
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Langauge Processing (ANLP), pages 155–159,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

TECHLIMED system description for the Shared Task on Automatic
Arabic Error Correction

Djamel MOSTEFA
Techlimed

42 rue de l’Université
Lyon, France

Omar ASBAYOU
Techlimed

42 rue de l’Université
Lyon, France

{firstname.lastname}@techlimed.com

Ramzi ABBES
Techlimed

42 rue de l’Université
Lyon, France

Abstract

This article is a system description paper
and reports on the participation of Tech-
limed in the ”QALB-2014 shared task” on
evaluation of automatic arabic error cor-
rection systems organized in conjunction
with the EMNLP 2014 Workshop on Ara-
bic Natural Language Processing. Cor-
recting automatically texts in Arabic is a
challenging task due to the complexity and
rich morphology of the Arabic language
and the lack of appropriate resources, (e.g.
publicly available corpora and tools). To
develop our systems, we considered sev-
eral approaches from rule based systems
to statistical methods. Our results on the
development set show that the statistical
system outperforms the lexicon driven ap-
proach with a precision of 71%, a recall of
50% and a F-measure of 59%.

1 Introduction

Automatic error correction is an important task
in Natural Language Processing (NLP). It can be
used in a wide range of applications such as word
processing tools (e.g. Microsoft Office, Openof-
fice, . . . ), machine translation, information re-
trieval, optical character recognition . . . Automatic
error correction tools on Arabic are underperform-
ing in comparison with other languages like En-
glish or French. This can be explained by the lack
of appropriate resources (e.g. publicly available
corpora and tools) and the complexity of the Ara-
bic language. Arabic is a challenging language for
any NLP tool for many reasons. Arabic has a rich
and complex morphology compared to other latin
languages. Short vowels are missing in the texts
but are mandatory from a grammatical point of
view. Moreover they are needed to disambiguate
between several possibilities of words. Arabic

is a rich language.There are many synonyms and
Arabic is a highly agglutinative, inflectional and
derivational language and uses clitics (proclitics
and enclitics). Arabic has many varieties. Mod-
ern Standard Arabic includes the way Arabic is
written in the news or in formal speech. Classi-
cal Arabic refers to religious and classical texts.
Dialectal Arabic has no standard rules for orthog-
raphy and is based on the pronunciation. There-
fore a same word can be written using many differ-
ent surface forms depending on the dialectal ori-
gin of the writer. Another very popular way of
writing Arabic on the Internet and the social me-
dia like Facebook or Tweeter is to use ”Arabizi”, a
latinized form of writing Arabic using latin letters
and digits (Aboelezz, 2009).

For our participation in this evaluation task, we
tried to implement two different approaches. The
first approach is a lexicon driven spell checker. For
this, we have plan to adapt and test state-of-the-
art spell checkers. The second approach is a pure
statistical approach by considering the correction
problem as a statical machine translation task.

The paper is organized as follows: section 2
gives an overview of the automatic error correction
evaluation task and resources provided by the or-
ganizers; section 3 describes the systems we have
developed for the evaluations; and finally in sec-
tion 4 we discuss the results and draw some con-
clusion.

2 Task description and language
resources

The aim of the QALB Shared Task on Automatic
Arabic Error Correction (Mohit, 2014) is to evalu-
ate automatic text correction systems for the Ara-
bic language. The objective of the task is to cor-
rect automatically texts in Arabic provided by the
organizers. The QALB corpus is used for the eval-
uation task. A training set and a development set
with gold standard is provided for system train-

155



ing and development. The training and develop-
ment sets are made of sentences with errors com-
ing from newspapers articles and the gold stan-
dard is made of manual annotations of the sen-
tences. The annotations were made by human
annotators who used a correction guidelines de-
scribed in (Zaghouani, 2014). The corrections are
made of substitutions, insertions, deletions, splits,
merges, moves of words and punctuation marks.

The training set is made of 19,411 sentences and
1M tokens. The development set includes 1,017
sentences for around 53k tokens.

The evaluation is performed by comparing the
gold standard with the hypothesis using the Lev-
enshtein edit distance (Levenshtein, 1966) and
the implementation of the M2 scorer (Dahlmeier,
2012). Then for each sentence the Precision, Re-
call and F-measure are calculated.

Finally a test set of 968 sentences for 52k tokens
with no gold standard has to be corrected automat-
ically for the evaluation.

3 System description

For our participation in this evaluation campaign,
we studied two main approaches. The first one
is a lexical driven approach using dictionaries to
correct the errors. Different lexicons were evalu-
ated using Hunspell as spellchecking and correc-
tion tool.
The second approach is a statistical machine trans-
lation point of view by considering the automatic
error correction problem as a translation task. For
this we used the statistical machine translation sys-
tem Moses (Koehn, 2007), to train a model on the
training data provided by the organizers.

3.1 Baseline system

Since this the time first we are trying to develop
a spellchecker and correction tool for Arabic, we
wanted to have some figures about the perfor-
mance of spellcheckers on Arabic.

We used the development set to test the per-
formance of various spellchecker and correction
tools. We corrected the development set automati-
cally using the spellchecker module of the follow-
ing softwares:

• Microsoft Word 2013

• OpenOffice 2014

• Hunspell

For Microsoft Word and OpenOffice we used
the default configuration for correcting Arabic text
and disabled the grammar correction.

Hunspell is an open source spellchecker widely
used in the open source community. It is the
spellchecker of many well-known applications
such as OpenOffice, LibreOffice, Firefox, Thun-
derbird, Chrome, etc. It is the next generation of
lexical based spellcheckers in line with Myspell,
Ispell and Aspell. It is highly configurable, sup-
ports Unicode and rich morphology languages like
Arabic or Hungarian. Hunspell uses mainly two
files for spellchecking and correction. The first
one is a dictionary file *.dic which contains ba-
sically a wordlist and for each word, a list of ap-
plicable rules that can be applied to the word. The
second one is an affix file *.aff which contains a
list of possible affixes and the rules of application.
More information on these files can be found in
the Hunspell manual1.

Hunspell is an interactive spellchecker. It takes
as an input a text to be corrected and for each word
that is not found using the loaded dictionary and
affix files, it gives a list of suggestions to correct
the word. For the correction which must be fully
automatic, we forced Hunspell to always correct
the word with the first suggestion without any hu-
man intervention.

The dictionaries/affixes used for the evalua-
tion is coming from the Ayaspell project(Ayaspell,
2008). The dictionary contains 52 725 entries and
the affix file contains 11859 rules.

The results are given in Table 1

Dictionary Precision Recall F-measure
Word 45.7 16.6 24.3
Hunspell 51.8 18.8 27.6
OpenOffice 56.1 20.7 30.2

Table 1: Results on the development set for Word,
Hunspell/Ayaspell and OpenOffice(in percentage)

The best results are the ones obtained by
OpenOffice with a precision of 56.1%, a recall of
20.7% and a F-measure of 30.2%.

We would like to mention that these spellcheck-
ers do not correct the punctuations which may ex-
plain the relative low recall scores.

1http://sourceforge.net/projects/hunspell/files/Hunspell/Documentation/

156



3.2 Statistical machine translation system
Our second approach is to consider the automatic
correction problem as a translation problem by
considering the sentences to be corrected as a
source language and the correct sentences as a tar-
get language. Since the organizers provided us
with a 1 million tokens corpora with and with-
out spelling errors, we tried to build a statisti-
cal machine translation system using the parallel
data. We used the Moses (Koehn, 2007), a Statis-
tical Machine Translation (SMT) system to train
a phrase based translation model with the train-
ing data. The training data provided is made of
erroneous sentences and for each sentence a list
of corrections to be applied. To build the paral-
lel error/correct text corpus we applied the correc-
tions to the sentences. We came up with a par-
allel corpus of 19421 sentences and 102k tokens
for the error version and 112k tokens for the cor-
rected version. Moses requires a parallel corpus
to train a translation model, a development set to
tune the translation model and also a monolingual
language model in the target language. Since we
had to evaluate the performance on the develop-
ment data provided by the organizers, we had to
use part of the training data as a development data
for Moses. So we split the 20k sentences included
in the training data in a new training set of 18k
and a new development data of 2k sentences. We
trained standard phrase based models using the
surface word form with no morphological analy-
sis or segmentation. For the word alignment in the
training process, we used GIZA++ (Och, 2003).
The 2k sentences were used to tune the SMT mod-
els.

Corpus # Sentences Usage
train18k 18000 train
dev-train2k 1411 dev
dev 1017 test

Table 2: Bitexts used for the SMT system

For the language models we used corpora of
newspapers publicly available or collected by
Techlimed. The sources are coming from the
Open Source Arabic Corpora (Saad, 2010) (20M
words), the Adjir corpus (Adjir, 2005) (147M
words) and other corpora we collected from var-
ious online newspapers for a total of 300M
words. The language model was created with the
IRSTLM toolkit (Federico, 2008).

We evaluated the translation models on the de-
velopment set using different sizes of monolin-
gual corpus. The 3 systems were trained on the
same parallel corpus but with different size for fir
monolingual data for System100, System200 and
System300 with respectively 100M words, 200M
words and 300M words. The results are given in
table 3.

System Precision Recall F-measure
System100 70.7 48.8 57.8
System200 70.7 49.6 58.3
System300 70.8 50.1 58.7

Table 3: Results on the development set (in per-
centage) for the 3 SMT systems

We can see from table 3 that the size of the lan-
guage model has no impact on the precision but
increases slightly the recall of 1.3% in absolute
(2.6% in relative).

The BLEU scores (Papineni, 2002) measured
on Sytem100, System200, System300 are respec-
tively 65.45, 65.82 and 65.98.

We also tried to combine Hunspell/Ayaspell
with the SMT system by correcting the output of
the SMT system with Hunspell/Ayaspell but didn’t
get any improvement.

4 Discussion

The results obtained by the SMT system is much
more better than the ones obtained with Hun-
spell/Ayaspell with a F-measure of 58.7% for the
best SMT system and 27,6 for Hunspell/Ayaspell.
We have to mention that the training corpus pro-
vided by the organizers of 1 million words with
the manual annotations enabled us to train a statis-
tical system that learn automatically the correction
made by the annotators while Hunspell/Ayaspell
was not adapted to the correction guidelines. In
particular the punctuations are not corrected by
Hunspell/Ayaspell and this explains the difference
of recall between the SMT system (50.1%) and
Hunspell/Ayaspell (20.7%). If we have a look at
the gold standard of the development set, 38.6%
of the manual annotations concern punctuation
marks with 6266 punctuation marks annotations
for an overall total of 16,231 annotations. While
there are clear rules for strong punctuation marks
like period, question or exclamation marks, there
are no clear grammatical rules for the weak punc-
tuation marks, especially for commas which con-

157



cern 4,117 annotations of the gold standard of
the development set (25.4%). Another point that
we would like to mention is that a spell checker
and correction tool is usually used in an inter-
active mode by proposing n-best candidates for
the correction of a word. When looking at Hun-
spell/Ayspell correction candidates for an error,
we saw the correction was not in position 1 but
in the list of candidates. So it would be interesting
to compare the correction on the n-best candidates
and not only on the first candidate for Hunspell
and the SMT system.

5 Conclusion

This paper has reported on the participation of
Techlimed in the QALB Shared Task on Auto-
matic Arabic Error Correction. This is the first
time we tried to develop a spellchecker for Arabic
and have investigated two approaches. The first
one is a lexicon driven approach using Hunspell as
a spellchecker and correction tool and the second
one is a SMT systems using Moses for training a
statistical machine translation model on the 1 mil-
lion tokens corpus provided by the organizers. The
best results were obtained with the SMT system
which, especially, was able to deal with the punc-
tuation marks corrections. We also tested an hy-
brid system by combining Hunspell and the SMT
system but didn’t get better results than the SMT
system alone. Our perspective is to improve the
results by using hybrid systems based on the Di-
iNAR lexical database (Abbes, 2004) and also a
large arabic named entity dictionary, both owned
and developped by Techlimed We will also try to
used factored translation models with the Tech-
limed Part-Of-Speech taggers. And more training
data will also improve the quality of the correc-
tions.

Acknowledgments

We would like to thank the QALB Shared Task or-
ganizers for setting up this evaluation campaign on
automatic error correction tool for Arabic and for
providing us with the language resources and tools
that we used for the development of our systems.

References
Ramzi Abbès, Joseph Dichy, and Mohamed Hassoun.

2004. The architecture of a standard arabic lexical
database: some figures, ratios and categories from
the Diinar. 1 source program. In Proceedings of the

Workshop on Computational Approaches to Arabic
Script-based Languages, pages 15–22. Association
for Computational Linguistics, 2004.

Mariam Aboelezz. 2009. Latinised arabic and connec-
tions to bilingual ability. In Papers from the Lan-
caster University Postgraduate Conference in Lin-
guistics and Language Teaching, 2009.

Ahmed Abdelali. 2005. http://aracorpus.e3rab.com/

Ayaspell Arabic dictionary project, 2008.
http://ayaspell.sourceforge.net

Daniel Dahlmeier and Hwee Tou Ng. 2012. Bet-
ter evaluation for grammatical error correction. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 568–572. Association for Computational Lin-
guistics, 2012.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. Irstlm: an open source toolkit for han-
dling large scale language models. In Interspeech,
pages 1618–1621, 2008.

Hunspell, 2007. http://hunspell.sourceforge.net/

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
pages 177–180. Association for Computational Lin-
guistics, 2007.

Vladimir Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions and reversals. In So-
viet physics doklady, volume 10, page 707, 1966.

Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wa-
jdi Zaghouani, and Ossama Obeid. 2014. The First
QALB Shared Task on Automatic Text Correction
for Arabic. In Proceedings of EMNLP Workshop on
Arabic Natural Language Processing, Doha, Qatar,
October 2014.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51,
2003.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics, 2002.

Motaz K Saad and Wesam Ashour. 2010 Osac: Open
source arabic corpora. In 6th ArchEng Int. Sympo-
siums, EEECS, volume 10, 2010.

158



Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Os-
sama Obeid, Nadi Tomeh, Alla Rozovskaya, Noura
Farra, Sarah Alkuhlani, and Kemal Oflazer. 2014.
Large scale arabic error annotation: Guidelines and
framework. In Proceedings of the Ninth Inter-
national Conference on Language Resources and
Evaluation (LREC’14), Reykjavik, Iceland, May
2014. European Language Resources Association
(ELRA).

159


