
Proceedings of the EMNLP 2014 Workshop on Arabic Natural Langauge Processing (ANLP), pages 137–142,
October 25, 2014, Doha, Qatar. c©2014 Association for Computational Linguistics

CMUQ@QALB-2014: An SMT-based System
for Automatic Arabic Error Correction

Serena Jeblee1 , Houda Bouamor2, Wajdi Zaghouani2 and Kemal Oflazer2

1Carnegie Mellon University
sjeblee@cs.cmu.edu

2Carnegie Mellon University in Qatar
{hbouamor,wajdiz}@qatar.cmu.edu, ko@cs.cmu.edu

Abstract
In this paper, we describe the CMUQ sys-
tem we submitted to The ANLP-QALB 2014
Shared Task on Automatic Text Correction
for Arabic. Our system combines rule-based
linguistic techniques with statistical language
modeling techniques and machine translation-
based methods. Our system outperforms the
baseline and reaches an F-score of 65.42% on
the test set of QALB corpus. This ranks us 3rd
in the competition.

1 Introduction
The business of text creation and editing represents a
large market where NLP technologies might be applied
naturally (Dale, 1997). Today’s users of word proces-
sors get surprisingly little help in checking spelling,
and a small number of them use more sophisticated
tools such as grammar checkers, to provide help in en-
suring that a text remains grammatically accurate after
modification. For instance, in the Arabic version of Mi-
crosoft Word, the spelling checker for Arabic, does not
give reasonable and natural proposals for many real-
word errors and even for simple probable errors (Had-
dad and Yaseen, 2007).

With the increased usage of computers in the pro-
cessing of natural languages comes the need for cor-
recting errors introduced at different stages. Natu-
ral language errors are not only made by human op-
erators at the input stage but also by NLP systems
that produce natural language output. Machine trans-
lation (MT), or optical character recognition (OCR),
often produce incorrect output riddled with odd lexi-
cal choices, grammar errors, or incorrectly recognized
characters. Correcting human/machine-produced er-
rors, or post-editing, can be manual or automated. For
morphologically and syntactically complex languages,
such as Modern Standard Arabic (MSA), correcting
texts automatically requires complex human and ma-
chine processing which makes generation of correct
candidates a challenging task.

For instance, the Automatic Arabic Text Correction
Shared Task is an interesting testbed to develop and
evaluate spelling correction systems for Arabic trained
either on naturally occurring errors in texts written by
humans (e.g., non-native speakers), or machines (e.g.,

MT output). In such tasks, participants are asked to
implement a system that takes as input Modern Stan-
dard Arabic texts with various spelling errors and au-
tomatically correct them. In this paper, we describe
the CMUQ system we developed to participate in the
The First Shared Task on Automatic Text Correction
for Arabic (Mohit et al., 2014). Our system combines
rule-based linguistic techniques with statistical lan-
guage modeling techniques and machine translation-
based methods. Our system outperforms the baseline,
achieves a better correction quality and reaches an F-
score of 62.96% on the development set of QALB cor-
pus (Zaghouani et al., 2014) and 65.42% on the test set.

The remainder of this paper is organized as follows.
First, we review the main previous efforts for automatic
spelling correction, in Section 2. In Section 3, we de-
scribe our system, which consists of several modules.
We continue with our experiments on the shared task
2014 dev set (Section 4). Then, we give an analysis of
our system output in Section 5. Finally, we conclude
and hint towards future improvement of the system, in
Section 6.

2 Related Work

Automatic error detection and correction include auto-
matic spelling checking, grammar checking and post-
editing. Numerous approaches (both supervised and
unsupervised) have been explored to improve the flu-
ency of the text and reduce the percentage of out-
of-vocabulary words using NLP tools, resources, and
heuristics, e.g., morphological analyzers, language
models, and edit-distance measure (Kukich, 1992;
Oflazer, 1996; Zribi and Ben Ahmed, 2003; Shaalan
et al., 2003; Haddad and Yaseen, 2007; Hassan et al.,
2008; Habash, 2008; Shaalan et al., 2010). There has
been a lot of work on error correction for English (e.g.,
(Golding and Roth, 1999)). Other approaches learn
models of correction by training on paired examples
of errors and their corrections, which is the main goal
of this work.

For Arabic, this issue was studied in various direc-
tions and in different research work. In 2003, Shaalan
et al. (2003) presented work on the specification and
classification of spelling errors in Arabic. Later on,
Haddad and Yaseen (2007) presented a hybrid ap-
proach using morphological features and rules to fine

137



tune the word recognition and non-word correction
method. In order to build an Arabic spelling checker,
Attia et al. (2012) developed semi-automatically, a dic-
tionary of 9 million fully inflected Arabic words us-
ing a morphological transducer and a large corpus.
They then created an error model by analyzing error
types and by creating an edit distance ranker. Finally,
they analyzed the level of noise in different sources of
data and selected the optimal subset to train their sys-
tem. Alkanhal et al. (2012) presented a stochastic ap-
proach for spelling correction of Arabic text. They used
a context-based system to automatically correct mis-
spelled words. First of all, a list is generated with pos-
sible alternatives for each misspelled word using the
Damerau-Levenshtein edit distance, then the right al-
ternative for each misspelled word is selected stochas-
tically using a lattice search, and an n-gram method.
Shaalan et al. (2012) trained a Noisy Channel Model
on word-based unigrams to detect and correct spelling
errors. Dahlmeier and Ng (2012a) built specialized de-
coders for English grammatical error correction. More
recently, (Pasha et al., 2014) created MADAMIRA,
a system for morphological analysis and disambigua-
tion of Arabic, this system can be used to improve the
accuracy of spelling checking system especially with
Hamza spelling correction.

In contrast to the approaches described above, we
use a machine translation (MT) based method to train
an error correction system. To the best of our knowl-
edge, this is the first error correction system for Arabic
using an MT approach.

3 Our System

Our system is a pipeline that consists of several dif-
ferent modules. The baseline system uses a spelling
checking module, and the final system uses a phrase-
based statistical machine translation system. To
preproces the text, we use the provided output of
MADAMIRA (Pasha et al., 2014) and a rule-based
correction. We then do a rule-based post-processing
to fix the punctuation.

3.1 Baseline Systems

For the baseline system, we try a common spelling
checking approach. We first pre-process the data us-
ing the features from MADAMIRA (see Feature 14
Replacement), then we use a noisy channel model for
spelling checking.

Feature 14 Replacement
The first step in the pipeline is to extract
MADAMIRA’s 14th feature from the .column file
and replace each word in the input text with this form.
MADAMIRA uses morphological disambiguation and
SVM analysis to select the most likely fully diacritized
Arabic word for the input word. The 14th feature
represents the undiacritized form of the most likely
word. This step corrects many Hamza placement or

omission errors, which makes a good base for other
correction modules.

Spelling Correction
The spelling checker is based on a noisy channel model
- we use a word list and language model to determine
the most probable correct Arabic word that could have
generated the incorrect form that we have in the text.
For detecting spelling errors we use the AraComLex
word list for spelling checking (Attia et al., 2012),
which contains about 9 million Arabic words.1 We
look up the word from the input sentence in this list,
and attempt to correct those that are not found in the
list. We also train a mapping of incorrect words and
possible corrections from the edits in the training data.
If the word is in this map, the list of possible correc-
tions from the training data becomes the candidate list.
If the word is not in the trained map, the candidate list
is created by generating a list of words with common
insertions, substitutions, and deletions, according to the
list in (Attia et al., 2012). Each candidate is generated
by performing these edits and has a weight according to
the edit distance weights in the list. We then prune the
candidate list by keeping only the lowest weight words,
and removing candidates that are not found in the word
list. The resulting sentence is scored with a 3-gram lan-
guage model built with KenLM (Heafield et al., 2013)
on the correct side of the training data. The top one
sentence is then kept and considerd as the ”corrected”
one.

This module handles spelling errors of individual
words; it does not handle split/merge errors or word
reordering. The spelling checker sometimes attempts
to correct words that were already correct, because
the list does not contain named entities or translitera-
tions, and it does not contain all possible correct Arabic
words. Because the spelling checker module decreased
the overall performance, it is not included in our final
system.

3.2 Final System
Feature 14 Replacement
The first step in our final system is Feature 14 Replace-
ment, as described above.

Rule-based Clitic Correction
With the resulting data, we apply a set of rules to reat-
tach clitics that may have been split apart from the base
word. After examining the train dataset, we realized
that 95% of word merging cases involve “ð” attach-
ment. When found by themselves, the clitics are at-
tached to either the previous word or next word, based
on whether they generally appear as prefixes or suf-
fixes. The clitics handled by this module are specified
in Table 2.

We also remove extra characters by replacing a se-
quence of 3 or more of the same character with a single

1http://sourceforge.net/projects/
arabic-wordlist/

138



Dev
Exact Match No Punct

Precision Recall F1 Precision Recall F1
Feature 14 0.7746 0.3210 0.4539 0.8100 0.5190 0.6326
Feature 14 + Spelling checker (baseline) 0.4241 0.3458 0.3810 0.4057 0.4765 0.4382
Feature 14 + Clitic Rules 0.7884 0.3642 0.4983 0.8149 0.5894 0.6841
Feature 14 + Phrase-based MT 0.7296 0.5043 0.5964 0.7797 0.6397 0.7028
Feature 14 + Clitic Rules + Phrase-based MT 0.7571 0.5389 0.6296 0.8220 0.6850 0.7473

Test
Feature 14 + Clitic Rules + Phrase-based MT 0.7797 0.5635 0.6542 0.7438 0.6855 0.7135

Table 1: System results on the dev set (upper part) and on the test set (lower part).

Attach clitic to... Clitics
Beginning of next word {ð, È@, H. ,

	¬, �}
End of previous word {¼, Aë, A 	K, ú


	G, ø
 , Õ», @}

Table 2: Clitics handled by the rule-based module.

instance of that character (e.g. !!!!!!! would be replaced
with !).

Statistical Phrase-based Model
We use the Moses toolkit (Koehn et al., 2007) to
create a statistical phrase-based machine translation
model built on the best pre-processed data, as described
above. We treat this last step as a translation prob-
lem, where the source language is pre-processed in-
correct Arabic text, and the reference is correct Ara-
bic. Feature 14 extraction, rule-based correction, and
character de-duplication are applied to both the train
and dev sets. All but the last 1,000 sentences of the
train data are used at the training set for the phrase-
based model, the last 1,000 sentences of the train data
are used as a tuning set, and the dev set is used for
testing and evaluation. We use fast align, the aligner
included with the cdec decoder (Dyer et al., 2010) as
the word aligner with grow-diag as the symmetrization
heuristic (Och and Ney, 2003), and build a 5-gram lan-
guage model from the correct Arabic training data with
KenLM (Heafield et al., 2013). The system is evaluated
with BLEU (Papineni et al., 2002) and then scored for
precision, recall, and F1 measure against the dev set
reference.

We tested several different reordering window sizes
since this is not a standard translation task, so we may
want shorter distance reordering. Although 7 is the de-
fault size, we tested 7, 5, 4, 3, and 0, and found that a
window of size 4 produces the best result according to
BLEU score and F1 measure.

4 Experiments and Results
We train and evaluate our system with the train-
ing and development datasets provided for the shared
task and the m2Scorer (Dahlmeier and Ng, 2012b).
These datasets are extracted from the QALB corpus

of human-edited Arabic text produced by native speak-
ers, non-native speakers and machines (Zaghouani et
al., 2014).

We conducted a small scale statistical study on the
950K tokens training set used to build our system. We
realized that 306K tokens are affected by a correction
action which could be a word edit, insertion, deletion,
split or merge. 169K tokens were edited to correct the
spelling errors and 99K tokens were inserted (mostly
punctuation marks). Furthermore, there is a total of
6,7K non necessary tokens deleted and 10.6K attached
tokens split and 18.2 tokens merged. Finally, there are
only 427 tokens moved in the sentence and 1563 mul-
tiple correction action.

We experiment with different configurations and
reach the sweet spot of performance when combining
the different modules.

4.1 Results

To evaluate the performance of our system on the de-
velopment data, we compare its output to the reference
(gold annotation). We then compute the usual mea-
sures of precision, recall and f-measure. Results for
various system configurations on the dev and test sets
are given in Table 1. Using the baseline system con-
sisting in replacing words by their non diacritized form
(Feature 14), we could correct 51.9% of the errors oc-
curring in the dev set, when punctuation is not consid-
ered. This result drops when we consider the punctua-
tion errors which seem to be more complex to correct:
Only 32.1% of the errors are corrected in the dev set. It
is important to notice that adding the clitic rules to the
Feature 14 baseline yields an improvement of + 5.15 in
F-measure. We reach the best F-measure value when
using the phrase-based MT system after pre-processing
the data and applying the Feature 14 and clitic rules.
Using this combination we were able to correct 68.5%
of the errors (excluding punctuation) on the develop-
ment set with a precision of 82.2% and 74.38% on the
test set. When we consider the punctuation, 53.89%
of the errors of different types were corrected on the
dev set and 56.35% on the test set with a precision of
75.71% and 77.97%, respectively.

139



5 Error Analysis and Discussion
When building error correction systems, minimizing
the number of cases where correct words are marked
as incorrect is often regarded as more important than
covering a high number of errors. Therefore, a higher
precision is often preferred over higher recall. In order
to understand what was affecting the performance, we
took a closer look at our system output and translation
tables to present some samples of errors that our system
makes on development set.

5.1 Out-of-vocabulary Words
This category includes words that are not seen by our
system during the training which is a common problem
in machine translation systems. In our system, most of
out-of-vocabulary words were directly transferred un-
changed from source to target. For example the word�éJ
Ëð ñ�ÒÊ 	̄ @ was not corrected to �éJ
Ëð ñ�ÖÏ @.
5.2 Unnecessary Edits
In some cases, our system made some superfluous edits
such as adding the definite article in cases where it is
not required such as :

Source �é 	JK
YÖÏ @ 	¬AJ
£

@

Hypothesis �é 	JK
YÖÏ @ 	¬AJ
£

B@

Reference (unchanged) �é 	JK
YÖÏ @ 	¬AJ
£

@

Table 3: An example of an unnecessary addition of the
definite article.

5.3 Number Normalization
We observed that in some cases, the system did not nor-
malize the numbers such as in the following case which
requires some knowledge of the real context to under-
stand that these numbers require normalization.

Source �H@ðA 	ªJ
Ó 450000
Hypothesis �H@ðA 	ªJ
Ó 450000
Reference �H@ðA 	ªJ
Ó 450

Table 4: An example of number normalization.

5.4 Hamza Spelling
Even though our system corrected most of the Hamza
spelling errors, we noticed that in certain cases they
were not corrected, especially when the words without
the Hamza were valid entries in the dictionary. These
cases are not always easy to handle since only context
and semantic rules can handle them.

5.5 Grammatical Errors
In our error analysis we encountered many cases of un-
corrected grammatical errors. The most frequent type

Source �éJ
 	J£ñË@ X@ð
Hypothesis �éJ
 	J£ñË@ X@ð
Reference �éJ
 	J£ñË@ X


@ð

Table 5: A sentence where the Hamza was not added
above the Alif in the first word because both versions
are valid dictionary entries.

is the case endings correction such as correcting the
verbs in jussive mode when there is a prohibition par-
ticle (negative imperative) like the (B) in the following
examples :

Source ÑîE
XAK


@ úÎ« @ñK. Qå	��
 B

Hypothesis ÑîE
XAK


@ úÎ« @ñK. Qå	��
 B

Reference ÑîE
XAK


@ úÎ« 	àñK. Qå	��
 B

Table 6: An example of a grammatical error.

5.6 Unnecessary Word Deletion
According to the QALB annotation guidelines, ex-
tra words causing semantic ambiguity in the sentence
should be deleted. The decision to delete a given word
is usually based on the meaning and the understanding
of the human annotator, unfortunately this kind of er-
rors is very hard to process and our system was not able
to delete most of the unnecessary words.

Source Q 	k
�
@ A 	J�
 ��Ó AÒîE
YK



@ Aª 	�ð YîD�� 	J� Éë

Hypothesis Q 	k
�
@ A 	J�
 ��Ó AÒîE
YK



@ Aª 	�ð YîD�� 	J� Éë

Reference Q 	k
�
@ A 	J�
 ��Ó Aª 	�ð YîD�� 	J� Éë

Table 7: An example of word deletion.

5.7 Adding Extra Words
Our analysis revealed cases of extra words introduced
to some sentences, despite the fact that the words added
are coherent with the context and could even improve
the overall readability of the sentence, they are uncred-
ited correction since they are not included in the gold
standard. For example :

Source ø
 Pñ�Ë@ ���
m.Ì'@ �éªÖÞ� H. Qå 	�
Hypothesis QmÌ'@ ø
 Pñ�Ë@ ���
m.Ì'@ �éªÖÞ� H. Qå 	�
Reference ø
 Pñ�Ë@ ���
m.Ì'@ �éªÖÞ� H. Qå 	�

Table 8: An example of the addition of extra words.

5.8 Merge and Split Errors
In this category, we show some sample errors of neces-
sary word splits and merge not done by our system. The

140



word YªK. A�ñ� 	k should have been split as YªK. A�ñ� 	k
and the word YK. B should have been merged to appear
as one word as in YK. B.

5.9 Dialectal Correction Errors

Dialectal words are usually converted to their Modern
Standard Arabic (MSA) equivalent in the QALB cor-
pus, since dialectal words are rare, our system is unable
to detect and translate the dialectal words to the MSA
as in the expression 	áK
 	P I. Ó that is translated in the

gold standard to 	áK
 	P Q�
 	«.

6 Conclusion

We presented our CMUQ system for automatic Ara-
bic text correction. Our system combines rule-based
linguistic techniques with statistical language model-
ing techniques and a phrase-based machine transla-
tion method. We experiment with different configu-
rations. Our experiments have shown that the system
we submitted outperforms the baseline and we reach
an F-score of 74.73% on the development set from
the QALB corpus when punctuation is excluded, and
65.42% on the test set when we consider the punctu-
ation errors . This placed us in the 3rd rank. We be-
lieve that our system could be improved in numerous
ways. In the future, we plan to finalize a current mod-
ule that we are developing to deal with merge and split
errors in a more specific way. We also want to focus in
a deeper way on the word movement as well as punc-
tuation problems, which can produce a more accurate
system. We will focus as well on learning further error
correction models from Arabic Wikipedia revision his-
tory, as it contains natural rewritings including spelling
corrections and other local text transformations.

Acknowledgements

This publication was made possible by grants NPRP-
09-1140-1-177 and NPRP-4-1058- 1-168 from the
Qatar National Research Fund (a member of the Qatar
Foundation). The statements made herein are solely the
responsibility of the authors.

References

Mohamed I. Alkanhal, Mohamed Al-Badrashiny, Man-
sour M. Alghamdi, and Abdulaziz O. Al-Qabbany.
2012. Automatic Stochastic Arabic Spelling Correc-
tion With Emphasis on Space Insertions and Dele-
tions. IEEE Transactions on Audio, Speech & Lan-
guage Processing, 20(7):2111–2122.

Mohammed Attia, Pavel Pecina, Younes Samih,
Khaled Shaalan, and Josef van Genabith. 2012. Im-
proved Spelling Error Detection and Correction for
Arabic. In Proceedings of COLING 2012: Posters,
pages 103–112, Mumbai, India.

Daniel Dahlmeier and Hwee Tou Ng. 2012a. A Beam-
Search Decoder for Grammatical Error Correction.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 568–578, Jeju Island, Korea.

Daniel Dahlmeier and Hwee Tou Ng. 2012b. Bet-
ter Evaluation for Grammatical Error Correction. In
NAACL HLT ’12 Proceedings of the 2012 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 568–572.

Robert Dale. 1997. Computer Assistance in Text Cre-
ation and Editing. In Survey of the state of the art
in Human Language Technology, chapter 7, pages
235–237. Cambridge University Press.

Chris Dyer, Jonathan Weese, Hendra Setiawan, Adam
Lopez, Ferhan Ture, Vladimir Eidelman, Juri Gan-
itkevitch, Phil Blunsom, and Philip Resnik. 2010.
cdec: A Decoder, Alignment, and Learning Frame-
work for Finite-state and Context-free Translation
Models. In Proceedings of the ACL 2010 System
Demonstrations, pages 7–12, Uppsala, Sweden.

A. R. Golding and D. Roth. 1999. A Winnow Based
Approach to Context-Sensitive Spelling Correction.
Machine Learning, 34(1-3):107–130.

Nizar Habash. 2008. Four Techniques for Online Han-
dling of Out-of-Vocabulary Words in Arabic-English
Statistical Machine Translation. In Proceedings of
ACL-08: HLT, Short Papers, pages 57–60, Colum-
bus, Ohio.

Bassam Haddad and Mustafa Yaseen. 2007. Detection
and Correction of Non-words in Arabic: a Hybrid
Approach. International Journal of Computer Pro-
cessing of Oriental Languages, 20(04):237–257.

Ahmed Hassan, Sara Noeman, and Hany Hassan.
2008. Language Independent Text Correction using
Finite State Automata. In Proceedings of the Third
International Joint Conference on Natural Language
Processing (IJCNLP 2008), pages 913–918, Hyder-
abad, India.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable Modfied
Kneser-Ney Language Model Estimation. In In Pro-
ceedings of the Association for Computational Lin-
guistics, Sofia, Bulgaria.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Christo-
pher Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Christopher Dyer, Ondrej Bo-
jar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open Source Toolkit for Statistical Ma-
chine Translation. In Proceedings of the 45th An-
nual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the
Demo and Poster Sessions, pages 177–180, Prague,
Czech Republic.

141



Karen Kukich. 1992. Techniques for Automatically
Correcting Words in Text. ACM Computing Surveys
(CSUR), 24(4):377–439.

Behrang Mohit, Alla Rozovskaya, Nizar Habash, Wa-
jdi Zaghouani, and Ossama Obeid. 2014. The First
QALB Shared Task on Automatic Text Correction
for Arabic. In Proceedings of EMNLP Workshop on
Arabic Natural Language Processing, Doha, Qatar,
October.

Franz Josef Och and Hermann Ney. 2003. A System-
atic Comparison of Various Statistical Alignment
Models. In Computational Linguistics, page 1951.

Kemal Oflazer. 1996. Error-Tolerant Finite-State
Recognition with Applications to Morphological
Analysis and Spelling Correction. Computational
Linguistics, 22(1):73–89.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceed-
ings of the Association for Computational Linguis-
tics, Philadelphia, Pennsylvania.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A Fast, Comprehensive Tool
for Morphological Analysis and Disambiguation of
Arabic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 1094–1101, Reykjavik, Iceland.

Khaled Shaalan, Amin Allam, and Abdallah Gomah.
2003. Towards Automatic Spell Checking for Ara-
bic. In Proceedings of the 4th Conference on Lan-
guage Engineering, Egyptian Society of Language
Engineering (ELSE), Cairo, Egypt.

Khaled Shaalan, Rana Aref, and Aly Fahmy. 2010. An
Approach for Analyzing and Correcting Spelling Er-
rors for Non-native Arabic Learners. In Proceedings
of The 7th International Conference on Informatics
and Systems, INFOS2010, the special track on Nat-
ural Language Processing and Knowledge Mining,
pages 28–30, Cairo, Egypt.

Khaled Shaalan, Mohammed Attia, Pavel Pecina,
Younes Samih, and Josef van Genabith. 2012.
Arabic Word Generation and Modelling for Spell
Checking. In Proceedings of the Eighth Inter-
national Conference on Language Resources and
Evaluation (LREC-2012), pages 719–725, Istanbul,
Turkey.

Wajdi Zaghouani, Behrang Mohit, Nizar Habash, Os-
sama Obeid, Nadi Tomeh, Alla Rozovskaya, Noura
Farra, Sarah Alkuhlani, and Kemal Oflazer. 2014.
Large Scale Arabic Error Annotation: Guidelines
and Framework. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), Reykjavik, Iceland.

Chiraz Zribi and Mohammed Ben Ahmed. 2003. Ef-
ficient Automatic Correction of Misspelled Arabic
Words Based on Contextual Information. In Pro-
ceedings of the Knowledge-Based Intelligent Infor-
mation and Engineering Systems Conference, pages
770–777, Oxford, UK.

142


