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Abstract

Free text notes typed by primary care
physicians during patient consultations
typically contain highly non-canonical
language. Shallow syntactic analysis of
free text notes can help to reveal valu-
able information for the study of disease
and treatment. We present an exploratory
study into chunking such text using off-
the-shelf language processing tools and
pre-trained statistical models. We evalu-
ate chunking accuracy with respect to part-
of-speech tagging quality, choice of chunk
representation, and breadth of context fea-
tures. Our results indicate that narrow con-
text feature windows give the best results,
but that chunk representation and minor
differences in tagging quality do not have
a significant impact on chunking accuracy.

1 Introduction

Clinical text contains rich, detailed information of
great potential use to scientists and health service
researchers. However, peculiarities of language
use make the text difficult to process, and the pres-
ence of sensitive information makes it hard to ob-
tain adequate quantities for developing processing
systems. The short term goal of most research
in the area is to achieve a reliable language pro-
cessing foundation that can support more complex
tasks such as named entity recognition (NER) to a
sufficiently reliable level.

Chunking is the task of identifying non-
recursive phrases in text (Abney, 1991). It is a
type of shallow parsing that is a less challeng-
ing task than dependency or constituency parsing.
This makes it likely to give more reliable results on
clinical text, since there is a very limited amount of
annotated (or even raw) text of this kind available
for system development. Even though chunking

does not provide as much syntactic information as
full parsing, it is an excellent method for identify-
ing base noun phrases (NP), which is a key issue
in symptom and disease identification. Identify-
ing symptoms and diseases is at the heart of har-
nessing the potential of clinical data for medical
research purposes.

There are few resources that enable researchers
to adapt general domain techniques to clinical text.
Using the Harvey Corpus1 – a chunk annotated
clinical text language resource – we present an ex-
ploratory study into adapting general domain tools
and models to apply to free text notes typed by UK
primary care physicians.

2 Related Work

The Mayo Clinic Corpus (Pakhomov et al., 2004)
is a key resource that has been widely used as
a gold standard in part-of-speech (POS) tagging
of clinical text. Based on that corpus and the
Penn TreeBank (Marcus et al., 1993), Coden et al.
(2005) present an analysis of the effects of domain
data on the performance of POS tagging mod-
els, demonstrating significant improvements with
models trained entirely on domain data. Savova
et al. (2010) use this corpus for the development
of cTAKES, Mayo Clinic’s processing pipeline for
clinical text.

Fan et al. (2011) show that using more diverse
clinical data can lead to more accurate POS tag-
ging. They report that models trained on clinical
text datasets from two different institutions per-
form on each of the datasets better than both mod-
els trained only on the same or the other dataset.

Fan et al. (2013) present guidelines for syntac-
tic parsing of clinical text and a clinical Treebank
annotated according to them. The guidelines are
designed to help the annotators handle the non-
canonical language that is typical of clinical text.

1An article describing the corpus is currently under re-
view.
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3 Data

The Harvey Corpus is a chunk-annotated corpus
consisting of pairs of manually anonymised UK
primary care physician (General Practitioner, or
GP) notes and associated Read codes (Bentley et
al., 1996). Each Read code has a short textual
gloss. The purpose of the codes is to make it easy
to extract structured data from clinical records.
The reason we include the codes in the corpus is
that GPs often use their glosses as the beginning of
their note. Two typical examples (without chunk
annotation for clarity) are shown below.

Birth details | | Normal deliviery Girl
Weight - 3. 960kg Apgar score @ 1min
- 9 Apgar score @ 5min - 9 Vit K given
Paed check NAD HC - 34. 9cm Hip test
performed

(1)

Chest pain | | musculoskel pain last w/e,
nil to find, ecg by paramedic no change,
reassured, rev sos

(2)

The corpus comprises 890 pairs of Read codes
and notes, each annotated by medical experts us-
ing a chunk annotation scheme that includes non-
recursive noun phrases (NPs), main verb groups
(MVs), and a common annotation for adjectival
and adverbial phrases (APs). Example (3) be-
low illustrates the annotation. The majority of
the records (750) were double blind annotated by
medical experts, after which the resulting annota-
tion was adjudicated by a third medical expert an-
notator.

[Chest pain]NP | | [musculoskel pain]NP

[last w/e]NP, [nil]AP to [find]MV, [ecg]NP

by [paramedic]NP [no change]NP,
[reassured]MV, [rev]MV [sos]AP

(3)

Inter-annotator agreement was 0.86 f-score, tak-
ing one annotator to be the gold standard and the
other the candidate. We calculate the f-score ac-
cording to the MUC-7 (Chinchor, 1998) specifica-
tion, with the standard f-score formula. The calcu-
lation is kept symmetric with regard to the choice
of gold standard annotator by limiting the counting
of incorrect categories to one per tag, and equat-
ing the missing and spurious categories. For ex-
ample, three words annotated as one three-token
chunk by annotator A and three one-token chunks
by annotator B will have one incorrect and two
missing/spurious elements.

The rest of the records are a by-product of the
training process. Ninety records were triple anno-
tated by three different medical experts with the
help of a computational linguist, and fifty records
were double annotated by a medical expert – alone
and together with a computational linguist.

It is important to note that the text in the corpus
is not representative of all types of GP notes. It is
focused on text that represents the dominant part
of day-to-day notes, rather than standard edited
text such as copies of letters to specialists and
other medical practitioners.

Even though the corpus data is very rich in in-
formation, its non-canonical language means that
it is very different from other clinical corpora
such as the Mayo Clinic Corpus (Pakhomov et al.,
2004) and poses different challenges for process-
ing. The GP notes in the Harvey Corpus can be
regarded as groups of medical ‘tweets’ meant to
be used mainly by the author. Sentence segmenta-
tion in the classical sense of the term is often im-
possible, because there are no sentences. Instead
there are short bursts of phrases concatenated to-
gether often without any indication of their bound-
aries. The average length of a note is roughly 30
tokens including the Read code. This is in con-
trast to notes in other clinical text datasets, which
range from 100 to 400 tokens on average (Fan et
al., 2011; Pakhomov et al., 2004). As well as typ-
ical clinical text characteristics such as domain-
specific acronyms, slang, and abbreviations, punc-
tuation and casing are often misleading (if present
at all), and some common classes of words (e.g.
auxiliary verbs) are almost completely absent.

4 Chunking

State-of-the-art text chunking accuracy reaches an
f-score of 95% (Sun et al., 2008). However, this
is for standard, edited text, and relies on accurate
POS tagging in a pre-processing step. However,
the characteristics of GP-written free text make ac-
curate part of speech (POS) tagging and chunking
difficult. Major problems are caused by unknown
tokens and ambiguities due to omitted words or
phrases.

We evaluate two standard chunking tools, Yam-
Cha (Kudo and Matsumoto, 2003) and CRF++2,
selected based on their support for trainable con-
text features. The tools were applied to the Har-

2http://crfpp.googlecode.com/svn/
trunk/doc/index.html
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POS YamCha IOB YamCha BEISO CRF++ IOB CRF++ BEISO
ARKIRC 75.35 76.63 σ1.04 76.87 σ2.91 75.87 σ1.64 76.23 σ1.99
ARKTwitter – 76.72 σ2.11 77.53 σ1.65 76.63 σ2.36 77.23 σ1.06
ARKRitter 75.70 76.59 σ2.01 76.72 σ2.11 76.63 σ1.05 77.17 σ1.77
cTAKES 82.42 75.32 σ2.52 75.85 σ2.02 75.43 σ1.79 75.53 σ1.90
GENIA 80.63 71.70 σ2.27* 74.86 σ1.41 74.16 σ2.03* 74.19 σ1.72
RASP – 74.24 σ1.84 75.10 σ1.31 75.63 σ2.33 75.76 σ2.18
Stanford 80.68 76.40 σ1.69 76.36 σ2.92 75.95 σ1.25 75.94 σ1.91
SVMTool 76.40 74.32 σ2.57 74.30 σ2.71 74.66 σ1.77 74.68 σ2.28
Wapiti 73.39 74.74 σ2.29 74.78 σ1.33 73.59 σ2.62 73.83 σ2.31

baseline – 69.66 σ1.89* 69.76 σ1.24 67.05 σ1.15* 68.65 σ1.41

Table 1: Chunking results using YamCha and CRF++ on data automatically POS tagged using nine
different models; the baseline is with no tagging. The IOB and BEISO columns compare the impact
of two chunk representation strategies. The POS column indicates the part-of-speech tagging accuracy
for a subset of the corpus. Asterisks indicate pairs of significantly different YamCha and CRF++ results
(t-test with 0.05 p-value).

vey Corpus with automatically generated POS an-
notation. Given the small amount of data and
the challenges presented above, we expected that
our results would be lower than those reported by
Savova et al. (2010). The aim of these experi-
ments is to find the best performance obtainable
with standard chunking tools, which we will build
on in further stages of our research.

We conducted pairs of experiments, one with
each chunking tool, divided into three groups: the
first investigates the effects of choice of POS tag-
ger for training data annotation (Section 4.1); the
second compares two chunk representations (Sec-
tion 4.2); and the third searches for the optimal
context features (Section 4.3). All feature tuning
experiments were conducted on a development set
and tested using 10-fold cross-validation on the
rest of the data. We used 10% of the whole data
for the development set and 90% of the remain-
ing data for a training sample during development.
This guarantees the development model is trained
on the same amount of data as the testing model.

4.1 Part-of-Speech Tagging

We evaluated and compared the results yielded
by the two chunkers, having applied each of
seven off-the-shelf POS taggers. Of these tag-
gers, cTAKES (Savova et al., 2010) and GENIA
(Tsuruoka et al., 2005) are the only ones trained
on data that resembles ours, which suggests that
they should have the best chance of performing
well. We also selected a number of other taggers
while trying to diversify their algorithms and train-

ing data as much as possible: the POS tagger part
of the Stanford NLP package (Toutanova et al.,
2003) because it is one of the most successfully
applied in the field; the RASP tagger (Briscoe
et al., 2006) because of its British National Cor-
pus (Clear, 1993) training data; the ARK tagger
(Owoputi et al., 2013) because of the terseness of
the tweet language; and the SVMTool (Giménez
and Màrquez, 2004) and Wapiti (Lavergne et al.,
2010) because they use SVM and CRF algorithms.
Our baseline model uses no part of speech infor-
mation.

Using the Penn TreeBank tagset (Marcus et al.,
1993), we manually annotated a subset of the cor-
pus of comparable size to the development set. Us-
ing this dataset we estimated the tagging accuracy
for all models that support that tagset (omitting
RASP and ARK Twitter since they use different
tagsets). In this evaluation, cTAKES is the best
performing model, followed closely by the Stan-
ford POS tagger and GENIA.

The results in Table 1 show that the differ-
ences between chunking models trained on differ-
ent POS annotations are small and mostly not sta-
tistically significant from each other. However, all
the results are significantly better than the base-
line, apart from those based on the GENIA tagger
output.

4.2 Chunk Representation

The dominant chunk representation standard in-
side, outside, begin (IOB) introduced by Ramshaw
and Marcus (1995) and established with the
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CoNLL-2000 shared task (Sang and Buchholz,
2000) takes a minimalistic approach to the rep-
resentation problem in order to keep the number
of labels low. Note that for chunking representa-
tions the total number of labels is the product of
the chunk types and the set of representation types
plus the outside tag, meaning that for IOB with
our set of three chunk types (NP, MV, AP) there
are seven labels.

Alternative chunk representations, such as be-
gin, end, inside, single, outside (BEISO)3 as used
by Kudo and Matsumoto (2001), offer more fine-
grained tagsets, presumably at a performance cost.
That cost is unnecessary unless there is something
to be gained from a more fine-grained tagset at de-
coding time, because the two representations are
deterministically inter-convertible. For instance,
an end tag could be useful for better recognising
boundaries between chunks of the same type. The
BEISO tagset model looks for the boundary be-
fore and after crossing it, while an IOB model
only looks after. This should give only a small
gain with standard edited text because the chunk
type distribution is fairly well balanced and punc-
tuation divides ambiguous cases such as lists of
compound nouns. However, the Harvey Corpus
is NP-heavy and contains many sequences of NP
chunks that do not have any punctuation to mark
their boundaries.

We evaluated the two chunk representations in
combination with each POS tagger. Table 1 shows
that the differences between the results for the
two representations are small and never statisti-
cally significant. We also evaluated the two chunk
representations with different amounts of training
data. The resulting learning curves (Figure 1) are
almost identical.

4.3 Context Features

We approached the feature tuning task by first ex-
ploring the smaller feature space of YamCha and
then using the trends there to constrain the fea-
tures of CRF++. YamCha has three groups of fea-
tures responsible for tokens, POS tags and dynam-
ically generated (i.e. preceding) chunk tags. For
all experiments we determined the best feature set
by exhaustively testing all context feature combi-
nations within a predefined range. We used the
same context window for the token and tag fea-
tures in order to reduce the search space. Given

3Also sometimes abbreviated IOBSE

Feature Set CV Dev
W-1-W1, T-1-T1, C-1 77.28 σ1.9 75.28
W-1-W1, T-1-T1, C-2-C-1 77.27 σ2.6 74.70
W-1-W2, T-1-T2, C-1 76.86 σ1.5 74.08
W-2-W1, T-2-T1, C-2 76.46 σ1.3 74.00
W-1-W1, T-1-T1, C-2 76.89 σ2.1 73.92
W-2-W1, T-2-T1, C-3-C-1 76.52 σ0.9 73.91
W-1-W1, T-1-T1, C-3-C-1 77.02 σ2.0 73.90
W-2-W2, T-2-T2, C-1 77.03 σ1.9 73.86
W-1-W1, T-1-T1, C-3 77.15 σ1.5 73.63
W-3-W1, T-3-T1, C-2-C-1 75.71 σ1.9 73.63

Table 2: Development set and 10-fold cross-
validation results for the top ten feature sets of
YamCha models trained on ARKTwitter POS an-
notation. Token features are represented with
W, POS features with T, and dynamically gener-
ated chunk features with C. None of the cross-
validation results are significantly different from
each other (t-test with 0.05 p-value).

the terseness of the text we expected that wider
context windows of more than three tokens would
not be beneficial to the model, and therefore did
not consider them. Our experiments using Yam-
Cha confirmed this hypothesis and showed a con-
sistent trend among all experiments in favouring a
window of -1 to +1 for tokens and slightly wider
for chunk tags (see Table 2).

CRF++ provides a more powerful feature con-
figuration allowing for unary and pairwise4 fea-
tures of output tags. The unary features allow the
construction of token or POS tag bigrams and tri-
grams in addition to the standard context windows.
The feature tuning search space with so many pa-
rameters is enormous, which required us to use our
findings from the YamCha experiments to trim it
down and make it computationally feasible. First,
we decreased the search window of all features by
one in each direction from -3:3 to -2:2. Second, we
used the top scoring POS model from the first ex-
perimental runs to constrain the features even fur-
ther by selecting only the top one hundred for the
rest of the models.

We could not identify the same uniform trend in
the top feature sets as we could with YamCha. Our
results ranged from very small context windows
to the maximum size of our search space. How-

4The unary and pairwise features of output tags are re-
ferred to as unigram and bigram features of output tags on
the CRF++ web page. Although this is correct, it can also
be confused with unigrams and bigrams of tokens, which are
expressed as unary (unigram) output tag features.
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Figure 1: Chunking results for YamCha IOB and
BEISO models with increasing amounts of train-
ing data.

ever, we noticed that BEISO feature sets tend to
be smaller than the IOB ones. We also found that
the pairwise features normally improve the results.

5 Discussion and Future Work

We were surprised that the experiments did not
show a clear correlation between POS tagging ac-
curacy and chunking accuracy. On the other hand,
the chunking results using POS tagged data are
significantly better than the baseline, except when
using the GENIA tagger output. The small dif-
ferences between training sets of similar POS ac-
curacy could be explained due to the non-uniform
impact of the wrong POS tag on the chunking pro-
cess. Some mistakes such as labelling a noun as
a verb in the middle of a NP chunk are almost
sure to propagate and cause further chunking er-
rors, whereas others may have minimal or no ef-
fect, for example labelling a singular noun as a
proper noun. An error analysis of verb tags and
noun tags (Table 3) shows that the ARK models
tend to make more mistakes that keep the anno-
tation within the same tag group compared to the
GENIA model (see column pairs 1 and 3, and 2
and 4). This is a possible explanation for the lower
accuracy of the chunking model trained on data
tagged by GENIA.

Our experiments showed that the models using
the two chunk representations did not perform sig-
nificantly differently from each other. We also
showed that this conclusion is likely to hold if

Model Ngroup Vgroup Nouns Verbs
ARKIRC 67.17 78.26 88.26 85.99
ARKTwitter - - 86.97 88.71
ARKRitter 68.57 77.29 90.64 85.02
cTAKES 83.93 62.80 93.85 69.08
GENIA 81.56 61.83 92.03 71.01
RASP - - 84.59 83.58
Stanford 80.30 73.42 91.89 83.09
SVMTool 69.97 70.04 90.08 80.19
Wapiti 65.64 66.66 87.84 74.87

Table 3: Detailed view of the POS model re-
sults focusing on the noun and verb tag groups.
The leftmost two columns of figures show accura-
cies over tags in the respective groups; the right-
most two columns show the accuracies of the same
groups if all tags in a group are replaced with a
group tag, e.g. V for verbs5.

more training data were available.
There are a number of ways we could improve

chunking accuracy besides increasing the amount
of training data. Although our results do not show
a clear trend, Fan et al. (2011) demonstrate that the
domain of part-of-speech training data has a sig-
nificant impact on tagging accuracy, which could
potentially impact chunking results if it decreases
the number of errors that propagate during chunk-
ing. An important problem in that area is dealing
with present and past participles, which are almost
sure to cause error propagation if mislabelled (as
nouns or adjectives, respectively). Participles are
more ambiguous in terse contexts lacking auxil-
iary verbs, which are natural disambiguation indi-
cators. Another direction in processing that could
contribute to better chunking is better token and
sentence segmentation. Finally, unknown words,
which may potentially have the largest impact on
chunking accuracy, could be dealt with using a
generic solution such as feature expansion based
on distributional similarity.
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