output layer factorization using LID

5.1.3 Training parameters
Moreover, we investigated the effect of different
parameters, such as the backpropagation through
time (BPTT) step, the direct connection order and
the amount of direct connections on the perfor-
mance of the RNN-ME LMs. Therefore, different
LMs were trained with varying values for these
parameters. For each parameter change, the re-
maining parameters were fixed to the most suitable
value which has been found so far.

First, we varied the BPTT step from 1 to 5. The
BPTT step defines the length of the history which
is incorporated to update the weight matrix of the
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RNN. The larger the BPTT step is, the longer is the
history which is used for learning. Table 5 shows
the perplexities on the SEAME development and
evaluation sets with different BPTT steps. The
results indicate that increasing BPTT might im-
prove the PPL. The best PPL can be obtained with
a BPTT step of 4. The big loss in terms of PPL
by using a BPTT step of 5 indicates that too long
histories might hurt the language model perfor-
mance. Another reason might be the limitation of
the training data.

BPTT 1 2 3 4 5
Dev 244.7 224.6 222.8 219.8 266.8
Eval 281.1 241.4 242.8 239.2 284.5

Table 5: Effect of the BPTT step

It has been shown in the previous section, that
ME is very important to improve the PPL espe-
cially for the Code-Switching task, we also trained
several RNN-ME LMs with various values for “di-
rect order” and “direct connection”. Table 6 and
7 summarize the PPL on the SEAME develop-
ment and evaluation set. The results reveal that
the larger the direct order is, the lower is the PPL.
We observed consistent PPL improvement by in-
creasing the direct order. However, the gain seems
to be saturated after a direct order of 3 or 4. In this
paper, we choose to use a direct order of 4 to train
the final model.

Direct order 1 2 3 4
Dev 238.6 231.7 220.5 219.8
Eval 271.8 261.4 240.7 239.2

Table 6: Effect of the direct order

Since the “direct order” is related to the length
of the context, the size of the “direct connection” is
a trade off between the size of the language model
and also the amount of the training data. Higher
“direct connection” leads to a larger model and
might improve the PPL if the amount of training
data is enough to train all the direct connection
weights. The results with four different data points
(50M, 100M, 150M and 200M) show that the best
model can be obtained on SEAME data set by us-
ing 100M of direct connection.

5.1.4 Artificial Code-Switching text
generation using RNN

The RNN LM demonstrates a great improvement
over the traditional n-gram language model. How-

#Connection 50M 100M 150M 200M
Dev 226.2 219.8 224.7 224.6
Eval 244.7 239.2 243.7 242.0

Table 7: Effect of the number of direct connections

ever, it is inefficient to use the RNN LM directly
in the decoding process of an ASR system. In or-
der to convert the RNN into a n-gram language
model, a text generation method which was pro-
posed in (Deoras et al., 2011) can be applied.
Moreover, it allows to generate more training data
which might be useful to improve the data sparsity
of the language modeling task for Code-Switching
speech. In (Deoras et al., 2011), the authors ap-
plied the Gibb sampling method to generate artifi-
cial text based on the probability distribution pro-
vided by the RNNs. We applied that technique
in (Adel et al., 2014) to generate Code-Switching
data and were able to improve the PPL and ASR
performance on CS speech. In addition to that pre-
vious work, we now propose to use several Code-
Switching attitude dependent language models in-
stead of the final best RNN LM.

Code-Switching attitude dependent language
modeling Since POS tags might have a potential
to predict Code-Switch points, (Vu et al., 2013)
performed an analysis of these trigger POS tags
on a speaker level. The CS rate for each tag was
computed for each speaker. Afterwards, we calcu-
lated the minimum, maximum and mean values as
well as standard deviations. We observed that the
spread between minimum and maximum values is
quite high for most of the tags. It indicates that al-
though POS information may trigger a CS event,
it is rather speaker dependent.

Motivated by this observation, we performed k-
mean clustering of the training text into three dif-
ferent portions of text data which describe differ-
ent Code-Switching behaviors (Vu et al., 2013).
Afterwards, the LM was adapted with each text
portion to obtain Code-Switching attitude depen-
dent language models. By using these models, we
could improve both PPL and ASR performance for
each speaker.

Artificial text generation To generate artificial
text, we first adapted the best RNN-ME LM de-
scribed in the previous section to three different
Code-Switching attitudes. Afterwards, we gen-
erated three different text corpora based on these
specific Code-Switching attitudes. Each corpus
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contains 100M tokens. We applied the SRILM
toolkit (Stolcke, 2002) to train n-gram language
model and interpolated them linearly with the
weight = 1

3 . Table 8 shows the perplexity of the
resulting n-gram models on the SEAME develop-
ment and evaluation set. To make a comparison,
we also used the unadapted best RNN-ME LM to
generate two different texts, one with 300M to-
kens and another one with 235M tokens (Adel et
al., 2014). The results show that the n-gram LMs
trained with only the artificial text data can not
outperform the baseline CS 3-gram. However they
provide some complementary information to the
baseline CS 3-gram LM. Therefore, when we in-
terpolated them with the baseline CS 3-gram, the
PPL was improved all the cases. Furthermore by
using the Code-Switching attitude dependent lan-
guage models to generate artificial CS text data,
the PPL was slightly improved compared to using
the unadapted one. The final 3-gram model (Final
3-gram) was built by interpolating all the Code-
Switching attitude dependent 3-gram and the base-
line CS 3-gram. It has a PPL of 249.3 and 266.9
on the development set and evaluation set.

Models Dev Eval
CS 3-gram 268.4 282.9
300M words text 391.3 459.5
+ CS 3-gram 250.0 270.9
235M words text 385.1 454.6
+ CS 3-gram 249.5 270.5
100M words text I 425.4 514.4
+ CS 3-gram 251.4 274.5
100M words text II 391.8 421.6
+ CS 3-gram 251.6 266.4
100M words text III 390.3 428.1
+ CS 3-gram 250.6 266.9
Interpolation of I, II and III 377.5 416.1
+ CS 3-gram (Final n-gram) 249.3 266.9
RNN-ME LM + POS + LID 219.8 239.2

Table 8: PPL of the N-gram models trained with
artificial text data

5.2 ASR experiments

For the ASR experiments, we applied BioKIT, a
dynamic one-pass decoder (Telaar et al., 2014).
The acoustic model is speaker independent and
has been trained with all the training data. To ex-
tract the features, we first trained a multilayer per-
ceptron (MLP) with a small hidden layer with 40

nodes. The output of this hidden layer is called
bottle neck features and is used to train the acous-
tic model. The MLP has been initialized with a
multilingual multilayer perceptron as described in
(Vu et al., 2012). The phone set contains English
and Mandarin phones, filler models for continu-
ous speech (+noise+, +breath+, +laugh+) and an
additional phone +particle+ for Singaporean and
Malayan particles. The acoustic model applied
a fully-continuous 3-state left-to-right HMM. The
emission probabilities were modeled with Gaus-
sian mixture models. We used a context dependent
acoustic model with 3,500 quintphones. Merge-
and-split training was applied followed by six it-
erations of Viterbi training. To obtain a dictio-
nary, the CMU English (CMU Dictionary, 2014)
and Mandarin (Hsiao et al., 2008) pronunciation
dictionaries were merged into one bilingual pro-
nunciation dictionary. Additionally, several rules
from (Chen et al., 2010) were applied which gen-
erate pronunciation variants for Singaporean En-
glish.

As a performance measure for decoding Code-
Switching speech, we used the mixed error rate
(MER) which applies word error rates to En-
glish and character error rates to Mandarin seg-
ments (Vu et al., 2012). With character error
rates for Mandarin, the performance can be com-
pared across different word segmentations. Ta-
ble 9 shows the results of the baseline CS 3-gram
LM, the 3-gram LM trained with 235M artificial
words interpolated with CS 3-gram LM and the fi-
nal 3-gram LM described in the previous section.
Compared to the baseline system, we are able to
improve the MER by up to 3% relative. Further-
more, a very small gain can be observed by using
the Code-Switching attitude dependent language
model compared to the unadapted best RNN-ME
LM.

Model Dev Eval
CS 3-gram 40.0% 34.3%
235M words text + CS-3gram 39.4% 33.4%
Final 3-gram 39.2% 33.3%

Table 9: ASR results on SEAME data

6 Conclusion

This paper presents an extensive investigation of
the impact of maximum entropy in recurrent neu-
ral network language models for Code-Switching
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speech. The experimental results reveal that fac-
torization of the output layer of the RNN us-
ing LID always improved the PPL independent
whether the ME is used. However, the integra-
tion of the POS tags into the input layer only im-
proved the PPL in combination with ME. The best
LM can be obtained by jointly training the ME
and the RNN LM with POS integration and fac-
torization using LID. Moreover, using the RNN-
ME LM allows generating artificial CS text data
and therefore training an n-gram LM which car-
ries the information of the RNN-ME LM. This can
be directly used during decoding to improve ASR
performance on Code-Switching speech. On the
SEAME development and evaluation set, we ob-
tained an improvement of up to 18% relative in
terms of PPL and 3% relative in terms of MER.
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Abstract

Immigrant communities host multilingual
speakers who switch across languages
and cultures in their daily communication
practices. Although there are in-depth
linguistic descriptions of code-switching
across different multilingual communica-
tion settings, there is a need for au-
tomatic prediction of code-switching in
large datasets. We use emoticons and
multi-word expressions as novel features
to predict code-switching in a large online
discussion forum for the Turkish-Dutch
immigrant community in the Netherlands.
Our results indicate that multi-word ex-
pressions are powerful features to predict
code-switching.

1 Introduction

Multilingualism is the norm rather than an ex-
ception in face-to-face and online communica-
tion for millions of speakers around the world
(Auer and Wei, 2007). 50% of the EU popula-
tion is bilingual or multilingual (European Comis-
sion, 2012). Multilingual speakers in immigrant
communities switch across different languages
and cultures depending on the social and contex-
tual factors present in the communication envi-
ronment (Auer, 1988; Myers-Scotton, 2002; Ro-
maine, 1995; Toribio, 2002; Bullock and Toribio,
2009). Example (1) illustrates Turkish-Dutch
code-switching in a post about video games in an
online discussion forum for the Turkish immigrant
community in the Netherlands.

Example (1)
user1: <dutch>vette spellllllllll </dutch>..
<turkish>bir girdimmi cikamiyomm ..
yendikce yenesi geliyo insanin</turkish>
Translation: <dutch> awesome gameeeee
</dutch>.. <turkish>once you are in it, it is
hard to leave .. the more you win, the more
you want to win</turkish>

Mixing two or more languages is not a random
process. There are in-depth linguistic descriptions
of code-switching across different multilingual
contexts (Poplack, 1980; Silva-Corvalán, 1994;
Owens and Hassan, 2013). Although these studies
provide invaluable insights about code-switching
from a variety of aspects, there is a growing need
for computational analysis of code-switching in
large datasets (e.g. social media) where man-
ual analysis is not feasible. In immigrant set-
tings, multilingual/bilingual speakers switch be-
tween minority (e.g. Turkish) and majority (e.g.
Dutch) languages. Code-switching marks multi-
lingual, multi-cultural (Luna et al., 2008; Gros-
jean, 2014) and ethnic identities (De Fina, 2007)
of the speakers. By predicting code-switching
patterns in Turkish-Dutch social media data, we
aim to raise consciousness about mixed language
communication patterns in immigrant communi-
ties. Our study is innovative in the following ways:

• We performed experiments on the longest
and largest bilingual dataset analyzed so far.

• We are the first to predict code-switching in
social media data which allow us to investi-
gate features such as emoticons.

• We are the first to exploit multi-word expres-
sions to predict code-switching.

• We use automatic language identification at
the word level to create our dataset and fea-
tures that capture previous language choices.

The rest of this paper is structured as follows:
we discuss related work on code-switching and
multilingualism in Section 2, our dataset in Sec-
tion 3, a qualitative analysis in Section 4, our ex-
perimental setup and features in Section 5, our re-
sults in Section 6 and our conclusion in Section
7.
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2 Related Work

Code-switching in sociolinguistics There is
rarely any consensus on the terminology about
mixed language use. Wei (1998) considers al-
ternations between languages at or above clause
levels as code-mixing. Romaine (1995) refers to
both inter-sentential and intra-sentential switches
as code-switching. Bilingual speakers may shift
from one language to another entirely (Poplack et
al., 1988) or they mix languages partially within
the single speech (Gumperz, 1982). In this study,
we focus on code-switching within the same post
in an online discussion forum used by Turkish-
Dutch bilinguals.

There are different theoretical models which
support (Myers-Scotton, 2002; Poplack, 1980) or
reject (MacSwan, 2005; Thomason and Kaufman,
2001) linguistic constraints on code-switching.
According to (Thomason and Kaufman, 2001;
Gardner-Chloros and Edwards, 2004) linguistic
factors are mostly unpredictable since social fac-
tors govern the multilingual environments in most
cases. Bhatt and Bolonyai (2011) have an exten-
sive study on socio-cognitive factors that lead to
code-switching across different multilingual com-
munities.

Although multilingual communication has been
widely studied through spoken data analyses, re-
search on online communication is relatively re-
cent. In terms of linguistic factors Cárdenas-
Claros and Isharyanti (2009) report differences
between Indonesian-English and Spanish-English
speakers in their amount of code-switching on
MSN (an instant messaging client). Durham
(2003) finds a tendency to switch to English over
time in an online multilingual (German, French,
Italian) discussion forum in Switzerland.

The media (e.g. IRC, Usenet, email, online
discussions) used for multilingual conversations
influence the amount of code-switching as well
(Paolillo, 2001; Hinrichs, 2006). Androutsopou-
los and Hinnenkamp (2001), Tsaliki (2003) and
Hinnenkamp (2008) have done qualitative anal-
yses of switch patterns across German-Greek-
Turkish, Greek-English and Turkish-German in
online environments respectively.

In terms of social factors, a number of studies
have investigated the link between topic and lan-
guage choices qualitatively (Ho, 2007; Androut-
sopoulos, 2007; Tang et al., 2011). These stud-
ies share the similar conclusion that multilingual

speakers use minority languages to discuss topics
related to their ethnic identity and reinforcing inti-
macy and self-disclosure (e.g. homeland, cultural
traditions, joke telling) whereas they use the ma-
jority language for sports, education, world poli-
tics, science and technology.

Computational approaches to code-switching
Recently, an increasing number of research within
NLP has focused on dealing with multilingual
documents. For example, corpora with multilin-
gual documents have been created to support stud-
ies on code-switching (e.g. Cotterell et al. (2014))
To enable the automatic processing and analysis
of documents with mixed languages, there is a
shift in focus toward language identification at the
word level (King and Abney, 2013; Nguyen and
Doğruöz, 2013; Lui et al., 2014). Most closely re-
lated to our work is the study by Solorio and Liu
(2008) who predict code-switching in recorded
English-Spanish conversations. Compared to their
work, we use a large-scale social media dataset
that enables us to explore novel features.

The task most closely related to automatic pre-
diction of code-switching is automatic language
identification (King and Abney, 2013; Nguyen and
Doğruöz, 2013; Lui et al., 2014). While automatic
language detection uses the words to identify the
language, automatic prediction of code-switching
involves predicting whether the language of the
next word is the same without having access to the
next word itself.

Language practices of the Turkish community
in the Netherlands Turkish has been in con-
tact with Dutch due to labor immigration since
the 1960s and the Turkish community is the
largest minority group (2% of the whole popula-
tion) in the Netherlands (Centraal Bureau voor de
Statistiek, 2013). In addition to their Dutch flu-
ency, second and third generations are also fluent
in Turkish through speaking it within the family
and community, regular family visits to Turkey
and watching Turkish TV through satellite dishes.
These speakers grow up speaking both languages
simultaneously rather than learning one language
after the other (De Houwer, 2009). In addition
to constant switches between Turkish and Dutch,
there are also literally translated Dutch multi-word
expressions (Doğruöz and Backus, 2007; Doğruöz
and Backus, 2009). Due to the religious back-
grounds of the Turkish-Dutch community, Arabic
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words and phrases (e.g. greetings) are part of daily
communication. In addition, English words and
phrases are used both in Dutch and Turkish due to
the exposure to American and British media.

Although the necessity of studying immigrant
languages in Dutch online environments has been
voiced earlier (Dorleijn and Nortier, 2012), the
current study is the first to investigate mixed lan-
guage communication patterns of Turkish-Dutch
bilinguals in online environments.

3 Dataset

Our data comes from a large online forum
(Hababam) used by Turkish-Dutch speakers. The
forum is active since 2000 and contains 28 sub-
forums on a variety of topics (e.g. sports, poli-
tics, education). Each subforum consists of mul-
tiple threads which start with a thread title (e.g. a
statement or question) posted by a moderator or
user. The users are Turkish-Dutch bilinguals who
reside in the Netherlands. Although Dutch and
Turkish are used dominantly in the forum, English
(e.g. fixed expressions) and Arabic (e.g. prayers)
are occasionally used (less than 1%) as well. We
collected the data between June 2005 and October
2012 by crawling the forum. Statistics of our data
are shown in Table 1.

Frequency
Number of posts 4,519,869
Number of users 14,923

Number of threads 113,517
Number of subforums 29

Table 1: Dataset Statistics

The subforums Chit-Chat (1,671,436), Turkish
youth & love (447,436), and Turkish news & up-
dates (418,135) have the highest post frequency
whereas Columns (4727), Science & Philosophy
(5083) and Other Beliefs (6914) have the lowest
post frequency.

An automatic language identification tagger is
used to label the language of the words in posts
and titles of the threads. The tagger distinguishes
between Turkish and Dutch using logistic regres-
sion (Nguyen and Doğruöz, 2013) and achieves
a word accuracy of approximately 97%. We use
the language labels to train our classifier (since
given the labels we can determine whether there
is a switch or not), and to evaluate our model.

4 Types of Code-Switching

In this section, we provide a qualitative analysis of
code-switching in the online forum. We differen-
tiate between two types of code-switching: code-
switching across posts and code-switching within
the same post.

4.1 Code-switching across posts

Within the same discussion thread, users react
to posts of other users in different languages.
In example (2), user 1 posts in Dutch to tease
User 2. User 2 reacts to this message with a
humorous idiomatic expression in Turkish (i.e.
[adim cikmis] “I made a name”) to indirectly
emphasize that there is no reason for her to defend
herself since she has already become famous as
the perfect person in the online community. This
type of humorous switch has also been observed
for Greek-English code-switching in face-to-face
communication (Gardner-Chloros and Finnis,
2003). The text is written with Dutch orthography
instead of conventional Turkish orthography (i.e.
[adım çıkmış]). It is probably the case that the user
has a Dutch keyboard without Turkish characters.
However, writing with non-Turkish characters in
online environments is also becoming popular
among monolingual Turkish users from Turkey.

Example (2)
User1: <dutch> je hoefde niet gelijk in de
verdediging te schieten hoor </dutch> :P
Tra: “you do not need to be immediately
defensive dear”

User2: <turkish> zaten adim cikmis
mukemmel sahane kusursuz insana, bi de
yine cikmasin </turkish> :(
Tra: “I already have established a name as a
great amazing perfect person, I do not need
it to spread around once more”

Example (3) is taken from a thread about break-
fast traditions. The users have posted what they
had for breakfast that day. The first user talks
about his breakfast in Turkish and describes the
culture specific food items (e.g. borek “Turkish
pastry”) prepared by his mother. The second user
describes a typical Dutch breakfast and therefore
switches to Dutch.

Example (3)
User1: <turkish>annemin peynirli borekleri
ve cay</turkish>
Tra: “the cheese pastries of my mom and
tea”
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User2: <dutch>Twee sneetjes geroost-
erd bruin brood met kipfilet en een glas
thee.</dutch>
Tra: “Two pieces of roasted brown bread with
chicken filet and a cup of tea”

4.2 Code-switching within the same post
In addition to code-switching across posts, we en-
countered code-switching within the same post of
a user as well. Manual annotation of a subset of
the posts in Nguyen and Doğruöz (2013), suggests
that less than 20% of the posts contain a switch.
Example (4) is taken from a thread about Mother’s
Day and illustrates an intra-sentential switch. The
user starts the post in Dutch (vakantie boeken “to
book a vacation”) and switches to Turkish since
booking a vacation through internet sites or a
travel agency is a typical activity associated with
the Dutch culture.

Example (4)
<dutch>vakantie boeken</dutch>
<turkish> yaptim annecigimee </turkish>
Tra1:“(I) <dutch>booked a holiday</dutch>
<turkish>for my mother.</turkish>”

Example (5) is taken from a thread about Turk-
ish marriages and illustrates an inter-sentential
switch. The user is advising the other users
in Turkish to be very careful about choosing
their partners. Since most Turkish community
members prefer Turkish partners and follow
Turkish traditions for marriage, she talks about
these topics in Turkish. However, she switches
to Dutch when she talks about getting a diploma
in the Dutch school system. Similar examples of
code-switching for emphasizing different identi-
ties based on topic have been observed for other
online and face-to-face communication as well
(Androutsopoulos, 2007; Gardner-Chloros, 2009).

Example (5)
<turkish>Allah korusun yani. Kocani iyi
sec diyim=) evlilik evcilik degildir.</turkish>
<dutch>Al zou ik wanneer ik getrouwd ben
een HBO diploma op zak hebben, zou ik
hem dan denk ik niet verlaten.</dutch>
Tra:“<turkish> May God protect you.
Choose your husband carefully. Marriage is
not a game </turkish> <dutch> Even if I
am married and have a university diploma, I
don’t think I will leave him </dutch>”

Code-switching through greetings, wishes and
formulaic expressions are commonly observed

1It is possible to drop the subject pronoun in Turkish. As
typical in bilingual speech, an additional Turkish verb yap-
mak follows the Dutch verb boeken “to book”.

in bilingual face-to-face communication and on-
line immigrant forums as well (Androutsopoulos,
2007; Gardner-Chloros, 2009).

5 Experimental Setup

The focus of this paper is on code-switching
within the same post. We discuss the setup and
features of our experiment in this section.

5.1 Goal

We cast the prediction of the code-switch point
within the post as a binary classification problem.
We define the i-th token of the post as an instance.
If the i + 1th token is in a different language, the
label is 1. Otherwise, the label is 0.

Obtaining language labels In order to label
each token of a post, we rely on the labels ob-
tained using automatic language identification at
the word level (see Section 3). This process may
not be the most accurate way of labeling each to-
ken of a post at a large scale. One particular arti-
fact of this procedure is that an automatic tagger
may falsely tag the language of a token in longer
posts. As a result, some lengthy posts might ap-
pear to have one or more code-switches by ac-
cident. However, since the accuracy of our tag-
ger is high (approx. 97% accuracy), we expect
the amount of such spurious code-switches to be
low. For future work, we plan to experiment on a
dataset based on automatic language identification
as well as a smaller dataset using manual annota-
tion.

5.2 Creating train and test sets

Before we attempt to train a classifier on our data,
we eliminate the biases and imbalances. The ma-
jority of posts do not contain any switches. As a
consequence, the number of instances that belong
to the ‘0’ class (i.e. no code-switching occurring
after the current word) grossly outnumber the in-
stances of class ‘1’, where code-switching takes
place. In order to alleviate this class imbalance, for
all our experiments, we sample an equal amount
of instances from ‘0’ and ‘1’ classes randomly 2,
both for our training and testing data. This way
the result will not favor the ‘0’ class even if we
randomly decide on the class label for each in-
stance. The average number of training and testing

2We do 100 iterations and average the results of all these
independent samples.
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instances per iteration was 4000 and 80000 respec-
tively. By drawing 100 independent samples from
the entire dataset, we cover a reasonable portion of
the full data and do not sacrifice the balance of the
two classes, which is crucially important for the
validity of our results.

5.3 Feature selection

We use the following features (see Table 2) to in-
vestigate code-switching within a post.

5.3.1 Non-linguistic features
Emoticons Emoticons are iconic symbols that
convey emotional information along with lan-
guage use in online environments (Dresner and
Herring, 2014). Emoticons have mostly been used
in the context of sentiment analysis (e.g. Volkova
et al. (2013), Chmiel et al. (2011)). Park et al.
(2014) studied how the use of emoticons differ
across cultures in Twitter data. Panayiotou (2004)
studied how bilinguals express emotions in face-
to-face environments in different languages. We
are the first to investigate the role of emoticons as a
non-linguistic factor in predicting code-switching
on social media.

Emoticons in our data are either signified by
a special tag [smiley:smiley type] or can
appear in any of the common ASCII emoticon
forms (e.g. :), :-) etc.). In order to detect the
emoticons, we used a hand picked list of ASCII
emoticons as our dictionary, as well as a filter that
searched for the special emoticon tag. Since we
rely on an automatic language tagger, the language
label of a particular emoticon depends on its sur-
rounding tokens. If an emoticon is within a block
of text that is tagged as Turkish, then the emoticon
will automatically obtain a Turkish label (and ac-
cordingly for Dutch). For future work, we will ex-
periment with labeling emoticons differently (e.g.
introducing a third, neutral label).

To assess the strength of emoticons as predic-
tors of code-switching, we generate 4 different
features (see Table 2). These features capture
whether or not there is an emoticon at or before
the token that we want to classify as the switch
boundary between Dutch and Turkish. We record
whether there was an emoticon at token i (i.e. the
token we want to classify), token i − 1 and token
i− 2.

The last emoticon feature records whether there
is any emoticon after the current token. We note
that this feature looks ahead (after the i-th token),

and therefore cannot be implemented in a real time
system which predicts code-switching on-the-fly.
However, we included the feature for exploratory
purposes.

5.3.2 Linguistic features
Language around the switch point We also in-
vestigate whether the knowledge of the language
of a couple of tokens before the token of inter-
est, as well as the language at the token of inter-
est, hold some predictive strength. These features
correspond to #1-3 in Table 2. Generally, the lan-
guage label is binary. However, if there are no to-
kens in positions i − 2 or i − 1 for features #1
and #2, we assign a third value to represent this
non-existence. Additionally, we explore whether
a previous code-switching in a post triggers a sec-
ond code-switching later in the same post. We test
this hypothesis by recording feature #4 which rep-
resents the existence of code-switching before to-
ken i.

Single word versus multi-word switch There
is an on-going discussion in multilingualism about
the classification of switched tokens (Poplack,
2004; Poplack, 2013) and whether there are
linguistic constraints on the switches (Myers-
Scotton, 2002). In addition to switches across in-
dividual lexical tokens, multilingual speakers also
switch across multi-word expressions.

Automatic identification of multi-word expres-
sions in monolingual language use have been
widely discussed (Baldwin et al., 2003; Baldwin
and Kim, 2010) but we know little about how to
predict switch points that include multi-word ex-
pressions. We are the first to include multi-word
expressions as a feature to predict code-switching.
We are mostly inspired by (Schwartz et al., 2013)
in identifying MWEs.

More specifically, we built a corpus of 3-gram
MWEs (2,241,484 in total) and selected the most
frequent 100 MWEs. We differentiate between
two types of MWEs: Let the i-th token of a post
be the switch point. For type 1, we take 3 tokens
(all in the same language) right before the switch
token (i.e. terms i− 3, i− 2, i− 1). [Allah razi ol-
sun] “May the Lord be with you” and [met je eens]
“agree with you” are the two of the most frequent
MWEs (in Turkish and Dutch respectively).

For type 2, we take the tokens i − 2, i − 1, i
and the last token is in a different language (e.g.
[Turkse premier Recep] “Turkish prime-minister
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Table 2: Features
Feature # Feature Description

1 Language of token in position i− 2
2 Language of token in position i− 1
3 Language of token in position i (current token)
4 Was there code-switching before the current token?
5 Is there an emoticon in position i− 2?
6 Is there an emoticon in position i− 1?
7 Is there an emoticon in position i?
8 Are there any emoticons in positions after i?
9 Is the i-th token the first word of a 3-word multi-word expression?
10 Is the i-th token the second word of a 3-word multi-word expression?
11 Is the i-th token the third word of a 3-word multi-word expression?

Recep”).
The first type of MWEs captures whether an

MWE (all three words in the same language), sig-
nifies code-switching for token i or not.

The second type investigates whether there are
MWEs that “spill over” the code-switching point
(i.e. the first two tokens of an MWE are in the
same language, but the third token is in another
language). In order to get a good estimate of the
MWEs in our corpus, we count the occurrences of
all these 3-grams and keep the top scoring ones in
terms of frequency, which end up as our dictionary
of MWEs.

6 Results

To evaluate the predictive strength of our features,
we conduct experiments using a Naive Bayes clas-
sifier.

In order to measure the performance, we train
the classifiers for various combinations of the fea-
tures shown in Table 2. As we described in the pre-
vious section, we train on randomly chosen, class-
balanced parts of the data and we test on randomly
selected balanced samples (disjoint from the train-
ing set), averaging over 100 runs. For each com-
bination of features, we measure and report aver-
age precision, recall, and F1-score, with respect to
positively predicting code-switching.

Table 3 illustrates the performance of individ-
ual features used in our classifier. Features that
concern the language of the previous tokens (i.e.
features #1 & #2) seem to perform better than
chance in predicting code-switching. On the other
hand, features #3 (language of the token in posi-
tion i) and #4 (previous code-switching) have the
worst performance. In fact, the obtained classi-

Table 3: Performance of individual features
Feature # Precision Recall F1 score

1 0.6305 1 0.7733
2 0.6362 1 0.7776
3 0 0 -
4 0 0 -
5 0.704 0.2116 0.3254
6 0.7637 0.2324 0.3564
7 0.8025 0.1339 0.0954
8 0.4879 0.3214 0.3875
9 0.5324 0.7819 0.6335

10 0.5257 0.8102 0.6376
11 0.5218 0.8396 0.6436

fier always predicts no code-switching regardless
of the value of the feature. Therefore, both pre-
cision and recall are 0. Features #1 & #2 behave
differently from features #3 & #4 because #1 & #2
have ternary values (the token language, or non-
existing). This probably forces the classifiers to
produce a non-constant decision. For instance, the
model for feature #1 decides positively for code-
switching if the language label is either Turkish or
Dutch and decides negatively if the label is non-
existing.

The rest of the individual features perform sim-
ilarly but worse than #1 and #2. Therefore, it is
necessary to use a combination of features instead
of single ones.

After examining how features perform individu-
ally, we further investigate how features behave in
groups. We first group the features into homoge-
nous categories (e.g. #1-#3 focus on the language
of tokens, #5-#8 record the presence of emoticons
and #9-#11 refer to MWEs). Subsequently, we
test the performance of these categories in differ-
ent combinations, and finally measure the effect of
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Table 4: Performance of groups of features
Features Precision Recall F1 score

1-3 Language of tokens 0.6362 1 0.7777
1-4 Language + previous code-switching 0.6663 0.1312 0.6663
5-8 Emoticons 0.6638 0.397 0.2766

9-11 MWEs 0.5384 0.7476 0.626
5-11 Emoticons + MWEs 0.52 0.8718 0.6466

1-8 Language + previous code-switching + emoticons 0.6932 0.5114 0.4634
1-4, 9-11 Language + previous code-switching + MWEs 0.712 0.7297 0.7113

1-11 All 0.6847 0.8034 0.7106

using all our features for the task. Table 4 shows
the combinations of the features we used, as well
as the average precision, recall, and F1-score.

According to Table 4, the combination of the
language of the tokens (features #1-#3) and the
previous code-switching earlier in the post (fea-
tures #1-#4), and MWEs (features #9-#11) per-
form the highest in terms of precision/recall. Fea-
tures #3 and #4 have rather low performances on
their own but they yield a strong classifier in com-
bination with other features.

When we use features that record emoticons
(#5-#8) or MWEs (#9-#11) alone, the performance
of our classifier decreases. In general, MWEs out-
perform emoticons. We observe this performance
boost when we combine emoticon features with
other features (e.g. #1-#8) and with MWEs to-
gether in the same subset (#1-#4, #9-#11).

7 Conclusion

We focused on predicting code-switching points
for a mixed language online forum used by
the Turkish-Dutch immigrant community in the
Netherlands. For the first time, a long term data
set was used to investigate code-switching in so-
cial media. We are also the first to test new fea-
tures (e.g. emoticons and MWEs) to predict code-
switching and to identify the features with sig-
nificant predictive strength. For future work, we
will continue our investigation with exploring the
predictive value of these new features within the
Turkish-Dutch immigrant community as well as
others.
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Abstract

When code switching, individuals incor-
porate elements of multiple languages into
the same utterance. While code switching
has been studied extensively in formal and
spoken contexts, its behavior and preva-
lence remains unexamined in many newer
forms of electronic communication. The
present study examines code switching in
Twitter, focusing on instances where an
author writes a post in one language and
then includes a hashtag in a second lan-
guage. In the first experiment, we per-
form a large scale analysis on the lan-
guages used in millions of posts to show
that authors readily incorporate hashtags
from other languages, and in a manual
analysis of a subset the hashtags, reveal
prolific code switching, with code switch-
ing occurring for some hashtags in over
twenty languages. In the second experi-
ment, French and English posts from three
bilingual cities are analyzed for their code
switching frequency and its content.

1 Introduction

Online platforms enable individuals from a wide
variety of linguistic backgrounds to communi-
cate. When individuals share multiple languages
in common, their communication will occasion-
ally include linguistic elements from multiple lan-
guages (Nilep, 2006), a practice commonly re-
ferred to as code switching. Typically, during code
switching, the text or speech in a language retains
its syntactic and morphological constraints for that
language, rather than having text from both lan-
guages conform to one of the language’s grammat-
ical rules. This requirement enables code switch-
ing to be separated from borrowing, where foreign

words are integrated into a native language’s lexi-
con and morphology (Gumperz, 1982; Poplack et
al., 1988; Sankoff et al., 1990).

While work on code switching began with con-
versational analyses, recent work has examined
the phenomena in electronic communication, find-
ing similar evidence of code switching (Climent
et al., 2003; Lee, 2007; Paolillo, 2011). How-
ever, these investigations into code switching have
largely examined interpersonal communication or
settings where the number of participants is lim-
ited. In contrast, social media platforms such as
Twitter offer individuals the ability to write a text
that is decoupled from direct conversation but may
be read widely.

Twitter enables users to post messages with spe-
cial markers known as hashtags, which can serve
as a side channel to comment on the post itself
(Davidov et al., 2010). As a result, multilingual
authors have embraced using hashtags from lan-
guages other than the language of their post. Con-
sider the following real examples:

• Eating an apple for lunch while everyone
around me eats cheeseburgers and fries.
#yoquiero

• Jetzt gibt’s was vernünftiges zum es-
sen! #salad #turkey #lunch #healthy
#healthylifestyle #loveit

• Hasta mañana a todo mundo. Que tengan
linda noche. #MarketerosNocturnos #Mar-
ketingDigital #BlackVirs #SocialMedia

• 1% มันสำคัญมากนะ เพราะมันอาจเปลี่ยน-
จากD+ เป็น C และ B+เป็นA เกรดเฉลี่ยคง-
ดีกว่านี้อ่ะ #พลาด #เสียดาย #fail

Here, the first author posted in English with a
Spanish hashtag reflecting the author’s envious
disposition. In the second, the author comments
in German on sensible food, using multiple En-
glish hashtags to describe the meal and their atti-
tude. In the third and fourth, the authors comment
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on sleep and school, respectively, and then each
use hashtags with similar meanings in both their
native language and English.

Hashtags provide authors with a communica-
tion medium that also has broader social utility
by embedding their post within global discussion
of other posts using the same hashtag (Letierce et
al., 2010) or by becoming a part of a virtual com-
munity (Gupta et al., 2010). These social motiva-
tions resemble those seen for why individuals may
code switch, such as to assimilate into a group or
make discussions easier (Urciuoli, 1995). Twit-
ter and other hashtag-supporting platforms such as
Instagram and Facebook offer a unique setting for
code switching hashtags for two reasons: (1) po-
tential readers are disconnected from the author,
who may not know of their language fluency, and
(2) text translation is built into the platform, which
enables readers to translate a post into their na-
tive language. As such, authors may be motivated
to include a hashtag of another language to in-
crease their potential audience size or to appear as
a member of a multilingual virtual community.

Despite the prevalence of non-English tweets,
which are approaching 50% of the total volume
(Liu et al., 2014), no study has examined the
prevalence of hashtag code switching. We pro-
pose an initial study of hashtag code switching in
Twitter focusing on three central questions: (1)
for which language pairs do authors write in the
first language and then incorporate a hashtag of
the second language, (2) when tweets include a
hashtag of a different language, which instances
signal code switching behavior, and (3) the degree
to which bilingual populations code switch hash-
tags. Here, we adopt a general definition of code
switching as instances where an individual estab-
lishes a linguistic context in one language and
then includes elements (such as words) from one
or more other languages different from the first.
Two experiments are performed to answer these
questions. In the first, we test general methods to
identify which languages adopt the same hashtags
and whether those shared hashtags are examples of
code switching. In the second, we focus on three
bilingual cities to examine hashtag code switching
behavior in French and English speakers.

Our study provides three main contributions.
First, we demonstrate that hashtag code switching
is widespread in Twitter. Second, we show that
Twitter as a platform includes multiple phenom-

ena that can be falsely interpreted as code switch-
ing and therefore must be accounted for in future
analyses. Third, in a study of French and English
tweets from three cities, we find that an increased
rate of bilinguality decreases the frequency of in-
cluding hashtags from another language but in-
creases the overall rate of code switching when
such hashtags are present. Furthermore, all data
for the experiments is made publicly available.

2 Related Work

Research on code switching is long standing, with
many theories proposed for the motivations be-
hind code switching and how the two languages
interact linguistically (Poplack and Sankoff, 1984;
Myers-Scotton, 1997; Auer, 1998). Most related
to the present work are those studies examining
code switching in online communications.

Climent et al. (2003) examined the use of Span-
ish and Catalan in newsgroups, finding it occurs
2.2% and 4.4% of the Catalan and Spanish con-
texts, respectively. Lee (2007) analyzed a cor-
pus of Cantonese and English emails and ICQ
instant messages and surveyed Hong Kong users
of each form of communication. She found that
the users preferred mixed-language communica-
tion, with no user indicating that they communi-
cated in only Cantonese. Furthermore, the shorter,
more informal ICQ messages were more likely to
be code switched (99.4%) than emails (41.3%).

Paolillo (2011) measured code switching
amongs English, Hindi, and Punjabi in both
IRC and Usenet forum posts, finding similar
to Climent et al. (2003) that the shorter, more
conversational IRC posts had higher rates of
code switching. Paolillo (2011) also note that
code switching rates differed between Hindi and
Punjabi speakers.

The present work differs significantly from
these three studies in two aspects. First, we as-
sess code switching across all language commu-
nities on Twitter, rather than examining individual
groups of bilingual speakers. Second, we focus
our analysis only on the code switching of a post’s
hashtag due to its unique role in microtext (Gupta
et al., 2010), which has yet to be examined in this
context.

3 Hashtag Use in Twitter

Hashtags provide general functionality on Twit-
ter and prior works have proposed that they serve
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Name Description Examples

ANNOTATION Serves as an annotation about the author’s feelings or comments
on the content of a tweet.

#happy #fail #cute #joking
#YoloSwaggins

COMMUNITY A topical entity that links the tweet with an external community,
which is commonly topical but also includes ”team-like” groups

#music #friends #BecauseItIs-
TheCup #TeamEdward

NAMED
ENTITY

Refers to a specific entity that has a universally recognized
name.

#Glee #TeenChoiceAwards
#WorldCup2014

PLATFORM Refer to some feature or behavior specific to the Twitter plat-
form.

#followback #lasttweet #oomf

APPLICATION Generated by a third-party application, which automatically in-
cludes its hashtag in the message.

#AndroidGames #NowPlaying
#iPhone #Android

VOTING Created as a result of certain real-world phenomena asking in-
dividuals to tweet with specific hashtags as a way of voting.

#MtvHottest #iHeartAwards

ADVERTISING Promoting an item, good, or service, which can be sought out
by interested parties.

#forsale #porn

SPAM Used by adversarial parties to appear on trending lists and to
make spam accounts appear real.

#NanaLoveLingga #681team
#LORDJASONJEROME

Table 1: A taxonomy of hashtag according to their intended use.

a dual role as (1) bookmarking content with the
tag’s particular expression and (2) functioning as a
method for ad hoc community formation and dis-
cussion around a tag’s topic (Gupta et al., 2010;
Davidov et al., 2010; Yang et al., 2012). However,
the diverse user base of the Twitter platform has
given rise to additional roles for hashtags beyond
these two. For example, many popular hashtags
focus on promoting users to follow each other,1

such as #followback and #openfollow. Similarly,
contests are run on Twitter, which have individu-
als vote by posting using a specific hashtag, e.g.,
#MtvHottest.

Given hashtags’ flexible roles, some may be
used in multiple languages without being exam-
ples of code switching, such as the contest-based
or follower-promotion hashtags noted above.
Therefore, we first propose a taxonomy for clas-
sifying all types of hashtags according to their pri-
mary observed use in order to disentangle poten-
tial code switching behavior from Twitter-specific
behavior. To construct the taxonomy, two an-
notators independently reviewed several thousand
hashtags of different frequency to assess the dif-
ferences in how the tag was used in practice. Each
annotator then proposed their own taxonomy. The
final taxonomy was produced from a discussion of
differences, with both annotators initially propos-
ing highly similar taxonomies.2

1In Twitter, following denotes creating a directional social
relation from one account to another.

2We note that a small number of hashtags did not fit this
taxonomy due to their idiosyncratic use. These hashtags were
typically single-letter hashtags used when spelling out words,
e.g., “tonight is going to be #f #u #n,” or when the author has
mistakenly used punctuation, which is not included in Twit-

Table 1 shows the proposed taxonomy, contain-
ing eight broad types of hashtags. The first two
types of hashtags correspond to the main hash-
tag roles proposed in Yang et al. (2012). The
NAMED ENTITY tags also serve as method for
individuals to link their content with a specific
audience like the COMMUNITY type; however,
NAMED ENTITY tags were treated as a separate
group for the purposes of this study because the
entities typically have a common name which is
used in all languages and therefore would not be
translated; in contrast, COMMUNITY hashtags re-
fer to more general topics such as #soccer, which
may be translated, e.g., #futbol. Hashtags of the
five remaining types would likely not be observed
in instances of code switching, with such hash-
tags often being used for purposes other than inter-
personal communication.

4 Experiment 1: Popular Hashtags

Persistently popular hashtags reflect established
norms of communication on Twitter. We hypoth-
esize that these hashtags may be adopted by the
speakers of multiple languages for joining a global
discussion. Therefore, the first experiment ex-
amines the most-used hashtags over a five month
period to measure two aspects: (1) which lan-
guages adopt the hashtags of other languages and
(2) which hashtags used in multiple languages are
evidence of code switching.

ter’s definition of a hashtag, e.g., “#I’mAwesome,” which has
the hashtag #I rather than the full expression.
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4.1 Experimental Setup
Data Hashtag frequencies were calculated from
981M tweets spanning March 2014 to July 2014.
Frequencies were calculated over this five month
period in order to focus on widely-used hashtags,
rather than bursty hashtags that are popular only
for a short time, such as those studied in Huang
et al. (2010) and Lin et al. (2013). For each hash-
tag, up to 10K non-retweet posts containing that
hashtag were retained, randomly sampling from
the time period studied when more than 10K were
observed. To enable a more reliable estimate of
the language distribution, we restrict our analysis
to only those hashtags with more than 1000 posts,
for a total number of 19.4M posts for 4624 hash-
tags, with an average of 4204 posts per hashtag.

Language Identification The languages of
tweets were identified using a two-step procedure.
First, message content was filtered to remove con-
tent such as usernames, URLs, emoji, and hash-
tags. Tweets with fewer than three remaining to-
kens were excluded (e.g., a message with only
hashtags). Second, the remaining content was
processed using langid.py (Lui and Baldwin,
2012), a state of the art language identification
program that supports the diversity of languages
found on Twitter.

Determining the language of a hashtag in a gen-
eral setting for all languages is difficult due to the
presence of acronyms, abbreviations, and slang.
Therefore, we adopt a heuristic where a hashtag’s
language is set as the language used by the major-
ity of its tweets. To quantify the accuracy of this
heuristic, two annotators inspected the tweets of
200 hashtags to identify the language of the hash-
tag and for the majority of the tweets. This anal-
ysis showed that the heuristic correctly identifies
the hashtag’s language in 96.5% of the instances.

4.2 Hashtag Sharing by Languages
The adoption of a hashtag by a second language
was measured by calculating the frequency with
which tweets using a hashtag with language l1
were labeled with language l2. The noisy nature
of microtext is known to make language identifi-
cation difficult (Bergsma et al., 2012; Goldszmidt
et al., 2013) and can create spurious instances
of second-language hashtag adoption. Therefore,
we impose a minimum frequency of hashtag use
where l2 is only said to use a hashtag of l1 if at
least 20 tweets using that hashtag were labeled

Hashtag # Langs. Primary
Lang.

Type

#lastfm 39 en APPLICATION
#WaliSupitKEPO 32 id SPAM
#RenggiTampan-
DanKece

32 id SPAM

#NP 32 en APPLICATION
#Np 32 en APPLICATION
#MTVHottest 31 en VOTING
#SidikLoveTini 30 id SPAM
#np 30 en APPLICATION
#GER 29 en NAMED ENTITY
#User Indonesia 29 id APPLICATION
#Soccer 29 en COMMUNITY
#RobotKepo 29 id APPLICATION
#KeePO 27 id APPLICATION
#NowPlaying 28 en APPLICATION
#Hot 28 en ADVERTISEMENT

Table 3: The hashtags associated with the most
number of languages having at least 20 tweets us-
ing that hashtag

with l2. To quantify the accuracy of our hashtag
adoption measure, two annotators inspected the
second-language tweets of 200 hashtags, sampled
from the data and representing 40 language pair
combinations; this analysis showed that with the
filtering the assertion that at least one author from
language l1 used a hashtag of language l2 was cor-
rect in 67% of the instances.

Table 2 shows the frequency with which au-
thors using the 15 most-commonly observed lan-
guages (shown as columns using their ISO 639-1
language codes) adopt a hashtag from another of
the most-common languages (shown as rows), re-
vealing widespread sharing of hashtags between
languages. English hashtags are the most fre-
quently used in other languages, likely due to it be-
ing the most common language in Twitter. How-
ever, other languages’ hashtags are also adopted,
with Spanish, Japanese, and Indonesian being the
most common after English.

Despite the strong evidence of using of a sin-
gle hashtag in multiple languages, the results in
Table 2 should not be interpreted as evidence of
code switching. Table 3 shows the 15 hashtags
used in the most number of languages. The ma-
jority of these hashtags are generated by either
(1) Twitter-based applications that automatically
write a tweet in a user’s native language and then
append a fixed English-language hashtag or (2)
spam-like accounts that use the same hashtag and
include random text snippets in various languages,
neither of which signal code switching behavior.

Furthermore, given the noise introduced by lan-
guage misidentification and spam behavior on the
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Language of tweet
de ru ko pt en it fr zh es ar th ja id nl tr

de 2 1 4 15 6 9 4 9 1 4 6 1
ru 3 3 3 25 7 5 8 7 2 1 7 7 7 1
ko 4 2 13 3 6 5 10 3 10 11 4 2
pt 14 3 64 45 40 13 63 2 4 3 15 10
en 1705 532 155 1235 1735 2183 1171 2482 362 176 742 1097 1101 342
it 5 2 1 10 29 15 4 22 5 3 6 3 1
fr 38 2 3 36 87 49 28 67 8 1 12 19 29 6
zh 3 4 2 2 12 1 2 4 1 11 1 1
es 67 17 3 321 435 264 206 105 29 5 32 66 66 31
ar 6 2 38 4 9 6 7 8 5 1 2
th 3 7 1 24 5 4 8 8 2 6 4 1
ja 17 18 11 11 123 17 24 132 45 2 2 14 12 4
id 84 2 6 25 131 88 58 14 92 6 5 11 52 17
nl 13 1 3 17 6 11 2 9 1 1
tr 17 1 3 28 9 7 7 13 3 1 22 9

Table 2: The frequency with which a hashtag is used by multiple languages. Columns denote the lan-
guage in which the tweet is written; rows denote the hashtag’s language; and cell values report the
number of hashtags where the column’s language has used the hashtag in at least 20 tweets. Diagonal
same-language values are omitted for clarity.

Twitter platform, we view the initial results in Ta-
ble 2 an overestimate of hashtag adoption by lan-
guages other than the hashtag’s source language.
A further inspection of language classification er-
rors revealed four common factors: (1) the lack of
accents on characters,3 (2) the use of short words,
which appeared ambiguous to langid.py, (3)
the use of non-Latin characters for emoticons or
visual affect, and (4) proper names originating
from a language different from the tweet’s. Never-
theless, the observed trends do provide some guid-
ance as to which language pairs might share hash-
tags and also may code switch.

Among the hashtags in Table 3, two are legit-
imately used by authors in multiple languages:
#soccer and #GER, the latter corresponding to the
German soccer team. Both hashtags were popular
due to the World Cup, which occurred during the
time period studied. For both, authors included
these hashtags while taking part in a global con-
versation about the games and event. The hashtag
#soccer is a clear case of code switching, where
individuals are communicating their interests in
multiple languages, even when equivalent hash-
tags in the tweet’s language are actively being
used. Indeed, over half of the languages using
#football had at least one tweet containing both
#football and #futbol. The example of #GER high-
lights a boundary case of code switching. Here,
GER is an abbreviation for the country’s name,
making it a highly-recognized marker, rather than

3In particular, the lack of character accents caused signif-
icant difficulties in distinguish between Spanish and Catalan.

an example of a language change that results in
code switching; however, the country has differ-
ent names depending on the language used (e.g.,
Deutschland), which does point to an active choice
on an author’s part when selecting a particular
name and its abbreviation.

4.3 Analysis by Hashtag Type

In a second analysis, we focus specifically on
hashtags classified as COMMUNITY and ANNO-
TATION, which are more associated with inten-
tional communication actions and therefore more
likely to be used in instances of code switching.
Performing such an analysis at scale would re-
quire automated methods for classifying hashtags
by their use, which is beyond the scope of this ini-
tial investigation. Therefore, we performed a man-
ual analysis of the 100 most-common, 100 least-
common, and 100 median-frequency hashtags in
our dataset to assess the distribution of hashtag
types and cases of code switching among the
COMMUNITY and ANNOTATION hashtags. Two
annotators labeled each hashtag, achieving 64.6%
agreement on the type annotations; disagreements
were largely due to mistaken assignments rather
that disputed classifications.4 An adjudication step
resolved all disagreements. Additionally, eleven
hashtags were excluded from analysis due being
made of common words (e.g., #go, #be) which had

4In particular, mistakes were more common when analyz-
ing hashtags used in languages outside the annotators’ flu-
ency, which required a more careful assessment of why the
hashtag was being used.

55



 0

 10

 20

 30

 40

 50

advertisem
ent

annotation

application

com
m

unity

nam
ed entity

platform

spam
voting

F
re

q
u
e
n
c
y

Lowest Frequency
Median Frequency
Highest Frequency

Figure 1: Type distributions of the sets of 100
highest, median, and lowest frequency hashtags
used in our dataset

no meaningful interpretation for their use. Fol-
lowing, we describe the results of the analysis and
then highlight several types of hashtags.

Figure 1 shows the distribution of hashtag types
observed in the three samples. SPAM and AP-
PLICATION hashtags were most common among
highest frequency hashtags, whereas the low-
est frequency tags in the dataset were also ei-
ther SPAM or VOTING. Surprisingly, the me-
dian frequency hashtags had the majority of the
discussion-related hashtag types

Within the ANNOTATION and COMMUNITY

types, we selected thirteen hashtags each to man-
ually evaluate if code switching behavior was ob-
served. For each hashtag, two annotators reviewed
all associated tweets that were identified as using
a different language than that of the hashtag. An-
notators were instructed to consider the tweet an
instance of code switching only in cases where
(1) there was sufficient text to determine the mes-
sage’s actual language and (2) the message was an
act of communication (in contrast to spam-like or
nonsensical messages).

Code switching behavior was observed for
eleven of the ANNOTATION hashtags and twelve
of the COMMUNITY hashtags. Table 4 shows
those code switched hashtags and the languages
in which they were seen, highlighting the varying
frequency with which hashtags were used in multi-
ple languages. For example, the primarily Arabic
hashtag #Hadith was used in English and Dutch
tweets; similarity, all three Spanish hashtags were
used in English tweets.

Many hashtags are used primarily with lan-
guages that are associated with countries known

Hashtag Lang. Lang. of Code Switched Tweet
#Noticias es en
#Facts en id th fr es ru
#simple en id es fr ms tr tl sw zh ja ko
#bitch en ar cs de es fr id it ja ms nl pt ru

sv tl tr zh
#delicious en ca de es fr id it ja ko ms nl ru th

tr zh
#Design en ar de es fr ja kr pt th tl zh
#Felicidad es ca en
#SWAG en de es fr id it pl pt ru
#fresh en es fr id it ms nl sv
#BoludecesNO es en
#truth en ar bs bu es fr hi id ja it ms pa pt

ru tl zh
#Hadith ar nl en
#Quran ar fa ms id sw az it de en
#hadith ar fr en
#tech en de es nl ar el fr ro id it ja ms no

pl pt ru sq sv zh
#RemajaIndonesia jv ms
#class en ar tr es bg de fr pt he hr id it ja

lt lv ms nl ru sw tl uk zh
#animals en ar ca de es fr pt it ms ja mk pl pt

ro ru tl tr ur vi
#cine es ca de en fr ja pt ro ru
#sunday en es ar tr fr ca de el gl hu id it ja

ms ko pt nl nn no pl ro ru sl sv
th tl zh

#Energy en ru es de fr it pt tr
#change en ar nl es cs de el eu fr pt id it ja

ko jv lv ms nb no pl ro uk ru sv
ta th tl tr ur zh

#magic en nl fr ar ru ca cs de el it es hu id
ja jv ko lv ru ms nn pl pt ro sq
sv sw sl tl tr zh

Table 4: Code switched hashtags and the lan-
guages of the tweets in which they were seen
(ANNOTATION types top, COMMUNITY types bot-
tom).

to have bilingual speakers fluent in English. How-
ever, several hashtags were used in a variety of
diverse languages. For example, #truth was used
with languages such as Arabic, Bosnian, Bulgar-
ian Hindi, and Punjabi. The most widely code
switched hashtag was #magic. In English, the
hashtag is commonly used with content on magic
tricks; however, in other languages, the hashtag
often connotes surprise. For example, the Lat-
vian tweet “Es izmeklēju visu plauktu, nekur nav.
Mamma piejiet ne sekunde nepagāja, kad viņa
atrada. #magic” comments on having an item on
the shelf disappear when looking for it, only for it
to reappear like magic.

During annotation, we observed that authors
were highly productive in their code switching, us-
ing these hashtags to generate the types of emo-
tional and sarcastic messages typically seen in
same-language messages. For example, in the
Swedish tweet “Bussen luktar spya och öl. #fresh”
the author is sarcastically commenting on a bus
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that smells of vomit and beer.

4.4 Discussion

The process of annotating code switching for
hashtags revealed four notable trends in author be-
havior that occurred with multiple hashtags. First,
authors fluent in non-Latin writing systems will
often use Latin-transliterated hashtags, which are
then adopted by authors of Latin-based systems.
For example, the hashtag #aikatsu describes a col-
lectible card game and anime and is heavily used
by both Japanese and English authors. Similar-
ity, the transliterated hashtags #Hadith and #Quran
are commonly associated with Arabic-language
tweets, which rarely include an Arabic-script ver-
sion of those hashtags even when the tweets in-
clude other hashtags in Arabic.

Second, when two or more languages share the
same written form of a word (i.e., homographs),
the resulting hashtags become conflated and ap-
pear as false examples of code switching. For ex-
ample, #Real was widely used in both English and
Spanish, but with two meanings: the English us-
ages denoting something existent (i.e., not fake)
and the Spanish usages referring to Real Madrid
FC, a soccer club. The hashtag #cine also posed
a challenge due to abbreviation. While many
Spanish-language tweets include #cine (cinema),
tweets in other languages include #cinema and its
abbreviated form #cine, which matches the Span-
ish term, creating false evidence of code switch-
ing.

Third, multilingual individuals may adopt a
common hashtag for reasons other than code
switching, which we highlight with two examples.
The hashtag #1DWelcomeToBrazil is used in a
large number of English and Portuguese tweets.
This hashtag is associated with the travel arrival
of the English-speaking band One Direction to
Brazil. Similarly, the #100happydays hashtag was
spawned from a movement where individuals de-
scribe positive aspects of their day. These global
phenomena increases the difficulty of automati-
cally identifying code switching instances.

Fourth, spam accounts will occasionally latch
onto a hashtag and use it in a variety of languages.
For example, the popular hashtag #1000ADAY is
used to attract new followers, which resulted in
adult content services also using the hashtag to
post spam advertisements. Surprisingly, nearly
a third of tweets for this hashtag are in Russian

and feature fully-grammatical text that appears to
be randomly sampled from other sources, such as
lists of proverbs. After examining multiple ac-
counts, we speculate that these messages are actu-
ally bot accounts who need to generate sufficient
number of messages to avoid Twitter’s spam fil-
ters. Work on detecting fake accounts has largely
been done in English (Benevenuto et al., 2010;
Grier et al., 2010; Ghosh et al., 2012) and so may
benefit from detecting this cross-lingual hashtag
use in accounts.

5 Experiment 2: Bilingual Cities

The second experiment measures the prevalence
of hashtag code switching in tweets from three
cities with different populations of English and
French speakers: Montreal, Canada, Quebec City,
Canada and Paris, France. All three cities are
known to contain bilingual speaker as well, who
have been shown to actively code switch (Heller,
1992). To test for differences in the code switch-
ing behavior of populations, each city is analyzed
according to the degree to which Anglophone
and Francophone speakers incorporate hashtags
of other languages into their tweets and whether
translations of the code switched hashtags are used
in the original language.

5.1 Experimental Setup

Data Tweets were gathered for each city by us-
ing the method of Jurgens (2013) to identify Twit-
ter users with a home location within each city’s
greater metropolitan area. Tweets were then ex-
tracted for these users over a three year sample of
10% of Twitter. This process yielded 4.4M tweets
for Montreal, 203K for Quebec City, and 58.1M
for Paris. For efficiency, we restricted the Paris
dataset to 5M tweets, randomly sampled across the
time period.

Language Identification The language of a
tweet was identified using a similar process as in
Experiment 1. Because this setting restricts the
analysis to only English and French, a different
method was used to determine the language of a
hashtag. Given a tweet in language l1, the text of
a hashtag is tested to see if it wholly occurs within
the dictionary for l1; if not, a greedy tokenization
algorithm is run to attempt to split a hashtag into
constituent words that are in the dictionary of l1. If
either the dictionary-lookup and tokenization steps
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French hashtags on English tweets English hashtags on French tweets
Quebec City Montreal Paris Quebec City Montreal Paris
imfc imfc comprendraquipourra lasttweet gohabsgo bbl
rilive charte sachezle bbl fail teaminsomniaque
relev seriea nian mtvhottest ind teamportugal
ceta bel hollande gohabsgo mtvhottest ps
preorderproblemonitunes brasil2014 federer not not findugame
derpatrash touspourgagner tropa fail soccer adp
villequebec 2ne1 guillaumeradio 100factsaboutme wow lasttweet
tufnations ma vousetespaspret herbyvip podcast follow
ta lavoixtva bel foodies ukraine teamom
rougeetor passionforezria retouraupensionnat electionsqc2014 int thebest

Table 5: The ten most frequent hashtags occurring in French and English tweets
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Figure 2: Percentages of tweets with any hashtag
that include a hashtag from the other language

succeed, the hashtag is said to be in l1. Other-
wise, the tests are repeated with the second lan-
guage l2. If the hashtag cannot be recognized in
l1 or l2, it is assumed to be in the language of its
tweet. The aspell dictionaries were used to rec-
ognize words. Furthermore, after analyzing the er-
rors made due to missing words, dictionaries were
augmented to include common social media terms
in each language (e.g., “selfie”). A manual anal-
ysis of 100 hashtags each for French and English
showed that this language assignment method was
correct for 91% of the instances.

5.2 Results
Francophone authors were much more likely to
use English hashtags than Anglophone authors
were for French hashtags. For tweets in each lo-
cale and language, Figure 2 shows the percentage
containing a hashtag in the other language relative
to the total number in that city using a hashtag in
either language. Notably, Paris has a higher rate of
using English hashtags than both Canadian cities.
We speculate that this difference is due to the high
rate of bilingualism in Montreal and Quebec City;
because authors are fully fluent in both languages,

should Francophone authors need to express them-
selves with an English hashtag, they may write the
entire tweet in English, rather than code switch-
ing. In contrast, Parisian authors are less likely to
be fully fluent in English (though functional) and
therefore express themselves primarily in French
with English hashtags as desired. An analogous
trend may be seen for French hashtags in the En-
glish tweets from Montreal, which has a higher
population of primarily Anglophone speakers who
might be less willing to communicate entirely in
French but will still use French hashtags to con-
nect their content with the dominant language used
in the city.

For each language and city, Table 5 shows
the ten most popular hashtags incorporated into
tweets of the other language. Examining the most
popular English tags in French tweets shows a
clear distinction in the two populations; French
Parisian tweets include more universal English
hashtags or those generated by applications, which
are not generally instances of code switching. In
contrast, the Canadian cities include more AN-
NOTATION type hashtags, including the sarcasm-
marking #not, which are more indicative of code
switching behavior.

An established linguistic convention within a
population can also motivate authors to prefer
one language’s expression over another (Myers-
Scotton, 1997). To test whether a high-frequency
concept was equally expressed in French and En-
glish or whether one language’s expression was
preferred, we created pairs of equivalent English
and French hashtags expressing the same con-
cept (e.g., #happy/#heureux) by translating the
50 most-popular English hashtags used in French
tweets. Then, the tweets for each city were an-
alyzed to identify which languages were used in
expressing each concept as a hashtag. The results
in Figure 3 reveal that for nearly half of the hash-
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Figure 3: For 50 most-common concepts ex-
pressed in equivalent French and English transla-
tions, the frequency with which the hashtags for a
concept were seen in each language.

tags, equivalent French language versions are in
use; however, examining the relative frequencies
shows that in all cases, the English version is still
preferred, despite the presence of a large Franco-
phone population. For hashtags that were only
seen in English, many were of the COMMUNITY

type, e.g., #50factsaboutme, which may not have
an equivalent French-language version. However,
we observed that when both an English hashtag
and its French translation were attested, the use
of the English hashtag in French was most often
an instance of code switching. Hence, testing for
the presence hashtag translation pairs may serve as
a helpful heuristic for identifying hashtags whose
use signals code switching behavior.

6 Discussion

Typically, code switching is distinguished from
the related phenomena of borrowing by testing
whether the word is being fluently mixed into
the utterance instead of simply functioning as a
loan word (Poplack, 2001). Hashtags present a
unique challenge for distinguishing between the
two phenomena due their brief content and un-
structured usage: a hashtag may occur anywhere
in a tweet and its general content lacks grammat-
ical constraints. Examining the hashtags seen in
our study, we find evidence spanning both types
of uses. Common hashtags such as #win or #fail
are widely recognized outside of English and their
uses could easily be interpreted instances of bor-
rowing. However, the complexity of other hash-
tags gives the appearance that their uses go be-
yond that of borrowing, e.g., #goingbacktoschool

in “Nadie dijo que serı́a fácil, pero cómo cuesta
estudiar después de 4 años de no tener nada
académico cerquita #goingbacktoschool” where
the author is commenting on the difficulty of re-
turning for a degree. Still other posts include
multiple single-token hashtags from a second lan-
guage, e.g., the earlier example of “Jetzt gibt’s was
vernünftiges zum essen! #salad #turkey #lunch
#healthy #healthylifestyle #loveit.” Although indi-
vidually these hashtags may be widely recognized
and operate as interlingual markers, their com-
bined presence suggests an intentional language
shift on the part of the author that could be inter-
preted as code switching. Together, the examples
point to hashtag use by multiple languages as a
complex phenomena where shared hashtag enti-
ties exist on a graded scale from simple borrow-
ing to fully signaling code switching. Our study
is intended as a starting point for analyzing this
practice and all our data is made available to sup-
port future discussions on the roles these hashtags
play and how they facilitate communication both
within and across language communities.

7 Conclusion

The present work has provided an initial study of
code switching in Twitter focusing on instances
where an author produces a message in one lan-
guage and then includes a hashtag from a sec-
ond language. Our work provides three main con-
tributions. First, using state-of-the-art language
identification techniques, we show that hashtags
are widely shared across languages, though the
challenges of correctly classifying the language
of tweets limits our ability to quantify the exact
scale. Second, in a manual analysis of ANNOTA-
TION and COMMUNITY hashtags, we show that
authors readily code switch with these types of
hashtags, using them just as they would in single
language tweets (e.g., indicating sarcasm). Third,
in a case study of French and English tweets from
three Francophone cities with bilingual speakers,
we find that the cities with more bilingual speakers
tended to have fewer occurrences English hashtags
in French tweets, which we speculate is due to au-
thors being more likely to write such tweets en-
tirely in English, rather than code switch; however,
when English hashtags were observed in French
tweets from these more bilingual cities, they were
much more likely to be used in instances of code
switching. Data for all of the experiments is
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available at http://www.networkdynamics.org/
datasets/.

Our work raises several avenues for future
work. First, we plan to examine how to improve
language identification in microtext in order to
gain a more accurate estimation of hashtag sharing
and code switching rates for languages. Second,
the Twitter platform enables measuring additional
factors that may influence an individual’s rate of
code switching; specifically, we plan to investigate
(1) a user’s historical tweets to estimate the degree
of bilinguality and (2) the impact of a user’s social
network with respect to homophily and language
use.
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I. Sànchez, M. Taulé, and L. Vallmanya. 2003.
Bilingual newsgroups in catalonia: A challenge for
machine translation. Journal of Computer-Mediated
Communication, 9(1).

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 107–116. Associa-
tion for Computational Linguistics.

Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti,
Naveen Kumar Sharma, Gautam Korlam, Fabri-
cio Benevenuto, Niloy Ganguly, and Krishna Phani
Gummadi. 2012. Understanding and combating
link farming in the twitter social network. In Pro-
ceedings of the 21st international conference on
World Wide Web (WWW), pages 61–70. ACM.

Moises Goldszmidt, Marc Najork, and Stelios Papari-
zos. 2013. Boot-strapping language identifiers
for short colloquial postings. In Proceedings of
the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in
Databases (ECMLPKDD 2013). Springer Verlag,
September.

Chris Grier, Kurt Thomas, Vern Paxson, and Michael
Zhang. 2010. @ spam: the underground on 140
characters or less. In Proceedings of the 17th ACM
conference on Computer and communications secu-
rity (CCS), pages 27–37. ACM.

John Joseph Gumperz. 1982. Discourse strategies.
Cambridge University Press.

Manish Gupta, Rui Li, Zhijun Yin, and Jiawei Han.
2010. Survey on social tagging techniques. ACM
SIGKDD Explorations Newsletter, 12(1):58–72.

Monica Heller. 1992. The politics of codeswitch-
ing and language choice. Journal of Multilingual
& Multicultural Development, 13(1-2):123–142.

Jeff Huang, Katherine M Thornton, and Efthimis N
Efthimiadis. 2010. Conversational tagging in twit-
ter. In Proceedings of the 21st ACM conference on
Hypertext and hypermedia, pages 173–178. ACM.

David Jurgens. 2013. That’s what friends are for:
Inferring location in online social media platforms
based on social relationships. In Proceedings of the
7th International Conference on Weblogs and Social
Media (ICWSM). AAAI.

Carmen K. M. Lee. 2007. Linguistic features of email
and icq instant messaging in hong kong. In Brenda
Danet and Susan C. Herring, editors, The Multilin-
gual Internet: Language, Culture, and Communica-
tion Online. Oxford University Press.

Julie Letierce, Alexandre Passant, John Breslin, and
Stefan Decker. 2010. Understanding how twitter
is used to spread scientific messages. In WebSci10:
Extending the Frontiers of Society On-Line.

Yu-Ru Lin, Drew Margolin, Brian Keegan, Andrea
Baronchelli, and David Lazer. 2013. # bigbirds
never die: Understanding social dynamics of emer-
gent hashtags. In Seventh International Conference
on Weblogs and Social Media (ICWSM). AAAI.

Yabing Liu, Chloe Kliman-Silver, and Alan Mislove.
2014. The tweets they are a-changin’: Evolution
of twitter users and behavior. In Proceedings of the
8th International Conference on Weblogs and Social
Media (ICWSM). AAAI.

Marco Lui and Timothy Baldwin. 2012. langid. py:
An off-the-shelf language identification tool. In
Proceedings of the ACL 2012 System Demonstra-
tions, pages 25–30. Association for Computational
Linguistics.

Carol Myers-Scotton. 1997. Duelling Languages:
Grammatical Structure in Codeswitching. Claren-
don Press.

Chad Nilep. 2006. Code switching in sociocultural lin-
guistics. Colorado Research in Linguistics, 19(1):1–
22.

60



John C. Paolillo. 2011. Conversational codeswitch-
ing on usenet and internet relay chat. Lan-
guage@Internet, 8.

Shana Poplack and David Sankoff. 1984. Borrowing:
the synchrony of integration. Linguistics, 22(1):99–
136.

Shana Poplack, David Sankoff, and Christopher Miller.
1988. The social correlates and linguistic processes
of lexical borrowing and assimilation. Linguistics,
26(1):47–104.

Shana Poplack. 2001. Code-switching (linguistic). In
International Encyclopedia of the Social and Behav-
ioral Sciences, pages 2062–2065. Elsevier Science
Ltd., 2nd edition.

David Sankoff, Shana Poplack, and Swathi Vanniara-
jan. 1990. The case of the nonce loan in tamil. Lan-
guage variation and change, 2(01):71–101.

Bonnie Urciuoli. 1995. Language and borders. An-
nual Review of Anthropology, 24:pp. 525–546.

Lei Yang, Tao Sun, Ming Zhang, and Qiaozhu Mei.
2012. We know what@ you# tag: does the dual
role affect hashtag adoption? In Proceedings of the
21st international conference on World Wide Web
(WWW), pages 261–270. ACM.

61



Proceedings of The First Workshop on Computational Approaches to Code Switching, pages 62–72,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Overview for the First Shared Task on
Language Identification in Code-Switched Data

Thamar Solorio
Dept. of Computer Science

University of Houston
Houston, TX, 77004

solorio@cs.uh.edu

Elizabeth Blair, Suraj Maharjan, Steven Bethard
Dept. of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL, 35294

{eablair,suraj,bethard}@uab.edu

Mona Diab, Mahmoud Gohneim, Abdelati Hawwari, Fahad AlGhamdi
Dept. of Computer Science

George Washington University
Washington, DC 20052

{mtdiab,mghoneim,abhawwari,fghamdi}@gwu.edu

Julia Hirschberg and Alison Chang
Dept. of Computer Science

Columbia University
New York, NY 10027

julia@cs.columbia.edu
ayc2135@columbia.edu

Pascale Fung
Dept. of Electronic & Computer Engineering

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

pascale@ece.ust.hk

Abstract

We present an overview of the first shared
task on language identification on code-
switched data. The shared task in-
cluded code-switched data from four lan-
guage pairs: Modern Standard Arabic-
Dialectal Arabic (MSA-DA), Mandarin-
English (MAN-EN), Nepali-English (NEP-
EN), and Spanish-English (SPA-EN). A to-
tal of seven teams participated in the task
and submitted 42 system runs. The evalua-
tion showed that language identification at
the token level is more difficult when the
languages present are closely related, as in
the case of MSA-DA, where the prediction
performance was the lowest among all lan-
guage pairs. In contrast, the language pairs
with the higest F-measure where SPA-EN
and NEP-EN. The task made evident that
language identification in code-switched
data is still far from solved and warrants
further research.

1 Introduction

The main goal of this language identification shared
task is to increase awareness of the outstanding
challenges in the automated processing of Code-
Switched (CS) data and motivate more research in

this direction. We define CS broadly as a commu-
nication act, whether spoken or written, where two
or more languages are being used interchangeably.
In its spoken form, CS has probably been around
ever since different languages first came in contact.
Linguists have studied this phenomenon since the
mid 1900s. In contrast, the Natural Language Pro-
cessing (NLP) community has only recently started
to pay attention to CS, with the earliest work in
this area dating back to Joshi’s theoretical work
proposing an approach to parsing CS data (Joshi,
1982) based on the Matrix and Embedded language
framework. With the wide-spread use of social me-
dia, CS is now being used more and more in written
language and thus we are seeing an increase in pub-
lished papers dealing with CS. We are specifically
interested in intrasentential code switched phenom-
ena. As a result of this task, we have successfully
created the first set of annotated data for several
language pairs with a coherent set of labels across
the languages. As the shared task results show,
CS poses new research questions that warrant new
NLP approaches, and thus we expect to see a sig-
nificant increase in NLP work in the coming years
addressing CS phenomena in data.

The shared task covers four language pairs and
is focused on social media data. We provided par-
ticipants with annotated data from Twitter for the
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language pairs: Modern Standard Arabic-Arabic
dialects (MSA-DA), Mandarin-English (MAN-
EN), NEP-EN (NEP-EN), and SPA-EN (SPA-EN).
These language pairs represent a good variety in
terms of language typology and relatedness among
pairs. They also cover languages with different rep-
resentation in terms of number of speakers world
wide. Participants were asked to make predictions
on unseen Twitter data for each language pair. We
also provided participants with test data from a
“surprise genre” with the objective of assessing the
robustness of language identification systems to
genre variation.

2 Task Description

The task consists of labeling each token/word in
the input file with one of six labels: lang1, lang2,
other, ambiguous, mixed, and named entities NE.
The lang1, lang2 labels refer to the two languages
addressed in the subtask, for example for the lan-
guage pair MSA-DA, lang1 would be an MSA and
lang2 is DA. The other category is a label used to
tag all punctuation marks, emoticons, numbers, and
similar tokens that do not represent actual words in
any of the given languages. The ambiguous label
is for instances where it is not possible to assign
a language with certainty, for example, a lexical
form that belongs to both languages, appearing in a
context that does not indicate one language over the
other. The mixed category is for words composed
of CS morphemes, such as the word snapchateando
‘to chat’ from SPA-EN, the word overai from NEP-
EN, or the word hayqwlwn1 ‘they will say’, from
MSA-DA, where the ‘ha’ is a DA future morpheme
and the stem ‘yqwlwn’ is MSA.The NE label is
included in this task in an effort to allow for a more
focused analysis of CS data with the exclusion of
proper nouns. NEs have a very different behavior
than most other words in a language vocabulary
and thus from our perspective they need to be iden-
tified to be handled properly.

Table 1 shows Twitter examples taken from the
training data. The annotation guidelines are posted
on the workshop website2. We post the ones used
for SPA-EN as for the other language pairs the only
differences are the examples provided.

1We use Buckwalter transliteration scheme http://
www.qamus.org/transliteration.htm

2http://emnlp2014.org/workshops/
CodeSwitch/call.html

Language Pair Example
MSA-DA AlnhArdp AlsAEp 11 hAkwn Dyf >.

HAfZ AlmyrAzy ElY qnAp drym llHdyv
En >wlwyAt Alvwrp fy AlmrHlp Al-
HAlyp wqDyp tSHyH msAr Alvwrp
Al<ElAmy
(Today O’Clock 11 I will be
[a ]guest[ of] Mr. Hafez
AlMirazi on Channel Dream
to talk about [the ]priorities[ of]
the revolution in the stage the current
and [the ]issue[ of] correcting
[the ]path[ of] the revolution Media)

NEP-EN My car at the workshop for a much
needed repairs... ABA pocket khali
hune bho
(My car at the workshop for a much
needed repairs. . . now my pocket will
be empty)

SPA-EN Por primera vez veo a @username ac-
tually being hateful! it was beautiful:)
(For the first time I get to see @user-
name actually being hateful! it was
beautiful:)

Table 1: Examples of Twitter data used in the
shared task.

3 Related Work

In the past, most language identification research
has been done at the document level. Some re-
searchers, however, have developed methods to
identify languages within multilingual documents
(Singh and Gorla, 2007; Nguyen and Doğruöz,
2013; King and Abney, 2013). Their test data
comes from a variety of sources, including web
pages, bilingual forum posts, and jumbled data
from monolingual sources, but none of them are
trained on code-switched data, opting instead for a
monolingual training set per language. This could
prove to be a problem when working on code-
switched data, particularly in shorter samples such
as social media data, as the code-switching context
is not present in training material.

One system tackled both the problems of code-
switching and social media in language and code-
switched status identification (Lignos and Marcus,
2013). Lignos and Marcus gathered millions of
monolingual tweets in both English and Spanish in
order to model the two languages, and used crowd-
sourcing to annotate tens of thousands of Span-
ish tweets, approximately 11% of which contained
code-switched content. This system was able to
achieve 96.9% word-level accuracy and a 0.936
F-measure in identifying code-switched tweets.

The issue still stands that relatively little code-
switching data, such as that used in Lignos and
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Marcus’ research, is readily available. Even in
their data, the percentage of code-switched tweets
was barely over a tenth of the total test data. There
have been other corpora built, particularly for other
language pairs such as Mandarin-English (Li et
al., 2012; Lyu et al., 2010), but the amount of data
available and the percentage of code-switching data
within that data are not up to the standards of other
areas of the natural language processing field. With
this in mind, we sought to provide corpora for mul-
tiple language pairs, each with a better distribution
of code-switching phenomena.

4 Data Sets

Most of the data for the shared task comes form
Twitter. However, we also collected and annotated
data from other social media sources, including
Facebook, web forums, and blogs. These additional
sources of data were used as the surprise data. In
this section we describe briefly the corpora curated
for the shared task.

Language-pair Training Test Surprise
MAN-EN 1000 313 n/a
MSA-DA 5,838 2332, 1,777 12,017
NEP-EN 9,993 3,018 (2,874) 1,087
SPA-EN 11,400 3,060 (1,626) 1,102

Table 2: Statistics of the shared task data sets
per language pairs. The numbers are according to
what was actually annotated, numbers in parenthe-
sis show what the participating systems were able
to crawl from Twitter. The Surprise genre comes
from various sources, other than Twitter.

Table 2 shows some statistics about the differ-
ent datasets used in this task. We strive to provide
dataset sizes that would allow a robust analysis of
results. However, an unexpected challenge was
the rate at which tweets became unavailable. Dif-
ferent language pairs had different attrition rates
with SPA-EN being the most affected language and
MSA-DA and NEP-EN the least affected. Note
that we provided two test datasets for MSA-DA.
Since we separated the data on a per user basis, the
first test set had a highly skewed distribution. The
second test set was distributed to participants to
allow a comparison with a data set having a class
distribution more similar to the training set.

4.1 SPA-EN data
Developing the corpus involved two primary steps:
locating code-switching tweets and using crowd-

sourcing to annotate their tokens with language
tags. A small portion of the tweets were annotated
in-lab and this was used as the gold data for quality
control in the crowdsourcing annotation.

To avoid biasing the data used in this task, we
used a two step process to select the tweets: first we
identified CS tweets by doing a keyword search on
Twitter’s API. We selected a few frequently used
English words and restricted the search to tweets
identified by Twitter as Spanish from users in Cali-
fornia and Texas. An additional set of tweets was
then collected by using frequent Spanish words in
an all English tweet, from users in the same loca-
tions. We filtered these tweets to remove tweets
containing URLs, duplicates, spam tweets and
retweets.

In-lab annotators labeled the filtered tweets using
the guidelines referenced above. From this set of
labeled data we then ranked the users in this set by
the percentage of CS tweets. We selected the 12
most prolific CS users and then pulled all of their
available tweets. These 12 users contributed the
tweets used in the shared task. The tweets were
labeled using CrowdFlower3. After analyzing the
number and content distribution of the tweets, the
SPA-EN data was split into a 11,400 tweet training
set and a 3,014 tweet test set.

The SPA-EN Surprise Genre (SPA-EN-SG) in-
cluded Facebook comments from the Veteranas
community4 and the Chicanas community5 and
blog data from the Albino Bean 6. Data was col-
lected using Python scripts that implemented the
Beautiful Soup library and the third-party Python
Facebook SDK (for Blogger and Facebook respec-
tively). Post and comment IDs were used to iden-
tify Facebook posts, and URLs were used to iden-
tify Blogger posts. The collected posts were format-
ted to match those collected from Twitter. In-lab
annotators were used to annotate approximately 1K
tokens. All the data we collected in this manner
was released as surprise data to all participants.

4.2 NEP-EN data

The collection of NEP-EN data followed a simi-
lar approach to that of SPA-EN. We first focused
on finding users that switched frequently between

3http://www.crowdflower.com/
4https://www.facebook.com/

VeteranaPinup
5https://www.facebook.com/pages/

Chicanas/444483772293893
6http://thealbinobean.blogspot.com/
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Nepali and English. In addition, the users must
not be using Devnagari script as done by Nepalese
to write Nepali, but must have used its Roman-
ized form. We started by manually reading tweets
from some of our Nepali friends. We then crawled
their followers who corresponded with them using
code-switched tweets or replies. We found that
a lot of these users were regular code-switchers
themselves. We repeated the same process with the
followers and collected nearly 30 such users. We
then collected about 2,000 tweets each from these
users using the Twitter API. We filtered out all the
retweets and the tweets with URLs, following the
same process that was used for SPA-EN.

For the surprise test data, we crawled code-
switched data from Facebook comments and posts.
We found that most Nepalese comments had a rich
amount of code-switched data. However, we could
not crawl their data because of privacy issues. Nev-
ertheless, we could crawl data from public Face-
book pages. We identified some public Nepali Face-
book pages where anyone could comment. These
pages include FM, news and public figures’ public
Facebook pages. We crawled the latest 10 feeds
from these public pages using the Facebook API
and gathered about 12,000 comments and posts for
the shared task.

Initially, we sought out help from Nepali gradu-
ate students at the University of Alabama at Birm-
ingham to annotate 100 tweets (1739 tokens). We
gave the same annotation file to two annotators to
do the annotation. We found that they agreed with
an accuracy of 95.34%. These tweets were then re-
viewed and used as initial gold data in Crowdflower
to annotate the first 1000 tweets. The annotation
job was enabled only in Nepal and Bhutan. We
disabled India, even though people living in some
regions of India (Darjeeling, Sikkim) also speak
and write in Nepali, as most spammers were com-
ing from India. We then ran two batches of 5000
tweets and one batch of 3000 tweets along with the
initial 1,000 tweets as the gold data. This NEP-EN
data was then split into a 9,993 tweet training set
and a 2,874 tweet test set. No Twitter user appeared
in both sets.

4.3 MAN-EN data

The MAN-EN tweets were collected from Twitter
with the Twitter API. Users were selected from
lists of most followed Twitter accounts in Taiwan
(where Mandarin Chinese is the official language).

These users’ tweets were checked for Mandarin En-
glish bilingualism and added to our data collection
if they contained both languages.

The next round of usernames came from the
lists of users that our original top accounts were
following. The tweets written by this new set of
users were then examined for Mandarin English
code switching and stored as data if they matched
the criteria.

The jieba tokenizer7 was used to segment the
Mandarin sections of the tweets and compute off-
sets of each segment. We format the code switch-
ing tweets into columns including language type,
labels, and offsets. Named entities were labeled
manually by a single annotator.

The data was split by user into 1000 tweets for
training and 313 for testing. No MAN-EN surprise
data for the current shared task.

4.4 MSA-DA data

For the MSA-DA language pair, we selected Egyp-
tian Arabic (EGY) as the Arabic dialect. We har-
vested data from two social media sources: Twitter
[TWT] and Blog commentaries [COM]. The TWT
data served as the main gold standard data for the
task where we provided fully annotated data for
Training/Tuning and Test. We provided two TWT
data sets for the test data that exemplified different
tag distributions. The COM data set comprised
only test data and it served as the Arabic surprise
data set.

To reduce the potential of TWT data attrition
from users deleting their accounts or tweets, we
selected tweets that are less prone to deletion and/or
change. Thereby we harvested tweets by a select
set of Egyptian Public Figures. The percentage
of deleted tweets and deactivated accounts among
those users is significantly lower if we compare it
to the tweets crawled from random Egyptian users.

We used the “Tweepy” library to crawl the time-
lines of 12 Public Figures. Similar to other lan-
guage pairs, we excluded all re-tweets, tweets with
URLs, tweets mentioning other users, and tweets
containing Latin characters. We accepted 9,947
tweets, for each we extracted the tweet-id and user-
id. Using these IDs, we retrieved the tweets text,
tokenized it and assigned character offsets. To guar-
antee consistency and avoid any misalignment is-
sues, we compiled the full pipeline into the “Arabic
Tweets Token Assigner” package which is made

7https://github.com/fxsjy/jieba
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available through the workshop website8.
For COM, we selected 6723 commentaries (half

MSA and half DA) from “youm7”9 commen-
taries provided by the Arabic Online Commentary
Dataset (Zaidan and Callison-Burch, 2011). The
COM data set was processed (12017 total tokens)
using the same pipeline created for the task. We
also provided the participants with the data format-
ted with character offsets to maintain consistency
across data sets in the Arabic subtask.

The annotation of MSA-DA language pair data
is based on two sets of guidelines. The first set
is a generic set of guidelines for code switching
in general across different language pairs. These
guidelines provide the overarching framework for
annotating code switched data on the morpholog-
ical, lexical, syntactic, and pragmatic levels. The
second set of guidelines is language pair specific.
We created the guidelines for the Arabic language
specifically. We enlisted the help of 3 annotators
in addition to a super annotator, hence resulting
in 4 annotators overall for the whole collection of
the data. All the annotators are native speakers
of Egyptian Arabic with excellent proficiency in
MSA. The super annotator only annotated 10% of
the overall data and served as the adjudicator. The
annotation process was iterative with several repe-
titions of the cycle of training, annotation, revision,
adjudication until we approached a stable Inter An-
notator Agreement (IAA) of over 90% pairwise
agreement.

5 Survey of Shared Task Systems

We received submissions from seven different
teams. Each participating system had the freedom
to submit responses to any of the language pairs
covered in the shared task. All seven participants
submitted system responses for SPA-EN, making
this language pair the most popular in this shared
task and MAN-EN the least popular.

All but one participating system used a machine
learning algorithm or language models, or even a
combination of both, as part of their configuration.
A couple of the participating systems used hand-
crafted rules of some sort, either at the intermediate
steps or as the final post-processing step. We also
observed a good number of systems using exter-
nal resources, in the form of labeled monolingual

8http://emnlp2014.org/workshops/
CodeSwitch/call.html

9An Egyptian newspaper, www.youm7.com

corpora, language specific gazetteers, off the shelf
tools (NE recognizers, language id systems, or mor-
phological analyzers) and even unsupervised data
crawled from the same users present in the data
sets provided. Affixes were also used in some form
by different systems.

The architecture of the different systems ranged
from a simple approach based on frequencies of
character n-grams combined in a rule-based system,
to more complex approaches using word embed-
dings, extended Markov Models, and CRF autoen-
coders. The majority of the systems that partici-
pated in more than one language pair did little to no
customization to account for the morphological dif-
ferences of the specific language pairs beyond lan-
guage specific parameter-tuning, which probably
reflects participants’ goal to develop a multilingual
id system.

Due to the presence of the NE label, several
systems included a component for NE recognition
where there was one available for the specific lan-
guage. In addition, many systems also included
case information. One unexpected finding from
the shared task was that no participating system
tried to embed in their models some form of lin-
guistic theory or framework about CS. Only one
system made an explicit reference to CS theories
(Chittaranjan et al., 2014) in their motivation to use
contextual information, which can be considered
as a loose embedding of CS theory. While system
performance was competitive (see next section),
there is still room for improvement and perhaps
some of that improvement can come out of adding
this kind of knowledge into the models. Lastly, we
were surprised to see that not all systems made use
of character encoding information, even though for
Mandarin-English that would have been a strong
indicator. In Table 3 we present a summary high-
lighting some of the design choices of participating
systems.

6 Results

We used the following evaluation metrics: Accu-
racy, Precision, Recall, and F-measure. We use
F-measure to provide a ranking of systems. In the
evaluation at the tweet level we use the standard
f-measure. For the evaluation at the token level
we use instead the average weighted f-measure to
account for the highly imbalanced distribution of
classes.

To provide a fair evaluation, we only scored pre-
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System Machine
Learning Rules Case Character

Encoding External Resources LM Affixes Context

(Chittaranjan et al., 2014) CRF 4 4 dbpedia dumps, online sources ± 3
(Shrestha, 2014) 4 4 spell checker

(Jain and Bhat, 2014) CRF 4 4 English dictionary 4 4 ± 2

(King et al., 2014) eMM ANERgazet, TwitterNLP, Stan-
ford NER 4 4 4

(Bar and Dershowitz, 2014) SVM 4
Illocution Twitter Lexicon,
monolingual corpora (NE lists) 4 4 ± 2

(Lin et al., 2014) CRF 4 4
Hindi-Nepali Wikipedia, JRC,
CoNLL 2003 shared task, lang
id predictors: cld2 and ldig

4 4

(Barman et al., 2014) kNN, SVM 4 4 BNC, LexNorm 4 ± 1

Table 3: Comparison of shared task participating system algorithm choices. CRF stands for Conditional
Random Fields, SVM for Support Vector Machines and LM for Language Models.

dictions on tweets submitted by all teams. All
systems were compared to a simple lexicon-based
baseline. The lexicon was gathered from the train-
ing data for classes lang1 and lang2 only. Emoti-
cons, punctuation marks, usernames and URLs are
by default tagged as other. In the case of a tie or a
new token, the baseline system assigns the majority
class for that language pair.

Figure 1 shows prediction performance on the
Twitter test data for each language pair at the tweet
level. The system predictions for this task are taken
directly from the individual token predictions in
the following manner: if the system predictions for
the same tweet contain at least one tag from each
language (lang1 and lang2), the tweet is labeled
as code-switched, otherwise it is labeled as mono-
lingual. As illustrated, each language pair shows
different patterns. Comparing the systems that par-
ticipated in all language pairs, there is no clear
winner across the board. However, (Chittaranjan et
al., 2014) was in the top three places in at least one
test file for each language pair. Table 4 shows the
results at the token level by label. Here again the
figures show F-measure per class label and the last
column is the weighted average f-measure (Avg-F).
One of the few general trends on these results is
that most participating systems were not able to
correctly identify the minority classes “ambiguous”
and “other”. There are only few instances of these
labels in the training set and some test sets did not
have one of these classes present. The impact on
final system performance from these classes is not
significant. However, to study CS patterns we will
need to have these labels identified properly.

The MAN-EN pair received four system re-
sponses and all four of them reached an F-measure
>80% and outperformed the simple baseline by a

considerable margin. We expected this language
pair to be the easiest one for the shared task since
each language uses a different encoding script. A
very rough but accurate distinction between Man-
darin and English could be achieved by looking
at the character encoding. However, according to
the system descriptions provided, not all systems
used encoding information. The best performing
systems for MAN-EN are (King et al., 2014) and
(Chittaranjan et al., 2014). The former slightly
outperformed the latter at the Tweet level (see Fig-
ure 1a) task while the opposite was true at the token
level (see Table 4 rows 4 and 5).

In the case of SPA-EN, all seven systems out-
performed the simple baseline. The best perform-
ing system in all SPA-EN tasks was (Bar and
Dershowitz, 2014). This system achieved an F-
measure of 82.2%, 2.9 percentage points above the
second best system (Lin et al., 2014) on the tweet
level task (see Figure 1(d)). In the token level
evaluation, (Bar and Dershowitz, 2014) reached
an Avg. F-measure of 94%. This top performing
system uses a sequential classification approach
where the labels from the preceding words are used
as features in the model. Another design choice
that might have given the edge to this system is the
fact that their model combines character- and word-
based language models in what the authors call
“intra- and inter-word level” features. Both types
of language models are trained on large amounts
of monolingual data and NE lists, which again pro-
vides additional knowledge that other systems are
not exploiting. For instance, the NE lexicons might
account for the best results in the NE class in both
the Twitter data and the Surprise genre (see Table 4
last row for SPA-EN and second to last for SPA-
EN Surprise). Most systems showed considerable
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Figure 1: Prediction results on language identification at the tweet level. This is a binary task to distinguish
between a monolingual and a CS tweet. We show performance of participating systems using F-measure
as the evaluation metric. The solid line shows the lexicon baseline performance.

differences in prediction performance in both gen-
res. In all cases the Avg. F-measure was higher
on the Twitter test data than on the surprise genre.
Although the surprise genre is too small to draw
strong conclusions, all language pairs with surprise

genre test data showed a decrease in performance
of around 10%.

We analyzed system outputs and found some
consistent sources of error. Lexical forms that exist
in both languages were frequently mislabeled by
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most systems. For example the word for “he” was
frequently mislabeled by at least one system. In
most of the cases systems were predicting EN as
label when the target language was SPA. Cases like
this were even more prone to errors when these
words fell in the CS point, as in this tweet: ni el
header he hecho (I haven’t even done the header).
Tweets like this one, with just one token from the
other language, were difficult for most systems.
Named entities were also frequent sources of error,
especially when they were spelled with lower cases
letters.

By far the hardest language pair in this shared
task was MSA-DA, as anticipated. Especially when
considering the typological similarities between
MSA and DA. This is mainly due to the fact that
DA and MSA are close variants of one another and
hence they share considerable amount of lexical
items. The shared lexical items could be simple
cognates of one another, or faux amis where they
are homographs or homophones, but have com-
pletely different meaning. Both categories con-
stitute a significant challenge. Accordingly, the
baseline system had the lowest performance from
all language pairs in both test sets. We note chal-
lenges in this language pair on each linguistic level
where CS occurs especially for the shared lexical
items.

On the phonological level, DA writers tend to
mimic the MSA script for DA words even if they
are pronounced differently. For example: “heart” is
pronounced in DA Alob and in MSA as qalob but
commonly written in MSA as “qalob” in DA data.
Also many phonological differences are in short
vowels that are underspecified in written Arabic,
adding another layer of ambiguity.

On the morphological level, there is no avail-
able morphological analyzer able to recognize such
shared words and hence they are mostly misclassi-
fied. Language identification for MSA-DA CS text
highly depends on the context. Typically some Ara-
bic variety word serves as a marker for a context
switch such as mElh$ for DA or mn∗ for MSA. But
if shared lexical items are used, it is challenging
to identify the Arabic variant. An example from
the training data is qlb meaning either heart as a
noun or change as a verb in the phrase lw qlb mjrm,
corresponding to ‘If the heart of a criminal’ or ‘if
he changes into a criminal’. These challenges ren-
der language identification for CS MSA-DA data
far from solved as evident by the fact that the high-

est scoring system reached an F-measure of only
41.7% in Test2 for CS identification. Moreover,
this is the only language pair where at least one
system was not able to outperform the baseline and
in the case of Test2 only one system (Lin et al.,
2014) outperformed the baseline.

Most teams did well for the NEP-EN shared task,
and all teams outperformed the baseline. The rea-
son for the high performance might be the high
number of codeswitched tweets in the training and
test data for NEP-EN (much higher than other lan-
guage pairs). This allowed systems to have more
samples of CS instances. The other reason for good
performance by most participants in both evalua-
tions might be that Nepali and English are two very
different languages. The structure of the words and
syntax of word formation are very different. We
suspect, for instance, that there is a much lower
overlap of character n-grams in this language pair
than in SPA-EN, which makes for an easier task. At
the Tweet level, system performance ranged over
a small set of values, the lowest F-measure was
95.2% while the highest was 97.7%. Looking at
the numbers in Table 4, we can see that even NE
recognition seemed to be a much easier task for this
language pair than for SPA-EN (compare results
for the NE category in both SPA-EN sets to those
of both NEP-EN data sets). The best performing
system for the Twitter test data is (Barman et al.,
2014) with an F-measure of 97.7%. The results
trend in the surprise genre is not consistent with
what we observed for the Twitter test data. The
top ranked system for Twitter sunk to the 4th place
with an F-measure or 59.6%, a considerable drop
of almost 40 percentage points. In this case, the
overall numbers indicate a much wider difference
in the genres than what we observed for other lan-
guages, such as SPA-EN, for example. We should
note that the class distribution in the surprise data is
considerably different from what the models used
for training, and from that of the test data as well.
In the Twitter data there was a larger number of CS
tweets than monolingual ones, while in the surprise
genre the majority class was monolingual. This
will account for a good portion of the differences
in performance. But here as well, the small number
of labeled instances makes it hard to draw strong
conclusions.
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Test Set System lang1 lang2 NE other ambiguous mixed Avg-F

MAN-EN

Baseline 0.9 0.47 0 0.29 - 0 0.761
(Jain and Bhat, 2014) 0.97 0.66 0.52 0.33 - 0 0.871

(Lin et al., 2014) 0.98 0.73 0.62 0.34 - 0 0.886
(King et al., 2014) 0.98 0.74 0.58 0.30 - 0 0.884

(Chittaranjan et al., 2014) 0.98 0.76 0.66 0.34 - 0 0.892

MSA-DA Test 1

(King et al., 2014) 0.88 0.14 0.05 0 0 - 0.720
Baseline 0.92 0.06 0 0.89 0 - 0.819

(Chittaranjan et al., 2014) 0.94 0.15 0.57 0.91 0 - 0.898
(Jain and Bhat, 2014) 0.93 0.05 0.73 0.87 0 - 0.909

(Lin et al., 2014) 0.94 0.09 0.74 0.98 0 - 0.922
(Elfardy et al., 2014)* 0.94 0.05 0.85 0.99 0 - 0.936

MSA-DA Test 2

Baseline 0.54 0.27 0 0.94 0 0 0.385
(King et al., 2014) 0.59 0.59 0.13 0.01 0 0 0.477

(Chittaranjan et al., 2014) 0.58 0.50 0.42 0.43 0.01 0 0.513
(Jain and Bhat, 2014) 0.62 0.49 0.67 0.75 0 0 0.580
(Elfardy et al., 2014)* 0.73 0.73 0.91 0.98 0 0.01 0.777

(Lin et al., 2014) 0.76 0.81 0.73 0.98 0 0 0.799

MSA-DA Surprise

(King et al., 2014) 0.48 0.60 0.05 0.02 0 0 0.467
(Jain and Bhat, 2014) 0.53 0.61 0.62 0.96 0 0 0.626

(Chittaranjan et al., 2014) 0.56 0.69 0.33 0.96 0 0 0.654
(Lin et al., 2014) 0.68 0.82 0.61 0.97 0 0 0.778

(Elfardy et al., 2014)* 0.66 0.81 0.87 0.99 0 0 0.801

NEP-EN

Baseline 0.67 0.76 0 0.61 - 0 0.678
(King et al., 2014) 0.87 0.80 0.51 0.34 - 0.03 0.707
(Lin et al., 2014) 0.93 0.91 0.49 0.95 - 0.02 0.917

(Jain and Bhat, 2014) 0.94 0.96 0.52 0.94 - 0 0.942
(Shrestha, 2014) 0.94 0.96 0.57 0.95 - 0 0.944

(Chittaranjan et al., 2014) 0.94 0.96 0.45 0.97 - 0 0.948
(Barman et al., 2014) 0.96 0.97 0.58 0.97 - 0.06 0.959

NEP-EN Surprise

(Lin et al., 2014) 0.83 0.73 0.46 0.65 - - 0.712
(King et al., 2014) 0.82 0.88 0.43 0.12 - - 0.761

(Chittaranjan et al., 2014) 0.78 0.87 0.37 0.80 - - 0.796
(Jain and Bhat, 2014) 0.83 0.91 0.50 0.87 - - 0.850
(Barman et al., 2014) 0.87 0.90 0.61 0.74 - - 0.853

(Shrestha, 2014) 0.85 0.92 0.53 0.78 - - 0.855

SPA-EN

Baseline 0.72 0.56 0 0.75 0 0 0.704
(Shrestha, 2014) 0.88 0.85 0.35 0.92 0 0 0.873

(Jain and Bhat, 2014) 0.92 0.92 0.36 0.90 0 0 0.905
(Lin et al., 2014) 0.93 0.93 0.32 0.91 0.03 0 0.913

(Barman et al., 2014) 0.93 0.92 0.47 0.93 0.03 0 0.921
(King et al., 2014) 0.94 0.93 0.54 0.92 0 0 0.923

(Chittaranjan et al., 2014) 0.94 0.93 0.28 0.95 0 0 0.926
(Bar and Dershowitz, 2014) 0.95 0.95 0.56 0.94 0.04 0 0.940

SPA-EN Surprise

(Shrestha, 2014) 0.80 0.78 0.23 0.81 0 0 0.778
(Jain and Bhat, 2014) 0.83 0.84 0.22 0.79 0 0 0.811

(Lin et al., 2014) 0.83 0.86 0.19 0.80 0.03 0 0.816
(Barman et al., 2014) 0.84 0.85 0.31 0.82 0.03 0 0.823

(Chittaranjan et al., 2014) 0.94 0.86 0.14 0.83 0 0 0.824
(King et al., 2014) 0.84 0.85 0.35 0.81 0 0 0.828

(Bar and Dershowitz, 2014) 0.85 0.87 0.37 0.83 0.03 0 0.839

Table 4: Performance results on language identification at the token level. A ‘-’ indicates there were no
tokens of this class in the test set. We ranked systems using weighted averaged f-measure (Avg-F). The “*”
marks the system by (Elfardy et al., 2014). This system was not considered in the ranking for the shared
task as it was developed by co-organizers of the task.

7 Lessons Learned

Among the things we want to improve for future
shared tasks is the issue of data loss due to re-
moval of tweets or users deleting their accounts.
We decided to use Twitter data to have a relevant
corpus. However, the trade-off is the lack of rights
to distribute the data ourselves. This is not just a

burden for the participants. It is an awful waste of
resources as the data that was expensive to gather
and label is not being used beyond the small group
of researchers involved in the creation of the cor-
pus. This will deter us from using Twitter data for
future shared tasks, at least until a better solution
is identified.
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Figure 2: Prediction results on language identification at the document level for the surprise genre. This
is a binary task to distinguish between a monolingual and a code-switched text. We show performance of
participating systems using F-measure as the evaluation metric.

Using crowdsourcing for annotating the data is a
cheap and easy way for generating resources. But
we found out that even when following best prac-
tices for quality control, there was a substantial
amount of noise in the gold data. We plan to con-
tinue working on refining the annotation guidelines
and quality control processes to reduce the amount
of noise in gold annotations.

8 Conclusion

This is the first shared task on language identifica-
tion in CS data. Yet, the response was quite positive
as we received 42 system runs from seven different
teams, plus submissions for MSA-AD from a sub
group of the task organizers (Elfardy et al., 2014).
The systems presented are overall robust and with
interesting differences from one another. Although
we did not see a single system ranking in the top
places across all language pairs and tasks, we did
see systems showing robust performance indicat-
ing some level of language independence. But the
results are not consistent at the tweet/document

level. The language pair that proved to be the most
difficult for the task was MSA-DA, where the lexi-
con baseline system was hard to beat even with an
F-measure of 47.1%.

This shared task showed that language identifica-
tion in code-switched data is still an open problem
that warrants further investigation. Perhaps in the
near future we will see systems that embed some
form of linguistic theory about CS and maybe that
would result in more accurate predictions.

Our goal is to support new research addressing
CS data. Discussions about the challenge for the
next shared task are already underway. One pos-
sibility might be parsing. We plan to investigate
the challenges in parsing CS data and we will start
by exploring the hardships in manually annotating
CS with syntactic information. We would also like
to explore the possibility of classifying CS points
according to their socio-pragmatic role.
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Abstract

We describe a CRF based system for
word-level language identification of
code-mixed text. Our method uses lexical,
contextual, character n-gram, and special
character features, and therefore, can
easily be replicated across languages. Its
performance is benchmarked against the
test sets provided by the shared task on
code-mixing (Solorio et al., 2014) for
four language pairs, namely, English-
Spanish (En-Es), English-Nepali (En-Ne),
English-Mandarin (En-Cn), and Standard
Arabic-Arabic (Ar-Ar) Dialects. The
experimental results show a consistent
performance across the language pairs.

1 Introduction

Code-mixing and code-switching in conversations
has been an extensively studied topic for sev-
eral years; it has been analyzed from structural,
psycholinguistic, and sociolinguistic perspec-
tives (Muysken, 2001; Poplack, 2004; Senaratne,
2009; Boztepe, 2005). Although bilingualism
is very common in many countries, it has sel-
dom been studied in detail in computer-mediated-
communication, and more particularly in social
media. A large portion of related work (Androut-
sopoulos, 2013; Paolillo, 2011; Dabrowska, 2013;
Halim and Maros, 2014), does not explicitly deal
with computational modeling of this phenomena.
Therefore, identifying code-mixing in social me-
dia conversations and the web is a very relevant
topic today. It has garnered interest recently, in
the context of basic NLP tasks (Solorio and Liu,
2008b; Solorio and Liu, 2008a), IR (Roy et al.,
2013) and social media analysis (Lignos and Mar-
cus, 2013). It should also be noted that the identi-

∗∗ The author contributed to this work during his intern-
ship at Microsoft Research India

fication of languages due to code-switching is dif-
ferent from identifying multiple languages in doc-
uments (Nguyen and Dogruz, 2013), as the dif-
ferent languages contained in a single document
might not necessarily be due to instances of code
switching.

In this paper, we present a system built with
off-the-shelf tools that utilize several character and
word-level features to solve the EMNLP Code-
Switching shared task (Solorio et al., 2014) of
labeling a sequence of words with six tags viz.
lang1, lang2, mixed, ne, ambiguous, and others.
Here, lang1 and lang2 refer to the two languages
that are mixed in the text, which could be English-
Spanish, English-Nepali, English-Mandarin or
Standard Arabic-dialectal Arabic. mixed refers
to tokens with morphemes from both, lang1 and
lang2, ne are named entities, a word whose label
cannot be determined with certainty in the given
context is labeled ambiguous, and everything else
is tagged other (Smileys, punctuations, etc.).

The report is organized as follows. In Sec. 2,
we present an overview of the system and detail
out the features. Sec. 3 describes the training ex-
periments to fine tune the system. The shared task
results on test data provided by the organizers is
reported and discussed in Sec. 4. In Sec. 5 we con-
clude with some pointers to future work.

2 System overview

The task can be viewed as a sequence labeling
problem, where, like POS tagging, each token in a
sentence needs to be labeled with one of the 6 tags.
Conditional Random Fields (CRF) are a reason-
able choice for such sequence labeling tasks (Laf-
ferty et al., 2001); previous work (King and Ab-
ney, 2013) has shown that it provides good perfor-
mance for the language identification task as well.
Therefore, in our work, we explored various token
level and contextual features to build an optimal
CRF using the provided training data. The features
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Lang. Given Ids Available Available (%)
Train Test Train Test Train Test

Es 11,400 3,014 11,400 1,672 100% 54.5%
Ne 9,999 3,018 9,296 2,874 93% 95.2%
Cn 999 316 995 313 99.6% 99.1%
Ar 5,839 2,363 5,839 2,363 100% 100%
Ar 2 - 1,777 - 1,777 - 100%

Table 2: Number of tweets retrieved for the vari-
ous datasets.

used can be broadly grouped as described below:
Capitalization Features: They capture if let-

ter(s) in a token has been capitalized or not. The
reason for using this feature is that in several lan-
guages, capital Roman letters are used to denote
proper nouns which could correspond to named
entities. This feature is meaningful only for lan-
guages which make case distinction (e.g., Roman,
Greek and Cyrillic scripts).

Contextual Features: They constitute the cur-
rent and surrounding tokens and the length of the
current token. Code-switching points are context
sensitive and depend on various structural restric-
tions (Muysken, 2001; Poplack, 1980).

Special Character Features: They capture the
existence of special characters and numbers in the
token. Tweets contain various entities like hash-
tags, mentions, links, smileys, etc., which are sig-
naled by #, @ and other special characters.

Lexicon Features: These features indicate the
existence of a token in lexicons. Common words
in a language and named entities can be curated
into finite, manageable lexicons and were there-
fore used for cases where such data was available.

Character n-gram features: Following King
and Abney (2013), we also used charagter n-grams
for n=1 to 5. However, instead of directly using
the n-grams as features in the CRF, we trained
two binary maximum entropy classifiers to identify
words of lang1 and lang2. The classifiers returned
the probability that a word is of lang1 (or lang2),
which were then binned into 10 equal buckets and
used as features.

The features are listed in Table 1.

3 Experiments

3.1 Data extraction and pre-processing
The ruby script provided by the shared task orga-
nizers was used to retrieve tweets for each of the
language pairs. Tweets that could not be down-
loaded either because they were deleted or pro-

Source Language For

instance types en.nt.bz21 English NE
instance types es.nt.bz21 Spanish NE
eng wikipedia 2010 1M-text.tar.gz2 English FW
spa wikipedia 2011 1M-text.tar.gz2 Spanish FW

Table 3: External resources used in the task.
1 http://wiki.dbpedia.org/Download, 2 http://corpora.uni-
leipzig.de/download.html; NE:Named entities, FW:Word fre-
quency list

tected were excluded from the training set. Ta-
ble 2 shows the number of tweets that we were
able to retrieve for the released datasets. Further,
we found a few rare cases of tokenization errors,
as evident from the occurrence of spaces within
tokens. These were not removed from the training
set and instead, the spaces in these tokens were re-
placed by an underscore.

3.2 Feature extraction and labeling
Named entities for English and Spanish were
obtained from DBPedia instance types, namely,
Agent, Award, Device, Holiday, Language, Mean-
sOfTransportation, Name, PersonFunction, Place,
and Work. Frequency lists for these languages
were obtained from the Leipzig Copora Collec-
tion(Quasthoff et al., 2006); words containing spe-
cial characters and numbers were removed from
the list. The files used are listed in table 3. The
character n-gram classifiers were implemented
using the MaxEnt classifier provided in MAL-
LET (McCallum, 2002). The classifiers were
trained on 6,000 positive examples randomly sam-
pled from the training set and negative examples
sampled from both, the training set and from word
lists of multiple languages from (Quasthoff et al.,
2006); the number of examples used for each of
these classifiers is given in Table 4.

We used CRF++ (Kudo, 2014) for labeling the
tweets. For all language pairs, CRF++ was run
under its default settings.

3.3 Model selection
For each language pair, we experimented with var-
ious feature combinations using 3-fold cross vali-
dation on the released training sets. Table 5 reports
the token-level labeling accuracies for the various
models, based on which the optimal feature sets
for each language pairs were chosen. These opti-
mal features are reported in Table 1, and the cor-
responding performance for 3-fold cross valida-
tion in Table 5. The final runs submitted for the
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ID Feature Description Type Features used in the final submission (Optimal set)
En-Es En-Ne En-Cn Ar-Ar

Capitalization Features

CAP1 Is first letter capitalized? True/False 3 3 3 NA
CAP2 Is any character capitalized? True/False 3 3 3 NA
CAP3 Are all characters capitalized? True/False 3 3 3 NA

Contextual Features

CON1 Current Token String 3 3 3 3
CON2 Previous 3 and next 3 tokens Array (Strings) 3 3 3
CON3 Word length String 3 3 3 3

Special Character Features

CHR0 Is English alphabet word? True/False 3 NA
CHR1 Contains @ in locations 2-end True/False 3 3 3 3
CHR2 Contains # in locations 2-end True/False 3 3 3 3
CHR3 Contains ’ in locations 2-end True/False 3 3 3 3
CHR4 Contains / in locations 2-end True/False 3 3 3 3
CHR5 Contains number in locations 2-end True/False 3 3 3 3
CHR6 Contains punctuation in locations 2-

end
True/False 3 3 3 3

CHR7 Starts with @ True/False 3 3 3 3
CHR8 Starts with # True/False 3 3 3 3
CHR9 Starts with ’ True/False 3 3 3 3
CHR10 Starts with / True/False 3 3 3 3
CHR11 Starts with number True/False 3 3 3 3
CHR12 Starts with punctuation True/False 3 3 3 3
CHR13 Token is a number? True/False 3 3 3 3
CHR14 Token is a punctuation? True/False 3 3 3 3
CHR15 Token contains a number? True/False 3 3 3 3

Lexicon Features

LEX1 In lang1 dictionary of most frequent
words?

True/False 3 3 3 NA

LEX2 In lang2 dictionary of most frequent
words?

True/False 3 NA NA

LEX3 Is NE? True/False 3 3 NA NA
LEX4 Is Acronym True/False 3 3 NA NA

Character n-gram Features

CNG0 Output of two MaxEnt classifiers
that classify lang1 vs. others and
lang2 vs. others. This gives 2 prob-
ability values binned into 10 bns,
two from each classifier, for the two
classes.

Array (binned
probability)

3 3 NA NA

CRF Feature Type U U U B

Table 1: A description of features used. NA refers to features that were either not applicable to the
language pair or were not available. B/U implies that the CRF has/does not have access to the features
of the previous token.
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Classifier Languages used (And # words)

English-Spanish Language Pair

Spanish vs Others [es (6000)], [en (4000), fr (500), hi (500), it (500), po (500)]
English vs Others [en (6000)], [es (4000), fr (500), hi (500), it (500), po (500)]

English-Nepali Language Pair

Nepali vs Others [ne (6000)], [en (3500), fr (500), hi (500), it (500), po (500)]
English vs Others [en (6000)], [ne (3500), fr (500), hi (500), it (500), po (500)]

Standard Arabic vs. Arabic Dialects

Std vs. Dialect [lang1 (9000)], [lang2 (3256)]

Table 4: Data to train character n-gram classifiers.

shared task, including those for the surprise test
sets, use the corresponding optimal feature sets for
each language pair.

Feature Context Language Pair
En-
Es

En-
Ne†

En-
Cn

Ar-
Ar

Ar-
Ar
(2)

Development Set

All B 92.8 94.3 93.1 85.5 -
- CON2 B 93.8 95.6 94.9 81.2 -
- CHR* B 92.3 93.5 91.0 85.3 -
- CAP* B 92.7 94.2 90.1 - -
- CON2 U 93.0 94.3 93.1 85.6 -
- CNG0 B 92.7 94.2 - - -
- LEX* B 92.7 94.1 - - -
Optimal - 95.0 95.6 95.0 85.5 -

Results on Test data for the optimal feature sets

Regular 85.0 95.2 90.4 90.1 53.6
Surprise 91.8 80.8 - 65.0 -

Table 5: The overall token labeling accuracies (in
%) for all language pairs on the training and test
datasets. “-” indicates the removal of the given
feature. ‘*” is used to indicate a group of features.
Refer tab. 1) for the feature Ids and the optimal
set. B and U stand for bigram and unigram respec-
tively, where the former refers to the case when the
CRF had access to features of the current and pre-
vious tokens, and the latter to the case where the
CRF had access only to the features of the current
token. †: Lexical resources available for En only.

4 Results and Observations

4.1 Overall token labeling accuracy

The overall token labeling accuracies for the regu-
lar and surpise test sets (wherever applicable) and
a second set of dialectal and standard Arabic are
reported in the last two rows of Table 5. The same
table also reports the results of the 3-fold cross val-

idation on the training datasets. Several important
observations can be made from these accuracy val-
ues.

Firstly, accuracies observed during the training
phase was quite high (∼ 95%) and exactly simi-
lar for En-Es, En-Ne and En-Cn data; but for Ar-
Ar dataset our method could achieve only up to
85% accuracy. We believe that this is due to un-
availability of any of the lexicon features, which
in turn was because we did not have access to any
lexicon for dialectal Arabic. While complete set
of lexical features were not available for En-Cn as
well, we did have English lexicon; also, we no-
ticed that in the En-Cn dataset, almost always the
En words were written in Roman script and the Cn
words were written in the Chinese script. Hence,
in this case, script itself is a very effective feature
for classification, which has been indirectly mod-
eled by the CHR0 feature. On the other hand, in
the Ar-Ar datasets, both the dialects are written us-
ing the same script (Arabic). Further, we found
that using the CNG0 feature that is obtained by
training a character n-gram classifier for the lan-
guage pairs resulted in the drop of performance.
Since we are not familiar with arabic scripts, we
are not sure how effective the character n-gram
based features are in differentiating between the
standard and the dialectal Arabic. Based on our
experiment with CNG0, we hypothesize that the
dialects may not show a drastic difference in their
character n-gram distributions and therefore may
not contribute to the performance of our system.

Secondly, we observe that effectiveness of the
different feature sets vary across language pairs.
Using all the features of the previous words (con-
text = B) seems to hurt the performance, though
just looking at the previous 3 and next 3 tokens
was useful. On the other hand, in Ar-Ar the re-
verse has been observed. Apart from lexicons,
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character n-grams seems to be a very useful fea-
ture in En-Es classification. As discussed above,
CHR* features are effective for En-Cn because,
among other things, one of these features also cap-
tures whether the word is in Roman script. For En-
Ne, we do not see any particular feature or sets of
features that strongly influence the classification.

The overall token labeling accuracy of the
shared task runs, at least in some cases, differ quite
significantly from our 3-fold cross validation re-
sults. On the regular test sets, the results for En-
Ne is very similar to, and En-Cn and Ar-Ar are
within expected range of the training set results.
However, we observe a 10% drop in En-Es. We
observe an even bigger drop in the accuracy of the
second Ar-Ar test set. We will discuss the possible
reason for this in the next subsection. The accura-
cies on the surprise sets do not show any specific
trend. While for En-Es the accuracy is higher by
5% for the surprise set than the regular set, En-Ne
and Ar-Ar show the reverse, and a more expected
trend. The rather drastic drops in the accuracy for
these two pairs on the surprise sets makes error
analysis and comparative analysis of the training,
test and surprise datasets imperative.

4.2 Error Analysis

Table 6 reports the F-scores for the six labels, i.e.,
classes, and also an overall tweet/post level accu-
racy. The latter is defined as the percentage of in-
put units (which could be either a tweet or a post or
just a sentence depending on the dataset) that are
correctly identified as either code-mixed or mono-
lingual; an input unit is considered code-mixed if
there is at least one word labeled as lang1 and one
as lang2.

For all the language pairs other than Arabic, the
F-score for NE is much lower than that for lang1
and lang2. Thus, the performance of the system
can be significantly improved by identifying NEs
better. Currently, we have used lexicons for only
English and Spanish. This information was not
available for the other languages, namely, Nepali,
Mandarin, and Arabic. The problem of NE detec-
tion is further compounded by the informal nature
of sentences, because of which they may not al-
ways be capitalized or spelt properly. Better de-
tection of NEs in code-mixed and informal text is
an interesting research challenge that we plan to
tackle in the future.

Note that the ambiguous and mixed classes can

be ignored because their combined occurrence is
less than 0.5% in all the datasets, and hence they
have practically no effect on the final labeling ac-
curacy. In fact, their rarity (especially in the train-
ing set) is also the reason behind the very poor F-
scores for these classes. In En-Cn, we also observe
a low F-score for other.

In the Ar-Ar training data as well as the test set,
there are fewer words of lang2, i.e., dialectal Ara-
bic. Since our system was trained primarily on the
context and word features (and not lexicon or char-
acter n-grams), there was not enough examples in
the training set for lang2 to learn a reliable model
for identifying lang2. Moreover, due to the dis-
tributional skew, the system learnt to label the to-
kens as lang1 with very high probability. The high
accuracy in the Ar-Ar original test set is because
81.5% of the tokens were indeed of type lang1
in the test data while only 0.26% were labeled as
lang2. This is also reflected by the fact that though
the F-score for lang2 in Ar-Ar test set is 0.158, the
overall accuracy is still 90.1% because F-score for
lang1 is 94.2%.

As shown in Table 7, the distribution of the
classes in the second Ar-Ar test set and the sur-
prise set is much less skewed and thus, very differ-
ent from that of the training and original test sets.
In fact, words of lang2 occur more frequently in
these sets than those of lang1. This difference in
class distributions, we believe, is the primary rea-
son behind the poorer performance of the system
on some of the Ar-Ar test sets.

We also observe a significant drop in accuracy
for En-Ne surprise data, as compared to the accu-
racy on the regular En-Ne test and training data.
We suspect that it could be either due to the dif-
ference in the class distribution or the genre/style
of the two datasets, or both. An analysis of the
surprise test set reveals that a good fraction of
the data consist of long song titles or part of the
lyrics of various Nepali songs. Many of these
words were labeled as lang2 (i.e., Nepali) by our
system, but were actually labeled as NEs in the
gold annotations1 While song titles can certainly
be considered as NEs, it is very difficult to iden-
tify them without appropriate resources. It should
however be noted that the En-Ne surprise set has
only 1087 tokens, which is too small to base any
strong claims or conclusions on.

1Confirmed by the shared task organizers over email com-
munication.
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Language Pair F-measure (Token-level) Accuracy of
Ambiguous lang1 lang2 mixed NE Other Comment/Post

En-Es 0.000 0.856 0.879 0.000 0.156 0.856 82.1
En-Ne - 0.948 0.969 0.000 0.454 0.972 95.3
En-Cn - 0.980 0.762 0.000 0.664 0.344 81.8
Ar-Ar 0.000 0.942 0.158 - 0.577 0.911 94.7
Ar-Ar (2) 0.015 0.587 0.505 0.000 0.424 0.438 71.4
En-Es Surprise 0.000 0.845 0.864 0.000 0.148 0.837 81.5
En-Ne Surprise - 0.785 0.874 - 0.370 0.808 71.6
Ar-Ar Surprise 0.000 0.563 0.698 0.000 0.332 0.966 84.8

Table 6: Class-wise F-scores and comment/post level accuracy of the submitted runs.

Dataset Percentage of
Amb. lang1 lang2 mixed NE Other

Training 0.89 66.36 13.60 0.01 11.83 7.30
Test-1 0.02 81.54 0.26 0.00 10.97 7.21
Test-2 0.37 32.04 45.34 0.01 13.24 9.01
Surprise 0.91 22.36 57.67 0.03 9.13 9.90

Table 7: Distribution (in %) of the classes in the
training and the three test sets for Ar-Ar.

5 Conclusion

In this paper, we have described a CRF based word
labeling system for word-level language identifi-
cation of code-mixed text. The system relies on
annotated data for supervised training and also
lexicons of the languages, if available. Character
n-grams of the words were also used in a MaxEnt
classifier to detect the language of a word. This
feature has been found to be useful for some lan-
guage pairs. Since none of the techniques or con-
cepts used here is language specific, we believe
that this approach is applicable for word labeling
for code-mixed text between any two (or more)
languages as long as annotated data is available.

This is demonstrated by the fact that the sys-
tem performs more or less consistently with accu-
racies ranging from 80% - 95% across four lan-
guage pairs (except for the case of Ar-Ar second
test set and the surprise set which is due to stark
distributional differences between the training and
test sets). NE detection is one of the most chal-
lenging problems, improving which will definitely
improve the overall performance of our system. It
will be interesting to explore semi-supervised and
unsupervised techniques for solving this task be-
cause creating annotated datasets is expensive and
effort-intensive.
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Abstract

We describe the CMU submission for
the 2014 shared task on language iden-
tification in code-switched data. We
participated in all four language pairs:
Spanish–English, Mandarin–English,
Nepali–English, and Modern Standard
Arabic–Arabic dialects. After describing
our CRF-based baseline system, we
discuss three extensions for learning from
unlabeled data: semi-supervised learning,
word embeddings, and word lists.

1 Introduction

Code switching (CS) occurs when a multilingual
speaker uses more than one language in the same
conversation or discourse. Automatic idenefica-
tion of the points at which code switching occurs
is important for two reasons: (1) to help sociolin-
guists analyze the frequency, circumstances and
motivations related to code switching (Gumperz,
1982), and (2) to automatically determine which
language-specific NLP models to use for analyz-
ing segments of text or speech.

CS is pervasive in social media due to its in-
formal nature (Lui and Baldwin, 2014). The first
workshop on computational approaches to code
switching in EMNLP 2014 organized a shared task
(Solorio et al., 2014) on identifying code switch-
ing, providing training data of multilingual tweets
with token-level language-ID annotations. See
§2 for a detailed description of the shared task.
This short paper documents our submission in the
shared task.

We note that constructing a CS data set that is
annotated at the token level requires remarkable
manual effort. However, collecting raw tweets is
easy and fast. We propose leveraging both labeled
and unlabeled data in a unified framework; condi-
tional random field autoencoders (Ammar et al.,

2014). The CRF autoencoder framework consists
of an encoding model and a reconstruction model.
The encoding model is a linear-chain conditional
random field (CRF) (Lafferty et al., 2001) which
generates a sequence of labels, conditional on a
token sequence. Importantly, the parameters of
the encoding model can be interpreted in the same
way a CRF model would. This is in contrary to
generative model parameters which explain both
the observation sequence and the label sequence.
The reconstruction model, on the other hand, inde-
pendently generates the tokens conditional on the
corresponding labels. Both labeled and unlabeled
data can be efficiently used to fit parameters of this
model, minimizing regularized log loss. See §4.1
for more details.

After modeling unlabeled token sequences, we
explore two other ways of leveraging unlabeled
data: word embeddings and word lists. The word
embeddings we use capture monolingual distribu-
tional similarities and therefore may be indicative
of a language (see §4.2). A word list, on the other
hand, is a collection of words which have been
manually or automatically constructed and share
some property (see §4.3). For example, we extract
the set of surface forms in monolingual corpora.

In §5, we describe the experiments and discuss
results. According to the results, modeling unla-
beled data using CRF autoencoders did not im-
prove prediction accuracy. Nevertheless, more ex-
periments need to be run before we can conclude
this setting. On the positive side, word embed-
dings and word lists have been shown to improve
CS prediction accuracy, provided they have decent
coverage of tokens in the test set.

2 Task Description

The shared task training data consists of code–
switched tweets with token-level annotations.
The data is organized in four language pairs:
English–Spanish (En-Es), English–Nepali (En-
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Ne), Mandarin–English (Zh-En) and Modern
Standard Arabic–Arabic dialects (MSA-ARZ).
Table 1 shows the size of the data sets provided
for the shared task in each language pair.

For each tweet in the data set, the user ID, tweet
ID, and a list of tokens’ start offset and end offset
are provided. Each token is annotated with one
of the following labels: lang1, lang2, ne (i.e.,
named entities), mixed (i.e., mixed parts of lang1
and lang2), ambiguous (i.e., cannot be identified
given context), and other.

Two test sets were used to evaluate each sub-
mission for the shared task in each language pair.
The first test set consists of Tweets, similar to the
training set. The second test set consists of token
sequences from a surprise genre. Since partici-
pants were not given the test sets, we only report
results on a Twitter test set (a subset of the data
provided for shared task participants). Statistics
of our train/test data splits are given in Table 5.

lang. pair split tweets tokens users
En–Ne all 9, 993 146, 053 18

train 7, 504 109, 040 12
test 2, 489 37, 013 6

En–Es all 11, 400 140, 738 9
train 7, 399 101, 451 6
test 4, 001 39, 287 3

Zh–En all 994 17, 408 995
train 662 11, 677 663
test 332 5, 731 332

MSA–ARZ all 5, 862 119, 775 7
train 4, 800 95, 352 6
test 1, 062 24, 423 1

Table 1: Total number of tweets, tokens, and Twit-
ter user IDs for each language pair. For each lan-
guage pair, the first line represents all data pro-
vided to shared task participants. The second and
third lines represent our train/test data split for the
experiments reported in this paper. Since Twit-
ter users are allowed to delete their tweets, the
number of tweets and tokens reported in the third
and fourth columns may be less than the number
of tweets and tokens originally annotated by the
shared task organizers.

3 Baseline System

We model token-level language ID as a sequence
of labels using a linear-chain conditional ran-
dom field (CRF) (Lafferty et al., 2001) described

in §3.1 with the features in §3.2.

3.1 Model

A linear-chain CRF models the conditional proba-
bility of a label sequence y given a token sequence
x and given extra context φ, as follows:

p(y | x,φ) =
expλ>

∑|x|
i=1 f(x, yi, yi−1,φ)∑

y′ expλ>
∑|x|

i=1 f(x, y′i, y
′
i−1,φ)

where λ is a vector of feature weights, and f is
a vector of local feature functions. We use φ to
explicitly represent context information necessary
to compute the feature functions described below.

In a linear-chain structure, yi only depends on
observed variables x,φ and the neighboring labels
yi−1 and yi+1. Therefore, we can use dynamic
programming to do inference in run time that is
quadratic in the number of unique labels and lin-
ear in the sequence length. We use L-BFGS to
learn the feature weights λ, maximizing the L2-
regularized log-likelihood of labeled examples L:

``supervised(λ) =

cL2 ||λ||22 +
∑
〈x,y〉∈L

log p(y | x,φ)

After training the model, we use again use dy-
namic programming to find the most likely label
sequence, for each token sequence in the test set.

3.2 Features

We use the following features in the baseline sys-
tem:

• character n-grams (loweredcased tri- and quad-
grams)

• prefixes and suffixes of lengths 1, 2, 3 and 4

• unicode page of the first character1

• case (first-character-uppercased vs. all-
characters-uppercased vs. all-characters-
alphanumeric)

• tweet-level language ID predictions from two
off-the-shelf language identifiers: cld22 and
ldig3

1http://www.unicode.org/charts/
2https://code.google.com/p/cld2/
3https://github.com/shuyo/ldig
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Figure 1: A diagram of the CRF autoencoder

4 Using Unlabeled Data

In §3, we learn the parameters of the CRF model
parameters in a standard fully supervised fashion,
using labeled examples in the training set. Here,
we attempt to use unlabeled examples to improve
our system’s performance in three ways: model-
ing unlabeled token sequences in the CRF autoen-
coder framework, word embeddings, and word
lists.

4.1 CRF Autoencoders

A CRF autoencoder (Ammar et al., 2014) consists
of an input layer, an output layer, and a hidden
layer. Both input and output layer represent the
observed token sequence. The hidden layer rep-
resents the label sequence. Fig. 1 illustrates the
model dependencies for sequence labeling prob-
lems with a first-order Markov assumption. Con-
ditional on an observation sequence x and side in-
formation φ, a traditional linear-chain CRF model
is used to generate the label sequence y. The
model then generates x̂ which represents a recon-
struction of the original observation sequence. El-
ements of this reconstruction (i.e., x̂i) are then in-
dependently generated conditional on the corre-
sponding label yi using simple categorical distri-
butions.

The parametric form of the model is given by:

p(y, x̂ | x,φ) =
|x|∏
i=1

θx̂i|yi
×

expλ>
∑|x|

i=1 f(x, yi−1, yi, i,φ)∑
y′ expλ>

∑|x|
i=1 f(x, y′i−1, y

′
i, i,φ)

where λ is a vector of CRF feature weights, f is a
vector of local feature functions (we use the same
features described in §3.2), and θx̂i|yi

are categor-

ical distribution parameters of the reconstruction
model representing p(x̂i | yi).

We can think of a label sequence as a low-
cardinality lossy compression of the correspond-
ing token sequence. CRF autoencoders explic-
itly model this intuition by creating an information
bottleneck where label sequences are required to
regenerate the same token sequence despite their
limited capacity. Therefore, when only unlabeled
examples U are available, we train CRF autoen-
coders by maximizing the regularized likelihood
of generating reconstructions x̂, conditional on x,
marginalizing values of label sequences y:

``unsupervised(λ,θ) = cL2 ||λ||22 +RDirichlet(θ, α)+∑
〈x,x̂〉∈U

log
∑

y:|y|=|x|
p(y, x̂ | x)

where RDirichlet is a regularizer based on a vari-
ational approximation of a symmetric Dirichlet
prior with concentration parameter α for the re-
construction parameters θ.

Having access to labeled examples, it is easy to
modify this objective to learn from both labeled
and unlabeled examples as follows:

``semi(λ,θ) = cL2 ||λ||22 +RDirichlet(θ, α)+

cunlabeled ×
∑
〈x,x̂〉∈U

log
∑

y:|y|=|x|
p(y, x̂ | x)+

clabeled ×
∑
〈x,y〉∈L

log p(y | x)

We use block coordinate descent to optimize
this objective. First, we use cem iterations of
the expectation maximization algorithm to opti-
mize the θ-block while the λ-block is fixed, then
we optimize the λ-block with clbfgs iterations of
L-BFGS (Liu et al., 1989) while the θ-block is
fixed.4

4.2 Unsupervised Word Embeddings
For many NLP tasks, using unsupervised
word representations as features improves
accuracy (Turian et al., 2010). We use
word2vec (Mikolov et al., 2013) to train
100–dimensional word embeddings from a
large Twitter corpus of about 20 million tweets
extracted from the live stream, in multiple lan-
guages. We define an additional feature function

4An open source efficient c++ imple-
mentation of our method can be found at
https://github.com/ldmt-muri/alignment-with-openfst
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in the CRF autoencoder model §4.1 for each of
the 100 dimensions, conjoined with the label yi.
The feature value is the corresponding dimension
for xi. A binary feature indicating the absence of
word embeddings is fired for out-of-vocabulary
words (i.e., words for which we do not have word
embeddings). The token-level coverage of the
word embeddings for each of the languages or
dialects used in the training data is reported in
Table 2.

4.3 Word List Features

While some words are ambiguous, many words
frequently occur in only one of the two lan-
guages being considered. An easy way to iden-
tify the label of such unambiguous words is to
check whether they belong to the vocabulary of
either language. Moreover, named entity recog-
nizers typically rely on gazetteers of named enti-
ties to improve their performance. We generalize
the notion of using monolingual vocabularies and
gazetteers of named entities to general word lists.
Using K word lists {l1, . . . , lK}, when a token xi

is labeled with yi, we fire a binary feature that con-
joins 〈yi, δ(xi ∈ l1), . . . , δ(xi ∈ lK)〉, where δ is
an indicator boolean function. We use the follow-
ing word lists:

• Hindi and Nepali Wikipedia article titles

• multilingual named entities from the JRC
dataset5 and CoNLL 2003 shared task

• word types in monolingual corpora in MSA,
ARZ, En and Es.

• set difference between the following pairs of
word lists: MSA-ARZ, ARZ-MSA, En-Es, Es-
En.

Transliteration from Devanagari The Nepali–
English tweets in the dataset are romanized. This
renders our Nepali word lists, which are based
on the Devanagari script, useless. Therefore, we
transliterate the Hindi and Nepali named entities
lists using a deterministic phonetic mapping. We
romanize the Devanagari words using the IAST
scheme.6 We then drop all accent marks on the
characters to make them fit into the 7–bit ASCII
range.

5http://datahub.io/dataset/jrc-names
6http://en.wikipedia.org/wiki/

International_Alphabet_of_Sanskrit_
Transliteration

embeddings word lists
language coverage coverage

ARZ 30.7% 68.8%
En 73.5% 55.7%

MSA 26.6% 76.8%
Ne 14.5% 77.0%
Es 62.9% 78.0%
Zh 16.0% 0.7%

Table 2: The type-level coverage of annotated data
according to word embeddings (second column)
and according to word lists (third column), per lan-
guage.

5 Experiments

We compare the performance of five models for
each language pair, which correspond to the five
lines in Table 3. The first model, “CRF” is the
baseline model described in §3. The second “CRF
+ Utest” and the third “CRF + Uall” are CRF au-
toencoder models (see §4.1) with two sets of un-
labeled data: (1) Utest which only includes the test
set,7 and (2) Uall which includes the test set as well
as all tweets by the set of users who contributed
any tweets in L. The fourth model “CRF + Uall +
emb.” is a CRF autoencoder which uses word em-
bedding features (see §4.2), as well as the features
described in §3.2. Finally, the fifth model “CRF +
Uall + emb. + lists” further adds word list features
(see §4.3). In all but the “CRF” model, we adopt a
transductive learning setup.

Since the CRF baseline is used as the encoding
part of the CRF autoencoder model, we use the
supervisedly-trained CRF parameters to initialize
the CRF autoencoder models. The categorical dis-
tributions of the reconstruction model are initial-
ized with discrete uniforms. We set the weight
of the labeled data log-likelihood clabeled = 0.5,
the weight of the unlabeled data log-likelihood
cunlabeled = 0.5, the L2 regularization strength
cL2 = 0.3, the concentration parameter of the
Dirichlet prior α = 0.1, the number of L-BFGS
iterations cLBFGS = 4, and the number of EM iter-
ations cEM = 4.8 We stop training after 50 itera-
tions of block coordinate descent.

7Utest is potentially useful when the test set belongs to a
different domain than the labeled examples, which is often
referred to as “domain adaptation”. However we were unable
to test this hypothesis since all the CS annotations we had
access to are from Twitter.

8Hyper-parameters cL2 and α were tuned using cross-
validation. The remaining hyper-parameters were not tuned.
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config En–Ne MSA–ARZ En–Es Zh–En
CRF 95.2% 80.5% 94.6% 94.9%
+Ttest 95.2% 80.6% 94.6% 94.9%
+Tall 95.2% 80.7% 94.6% 94.9%
+emb. 95.3% 81.3% 95.1% 95.0%
+lists 97.0% 81.2% 96.7% 95.3%

Table 3: Token level accuracy results for each of
the four language pairs.

label predicted predicted
MSA ARZ

true MSA 93.9% 5.3%
true ARZ 32.1% 65.2%

Table 4: Confusion between MSA and ARZ in the
Baseline configuration.

Results. The CRF baseline results are reported
in the first line in Table 3. For three language
pairs, the overall token-level accuracy ranges be-
tween 94.6% and 95.2%. In the fourth language
pair, MSA-ARZ, the baseline accuracy is 80.5%
which indicates the relative difficulty of this task.

The second and third lines in Table 3 show the
results when we use CRF autoencoders with the
unlabeled test set (Utest), and with all unlabeled
tweets (Uall), respectively. While semi-supervised
learning did not hurt accuracy on any of the lan-
guages, it only resulted in a tiny increase in accu-
racy for the Arabic dialects task.

The fourth line in Table 3 extends the CRF au-
toencoder model (third line) by adding unsuper-
vised word embedding features. This results in
an improvement of 0.6% for MSA-ARZ, 0.5% for
En-Es, 0.1% for En-Ne and Zh-En.

The fifth line builds on the fourth line by adding
word list features. This results in an improvement
of 1.7% in En-Ne, 1.6% in En-Es, 0.4% in Zh-En,
and degradation of 0.1% in MSA-ARZ.

Analysis and Discussion The baseline perfor-
mance in the MSA-ARZ task is considerably
lower than those of the other tasks. Table 4 illus-
trates how the baseline model confuses lang1 and
lang2 in the MSA-ARZ task. While the baseline
system correctly labels 93.9% of MSA tokens, it
only correctly labels 65.2% of ARZ tokens.

Although the reported semi-supervised results
did not significantly improve on the CRF baseline,
more work needs to be done in order to conclude
these results:

lang. pair |Utest| |Uall| |L|
En–Ne 2489 6230 7504

MSA–ARZ 1062 2520 4800
Zh–En 332 332 663
En–Es 4001 7177 7399

Table 5: Number of tweets in L, Utest and Uall used
for semi-supervised learning of CRF autoencoders
models.

• Use an out-of-domain test set where some adap-
tation to the test set is more promising.

• Vary the number of labeled examples |L| and
the number of unlabeled examples |U|. Table 5
gives the number of labeled and unlabeled ex-
amples used for training the model. It is pos-
sible that semi-supervised learning would have
been more useful with a smaller |L| and a larger
|U|.
• Tune clabeled and cunlabeled.

• Split the parameters λ into two subsets: λlabeled
and λunlabeled; where λlabeled are the parameters
which have a non-zero value for any input x in
L and λunlabeled are the remaining parameters in
λ which only have non-zero values with unla-
beled examples but not with the labeled exam-
ples.

• Use a richer reconstruction model.

• Reconstruct a transformation of the token se-
quences instead of their surface forms.

• Train a token-level language ID model trained
on a large number of languages, as opposed to
disambiguating only two languages at a time.

Word embeddings improve the results for all
language pairs, but the largest improvement is in
MSA-ARZ and En-Es. Looking into the word em-
beddings coverage of those languages (i.e., MSA,
ARZ, Es, En in Table 2), we find that they are bet-
ter covered than the other languages (Ne, Zh). We
conclude that further improvements on En-Ne and
Zh-En may be expected if they are better repre-
sented in the corpus used to learn word embed-
dings.

As for the word lists, the largest improvement
we get is the romanized word lists of Nepali,
which have a 77.0% coverage and improve the
accuracy by 1.7%. This shows that our translit-
erated word lists not only cover a lot of tokens,
and are also useful for language ID. The Spanish
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Config lang1 lang2 ne
+lists 84.1% 76.5% 73.7%
-lists 84.2% 77.1% 71.5%

Table 6: F–Measures of two Arabic configura-
tions. lang1 is MSA. lang2 is ARZ.

word lists also have a wide coverage, improving
the overall accuracy by 1.6%. The overall accu-
racy of the Arabic dialects slightly degrades with
the addition of the word lists. Closer inspection
in table 6 reveals that it improves the F–Measure
of the named entities at the expense of both MSA
(lang1) and ARZ (lang2).

6 Related Work

Previous work on identifying languages in a mul-
tilingual document includes (Singh and Gorla,
2007; King and Abney, 2013; Lui et al., 2014).
Their goal is generally more about identifying the
languages that appear in the document than intra–
sentential CS points.

Previous work on computational models of
code–switching include formalism (Joshi, 1982)
and language models that encode syntactic con-
straints from theories of code–switching, such as
(Li and Fung, 2013; Li and Fung, 2014). These
require the existence of a parser for the languages
under consideration. Other work on prediction
of code–switching points, such as (Elfardy et al.,
2013; Nguyen and Dogruoz, 2013) and ours, do
not depend upon such NLP infrastructure. Both of
the aforementioned use basic character–level fea-
tures and dictionaries on sequence models.

7 Conclusion

We have shown that a simple CRF baseline with
a handful of feature templates obtains strong re-
sults for this task. We discussed three methods
to improve over the supervised baseline using un-
labeled data: (1) modeling unlabeleld data using
CRF autoencoders, (2) using pre-trained word em-
beddings, and (3) using word list features.

We show that adding word embedding features
and word lists features is useful when they have
good coverage of words in a data set. While mod-
est improvements are observed due to modeling
unlabeled data with CRF autoenocders, we iden-
tified possible directions to gain further improve-
ments.

While bilingual disambiguation was a good first

step for identifying code switching, we suggest a
reformulation of the task such that each label can
take on one of many languages.

Acknowledgments

We thank Brendan O’Connor who helped assem-
ble the Twitter dataset. We also thank the work-
shop organizers for their hard work, and the re-
viewers for their comments. This work was
sponsored by the U.S. Army Research Labora-
tory and the U.S. Army Research Office under
contract/grant number W911NF-10-1-0533. The
statements made herein are solely the responsibil-
ity of the authors.

References
Waleed Ammar, Chris Dyer, and Noah A. Smith. 2014.

Conditional random field autoencoders for unsuper-
vised structured prediction. In Proc. of NIPS.

Heba Elfardy, Mohamed Al-Badrashiny, and Mona
Diab. 2013. Code switch point detection in ara-
bic. In Natural Language Processing and Informa-
tion Systems, pages 412–416. Springer.

John J. Gumperz. 1982. Discourse Strategies. Studies
in Interactional Sociolinguistics. Cambridge Univer-
sity Press.

Aravind K. Joshi. 1982. Processing of sentences with
intra-sentential code-switching. In Proceedings of
the 9th Conference on Computational Linguistics -
Volume 1, COLING ’82, pages 145–150, Czechoslo-
vakia. Academia Praha.

Ben King and Steven Abney. 2013. Labeling the lan-
guages of words in mixed-language documents us-
ing weakly supervised methods. Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1110–1119. As-
sociation for Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proc. of ICML.

Ying Li and Pascale Fung. 2013. Improved mixed lan-
guage speech recognition using asymmetric acous-
tic model and language model with code-switch in-
version constraints. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2013 IEEE International
Conference on, pages 7368–7372, May.

Ying Li and Pascale Fung. 2014. Code switch lan-
guage modeling with functional head constraint. In
Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, pages
4913–4917, May.

85



D. C. Liu, J. Nocedal, and C. Dong. 1989. On the lim-
ited memory bfgs method for large scale optimiza-
tion. Mathematical Programming.

Marco Lui and Timothy Baldwin. 2014. Accurate
language identification of twitter messages. In Pro-
ceedings of the 5th Workshop on Language Analysis
for Social Media (LASM), pages 17–25, Gothenburg,
Sweden, April. Association for Computational Lin-
guistics.

Marco Lui, Han Jey Lau, and Timothy Baldwin. 2014.
Automatic detection and language identification of
multilingual documents. Transactions of the Asso-
ciation of Computational Linguistics, 2:27–40.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proc. of ICLR.

Dong Nguyen and Seza A. Dogruoz. 2013. Word level
language identification in online multilingual com-
munication. Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 857–862. Association for Computational Lin-
guistics.

Anil Kumar Singh and Jagadeesh Gorla. 2007. Identi-
fication of languages and encodings in a multilingual
document. In Building and Exploring Web Corpora
(WAC3-2007): Proceedings of the 3rd Web as Cor-
pus Workshop, Incorporating Cleaneval, volume 4,
page 95.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steve
Bethard, Mona Diab, Mahmoud Gonheim, Abdelati
Hawwari, Fahad AlGhamdi, Julia Hirshberg, Alison
Chang, and Pascale Fung. 2014. Overview for the
first shared task on language identification in code-
switched data. In Proceedings of the First Workshop
on Computational Approaches to Code-Switching.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, ACL ’10, pages 384–394,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

86



Proceedings of The First Workshop on Computational Approaches to Code Switching, pages 87–93,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

Language Identification in Code-Switching Scenario

Naman Jain
LTRC, IIIT-H, Hyderabad, India
naman.jain@research.iiit.ac.in

Riyaz Ahmad Bhat
LTRC, IIIT-H, Hyderabad, India
riyaz.bhat@research.iiit.ac.in

Abstract

This paper describes a CRF based token
level language identification system en-
try to Language Identification in Code-
Switched (CS) Data task of CodeSwitch
2014. Our system hinges on using con-
ditional posterior probabilities for the in-
dividual codes (words) in code-switched
data to solve the language identification
task. We also experiment with other lin-
guistically motivated language specific as
well as generic features to train the CRF
based sequence labeling algorithm achiev-
ing reasonable results.

1 Introduction

This paper describes our participation in the Lan-
guage Identification in Code-Switched Data task
at CodeSwitch 2014 (Solorio et al., 2014). The
workshop focuses on NLP approaches for the
analysis and processing of mixed-language data
with a focus on intra sentential code-switching,
while the shared task focuses on the identifica-
tion of the language of each word in a code-
switched data, which is a prerequisite for ana-
lyzing/processing such data. Code-switching is a
sociolinguistics phenomenon, where multilingual
speakers switch back and forth between two or
more common languages or language-varieties,
in the context of a single written or spoken
conversation. Natural language analysis of code-
switched (henceforth CS) data for various NLP
tasks like Parsing, Machine Translation (MT), Au-
tomatic Speech Recognition (ASR), Information
Retrieval (IR) and Extraction (IE) and Semantic
Processing, is more complex than monolingual
data. Traditional NLP techniques perform miser-
ably when processing mixed language data. The
performance degrades at a rate proportional to the
amount and level of code-switching present in the

data. Therefore, in order to process such data,
a separate language identification component is
needed, to first identify the language of individual
words.

Language identification in code-switched data
can be thought of as a sub-task of a document
level language identification task. The latter aims
to identify the language a given document is writ-
ten in (Baldwin and Lui, 2010), while the former
addresses the same problem, however at the token
level. Although, both the problems have separate
goals, they can fundamentally be modeled with a
similar set of features and techniques. However,
language identification at the word level is more
challenging than a typical document level lan-
guage identification problem. The number of fea-
tures available at document level is much higher
than at word level. The available features for word
level identification are word morphology, syllable
structure and phonemic (letter) inventory of the
language(s). Since these features are related to the
structure of a word, letter based n-gram models
have been reported to give reasonably accurate and
comparable results (Dunning, 1994; Elfardy and
Diab, 2012; King and Abney, 2013; Nguyen and
Dogruoz, 2014; Lui et al., 2014). In this work, we
present a token level language identification sys-
tem which mainly hinges on the posterior prob-
abilities computed using n-gram based language
models.

The rest of the paper is organized as follows: In
Section 2, we discuss about the data of the shared
task. In Section 3, we discuss the methodology
we adapted to address the problem of language
identification, in detail. Experiments based on our
methodology are discussed in Section 4. In Sec-
tion 5, we present the results obtained, with a brief
discussion. Finally we conclude in Section 6 with
some future directions.
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2 Data

The Language Identification in the Code-Switched
(CS) data shared task is meant for language
identification in 4 language pairs (henceforth
LP) namely, Nepali-English (N-E), Spanish-
English (S-E), Mandarin-English (M-E) and Mod-
ern Standard Arabic-Arabic dialects (MSA-A). So
as to get familiar with the training and testing data,
trial data sets consisting of 20 tweets each, corre-
sponding to all the language-pairs, were first re-
leased. Additional test data as “surprise genre” for
S-E, N-E and MSA-A were also released, which
comprised of data from Facebook, blogs and Ara-
bic commentaries.

2.1 Tag Description

Each word in the training data is classified into
one of the 6 different classes which are, Lang1,
Lang2, Mixed, Other, Ambiguous and NE.
“Lang1” and “Lang2” tags correspond to words
specific to the languages in an LP. “Mixed” words
are those words that are partially in both the lan-
guages. “Ambiguous” words are the ones that
could belong to either of the language. All gib-
berish and unintelligible words and words that
do not belong to any of the languages fall under
“Other” category. “Named Entities” (NE) com-
prise of proper names that refer to people, places,
organizations, locations, movie titles and song ti-
tles etc.

2.2 Data Format and Data Crawling

Due to Twitter policies, distributing the data di-
rectly is not possible in the shared task and thus the
trial, training and testing data are provided as char
offsets with label information along with tweetID1

and userID2. We use twitter3 python script to crawl
the tweets and our own python script to further to-
kenize and synchronize the tags in the data.

Since the data for “surprise genre” comes from
different social media sources, the ID format
varies from file to file but all the other details are
kept as is. In addition to the details, the tokens ref-
erenced by the offsets are provided unlike Twitter
data. (1) and (2) below, show the format of tweets
in train and test data respectively, while (3) shows
a typical tweet in the surprise genre data.

1Each tweet on Twitter has a unique tweetID
2Each user on Twitter carries a userID
3http://emnlp2014.org/workshops/CodeSwitch/scripts/

twitter.zip

(1) TweetID UserID startIndex endIndex Tag

(2) TweetID UserID startIndex endIndex

(3) SocialMediaID UserID startIndex endIn-
dex Word

2.3 Data Statistics

The CS data is divided into two types of
tweets (henceforth posts)4 namely, Code-switched
posts and Monolingual posts. Table 1 shows the
original number of posts that are released for the
shared task for all LPs, along with their tag counts.
Due to the dynamic nature of social media, the
posts can be either deleted or updated and thus
different participants would have crawled different
number of posts. Thus, to come up with a compa-
rable platform for all the teams, the intersection of
data from all the users is used as final testing data
to report the results. Table 1 shows the number of
tweets or posts in testing data that are finally used
for the evaluation.

3 Methodology

We divided the language identification task into
a pipeline of 3 sub-tasks namely Pre-Processing,
Language Modeling, and Sequence labeling using
CRF5. The pipeline is followed for all the LPs with
some LP specific variations in selecting the most
relevant features to boost the results.

3.1 Pre-Processing

In the pre-processing stage, we crawl the tweets
from Twitter given their offsets in the training data
and then tokenize and synchronize the words with
their tags as mentioned in Section 2.2. For each
LP we separate out the tokens into six classes to
use the data for Language Modeling and also to
manually analyze the language specific properties
to be used as features further in sequence labeling
. While synchronizing the words in a tweet with
their tags, we observed that some offsets do not
match with the words and this would lead to mis-
match of labels with tokens and thus degrade the
quality of training data.

To filter out the incorrect instances from the
training data, we frame pattern matching rules
which are specific to the languages present. But
this filtering is done only for the words present in

4In case of twitter data, we have tweets but in case of sur-
prise genre data we have posts

5Conditional Random Field
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Language Pairs # Tweets # Tokens
CodeSwitched Monolingual Ambiguous Lang1 Lang2 Mixed NE Other

Tr
ai

n

MSA-A dialects 774 5,065 1,066 79,134 16,291 15 14,112 8,699
Mandarin-English 521 478 0 12,114 2,431 12 1,847 1,025

Nepali-English 7,203 2,790 126 45,483 60,697 117 3982 35,651
Spanish-English 3,063 8,337 344 77,107 33,099 51 2,918 27,227

Te
st

MSA-A dialects I 32 2,300 11 44,314 141 0 5,939 3,902
Mandarin-English 247 66 0 4,703 881 1 254 442

Nepali-English 2,665 209 0 12,286 17,216 60 1,071 9,635
Spanish-English 471 1,155 43 7,040 5,549 12 464 4,311

MSA-A dialects II 293 1,484 119 10,459 14,800 2 4,321 2,940

Su
rp

ri
se MSA-A dialects - - 110 2,687 6,930 3 1,097 1,190

Nepali-English 20 82 0 173 699 0 127 88
Spanish-English 22 27 1 636 306 1 38 120

Table 1: Data Statistics

‘Lang1’ and ‘Lang2’ classes. There are two rea-
sons to consider these labels. First, ‘Lang1’ and
‘Lang2’ classes hold maximum share of words in
any LP as shown in Table 1, and thus have a higher
impact on the overall accuracy of the language
identification system. In addition to the above,
these categories correspond to the focus point of
the shared task. Second, for ‘Ambiguous’, ‘NE’
and ‘Other’ categories, it is difficult to find the
patterns according to their definitions. Although
rules can be framed for ‘Mixed’ category, since
their count is too less as compared to the other
categories (Table 1), it is of no use to train a sepa-
rate language model with very less number of in-
stances.

For Mandarin and Arabic data sets, any word
present in Roman script is excluded from the data.
Similarly for English and Nepali, if any word con-
tains characters other than Roman or numeral they
are excluded from the data. In addition to the
rule for English and Nepali, the additional alpha-
bets in Spanish are also included in the set of Ro-
man and numeral entries. Table 2 shows the num-
ber of words that remained in each of the lan-
guages/dialects, after the preprocessing.

One of the bonus points in the shared task is
that 3 out of 4 LPs share ‘English’ as their sec-
ond language. In order to increase the training size
for English, we merged all the English words into
a single file and thus reduced the number of lan-
guage models to be trained from 8 to 6, one for
each language (or dialect).

Language Data Size Average Token Length

Arabic 10,380 8.14
English 105,014 3.83

Mandarin 12,874 4.99
MSA 53,953 8.93
Nepali 35,620 4.26

Spanish 32,737 3.96

Table 2: Data Statistics after Filtering

3.2 Language Modeling

In this stage, we train separate smoothed n-gram
based language models for each language in an LP.
We compute the conditional probability for each
word using these language models, which is then
used as a feature, among others for sequence la-
beling to finally predict the tags.

3.2.1 N-gram Language Models

Given a word w, we compute the conditional prob-
ability corresponding to k6 classes c1, c2, ... , ck

as:

p(ci|w) = p(w|ci) ∗ p(ci) (1)

The prior distribution p(c) of a class is es-
timated from the respective training sets shown
in Table 2. Each training set is used to train a
separate letter-based language model to estimate
the probability of word w. The language model
p(w) is implemented as an n-gram model using
the IRSTLM-Toolkit (Federico et al., 2008) with
Kneser-Ney smoothing. The language model is

6In our case value of k is 2 as there are 2 languages in an
LP
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defined as:

p(w) =
n∏

i=1

p(li|li−1
i−k) (2)

where l is a letter and k is a parameter indicating
the amount of context used (e.g., k=4 means 5-
gram model).

3.3 CRF based Sequence Labeling

After Language Modeling, we use CRF-based
(Conditional Random Fields (Lafferty et al.,
2001)) sequence labeling to predict the labels of
words in their surrounding context. The CRF algo-
rithm predicts the class of a word in its surround-
ing context taking into account other features not
explicitly represented in its structure.

3.3.1 Feature Set
In order to train CRF models, we define a feature
set which is a hybrid combination of three sub-
types of features namely, Language Model Fea-
tures (LMF), Language Specific Features (LSF)
and Morphological Features (MF).

LMF: This sub-feature set consists of poste-
rior probability scores calculated using language
models for each language in an LP. Although
we trained language models only for ‘Lang1’
and ‘Lang2’ classes, we computed the probabil-
ity scores for all the words belonging to any of the
categories.

LSF: Each language carries some specific traits
that could assist in language identification. In
this sub-feature set we exploited some of the lan-
guage specific features exclusively based on the
description of the tags provided. The common fea-
tures for all the LPs are HAS NUM (Numeral is
present in the word), HAS PUNC (Punctuation is
present in the word), IS NUM (Word is a numeral),
IS PUNC (word is a punctuation or a collection of
punctuations), STARTS NUM (word starts with a
numeral) and STARTS PUNC (word starts with a
punctuation). All these features are used to gener-
ate variations to distinguish ‘Other’ class from rest
of the classes during prediction.

Two features exclusively used for the English
sharing LPs are HAS CAPITAL (capital letters are
present in the word) and IS ENGLISH (word be-
longs to English or not). HAS CAPITAL is used
to capture the capitalization property of the En-
glish writing system. This feature is expected to

help in the identification of ‘NEs’. IS ENGLISH is
used to indicate whether a word is an valid English
word or not, based on its presence in English dic-
tionaries. We used dictionaries available in PyEn-
chant7.

For the M-E LP, we are using ‘TYPE’8 as a
feature with possible values as ENGLISH, MAN-
DARIN, NUM, PUNC and OTHER. If all the
characters in the word are English alphabets EN-
GLISH is taken as the value and Mandarin oth-
erwise. Similar checks are used for NUM and
PUNC types. But if no case is satisfied, OTHER
is taken as the value.

We observed that the above features did not con-
tribute much to distinguish between any of the tags
in case of the MSA-A LP. Since this pair consists
of two different dialects of a language rather than
two different languages, the posterior probabilities
would be close to each other as compared to other
LPs. Thus we use the difference of these probabil-
ities as a feature in order to discriminate ambigu-
ous words or NEs that are spelled similarly.

MF: This sub-feature set comprises of the mor-
phological features corresponding to a word. We
automatically extracted these features using a
python script. The first feature of this set is a bi-
nary length variable (MORE/LESS) depending on
the length of the word with threshold value 4. The
other 8 features capture the prefix and suffix prop-
erties of a word, 4 for each type. In prefix type,
4, 3, 2 and 1 characters, if present, are taken from
the beginning of a word as 4 features. Similarly
for the suffix type, 1, 2, 3 and 4 characters, again
if present, are taken from the end of a word as 4
features. In both the cases if any value is miss-
ing, it is kept as NULL (LL). (4) below, shows
a typical example from English data with the MF
sub-feature set for the word ‘one’, where F1 rep-
resents the value of binary length variable, F2-F5
and F6-F9 represent the prefix and suffix features
respectively.

(4) one
Word

Less
F1

LL
F2

one
F3

on
F4

o
F5

LL
F6

one
F7

ne
F8

e
F9

3.3.2 Context Window
Along with the above mentioned features, we
chose an optimal context template to train the CRF

7PyEnchant is a spell checking library in Python
(http://pythonhosted.org/pyenchant/)

8Since it captures the properties of IS NUM and
IS PUNC, these features are not used again
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models. We selected the window size to be 5, with
2 words before and after the target word. Furnish-
ing the training, testing and surprise genre data
with the features discussed in 3.3.1, we trained 4
CRF models on training data using feature tem-
plates based on the context decided. These mod-
els are used to finally predict the tags on the testing
and surprise genre data.

4 Experiments

The pipeline mentioned in Section 3 was used for
the language identification task for all the LPs.
We carried out a series of experiments with pre-
processing to clean the training data and also to
synchronize the testing data. We also did some
post-processing to handle language and tag spe-
cific cases.

In order to generate language model scores,
we trained 6 language models (one for each lan-
guage/dialect) on the filtered-out training data as
mentioned in Table 2. We experimented with dif-
ferent values of n-gram to select the optimal value
based on the F1-measure. Table 3 shows the opti-
mal order of n-gram, selected corresponding to the
highest value of F1-score. Using the optimal value
of n-gram, language models have been trained and
then posterior probabilities have been calculated
using equation (1).

Finally, we trained separate CRF models for
each LP, using the CRF++9 tool kit based on the
features described in Section 3.3.1 and the feature
template in Section 3.3.2. To empirically find the
relevance of features we also performed leave-one
out experiments so as to decide the optimal fea-
tures for the language identification task (more de-
tails in Section 4.1). Then, using these CRF mod-
els, tags were predicted on the testing and surprise
genre datasets.

Language-Pair N-gram

MSA-A 5
M-E 5
N-E 6
S-E 5

Table 3: Optimal Value of N-gram

4.1 Feature Ranking
We expect that some features would be more im-
portant than others and would impact the task

9http://crfpp.googlecode.com/svn/trunk/doc/index.html?
source=navbar

of language identification irrespective of the lan-
guage pair. In order to identify such optimal fea-
tures for the language identification task, we rank
them based on their information gain scores.

4.1.1 Information Gain
We used information gain to score features ac-
cording to their expected usefulness for the task at
hand. Information gain is an information theoretic
concept that measures the amount of knowledge
that is gained about a given class by having access
to a particular feature. If f is the occurrence an
individual feature and f̄ the non-occurrence of a
feature, information gain can be measured by the
following formula:

G(x) = P (f)
∑

P (y|f)logP (y|f)

+ P (f̄)
∑

logP (y|f̄)logP (y|f̄)
(3)

For each language pair, the importance of fea-
ture types are represented by the following order:

• MSA-A dialects: token > word morphology
> posterior probabilities > others

• Mandarin-English: token > posterior prob-
abilities > word morphology > language
type > others

• Nepali-English: token > posterior probabil-
ities > word morphology > dictionary > oth-
ers

• Spanish-English: token > posterior proba-
bilities > word morphology > others > dic-
tionary

Apart from MSA-A dialects, top 3 features sug-
gested by information gain are token and its sur-
rounding context, posterior probabilities and word
morphology. For Arabic dialects word morphol-
ogy is more important than posterior probabilities.
It could be due to the fact that Arabic dialects share
a similar phonetic inventory and thus have similar
posterior probabilities. However, they differ sig-
nificantly in their morphological structure (Zaidan
and Callison-Burch, 2013).

We also carried out leave-one-out experiments
over all the features to ascertain their impact on the
classification performance. The results of these
experiments are shown in Table (5). Accuracies
are averaged over 5-fold cross-validation.
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Token Level
Language Pairs Ambiguous Lang1 Lang2 Mixed NE Other

R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 Overall Accuracy

Te
st

MSA-A I 0.00 0.00 0.00 0.92 0.95 0.94 0.40 0.03 0.06 - - - 0.70 0.77 0.73 0.90 0.85 0.87 0.90
M-E - - - 0.98 0.98 0.98 0.67 0.66 0.67 0.00 1.00 0.00 0.84 0.38 0.53 0.22 0.71 0.33 0.88
N-E - - - 0.95 0.93 0.94 0.98 0.96 0.97 0.00 1.00 0.00 0.39 0.79 0.52 0.94 0.96 0.95 0.95
S-E 0.00 1.00 0.00 0.88 0.81 0.84 0.83 0.90 0.86 0.00 1.00 0.00 0.16 0.40 0.23 0.83 0.80 0.82 0.83

MSA-A II 0.00 0.00 0.00 0.91 0.47 0.62 0.36 0.84 0.51 0.00 1.00 0.00 0.59 0.80 0.68 0.80 0.71 0.75 0.60

Su
rp

ri
se MSA-A 0.00 0.00 0.00 0.94 0.38 0.54 0.46 0.93 0.61 0.00 1.00 0.00 0.52 0.78 0.62 0.96 0.96 0.96 0.62

N-E - - - 0.92 0.76 0.84 0.95 0.89 0.91 - - - 0.35 0.92 0.50 0.85 0.89 0.87 0.86
S-E 0.00 1.00 0.00 0.86 0.81 0.83 0.82 0.87 0.85 0.00 1.00 0.00 0.15 0.40 0.22 0.82 0.78 0.80 0.94

Table 4: Token Level Results

Left Out Feature MSA-A M-E N-E S-E

Context 76.32 94.07 93.97 92.30
Morphology 79.29 93.67 93.98 93.51
Probability 79.24 89.16 93.86 93.28
Dictionary - 87.75 93.73 92.99
Language Type - 87.97 - -
Others 78.80 83.84 92.10 92.20

All Features 79.37 95.11 94.52 93.54

Table 5: Leave-one-out Experiments

5 Results and Discussion

Each language identification system is evaluated
against two data tracks namely, ‘Testing’ and ‘Sur-
prise Genre’ data as mentioned in Section 2. Sur-
prise genre data of Mandarin-English LP was not
provided, so no results are available. All the results
are provided on two levels, comment/post/tweet
and token level. Tables 4 and 6 show results of our
language identification system on both the levels
respectively.

In case of Tweets, systems are evaluated using
the following measures: Accuracy, Recall, Preci-
sion and F-Score. However at token level, sys-
tems are evaluated separately for each tag in an
LP using Recall, Precision and F1-Score as the
measures. Table 4 shows that the results for ‘Am-
biguous’ and ‘Mixed’ categories are either miss-
ing (due to absence of tokens in that category), or
have 0.00 F1-Score. One obvious reason could be
the sparsity of data for these categories.

6 Conclusion and Future Work

In this paper, we have described a CRF based to-
ken level language identification system that uses a
set of naive easily computable features guarantee-
ing reasonable accuracies over multiple language
pairs. Our analysis showed that the most important

Language Pairs Tweet Level
Accuracy Recall Precision F-score

Te
st

MSA-A I 0.605 0.719 0.025 0.048
M-E 0.751 0.814 0.863 0.838
N-E 0.948 0.979 0.966 0.972
S-E 0.835 0.773 0.692 0.730

MSA-A II 0.469 0.823 0.213 0.338

Su
rp

ri
se MSA-A 0.457 0.833 0.128 0.222

N-E 0.735 0.900 0.419 0.571
S-E 0.830 0.765 0.689 0.725

Table 6: Comment/Post/Tweet Level Results

feature is the word structure which in our system
is captured by n-gram posterior probabilities and
word morphology. Our analysis of Arabic dialects
shows that word morphology plays an important
role in the identification of mixed codes of closely
related languages.
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Abstract

In this paper, we present the latest version
of our system for identifying linguistic
code switching in Arabic text. The system
relies on Language Models and a tool for
morphological analysis and disambigua-
tion for Arabic to identify the class of each
word in a given sentence. We evaluate
the performance of our system on the test
datasets of the shared task at the EMNLP
workshop on Computational Approaches
to Code Switching (Solorio et al., 2014).
The system yields an average token-level
Fβ=1 score of 93.6%, 77.7% and 80.1%,
on the first, second, and surprise-genre
test-sets, respectively, and a tweet-level
Fβ=1 score of 4.4%, 36% and 27.7%, on
the same test-sets.

1 Introduction

Most languages exist in some standard form while
also being associated with informal regional vari-
eties. Some languages exist in a state of diglos-
sia (Ferguson, 1959). Arabic is one of those
languages comprising a standard form known as
Modern Standard Arabic (MSA), that is used in
education, formal settings, and official scripts; and
dialectal variants (DA) corresponding to the na-
tive tongue of Arabic speakers. While these vari-
ants have no standard orthography, they are com-
monly used and have become pervasive across
web-forums, blogs, social networks, TV shows,
and normal daily conversations. Arabic dialects
may be divided into five main groups: Egyptian
(including Libyan and Sudanese), Levantine (in-
cluding Lebanese, Syrian, Palestinian and Jorda-
nian), Gulf, Iraqi and Moroccan. Sub-dialectal
variants also exist within each dialect (Habash,
2010). Speakers of a specific Arabic Dialect
typically code switch between their dialect and

MSA, and less frequently between different di-
alects, both inter and intra-sententially. The iden-
tification and classification of these dialects in
diglossic text can enhance semantic predictability.

In this paper we modify an existing system
AIDA (Elfardy and Diab, 2012b), (Elfardy et al.,
2013) that identifies code switching between MSA
and Egyptian DA (EDA). We apply the modified
system to the datasets used for evaluating systems
participating at the EMNLP Workshop on Com-
putational Approaches to Linguistic Code Switch-
ing.1

2 Related Work

Dialect Identification in Arabic is crucial for al-
most all NLP tasks, and has recently gained in-
terest among Arabic NLP researchers. One of
the early works is that of (Biadsy et al., 2009)
where the authors present a system that identifies
dialectal words in speech through acoustic signals.
Zaidan and Callison-Burch (2011) crawled a large
dataset of MSA-DA news commentaries and an-
notated part of the dataset for sentence-level di-
alectalness employing Amazon Mechanical Turk.
Cotterell and Callison-Burch (2014) extended the
previous work by handling more dialects. In (Cot-
terell et al., 2014), the same authors collect and
annotate on Amazon Mechanical Turk a large set
of tweets and user commentaries pertaining to five
Arabic dialects. Bouamor et al. (2014) select a set
of 2,000 Egyptian Arabic sentences and have them
translated into four other Arabic dialects to present
the first multidialectal Arabic parallel corpus.

Eskander et al. (2014) present a system for han-
dling Arabic written in Roman script “Arabizi”.
Using decision trees; the system identifies whether
each word in the given text is a foreign word or
not and further divides non foreign words into four

1Another group in our lab was responsible for the organi-
zation of the task, hence we did not officially participate in
the task.
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classes: Arabic, Named Entity, punctuation, and
sound.

In the context of machine-translation, Salloum
and Habash (2011) tackle the problem of DA to
English Machine Translation (MT) by pivoting
through MSA. The authors present a system that
uses DA to MSA transfer rules before applying
state of the art MSA to English MT system to
produce an English translation. In (Elfardy and
Diab, 2012a), we present a set of guidelines for
token-level identification of DA while in (Elfardy
and Diab, 2012b), (Elfardy et al., 2013) we tackle
the problem of token-level dialect-identification
by casting it as a code-switching problem. El-
fardy and Diab (2013) presents our solution for the
sentence-level dialect identification problem.

3 Shared Task Description

The shared task for “Language Identification
in Code-Switched Data” (Solorio et al., 2014)
aims at allowing participants to perform word-
level language identification in code-switched
Spanish-English, MSA-DA, Chinese-English and
Nepalese-English data. In this work, we only fo-
cus on MSA-DA data. The dataset has six tags:

1. lang1: corresponds to an MSA word, ex.
	áë@QË @, AlrAhn 2 meaning “the current”;

2. lang2: corresponds to a DA word, ex. ½K
 	P@,
ezyk meaning “how are you”;

3. mixed: corresponds to a word with mixed
morphology, ex. 	àñ ��ñ Ë


A ÖÏ @ , Alm>lw$wn

meaning “the ones that were excluded or re-
jected”;

4. other: corresponds to punctuation, numbers
and words having punctuation or numbers at-
tached to them;

5. ambig: corresponds to a word where the
class cannot be determined given the current
context, could either be lang1 or lang2; ex.
the phrase ÐAÖ �ß éÊ¿, klh tmAm meaning “all is
well” is ambiguous if enough context is not
present since it can be used in both MSA and
EDA.

6. NE: corresponds to a named-entity, ex. Qå�Ó,
mSr meaning “Egypt”.

2We use Buckwalter transliteration scheme
http://www.qamus.org/transliteration.htm

4 Approach

We use a variant of the system that was pre-
sented in (Elfardy et al., 2013) to identify the
tag of each word in a given Arabic sentence.
The original approach relies on language mod-
els and a morphological analyzer to assign tags
to words in an input sentence. In this new vari-
ant, we use MADAMIRA (Pasha et al., 2014);
a tool for morphological analysis and disam-
biguation for Arabic. The advantage of using
MADAMIRA over using a morphological ana-
lyzer is that MADAMIRA performs contextual
disambiguation of the analyses produced by the
morphological analyzer, hence reducing the pos-
sible options for analyses per word. Figures 1 il-
lustrates the pipeline of the proposed system.

4.1 Preprocessing
We experiment with two preprocessing tech-
niques:

1. Basic: In this scheme, we only perform a ba-
sic clean-up of the text by separating punc-
tuation and numbers from words, normal-
izing word-lengthening effects, and replac-
ing all punctuation, URLs, numbers and non-
Arabic words with PUNC, URL, NUM, and
LAT keywords, respectively

2. Tokenized: In this scheme, in addition to
basic preprocessing, we use MADAMIRA
toolkit to tokenize clitics and affixes by ap-
plying the D3-tokenization scheme (Habash
and Sadat, 2006). For example, the word Ym.�'. ,
bjdwhich means “with seriousness” becomes
“Yg. +H. ”, “b+ jd” after tokenization.

4.2 Language Model
The ‘Language Model’ (LM) module uses the pre-
processed training data to build a 5-gram LM. All
tokens in a given sentence in the training data are
tagged with either lang1 or lang2 as described in
Section 5. The prior probabilities of each lang1
and lang2 words are calculated based on their fre-
quency in the training corpus. SRILM toolkit
(Stolcke, 2002) and the tagged corpora are then
used to build the LM.3 If tokenized preprocess-
ing scheme is used, then the built LM is tokenized
where all tokens corresponding to a certain word
are assigned the same tag corresponding to the tag

3A full description of the approach is presented in (El-
fardy and Diab, 2012b).
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Figure 1: AIDA pipeline. a) The pipeline with the basic preprocessing scheme. b) The pipeline
with the tokenized preprocessing scheme.

of the original word. For example, if Ym.�'. , bjd is

tagged as lang2, both “+H. ”, b+ and “Yg. ”, jd get
tagged as lang2.

For any new untagged sentence, the ‘Language
Model’ module uses the already built LM and
the prior probabilities via Viterbi search to find
the best sequence of tags for the given sentence.
If there is an out-of-vocabulary word in the in-
put sentence, the ‘Language Model’ leaves it un-
tagged.

4.3 MADAMIRA

Using MADAMIRA, each word in a given un-
tagged sentence is tokenized, lemmatized, and
POS-tagged. Moreover, the MSA and English
glosses for each morpheme of the given word
are provided. Since MADAMIRA uses two possi-
ble underlying morphological analyzers CALIMA
(Habash et al., 2012) and SAMA (Maamouri et al.,
2010), as part of the output, MADAMIRA indicates
which of them is used to retrieve the glosses.

4.4 Named Entities List
We use the ANERGazet (Benajiba et al., 2007) to
identify named-entities. ANERGazet consists of
the following Gazetteers:
• Locations: 1,545 entries corresponding to

names of continents, countries, cities, etc.
(ex. H. Q 	ª ÖÏ @ , Almgrb ) which means “Mo-
rocco”;
• People: 2,100 entries corresponding to

names of people. (ex. Yê 	̄ , fhd);
• Organizations: 318 entries corresponding to

names of Organizations such as companies
and football teams. (ex. ú
æ�Ê ����, t$lsy mean-

ing “Chelsea”

4.5 Combiner

Each word in the input sentence can get differ-
ent tags from each module. Thus, the ‘Combiner’

module uses all of these decisions and the follow-
ing set of rules to assign the final tag to each word
in the input sentence.

1. If the word contains any numbers or punctu-
ation, it is assigned other tag;

2. Else if the word is present in any of the
gazetteers or if MADAMIRA assigns it
noun prop POS tag, the word is tagged as
NE;

3. Else if the word is (or all of its morphemes
in the tokenized scheme are) identified by the
LM as either lang1 or lang2, the word is as-
signed the corresponding tag;

4. Else if the word’s morphemes are assigned
different tags, the word is assigned the mixed
tag;

5. Else if the LM does not tag the word (i.e. the
word is considered an out of vocabulary word
by the LM) and:
• If MADAMIRA retrieved the glosses

from SAMA, the word is assigned a
lang1 tag;
• Else if MADAMIRA outputs that the

glosses were retrieved from CALIMA,
then the word is assigned a lang2 tag
• Else if the word is still untagged (i.e.

non-analyzable), the word is assigned
lang2 tag.

5 Experiments and Results

5.1 Training Phase
The training data that is used to build our LM con-
sists of two main sources:

1. Shared-task’s training data (STT): 119,326
words collected from Twitter. They are man-
ually annotated on the token-level. We split
this corpus into:

(a) Training-set; (STT-Tr); 107,398 tweets
representing 90% of STT and used for
training the system
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(b) Development-set; (STT-Dev): 11,928
words representing 10% of STT and
used for tuning the system.

2. Web-log training data (WLT): 8 million
words. Half of which comes from lang1 cor-
pora while the other half is from lang2 cor-
pora. The data is weakly labeled where all
tokens in the sentence/comment are assigned
the same tag according to the dialect of the
forum (MSA or EDA) it was crawled from.

During the development phase, we use STT-Tr and
WLT to train our system. We run several experi-
ments to test the different setups and evaluate the
performance of each of these setups on STT-Dev.
Once we find the optimal configuration, we then
use it to retrain the system using all of STT-Tr,
STT-Dev, and WLT.

Since the size of STT is very small compared
to WLT ( 0.1% of WLT size), the existence of six
different tags in this corpus can add noise to the
already weakly labeled WLT data. Thus, to make
STT consistent with WLT, we changed the labels
of STT as follows:

• If the number of lang1 tokens in the tweet ex-
ceeds the number of lang2 tokens; we assign
all tokens in the tweet lang1 tag.

• Otherwise, all tokens in the tweet are as-
signed lang2 tag.

All tokens in STT tagged as NE have been used to
enrich our named entity list.

5.2 Development Phase
Two different setups are tested using WLT and
STT-Tr:

• Surface form setup; uses the basic prepro-
cessing pipeline described earlier on both the
input data and on the training data used to
build the LM
• Tokenized form setup: uses the tokenized

preprocessing pipeline described earlier on
both the input data and the training data used
to build the LM.

As mentioned earlier, since the size of STT-Tr is
much smaller than that of WLT, this causes both
datasets to be statistically incomparable. We tried
increasing the weights assigned by the LM to STT-
Tr by duplicating STT-Tr. We experimented with

one, four, and eight copies of STT-Tr for each of
the basic and tokenized experimental setups.

The shared task evaluation script has been used
to evaluate each setup. The evaluation script
produces two main sets of metrics. The first
metric yields the accuracy, precision, recall, and
Fβ=1 score for code switching classification on the
tweet-level, while the second set of metrics uses
evaluates performance of each tag on the token-
level. In this paper, we add an extra metric corre-
sponding to the weighted average of the tag on the
token level F β=1 score in order to rank our overall
performance against other participating groups in
the task.

Tables 1 and 2 summarize our results for both
Surface Form and Tokenized Form setups on STT-
Dev. In all experiments, the Tokenized Form setup
outperforms the Surface Form setup.

As shown in Table 2, the system that yields
the best weighted-average token-level Fβ=1 score
(77.6%) on the development-set is Tokenized-2.
Throughout the rest of the paper, we will use the
system’s name “AIDA”; to refer to this best con-
figuration (Tokenized-2).

Accuracy Precision Recall Fβ=1

Tokenized-1 51.5% 43.7% 97.4% 60.3%
Tokenized-2 52.5% 44.2% 97.4% 60.8%
Tokenized-8 54.2% 45.1% 96.9% 61.6%
Surface-1 45.4% 40.9% 99.5% 57.9%
Surface-2 45.8% 41.1% 99.5% 58.1%
Surface-8 46.5% 41.4% 99.5% 58.5%

Table 1: Results on STT-Dev using the tweet-level
evaluation. (-1, -2, and -8) correspond to the num-
ber of copies of STT-Tr that were added to WLT

5.3 Testing Phase

Three blind test sets have been used for the evalu-
ation:

• Test1: 54,732 words of 2,363 tweets col-
lected from some unseen users in the training
set;
• Test2: Another 32,641 words of 1,777 tweets

collected from other unseen users in the train-
ing set;
• Surprise: 12,017 words of 1,222 sentences

from collected from Arabic commentaries.

Table 3 shows the distribution of each test set over
the different tags
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ambig lang1 lang2 mixed NE other Avg-Fβ=1

Tokenized-1 0.0% 79.5% 71.5% 0.0% 83.6% 98.9% 77.5%
Tokenized-2 0.0% 79.6% 71.6% 0.0% 83.6% 98.9% 77.6%
Tokenized-8 0.0% 79.5% 71.4% 0.0% 83.6% 98.9% 77.5%
Surface-1 0.0% 76.0% 65.4% 0.0% 83.6% 98.9% 73.5%
Surface-2 0.0% 76.1% 65.6% 0.0% 83.6% 98.9% 73.7%
Surface-8 0.0% 76.2% 65.5% 0.0% 83.6% 98.9% 73.7%

Table 2: Results on STT-Dev using the token-level evaluation. (-1, -2, and -8) correspond
to the number of copies of STT-Tr that were added to WLT

ambig lang1 lang2 mixed NE other
Test1 0.0% 81.5% 0.3% 0.0% 10.9% 7.3%

Test2 0.4% 32.0% 45.3% 0.0% 13.2% 9.0%

Surprise 0.9% 22.4% 57.7% 0.0% 9.1% 9.9%

Table 3: Test sets tag distributions

Tables 4, 5, and 6 show the tweet-level evalua-
tion on the three test sets. While tables 7, 8, and
9 show the token-level evaluation on the same test
sets. The tables compare the results of our best
setup against the other systems that participated in
the task4.

To make the comparison easier, we have calcu-
lated the overall weighted Fβ=1 score for all sys-
tems using the three test sets together.

Table 10 shows the Fβ=1 score of each system
averaged over all three test-sets. Our system out-
performs all other systems in the token-level eval-
uation and comes in the second place after CMU
in the tweet-level classification.

Accuracy Precision Recall Fβ=1

AIDA 45.2% 2.3% 93.8% 4.4%
CMU 86.1% 5.2% 53.1% 9.5%
A3-107 60.5% 2.5% 71.9% 4.8%
IUCL 97.4% 11.1% 12.5% 11.8%
MSR-IN 94.7% 9.7% 34.4% 15.2%

Table 4: Tweet-level evaluation on Test1 set.

Accuracy Precision Recall Fβ=1

AIDA 44.0% 22.2% 95.6% 36.0%
CMU 66.2% 29.2% 73.4% 41.7%
A3-107 46.9% 21.3% 82.3% 33.8%
IUCL 76.6% 27.1% 24.9% 26.0%
MSR-IN 71.4% 18.3% 21.2% 19.6%

Table 5: Tweet-level evaluation on Test2 set.

4The results of the other groups have been obtained from
the workshop website. We use ‘’MSR-IN” to refer to “MSR-
India”

Accuracy Precision Recall Fβ=1

AIDA 55.6% 16.3% 91.2% 27.7%
CMU 79.8% 20.7% 41.2% 27.6%
A3-107 45.7% 12.8% 83.3% 22.2%
IUCL 87.7% 25.0% 15.8% 19.4%
MSR-IN 84.8% 17.3% 16.7% 17.0%

Table 6: Tweet-level evaluation on Surprise set.

ambig lang1 lang2 mixed NE other Avg-Fβ=1

AIDA 0.0% 94.5% 5.6% 0.0% 85.0% 99.4% 93.6%
CMU 0.0% 94.4% 9.0% 0.0% 74.0% 98.1% 92.2%
A3-107 0.0% 93.8% 5.7% 0.0% 73.4% 87.4% 90.9%
IUCL 0.0% 88.2% 14.2% 0.0% 0.6% 0.6% 72.0%
MSR-IN 0.0% 94.2% 15.8% 0.0% 57.7% 91.1% 89.8%

Table 7: Token-level evaluation on Test1 set.

6 Error Analysis

Tables 11, 12, and 13 show the confusion matri-
ces of our best setup for all six tags over the three
test sets. The rows represent the gold-labels while
the columns represent the classes generated by
our system. For example, row 4-column 2 corre-
sponds to the percentage of words that have lang1
(i.e. MSA) gold-label and were incorrectly clas-
sified as ambig. The diagonal of each matrix cor-
responds to the correctly classified instances. All
cells of each matrix add-up to 100%. In all three
tables, it’s clear that the highest confusability is
between lang1 and lang2 classes. In Test-set1,
since the majority of words (81.5%) have a lang1
gold-label and a very tiny percentage (0.3%) has

ambig lang1 lang2 mixed NE other Avg-Fβ=1

AIDA 0.0% 73.4% 73.2% 1.0% 91.8% 98.1% 77.7%
CMU 0.0% 76.3% 81.3% 0.0% 73.4% 98.4% 79.9%
A3-107 0.0% 62.0% 49.4% 0.0% 67.5% 75.0% 58.0%
IUCL 0.0% 59.0% 59.3% 0.0% 13.1% 1.7% 47.7%
MSR-IN 1.5% 58.7% 50.5% 0.0% 42.4% 43.8% 51.3%

Table 8: Token-level evaluation on Test2 set.
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ambig lang1 lang2 mixed NE other Avg-Fβ=1

AIDA 0.0% 66.6% 81.9% 0.0% 87.9% 99.9% 80.1%
CMU 0.0% 68.0% 82.1% 0.0% 61.2% 97.5% 77.8%
A3-107 0.0% 53.8% 61.3% 0.0% 62.3% 96.1% 62.6%
IUCL 0.0% 48.8% 60.9% 0.0% 5.5% 2.0% 46.7%
MSR-IN 0.0% 56.3% 69.8% 0.0% 33.2% 96.6% 65.4%

Table 9: Token-level evaluation on Surprise set.

Tweet Avg-Fβ=1 Token Avg-Fβ=1

AIDA 20.2% 86.8%
CMU 24.3% 86.4%
A3-107 18.4% 76.6%
IUCL 18.2% 61.0%
MSR-IN 17.1% 74.2%

Table 10: Overall tweet-level and token-level
Fβ=1 scores. (Averaged over the three test-sets)

a lang2 gold-label, the percentage of words that
have a gold label of lang1 and get classified as
lang2 is much larger than in the other two test-sets
and much larger than the opposite-case where the
ones having a gold-label of lang2 get classified as
lang1.

Table 14 shows examples of the words that were
misclassified by AIDA. All of the shown exam-
ples are quite challenging. In example 1, the mis-
classified named-entity refers to the name of a TV
show but the word also means “clearly” which is a
“lang1” word. Similarly in example 2, the named-
entity can mean “stable” which is again a “lang1”
word. Another misclassification is that in exam-
ple 3, where a mixed-morphology “mixed” word
meaning “those who were excluded/rejected” is
misclassified as being a “lang2” word. When
we looked at why this happened, we found that
the word wasn’t tokenized by MADAMIRA. Our
approach only assigns “mixed” tag if after tok-
enization, different morphemes of the word get
different tags. Since in this example the word
wasn’t tokenized, it could not get the “mixed” tag.
However, “lang2” tag (assigned by AIDA) is the
second most appropriate tag since the main mor-
pheme of the word is dialectal/lang2. An example
of a “mixed” word that was correctly classified by
AIDA is ø
 XZñ�Jk, Ht&dy meaning “will lead to”

where the main morpheme ø
 XZñ�K, t&dy “lead to”

is “lang1” and the clitic h, H “will” is “lang2”.

Examples 4 and 5 show instances of the confus-
ability between “lang1” and “lang2” classes. Both
words in these two examples can belong to either
one of “lang1” and “lang2” classes depending on
the context.

One interesting observation is that AIDA, out-
performs all other systems tagging named-entities.
This suggests the robustness of the NER approach
used by AIDA.

The performance on the other tags varies across
the three test-sets.

AIDA (Predicted)
ambig lang1 lang2 mixed NE other

ambig 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
lang1 0.0% 74.4% 5.7% 0.0% 1.3% 0.0%
lang2 0.0% 0.1% 0.2% 0.0% 0.0% 0.0%
mixed 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

NE 0.0% 1.5% 0.3% 0.0% 9.1% 0.1%
other 0.0% 0.0% 0.0% 0.0% 0.0% 7.3%

Table 11: The token-level confusion matrix for the
best performing setup on Test1 set.

AIDA (Predicted)
ambig lang1 lang2 mixed NE other

ambig 0.0% 0.3% 0.1% 0.0% 0.0% 0.0%
lang1 0.0% 28.8% 2.8% 0.1% 0.2% 0.1%
lang2 0.0% 16.4% 28.3% 0.5% 0.2% 0.1%
mixed 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
NE 0.0% 1.0% 0.6% 0.0% 11.5% 0.2%
other 0.0% 0.0% 0.0% 0.0% 0.0% 8.9%

Table 12: The token-level confusion matrix for the
best performing setup on Test2 set.

AIDA (Predicted)
ambig lang1 lang2 mixed NE other

ambig 0.0% 0.6% 0.3% 0.0% 0.0% 0.0%
lang1 0.0% 19.0% 2.9% 0.0% 0.5% 0.0%
lang2 0.0% 14.5% 42.7% 0.0% 0.5% 0.0%
mixed 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
NE 0.0% 0.5% 0.6% 0.0% 8.0% 0.0%
other 0.0% 0.0% 0.0% 0.0% 0.0% 9.9%

Table 13: The token-level confusion matrix for the
best performing setup on Surprise set.
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Sentence Word Gold-Label AIDA-Label
Ex. 1. Allylp AlEA$rp w AlnSf msA’ s>kwn Dyf

AlAstA∗ Emrw Allyvy fy brnAmjh bwDwH
ElY qnAp AlHyAp

	J
 	� 	àñ»

A� ZA�Ó 	� 	JË @ ð �èQå��AªË @ éÊJ


�
ÊË @

ú
Î« hñ 	�ñK. é m.×A 	KQK. ú

	̄ ú


�æJ

�
ÊË @ ðQÔ« 	XA�J�B@�èAJ
mÌ'@ �èA 	J�̄

bwDwH, hñ 	�ñK. NE lang1

Ex. 2. wlsh mqhwr yA EynY mn vAbt bA$A
AlbTl wSAlH bA$A slym AllY AvbtwA An
nZrthm fykm SH
É¢J. Ë @ A ��AK. �IK. A�K 	áÓ ú 	æJ
« AK
 Pñê �®Ó é�Ëð
ÕºJ
 	̄ Ñî�EQ 	¢ 	� 	à@ @ñ�J�. �K @ ú

�
ÎË @ Õæ
Ê� A ��AK. lÌ'A�ð

l��

vAbt, �IK. A�K NE lang1

Ex. 3. Anh tAnY yqwm hykwn mE Alm>lw$yn
	á�
 ��ñË


AÖÏ @ ©Ó 	àñºJ
ë Ðñ�®K
 ú 	GA�K é 	K @

Alm>lw$yn, 	á�
 ��ñË

AÖÏ @ mixed lang2

Ex. 4. kfAyh $bEnA mnk AgAnyky Alqdymh jmylh
lkn AlAn lAnTyq Swtk wlA Swrtk hwynA
bqh
	áºË éÊJ
Ôg. éÖß
Y �®Ë@ ú
¾J
 	K A 	«@ ½ 	JÓ A 	JªJ. �� éK
A 	®»

é�®K. A 	JK
ñë ½�KPñ� Bð ½�Kñ� ��J
¢	�B 	àB@

lAnTyq, ��J
¢	�B lang1 lang2

Ex. 5. AlrAbT Ally byqwl >ny Swrt Hlqp mE
rAmz jlAl gyr SHyH . dh fyrws ElY Alfys
bwk . rjA’ AlH∗r
	QÓ@P ©Ó �é �®Êg �HPñ� ú


	G

@ Èñ �®J
K. ú


�
ÎË @ ¡�. @QË @

��
 	® Ë @ úÎ« �ðQ�
 	̄ èX . iJ
 m�� Q�
 	« ÈCg.
P 	YmÌ'@ ZAg. P . ¼ñK.

Hlqp, �é�®Êg lang2 lang1

Table 14: Examples of the words that were misclassified by AIDA

7 Conclusion and Future Work

In this work, we adapt a previously proposed sys-
tem for automatic detection of code switching in
informal Arabic text to handle twitter data. We
experiment with several setups and report the re-
sults on two twitter datasets and a surprise-genre
test-set, all of which were generated for the shared
task at EMNLP workshop for Computational Ap-
proaches to Code Switching. In the future we plan
on handling other Arabic dialects such as Levan-
tine, Iraqi and Moroccan Arabic as well as adapt-
ing the system to other genres.
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Abstract
We describe the IUCL+ system for the shared
task of the First Workshop on Computational
Approaches to Code Switching (Solorio et al.,
2014), in which participants were challenged
to label each word in Twitter texts as a named
entity or one of two candidate languages. Our
system combines character n-gram probabili-
ties, lexical probabilities, word label transition
probabilities and existing named entity recog-
nition tools within a Markov model framework
that weights these components and assigns a
label. Our approach is language-independent,
and we submitted results for all data sets
(five test sets and three “surprise” sets, cov-
ering four language pairs), earning the high-
est accuracy score on the tweet level on two
language pairs (Mandarin-English, Arabic-
dialects 1 & 2) and one of the surprise sets
(Arabic-dialects).

1 Introduction
This shared task challenged participants to perform
word level analysis on short, potentially bilingual Twit-
ter and blog texts covering four language pairs: Nepali-
English, Spanish-English, Mandarin-English and Mod-
ern Standard Arabic-Arabic dialects. Training sets
ranging from 1,000 to roughly 11,000 tweets were pro-
vided for the language pairs, where the content of the
tweets was tokenized and labeled with one of six la-
bels. The goal of the task is to accurately replicate
this annotation automatically on pre-tokenized texts.
With an inventory of six labels, however, the task is
more than a simple binary classification task. In gen-
eral, the most common labels observed in the train-
ing data are lang1 and lang2, with other (mainly
covering punctuation and emoticons) also common.
Named entities (ne) are also frequent, and accounting
for them adds a significant complication to the task.
Less common are mixed (to account for words that
may e.g., apply L1 morphology to an L2 word), and
ambiguous (to cover a word that could exist in either
language, e.g., no in the Spanish-English data).

Traditionally, language identification is performed
on the document level, i.e., on longer segments of
text than what is available in tweets. These methods

are based on variants of character n-grams. Seminal
work in this area is by Beesley (1988) and Grefenstette
(1995). Lui and Baldwin (2014) showed that character
n-grams also perform on Twitter messages. One of a
few recent approaches working on individual words is
by King et al. (2014), who worked on historical data;
see also work by Nguyen and Dogruz (2013) and King
and Abney (2013).

Our system is an adaptation of a Markov model,
which integrates lexical, character n-gram, and la-
bel transition probabilities (all trained on the provided
data) in addition to the output of pre-existing NER
tools. All the information sources are weighted in the
Markov model.

One advantage of our approach is that it is language-
independent. We use the exact same architecture for
all language pairs, and the only difference for the indi-
vidual language pairs lies in a manual, non-exhaustive
search for the best weights. Our results show that the
approach works well for the one language pair with dif-
ferent writing systems (Mandarin-English) as well as
for the most complex language pair, the Arabic set. In
the latter data set, the major difficulty consists in the
extreme skewing with an overwhelming dominance of
words in Modern Standard Arabic.

2 Method
Our system uses an extension of a Markov model to
perform the task of word level language identification.
The system consists of three main components, which
produce named entity probabilities, emission probabil-
ities and label transition probabilities. The outputs of
these three components are weighted and combined in-
side the extended Markov model (eMM), where the
best tag sequence for a given tweet (or sentence) is de-
termined via the Viterbi algorithm.

In the following sections, we will describe these
components in more detail.

2.1 Named Entity Recognition
We regard named entity recognition (NER) as a stand-
alone task, independent of language identification. For
this reason, NER is performed first in our system.
In order to classify named entities in the tweets, we
employ two external tools, Stanford-NER and Twit-
terNLP. Both systems are used in a black box approach,
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without any attempt at optimization. I.e., we use the
default parameters where applicable.

Stanford NER (Finkel et al., 2005) is a state-of-the-
art named entity recognizer based on conditional ran-
dom fields (CRF), which can easily be trained on cus-
tom data.1 For all of the four language pairs, we train a
NER model on a modified version of the training data
in which we have kept the label “ne” as our target la-
bel, but replaced all others with the label “O”. Thus, we
create a binary classification problem of distinguishing
named entities from all other words. This method is
applicable for all data sets.

For the Arabic data, we additionally employ a
gazetteer, namely ANERgazet (Benajiba and Rosso,
2008).2 However, we do not use the three classes (per-
son, location, organization) available in this resource.

The second NER tool used in our system is the Twit-
terNLP package. 3 This system was designed specifi-
cally for Twitter data. It deals with the particular dif-
ficulties that Twitter-specific language (due to spelling,
etc.) poses to named entity recognition. The system has
been shown to be very successful: Ritter et al. (2011,
table 6) achieve an improvement of 52% on segmen-
tation F-score in comparison with Stanford NER on
hand-annotated Twitter data, which is mainly due to a
considerably increased recall.

The drawback of using TwitterNLP for our task is
that it was developed for English, and adapting it to
other languages would involve a major redesign and
adaptation of the system. For this reason, we decided
to use it exclusively on the language pairs that include
English. An inspection of the training data showed that
for all language pairs involving English, a majority of
the NEs are written in English and should thus be rec-
ognizable by the system.

TwitterNLP is an IOB tagger. Since we do not dis-
tinguish between the beginning and the rest of a named
entity, we change all corresponding labels to “ne” in
the output of the NER system.

In testing mode, the NER tools both label each word
in a tweet as either “O” or “ne”. We combine the output
such that “ne” overrides “O” in case of any disagree-
ments, and pass this information to the eMM. This out-
put is weighted with optimized weights unique to each
language pair that were obtained through 10-fold cross
validation, as discussed below. Thus, the decisions of
the NER systems is not final, but they rather provide
evidence that can be overruled by other system compo-
nents.

2.2 Label Transition Models
The label transition probability component models lan-
guage switches on the sequence of words. It is also

1See http://nlp.stanford.edu/software/
CRF-NER.shtml.

2As available from http://users.dsic.upv.es/
grupos/nle/.

3See https://github.com/aritter/
twitter_nlp.

trained on the provided training data. In effect, this
component consists of unigram, bigram, and trigram
probability models of the sequences of labels found
in the training data. Our MM is second order, thus
the transition probabilities are linear interpolations of
the uni-, bi-, and trigram label transition probabili-
ties that were observed in the training data. We add
two beginning-of-sentence buffer labels and one end-
of-sentence buffer label to assist in deriving the start-
ing and ending probabilities of each label during the
training.

2.3 Emission Probabilities

The emission probability component is comprised of
two subcomponents: a lexical probability component
and a character n-gram probability component. Both
are trained on the provided training data.

Lexical probabilities: The lexical probability com-
ponent consists of a dictionary for each label contain-
ing the words found under that label and their rel-
ative frequencies. Each word type and its count of
tokens are added to the total for each respective la-
bel. After training, the probability of a given label
emitting a word (i.e., P (word|label)) is derived from
these counts. To handle out-of-vocabulary words, we
use Chen-Goodman “one-count” smoothing, which ap-
proximates the probabilities of unknown words as com-
pared to the occurrence of singletons (Chen and Good-
man, 1996).

Character n-gram probabilities: The character-
based n-gram model serves mostly as a back-off in case
a word is out-of-vocabulary, in which case the lexi-
cal probability may not be reliable. However, it also
provides important information in the case of mixed
words, which may use morphology from one language
added to a stem from the other one. In this setting, un-
igrams are not informative. For this reason, we select
longer n-grams, with n ranging between 2 and 5.

Character n-gram probabilities are calculated as fol-
lows: For each training set, the words in that training
set are sorted into lists according to their labels. In
training models for each value of n, n − 1 buffer char-
acters are added to the beginning and end of each word.
For example, in creating a trigram character model
for the lang1 (English) words in the Nepali-English
training set, we encounter the word star. We first gen-
erate the form $$star##, then derive the trigrams. The
trigrams from all training words are counted and sorted
into types, and the counts are converted to relative fre-
quencies.Thus, using four values of n for a data set
containing six labels, we obtain 24 character n-gram
models for that language pair. Note that because this
component operates on individual words, character n-
grams never cross a word boundary.

In testing mode, for each word and for each value of
n, the component generates a probability that the word
occurred under each of the six labels. These values
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are passed to the eMM, which uses manually optimized
weights for each value of n to combine the four n-gram
scores for each label into a single n-gram score for each
label. In cases where an n-gram from the test word
was not present in the training data, we use a primitive
variant of LaPlace smoothing, which returns a fixed,
extremely low non-zero probability for that n-gram.

2.4 The Extended Markov Model

Our approach is basically a trigram Markov model
(MM), in which the observations are the words in
the tweet (or blog sentence) and the underlying states
correspond to the sequence of codeswitching labels
(lang1, lang2, ne, mixed, ambiguous,
other). The MM, as usual, also uses starting
and ending probabilities (in our case, derived from
standard training of the label transition model, due
to our beginning- and end-of-sentence buffer labels),
label/state transition probabilities, and probabilities
that the state labels will emit particular observations.
The only difference is that we modify the standard
HMM emission probabilities. We call this resulting
Markov model extended (eMM).

First, for every possible state/label in the sequence,
we linearly interpolate “lexical (emission) probabil-
ities” Plex (the standard emission probabilities for
HMMs) with character n-gram probabilities Pchar.
That is, we choose 0 ≤ λlex ≤ 1 and 0 ≤ λchar ≤ 1
such that λlex + λchar = 1. We use them to derive
a new emission probability Pcombined = λlex · Plex +
λchar ·Pchar. This probability represents the likelihood
that the given label in the hidden layer will emit the lex-
ical observation, along with its corresponding character
n-gram sequence.

Second, only for ne labels in the hidden layer, we
modify the probabilities that they will emit the ob-
served word if that word has been judged by our NER
module to be a named entity. Since the NER compo-
nent exhibits high precision but comparatively low re-
call, we boost the Pcombined(label = ne|word) if the
observed word is judged to be a named entity, but we do
not penalize the regular Pcombined if not. This boosting
is accomplished via linear interpolation and another set
of parameters, 0 ≤ λne ≤ 1 and 0 ≤ λcombined ≤ 1
such that λne + λcombined = 1. Given a positive de-
cision from the NER module, the new probability for
the ne label emitting the observed word is derived as
Pne+combined = λne · 0.80 + λcombined · Pcombined,
i.e., we simply interpolate the original probability with
a high probability. All lambda values, as well as the
weights for the character n-gram probabilities, were set
via 10-fold cross-validation, discussed below.

2.5 Cross Validation & Optimization

In total, the system uses 11 weights, each of which is
optimized for each language pair. In labeling named
entities, the output of the NER component is given one
weight and the named entity probabilities of the other

sources (emission and label transition components) is
given another weight, with these weights summing to
one. For the label transition component, the uni-, bi-
and trigram scores receive weights that sum to one.
Likewise, the emission probability component is com-
prised of the lexical probability and the character n-
gram probability, with weights that sum to one. The
character n-gram component is itself comprised of the
bi-, tri-, four- and five-gram scores, again with weights
that sum to one.

For each language pair, these weights were opti-
mized using a 10-fold cross validation script that splits
the original training data into a training file and a test
file, runs the split files through the system and averages
the output. As time did not allow an exhaustive search
for optimal weights in this multi-dimensional space, we
narrowed the space by first manually optimizing each
subset of weights independently, then exploring com-
binations of weights in the resulting neighborhood.

3 Results
3.1 Main Results
The results presented in this section are the official re-
sults provided by the organizers. The evaluation is split
into two parts: a tweet level evaluation and a token level
evaluation. On the tweet level, the evaluation concen-
trates on the capability of systems to distinguish mono-
lingual from multilingual tweets. The token level eval-
uation is concerned with the classification of individ-
ual words into the different classes: lang1, lang2,
ambiguous, mixed, ne, and other.

Our results for the tweet level evaluation, in com-
parison to the best or next-best performing system are
shown in table 1. They show that our system is ca-
pable of discriminating monolingual from multilingual
tweets with very high precision. This resulted in the
best results in the evaluation with regard to accuracy
for Mandarin-English and for both Arabic-dialects set-
tings. We note that for the latter setting, reaching good
results is exceedingly difficult without any Arabic re-
sources. This task is traditionally approached by us-
ing a morphological analyzer, but we decided to use
a knowledge poor approach. This resulted in a rather
high accuracy but in low precision and recall, espe-
cially for the first Arabic test set, which was extremely
skewed, with only 32 out of 2332 tweets displaying
codeswitching.

Our results for the token level evaluation, in com-
parison to the best performing system per language,
are shown in table 2. They show that our system sur-
passed the baseline for both language pairs for which
the organizers provided baselines. In terms of accu-
racy, our system is very close to the best performing
system for the pairs Spanish-English and Mandarin En-
glish. For the other language pairs, we partially suffer
from a weak NER component. This is especially obvi-
ous for the Arabic dialect sets. However, this is also a
problem that can be easily fixed by using a more com-
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lang. pair system Acc. Recall Precision F-score
Nep.-Eng. IUCL+ 91.2 95.6 94.9 95.2

dcu-uvt 95.8 99.4 96.1 97.7
Span.-Eng. IUCL+ 83.8 51.4 87.7 64.8

TAU 86.8 72.0 80.3 75.9
Man.-Eng. IUCL+ 82.4 94.3 85.0 89.4

MSR-India 81.8 95.5 83.7 89.2
Arab. dia. IUCL+ 97.4 12.5 11.1 11.8

MSR-India 94.7 34.4 9.7 15.2
Arab. dia. 2 IUCL+ 76.6 24.9 27.1 26.0

MSR-India 71.4 21.2 18.3 19.6

Table 1: Tweet level results in comparison to the system with (next-)highest accuracy.

lang1 lang2 mixed ne
lang. pair system Acc. R P F R P F R P F R P F
Nep.-Eng. IUCL+ 75.2 85.1 89.1 87.1 68.9 97.6 80.8 1.7 100 3.3 55.1 48.7 51.7

dcu-uvt 96.3 97.9 95.2 96.5 98.8 96.1 97.4 3.3 50.0 6.3 45.6 80.4 58.2
base 70.0 57.1 76.5 65.4 92.3 62.8 74.7 0.0 100 0.0 0.0 100 0.0

Span.-Eng. IUCL+ 84.4 88.9 82.3 85.5 85.1 89.9 87.4 0.0 100 0.0 30.4 48.5 37.4
TAU 85.8 90.0 83.0 86.4 86.9 91.4 89.1 0.0 100 0.0 31.3 54.1 39.6
base 70.3 85.1 67.6 75.4 78.1 72.8 75.4 0.0 100 0.0 0.0 100 0.0

Man.-Eng. IUCL+ 89.5 98.3 97.8 98.1 83.9 66.6 74.2 0.0 100 0.0 70.1 50.3 58.6
MSR-India 90.4 98.4 97.6 98.0 89.1 66.6 76.2 0.0 100 0.0 67.7 65.2 66.4

Arab. dia. IUCL+ 78.8 96.1 81.6 88.2 34.8 8.9 14.2 – – – 3.3 23.4 5.8
CMU 91.0 92.2 97.0 94.6 57.4 4.9 9.0 – – – 77.8 70.6 74.0

Arab. dia. 2 IUCL+ 51.9 90.7 43.8 59.0 47.7 78.3 59.3 0.0 0.0 0.0 8.5 28.6 13.1
CMU 79.8 85.4 69.0 76.3 76.1 87.3 81.3 0.0 100 0.0 68.7 78.8 73.4

Table 2: Token level results in comparison to the system with highest accuracy (results for ambiguous and
other are not reported).

lang1 lang2 ne
lang. pair system Acc. R P F R P F R P F
Nep.-Eng. IUCL+ 80.5 86.1 78.8 82.3 97.6 80.9 88.5 29.9 80.9 43.7

JustAnEagerStudent 86.5 91.3 80.2 85.4 93.6 91.1 92.3 39.4 83.3 53.5
Span.-Eng. IUCL+ 91.8 87.4 81.9 84.5 84.5 87.4 85.9 28.5 47.4 35.6

dcu-uvt 94.4 87.9 80.5 84.0 84.1 86.7 85.4 22.4 55.2 31.9
Arab. dia. IUCL+ 48.9 91.7 33.3 48.8 48.4 81.9 60.9 3.3 17.6 5.5

CMU 77.5 87.6 55.5 68.0 75.6 89.8 82.1 52.3 73.8 61.2

Table 3: Token level results for the out-of-domain data.

petitive, language dependent system. Another problem
constitutes the mixed cases, which cannot be reliably
annotated.

3.2 Out-Of-Domain Results

The shared task organizers provided “surprise” data,
from domains different from the training data. Our re-
sults on those data sets are shown in table 3. For space
reasons, we concentrate on the token level results only.
The results show that our system is very robust with
regard to out-of-domain settings. For Nepali-English
and Spanish-English, we reach higher results than on
the original test sets, and for the Arabic dialects, the re-
sults are only slightly lower. These results need further

analysis for us to understand how our system performs
in such situations.

4 Conclusions

We have presented the IUCL+ system for word level
language identification. Our system is based on a
Markov model, which integrates different types of in-
formation, including the named entity analyses, lexical
and character n-gram probabilities as well as transition
probabilities. One strength of the system is that it is
completely language independent. The results of the
shared task have shown that the system generally pro-
vides reliable results, and it is fairly robust in an out-
of-domain setting.
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Abstract

While there has been lots of interest in
code-switching in informal text such as
tweets and online content, we ask whether
code-switching occurs in the proceedings
of multilingual institutions. We focus on
the Canadian Hansard, and automatically
detect mixed language segments based on
simple corpus-based rules and an existing
word-level language tagger.

Manual evaluation shows that the perfor-
mance of automatic detection varies sig-
nificantly depending on the primary lan-
guage. While 95% precision can be
achieved when the original language is
French, common words generate many
false positives which hurt precision in En-
glish. Furthermore, we found that code-
switching does occur within the mixed
languages examples detected in the Cana-
dian Hansard, and it might be used differ-
ently by French and English speakers.

This analysis suggests that parallel cor-
pora such as the Hansard can provide in-
teresting test beds for studying multilin-
gual practices, including code-switching
and its translation, and encourages us
to collect more gold annotations to im-
prove the characterization and detection
of mixed language and code-switching in
parallel corpora.

1 Introduction

What can we learn from language choice pat-
terns observed within multilingual organizations?
While this question has been addressed, for in-
stance, by conducting fieldwork in European
Union institutions (Wodak et al., 2012), we aim
to use natural language processing tools to study
language choice directly from text, leveraging the

publicly available proceedings of multilingual in-
stitutions, which are already widely used for ma-
chine translation. Early work on statistical ap-
proaches to machine translation (Brown et al.,
1990) was made possible by the availability of the
bilingual Canadian Hansard in electronic form1.
Today, translated texts from the Hong Kong Leg-
islative Council, the United Nations, the European
Union are routinely used to build machine transla-
tion systems for many languages in addition to En-
glish and French (Wu, 1994; Koehn, 2005; Eisele
and Chen, 2010, inter alia), and to port linguis-
tic annotation from resource-rich to resource-poor
languages (Yarowsky et al., 2001; Das and Petrov,
2011, among many others).

As a first step, we focus on detecting code-
switching between English and French in the
Canadian Hansard corpus, drawn from the pro-
ceedings of the Canadian House of Commons.
Code-switching occurs when a speaker alternates
between the two languages in the context of a sin-
gle conversation. Since interactions at the House
of Commons are public and formal, we suspect
that code-switching does not occur as frequently
in the Hansard corpus as in other recently stud-
ied datasets. For instance, Solorio and Liu (2008)
used transcriptions of spoken language conversa-
tion, while others focused on informal written gen-
res, such as microblogs and other types of on-
line content (Elfardy et al., 2013; Cotterell et al.,
2014). At the same time, the House of Commons
is a “bilingual operation where French-speaking
and English-speaking staff work together at every
level” (Hicks, 2007), so it is not unreasonable to
assume that code-switching should occur. In ad-
dition, according to the “Canadian Candidate Sur-
vey”, in 2004, the percentage of candidates for the
House of Commons who considered themselves
bilingual ranged from 34% in the Conservative

1See http://cs.jhu.edu/˜post/bitext/ for a
historical perspective
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party to 86% in the Bloc Québecois. The study
also shows that candidates have a wide range of at-
titudes towards bilingualism and the importance of
language to their sense of identity (Hicks, 2007).
This suggests that code-switching, and more gen-
erally language choice, might reveal an interesting
range of multilingual practices in the Hansard.

In this paper, we adopt a straightforward strat-
egy to detect mixed language in the Canadian
Hansard, using (1) constraints based on the par-
allel nature of the corpus and (2) a state-of-the-
art language detection technique (King and Ab-
ney, 2013). Based on this automatic annotation,
we conduct a detailed analysis of results to address
the following questions:

• How hard is it to detect mixed language in the
Canadian Hansard? What are the challenges
raised by the Hansard domain for state-of-
the-art models?

• Within these mixed language occurrences,
does code-switching occur? What kind of
patterns emerge from the code-switched text
collected?

After introducing the Canadian Hansard corpus
(Section 2), we describe our strategy for automat-
ically detecting mixed language use (Section 3).
We will see that it is a challenging task: preci-
sion varies varies significantly depending on the
primary language, and recall is much lower than
precision for both languages. Finally, we will fo-
cus on the patterns of mixed language use (Sec-
tion 4): they suggest that code-switching does oc-
cur within the mixed language examples detected
in the Canadian Hansard, and that it might be used
differently by French and English speakers.

2 The Canadian Hansard Corpus

According to Canada’s Constitution, “either the
English or French language may be used by any
person in the debates of the Houses of the Parlia-
ment.”2 As a result, speaker interventions can be
in French or English, and a single speaker can in
principle switch between the two languages.

Our corpus consists of manual transcriptions
and translations of meetings of Canada’s House of
Commons and its committees from 2001 to 2009.
Discussions cover a wide variety of topics, and

2Constitution Act, 1867, formerly the British North Amer-
ica Act, 1867, “Appendices”, Revised Statuses of Canada (RS
1985), s.133.

speaking styles range from prepared speeches by
a single speaker to more interactive discussions.
The part of the corpus drawn from meetings of the
House of Commons, is often also called Hansard,
while committees refers to the transcriptions of
committee meetings.

This corpus is well-suited to the study of mul-
tilingual interactions and their translation for two
main reasons. First, the transcriptions are anno-
tated with the original language for each inter-
vention. Second, the translations are high qual-
ity direct translations between French and English.
In contrast, a French-English sentence pair in the
European Parliament corpus (Koehn, 2005) could
have been generated from an original sentence in
German that was translated into English, and then
in turn from English into French. Direct transla-
tion eliminates the propagation of “translationese”
effects (Volansky et al., 2013), and avoids losing
track of code-switching examples by translation
into a second or third language.

One potential drawback of working with tran-
scribed text is that the transcription process might
remove pauses, repetitions and other disfluencies.
However, it is unclear whether this affects mixed
language utterances differently than single lan-
guage ones.

2.1 Corpus Structure and Processing

The raw corpus consists of one file per meeting.
The file starts with a header containing meta infor-
mation about the meeting (event name, type, time
and date, etc.), followed by a sequence of “frag-
ments”. Each “fragment” corresponds to a short
segment of transcribed speech by a single speaker,
usually several paragraphs. Fragments are the unit
of text that translators work on, so the original lan-
guage of the fragment is tagged in the corpus, as
it determines whether the content should be trans-
lated into French or into English. We use the orig-
inal language tagged as a gold label to define the
primary language of the speaker in our study of
code-switching.

The raw data was processed using the standard
procedure for machine translation data. Process-
ing steps included sentence segmentation and sen-
tence alignment within each fragment, as well as
tokenization of French and English. This process
yields a total of 8,194,055 parallel sentences. We
exclude subsets reserved for the evaluation of ma-
chine translation systems, and work with the re-
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# English # French
Data origin segments segments
Committees 4,316,239 915,354
Hansard 2,189,792 738,967
Total 6,506,031 1,654,321

Table 1: Language use by segment

# English # French # Bilingual
Data origin speakers speakers speakers
Committees 8787 888 3496
Hansard 198 61 327
Total 8985 949 3823

Table 2: Language use by speaker

maining 8,160,352 parallel segments.3

2.2 Corpus-level Language Patterns

English is used more frequently than French: it
accounts for 80% of segments, as can be seen in
Table 1. The French to English ratio is signifi-
cantly higher in the Hansard than in the Commit-
tees section of the corpus. But how often are both
languages used in a single meeting? We use the
“DocumentTitle” tags marked in the metadata in
order to segment our corpus into meetings. Both
French and English segments are found in the re-
sulting 4740 meetings in the committees subcor-
pus and 927 meetings in the Hansard subcorpus.

How many speakers are bilingual? Table 2 de-
scribes language use per speaker per subcorpus.
Here, we define a speaker as bilingual if their
name is associated with both French and English
fragments. Note that this method might overesti-
mate the number of biilingual speakers, as it does
not allow us to distinguish between two different
individuals with the same name. Overall 22% of
speakers are bilingual. The percentage of bilingual
speakers in the Hansard (56%) is more than twice
that in the Committees (26.5%), reflecting the fact
that Hansard speakers are primarily Members of
Parliament and Ministers, while speakers that ad-
dress the Committees represent a much wider sam-
ple of Canadian society.

3The raw and processed versions of the corpus are both
available on request.

3 Automatic Detection of Mixed
Language

3.1 Task Definition
We aim to detect code-switching between English
and French only. While we found anecdotal ev-
idence of other languages such as Spanish and
Italian in the corpus4, these occurrences seem ex-
tremely rare and detecting them is beyond the
scope of this study.

We define mixed-language segments as seg-
ments which contain words in the language other
than their “original language”. Recall that the
original language is the manually assigned lan-
guage of the fragment which the segment is part
of (Section 2). We want to automatically (1) de-
tect mixed-language segments, and (2) label the
French and English words that compose them, in
order to enable further processing. These two
goals can be accomplished simultaneously by a
word-level language tagger.

In a second stage, the automatically detected
mixed language segments are used to manually
study code-switching, since our mixed language
tagger does not yet distinguish between code-
switching and other types of mixed language (e.g.,
borrowings).

3.2 Challenges
When the identity of the languages mixed is
known, the state-of-the-art approach to word-level
language identification is the weakly supervised
approach proposed by King and Abney (2013).
They frame the task as a sequence labeling prob-
lem with monolingual text samples for train-
ing data. A Conditional Random Field (CRF)
trained with generalized expectation criteria per-
forms best, when evaluated on a corpus compris-
ing 30 languages, including many low resources
languages such as Azerbaijani or Ojibwa.

In our case, there are only two high-resource
languages involved, which could make the lan-
guage detection task easier. However, the Hansard
domain also presents many challenges: English
and French are closely related languages and share
many words; the Hansard corpus contains many
occurrences of proper names from various origins
which can confuse the language detector; the cor-
pus is very large and unbalanced as we expect the
vast majority of segments to be monolingual.

4e.g., “merci beaucoup, thank you very much, grazie
mille”
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To address these challenges, we settled on a two
pass approach: (1) select sentences that are likely
to contain mixed language, and (2) apply CRF-
based word-level language tagging to the selected
sentences.

3.3 Method: Candidate Sentence Selection
We select candidates for mixed language tagging
using two complementary sources of information:

• frequent words in each language: a mixed-
language segment is likely to contain words
that are known to be frequent in the second
language. For instance, if a segment pro-
duced by a French speaker contains the string
“of”, which is frequent in English, then it is
likely to be a mixed language utterance.

• parallel nature of corpus: if a French speaker
uses English in a predominantly French seg-
ment, the English words used are likely to be
found verbatim in the English translation. As
a result, overlap5 between a segment and its
translation can signal mixed language.

We devise a straightforward strategy for selecting
segments for word-level language tagging:

1. identify the top 1000 most frequent words on
each side of the parallel Hansard corpus.

2. exclude words that occur both in the French
and English list (e.g., the string “on” can be
both an English preposition and a French pro-
noun)

3. select originally French sentences where (a)
at least one word from the English list occurs,
and (b) at least two words from the French
sentence overlap with the English translation

4. select originally English sentences in the
same manner.

3.4 Method: Word-level Language Tagging
The selected segments are then tagged using the
CRF-based model proposed by King and Abney
(2013). It requires samples of a few thousand
words of French and English for training. How
can we select samples of English and French that
are strictly monolingual?

We solve this problem by leveraging the parallel
nature of our corpus again: We assume that a seg-
ment is strictly monolingual if there is no overlap

5Except for numbers, punctuation marks and acronyms.

fr mixed in en gold pos. gold neg. total
predicted pos. 21 8 29
predicted neg. 1 109 110
total 22 117 139

Table 4: Confusion matrix for detecting segments
containing French words when English is the orig-
inal language. It yields a Precision of 95.4% and a
Recall of 72.4%

en mixed in fr gold pos. gold neg. total
predicted pos. 3 1 4
predicted neg. 13 105 118
total 16 106 122

Table 5: Confusion matrix for detecting segments
containing English words when French is the orig-
inal language. It yields a Precision of 75% and a
Recall of 18.75%

in vocabulary between a segment and its transla-
tion. Using this approach, we randomly select a
sample of 1000 monolingual French segments and
1000 monolingual English segments. This yields
about 21k/4k word tokens/types for English, and
24k/4.6k for French. Using these samples, we ap-
ply the CRF approach on each candidate sentence
selected during the previous step. For the low re-
source languages used by King and Abney (2013),
the training samples were much smaller (in the
order of hundreds of words per language), and
learning curves suggest that the accuracy reaches
a plateau very quickly. However, we decide to
use larger samples since they are very easy to con-
struct in our large data setting.

3.5 Evaluation

At this stage, we do not have any gold annotation
for code-switching or word-level language identi-
fication on the Hansard corpus. We therefore ask
a bilingual human annotator to evaluate the preci-
sion of the approach for detecting mixed language
segments on a small sample of 100 segments for
each original language. The annotator tagged each
example with the following information: (1) does
the segment actually contain mixed language? (2)
are the language boundaries correctly detected?
(3) what does the second language express? (e.g.,
organization name, idiomatic expression, quote,
etc. The annotator was not given predefined cat-
egories) . Table 3 provides annotation examples.
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Tagged Lang. [FR Et le premier ministre nous répond que] [EN a farmer is a farmer
a Canadian is a Canadian] [FR d’ un bout à l’ autre du Canada]

Gold Lang. [FR Et le premier ministre nous répond que] [EN a farmer is a farmer
a Canadian is a Canadian] [FR d’ un bout à l’ autre du Canada]

Evaluation Mixed-language segment? yes
Are boundaries correct? yes
What is the L2 content? quote

Tagged Lang. [FR Autrement] [EN dit they are getting out of the closet] [FR parce
que cela leur donne le droit d avoir deux enfants]

Gold Lang. [FR Autrement dit] [EN they are getting out of the closet] [FR parce
que cela leur donne le droit d avoir deux enfants]

Evaluation Mixed-language segment? yes
Are boundaries correct? no
What is the L2 content? idiom

Table 3: Example of manual evaluation: the human annotator answers three questions for each tagged
example, based on their knowledge of what the gold language tags should be.

2-step committees Hansard
detection en fr en fr
Selection 62,069 13,278 42,180 13,558
Tagger 7,713 317 3,993 164

Table 6: Number of mixed-language segments de-
tected by each automatic tagging stage, as de-
scribed in Section 3.

Based on this gold standard, we can first eval-
uate the performance of the segment-level mixed
language detector (Task (1) as defined in Sec-
tion 3.1). Confusion matrices for English and
French sentences are given in Tables 5 and 4 re-
spectively. The gold label counts confirm that the
classes are very unbalanced, as expected.

The comparison of the predictions with the gold
labels yields quite different results for the two lan-
guages. On English sentences, the mixed language
tagger achieves a high precision (95.4%) at a rea-
sonable level of recall (72.4%) , which is encour-
aging. However, on French sentences, the mixed
language tagger achieves a slightly lower preci-
sion (75%) with an extremely low recall (18.75%).
These scores are computed based on a very small
number of positive predictions by the tagger (4
only) on the sample of 100+ sentences. Never-
theless, these results suggest that, while we might
miss positive examples due to the low recall, the
precision of the mixed language detector is suffi-
ciently high to warrant a more detailed study of the
examples of mixed language detected.

lang corpus detection segmentation
precision precision

en committees 72.6% 44.4%
Hansard 45.9% 28.6%

fr committees 98.4% 67.7%
Hansard 96.8% 75.4%

Table 7: Evaluation of positive predictions: pre-
cision of mixed language detection at the segment
level, and precision of the language segmentation
(binary judgment on accuracy of predicted lan-
guage boundaries for each segment.)

4 Patterns of Mixed Language Use

Discovering patterns of mixed language use, in-
cluding code-switching, requires a large sample of
mixed language segments. Since the gold standard
constructed for the above evaluation (Section 3)
only provides few positive examples, we ask the
human annotator to apply the annotation proce-
dure illustrated in Table 3 to a sample of posi-
tive predictions: French segments where the tag-
ger found English words, and vice versa.

The number of positive examples detected can
be found in Table 6. Only a small percentage of the
original corpus is tagged as positive, but given that
our corpus is quite large, we already have more
than 10,000 examples to learn from.

The human annotator annotated a random sam-
ple of 60+ examples for each original language
and corpus partition. The resulting precision
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Figure 1: Categories of mixed language use ob-
served depending on the original language of the
segment, in the committees data

scores, both for mixed language detection at the
segment level, and for accurately tagging words
with French and English, are given in Table 7.
For segment level detection, the precision is much
higher on French than on English, as observed
previously. On English data, the annotation re-
veals that most false positives are due to fre-
quent words that occur both in languages (e.g.,
“province”,“Premier”,“plus”), and are incorrectly
tagged as French in our English segment. The
boundaries of French and English segments are
correctly detected for up to 75% of French seg-
ments, but only for 44% at best in English seg-
ments. More work is therefore needed to accu-
rately tag languages at the word-level. Some of
the second language words are usually detected,
but the boundaries are often wrong, especially at
code-switching points.

In addition to correctness, the annotator was
asked to identify the kind of information conveyed
by the second language, and they came up with
categories that reflected the patterns that emerged
from the examples. Examples of these categories
are given for each language in Table 8, and the
percentage of examples observed per category for
each language are plotted in Figure 1.

While many correctly detected mixed language
segments are due to borrowings, use of organiza-
tion names or titles in the other language, we do
find examples of code switching such as:

• quotes

• multiword expressions or idioms,

• politeness formulas and formality.

The distribution of code-switching across these
categories is very different for French and En-

glish as original languages. Multiword expres-
sions and idioms account for more than 40% of
English use in French segments, while there are no
examples of French idioms in English segments.
Conversely, while politeness formulas in French
account for more than 30% of correctly detected
mixed language use in English segments, there are
only fewer than 5% such instances in French. This
might suggest that French speakers who code-
switch are more proficient in English than En-
glish speakers in French, or that code-switching is
used for different purposes by English and French
speakers in the Hansard context.

While more analysis is definitely needed to bet-
ter understand code-switching patterns and their
use, we have established that code-switching oc-
curs in the Hansard corpus, and that it might be
used differently by French and English speakers.

In the parallel corpus, different types of mixed
language are handled differently by human trans-
lators, which suggests that machine translation
of code-switched data requires specific strategies:
while English idioms, quotes or named entities in
a French segment might be directly copied to the
output when translating into English, other cat-
egories should be handled diffferently. For in-
stance, mixed language that discusses translation
of terms might require to avoid translating the
original French terms in order not to lose the orig-
inal meaning in translation. When English is used
in politeness, the reference translations often per-
form a normalization of titles and capitalization.
In that case, copying the English segments in the
French sentence to the MT output would produce
translations that are understandable, but would not
match the conventions used in the reference.

5 Related Work

To the best of our knowledge, this is the first
study of mixed language and code-switching in
the Canadian Hansard parallel corpus, a very large
parallel corpus commonly used to build generic
machine translation systems.

Previous work at the intersection of machine
translation and mixed languages has focused on
specific application scenarios: word translation
disambiguation for mixed language queries (Fung
et al., 1999), or building applications to help sec-
ond language learners, such as translating of short
L1 phrases in sentences that are predominantly
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Use of English in primarily French segments
Quote [FR C’ est écrit] “[EN will have full access] ”

[FR Vous avez dit et je vous cite] “ [EN we do not have to change the defini-
tion of marriage to protect equality rights] ”

Translation [FR On parle en anglais de] [EN carrots and sticks]
[FR Milliard correspond à] [EN billion] [FR en anglais]

Politeness [FR Nous accueillons ce matin M Brulé M Baines M McDougall et M Mann]
[EN Welcome to all of you]
[EN Thank you Mr Chair] [FR Merci beaucoup]

Idioms/MWEs [FR Le contraire ne m avait jamais été dit] [EN by the way]
[FR Oui en français] [EN as well]

Title [FR Je cite l auteur israélien Simha Flapan dans l ouvrage] [EN The Birth of
Israel]
[FR Des courts métrages présents dans la compétition officielle] [EN The
stone of folly] [FR a nettement été le film préféré du public]

Organization [FR La] [EN Western Canadian Wheat Growers Association] [FR est une
association de producteurs]
[FR M Thomas Axworthy l ancien président du] [EN Centre for the Study of
Democracy] [FR s y trouvait aussi]

Other [FR Alors en ce moment le comité est maı̂tre de sa propre procédure pour
étudier cette question importante] [EN this breach of its own privileges which
appears to have taken place]
[FR Merci aux collègues] [EN who gave me this opportunity]
Use of French in primarily English segments

Quote [EN The great French philosopher Blaise Pascal spoke of the essence of hu-
man life as a gamble] [FR un pari ] [EN and so it is in political life]
[EN You mentioned] [FR les fusions] [EN but I gather that] [FR les défusions]
[EN is now the order of the day in Quebec]

Translation [EN The French text had a small error in that it used the word] [FR aux] [EN
where the word] [Fr des] [EN should have been used]
[EN Mr Speaker to teach is to open doors to a better world in French] [FR
enseigner ouvre les portes vers un monde meilleur]

Politeness [EN Thank you Mr Chairman] [FR monsieur le président] [EN honourable
members] [FR mesdames et messieurs]
[EN On this important traditional Chinese holiday] [FR bonne année à toute
la communauté canadienne] [EN I wish all Canadians health happiness and
prosperity in the year of the ox]

Idioms/MWEs [EN We were the first ones to start to ask about it and we are following] [FR à
la lettre] [EN as we say in French
[EN So that s just to][FR entrer en matière]

Borrowing [EN We think it fundamentally adjusts the loss of culture and language which
was the] [FR raison d’être] [EN of the residential school program]
[EN Everything is a] [FR fait accompli]

Organization [EN That s a fair question and I d like to thank Mr Blaney for participating in
the] [FR Forum socioéconomique des Premières Nations]
[EN If the [EN Bloc Québécois] [EN brings forward a witness you may want
to go to them first]

Other [EN The same committee rejected an amendment] [FR proposé par le Bloc
québécois proposé par moi pour le NPD]
[EN This is not the current government] [FR C est la même chose] [EN it
doesn t matter which one is in power]

Table 8: Examples of mixed language segments
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L26 (van Gompel and van den Bosch, 2014), or
on detecting code-mixing to let an email trans-
lation system handle words created on the fly
by bilingual English-Spanish speakers (Manan-
dise and Gdaniec, 2011). While code-switched
data is traditionally viewed as noise when train-
ing machine translation systems, Huang and Yates
(2014) showed that appropriately detecting code-
switching can help inform word alignment and im-
prove machine translation quality.

There has been renewed interest on the study
of mixed language recently, focusing on detect-
ing code-switching points (Solorio and Liu, 2008;
Elfardy et al., 2013) and more generally detect-
ing mixed language documents. Lui et al. (2014)
use a generative mixture model reminiscent of La-
tent Dirichlet Allocation to detect mixed language
documents and the languages inside them. Un-
like the CRF-based approach of King and Abney
(2013), the languages involved do not need to be
known ahead of time. In contrast with all these
approaches, we work with parallel data with un-
balanced original languages.

6 Conclusion

We investigated whether code-switching occurs in
the Canadian Hansard parallel corpus.

We automatically detected mixed language seg-
ments using a two-step approach: (1) candidate
sentence selection based on frequent words in each
language and overlap between the two side of the
parallel corpus, and (2) tag each word in the seg-
ment as French or English using the CRF-based
approach of King and Abney (2013).

Manual evaluation showed that automatic de-
tection can be done with high precision when the
original language is French, but common words
generate many false positives which hurt preci-
sion in English. More research is needed to im-
prove recall, which is lower than precision in both
languages, and particularly low when the original
language is French. Further analysis reveals that
code-switching does occur within the mixed lan-
guage examples detected in the Canadian Hansard,
and suggests that it is used differently by French
and English speakers.

While much work is still needed to construct
larger evaluation suites with gold annotations, and
improving the detection and tagging of mixed

6http://alt.qcri.org/semeval2014/
task5/

language sentences, this work suggests that the
proceedings of multilingual organizations such as
the Canadian Hansard can provide interesting test
beds for (1) corpus-based study of language choice
and code-switching, which can complement the
direct observation of meetings, as conducted by
Wodak et al. (2012), and (2) investigating the in-
teractions of code-switching and machine transla-
tion. Furthermore, it would be interesting to study
how code-switching in the Hansard differs from
code-switching in more informal settings.
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Abstract1 

Code-Mixing is a frequently observed 

phenomenon in social media content gen-

erated by multi-lingual users. The pro-

cessing of such data for linguistic analysis 

as well as computational modelling is 

challenging due to the linguistic complex-

ity resulting from the nature of the mixing 

as well as the presence of non-standard 

variations in spellings and grammar, and 

transliteration. Our analysis shows the ex-

tent of Code-Mixing in English-Hindi 

data. The classification of Code-Mixed 

words based on frequency and linguistic 

typology underline the fact that while 

there are easily identifiable cases of bor-

rowing and mixing at the two ends, a large 

majority of the words form a continuum in 

the middle, emphasizing the need to han-

dle these at different levels for automatic 

processing of the data. 

1 Introduction 

The past decade has seen an explosion of Com-

puter Mediated Communication (CMC) world-

wide (Herring 2003). CMC provides users with 

multiple options, both asynchronous and synchro-

nous, like email, chat, and more recently, social 

media like Facebook and Twitter (Isharayanti et al 

2009, Paolillo 2011). This form of communica-

tion raises interesting questions on language use 

across these media. Language use in CMC lies 

somewhere in between spoken and written forms 

                                                 
1 This work was done during the author’s internship at Mi-

crosoft Research Lab India.  

of a language, and tend to use simple shorter con-

structions, contractions, and phrasal repetitions 

typical of speech (Dannett and Herring 2007) 

Such conversations, especially in social-media are 

also multi-party and multilingual, with switching 

between, and mixing of two or more languages, 

the choice of language-use being highly influ-

enced by the speakers and their communicative 

goals (Crystal 2001). 

Code-Switching and Code-Mixing are stable and 

well-studied linguistic phenomena of multilingual 

speech communities. Code-Switching is “juxta-

position within the same speech exchange of pas-

sages of speech belonging to two different gram-

matical systems or sub-systems” (Gumperz 1982), 

and Code-Mixing refers to the embedding of lin-

guistic units such as phrases, words and mor-

phemes of one language into an utterance of an-

other language (Myers-Scotton 1993, 2002). 

Thus, Code-Switching is usually inter-sentences 

while Code-Mixing (CM) is an intra-sentential 

phenomenon. Linguists believe that there exists a 

continuum in the manner in which a lexical item 

transfers from one to another of two languages in 

contact (Myers-Scotton 2002, Thomason 2003). 

Example (1) below illustrates the phenomenon of 

Code-Switching, while (2) shows Code-Mixing. 

 

(1) I was going for a movie yesterday. raaste 

men mujhe Sudha mil gayi.  

Gloss: [I was going for a movie yesterday.] 

way in I Sudha meet went 

Translation: I was going for a movie yester-

day; I met Sudha on the way. 
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(2) Main kal movie dekhne jaa rahi thi and 

raaste me I met Sudha. 

Gloss: I yesterday [movie] to-see go Contin-

uous-marker was [and] way in [I met] Sudha.  

Translation: I was going for a movie yester-

day and on the way I met Sudha. 

 

The main view held by linguists being that a lexi-

cal item goes from being used as a foreign word 

to a valid loanword indistinguishable from the na-

tive vocabulary by virtue of repeated use and 

adoption of morpho-syntactic features of the re-

cipient language (Auer 1984). However, in the 

case of single words, most scholars agree that it is 

difficult to determine whether or not a word is a 

“bona fide loanword/borrowing” or an instance of 

nonce borrowing2 or CM (Alex 2008, Bentahila 

and Davies, 1991, Field 2002, Myers-Scotton 

2002, Winford 2003). In this study, we only con-

sider Code-mixing examples, i.e., intra-sentential 

embedding of a language in another language. 

Processing such language data is challenging 

from the perspective of linguistic understanding 

vis-à-vis discourse and conversational analysis, as 

well as computational modelling and applications 

to Machine Translation, Information Retrieval 

and Natural Interfaces. Especially, in the case of 

social-media content where there are added com-

plications due to contractions, non-standard spell-

ings, and ungrammatical constructions as well as 

mixing of scripts. Many languages that use non-

Roman scripts, like Hindi, Bangla, Chinese, Ara-

bic etc., are often represented using Roman trans-

literations (Virga and Khudanpur 2003, Sowmya 

et al 2010). This poses additional challenges of ac-

curately identifying and separating the two lan-

guages. Further, it is often difficult to disambigu-

ate a borrowing as a valid native vocabulary from 

a mixing of a second language when dealing with 

single words. An understanding of the nature of 

mixing in such data is one of the first steps to-

wards processing this data and hence, making a 

more natural interaction in CMC a real possibility. 

                                                 
2 Nonce-borrowings are typically borrowings that do 

not necessarily follow any phonological, morpho-syn-

tactic or sociolinguistic constraints on their assimila-

tion into the host language (Poplack et al 1988). How-

ever, it is not clear if this is always a defining feature 

In this paper, we analyze social media content 

from English-Hindi (En-Hin) bilingual users to 

better understand CM in such data. We look at the 

extent of CM in both Hindi embedding in English, 

as well as English in Hindi. Our analysis of the 

type of CM in this context based on frequency of 

use and linguistic typology helps further an under-

standing of the different kinds of CM employed 

by users and emphasizes the need to tackle these 

at different levels. 

Facebook 

Page 

No. of 

likes 

No. of 

posts col-

lected 

No. of 

comments 

collected 

Amitabh 

Bachchan 

12,674,509 5 3364 

BBC 

Hindi 

1,876,306 18 240 

Narendra 

Modi 

15,150,669 15 2779 

Shahrukh 

Khan 

8,699,146 2 600 

Total  40 6983 

 

Table 1: Facebook Data Source  

2 Corpus Creation and Annotation 

For the creation of corpus for studying En-Hin 

CM, data from public Facebook pages in which 

En-Hin bilinguals are highly active was consid-

ered appropriate. Hence, we chose the Facebook 

pages of three Indian public figures, two promi-

nent Bollywood stars viz, Amitabh Bachchan and 

Shahrukh Khan, and the then-PM-elect Narendra 

Modi. We also collected data from the BBC Hindi 

News page. The assumption was that Bollywood, 

politics and news being three very popular areas 

of interest for Indians, we would see a lot of activ-

ity from the community on these pages. A total of 

40 posts from Oct 22- 28, 2013 were manually 

collected and preference was given to posts hav-

ing a long (50+) thread of comments. This is be-

cause CM and non-standard use of language is 

more frequent in comments. In the rest of the pa-

per, we shall use the term posts to cover both com-

ments and posts. The data was semi-automatically 

cleaned and formatted, removing user names for 

privacy. The names of public figures in the posts 

were retained. The final corpus consisted of 6983 

between established loanwords and nonce-borrowing, 

the line between them being extremely tenuous 

(Sankoff et al, 1990) 
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posts and 113,578 words. Table 1 shows the data 

source statistics.  

While a number of posts were in the Devanagari 

script, the largest representation was that of Ro-

man script. A small number of posts were found 

in the script of other Indian languages like Bangla, 

Telugu etc. Tables 2 (a) and (b) show the distribu-

tion of posts and words by script 

 

 
Facebook 

Page 

Deva-

nagari 

Roman Mixed 

Script 

Other 

Script 

Amitabh 

Bachhcan 

73 3168 112 16 

BBC 

Hindi 

56 175 27 0 

Narendra 

Modi 

77 2633 84 11 

Shahrukh 

Khan 

0 578 23 1 

 

Table 2 (a): Script used for Posts 

 

 
Facebook 

Page 

Deva-

nagari 

Roman Other 

Script 

Symbols 

Amitabh 

Bachhcan 
2661 38144 439 1768 

BBC 

Hindi 
5225 4265 23 160 

Narendra 

Modi 
9509 43,804 217 1470 

Shahrukh 

Khan 
0 5,514 105 274 

 

Table 2(b): Script used for Words 

2.1 Annotation 

As a first step towards analysis, it is imperative 

that an annotation scheme be arrived at that cap-

tures the richness, diversity and uniqueness of the 

data. Any analysis of code-mixed CMC language-

use requires inputs at social, contextual, and dif-

ferent linguistic and meta-linguistic levels that op-

erate on various sub-parts of the conversation. 

This would help label not only the structural lin-

guistics phenomena such as POS tagging, 

Chunks, Phrases, Semantic Roles etc.  but also the 

various socio-pragmatic contexts (User de-

mographics, Communicative intent, Polarity etc.). 

However, an initial attempt at such a rich, layered 

annotation proved the task to be immensely re-

source intensive. Hence, for the initial analysis the 

annotation scheme was scaled down to four la-

bels: 

Matrix: Myers Scotton’s (1993) framework, CM 

occurs where one language provides the morpho-

syntactic frame into which a second language in-

serts words and phrases. The former is termed as 

the Matrix while the latter is called Embedding. 

Usually, matrix language can be assigned to 

clauses and sentences. 

Following this framework, the annotator was 

asked to split all posts into contiguous fragments 

of words such that each fragment has a unique ma-

trix language (En or Hin) 

Word Origin: Every embedded word is marked 

for its origin (En or Hin) depending on whether 

the source language was English or Hindi. A word 

from a language other than English or Hindi was 

marked as Other (Ot). It was assumed that the un-

marked words within a matrix language origi-

nated in that language. In our data we did not find 

examples of sub-lexical CM. For example an Eng-

lish word with Hindi inflection like computeron 

(कम्प्यूटरों) were the English word “computer” is 

inflected by the Hindi plural marker –on. How-

ever, this can be a possible occurrence in En-Hin 

CM and needs to be marked as such. 

Normalization: Whenever a word in its native 

script uses a non-standard spelling (including con-

tractions) it is marked with its correct spellings. 

For transliterations of Hindi in Roman script, the 

word is marked with the correct spelling in Deva-

nagari script.  

POS tagging: Each word is labelled with its POS 

tag following the Universal Tagset proposed by 

Petrov et al (2011). This tagset uses 12 high-level 

tags for main POS classes. While, this tagset is not 

good at capturing granularity at a deeper level, we 

chose this because of a) its applicability to both 

English and Hindi doing away with the need for 

any mapping of labels between the two languages, 

and b) the small size of the corpus posed serious 

doubts on the usefulness of a more granular tagset 

for any analysis. 

The POS tags were decided on the basis of the 

function of the word in a context rather than a de-

contextualized absolute word class. This was done 

because often in the case of embedded words, the 

lexical category of the original language is com-

pletely lost and it is the function of the word in the 

matrix language that applies and assumes im-

portance. 

Named Entities: Named Entities (NE) are per-

haps the most common and amongst the first to 

form the borrowed or mixed vocabulary in CM. 

As the Universal Tagset did not have a separate 
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category for NEs, we chose to label and classify 

them as people, locations and organizations. It is 

important to remember that while NEs are perhaps 

the most frequent “borrowings” the notion of 

Word Origin in the context of CM is debatable. 

However, these need to be analyzed and processed 

separately for any NLP application. 

1062 posts consisting of 1071 words were ran-

domly selected and annotated by a linguist who is 

a native speaker of Hindi and proficient in Eng-

lish. Non-overlapping subsets of the annotations 

were then reviewed and corrected by two expert 

linguists.  

The two annotated examples from the corpus of 

En in Hin Matrix and Hin in En Matrix are given 

below: 
 

 
<s> 

 <matrix name="Hindi"> 

love_NOUN/E affection_NOUN/E le-

kar_VERB/”ले कर” 
salose_NOUN=saalon/”सालों से” 
sunday_NOUN/E ke_ADP/”के” 
din_NOUN/“दिन” chali_VERB/ “चली” aar-
ahi_VERB/“आ रही” divine_ADJ/E param-
para_NOUN/“परंपरा“ ko_ADP/“को” 
age_NOUN=aage/“आगे” badhha_VERB/“बढ़ा” 
rahe_VERB/”रहे” ho_VERB/“हो” 
 </matrix> 

</s> 

Translation: The divine tradition that (you) have 

been carrying forward every Sunday with love 

and affection.  

 
<s> 
<matrix name="English"> 

 sir_NOUN u_PRON=you r_VERB=are 

blessed_VERB by_ADP entire_ADJ brah-

mand_NOUN/H“ब्रह्माण्ड” 
 </matrix> 

</s> 

Translation: Sir, you are blessed by the entire 

Universe. 

 

It was observed that a large chunk of data con-

sisted of short posts typically a greeting or a eu-

logy from a fan of the public figures and were un-

interesting from a structural linguistic analysis of 

CM. Thus, all such posts (consisting of 5 or less 

words) were deleted from the corpus and the re-

maining corpus of 381 posts and 4135 words was 

used for further analysis. 

3 An Analysis of Code Mixed Data 

The annotated data consists of 398 Hin sentences, 

698 En and 6 Ot in a single language. 45 posts 

show at least one switch in matrix between En and 

Hin. Thus, at least 4.2% of the data is Code-

Switched. It should be noted however that this is 

matrix switching within an utterance. If we con-

sider Code-Switching at a global level to include 

switching from one language to another within a 

conversation thread then all the threads in the data 

show code-switching as they contain utterances 

from both English and Hindi.  

Looking at the 398 Hindi matrices, we find that 

23.7% of them show at least one En embedding as 

compared to only 7.2% of the En matrices with 

Hin embedding. In total 17.2% of all posts which 

consist of nearly a quarter of all words in the data 

show some amount of CM. 

 If we look at the number of points in a single ma-

trix where embedding happens, we find that in 

86% of  the En matrices, Hin embeddings appear 

only once or twice. En embeddings in Hin matrix 

is not only twice as more frequent, but can occur 

more often in a single matrix (more than 3 times 

in at least 10% of the cases). Table 3 shows the 

distribution of CM points for both the cases. 

 

# of points Hin in En En in Hin 

1 11 (36.66%) 19 (31.15%) 

2 15 (50%) 28 (45.9%) 

3 2   (6.67%) 2   (3.28%) 

4 2   (6.67%) 9   (5.49%) 

5 0 2   (3.28%) 

6 0 1   (1.64%) 

Total 30 61 

 

Table 3: Distribution of CM points 

 

 

 

Table 4: Distribution of NE by Type 

 

As expected, NEs are common in the corpus and 

there are a total of 233 NEs in 406 matrices (322 

of 4134 words). The distribution of NEs by sub-

classes is given in Table 4. 

Table 5 shows the distribution of the various POS 

in the entire corpus, as well as for the embedded 

words. Nouns do form the largest class of words 

NE Type Person 159 

NE Type Location 39 

NE Type Organization 35 

Total NE 233 

119



overall as well as for Hin as well as En embed-

ding. In fact, for Hin in English matrix, there are 

only two instances of words which are not Nouns. 

Table 5 shows the distribution of POS for Hin in 

En matrix, and En in Hin matrix 

Looking at these top-level distributions we can 

observe that though there are some similarities be-

tween the patterns of CM for Hin in English and 

En in Hindi matrices (the high frequency of 

nouns, for instance), they both exhibit distinct pat-

terns in terms of how often CM occurs as well as 

in the prevalence of POS other than Nouns. In 

Section 3.1 and 3.2 we will look at both these L1 

embedding in L2 matrix individually in more de-

tail. 

3.1 Hindi words in English matrix 

As mentioned above, most of the Hin embedding 

in En (32 out of 33) matrices are Nouns. The ex-

ception is variation of the particle “ji” used as an 

honorific marker in Hindi. The particle is used to 

denote respect and occurs in formulaic expression 

of the kind <(name/address form)> ji as in: 

 

“Amit ji, I am your fan and have seen all your 

movies” 

 

A closer look at the embedded Hin Nouns shows 

that a large number of them are actually part of 

multi-word Named Entities which do not fall un-

der the categories defined in the annotation guide-

lines. Almost all of them also function as regular 

Nouns or Verbs in Hindi. For example, the word 

“hunkaar” (a roar) is not an NE, however its use 

in the following sentence, where it is used to de 

note the name of a particular rally (event) can be 

viewed as an NE. 

 

“hunkar rally will be held tomorrow” 

 

Similarly, the word “yaatraa” in Hindi means 

journey whereas its use in the phrase “Kerala 

yaatraa” is specific to a tour of Kerala. 

 

There are some instances of nonce-borrowing or 

CM where Hindi Nouns are not used as a part of a 

potential NE or formulaic expressions. For exam-

ple, in the following sentence: 

 

“…and the party workers (will) come with me 

without virodh” 

 

The Hindi word “virodh” is used instead of the 

English alternative “protest” or “objection”. It can 

only be assumed that the user did this for sociolin-

guistic or pragmatic reasons to emphasize or hu-

mour. 

 

Kinship terms form another domain of frequent 

embedding of Hin in En. Hindi has a more com-

plex system of kinship terms where not only are 

there finer distinctions maintained between mater-

nal and paternal relations but also kinship terms 

are used to address older (and hence) respectable 

people. Thus, we find the use of “chacha” (fa-

ther’s younger brother), “bhaiya” (elder brother) 

as well as “baapu” (father) used frequently in the 

data as address forms. 

3.2 English words in Hindi matrix 

There is a far greater use of English words in 

Hindi matrices both as single words as well as 

multi-word expressions. A total of 116 unique 

Hindi words are found embedded in En matrices 

of which 76 are single word embedding and the 

rest are a part of 16 multi-word expressions. 

While Nouns continue to dominate the POS class 

of the Hindi embedding as well, there is far more 

variations in the type of CM that seems to be hap-

pening in this case. 

3.2.1 Single Word Embedding 

As in the case of English embedding (3.1) we find 

a number of Hindi Noun embedding to be of kin-

ship terms, greetings and other address form. 

POS 

Tag 

Over-

all 

En in Hin 

matrix* 

Hin in  En 

matrix* 

NOUN 1260 77 32 

VERB 856 8  
PRON 499 4  
ADP 445 0  
ADJ 302 16  
PRT 241 4 1 
DET 141 2  
. 125 NA  
ADV 104 3  
CNJ 98 2  
NUM 46 0  
X 18 0  
Total 4135   
Table 5: POS distribution for the Annotated 

Corpus.  

* Overall distribution is given at token level 

whereas the embedding En in Hin matrix, and 

Hin in E matrix are at Unique Word level. 
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Words like, “sir”, “uncle”, “hello”, “good morn-

ing” etc are used frequently to start or end a par-

ticular turn.  

A fraction of Nouns are genuine borrowings into 

the language is no Hindi equivalent for that 

word/concept. Common examples are words like 

“goal” and “bomb” which may be considered a 

part of the Hindi vocabulary. What is interesting 

is that users’ variations in spellings these words 

either in English (“goal”, “bomb”) or in equiva-

lent Hindi transliteration (“gol”, “bam”). This 

may be taken as an indication that the user is not 

actively conscious of using an English word. 

However, there are a fairly large number of Nouns 

as single words where this is not applicable as in: 

 

“agar aap BJP ke follower hain to is page ko like 

karen” 

 

(If you are a BJP follower then like this page) 

 

where there are frequently used Hindi equivalents 

but the user seems to be following certain conven-

tions on Facebook (“page” and “like”) or is mix-

ing for other purposes (“follower”) 

 

Single adjectives are not as common and when 

used are mostly intensifiers such as “very” or 

“best” etc. There are some instances of adjectives 

as nonce-borrowings such as in the following ex-

ample: 

 

“…divine paramparaa ko aage…” 

(…(taking the) divine tradition forward…) 

 

Single verb embedding of En words are always of 

the form V + kar in the data. The verb karnaa (“to 

do”) in Hindi is used to form conjunctives in 

Hindi. Thus, we have a number of Hindi phrases 

of the type: kaam karnaa  “ work to do” (to work), 

and a closer look at the English Verbs embedded 

in Hindi shows that most of these are actually in 

their nominalized form, such as “ driving kar-

naa”, or as a V + V conjunct such as “admit kar-

naa”. 

There are fewer instances of other POS classes, 

however, one interesting case is the use of con-

juncts like “but” and “and” to join two Hindi 

clauses as in: 

 

“main to gayi thi but wo wahaan nahi thaa” 

(I had gone but he wasn’t there) 

 

3.2.2 Multi Word Embedding 

Multi word expressions in English used in a Hindi 

matrix range from standard formulaic expressions 

to clause or phrase insertion. Other than standard 

greetings, these formulaic (or frozen) expression 

may work as Named Entities or Nominal com-

pounds as in the case of  “Film star”, “Cricket 

player”, “Health minister”, “Educational Insti-

tutes” and “Participation Certificate”. There are 

also other expressions that border on formulaic in 

English but which nevertheless have an ambigu-

ous status within Hindi, such as, “love and affec-

tion”. Another example of such a case of MW em-

bedding is: 

 

“Befitting reply to mere papa ne maaraa” 

 

(my father gave a befitting reply) 

 

Here, while “befitting reply” is not really a formu-

laic expression in Hindi, the user is clearly using 

it as such with the use of  the  emphatic to and the 

use of the verb maaraa (“hit”) instead of  diyaa 

(“gave”) 

 

Clause or phrase level mixing, though less fre-

quent can also be found in the data. For example,  

 

“Those who support the opposition kabhi Mu-

zaffarnagar aa kar dekho” 

 

(Those who support the opposition should come 

to Muzaffarnagar and see (for themselves)) 

 

This is a classic case of CM where both the 

phrases retain the grammatical structure of the 

language concerned. 

 

As can be seen from the analysis of the annotated 

corpus above, Code-Mixing if understood as the 

insertion of words from a language into the gram-

matical structure of another, can show a wide var-

iation in its structural linguistic manifestation.  

4 Borrowing ya Mixing? 

In linguistic literature on “other language embed-

ding” there has been a long-standing debate on 

what is true Code-mixing, what is nonce-word 

borrowing, and what are  “loanwords” that 

are integrated into the native vocabulary and 

grammatical structure (Bentahila and Davies,  
1991, Field 2002, Myers-Scotton 2002, Winford 

2003, Poplack and Dion 2012). Many linguists be-

lieve that loan-words start out as a CM or Nonce-
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borrowing but by repeated use and diffusion 

across the language they gradually convert to na-

tive vocabulary and acquire the characteristics of 

the “borrowing” language (see Alex (2008) for a 

discussion). Normally, they look at spoken forms 

to see phonological convergence and inflections 

for morpho-syntactic convergence. However, as 

pointed out by Poplack and Dion (2012) the prob-

lem with this is that in many cases a native “ac-

cent” might be mistaken for phonological conver-

gence, and a morpho-syntactic marking might not 

be readily visible. For example, most Hindi speak-

ers of English would pronounce an English alve-

olar /d/ as a retroflex because an alveolar plosive 

is not a part of the Hindi phonology. However, 

this does not imply that the said English word has 

become a part of the native vocabulary. Similarly, 

if we look at the two sentences: 

 

“sab artists ko bulayaa hai”  

(all artists have been called), 

 

and 

 

“sab artist kal aayenge” 

(all artists will come tomorrow) 

 

In the first sentence the English inflection –s on 

the word artist marks it as plural but in the second 

case, the plural is marked on the Hindi Verb. Does 

this imply that in the first case it is CM and in the 

second a case of borrowing given that both the 

forms and the structures are equally acceptable 

and common in Hindi?  

Many studies (Mysken 2000, Gardner-Chloros. 

2009, Poplack and Dion 2012 etc.) thus point out 

that it is not easy to decide these categories espe-

cially for single words without looking at dia-

chronic data and the inherent fuzziness of the dis-

tinction itself. In general, it is believed that there 

exists a sort of continuum between CM and loan 

vocabulary where the edges might be clearly dis-

tinguishable but it is difficult to disambiguate the 

vast majority in the middle especially for single 

words.  

As we have seen in the preceding Section CM of 

Hin in English matrix mainly follows a very dis-

tinct pattern of using NEs (and functional NEs) 

and formulaic expressions. However, in the case 

of En in Hindi CM, there is a far wider variation 

and it could be difficult in many instances to de-

cide by just looking at the data whether a certain 

embedding is a borrowing or CM. 

One way to make a distinction between a borrow-

ing and CM could be to look at the diffusion of the 

word in the native language. Borrowed words of-

ten appear in monolingual usage long before dic-

tionaries and lexicons adopt them as native vocab-

ulary. Thus, to judge the diffusion of an English 

word one would have to look at the frequency of 

its use in suitable monolingual context such as 

news wire data, chat logs or telephone conversa-

tions.  

For a further analysis of En embedding in Hin 

matrix in our data, we decided to check their fre-

quency based diffusion in a monolingual new cor-

pus of Hindi. For this purpose we took a corpus of 

51,277,891words from Dainik Jagaran 

(http://www.jagran.com/), a popular daily news-

paper in Hindi, and created a frequency count of 

the 230,116 unique words in it. News corpora are 

a reasonable choice for monolingual frequencies 

as code-mixing is relatively rare and frowned 

upon in news unless it refers to a named entity or 

is a part of a direct quote. We then mapped com-

mon Hindi equivalents of all the English words 

used in the corpora. Finally, we checked the fre-

quency of both the English embedding as well as 

their corresponding Hindi equivalents. As men-

tioned before, a number of English words do not 

have Hindi equivalents and for these words we ex-

pect the English words themselves to have a high 

frequency count in the corpus. 

An analysis of the results thus obtained shows 

that the English words do indeed fall into two dis-

tinct buckets at the edges. Thus, for words such as 

“party” (as in “political party”), “vote”, “team” 

we find that not only are the word counts quite 

high (over 67K for “party” and over 18k for 

“vote” and “team”) but the counts for the equiva-

lent Hindi forms are relatively low. Similarly, 

words like “affection”, “driving”, “easily” etc. 

were not found in the corpus, while their Hindi 

equivalents had relatively medium to high counts. 

However, there is a large number of words in the 

middle where both the English and the Hindi 

equivalents have a comparative count or the dif-

ference is not significant. For these words it is dif-

ficult to decide whether they ought to be classified 

as borrowing or CM.  

Let us denote the frequency of an En word as fe 

and that of its Hin synonym as fh. Let δ be an ar-

bitrary margin > 0. The aforementioned intuition 

about the nature of CM and borrowing can be for-

malized as follows:  

 If for a given word log(fh/fe)> δ, we call it 

CM  
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  If for a given word log(fh/fe) < -δ, we call 

it a borrowing. 

 If -δ  log(fh/fe)  δ, it is not possible to 

decide between the two cases, and hence 

we call the word ambiguous. 

Figure 1 shows the scatter plot of the frequency of 

all the En words that occur within Hin matrix (119 

in total) in the Dainik Jagaran data (x-axis) against 

the frequency of its Hindi synonym (y-axis) in the 

same corpus. Since frequency follows Zipfs law, 

the axes are in log-scale. The words, which are 

represented by dots in Figure 1, are scattered all 

over the plot without any discernable pattern. This 

indicates that there are no distinct classes of words 

that can be called borrowings or mixing; rather, it 

is a continuum. If we assume δ to be 1, an arbi-

trary value, we can divide the plot into three zones 

using the three rules proposed above. These 

zones, bounded by the blue lines are shown in Fig-

ure 1: Mixing – words that are code-mixed (top-

left triangle), borrowings (bottom-right triangle) 

and ambiguous (the narrow zone running diago-

nally between the two with a width of 2δ. 
However, we observe that some En words which 

has very high frequency in our corpus (e.g., vote, 

party, team), are classified as ambiguous because 

their Hin synonyms have a comparable high fre-

quency as well. To a native speaker of Hindi, 

these words are clearly borrowings and used even 

in formal Hin text. In fact, it seems reasonable to 

declare an En word as a borrowing solely on the 

basis of its very high frequency in the monolin-

gual corpus. We could choose another arbitrary 

threshold α = 1000, such that a word is declared 

as a borrowing if the following two conditions are 

satisfied: 

 -δ  log(fh/fe)  δ  

 fe > α 

Note that the choice of α should also depend on 

the size of the corpus. Table 6 reports the number 

of CM in the data with and without applying the 

large frequency rule. We see that the number of 

CM words is the highest followed by ambiguous 

words. This clearly indicates that CM is a very 

common phenomenon on social media. Appendix 

A lists all the En words and their classes.  

 Using arbitrary thresholds, δ and α, to classify the 

words into three distinct set is a convenient tool to 

deal with code-mixing; but it ignores the fact that 

in reality it is not possible to classify words into a 

few distinct categories. There is always a contin-

uum between borrowing and mixing. Figure 1 

shows a more appropriate gradient based visuali-

zation of the space. Words falling on the darker 

regions of this plot are more likely to be borrow-

ing. The gradients reflect the two equations dis-

cussed above. The darkness linearly increases 

with log(fe) and decreases with log(fh/fe). The 

overall darkness is a simple linear combination of 

these two independent factors. Note that this for-

mulation is only for a visualization purpose, and 

should not be interpreted as some formal proba-

bility or measure of “borrowing-ness” of a word. 

 

 

 
Figure 1: Plot of the frequencies of En words em-

bedded in Hin matrix (x-axis) and their Hin syno-

nyms (y-axis) in the Dainik Jagaran corpus. 

 

 CM Ambigu-

ous 

Borrowing 

w/o α-Rule 69 39 11 

w/ α-Rule 69 31 19 

 

Table 6: Classification of embedded En words 

into three classes for δ =1. 

 

A note on synonym selection: Which syno-

nym(s) of an En word should be considered for 

CM vs. borrowing analysis is a difficult question. 

First, a word can have many senses. E.g., the word 

party can mean a political party, a group of peo-

ple, or a social gathering, and also a verb – to par-

ticipate in a social gathering. Each of these senses 

can be translated in, often more than one ways. 

E.g., dala in the sense of political party, 

anusThANa or dAwata in the sense of social gath-

ering, etc. To complicate the situation further, 

these Hindi words can have many senses as well 

(e.g., the word dala can mean a sports team, or a 

political party or group of people or animals).  

Thus, when we compare synonyms without 

context, we cannot be sure in which sense the 
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words are used and therefore, the frequency 

counts maybe misleading. A second problem arise 

with phrase embedding. While an entire phrase 

can be borrowed, its words may not be (e.g., clean 

chit  -Indian version of the English expression 

“clean sheet”- is a borrowed expression in Hindi, 

but clean is not). However, we had access to only 

the wordlist and word frequencies, which made it 

impossible to disentangle such effects. Compar-

ing contexts automatically deciphering word 

sense is a complex problem in itself. For this 

work, we used an En to Hin lexicon 

(http://shabdkosh.raftaar.in/) to find out the syno-

nyms, and for every synonym extracted the fre-

quency from the wordlist, and deemed the highest 

frequency as the fh for the word. A more thorough 

synonym selection using context and phrase level 

analysis would be an interesting extension of this 

work. 

4.1 Ambiguous Words 

The words classified as ambiguous pose a prob-

lem as we do not know whether these words are 

in the process of being borrowed, or are working 

as near-synonym of the Hindi equivalent, or are 

CMs where the intention of the user is the motiva-

tion for the “other language” use.  

Poplack and Dion (2012) are of the view that there 

does not exist a continuum between CM, Nonce-

borrowing and loanwords. In their diachronic 

study on En-French CM, the authors show that the 

frequency of all three categories remain stable. 

According to them, a user is always aware 

whether they are using an “other language” word 

as a CM (for socio-linguistic purposes) or as a so-

cio-linguistically unmarked borrowing. Our data 

does not capture diachronic statistics neither does 

our monolingual corpus is at the scale at which 

language changes occur. However, we interpret 

our results to indicate that there is indeed a fuzzy 

boundary between CM and borrowing. Neverthe-

less, this distinction may not be readily observable 

through word classification or even diffusion 

and/or other structural linguistic features. The no-

tion of “social acceptance” of a particular word in 

that language community may play a big role. 

Further, the perception of a word as either CM, 

or borrowing could depend on a large number of 

meta- and extra-linguistic factors that may include 

including the fluency of the user in English, famil-

iarity with the word, and the pragmatic/dis-

course/socio-linguistics reasons for using them. 

Thus, for a true bilingual, fluent in both lan-

guages, an adverb like “easily” might be more sta-

ble and almost a borrowing, but for someone with 

less familiarity with English, it might be a mixing.  

Similarly, whether or not a person is consciously 

using the English word to make a point can matter. 

A frequent example of this in our data is the use 

of swear words and expletives which are often ac-

companied by a switch in language. These words 

thus are difficult to disambiguate without more in-

formation and data, and an analysis that takes into 

account the non-structural linguistic motivations.  

5 Conclusion 

In this paper, we present an analysis of data from 

Facebook generated by En-Hin bilingual users. 

Our analysis shows that a significant amount of 

this data shows Code Mixing in the form of En in 

Hindi matrix as well as Hin in English matrix. 

While the embedding of Hindi words in English 

mostly follows formulaic patterns of Nouns and 

Particles, the mixing of English in Hindi is clearly 

happening at different levels, and is of different 

types. This can range from single words to multi-

word phrases ranging from frozen expressions to 

clauses. Considering monolingual corpus fre-

quency counts clearly shows that the words them-

selves fall into three categories of clear CM, clear 

Borrowings and Ambiguous where the distinction 

becomes fuzzy. The problem is amplified because 

in transliterated text, even the borrowings are 

mostly in English spellings and sometimes Hindi 

spellings (goal vs gol), and will be identified as 

English words. From an NLP perspective, all 

these have to be handled differently. Some are 

easier to handle (“party” would be in a Hindi lex-

icon, for example, and NEs) and some are more 

difficult for example where Adverbials or clauses 

are involved. 

The insights from this analysis indicate that any 

future work on CM in social media content would 

have to involve a deeper analysis at the intersec-

tion of structural and discourse linguistics. We 

plan to continue our work in this area in the future 

with focus on larger data sets, richer annotations 

which take into account not only structural lin-

guistics annotation but also discourse and prag-

matic level annotations. We believe that an under-

standing of the interaction between morpho-syn-

tax and discourse, and a deeper look at sociolin-

guistic context of the interaction in the future will 

help us to better define and understand this phe-

nomenon and hence, implement suitable NLP 

techniques for processing such data. 
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Appendix A 

List of English words embedded in Hindi matrix 

found in our data, classified into three classes for 

δ = 1 and α = 1000. 

Code-mixed words: health, public, army, India, 

affection, divine, pm, drama, clean, anti, 

young, follower, page, like, request, easily, In-

dian, uncle, comment, reply, sun, bomb, means, 

game, month, spokesperson, actor, I, word, ad-

mit, good, afternoon, time, look, please, help, 

husband, artists, very, sad, but, higher, plan-

ning, mad, keep, failure, well, strike, sorry, 

girlfriend, those, who, support, opposition, 

and, profile, right, good, men, driving, lady, 

leader, singer, shift, culture, only, with, befit-

ting, reply 

Ambiguous words: blast, daily, love, sir, bloody, 

cheapo, chit, hello, it, football, style, pant, hi, 

commonwealth, participation, certificates, ed-

ucation, robot, Bollywood, player, big, bee, the, 

agency, women, line, trolling, ODI, tiger, com-

edy 

Borrowings: CBI, goal, rally, match, police, film, 

cricket, appeal, Italian, fan, best, vote, party, 

power, minister, team, you, photo, star 
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Abstract

This paper describes the DCU-UVT
team’s participation in the Language Iden-
tification in Code-Switched Data shared
task in the Workshop on Computational
Approaches to Code Switching. Word-
level classification experiments were car-
ried out using a simple dictionary-based
method, linear kernel support vector ma-
chines (SVMs) with and without con-
textual clues, and a k-nearest neighbour
approach. Based on these experiments,
we select our SVM-based system with
contextual clues as our final system and
present results for the Nepali-English and
Spanish-English datasets.

1 Introduction

This paper describes DCU-UVT’s participation
in the shared task Language Identification in
Code-Switched Data (Solorio et al., 2014) at
the Workshop on Computational Approaches to
Code Switching, EMNLP, 2014. The task is to
make word-level predictions (six labels: lang1,
lang2, ne, mixed, ambiguous and other) for mixed-
language user generated content. We submit pre-
dictions for Nepali-English and Spanish-English
data and perform experiments using dictionaries, a
k-nearest neighbour (k-NN) classifier and a linear-
kernel SVM classifier.

In our dictionary-based approach, we investi-
gate the use of different English dictionaries as
well as the training data. In the k-NN based
approach, we use string edit distance, character-
n-gram overlap and context similarity to make
predictions. For the SVM approach, we experi-
ment with context-independent (word, character-
n-grams, length of a word and capitalisation in-
formation) and context-sensitive (adding the pre-

vious and next word as bigrams) features in differ-
ent combinations. We also experiment with adding
features from the k-NN approach and another set
of features from a neural network. Based on per-
formance in cross-validation, we select the SVM
classifier with basic features (word, character-n-
grams, length of a word, capitalisation information
and context) as our final system.

2 Background

While the problem of automatically identify-
ing and analysing code-mixing has been iden-
tified over 30 years ago (Joshi, 1982), it has
only recently drawn wider attention. Specific
problems addressed include language identifica-
tion in multilingual documents, identification of
code-switching points and POS tagging (Solorio
and Liu, 2008b) of code-mixing data. Ap-
proaches taken to the problem of identifying code-
mixing include the use of dictionaries (Nguyen
and Doğruöz, 2013; Barman et al., 2014; El-
fardy et al., 2013; Solorio and Liu, 2008b), lan-
guage models (Alex, 2008; Nguyen and Doğruöz,
2013; Elfardy et al., 2013), morphological and
phonological analysis (Elfardy et al., 2013; El-
fardy and Diab, 2012) and various machine learn-
ing algorithms such as sequence labelling with
Hidden Markov Models (Farrugia, 2004; Ros-
ner and Farrugia, 2007) and Conditional Random
Fields (Nguyen and Doğruöz, 2013; King and
Abney, 2013), as well as word-level classifica-
tion using Naive Bayes (Solorio and Liu, 2008a),
logistic regression (Nguyen and Doğruöz, 2013)
and SVMs (Barman et al., 2014), using features
such as word, POS, lemma and character-n-grams.
Language pairs that have been explored include
English-Maltese (Farrugia, 2004; Rosner and Far-
rugia, 2007), English-Spanish (Solorio and Liu,
2008b), Turkish-Dutch (Nguyen and Doğruöz,
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2013), modern standard Arabic-Egyptian di-
alect (Elfardy et al., 2013), Mandarin-English (Li
et al., 2012; Lyu et al., 2010), and English-Hindi-
Bengali (Barman et al., 2014).

3 Data Statistics

The training data provided for this task consists of
tweets. Unfortunately, because of deleted tweets,
the full training set could not be downloaded. Out
of 9,993 Nepali-English training tweets, we were
able to download 9,668 and out of 11,400 Spanish-
English training tweets, we were able to download
11,353. Table 1 shows the token-level statistics of
the two datasets.

Label Nepali-English Spanish-English
lang1 (en) 43,185 76,204
lang2 (ne/es) 59,579 32,477
ne 3,821 2,814
ambiguous 125 341
mixed 112 51
other 34,566 21,813

Table 1: Number of tokens in the Nepali-English
and Spanish-English training data for each label

Nepali (lang2) is the dominant language in
the Nepali-English training data but for Spanish-
English, English (lang1) is dominant. The third
largest group contains tokens with the label other.
These are mentions (@username), punctuation
symbols, emoticons, numbers (except numbers
that represent words such as 2 for to), words in a
language other than lang1 and lang2 and unintel-
ligible words. Named entities (ne) are much less
frequent and mixed language words (e.g. ramri-
ness) and words for which there is not enough con-
text to disambiguate them are rare. Hash tags are
annotated as if the hash symbol was not there, e.g.
#truestory is labelled lang1.

4 Experiments

All experiments are carried out for Nepali-English
data. Later we apply the best approach to Spanish-
English. We train our systems in a five-fold cross-
validation and obtain best parameters based on
average cross-validation results. Cross-validation
splits are made based on users, i.e. we avoid the
occurrence of a user’s tweets both in training and
test splits for each cross-validation run. We ad-
dress the task with the following approaches:

1. a simple dictionary-based classifier,

Resource Accuracy
BNC 43.61
LexNorm 54.60
TrainingData 89.53
TrainingData+BNC+LexNorm 90.71

Table 2: Average cross-validation accuracy of
dictionary-based prediction for Nepali-English

2. classification using supervised machine
learning with k-nearest neighbour, and

3. classification using supervised machine
learning with SVMs.

4.1 Dictionary-Based Detection
We start with a simple dictionary-based approach
using as dictionaries (a) the British National Cor-
pus (BNC) (Aston and Burnard, 1998), (b) Han
et al.’s lexical normalisation dictionary (LexNorm)
(Han et al., 2012) and (c) the training data.
The BNC and LexNorm dictionaries are built by
recording all words occurring in the respective
corpus or word list as English. For the BNC, we
also collect word frequency information. For the
training data, we obtain dictionaries for each of the
six labels and each of the five cross-validation runs
(using the relevant 4/5 of training data).

To make a prediction, we consult all dictionar-
ies. If there are more than one candidate label,
we choose the label for which the frequency for
the query token is highest. To account for the fact
that the BNC is much larger than the training data,
we normalise all frequencies before comparison.
LexNorm has no frequency information, hence it
is added to our system as a simple word list (we
consider the language of a word to be English if it
appears in LexNorm). If a word appears in multi-
ple dictionaries with the same frequency or if the
word does not appear in any dictionary or list, the
predicted language is chosen based on the domi-
nant language(s)/label(s) of the corpus.

We experiment with the individual dictionar-
ies and the combination of all three dictionaries,
among which the combination achieves the high-
est cross-validation accuracy (90.71%). Table 2
shows the results of dictionary-based detection ob-
tained in five-fold cross-validation.

4.2 Classification with k-NN
For Nepali-English, we also experiment with a
simple k-nearest neighbour (k-NN) approach. For
each test item, we select a subset of the training
data using string edit distance and n-gram overlap
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and choose the majority label of the subset as our
prediction. For efficiency, we first select k1 items
that share an n-gram with the token to be classi-
fied.1 The set of k1 items is then re-ranked ac-
cording to string edit distance to the test item and
the best k2 matches are used to make a prediction.

Apart from varying k1 and k2, we experiment
with (a) lowercasing strings, (b) including context
by concatenating the previous, current and next
token, and (c) weighting context by first calcu-
lating edit distances for the previous, current and
next token separately and using a weighted aver-
age. The best configuration we found in cross-
validation uses lowercasing with k1 = 800 and
k2 = 16 but no context information. It achieves
an accuracy of 94.97%.

4.3 SVM Classification
We experiment with linear kernel SVM classifiers
using Liblinear (Fan et al., 2008). Parameter opti-
misation2 is performed for each feature set combi-
nation to obtain best cross-validation accuracy.

4.3.1 Basic Features
Following Barman et al. (2014), our basic features
are:

Char-N-Grams (G): We start with a charac-
ter n-gram-based approach (Cavnar and Trenkle,
1994). Following King and Abney (2013), we se-
lect lowercased character n-grams (n=1 to 5) and
the word as the features in our experiments.

Dictionary-Based Labels (D): We use presence
in the dictionary of the 5,000 most frequent words
in the BNC and presence in the LexNorm dictio-
nary as binary features.3

Length of words (L): We create multiple fea-
tures for token length using a decision tree (J48).
We use length as the only feature to train a deci-
sion tree for each fold and use the nodes obtained
from the tree to create boolean features (Rubino et
al., 2013; Wagner et al., 2014).

1Starting with n = 5, we decrease n until there are at
least k1 items and then we randomly remove items added in
the last augmentation step to arrive at exactly k1 items. (For
n = 0, we randomly sample from the full training data.)

2C = 2i with i = −15,−14, ..., 10
3We chose these parameters based on experiments with

each dictionary, combinations of dictionaries and various fre-
quency thresholds. We apply a frequency threshold to the
BNC to increase precision. We rank the words according to
frequency and used the rank as a threshold (e.g. top-5K, top-
10K etc.). With the top 5,000 ranked words and C = 0.25,
we obtained best accuracy (96.40%).

Features Accuracy Features Accuracy
G 96.02 GD 96.27
GL 96.11 GDL 96.32
GC 96.15 GDC 96.20
GLC 96.21 GDLC 96.40

Table 3: Average cross-validation accuracy of 6-
way SVMs on the Nepali-English data set; G =
char-n-gram, L = binary length features, D = dict.-
based labels and C = capitalisation features

Context Accuracy(%)
GDLC + P1 96.41
GDLC + P2 96.38
GDLC + N1 96.41
GDLC + N2 96.41
GDLC + P1 + N1 96.42
GDLC + P2 + N2 96.41

Table 4: Average cross-validation accuracy of 6-
way SVMs using contextual features for Nepali-
English

Capitalisation (C): We choose 3 boolean
features to encode capitalisation information:
whether any letter in the word is capitalised,
whether all letters in the word are capitalised and
whether the first letter is capitalised.

Context (Pi and Nj): We consider the previous
i and next j token to be combined with the current
token, forming an (i+1)-gram and a (j+1)-gram,
which we add as features. Six settings are tested.
Table 4 shows that using the bigrams formed with
the previous and next word are the best combina-
tion for the task (among those tested).

Among the eight combinations of the first four
feature sets that contain the first set (G), Table 3
shows that the 6-way SVM classifier4performs
best with all features sets (GDLC), achieving
96.40% accuracy. Adding contextual information
PiNj to GDLC, Table 4 shows best results for
i=j=1, achieving 96.42% accuracy, only slightly
ahead of the context-independent system.

4.3.2 Neural Network (Elman) and k-NN
Features

We experiment with two additional features sets
not covered by Barman et al. (2014):

Neural Network (Elman): We extract features
from the hidden layer of a recurrent neural net-

4We also test 3-way SVM classification (lang1, lang2 and
other) and heuristic post-processing, but it does not outper-
form our 6-way classification runs.
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Systems Accuracy
GDLC 96.40
k-NN 95.10
Elman 89.96
GDLC+k-NN 96.31
GDLC+Elman 96.46
GDLC+k-NN+Elman 96.40
GDLC+P1N1 96.42
k-NN+P1N1 95.11
Elman+P1N1 91.53
GDLC+P1N1+k-NN 96.33
GDLC+P1N1+Elman 96.45
GDLC+P1N1+k-NN+Elman 96.40

Table 5: Average cross-validation accuracy of 6-
way SVMs of combinations of GDLC, k-NN, El-
man and P1N1 features for Nepali-English

work that has been trained to predict the next char-
acter in a string (Chrupała, 2014). The 10 most ac-
tive units of the hidden layer for each of the initial
4 bytes and final 4 bytes of each token are bina-
rised by using a threshold of 0.5.

k-Nearest Neighbour (kNN): We obtain fea-
tures from our basic k-NN approach (Section 4.2),
encoding the prediction of the k-NN model with
six binary features (one for each label) and a nu-
meric feature for each label stating the relative
number of votes for the label, e.g. if k2 = 16
and 12 votes are for lang1 the value of the fea-
ture votes4lang1 will be 0.75. Furthermore, we
add two features stating the minimum and maxi-
mum edit distance between the test token and the
k2 selected training tokens.

Table 5 shows cross-validation results for these
new feature sets with and without the P1N1 con-
text features. Excluding the GDLC features, we
can see that best accuracy is with k-NN and P1N1

features (95.11%). For Elman features, the accu-
racy is lower (91.53% with context). In combina-
tion with the GDLC features, however, the Elman
features can achieve a small improvement over
the GDLC+P1N1 combination (+0.04 percentage
points): 96.46% accuracy for the GDLC+Elman
setting (without P1N1 features). Furthermore, the
k-NN features do not combine well.5

4.3.3 Final System and Test Results
At the time of submission of predictions, we had
an error in our GDLC+Elman feature combiner re-

5A possible explanation may be that the k-NN features
are based on only 3 of 5 folds for the training data (3 folds
are used to make predictions for the 4th set) but 4 of 5 folds
are used for test data predictions in each cross-validation run.

Tweets
Token-Level Tweet-Level

Nepali-English 96.3 95.8
Spanish-English 84.4 80.4

Surprise Genre
Token-Level Post-Level

Nepali-English 85.6 77.5
Spanish-English 94.4 80.0

Table 6: Test set results (overall accuracy) for
Nepali-English and Spanish-English tweet data
and surprise genre

sulting in slightly lower performance. Therefore,
we selected SVM-GDLC-P1N1 as our final ap-
proach and trained the final two systems using the
full training data for Nepali-English and Spanish-
English respectively. While we knew that C =
0.125 is best for Nepali-English from our experi-
ments, we had to re-tune parameter C for Spanish-
English using cross-validation on the training data.
We found best accuracy of 94.16% for Spanish-
English with C = 128. Final predictions for the
test sets are made using these systems.

Table 6 shows the test set results. The test
set for this task is divided into tweets and a sur-
prise genre. For the tweets, we achieve 96.3%
and 84.4% accuracy (overall token-level accuracy)
in Nepali-English and in Spanish-English respec-
tively. For this surprise genre (a collection of posts
from Facebook and blogs), we achieve 85.6% for
Nepali-English and 94.4% for Spanish-English.

5 Conclusion

To summarise, we achieved reasonable accuracy
with a 6-way SVM classifier by employing basic
features only. We found that using dictionaries
is helpful, as are contextual features. The perfor-
mance of the k-NN classifier is also notable: it is
only 1.45 percentage points behind the final SVM-
based system (in terms of cross-validation accu-
racy). Adding neural network features can further
increase the accuracy of systems.

Briefly opening the test files to check for for-
matting issues, we notice that the surprise genre
data contains language-specific scripts that could
easily be addressed in an English vs. non-English
scenario.
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Abstract

A multilingual person writing a sentence
or a piece of text tends to switch be-
tween languages s/he is proficient in. This
alteration between languages, commonly
known as code-switching, presents us with
the problem of determining the correct
language of each word in the text. My
method uses a variety of techniques based
upon the observed differences in the for-
mation of words in these languages. My
system was able to obtain third position in
both tweet and token level for the main test
dataset as well as first position in the token
level evaluation for the surprise dataset
both consisting of Nepali-English code-
switched texts.

1 Introduction

Nowadays, it is common for people to be able to
speak in two or more languages. So, the propen-
sity to use code-switching in spoken as well as
in written text has increased. Code-switching oc-
curs when a person uses two or more than two
languages in a single piece of text. According to
Elfardy and Diab (2012), the phenomenon where
speakers switch between multiple languages be-
tween the same utterance or across utterances
within the same conversation is referred to as Lin-
guistic Code Switching. English, being an univer-
sal language is highly likely to be code-switched
with some other language. This is specially true
when English is studied or spoken in the com-
munity as the second language by a person. In
a such case, the person is likely to use English
words with his/her native language to form code-
switched, yet, syntactically correct and meaning-
ful sentences.

This paper deals with the code-switching that
occurs when English is used with Spanish or

Nepali. The problem of identifying code-
switching is closely tied with figuring out how a
language is acquired or learned. Auer (1988) iden-
tified the phenomenon of how Italians, who were
raised in Germany developed fluctuation and vari-
ation in their native language as well as in German.
They were also noticed to have a strong tendency
to have a conversation dominated by the Ger-
man words. This phenomenon was also observed
by Dey and Fung (2014). The strong influence
of Bollywood in the Indian culture and the high
amount of code-switching with English in movie
dialogues and song lyrics, led to Hindi-English
code-switching, being common for the average In-
dian. Finding out the points in the text where peo-
ple are most likely to code-switch, what word of a
certain language is more likely to be used than a
word with the same meaning of another language
and which languages are more likely to be used
in code-switching than others are all important re-
search questions. Although my paper deals only
with finding out the language a certain token in a
code-switched text belongs to, this is a first step
towards answering those other questions.

The main aim of this paper is to describe
my system submission to the Computational Ap-
proaches to Code Switching task (Solorio et al.,
2014). The training dataset provided for the clas-
sification task were tweets composed of Spanish
and English words or Nepali and English words.
The test dataset also consisted of similar tweets.
In addition to this, there was also a surprise dataset
consisting of Facebook posts and comments in the
place of tweets. My system for this task performs
language identification by using a number of tech-
niques. The first one is based upon an assump-
tion that words of different languages have vary-
ing sets of n-gram prefixes that occur predomi-
nantly throughout the language. There has been
prior research on language identification through
the use of n-grams. Cavnar et al. (1994) have ap-
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proached the task of identifying the language of
an electronic mail taken from Usenet newsgroups
with the use of n-grams. They obtained train-
ing sets for each language to be classified, which
acted as language category samples. They com-
puted n-gram frequency profiles on these train-
ing sets. They found that the top 300 n-grams of
each language are used most frequently to form
the words of the language. Nguyen and Dogruoz
(2014) have used dictionary search and a n-gram
based language model to identify the language on
word-level of forum posts with Dutch and Turkish
code-switching.

Lignos and Marcus (2013) found that data col-
lected from social media to detect code-switching
contained a lot of non-standard spellings of words
and unnecessary capitalization. It was also true for
this dataset. So, I made use of a lightweight spell
checker in the event that the word was not spelled
correctly and hence not categorised into any lan-
guage. I have also used a rule based classification
system that can also be used for named entities and
non-alphanumeric language classes. With the sys-
tem that I built based on these ideas, I achieved
an accuracy of above 94% for English-Nepali and
above 80% for English-Spanish in the token level
evaluation. As the system works as a pipeline of
smaller systems, it was time consuming. So, in
order to improve speed, it is built to run on a mul-
tithreaded environment.

Language identification by using these tech-
niques overcomes the drawback of other simpler
methods like extracting a token’s characters and
then using its Unicode value to determine its lan-
guage. But most of the time the words are not writ-
ten in its own script by using Unicode, but rather,
its Romanized form is used. Some languages like
Spanish are almost fully written in roman letters,
with exception being only a small subset of ac-
cented characters. Precisely these kinds of words
require more robust classification techniques. An-
other alternative is manual classification but it has
the downside of being time consuming and an un-
economical alternative. There is a need of an ap-
plication that can overcome these drawbacks and
create a system that can be used for similar sets of
data.

2 Methodology

The classification of a token of a code-switched
text into one of the six classes: lang1, lang2, am-

biguous, named entity, mixed and other is per-
formed by using four techniques described shortly.
But before applying any of these techniques, the
first step was the creation of a dictionary for each
class by using the tokens from the training set. As
a preprocessing step, for any token that starts with
#, the # is removed. Also, any token that starts
with @ is given the ‘other’ class label. The tech-
niques used in my system are detailed below. They
are applied in a pipeline, in the same order as they
are mentioned.

2.1 Incremental N-Gram Occurrence Model
with Dictionary Search

This model is used for test tokens whose length
(L) is greater than three in the case of Nepali-
English code-switching task and is greater than
two in the case of Spanish-English code-switching
task. Tokens that are shorter are classified by us-
ing a simple dictionary lookup. If the occurrence
count of the token in the dictionary of class C is
the highest, then the token is classified as belong-
ing to class C.

In order to assign a class label to a particular to-
ken, this model uses only the first ngram of each
size n ranging from 3 (for Spanish-English) or 4
(for Nepali-English) to L-1. The count of oc-
currence of this ngram in each class dictionary is
taken as the score. The size n is increased itera-
tively and the score from each iteration is added at
the end to obtain the final score. For named entity
(NE) and ambiguous dictionary search, the whole
token is used instead of just the ngram since the
size of these dictionaries is small. Since a whole
token lookup was performed, the occurrence count
scores from these dictionaries are rated to be three
times higher. After obtaining the final scores for
each class, the one with the highest score gets as-
signed as the class label of the token.

This method is based on the hypothesis that to-
kens belonging to the same language will have
more overlap of the preceding characters. If two
tokens are from different languages, they might
start the same way but will start deviating in the
use of characters faster than two tokens of the
same language. The Incremental N-Gram Model
for Nepali-English Classification is shown in Al-
gorithm 1.

Consider that we have to find the language of
the Test token Parsin. The following assumptions
are made:
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Algorithm 1 Incremental N-gram Classification
if len(token) > 3 then

n = 4
while n < len(token)− 1 do

if token ∈ dict[ambiguous, ne] then
Increment Respective Language
Occurrence Count by 3

end if
if FirstN-Gram ∈ Remaining Classes

then
Find the number of words in
each class dictionary that starts
with the First N-Gram.
Add this number with the previous
occurrence count for the
particular class

end if
end while

end if

N-gram
Size

First
N-gram English Nepali Ambiguous

4 PARS 2 6 3
5 PARSI 2 6 3
6 PARSIN 1 0 3

Total 7 12 9

Table 1: Incremental N-gram Classification Ex-
ample

• The Word Parsing occurs twice and Parsi-
mony once in the English Language Dictio-
nary.

• Word Parsi occurs 6 times in the Nepalese
Language Dictionary (Parsi means the day
after Tomorrow).

• Test token Parsin occurs 0 times in Other
Language and Named Entity Dictionary

• Test token Parsin occurs once each in Am-
biguous words Dictionary

The algorithm works as shown in Table 1.

2.2 Rule Based Classification

A small fraction of test tokens are left unclassi-
fied by the above method. These tokens are fur-
ther processed by using a rule based classification
system. It consists of the following handwritten
rules:

• Check if the token is an emoticon against an

emoticon list. If the token is found in the list,
it is of the class, ‘other’.

• It was hard to find an off-the-shelf named en-
tity recognizer for code-switched text. So,
a simple named entity recognition rule was
used. For a token consisting of only alpha-
betic characters, if there are more than one
uppercase letters in the token or if the token
starts with an uppercase letter, it is an NE.

• If the difference in the occurrence score of
a token in lang1 dictionary vs lang2 dictio-
nary is higher than three, the token is clas-
sified as belonging to the language with the
higher score.

• If the token occurs in lang1 and lang2 dictio-
naries equally, the token is ‘ambiguous’.

2.3 Lightweight Spell Checker

The test tokens that are still not classified are
checked for spelling errors using a simple spelling
checker, complementary to the idea of edit dis-
tance. If the above two classifiers were unable to
classify a token, it might be because these tokens
were misspelled. This method is based upon the
idea that misspelled tokens are still similar to the
language that they belong to. The spell checker
checks the test token against every token in the
dictionaries for similarity (defined below).

‘Similarity’ is defined as follows: First, a
‘similar count’ score (SC) is calculated as the
number of characters that match between two
tokens in order. A test token of length L1
is said to be similar to a dictionary token of
length L2 if: SC>max(L1,L2)-1 when L1<7 or
SC>max(L1,L2)-2 when L1 ≥ 7

Here, when the test token is checked against a
token in the Nepali dictionary, the characters ‘x’
and ‘6’ in both tokens are replaced with the char-
acter sequence ‘ch’. This normalization is per-
formed because it is very common for the latter
character sequence to be replaced by either of the
former two characters, in the Nepali language. If
a test token is found to be similar to a token in a
dictionary of a certain class, the similarity score to
the class is incremented. The class with the maxi-
mum similarity score is considered to be the class
of the test token.
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2.4 Special Characters Check
At this stage, only a minimal number of tokens
are left to be labeled. These tokens are checked to
see if they contain characters not belonging to En-
glish Unicode or modifiers. If one such character
is found, the token is said to be from lang2, either
Spanish or Nepalese. All the remaining tokens are
categorized as ‘other’.

3 Experimental Settings

For all my experiments, I divided the training
data into a ratio of 70:30 for training and cross-
validation. In order to tune the different param-
eters, I had to repeat the experiments multiple
times. So, in order to improve the runtime per-
formance, I made use of multithreading.

I tested the application by setting the first n-
gram length in the Incremental N-Gram Model to
3 and 4. I varied the criteria of the least number of
characters that should match between two tokens,
in order for the two tokens to be similar. I observed
the highest accuracy of above 94% in Nepali- En-
glish classification when the First n-gram length
was 4. In the case of Spanish-English token clas-
sification, I observed the highest accuracy of 88%
when the n-gram length was 3. The spellchecker
gave the best results when it had the above men-
tioned similarity criteria.

The whole classifying task was sure to take a
long time so I built it to scale with the increas-
ing number of CPUs. I performed the experiments
on a 1st Generation Core i7 (Eight Logical Cores)
CPU and a Core 2 Duo CPU (2 logical Cores).

I observed the best performance when the ap-
plication created the number of threads equal to
the number of available CPU cores. The classifi-
cation task completed in the i7 CPU with 8 active
threads in 13 minutes compared to almost 35 min-
utes with 2 active threads on the Core 2 Duo CPU.
The task completed in around 38 minutes in the i7
CPU with 2 active threads.

4 Results and Analysis

Language
Pair Recall Precision F1-Score Accuracy

NE-EN 0.980 0.968 0.974 0.951
ES-EN 0.883 0.489 0.630 0.699

Table 2: Tweet level results on the test data.

My system obtained an accuracy of 95.1% in
the tweet-level evaluation and 79.4% accuracy in

Category Recall Precision F1-Score
lang1 0.944 0.949 0.947
lang2 0.965 0.964 0.965
mixed 0.000 1.000 0.000
ne 0.510 0.657 0.574
other 0.968 0.935 0.951

Table 3: Token level results on the test data for
Nepali-English.

Category Recall Precision F1-Score
lang1 0.866 0.761 0.810
lang2 0.750 0.861 0.802
mixed 0.000 1.000 0.000
ambiguous 0.000 0.000 0.000
ne 0.155 0.554 0.242
other 0.847 0.823 0.835

Table 4: Token level results on the test data for
Spanish-English.

the Facebook post-level evaluation of English-
Nepali test tweets. Although, it was third in tweet-
level evaluation, it was only 0.7% behind the best
tweet-level system in terms of accuracy. My sys-
tem was second in Facebook post-level evaluation
by 6.9%. It had an accuracy of 94.6% and 86.5%
in the token level evaluation of English-Nepali
test tweets and Facebook posts respectively. The
model was third in the tweet-token evaluation but
stood first in the Facebook-post token evaluation.
These results align with the hypothesis of the In-
cremental N-Gram Occurrence Model that token
belonging to the same language will have more
overlap of the preceding characters.

My system obtained an accuracy of 69.9% in
the tweet-level evaluation and 70.0% accuracy in
the Facebook post-level evaluation of the English-
Spanish test data. It was the least effective in both
the evaluation tasks. My system had an accuracy
of 80.3% and 87.6% in the token level evaluation
of English-Spanish test tweets and Facebook posts
respectively. The model was again the least ef-
fective in both the token level evaluation task but
by a smaller margin. The results do not exactly
follow the hypothesis, but we can say it supports
it because English and Spanish languages share a
lot of common word prefixes. Hence my method
is more likely to incorrectly predict some Spanish
words as English and vice-versa.

It is evident from the results that this model is
suitable when the languages being classified are
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Language
Pair Recall Precision F1-Score Accuracy

NE-EN 0.900 0.486 0.632 0.794
ES-EN 0.882 0.493 0.633 0.700

Table 5: Tweet level results on the surprise data.

Category Recall Precision F1-Score
lang1 0.913 0.802 0.854
lang2 0.936 0.911 0.923
ne 0.394 0.833 0.535
other 0.886 0.696 0.780

Table 6: Token level results on the surprise data
for Nepali-English.

highly dissimilar in syntax and structure. As En-
glish and Nepali language do not have the same
ancestry they have very different syntax and struc-
ture. The word prefixes used frequently to form
Nepali words and the syntax of forming various
parts of speech in Nepali language is quite differ-
ent than in the English language.

In both the training and test datasets, the ratio of
code-switched to monolingual tweets is higher in
Nepali than in Spanish, which probably led to my
system performing worse on tweet level for Span-
ish. Although, this distribution can be anticipated
because English is taught from primary schooling
levels in Nepal. Almost all the literate population
can communicate pretty well in English. Nepal
is a country that relies heavily in the tourism in-
dustry, and English being a universal language is
a second language in major cities and travel desti-
nations of the country. All these factors have led
to a lot of code switching in tweets Nepali tweets.
On the other hand, Spanish is a widely spoken lan-
guage itself. The people who know Spanish rarely
need to learn a second language. This might be the
reason that there are less code-switched tweets for
Spanish.

My model also has a drawback, which is also
demonstrated by my evaluation results. Spanish
and English languages do share a lot of common
prefixes. This maybe due to their shared Indo-
European ancestry and the fact that English lan-
guage has borrowed a significant number of words
from the French language, which is very similar to
the Spanish language. The word ”precious” and
”bilingual” in English is spelled ”precioso” and
”bilingue” in Spanish. This similarity of prefixes
leads the Incremental N-gram model to classify
tokens wrongly based upon the recurrence of the

Category Recall Precision F1-Score
lang1 0.853 0.756 0.801
lang2 0.746 0.839 0.789
mixed 0.000 1.000 0.000
ambiguous 0.000 0.000 0.000
ne 0.145 0.550 0.230
other 0.826 0.808 0.817

Table 7: Token level results on the surprise data
for Spanish-English.

same prefixed words documented more frequently
in one language than the other. It further results
in a large number of English-Spanish tweets and
Facebook posts to be verified as code switched be-
cause, just one token in a tweet that is wrongly
classified as belonging to another language class,
will validate the tweet as code-switched. To
counter this drawback, when classifying words of
the language that have the same ancestry and sim-
ilar structure and syntax, only the prefixes should
not be considered.

Another important thing to note is that the task
of evaluation is very taxing on the CPU and takes
a lot of time. Various evaluation techniques are
applied to a token before its correct class is deter-
mined. This time consuming process can be ac-
celerated significantly by designing a system that
follows the data and task parallelism principles i.e.
multithreading. The redesign of the system to sup-
port multithreading made the training process al-
most 3 times faster.

5 Conclusion and Future Work

The method described in this paper is useful in
language identification of code-switched text. It
works especially well when the two languages in
question have different word formation syntax and
structure. For the languages that are similar in
ancestry and when one language contains many
words derived from the other language, like Span-
ish and English, this method is not very reliable.
For these types of languages, considering that they
have similar syntax and structure, the use of all
the possible n-grams of the tokens in the training
set and their frequencies might be useful. Also
considering the suffixes of the word rather than
just the prefixes might provide greater accuracy for
prediction of these types of languages. These tasks
are left as future improvements.
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Abstract

We describe our entry in the EMNLP 2014
code-switching shared task. Our system
is based on a sequential classifier, trained
on the shared training set using various
character- and word-level features, some
calculated using a large monolingual cor-
pora. We participated in the Twitter-genre
Spanish-English track, obtaining an accu-
racy of 0.868 when measured on the tweet
level and 0.858 on the word level.

1 Introduction

Code switching is the act of changing language
while speaking or writing, as often done by bilin-
guals (Winford, 2003). Identifying the transition
points is a necessary first step before applying
other linguistic algorithms, which usually target a
single language. A switching point may occur be-
tween sentences, phrases, words, or even between
certain morphological components. Code switch-
ing happens frequently in informal ways of com-
munication, such as verbal conversations, blogs
and microblogs; however, there are many exam-
ples in which languages are switched in formal
settings. For example, alternating between Collo-
quial Egyptian Arabic and Modern Standard Ara-
bic in modern Egyptian prose is prevalent (Rosen-
baum, 2000).

This shared task (Solorio et al., 2014),1 the first
of its kind, challenges participants with identify-
ing those switching points in blogs as well as in
microblog posts. Given posts with a mix of a
specific pair of languages, each participating sys-
tem is required to identify the language of ev-
ery word. Four language-pair tracks were offered
by the task organizers: Spanish-English, Nepali-
English, Modern Standard Arabic and Colloquial

1http://emnlp2014.org/workshops/
CodeSwitch/call.html

Arabic, and Mandarin-English. For each language
pair, a training set of Twitter2 statuses was pro-
vided, which was manually annotated with a label
for every word, indicating its language. In addi-
tion to the two language labels, a few additional
labels were used. Altogether there were six labels:
(1) lang1—the first language; (2) lang2—the sec-
ond language; (3) ne—named entity; (4) ambigu-
ous—for ambiguous words belonging to both lan-
guages; (5) mixed—for words composed of mor-
phemes in each language; and (6) other—for cases
where it is impossible to determine the language.
For most of the language pairs, the organizers sup-
plied three different evaluation sets. The first set
was composed of a set of unseen Twitter statuses,
provided with no manual annotation. The other
two sets contained data from a “surprise genre”,
mainly composed of blog posts.

We took part only in the Spanish-English track.
Both English and Spanish are written in Latin
script. The Spanish alphabet contains some addi-
tional letters, such as those indicating stress (vow-
els with acute accents: á, é, ı́, ó, ú), a u adorned
with a diaeresis (ü), the additional letter ñ (eñe),
and inverted question and exclamation punctua-
tion marks ¿ and ¡ (used at the beginning of ques-
tions and exclamatory phrases, respectively). Al-
though social-media users are not generally con-
sistent in their use of accents, their appearance
in a word may disclose its language. By and
large, algorithms for code switching have used
the character-based k-mer feature, introduced by
(Cavnar and Trenkle, 1994).3

Our system is an implementation of a multi-
class classifier that works on the word level, con-
sidering features that we calculate using large
Spanish as well as English monolingual corpora.
Working with a sequential classifier, the predicted

2http://www.twitter.com
3We propose the term “k-mer” for character k-grams, in

contradistinction to word n-grams.
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labels of the previous words are used as features in
predicting the current word.

In Section 2, we describe our system and the
features we use for classification. Section 3 con-
tains the evaluation results, as published by the or-
ganizers of this shared task. We conclude with a
brief discussion.

2 System Description

We use a supervised framework to train a classifier
that predicts the label of every word in the order
written. The words were originally tokenized by
the organizers, preserving punctuation, emoticons,
user mentions (e.g., @emnlp2014), and hashtags
(e.g., #emnlp2014) as individual tokens. The in-
formal language, as used in social media, intro-
duces an additional challenge in predicting the lan-
guage of every word. Spelling mistakes as well
as grammatical errors are very common. Hence,
we believe that predicting the language of a given
word merely using dictionaries for the two lan-
guages is likely to be insufficient.

Our classifier is trained on a learning set, as pro-
vided by the organizers, enriched with some addi-
tional features. Every word in the order written is
treated as a single instance for the classifier, each
including features from a limited window of pre-
ceding and successive words, enriched with the
predicted label of some of the preceding words.
We ran a few experiments with different window
sizes, based on 10-fold cross validation, and found
that the best token-level accuracy is obtained us-
ing a window of size 2 for all features, that is, two
words before the focus word and two words after.

The features that we use may be grouped in
three main categories, as described next.

2.1 Features

We use three main groups of features:

Word level: The specific word in focus, as well
as the two previous words and the two following
ones are considered as features. To reduce the
sparsity, we convert words into lowercase. In ad-
dition, we use a monolingual lexicon for English
words that are typically used in Twitter. For this
purpose, we employ a sample of the Twitter Gen-
eral English lexicon, released by Illocution, Inc.,4

containing the top 10K words and bigrams from
a relatively large corpus of public English tweets

4http://www.illocutioninc.com

they collected over a period of time, along with
frequency information. We bin the frequency rates
into 5 integer values (with an additional value for
words that do not exist in the lexicon), which are
used as the feature value for every word in focus,
and for the other four words in its window. This
feature seems to be quite noisy, as some common
Spanish words appear in the lexicon (e.g., de, no,
a, me); on the other hand, it may capture typi-
cal English misspellings and acronyms (e.g., oomf,
noww, lmao). We could not find a similar resource
for Spanish, unfortunately.

To help identify named entities, we created a list
of English as well Spanish names of various en-
tity types (e.g., locations, family and given names)
and used it to generate an additional boolean fea-
ture, indicating whether the word in focus is an en-
tity name. The list was compiled out of all words
beginning with a capital letter in relatively large
monolingual corpora, one for English and another
for Spanish. To avoid words that were capitalized
because they occur at the beginning of a sentence,
regardless of whether they are proper names, we
first processed the text with a true-casing tool, pro-
vided as part of Moses (Koehn et al., 2007)—
the open source implementation for phrase-based
statistical machine translation. Our list contains
about 146K entries.

Intra-word level: Spanish, as opposed to En-
glish, is a morphologically rich language, demon-
strating a complicated suffix-based derivational
morphology. Therefore, in order to capture re-
peating suffixes and prefixes that may character-
ize the languages, we consider as features sub-
strings of 1–3 prefix and suffix characters of the
word in focus and the other four words in its win-
dow. Although it is presumed that capitalization
is not used consistently in social media, we con-
sider a boolean feature indicating whether the first
letter of each word in the window was capitalized
in the original text or not. At this level, we use
two additional features that capture the level of un-
certainty of seeing the sequence of characters that
form the specific word in each language. This is
done by employing a 3-mer character-based lan-
guage model, trained over a large corpus in each
language. Then, the two language models, one for
each language, are applied on the word in focus
to calculate two log-probability values. These are
binned into ten discrete values that are used as the
features’ values. We add a boolean feature, indi-
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cating which of the two models returned a lower
log probability.

Inter-word level: We capture the level of un-
certainty of seeing specific sequences of words in
each language. We used 3-gram word-level lan-
guage models, trained over large corpora in each
of the languages. We apply the models to the fo-
cus word, considering it to be the last in a sequence
of three words (with the two previous words) and
calculate log probabilities. Like before, we bin the
values into ten discrete values, which are then used
as the features’ values. An additional boolean fea-
ture is used, indicating which of the two models
returned a lower log probability.

2.2 Supervised Framework
We designed a sequential classifier running on top
of the Weka platform (Frank et al., 2010) that is
capable of processing instances sequentially, sim-
ilar to YamCha (Kudo and Matsumoto, 2003).
We use LibSVM (Chang and Lin, 2011), an im-
plementation of Support Vector Machines (SVM)
(Cortes and Vapnik, 1995), as the underlying tech-
nology, with a degree 2 polynomial kernel. Since
we work on a multi-class classification problem,
we take the one-versus-one approach. As men-
tioned above, we use features from a window of
±2 words before and after the word of interest. In
addition, for every word, we consider as features
the predicted labels of the two prior words.

3 Evaluation Results

We report on the results obtained on the unseen
task evaluation sets, which were provided by the
workshop organizers.5 There are three evaluation
sets. The first is composed of a set of unseen Twit-
ter statuses and the other two contain data from a
“surprise genre”. The results are available online
at the time of writing only for the first and second
sets. The results of the third set will be published
during the upcoming workshop meeting.

The training set contains 11,400 statuses, com-
prising 140,706 words. Table 1 shows the distri-
bution of labels.

The first evaluation set contains 3,060 tweets.
However, we were asked to download the statuses
directly from Twitter, and some of the statuses
were missing. Therefore, we ended up with only
1,661 available statuses, corresponding to 17,723

5http://emnlp2014.org/workshops/
CodeSwitch/results.php

Label Number
lang1 77,101
lang2 33,099
ne 2,918
ambiguous 344
mixed 51
other 27,194

Table 1: Label distribution in the training set.

Accuracy 0.868
Recall 0.720
Precision 0.803
F1-Score 0.759

Table 2: Results for the first evaluation set, mea-
sured on tweet level.

words. According to the organizers, the evaluation
was performed only on the 1,626 tweets that were
available for all the participating groups. Out of
the 1,626, there are 1,155 monolingual tweets and
471 code-switched tweets. Table 2 shows the eval-
uation results for the Tel Aviv University (TAU)
system on the first set, reported on the tweet level.

In addition, the organizers provide evaluation
results, calculated on the word level. Table 3
shows the label distribution among the words in
the first evaluation set, and Table 4 shows the ac-
tual results. The overall accuracy on the word level
is 0.858.

The second evaluation set contains 1,103 words
of a “surprise” (unseen) genre, mainly blog posts.
Out of the 49 posts, 27 are monolingual and 22 are
code-switched posts. Table 5 shows the results for
the surprise set, calculated on the post level.

As for the first set, Table 6 shows the distribu-
tion of the labels among the words in the surprise
set, and in Table 7 we present the results as mea-
sured on the word level. The overall accuracy on
the surprise set is 0.941.

4 Discussion

We believe that we have demonstrated the po-
tential of using sequential classification for code-
switching, enriched with three types of features,
some calculated using large monolingual corpora.
Compared to the other participating systems as
published by the workshop organizers, our system
obtained encouraging results. In particular, we ob-
serve relatively good results in relating words to
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Label Count
lang1 (English) 7,040
lang2 (Spanish) 5,549
ne 464
mixed 12
ambiguous 43
other 4,311

Table 3: Label distribution in the first evaluation
set.

Label Recall Precision F1-Score
lang1 (English) 0.900 0.830 0.864
lang2 (Spanish) 0.869 0.914 0.891
ne 0.313 0.541 0.396
mixed 0.000 1.000 0.000
ambiguous 0.023 0.200 0.042
other 0.845 0.860 0.853

Table 4: Results for the first evaluation set, mea-
sured on word level.

their language; however, identifying named enti-
ties did not work as well. We plan to further in-
vestigate this issue. The results on the surprise
genre are similar to that for the genre the system
was trained on. However, since the surprise set
is relatively small in size, we refrain from draw-
ing conclusions about this. Trying the same code-
switching techniques on other pairs of languages
is part of our planned future research.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the Interactive Poster and Demon-
stration Sessions of the 45th Annual Meeting of the
ACL (ACL ’07), pages 177–180, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Taku Kudo and Yuji Matsumoto. 2003. Fast methods
for kernel-based text analysis. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 24–31, Sapporo,
Japan.

Gabriel M. Rosenbaum. 2000. Fushammiyya: Alter-
nating style in Egyptian prose. Journal of Arabic
Linguistics (ZAL), 38:68–87.

Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steve
Bethard, Mona Diab, Mahmoud Gonheim, Abdelati
Hawwari, Fahad AlGhamdi, Julia Hirshberg, Alison
Chang, and Pascale Fung. 2014. Overview for the
first shared task on language identification in code-
switched data. In Proceedings of the First Workshop

142



on Computational Approaches to Code-Switching.
EMNLP 2014, Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar.

Donald Winford, 2003. Code Switching: Linguistic
Aspects, chapter 5, pages 126–167. Blackwell Pub-
lishing, Malden, MA.

143





Author Index

Al-Badrashiny, Mohamed, 1, 94
AlGhamdi, Fahad, 62
Ammar, Waleed, 80

Bali, Kalika, 73, 116
Bar, Kfir, 139
Barman, Utsab, 13, 127
Baucom, Eric, 102
Bethard, Steven, 62
Bhat, Riyaz Ahmad, 87
Blair, Elizabeth, 62

Carpuat, Marine, 107
Chang, Alison, 62
Chittaranjan, Gokul, 73
Choudhury, Monojit, 73, 116
Chrupała, Grzegorz, 127
Clematide, Simon, 24

Das, Amitava, 13
Dershowitz, Nachum, 139
Diab, Mona, 62, 94
Dimitrov, Stefan, 51
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