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Abstract

This paper examines the structure of lin-
guistic predications in English text. Iden-
tified by the copular “is-a” form, predi-
cations assert category membership (hy-
pernymy) or equivalence (synonymy) be-
tween two words. Because predication
expresses ontological structure, we hy-
pothesize that networks of predications
will form modular groups. To measure
this, we introduce a semantically mo-
tivated measure of predication strength
to weight relevant predications observed
in text. Results show that predications
do indeed form modular structures with-
out any weighting (Q ≈ 0.6) and that
using predication strength increases this
modularity (Q ≈ 0.9) without discard-
ing low-frequency items. This high
level of modularity supports the network-
based analysis and the use of predication
strength as a way to extract dense semantic
clusters. Additionally, words’ centrality
within communities exhibits slight corre-
lation with hypernym depths in WordNet,
underscoring the ontological organization
of predication.

1 Introduction & Background

Statistical patterns in language use are evident at
many levels and have proved useful in an increas-
ingly wide range of computational and cognitive
applications. Statistical regularities offer a way
to quantify and model how people create, encode
and use knowledge about the world. Statements
specifically about “what things are” (ie. onto-
logical statements) offer uniquely transparent evi-
dence about peoples’ knowledge of the world. Our
research adopts a corpus-based approach in which
networks of predications are analyzed to assess the
underlying structure of ontological assertions.

Word-word predications, observed as the copu-
lar is-a form in English, are important because,
unlike most grammatical constructions that have
few semantic constraints, predications tend to im-
ply category membership or equivalence. Take (i)
and (ii) for example:

(i) Safety is always a primary concern.
(ii) This organization is an institution
where [...].

(i) is a category assertion (safety as a type of con-
cern) and (ii) is an equivalence assertion (organi-
zation is an institution). Most predications can be
interpreted as category memberships like (i); ex-
plicit articulation of equivalence is actually quite
rare in language (Cimiano, 2006; Cimiano and
Völker, 2005). Although some categorical pred-
ications are metaphorical, many of these are inter-
preted using category matching or analogical map-
ping processes (Glucksberg et al., 1997; Bowdle
and Gentner, 2005). In both semantic interpreta-
tions, predications naturally form a directed net-
work of words. Consisting primarily of category
assertions, the structure of this network should ex-
hibit a degree of natural clustering owing natural
categories of the those things it represents.

Network representations of language have been
used to describe a wide range of structures in lan-
guage, including word-word and word-document
co-occurrences, term collocations, dependency
structure and named entity relations. Networks of
grammatical relations have been found to differ-
entiate word-classes (Ferrer i Cancho et al., 2004)
and semantic networks can be used to model vo-
cabulary growth (Steyvers and Tenenbaum, 2005).
Co-occurrence networks, which are perhaps the
most widely studied natural language network, are
the foundation of many vector-space models (Lan-
dauer and Dumais, 1997; Turney et al., 2010)
and can be used to mine synonyms (Cohen et
al., 2005), disambiguate word senses (Agirre et
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al., 2014; Biemann, 2006) and even help mark
the quality of essays (Foltz et al., 1999). Spec-
tral methods applied to linguistic networks have
been used to differentiate languages (Ferrer i Can-
cho et al., 2004), word-classes (Sun and Korho-
nen, 2009) and genres of text (Ferrer i Cancho et
al., 2007). Using spectral methods, research has
also found that syntactic and semantic distribu-
tional similarity networks have considerably dif-
ferent structure (Biemann et al., 2009). The use
of lexical graphs (networks of words) in particu-
lar, pre-dates modern NLP (Rapoport et al., 1966),
though the approach continues to influence a va-
riety of NLP and information retrieval tasks like
summarization and retrieval (Erkan and Radev,
2004; Véronis, 2004). Network-based methods
have even used community detection, similar to
the algorithm described in this paper, to extract
specialist terms from sets of multi-theme docu-
ments (Grineva et al., 2009) as well as unstruc-
tured texts (Gerow, 2014).

Because predications naturally form directed
chains of ontological assertions, we hypothesize
that their underlying structure is systematic and
modular, given its representation of naturally or-
ganized things in the world. Our method employs
community detection on networks of noun-noun
predications as a way to assess the overall struc-
ture of predication, but it could be extended to
hypernym and category extraction tasks (Hearst,
1992; Caraballo, 1999). Specifically, we test for
community structure in predications and explore
whether this structure becomes more highly re-
solved when using a semantic measure of predica-
tion strength introduced in the following section.
We also predict that central nodes (i.e. words)
in individual modules will correlate to categori-
cal super-ordinance or hypernymy. Thus, we first
seek to assess the overall community structure
of predication, testing whether or not it is more
resolved using a novel measure of predication
strength. Second, within communities of predi-
cations, we compare the words’ closeness central-
ity to their positions in WordNet’s hypernym tree
(Miller, 1995).

2 Method

Unlike co-occurrence networks, where words are
related simply by proximity, predication networks
are built using extracted grammatical relation-
ships. The implied relationship in a co-occurrence

network provides a natural way to weight edges,
but predications have no analogue to a proximity-
based weighting scheme. One option would be to
weight edges by the number of times given pred-
ications were observed. While this is perhaps the
most obvious way to account for important predi-
cations, it risks exaggerating high-frequency items
that are common for reasons other than importance
(perhaps they are idioms, collocates or found in
abnormally strong colligational structures). Fre-
quency weighting would also be susceptible to
noise from the many low-frequency items. To ad-
dress these concerns, we introduce a semantically
informed measure of predication relevance.

Wilks’ (1975; 1978) theory of preference se-
mantics proposes that subject- and object-verb re-
lationships evince “selectional preference”, which
can be thought of as the disposition verbs have
to select certain arguments – particular classes of
subjects or objects. To operationalize selectional
preference, Resnik (1997) introduced selectional
preference strength to measure the disposition or
“preference” of a verb, v:

SR(v) =
∑
c∈C

P (c|v) log
P (c|v)
P (c)

(1)

where C is a set of semantic classes from which
v can select and R is the grammatical relation in
question. Note that SR(v) is effectively the sum
K-L divergence between the probabilities of v and
c for all classes. In a corpus-based setting, the
probability of any word can be estimated by its
relative frequency: P (x) = f(x)∑

i
f(xi)

. Resnik goes

on to define a measure of selectional association
between a verb and a specific class, c:

AR(v, c) =
1

SR(v)
P (c|v) log

P (c|v)
P (c)

(2)

In the typical form of selectional preference induc-
tion – the task of estimating likelihoods over all
classes – Eq. 2 is used to measure a verb’s pref-
erence for classes of nominal subjects or objects
like vehicles, insects, birds, etc. (Resnik, 1997;
Shutova et al., 2013).

To test our assumptions regarding the modu-
lar structure of predications in English, a mea-
sure like selectional association should account
for predicates’ diversity (or uniformity) of attach-
ment. That is, the preference a predicate has to
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operate on a wide or narrow range of words. To ac-
count for this, we add a term, U(p), to account for
the relative number of unique words a predicate p
has been observed to predicate. Note that this is
not the total number of predications involving p,
which would produce problematically high values
were p to collocate strongly with the words it pred-
icates. Instead, U(p) addresses and normalizes for
the diversity with which p is applied. Additionally,
instead of using a pre-set collection of semantic
classes on which predication is assumed to oper-
ate, each predicate is treated as its own class. For
a predication consisting of word w predicated by
p, predication strength is defined as follows:

PS(w, p) =
1

SR(p)
log

P (w|p)
U(p)P (w)

(3)

PS thus combines three important properties of
predications: the relative frequency of a given
predication P (w|p), the relative frequency of a
word P (w) and the diversity of a word’s poten-
tial predications U(p). Defined like this, U(p)
helps diminish the contribution of predicates that
are widely applicable, under the assumption that
being widely used, they are in-fact somewhat less
significant. Using this measure to weight edges
in a predication network should help diminish
the contribution of exceptionally frequent predica-
tions as well as that from low-frequency predica-
tions without excluding them.

An example predication network is shown in
Figure 1. In these networks, a network is con-
structed over a set of documents where nodes are
the words in a predication, the direction follow-
ing the is-a link. Thus, example (i) would re-
sult in a link from safety to concern with weight
1. Were another predication involving concern to
be observed, another edge would be added from
that node. Note that circularities are allowed even
though this example is acyclic. To assess predi-
cation strength as a relevance function, we com-
pare the community structure of weighted and
unweighted networks. The example in Figure 1
shows a sample network (top) and the communi-
ties extracted from the unweighted and weighted
versions of the same network (middle and bottom).
Note the changes in community assignments from
the unweighted version to the weighted. In par-
ticular, observe the new clusters in the weighted
network around money, factor and murder. If our

Figure 1: Predication network from the enTen-
Ten corpus (pruned by frequency ≥ 170): the ini-
tial network (top), communities assigned by the
Infomap algorithm for the unweighted network
(middle) and for the network weighted by predi-
cation strength (bottom).
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intuitions about the systematic nature of linguis-
tic predication is correct, there should be at least
a moderate degree of community structure in the
unweighted networks, and if predication displays
semantic preference similar to selectional associa-
tion, this community structure should be stronger
for networks weighted by predication strength.

The school librarian may be the person that controls [...]
You may find Rachel is the one person who may [...]
Neither the state nor its government is a person.
An arbitrator is a person who is appointed [...]
On the other hand, an expert is a person to fix [...]
After all, the vendor is the person best able to [...]
An expert need not be an individual person.
The innocent party is a natural person.
If the indemnifier is a natural person, [...]
consumers who are natural persons under the Directive.

Table 1: Sample predications involving forms of
the word person as the target in the BNC. In each
case an edge would connect the predicate (in ital-
ics) to person (in bold).

3 Results

To explore the structure of predication networks,
we analyzed two corpora using the method de-
scribed above: the British National Corpus (BNC)
(Leech et al., 2001) and the enTenTen web corpus.
Predications were extracted templates over a POS-
tagged version of each corpus using the Sketch En-
gine1 tool (Kilgarriff et al., 2004). The BNC con-
tained about 112 million tokens and the enTenTen
collection has 3.2 billion tokens. For each collec-
tion, the top 1,000 most frequent nouns provided
a seed set from which to extract all predicate
and predicate of relations2 (see examples in
Table 1). For the BNC, this resulted in 40,721
predications (14,319 unique) and 260,555 (20,651
unique) for the enTenTen collection. Predication
strength scores were computed for every pred-
ication using within-corpus relative frequencies.
These scores were used to weight edges in one
version of the predication network, whereas the
edge-weights of the “unweighted” version were
uniformly set to 1.0. No node-weighting was ap-
plied in either case.

1http://www.sketchengine.co.uk/
2"NN.?.?" [tag="WP"|tag="PNQ"|tag="CJT"]

?[tag="RB.?"|tag="RB"|tag="VM"]0,5
[lemma="be" & tag="V.*"] "RB.?"0,2
[tag="DT.?"|tag="PP$"]0,1 "CD"0,2
[tag="JJ.?"|tag="RB.?"|word=","]0,3
"NN.?.?"0,2 2:"NN.?.?" [tag!="NN.?.?"]

Two methods were used to extract communities
from the predication networks: the Infomap and
walktrap algorithms. By using two methods, we
attain some assurance that our findings are not ar-
tifacts of the assumptions underlying either algo-
rithm. The Infomap algorithm is an information-
theoretic method that exploits the analogue be-
tween optimizing a compression dictionary and
simplifying a graph by describing “flow” through
nodes (Rosvall and Bergstrom, 2008). Infomap as-
sumes edges in a network induce such flow and
by deriving a minimum description of this flow,
the algorithm can find multi-level communities
in large networks (Rosvall and Bergstrom, 2011).
The second method, walktrap, operationalizes the
intuition that a large set of short random walks on
a network will leave walkers on some groups of
nodes more often than others (Pons and Latapy,
2005). By setting the walk distance to a small
value, relative to a network’s density, walkers will
tend toward communities if the walker sample is
sufficient. These algorithms are both known to
work well with large, directed networks and nei-
ther imposed intractable computational burdens at
our scale (Fortunato, 2010; Lancichinetti and For-
tunato, 2009). Because both algorithms require a
connected network, our analysis is restricted to the
largest connected component (LCC) for all net-
works, though we have no reason to believe results
would differ significantly for other components.

Community assignments can be assessed by
measuring how self-contained or “modular” the
resulting communities are. Modularity was intro-
duced as a way to choose the level of an optimal
cut for hierarchical partitioning algorithms, analo-
gous to the level in the dendrogram that yields the
best communities (Newman and Girvan, 2004).
For a network with adjacency matrix A and com-
munity assignments c, modularity is defined as:

Q =
1

2m

∑
ij

Aij − kikj

2m
δ(ci, cj) (4)

where m is the number of edges and ki is the
degree of node i. δ(ci, cj) is 1 when the com-
munity assignment of node i is the same as that
for node j. Modularity measures how likely it is
that nodes in a community are connected to one
another as opposed to nodes in other communi-
ties. Modularity is defined from -1.0 to 1.0 and
graphs where Q > 0.6 are conventionally said to
have relatively strong community structure (New-
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man, 2010). Here, we use modularity instead of
a measure of semantic similarity or semantic co-
herence because predication is seldom an asser-
tion of equivalence or similarity. This means that
although words in predication communities may
be related in an ontological sense, such an assess-
ment would not expose the level of independence
between the communities.

Weighted and unweighted networks from both
corpora were submitted to each community detec-
tion algorithm, the results of which were assessed
using modularity. We also carried out this anal-
ysis on frequency-weighted networks, the results
of which were similar to the unweighted config-
uration, but are not reported for sake of brevity.
Figure 2 shows the modularity for each config-
uration with varying minimum predication fre-
quency (the number of times a predication had
to occur to be included). Varying the minimum
frequency thresholds helps simulate the effect of
corpus-size on the algorithm. In the BNC, un-
weighted networks with no minimum edge fre-
quency show slight modularity (Q = 0.30),
whereas in weighted networks it is quite strong
(Q = 0.89). The enTenTen corpus exhibits a
gap between the unweighted (Q = 0.61) and
weighted networks (Q = 0.88) at low edge thresh-
olds. This shows that predication strength is help-
ful in weighting relevant items without exclud-
ing low-frequency observations. The lower mod-
ularity scores (Q; Eq. 4) in the unweighted net-
works may be due to more novel, loose or figura-
tive associations found in low-frequency predica-
tions that inappropriately connect unrelated com-
munities. Interestingly, scores for unweighted and
weighted networks converge up to a point as the
minimum frequency increases (reducing the size
of the network). This pruning is helpful for the
unweighted networks, but has little effect on the
weighted versions. In all cases, sparsity takes a
toll as the LCC becomes quite small. The reason
for the eventual decline as the LCC shrinks below
70 nodes is because communities are less likely to
form at all in small networks.

In addition to the highly modular structure, the
communities of predications themselves are likely
to represent some semantic organization. Specifi-
cally, we looked for a categorical structure within
the communities by comparing words to the hy-
pernym tree in WordNet (Miller, 1995). Intu-
itively, one would expect words that are central in

Figure 2: Modularity of predication networks in
the BNC (top) and enTenTen (bottom). Note, as
the minimum frequency increases (bottom axis)
and the LCC contains fewer and fewer nodes (top
axis), the community detection algorithms may
not produce a solution with more than one com-
munity, resulting in undefined modularity.

a community to be members of higher-level cate-
gories. In figure 1, for example, summer, hour and
holiday all point to time, one could infer that time
is a shared hypernym. We use closeness centrality,
a graph-theoretic measure of node’s average prox-
imity to other nodes, as a within-community mea-
sure of super-ordinance (i.e. hypernymy). Though
there a number of network centrality measures,
closeness centrality is a robust measure, though it
tends not to scale well to larger networks because
it requires computing the distance between every
pair of nodes (Friedl et al., 2010).
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The centrality scores in the communities were
compared to WordNet using the first sense-entry
for each node (which is typically the most com-
mon) and words not found in the tree were dis-
carded. For the unweighted networks across both
corpora, we found a mean Spearman correlation of
r=0.35 (p < 0.01; using Fisher’s transformation)
for the Infomap algorithm and r=0.38 (p < 0.01)
for walktrap. In the weighted versions, Infomap
produced r=0.41 (p < 0.01) and walktrap pro-
duced r=0.44 (p < 0.01). This confirms that
predication communities tend to specify categor-
ical knowledge is moderately similar to WordNet.
Note these correlation values are comparable be-
tween the weighted and unweighted networks, im-
plying that relevance, as selectional association, is
not an important marker of the communities’ hy-
pernymic composition.

4 Discussion

The analysis in this paper is an attempt to iden-
tify whether or not ontological knowledge ex-
pressed in text consists of meaningful clusters.
With the network representation and our measure
of predication strength, results indicate that pred-
ication forms strong community structures. Over-
all, results point to the highly modular nature of
predication, previously unreported in language.
This confirms our prediction that predication com-
prises systematic clusters of related things and the
higher modularity observed in networks weighted
by predication strength implies that predication
exhibits a form of selectional preference. Predi-
cation’s strong community structure is important
because it supports the use of linguistic patterns
in establishing ontological representations, which
naturally form higher-level groups.

Technically, our measure of predication
strength, which is built on prior assessments of
selectional preference, identifies the modular
semantic structure of predication even when
low frequency predications are included. This
may be because low-frequency predications are
more likely to inscribe novel, loose or figurative
associations that reach between semantic clusters
to inappropriately decrease the overall modularity
if not down-weighted. As a result, more sys-
tematic comparison of weighted and unweighted
networks, and the relative location of predica-
tion within these structures, will reveal where
semantic innovation and figurative assertions are

most likely to occur. The predication networks
analyzed rely on a relatively tight definition of
predication, one that, in other languages, may not
be accessible by the copular form. Additionally,
the two literal interpretations of linguistic predica-
tions, equivalence or category membership, may
also not be common in all languages. To the extent
that parsers or taggers are available, a comparative
analysis would broaden the understanding of
predication in general.

Given their high modularity, predication struc-
tures could be exploited further for a number of
NLP tasks. The correlations between centrality
and hypernym depth mean that predication net-
works could help construct or update categorical
taxonomies. For example, these networks could
help automate the construction of a hypernym tax-
onomy with weighted branches, potentially aug-
menting resources like WordNet (Ruiz-Casado et
al., 2005; Miller, 1995). One could also ex-
amine the growth, combination and bifurcation
of specific communities to help track ontological
commitments, either over time as shifts in lan-
guage structures (Gerow and Ahmad, 2012), or
across genre and domain (Davies, 2010). Fur-
ther, because predication encodes categorical in-
formation, its community structure may also en-
code higher-level relations where strong inter-
community links imply relationships between
classes of objects.

Our study examined the topographical struc-
ture of English predications in general, struc-
ture that consists, in large part, of hypernym re-
lations. Though the relations in the examined
networks are defined by copular is-a predica-
tion structure, within-community hierarchies cor-
related only moderately with the hypernym hierar-
chy in WordNet. This implies that the predications
comprising our networks are either not entirely
hypernymic or that WordNet is not a good base-
line. Indeed, predication is a grammatical rela-
tionship that often asserts synonymy or figurative
hypernymy (perhaps sometimes also metonymy)
and it is not apparent from the surface structure
how these semantic interpretation could be disam-
biguated. One reason this correlation is not higher
is likely to do with the low coverage of the copular
form as evidence of hypernymy (Hearst, 1992).

Further work regarding the structure of predi-
cations could build on the network framework to
evaluate the communities themselves. What prop-
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erties differentiate communities? Are there se-
mantic, lexical or statistical properties that con-
tribute to the formation of communities? Are there
discernible differences between words that typify
communities as opposed to those that bridge com-
munities? Predication communities are primar-
ily semantic in nature, implying that central nodes
would typify meaningful aspects of their commu-
nity. It would also be relatively easy to extend
network representations to address more qualita-
tive aspects such as coherence, word norms and
word associations. Indeed, a variety of corpus-
based research could employ network-based meth-
ods like those exemplified in this paper, capitaliz-
ing on graph-theory, social network analysis and
statistical physics, without departing from rela-
tional structures inherent to language.
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