
ACL 2014

Ninth Workshop on
Statistical Machine Translation

Proceedings of the Workshop

June 26-27, 2014
Baltimore, Maryland, USA



c©2014 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-941643-17-4

ii



Introduction

The ACL 2014 Workshop on Statistical Machine Translation (WMT 2014) took place on Thursday and
Friday, June 26–27, 2014 in Baltimore, United States, immediately following the Conference of the
Association for Computational Linguistics (ACL).

This is the ninth time this workshop has been held. The first time it was held at HLT-NAACL 2006
in New York City, USA. In the following years the Workshop on Statistical Machine Translation was
held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in
Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in
Montreal, Canada, and ACL 2013 in Sofia, Bulgaria.

The focus of our workshop was to use parallel corpora for machine translation. Recent experimentation
has shown that the performance of SMT systems varies greatly with the source language. In this
workshop we encouraged researchers to investigate ways to improve the performance of SMT systems
for diverse languages, including morphologically more complex languages, languages with partial free
word order, and low-resource languages.

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation, we
conducted four shared tasks: a general translation task, a medical translation task, a quality estimation
task, and a task to test automatic evaluation metrics. The medical translation task was introduced this
year to address the important issue of domain adaptation within SMT. The results of the shared tasks were
announced at the workshop, and these proceedings also include an overview paper for the shared tasks
that summarizes the results, as well as provides information about the data used and any procedures
that were followed in conducting or scoring the task. In addition, there are short papers from each
participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submission than we could accept for
presentation. This year we have received 27 full paper submissions and 49 shared task submissions. In
total WMT 2014 featured 12 full paper oral presentations and 49 shared task poster presentations.

The invited talk was given by Alon Lavie (Carnegie Mellon University and Safaba Translation Solutions,
Inc.) entitled “Machine Translation in Academia and in the Commercial World – a Contrastive
Perspective”.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Matouš Macháček,
Christof Monz, Pavel Pecina, Matt Post, Hervé Saint-Amand, Radu Soricut, and Lucia Specia
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iii





Organizers:
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Abstract

A main output of the annual Workshop
on Statistical Machine Translation (WMT)
is a ranking of the systems that partici-
pated in its shared translation tasks, pro-
duced by aggregating pairwise sentence-
level comparisons collected from human
judges. Over the past few years, there
have been a number of tweaks to the ag-
gregation formula in attempts to address
issues arising from the inherent ambigu-
ity and subjectivity of the task, as well as
weaknesses in the proposed models and
the manner of model selection.

We continue this line of work by adapt-
ing the TrueSkillTM algorithm — an online
approach for modeling the relative skills
of players in ongoing competitions, such
as Microsoft’s Xbox Live — to the hu-
man evaluation of machine translation out-
put. Our experimental results show that
TrueSkill outperforms other recently pro-
posed models on accuracy, and also can
significantly reduce the number of pair-
wise annotations that need to be collected
by sampling non-uniformly from the space
of system competitions.

1 Introduction

The Workshop on Statistical Machine Translation
(WMT) has long been a central event in the ma-
chine translation (MT) community for the evalua-
tion of MT output. It hosts an annual set of shared
translation tasks focused mostly on the translation
of western European languages. One of its main
functions is to publish a ranking of the systems
for each task, which are produced by aggregating
a large number of human judgments of sentence-
level pairwise rankings of system outputs. While
the performance on many automatic metrics is also

# score range system
1 0.638 1 UEDIN-HEAFIELD
2 0.604 2-3 UEDIN

0.591 2-3 ONLINE-B
4 0.571 4-5 LIMSI-SOUL

0.562 4-5 KIT
0.541 5-6 ONLINE-A

7 0.512 7 MES-SIMPLIFIED
8 0.486 8 DCU
9 0.439 9-10 RWTH

0.429 9-11 CMU-T2T
0.420 10-11 CU-ZEMAN

12 0.389 12 JHU
13 0.322 13 SHEF-WPROA

Table 1: System rankings presented as clusters
(WMT13 French-English competition). The score
column is the percentage of time each system was
judged better across its comparisons (§2.1).

reported (e.g., BLEU (Papineni et al., 2002)), the
human evaluation is considered primary, and is in
fact used as the gold standard for its metrics task,
where evaluation metrics are evaluated.

In machine translation, the longstanding dis-
agreements about evaluation measures do not go
away when moving from automatic metrics to hu-
man judges. This is due in no small part to the in-
herent ambiguity and subjectivity of the task, but
also arises from the particular way that the WMT
organizers produce the rankings. The system-
level rankings are produced by collecting pairwise
sentence-level comparisons between system out-
puts. These are then aggregated to produce a com-
plete ordering of all systems, or, more recently, a
partial ordering (Koehn, 2012), with systems clus-
tered where they cannot be distinguished in a sta-
tistically significant way (Table 1, taken from Bo-
jar et al. (2013)).

A number of problems have been noted with
this approach. The first has to do with the na-
ture of ranking itself. Over the past few years, the
WMT organizers have introduced a number of mi-
nor tweaks to the ranking algorithm (§2) in reac-
tion to largely intuitive arguments that have been
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raised about how the evaluation is conducted (Bo-
jar et al., 2011; Lopez, 2012). While these tweaks
have been sensible (and later corroborated), Hop-
kins and May (2013) point out that this is essen-
tially a model selection task, and should prop-
erly be driven by empirical performance on held-
out data according to some metric. Instead of in-
tuition, they suggest perplexity, and show that a
novel graphical model outperforms existing ap-
proaches on that metric, with less amount of data.

A second problem is the deficiency of the mod-
els used to produce the ranking, which work by
computing simple ratios of wins (and, option-
ally, ties) to losses. Such approaches do not con-
sider the relative difficulty of system matchups,
and thus leave open the possibility that a system
is ranked highly from the luck of comparisons
against poorer opponents.

Third, a large number of judgments need to be
collected in order to separate the systems into clus-
ters to produce a partial ranking. The sheer size of
the space of possible comparisons (all pairs of sys-
tems times the number of segments in the test set)
requires sampling from this space and distributing
the annotations across a number of judges. Even
still, the number of judgments needed to produce
statistically significant rankings like those in Ta-
ble 1 grows quadratically in the number of par-
ticipating systems (Koehn, 2012), often forcing
the use of paid, lower-quality annotators hired on
Amazon’s Mechanical Turk. Part of the prob-
lem is that the sampling strategy collects data uni-
formly across system pairings. Intuitively, we
should need many fewer annotations between sys-
tems with divergent base performance levels, in-
stead focusing the collection effort on system pairs
whose performance is more matched, in order to
tease out the gaps between similarly-performing
systems. Why spend precious human time on re-
dundantly affirming predictable outcomes?

To address these issues, we developed a varia-
tion of the TrueSkill model (Herbrich et al., 2006),
an adaptative model of competitions originally de-
veloped for the Xbox Live online gaming commu-
nity. It assumes that each player’s skill level fol-
lows a Gaussian distribution N (µ, σ2), in which
µ represents a player’s mean performance, and σ2

the system’s uncertainty about its current estimate
of this mean. These values are updated after each
“game” (in our case, the value of a ternary judg-
ment) in proportion to how surprising the outcome

is. TrueSkill has been adapted to a number of
areas, including chess, advertising, and academic
conference management.

The rest of this paper provides an empirical
comparison of a number of models of human eval-
uation (§2). We evaluate on perplexity and also
on accuracy, showing that the two are not always
correlated, and arguing for the primacy of the lat-
ter (§3). We find that TrueSkill outperforms other
models (§4). Moreover, TrueSkill also allows us to
drastically reduce the amount of data that needs to
be collected by sampling non-uniformly from the
space of all competitions (§5), which also allows
for greater separation of the systems into ranked
clusters (§6).

2 Models

Before introducing our adaptation of the TrueSkill
model for ranking translation systems with human
judgments (§2.3), we describe two comparisons:
the “Expected Wins” model used in recent evalu-
ations, and the Bayesian model proposed by Hop-
kins and May (§2.2).

As we described briefly in the introduction,
WMT produces system rankings by aggregating
sentence-level ternary judgments of the form:

(i, S1, S2, π)

where i is the source segment (id), S1 and S2

are the system pair drawn from a set of systems
{S}, and π ∈ {<,>,=} denotes whether the
first system was judged to be better than, worse
than, or equivalent to the second. These ternary
judgments are obtained by presenting judges with
a randomly-selected input sentence and the refer-
ence, followed by five randomly-selected transla-
tions of that sentence. Annotators are asked to
rank these systems from best (rank 1) to worst
(rank 5), ties permitted, and with no meaning as-
cribed to the absolute values or differences be-
tween ranks. This is done to accelerate data collec-
tion, since it yields ten pairwise comparisons per
ranking. Tens of thousands of judgments of this
form constitute the raw data used to compute the
system-level rankings. All the work described in
this section is computed over these pairwise com-
parisons, which are treated as if they were col-
lected independently.

2.1 Expected Wins
The “Expected Wins” model computes the per-
centage of times that each system wins in its
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pairwise comparisons. Let A be the complete
set of annotations or judgments of the form
{i, S1, S2, πR}. We assume these judgments have
been converted into a normal form where S1 is ei-
ther the winner or is tied with S2, and therefore
πR ∈ {<,=}. Let δ(x, y) be the Kronecker delta
function.1 We then define the function:

wins(Si, Sj) =
|A|∑
n=1

δ(Si, S
(n)
1 )δ(Sj , S

(n)
2 )δ(π(n)

R , <)

which counts the number of annotations for which
system Si was ranked better than system Sj . We
define a single-variable version that marginalizes
over all annotations:

wins(Si) =
∑
Sj 6=Si

wins(Si, Sj)

We also define analogous functions for loses and
ties. Until the WMT11 evaluation (Callison-Burch
et al., 2011), the score for each system Si was
computed as follows:

score(Si) =
wins(Si) + ties(Si)

wins(Si) + ties(Si) + loses(Si)

Bojar et al. (2011) suggested that the inclusion of
ties biased the results, due to their large numbers,
the underlying similarity of many of the models,
and the fact that they are counted for both systems
in the tie, and proposed the following modified
scoring function:

score(Si) =
1
|{S}|

∑
Sj 6=Si

wins(Si, Sj)
wins(Si, Sj) + wins(Sj , Si)

This metric computes an average relative fre-
quency of wins, excluding ties, and was used
in WMT12 and WMT13 (Callison-Burch et al.,
2012; Bojar et al., 2013).

The decision to exclude ties isn’t without
its problems; for example, an evaluation where
two systems are nearly always judged equivalent
should be relevant in producing the final ranking
of systems. Furthermore, as Hopkins and May
(2013) point out, throwing out data to avoid bi-
asing a model suggests a problem with the model.
We now turn to a description of their model, which
addresses these problems.

1δ(x, y) =

{
1 if x = y
0 o.w.

2.2 The Hopkins and May (2013) model
Recent papers (Koehn, 2012; Hopkins and May,
2013) have proposed models focused on the rel-
ative ability of the competition systems. These
approaches assume that each system has a mean
quality represented by a Gaussian distribution with
a fixed variance shared across all systems. In the
graphical model formulation of Hopkins and May
(2013), the pairwise judgments (i, S1, S2, π) are
imagined to have been generated according to the
following process:

• Select a source sentence i

• Select two systems S1 and S2. A system
Sj is associated with a Gaussian distribution
N (µSj , σ

2
a), samples from which represent

the quality of translations

• Draw two “translations”, adding random
Gaussian noise with variance σ2

obs to simulate
the subjectivity of the task and the differences
among annotators:

q1 ∼ N (µS1 , σ
2
a) +N (0, σ2

obs)
q2 ∼ N (µS2 , σ

2
a) +N (0, σ2

obs)

• Let d be a nonzero real number that defines
a fixed decision radius. Produce a rating π
according to:2

π =


< q1 − q2 > d

> q2 − q1 > d

= otherwise

The task is to then infer the posterior parameters,
given the data: the system means µSj and, by ne-
cessity, the latent values {qi} for each of the pair-
wise comparison training instances. Hopkins and
May do not publish code or describe details of this
algorithm beyond mentioning Gibbs sampling, so
we used our own implementation,3 and describe it
here for completeness.

After initialization, we have training instances
of the form (i, S1, S2, πR, q1, q2), where all but the
qi are observed. At a high level, the sampler iter-
ates over the training data, inferring values of q1
and q2 for each annotation together in a single step
of the sampler from the current values of the sys-
tems means, {µj}.4 At the end of each iteration,

2Note that better systems have higher relative abilities
{µSj}. Better translations subsequently have on-average
higher values {qi}, which translate into a lower ranking π.

3github.com/keisks/wmt-trueskill
4This worked better than a version of the sampler that

changed one at a time.
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these means are then recomputed by re-averaging
all values of {qi} associated with that system. Af-
ter the burn-in period, the µs are stored as samples,
which are averaged when the sampling concludes.

During each iteration, q1 and q2 are resampled
from their corresponding system means:

q1 ∼ N (µS1 , σ
2
a)

q2 ∼ N (µS2 , σ
2
a)

We then update these values to respect the annota-
tion π as follows. Let t = q1−q2 (S1 is the winner
by human judgments), and ensure that the values
are outside the decision radius, d:

q′1 =

{
q1 t ≥ d
q1 +

1
2

(d− t) otherwise

q′2 =

{
q2 t ≥ d
q2 − 1

2
(d− t) otherwise

In the case of a tie:

q′1 =


q1 +

1
2

(d− t) t ≥ d
q1 t < d

q1 +
1
2

(−d− t) t ≤ −d

q′2 =


q2 − 1

2
(d− t) t ≥ d

q2 t < d

q2 − 1
2

(−d− t) t ≤ −d
These values are stored for the current iteration
and averaged at its end to produce new estimates
of the system means. The quantity d− t can be in-
terpreted as a loss function, returning a high value
when the observed outcome is unexpected and a
low value otherwise (Figure 1).

2.3 TrueSkill
Prior to 2012, the WMT organizers included refer-
ence translations among the system comparisons.
These were used as a control against which the
evaluators could be measured for consistency, on
the assumption that the reference was almost al-
ways best. They were also included as data points
in computing the system ranking. Another of
Bojar et al. (2011)’s suggestions was to exclude
this data, because systems compared more of-
ten against the references suffered unfairly. This
can be further generalized to the observation that

not all competitions are equal, and a good model
should incorporate some notion of “match diffi-
culty” when evaluating system’s abilities. The
inference procedure above incorporates this no-
tion implicitly in the inference procedure, but the
model itself does not include a notion of match
difficulty or outcome surprisal.

A model that does is TrueSkill5 (Herbrich et al.,
2006). TrueSkill is an adaptive, online system that
also assumes that each system’s skill level follows
a Gaussian distribution, maintaining a mean µSj
for each system Sj representing its current esti-
mate of that system’s native ability. However, it
also maintains a per-system variance, σ2

Sj
, which

represents TrueSkill’s uncertainty about its esti-
mate of each mean. After an outcome is observed
(a game in which the result is a win, loss, or draw),
the size of the updates is proportional to how sur-
prising the outcome was, which is computed from
the current system means and variances. If a trans-
lation from a system with a high mean is judged
better than a system with a greatly lower mean, the
result is not surprising, and the update size for the
corresponding system means will be small. On the
other hand, when an upset occurs in a competition,
the means will receive larger updates.

Before defining the update equations, we need
to be more concrete about how this notion of sur-
prisal is incorporated. Let t = µS1 − µS2 , the dif-
ference in system relative abilities, and let ε be a
fixed hyper-parameter corresponding to the earlier
decision radius. We then define two loss functions
of this difference for wins and for ties:

vwin(t, ε) =
N (−ε+ t)
Φ(−ε+ t)

vtie(t, ε) =
N (−ε− t)−N (ε− t)
Φ(ε− t)− Φ(−ε− t)

where Φ(x) is the cumulative distribution function
and theN s are Gaussians. Figures 1 and 2 display
plots of these two functions compared to the Hop-
kins and May model. Note how vwin (Figure 1) in-
creases exponentially as µS2 becomes greater than
the (purportedly) better system, µS1 .

As noted above, TrueSkill maintains not only
estimates {µSj} of system abilities, but also
system-specific confidences about those estimates

5The goal of this section is to provide an intuitive descrip-
tion of TrueSkill as adapted for WMT manual evaluations,
with enough detail to carry the main ideas. For more details,
please see Herbrich et al. (2006).
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Figure 1: TrueSkill’s vwin and the corresponding
loss function in the Hopkins and May model as
a function of the difference t of system means
(ε = 0.5, c = 0.8 for TrueSkill, and d = 0.5 for
Hopkins and May model).
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Figure 2: TrueSkills vtie and the corresponding
loss function in the Hopkins and May model as
a function of the difference t of system means
(ε = 0.5, c = 0.3, and d = 0.5).

{σSj}. These confidences also factor into the up-
dates: while surprising outcomes result in larger
updates to system means, higher confidences (rep-
resented by smaller variances) result in smaller
updates. TrueSkill defines the following value:

c2 = 2β2 + σ2
S1

+ σ2
S2

which accumulates the variances along β, another
free parameter. We can now define the update
equations for the system means:

µS1 = µS1 +
σ2
S1

c
· v
(
t

c
,
ε

c

)
µS2 = µS2 −

σ2
S2

c
· v
(
t

c
,
ε

c

)

The second term in these equations captures the
idea about balancing surprisal with confidence,
described above.

In order to update the system-level confidences,
TrueSkill defines another set of functions, w, for
the cases of wins and ties. These functions are
multiplicative factors that affect the amount of
change in σ2:

wwin(t, ε) = vwin · (vwin + t− ε)
wtie(t, ε) = vtie +

(ε− t) · N (ε− t) + (ε+ t) · N (ε+ t)
Φ(ε− t)− Φ(−ε− t)

The underlying idea is that these functions cap-
ture the outcome surprisal via v. This update al-
ways decreases the size of the variances σ2, which
means uncertainty of µ decreases as comparisons
go on. With these defined, we can conclude by
defining the updates for σ2

S1
and σ2

S2
:

σ2
S1

= σ2
S1
·
[

1− σ2
S1

c2
· w
(
t

c
,
ε

c

)]

σ2
S2

= σ2
S2
·
[

1− σ2
S2

c2
· w
(
t

c
,
ε

c

)]
One final complication not presented here but rel-
evant to adapting TrueSkill to the WMT setting:
the parameter β and another parameter (not dis-
cussed) τ are incorporated into the update equa-
tions to give more weight to recent matches. This
“latest-oriented” property is useful in the gaming
setting for which TrueSkill was built, where play-
ers improve over time, but is not applicable in the
WMT competition setting. To cancel this property
in TrueSkill, we set τ = 0 and β = 0.025 · |A| ·σ2

in order to lessen the impact of the order in which
annotations are presented to the system.

2.4 Data selection with TrueSkill
A drawback of the standard WMT data collection
method is that it samples uniformly from the space
of pairwise system combinations. This is undesir-
able: systems with vastly divergent relative abil-
ity need not be compared as often as systems that
are more evenly matched. Unfortunately, one can-
not sample non-uniformly without knowing ahead
of time which systems are better. TrueSkill pro-
vides a solution to this dilemma with its match-
selection ability: systems with similar means and
low variances can be confidently considered to be
close matches. This presents a strong possibility
of reducing the amount of data that needs to be

5



collected in the WMT competitions. In fact, the
TrueSkill formulation provides a way to compute
the probability of a draw between two systems,
which can be used to compute for a system Si a
conditional distribution over matches with other
systems {Sj 6=i}.

Formally, in the TrueSkill model, the match-
selection (chance to draw) between two players
(systems in WMT) is computed as follows:

pdraw =

√
2β2

c2
· exp(−(µa − µb)2

2c2
)

However, our setting for canceling the “latest-
oriented” property affects this matching quality
equation, where most systems are almost equally
competitive (≈ 1). Therefore, we modify the equa-
tion in the following manner which simply de-
pends on the difference of µ.

p̂draw =
1

exp(|µa − µb|)
TrueSkill selects the matches it would like to

create, according to this selection criteria. We do
this according to the following process:

1. Select a system S1 (e.g., the one with the
highest variance)

2. Compute a normalized distribution over
matches with other systems pairs p̂draw

3. Draw a system S2 from this distribution

4. Draw a source sentence, and present to the
judge for annotation

3 Experimental setup

3.1 Datasets

We used the evaluation data released by WMT13.6

The data contains (1) five-way system rankings
made by either researchers or Turkers and (2)
translation data consisting of source sentences, hu-
man reference translations, and submitted transla-
tions. Data exists for 10 language pairs. More de-
tails about the dataset can be found in the WMT
2013 overview paper (Bojar et al., 2013).

Each five-way system ranking was converted
into ten pairwise judgments (§2). We trained the
models using randomly selected sets of 400, 800,
1,600, 3,200, and 6,400 pairwise comparisons,

6statmt.org/wmt13/results.html

each produced in two ways: selecting from all re-
searchers, or split between researchers and Turk-
ers. An important note is that the training data
differs according to the model. For the Expected
Wins and Hopkins and May model, we sim-
ply sample uniformly at random. The TrueSkill
model, however, selects its own training data (with
replacement) according to the description in Sec-
tion 2.4.7

For tuning hyperparameters and reporting test
results, we used development and test sets of 2,000
comparisons drawn entirely from the researcher
judgments, and fixed across all experiments.

3.2 Perplexity

We first compare the Hopkins and May model and
TrueSkill using perplexity on the test data T , com-
puted as follows:

ppl(p|T ) = 2−
∑

(i,S1,S2,π)∈T log2 p(π|S1,S2)

where p is the model under consideration. The
probability of each observed outcome π between
two systems S1 and S2 is computed by taking a
difference of the Gaussian distributions associated
with those systems:

N (µδ, σ2
δ ) = N (µS1 , σ

2
S1

)−N (µS2 , σ
2
S2

)

= N (µS1 − µS2 , σ
2
S1

+ σ2
S2

)

This Gaussian can then be carved into three pieces:
the area where S1 loses, the middle area represent-
ing ties (defined by a decision radius, r, whose
value is fit using development data), and a third
area representing where S1 wins. By integrating
over each of these regions, we have a probability
distribution over these outcomes:

p(π | S1, S2) =



∫ 0
−∞N (µδ, σ2

δ ) if π is >

∫ r
0 N (µδ, σ2

δ ) if π is =

∫∞
r N (µδ, σ2

δ ) if π is <

We do not compute perplexity for the Expected
Wins model, which does not put any probability
mass on ties.

7We use a Python implementation of TrueSkill
(github.com/sublee/trueskill).
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3.3 Accuracy
Perplexity is often viewed as a neutral metric, but
without access to unbounded training data or the
true model parameters, it can only be approxi-
mated. Furthermore, it does not always corre-
late perfectly with evaluation metrics. As such,
we also present accuracy results, measuring each
model’s ability to predict the values of the ternary
pairwise judgments made by the annotators. These
are computed using the above equation, picking
the highest value of p(π) for all annotations be-
tween each system pair (Si, Sj). As with perplex-
ity, we emphasize that these predictions are func-
tions of the system pair only, and not the individual
sentences under consideration, so the same out-
come is always predicted for all sentences between
a system pair.

3.4 Parameter Tuning
We follow the settings described in Hopkins and
May (2013) for their model: σa = 0.5, σobs = 1.0,
and d = 0.5. In TrueSkill, in accordance with the
Hopkins and May model, we set the initial µ and
σ values for each system to 0 and 0.5 respectively,
and ε to 0.25.

For test data, we tuned the “decision ra-
dius” parameter r by doing grid search over
{0.001, 0.01, 0.1, 0.3, 0.5}, searching for the
value which minimized perplexity and maximized
accuracy on the development set. We do this for
each model and language pair. When tuned by
perplexity, r is typically either 0.3 or 0.5 for both
models and language pairs, whereas, for accuracy,
the best r is either 0.001, 0.01, or 0.1.

4 Results

4.1 Model Comparison
Figure 3 shows the perplexity of the two mod-
els with regard to the number of training compar-
isons. The perplexities in the figure are averaged
over all ten language pairs in the WMT13 dataset.
Overall, perplexities decrease according to the in-
crease of training size. The Hopkins and May
and TrueSkill models trained on both researcher
and Turker judgments are comparable, whereas
the Hopkins and May model trained on researcher
judgments alone shows lower perplexity than the
corresponding TrueSkill model.

In terms of accuracy, we see that the TrueSkill
model has the highest accuracies, saturating at just
over 3,000 training instances (Figure 4). TrueSkill
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Figure 3: Model Perplexities for WMT13 dataset.
‘all’ indicates that models are trained on both re-
searcher and Turker judgements, and ‘res’ means
that models are trained on only researcher judge-
ments.

outperforms Expected Win and the Hopkins and
May, especially when the training size is small
(Table 2). We also note that training on researcher
judgments alone (dashed lines) results in better
performance than training on both researchers and
Turker judgments. This likely reflects both a bet-
ter match between training and test data (recall the
test data consists of researcher judgments only),
as well as the higher consistency of this data, as
evidenced by the annotator agreement scores pub-
lished in the WMT overview paper (Bojar et al.,
2013). Recall that the models only have access
to the system pair (and not the sentences them-
selves), and thus make the same prediction for π
for a particular system pair, regardless of which
source sentence was selected. As an upper bound
for performance on this metric, Table 2 contains
an oracle score, which is computed by selecting,
for each pair of systems, the highest-probability
ranking.8

Comparing the plots, we see there is not a per-
fect relationship between perplexity and accuracy
among the models; the low perplexity does not
mean the high accuracy, and in fact the order of
the systems is different.

4.2 Free-for-all matches

TrueSkill need not deal with judgments in pairs
only, but was in fact designed to be used in a vari-
ety of settings, including N-way free-for-all games

8Note that this might not represent a consistent ranking
among systems, but is itself an upper bound on the highest-
scoring consistent ranking.
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Figure 4: Model accuracies with different training
domain for WMT13 dataset.

Train Size Exp-Win HM TrueSkill
400 0.465 0.471 0.479
800 0.471 0.475 0.483

all 1600 0.479 0.477 0.493
3200 0.486 0.489 0.493
6400 0.487 0.490 0.495
400 0.460 0.463 0.484
800 0.475 0.473 0.488

res 1600 0.481 0.482 0.493
3200 0.492 0.494 0.497
6400 0.495 0.496 0.497

Upper Bound 0.525

Table 2: Model accuracies: models are tuned by
accuracy instead of perplexity. Upper bound is
computed by selecting the most frequent choice
(<,>,=) for each system pair.

with many players all competing for first place.
This adapts nicely to WMT’s actual collection set-
ting. Recall that annotators are presented with five
translations which are then ranked; we can treat
this setting as a 5-way free-for-all match. While
the details of these updates are beyond the scope of
this paper, they are presented in the original model
and are implemented in the toolkit we used. We
thus also conducted experiments varying the value
of N from 2 to 5.

The results are shown in Tables 3 and 4, which
hold constant the number of matches and pairwise
judgments, respectively. When fixing the num-
ber of matches, the 5-way setting is at an advan-
tage, since there is much more information in each
match; in contrast, when fixing the number of pair-
wise comparisons, the 5-way setting is at a dis-
advantage, since many fewer competitions consti-

# N=2 N=3 N=4 N=5
400 0.479 0.482 0.491 0.492
800 0.483 0.493 0.495 0.495

1600 0.493 0.492 0.497 0.495
3200 0.493 0.494 0.498 0.497
6400 0.495 0.498 0.498 0.498

Table 3: Accuracies when training with N-way
free-for-all models, fixing the number of matches.

# N=2 N=3 N=4 N=5
400 0.479 0.475 0.470 0.459
800 0.483 0.488 0.476 0.466

1600 0.493 0.488 0.481 0.481
3200 0.493 0.492 0.487 0.489
6400 0.495 0.496 0.494 0.495

Table 4: Accuracies when training with N-way
free-for-all models, fixing the number of pairwise
comparisons.

tute these comparisons. The results bear this out,
but also suggest that the standard WMT setting
— which extracts ten pairwise comparisons from
each 5-way match and treats them independently
— works well. We will not speculate further here,
but provide this experiment purely to motivate po-
tential future work. Here we will focus our con-
clusions to the pair-wise ranking scenario.

5 Reduced Data Collection with
Non-uniform Match Selection

As mentioned earlier, a drawback of the selection
of training data for annotation is that it is sampled
uniformly from the space of system pair compe-
titions, and an advantage of TrueSkill is its abil-
ity to instead compute a distribution over pairings
and thereby focus annotation efforts on competi-
tive matches. In this section, we report results in
the form of heat maps indicating the percentage of
pairwise judgments requested by TrueSkill across
the full cross-product of system pairs, using the
WMT13 French-English translation task.

Figure 5 depicts a system-versus-system heat
map for all judgments in the dataset. Across this
figure and the next two, systems are sorted along
each axis by the final values of µ inferred by
TrueSkill during training, and the heat of each
square is proportional to the percentage of judg-
ments obtained between those two systems. The
diagonal reflects the fact that systems do not com-
pete against themselves, and the stripe at row and
column 5 reflects a system that was entered late
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Figure 5: Heat map for the ratio of pairwise judg-
ments across the full cross-product of systems in
the WMT13 French-English translation task.
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Figure 6: Heat map for the ratio of pairwise judg-
ments across the full cross-product of systems
used in the first 20% of TrueSkill model.

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 7: Heat map for the ratio of pairwise judg-
ments across the full cross-product of systems
used in the last 20% of TrueSkill model.

into the WMT13 competition and thus had many
fewer judgments. It is clear that these values are
roughly uniformly distributed. This figure serves
as a sort of baseline, demonstrating the lack of pat-
terns in the data-selection process.

The next two figures focus on the data that
TrueSkill itself selected for its use from among all
of the available data. Figure 6 is a second heat
map presenting the set of system pairs selected by
TrueSkill for the first 20% of its matches chosen
during training, while Figure 7 presents a heat map
of the last 20%. The contrast is striking: whereas
the judgments are roughly uniformly distributed at
the beginning, the bulk of the judgments obtained
for the last set are clustered along the diagonal,
where the most competitive matches lie.

Together with the higher accuracy of TrueSkill,
this suggests that it could be used to decrease the
amount of data that needs to be collected in future
WMT human evaluations by focusing the annota-
tion effort on more closely-matched systems.

6 Clustering

As pointed out by Koehn (2012), a ranking pre-
sented as a total ordering among systems con-
ceals the closeness of comparable systems. In the
WMT13 competition, systems are grouped into
clusters, which is equivalent to presenting only
a partial ordering among the systems. Clusters
are constructed using bootstrap resampling to in-
fer many system rankings. From these rankings,
rank ranges are then collected, which can be used
to construct 95% confidence intervals, and, in turn,
to cluster systems whose ranges overlap. We use
a similar approach for clustering in the TrueSkill
model. We obtain rank ranges for each system by
running the TrueSkill model 100 times,9 throw-
ing out the top and bottom 2 rankings for each
system, and clustering where rank ranges overlap.
For comparison, we also do this for the other two
models, altering the amount of training data from
1k to 25k in increments of 1,000, and plotting the
number of clusters that can be obtained from each
technique on each amount of training data.

Figure 8 show the number of clusters according
to the increase of training data for three models.
TrueSkill efficiently split the systems into clusters
compared to other two methods. Figure 9 and 10
present the result of clustering two different size of

9We also tried the sampling 1,000 times and the clustering
granularities were the same.
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Figure 8: The number of clusters according to
the increase of training data for WMT13 French-
English (13 systems in total).

training data (1K and 25K pairwise comparisons)
on the TrueSkill model, which indicates that the
rank ranges become narrow and generate clusters
reasonably as the number of training samples in-
creases. The ranking and clusters are slightly dif-
ferent from the official result (Table 1) mainly be-
cause the official result is based on Expected Wins.

One noteworthy observation is that the ranking
of systems between Figure 9 and Figure 10 is the
same, further corroborating the stability and ac-
curacy of the TrueSkill model even with a small
amount of data. Furthermore, while the need
to cluster systems forces the collection of sig-
nificantly more data than if we wanted only to
report a total ordering, TrueSkill here produces
nicely-sized clusters with only 25K pairwise com-
parisons, which is nearly one-third large of that
used in the WMT13 campaign (80K for French-
English, yielding 8 clusters).

7 Conclusion

Models of “relative ability” (Koehn, 2012; Hop-
kins and May, 2013) are a welcome addition to
methods for inferring system rankings from hu-
man judgments. The TrueSkill variant presented
in this paper is a promising further development,
both in its ability to achieve higher accuracy levels
than alternatives, and in its ability to sample non-
uniformly from the space of system pair match-
ings. It’s possible that future WMT evaluations
could significantly reduce the amount of data they
need to collect, also potentially allowing them to
draw from expert annotators alone (the developers
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Figure 9: The result of clustering by TrueSkill
model with 1K training data from WMT13
French-English. The boxes range from the lower
to upper quartile values, with means in the middle.
The whiskers show the full range of each system’s
rank after the bootstrap resampling.
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Figure 10: The result of clustering by TrueSkill
model with 25K training data. Dashed lines sep-
arate systems with non-overlapping rank ranges,
splitting the data into clusters.

of the participating systems), without the need to
hire non-experts on Mechanical Turk.

One piece missing from the methods explored
and proposed in this paper is models of the actual
translations being compared by judges. Clearly,
it is properties of the sentences themselves that
judges use to make their judgments, a fact which
is captured only indirectly by modeling transla-
tion qualities sampled from system abilities. This
observation has been used in the development
of automatic evaluation metrics (Song and Cohn,
2011), and is something we hope to explore in fu-
ture work for system ranking.
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Abstract
This paper presents the results of the
WMT14 shared tasks, which included a
standard news translation task, a sepa-
rate medical translation task, a task for
run-time estimation of machine translation
quality, and a metrics task. This year, 143
machine translation systems from 23 insti-
tutions were submitted to the ten transla-
tion directions in the standard translation
task. An additional 6 anonymized sys-
tems were included, and were then evalu-
ated both automatically and manually. The
quality estimation task had four subtasks,
with a total of 10 teams, submitting 57 en-
tries.

1 Introduction

We present the results of the shared tasks of
the Workshop on Statistical Machine Translation
(WMT) held at ACL 2014. This workshop builds
on eight previous WMT workshops (Koehn and
Monz, 2006; Callison-Burch et al., 2007, 2008,
2009, 2010, 2011, 2012; Bojar et al., 2013).

This year we conducted four official tasks: a
translation task, a quality estimation task, a met-
rics task1 and a medical translation task. In the
translation task (§2), participants were asked to
translate a shared test set, optionally restricting
themselves to the provided training data. We held
ten translation tasks this year, between English and
each of Czech, French, German, Hindi, and Rus-
sian. The Hindi translation tasks were new this
year, providing a lesser resourced data condition
on a challenging language pair. The system out-
puts for each task were evaluated both automati-
cally and manually.

1The metrics task is reported in a separate paper
(Macháček and Bojar, 2014).

The human evaluation (§3) involves asking
human judges to rank sentences output by
anonymized systems. We obtained large num-
bers of rankings from researchers who contributed
evaluations proportional to the number of tasks
they entered. Last year, we dramatically increased
the number of judgments, achieving much more
meaningful rankings. This year, we developed a
new ranking method that allows us to achieve the
same with fewer judgments.

The quality estimation task (§4) this year
included sentence- and word-level subtasks:
sentence-level prediction of 1-3 likert scores,
sentence-level prediction of percentage of word
edits necessary to fix a sentence, sentence-level
prediction of post-editing time, and word-level
prediction of scores at different levels of granular-
ity (correct/incorrect, accuracy/fluency errors, and
specific types of errors). Datasets were released
with English-Spanish, English-German, Spanish-
English and German-English news translations
produced by 2-3 machine translation systems and,
for some subtasks, a human translation.

The medical translation task (§5) was intro-
duced this year. Unlike the “standard” translation
task, the test sets come from the very specialized
domain of medical texts. The aim of this task was
not only domain adaptation but also the utilization
of translation systems in a larger scenario, namely
cross-lingual information retrieval (IR). Extrinsic
evaluation in an IR setting was a part of this task
(on the other hand, manual evaluation of transla-
tion quality was not carried out).

The primary objectives of WMT are to evaluate
the state of the art in machine translation, to dis-
seminate common test sets and public training data
with published performance numbers, and to re-
fine evaluation and estimation methodologies for
machine translation. As before, all of the data,
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translations, and collected human judgments are
publicly available.2 We hope these datasets serve
as a valuable resource for research into statistical
machine translation and automatic evaluation or
prediction of translation quality.

2 Overview of the Translation Task

The recurring task of the workshop examines
translation between English and other languages.
As in the previous years, the other languages in-
clude German, French, Czech and Russian.

We dropped Spanish and added Hindi this year.
From a linguistic point of view, Spanish poses
similar problems as French, making its prior in-
clusion less valuable. Hindi is not only interest-
ing since it is a more distant language than the
European languages we include, but also because
we have much less training data, thus forcing re-
searchers to deal with low resource conditions, but
also providing them with a language pair that does
not suffer from the computational complexities of
having to deal with massive amounts of training
data.

We created a test set for each language pair by
translating newspaper articles and provided train-
ing data.

2.1 Test data

The test data for this year’s task was selected from
news stories from online sources, as before. How-
ever, we changed our method to create the test sets.

In previous years, we took equal amounts of
source sentences from all six languages involved
(around 500 sentences each), and translated them
into all other languages. While this produced a
multi-parallel test corpus that could be also used
for language pairs (such as Czech-Russian) that
we did not include in the evaluation, it did suf-
fer from artifacts from the larger distance between
source and target sentences. Most test sentences
involved the translation a source sentence that
was translated from a their language into a tar-
get sentence (which was compared against a trans-
lation from that third language as well). Ques-
tions have been raised, if the evaluation of, say,
French-English translation is best served when
testing on sentences that have been originally writ-
ten in, say, Czech. For discussions about trans-
lationese please for instance refer to Koppel and
Ordan (2011).

2http://statmt.org/wmt14/results.html

This year, we took about 1500 English sen-
tences and translated them into the other 5 lan-
guages, and then additional 1500 sentences from
each of the other languages and translated them
into English. This gave us test sets of about 3000
sentences for our English-X language pairs, which
have been either written originally written in En-
glish and translated into X, or vice versa.

The composition of the test documents is shown
in Table 1. The stories were translated by the pro-
fessional translation agency Capita, funded by the
EU Framework Programme 7 project MosesCore,
and by Yandex, a Russian search engine com-
pany.3 All of the translations were done directly,
and not via an intermediate language.

2.2 Training data

As in past years we provided parallel corpora
to train translation models, monolingual cor-
pora to train language models, and development
sets to tune system parameters. Some train-
ing corpora were identical from last year (Eu-
roparl4, United Nations, French-English 109 cor-
pus, CzEng, Common Crawl, Russian-English
Wikipedia Headlines provided by CMU), some
were updated (Russian-English parallel data pro-
vided by Yandex, News Commentary, monolin-
gual data), and a new corpus was added (Hindi-
English corpus, Bojar et al. (2014)), Hindi-English
Wikipedia Headline corpus).

Some statistics about the training materials are
given in Figure 1.

2.3 Submitted systems

We received 143 submissions from 23 institu-
tions. The participating institutions and their entry
names are listed in Table 2; each system did not
necessarily appear in all translation tasks. We also
included four commercial off-the-shelf MT sys-
tems and four online statistical MT systems, which
we anonymized.

For presentation of the results, systems are
treated as either constrained or unconstrained, de-
pending on whether their models were trained only
on the provided data. Since we do not know how
they were built, these online and commercial sys-
tems are treated as unconstrained during the auto-
matic and human evaluations.

3http://www.yandex.com/
4As of Fall 2011, the proceedings of the European Parlia-

ment are no longer translated into all official languages.
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Europarl Parallel Corpus
French↔ English German↔ English Czech↔ English

Sentences 2,007,723 1,920,209 646,605
Words 60,125,563 55,642,101 50,486,398 53,008,851 14,946,399 17,376,433

Distinct words 140,915 118,404 381,583 115,966 172,461 63,039

News Commentary Parallel Corpus
French↔ English German↔ English Czech↔ English Russian↔ English

Sentences 183,251 201,288 146,549 165,602
Words 5,688,656 4,659,619 5,105,101 5,046,157 3,288,645 3,590,287 4,153,847 4,339,974

Distinct words 72,863 62,673 150,760 65,520 139,477 55,547 151,101 60,801

Common Crawl Parallel Corpus
French↔ English German↔ English Czech↔ English Russian↔ English

Sentences 3,244,152 2,399,123 161,838 878,386
Words 91,328,790 81,096,306 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122

Distinct words 889,291 859,017 1,640,835 823,480 210,170 128,212 764,203 432,062

United Nations Parallel Corpus
French↔ English

Sentences 12,886,831
Words 411,916,781 360,341,450

Distinct words 565,553 666,077

109 Word Parallel Corpus
French↔ English

Sentences 22,520,400
Words 811,203,407 668,412,817

Distinct words 2,738,882 2,861,836

CzEng Parallel Corpus
Czech↔ English

Sentences 14,833,358
Words 200,658,857 228,040,794

Distinct words 1,389,803 920,824

Hindi-English Parallel Corpus
Hindi↔ English

Sentences 287,202
Words 6,002,418 3,953,851

Distinct words 121,236 105,330

Yandex 1M Parallel Corpus
Russian↔ English

Sentences 1,000,000
Words 24,121,459 26,107,293

Distinct words 701,809 387,646

Wiki Headlines Parallel Corpus
Russian↔ English Hindi↔ English

Sentences 514,859 32,863
Words 1,191,474 1,230,644 141,042 70,075

Distinct words 282,989 251,328 25,678 26,989

Europarl Language Model Data
English French German Czech

Sentence 2,218,201 2,190,579 2,176,537 668,595
Words 59,848,044 63,439,791 53,534,167 14,946,399

Distinct words 123,059 145,496 394,781 172,461

News Language Model Data
English French German Czech Russian Hindi

Sentence 90,209,983 30,451,749 89,634,193 36,426,900 32,245,651 1,275,921
Words 2,109,603,244 748,852,739 1,606,506,785 602,950,410 575,423,682 36,297,394

Distinct words 4,089,792 1,906,470 10,248,707 3,101,846 2,860,837 258,759

News Test Set
French↔ English German↔ English Czech↔ English Russian↔ English Hindi↔ English

Sentences 3003 3003 3003 3003 2507
Words 81,194 71,147 63,078 67,624 60,240 68,866 62,107 69,329 86,974 55,822

Distinct words 11,715 10,610 13,930 10,458 16,774 9,893 17,009 9,938 8,292 9,217

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.
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Language Sources (Number of Documents)
Czech aktuálně.cz (2), blesk.cz (3), blisty.cz (1), denı́k.cz (9), e15.cz (1), iDNES.cz (17), ihned.cz (14), lidovky.cz (8), medi-

afax.cz (2), metro.cz (1), Novinky.cz (5), pravo.novinky.cz (6), reflex.cz (2), tyden.cz (1), zdn.cz (1).
French BBC French Africa (1), Canoe (9), Croix (4), Cyber Presse (12), Dernieres Nouvelles (1), dhnet.be (5), Equipe (1),

Euronews (6), Journal Metro.com (1), La Libre.be (2), La Meuse.be (2), Le Devoir (3), Le Figaro (8), Le Monde (3),
Les Echos (15), Lexpress.fr (3), Liberation (1), L’independant (2), Metro France (1), Nice-Matin (6), Le Nouvel Ob-
servateur (3), Radio Canada (6), Reuters (7).

English ABC News (5), BBC (5), CBS News (5), CNN (5), Daily Mail (5), Financial Times (5), Fox News (2), Globe and
Mail (1), Independent (1), Los Angeles Times (1), New Yorker (1), News.com Australia (16), Reuters (3), Scotsman (2),
smh.com.au (2), stv.tv (1), Telegraph (6), UPI (2).

German Abendzeitung Nürnberg (1), all-in.de (2), Augsburger Allgemeine (1), AZ Online (1), Börsenzeitung (1), come-
on.de (1), Der Westen (2), DZ Online (1), Reutlinger General-Anzeiger (1), Generalanzeiger Bonn (1), Giessener
Anzeiger (1), Goslarsche Zeitung (1), Hersfelder Zeitung (1), Jüdische Allgemeine (1), Kreisanzeiger (2),
Kreiszeitung (2), Krone (1), Lampertheimer Zeitung (2), Lausitzer Rundschau (1), Mittelbayerische (1), Morgen-
post (1), nachrichten.at (1), Neue Presse (1), OP Online (1), Potsdamer Neueste Nachrichten (1), Passauer Neue
Presse (1), Recklinghäuser Zeitung (1), Rhein Zeitung (1), salzburg.com (1), Schwarzwälder Bote (29), Segeberger
Zeitung (1), Soester Anzeiger (1), Südkurier (17), svz.de (1), Tagesspiegel (1), Usinger Anzeiger (3), Volksblatt.li (1),
Westfälischen Anzeiger (3), Wiener Zeitung (1), Wiesbadener Kurier (1), Westdeutsche Zeitung (1), Wilhelmshavener
Zeitung (1), Yahoo Deutschland (1).

Hindi Bhaskar (24), Jagran (61), Navbharat Times / India Times (4), ndtv (2).
Russian 168.ru (1), aif (3), altapress.ru (2), argumenti.ru (2), BBC Russian (3), belta.by (2), communa.ru (1), dp.ru (1), eg-

online.ru (1), Euronews (2), fakty.ua (2), gazeta.ru (1), inotv.rt.com (1), interfax (1), Izvestiya (1), Kommersant (7),
kp (2), lenta.ru (4), lgng (1), litrossia.ru (1), mirnov.ru (5), mk (8), mn.ru (2), newizv (2), nov-pravda.ru (1), no-
vayagazeta (1), nr2.ru (8), pnp.ru (1), rbc.ru (3), ria.ru (4), rosbalt.ru (1), sovsport.ru (6), Sport Express (10), trud.ru (4),
tumentoday.ru (1), vesti.ru (10), zr.ru (1).

Table 1: Composition of the test set. For more details see the XML test files. The docid tag gives the source and the date for
each document in the test set, and the origlang tag indicates the original source language.

3 Human Evaluation

As with past workshops, we contend that auto-
matic measures of machine translation quality are
an imperfect substitute for human assessments.
We therefore conduct a manual evaluation of the
system outputs and define its results to be the prin-
cipal ranking of the workshop. In this section, we
describe how we collected this data and compute
the results, and then present the official results of
the ranking.

This year’s evaluation was conducted a bit dif-
ferently. The main differences are:

• In contrast to the past two years, we collected
judgments entirely from researchers partici-
pating in the shared tasks and trusted friends
of the community. Last year, about two thirds
of the data were solicited from random volun-
teers on the Amazon Mechanical Turk. For
some language pairs, the Turkers data had
much lower inter-annotator agreement com-
pared to the researchers.

• As a result, we collected about seventy-five
percent less data, but were able to obtain
good confidence intervals on the clusters with
the use of new approaches to ranking.

• We compared three different ranking method-
ologies, selecting the one with the highest ac-
curacy on held-out data.

We also maintain many of our customs from
prior years, including the presentation of the re-
sults in terms of a partial ordering (clustering) of
the systems. Systems in the same cluster could not
be meaningfully distinguished and should be con-
sidered ties.

3.1 Data collection
The system ranking is produced from a large set of
pairwise annotations between system pairs. These
pairwise annotations are collected in an evaluation
campaign that enlists participants in the shared
task to contribute one hundred “Human Intelli-
gence Tasks” (HITs) per system submitted. Each
HIT consists of three ranking tasks. In a rank-
ing task, an annotator is presented with a source
segment, a human reference translation, and the
outputs of five anonymized systems, randomly se-
lected from the set of participating systems, and
randomly ordered.

To run the evaluation, we use Appraise5 (Fe-
dermann, 2012), an open-source tool built on
Python’s Django framework. At the top of each
HIT, the following instructions are provided:

You are shown a source sentence fol-
lowed by several candidate translations.
Your task is to rank the translations from
best to worst (ties are allowed).

5https://github.com/cfedermann/Appraise
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ID Institution
AFRL, AFRL-PE Air Force Research Lab (Schwartz et al., 2014)
CIMS University of Stuttgart / University of Munich (Cap et al., 2014)
CMU Carnegie Mellon University (Matthews et al., 2014)
CU-* Charles University, Prague (Tamchyna et al., 2014)
DCU-FDA Dublin City University (Bicici et al., 2014)
DCU-ICTCAS Dublin City University (Li et al., 2014b)
DCU-LINGO24 Dublin City University / Lingo24 (wu et al., 2014)
EU-BRIDGE EU-BRIDGE Project (Freitag et al., 2014)
KIT Karlsruhe Institute of Technology (Herrmann et al., 2014)
IIT-BOMBAY IIT Bombay (Dungarwal et al., 2014)
IIIT-HYDERABAD IIIT Hyderabad
IMS-TTT University of Stuttgart / University of Munich (Quernheim and Cap, 2014)
IPN-UPV-* IPN-UPV (Costa-jussà et al., 2014)
KAZNU Amandyk Kartbayev, FBK
LIMSI-KIT LIMSI / Karlsruhe Instutute of Technology (Do et al., 2014)
MANAWI-* Universität des Saarlandes (Tan and Pal, 2014)
MATRAN Abu-MaTran Project: Promsit / DCU / UA (Rubino et al., 2014)
PROMT-RULE,
PROMT-HYBRID

PROMT

RWTH RWTH Aachen (Peitz et al., 2014)
STANFORD Stanford University (Neidert et al., 2014; Green et al., 2014)
UA-* University of Alicante (Sánchez-Cartagena et al., 2014)
UEDIN-PHRASE,
UEDIN-UNCNSTR

University of Edinburgh (Durrani et al., 2014b)

UEDIN-SYNTAX University of Edinburgh (Williams et al., 2014)
UU, UU-DOCENT Uppsala University (Hardmeier et al., 2014)
YANDEX Yandex School of Data Analysis (Borisov and Galinskaya, 2014)
COMMERCIAL-[1,2] Two commercial machine translation systems
ONLINE-[A,B,C,G] Four online statistical machine translation systems
RBMT-[1,4] Two rule-based statistical machine translation systems

Table 2: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.
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Figure 2: Screenshot of the Appraise interface used in the human evaluation campaign. The annotator is presented with a
source segment, a reference translation, and the outputs of five systems (anonymized and randomly ordered), and is asked to
rank these according to their translation quality, with ties allowed.

A screenshot of the ranking interface is shown in
Figure 2. Annotators are asked to rank the sys-
tems from 1 (best) to 5 (worst), with ties permit-
ted. Note that a lower rank is better. The rankings
provided by a ranking task are then reduced to a
set of ten pairwise rankings produced by consider-
ing all

(
5
2

)
combinations of systems in the ranking

task. For example, consider the following annota-
tion provided among systems A,B, F,H , and J :

1 2 3 4 5
F •
A •
B •
J •
H •

This is reduced to the following set of pairwise
judgments:

A > B,A = F,A > H,A < J

B < F,B < H,B < J

F > H,F < J

H < J

Here,A > B should be read is “A is ranked higher
than (worse than) B”. Note that by this procedure,
the absolute value of ranks and the magnitude of
their differences are discarded.

For WMT13, nearly a million pairwise anno-
tations were collected from both researchers and
paid workers on Amazon’s Mechanical Turk, in
a roughly 1:2 ratio. This year, we collected data
from researchers only, an ability that was enabled
by the use of a new technique for producing the
partial ranking for each task (§3.3.3). Table 3 con-
tains more detail.

3.2 Annotator agreement

Each year we calculate annotator agreement
scores for the human evaluation as a measure of
the reliability of the rankings. We measured pair-
wise agreement among annotators using Cohen’s
kappa coefficient (κ) (Cohen, 1960). If P (A) be
the proportion of times that the annotators agree,
and P (E) is the proportion of time that they would
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LANGUAGE PAIR Systems Rankings Average
Czech–English 5 21,130 4,226.0
English–Czech 10 55,900 5,590.0
German–English 13 25,260 1,943.0
English–German 18 54,660 3,036.6
French–English 8 26,090 3,261.2
English–French 13 33,350 2,565.3
Russian–English 13 34,460 2,650.7
English–Russian 9 28,960 3,217.7
Hindi–English 9 20,900 2,322.2
English–Hindi 12 28,120 2,343.3
TOTAL WMT 14 110 328,830 2,989.3
WMT13 148 942,840 6,370.5
WMT12 103 101,969 999.6
WMT11 133 63,045 474.0

Table 3: Amount of data collected in the WMT14 manual evaluation. The final three rows report summary information from
the previous two workshops.

agree by chance, then Cohen’s kappa is:

κ =
P (A)− P (E)

1− P (E)

Note that κ is basically a normalized version of
P (A), one which takes into account how mean-
ingful it is for annotators to agree with each other
by incorporating P (E). The values for κ range
from 0 to 1, with zero indicating no agreement and
1 perfect agreement.

We calculate P (A) by examining all pairs of
systems which had been judged by two or more
judges, and calculating the proportion of time that
they agreed that A < B, A = B, or A > B. In
other words, P (A) is the empirical, observed rate
at which annotators agree, in the context of pair-
wise comparisons.

As for P (E), it captures the probability that two
annotators would agree randomly. Therefore:

P (E) = P (A<B)2 + P (A=B)2 + P (A>B)2

Note that each of the three probabilities in P (E)’s
definition are squared to reflect the fact that we are
considering the chance that two annotators would
agree by chance. Each of these probabilities is
computed empirically, by observing how often an-
notators actually rank two systems as being tied.

Table 4 gives κ values for inter-annotator agree-
ment for WMT11–WMT14 while Table 5 de-
tails intra-annotator agreement scores, including
the division of researchers (WMT13r) and MTurk
(WMT13m) data. The exact interpretation of the

kappa coefficient is difficult, but according to Lan-
dis and Koch (1977), 0–0.2 is slight, 0.2–0.4 is
fair, 0.4–0.6 is moderate, 0.6–0.8 is substantial,
and 0.8–1.0 is almost perfect. The agreement rates
are more or less in line with prior years: worse for
some tasks, better for others, and on average, the
best since WMT11 (where agreement scores were
likely inflated due to inclusion of reference trans-
lations in the comparisons).

3.3 Models of System Rankings

The collected pairwise rankings are used to pro-
duce a ranking of the systems. Machine transla-
tion evaluation has always been a subject of con-
tention, and no exception to this rule exists for the
WMT manual evaluation. While the precise met-
ric has varied over the years, it has always shared
a common idea of computing the average num-
ber of times each system was judged better than
other systems, and ranking from highest to low-
est. For example, in WMT11 Callison-Burch et al.
(2011), the metric computed the percentage of the
time each system was ranked better than or equal
to other systems, and included comparisons to hu-
man references. In WMT12 Callison-Burch et al.
(2012), comparisons to references were dropped.
In WMT13, rankings were produced over 1,000
bootstrap-resampled sets of the training data. A
rank range was collected for each system across
these folds; the average value was used to order
the systems, and a 95% confidence interval across
these ranks was used to organize the systems into
equivalence classes containing systems with over-
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LANGUAGE PAIR WMT11 WMT12 WMT13 WMT13r WMT13m WMT14
Czech–English 0.400 0.311 0.244 0.342 0.279 0.305
English–Czech 0.460 0.359 0.168 0.408 0.075 0.360
German–English 0.324 0.385 0.299 0.443 0.324 0.368
English–German 0.378 0.356 0.267 0.457 0.239 0.427
French–English 0.402 0.272 0.275 0.405 0.321 0.357
English–French 0.406 0.296 0.231 0.434 0.237 0.302
Hindi–English — — — — — 0.400
English–Hindi — — — — — 0.413
Russian–English — — 0.278 0.315 0.324 0.324
English–Russian — — 0.243 0.416 0.207 0.418
MEAN 0.395 0.330 0.260 0.367

Table 4: κ scores measuring inter-annotator agreement. See Table 5 for corresponding intra-annotator agreement scores.

LANGUAGE PAIR WMT11 WMT12 WMT13 WMT13r WMT13m WMT14
Czech–English 0.597 0.454 0.479 0.483 0.478 0.382
English–Czech 0.601 0.390 0.290 0.547 0.242 0.448
German–English 0.576 0.392 0.535 0.643 0.515 0.344
English–German 0.528 0.433 0.498 0.649 0.452 0.576
French–English 0.673 0.360 0.578 0.585 0.565 0.629
English–French 0.524 0.414 0.495 0.630 0.486 0.507
Hindi–English — — — — — 0.605
English–Hindi — — — — — 0.535
Russian–English — — 0.450 0.363 0.477 0.629
English–Russian — — 0.513 0.582 0.500 0.570
MEAN 0.583 0.407 0.479 0.522

Table 5: κ scores measuring intra-annotator agreement, i.e., self-consistency of judges, across for the past few years of the
human evaluation.

lapping ranges.
This year, we introduce two new changes. First,

we pit the WMT13 method against two new ap-
proaches: that of Hopkins and May (2013, §3.3.2),
and another based on TrueSkill (Sakaguchi et al.,
2014, §3.3.3). Second, we compare these two
methods against WMT13’s “Expected Wins” ap-
proach, and then select among them by determin-
ing which of them has the highest accuracy in
terms of predicting annotations on a held-out set
of pairwise judgments.

3.3.1 Method 1: Expected Wins (EW)
Introduced for WMT13, the EXPECTED WINS has
an intuitive score demonstrated to be accurate in
ranking systems according to an underlying model
of “relative ability” (Koehn, 2012a). The idea is
to gauge the probability that a system Si will be
ranked better than another system randomly cho-
sen from a pool of opponents {Sj : j 6= i}. If
we define the function win(A,B) as the number
of times system A is ranked better than system B,

then we can define this as follows:

scoreEW (Si) =
1

|{Sj}|
∑
j,j 6=i

win(Si, Sj)
win(Si, Sj) + win(Sj , Si)

Note that this score ignores ties.

3.3.2 Method 2: Hopkins and May (HM)

Hopkins and May (2013) introduced a graphical
model formulation of the task, which makes the
notion of underlying system ability even more ex-
plicit. Each system SJ in the pool {Sj} is repre-
sented by an associated relative ability µj and a
variance σ2

a (fixed across all systems) which serve
as the parameters of a Gaussian distribution. Sam-
ples from this distribution represent the quality
of sentence translations, with higher quality sam-
ples having higher values. Pairwise annotations
(S1, S2, π) are generated according to the follow-
ing process:
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1. Select two systems S1 and S2 from the pool
of systems {Sj}

2. Draw two “translations”, adding random
Gaussian noise with variance σ2

obs to simulate
the subjectivity of the task and the differences
among annotators:

q1 ∼ N (µS1 , σ
2
a) +N (0, σ2

obs)

q2 ∼ N (µS2 , σ
2
a) +N (0, σ2

obs)

3. Let d be a nonzero real number that defines
a fixed decision radius. Produce a rating π
according to:

π =


< q1 − q2 > d

> q2 − q1 > d

= otherwise

Hopkins and May use Gibbs sampling to infer
the set of system means from an annotated dataset.
Details of this inference procedure can be found in
Sakaguchi et al. (2014). The score used to produce
the rankings is simply the system mean associated
with each system:

scoreHM (Si) = µSi

3.3.3 Method 3: TrueSkill (TS)
TrueSkill is an adaptive, online system that em-
ploys a similar model of relative ability Herbrich
et al. (2006). It was initially developed for Xbox
Live’s online player community, where it is used
to model player ability, assign levels, and select
competitive matches. Each player Sj is modeled
by two parameters: TrueSkill’s current estimate
of each system’s relative ability, µSj , and a per-
system measure of TrueSkill’s uncertainty of those
estimates, σ2

Sj
. When the outcome of a match is

observed, TrueSkill uses the relative status of the
two systems to update these estimates. If a trans-
lation from a system with a high mean is judged
better than a system with a greatly lower mean, the
result is not surprising, and the update size for the
corresponding system means will be small. On the
other hand, when an upset occurs in a competition,
the means will receive larger updates. Sakaguchi
et al. (2014) provide an adaptation of this approach
to the WMT manual evaluation, and showed that
it performed well on WMT13 data.

Similar to the Hopkins and May model,
TrueSkill scores systems by their inferred means:

scoreTS(Si) = µSi

This score is then used to sort the systems and pro-
duce the ranking.

3.4 Method Selection

We have three methods which, provided with the
collected data, produce different rankings of the
systems. Which of them is correct? More imme-
diately, which one of them should we publish as
the official ranking for the WMT14 manual eval-
uation? As discussed, the method used to com-
pute the ranking has been tweaked a bit each year
over the past few years in response to criticisms
(e.g., Lopez (2012); Bojar et al. (2011)). While the
changes were reasonable (and later corroborated),
Hopkins and May (2013) pointed out that this task
of model selection should be driven by empirical
evaluation on held-out data, and suggested per-
plexity as the metric of choice.

We choose instead a more direct gold-standard
evaluation metric: the accuracy of the rankings
produced by each method in predicting pairwise
judgments. We use each method to produce a par-
tial ordering of the systems, grouping them into
equivalence classes. This partial ordering unam-
biguously assigns a prediction πP between any
pair of systems (Si, Sj). By comparing the pre-
dicted relationship πP to the actual annotation for
each pairwise judgment in the test data (by token),
we can compute an accuracy score for each model.

We predict accuracy in this manner using 100-
fold cross-validation. For each task, we split the
data into a fixed set of 100 randomly-selected
folds. Each fold serves as a test set, with the
remaining ninety-nine folds available as training
data for each method. Note that the total order-
ing over systems provided by the score∗ functions
defined do not predict ties. In order to do enable
the models to predict ties, we produce equivalence
classes using the following procedure:

• Assign S1 to a cluster

• For each system Si, assign it to the current
cluster if score(Si−1) − score(Si) ≤ r; oth-
erwise, assign it to a new cluster

The value of r (the decision radius for ties)
is tuned using accuracy on the entire training
data using grid search over the values r ∈
0, 0.01, 0.02, . . . , .25 (26 values in total). This
value is tuned separately for each method on each
fold. Table 6 contains an example partial ordering.
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System Score Rank
B 0.60 1
D 0.44 2
E 0.39 2
A 0.25 2
F -0.09 3
C -0.22 3

Table 6: The partial ordering computed with the provided
scores when r = 0.15.

Task EW HM TS Oracle
Czech–English 40.4 41.1 41.1 41.2
English–Czech 45.3 45.6 45.9 46.8
French–English 49.0 49.4 49.3 50.3
English–French 44.6 44.4 44.7 46.0
German–English 43.5 43.7 43.7 45.2
English–German 47.3 47.4 47.2 48.2
Hindi–English 62.5 62.2 62.5 62.6
English–Hindi 53.3 53.7 53.5 55.7
Russian–English 47.6 47.7 47.7 50.6
English–Russian 46.5 46.1 46.4 48.2
MEAN 48.0 48.1 48.2 49.2

Table 7: Accuracies for each method across 100 folds, for
each translation task. The oracle uses the most frequent out-
come between each pair of systems, and therefore might not
constitute a feasible ranking.

After training, each model has defined a partial
ordering over systems.6 This is then used to com-
pute accuracy on all the pairwise judgments in the
test fold. This process yields 100 accuracies for
each method; the average accuracy across all the
folds can then be used to compute the best method.

Table 7 contains accuracy results for the three
methods on the WMT14 tasks. On average, there
is a small improvement in accuracy moving from
Expected Wins to the H&M model, and then again
to the TrueSkill model; however, there is no pat-
tern to the best model for each class. The Oracle
column is computed by selecting the most prob-
able outcome (π ∈ {<,=, >}) for each system
pair, and provides an upper bound on accuracy
when predicting outcomes using only system-level
information. Furthermore, this method of oracle
computation might not represent a feasible rank-
ing or clustering,7.

The TrueSkill approach was best overall, so we
used it to produce the official rankings for all lan-

6It is a total ordering when r = 0, or when all the system
scores are outside the decision radius.

7For example, if there were a cycle of “better than” judg-
ments among a set of systems.

guage pairs.

3.5 Rank Ranges and Clusters

Above we saw how to produce system scores for
each method, which provides a total ordering of
the systems. But we would also like to know if the
obtained system ranking is statistically significant.
Given the large number of systems that participate,
and the similarity of the underlying systems result-
ing from the common training data condition and
(often) toolsets, there will be some systems that
will be very close in quality. These systems should
be grouped together in equivalence classes.

To establish the reliability of the obtained sys-
tem ranking, we use bootstrap resampling. We
sample from the set of pairwise rankings an equal
sized set of pairwise rankings (allowing for multi-
ple drawings of the same pairwise ranking), com-
pute a TrueSkill model score for each system
based on this sample, and then rank the systems
from 1..|{Sj}|. By repeating this procedure 1,000
times, we can determine a range of ranks, into
which system falls at least 95% of the time (i.e.,
at least 950 times) — corresponding to a p-level
of p ≤ 0.05. Furthermore, given the rank ranges
for each system, we can cluster systems with over-
lapping rank ranges.8

Table 8 reports all system scores, rank ranges,
and clusters for all language pairs and all systems.
The official interpretation of these results is that
systems in the same cluster are considered tied.
Given the large number of judgments that we col-
lected, it was possible to group on average about
two systems in a cluster, even though the systems
in the middle are typically in larger clusters.

3.6 Cluster analysis

The official ranking results for English-German
produced clusters compute at the 90% confidence
level due to the presence of a very large cluster
(of nine systems). While there is always the pos-
sibility that this cluster reflects a true ambiguity, it
is more likely due to the fact that we didn’t have
enough data: English–German had the most sys-

8Formally, given ranges defined by start(Si) and end(Si),
we seek the largest set of clusters {Cc} that satisfies:

∀S ∃C : S ∈ C
S ∈ Ca, S ∈ Cb → Ca = Cb

Ca 6= Cb → ∀Si ∈ Ca, Sj ∈ Cb :

start(Si) > end(Sj) or start(Sj) > end(Si)
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Czech–English
# score range system
1 0.591 1 ONLINE-B
2 0.290 2 UEDIN-PHRASE
3 -0.171 3-4 UEDIN-SYNTAX

-0.243 3-4 ONLINE-A
4 -0.468 5 CU-MOSES

English–Czech
# score range system
1 0.371 1-3 CU-DEPFIX

0.356 1-3 UEDIN-UNCNSTR
0.333 1-4 CU-BOJAR
0.287 3-4 CU-FUNKY

2 0.169 5-6 ONLINE-B
0.113 5-6 UEDIN-PHRASE

3 0.030 7 ONLINE-A
4 -0.175 8 CU-TECTO
5 -0.534 9 COMMERCIAL1
6 -0.950 10 COMMERCIAL2

Russian–English
# score range system
1 0.583 1 AFRL-PE
2 0.299 2 ONLINE-B
3 0.190 3-5 ONLINE-A

0.178 3-5 PROMT-HYBRID
0.123 4-7 PROMT-RULE
0.104 5-8 UEDIN-PHRASE
0.069 5-8 YANDEX
0.066 5-8 ONLINE-G

4 -0.017 9 AFRL
5 -0.159 10 UEDIN-SYNTAX
6 -0.306 11 KAZNU
7 -0.487 12 RBMT1
8 -0.642 13 RBMT4

English–Russian
# score range system
1 0.575 1-2 PROMT-RULE

0.547 1-2 ONLINE-B
2 0.426 3 PROMT-HYBRID
3 0.305 4-5 UEDIN-UNCNSTR

0.231 4-5 ONLINE-G
4 0.089 6-7 ONLINE-A

0.031 6-7 UEDIN-PHRASE
5 -0.920 8 RBMT4
6 -1.284 9 RBMT1

German–English
# score range system
1 0.451 1 ONLINE-B
2 0.267 2-3 UEDIN-SYNTAX

0.258 2-3 ONLINE-A
3 0.147 4-6 LIMSI-KIT

0.146 4-6 UEDIN-PHRASE
0.138 4-6 EU-BRIDGE

4 0.026 7-8 KIT
-0.049 7-8 RWTH

5 -0.125 9-11 DCU-ICTCAS
-0.157 9-11 CMU
-0.192 9-11 RBMT4

6 -0.306 12 RBMT1
7 -0.604 13 ONLINE-C

French–English
# score range system
1 0.608 1 UEDIN-PHRASE
2 0.479 2-4 KIT

0.475 2-4 ONLINE-B
0.428 2-4 STANFORD

3 0.331 5 ONLINE-A
4 -0.389 6 RBMT1
5 -0.648 7 RBMT4
6 -1.284 8 ONLINE-C

English–French
# score range system
1 0.327 1 ONLINE-B
2 0.232 2-4 UEDIN-PHRASE

0.194 2-5 KIT
0.185 2-5 MATRAN
0.142 4-6 MATRAN-RULES
0.120 4-6 ONLINE-A

3 0.003 7-9 UU-DOCENT
-0.019 7-10 PROMT-HYBRID
-0.033 7-10 UA
-0.069 8-10 PROMT-RULE

4 -0.215 11 RBMT1
5 -0.328 12 RBMT4
6 -0.540 13 ONLINE-C

English–German
# score range system
1 0.264 1-2 UEDIN-SYNTAX

0.242 1-2 ONLINE-B
2 0.167 3-6 ONLINE-A

0.156 3-6 PROMT-HYBRID
0.155 3-6 PROMT-RULE
0.155 3-6 UEDIN-STANFORD

3 0.094 7 EU-BRIDGE
4 0.033 8-10 RBMT4

0.031 8-10 UEDIN-PHRASE
0.012 8-10 RBMT1

5 -0.032 11-12 KIT
-0.069 11-13 STANFORD-UNC
-0.100 12-14 CIMS
-0.126 13-15 STANFORD
-0.158 14-16 UU
-0.191 15-16 ONLINE-C

6 -0.307 17-18 IMS-TTT
-0.325 17-18 UU-DOCENT

Hindi–English
# score range system
1 1.326 1 ONLINE-B
2 0.559 2-3 ONLINE-A

0.476 2-4 UEDIN-SYNTAX
0.434 3-4 CMU

3 0.323 5 UEDIN-PHRASE
4 -0.198 6-7 AFRL

-0.280 6-7 IIT-BOMBAY
5 -0.549 8 DCU-LINGO24
6 -2.092 9 IIIT-HYDERABAD

English–Hindi
# score range system
1 1.008 1 ONLINE-B
2 0.915 2 ONLINE-A
3 0.214 3 UEDIN-UNCNSTR
4 0.120 4-5 UEDIN-PHRASE

0.054 4-5 CU-MOSES
5 -0.111 6-7 IIT-BOMBAY

-0.142 6-7 IPN-UPV-CNTXT
6 -0.233 8-9 DCU-LINGO24

-0.261 8-9 IPN-UPV-NODEV
7 -0.449 10-11 MANAWI-H1

-0.494 10-11 MANAWI
8 -0.622 12 MANAWI-RMOOV

Table 8: Official results for the WMT14 translation task. Systems are ordered by their inferred system means. Lines between
systems indicate clusters according to bootstrap resampling at p-level p ≤ .05, except for English–German, where p ≤ 0.1.
This method is also used to determine the range of ranks into which system falls. Systems with grey background indicate use
of resources that fall outside the constraints provided for the shared task.
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tems (18, compared to 13 for the next languages),
yet only an average amount of per-system data.
Here, we look at this language pair in more detail,
in order to justify this decision, and to shed light
on the differences between the ranking methods.

Table 9 presents the 95% confidence-level clus-
terings for English–German computed with each
of the three methods, along with lines that show
the reorderings of the systems between them. Re-
orderings of this type have been used to argue
against the reliability of the official WMT rank-
ing (Lopez, 2012; Hopkins and May, 2013). This
table shows that these reorderings are captured en-
tirely by the clustering approach we used. This rel-
ative consensus of these independently-computed
and somewhat different models suggests that the
published ranking is approaching the true ambigu-
ity underlying systems within the same cluster.

Looking across all language pairs, we find that
the total ordering predicted by EW and TS is ex-
actly the same for eight of the ten language pair
tasks, and is constrained to reorderings within
the official cluster for the other two (German–
English — just one adjacent swap — and English–
German, depicted in Table 9).

3.7 Conclusions

The official ranking method employed by WMT
over the past few years has changed a few times as
a result of error analysis and introspection. Until
this year, these results were largely based on the
intuitions of the community and organizers about
deficiencies in the models. In addition to their in-
tuitive appeal, many of these changes (such as the
decision to throw out comparisons against refer-
ences) have been empirically validated Hopkins
and May (2013). The actual effect of the refine-
ments in the ranking metric has been minor pertur-
bations in the permutation of systems. The cluster-
ing method of Koehn (2012b), in which the official
rankings are presented as a partial (instead of to-
tal) ordering, alleviated many of the problems ob-
served by Lopez (2012), and also capture all the
variance across the new systems introduced this
year. In addition, presenting systems as clusters
appeals to intuition. As such, we disagree with
claims that there is a problem with irreproducibil-
ity of the results of the workshop evaluation task,
and especially disagree that there is anything ap-
proaching a “crisis of confidence” (Hopkins and
May, 2013). These claims seem to us to be over-

stated.
Conducting proper model selection by compar-

ison on held-out data, however, is a welcome sug-
gestion, and our inclusion of this process supports
improved confidence in the ranking results. That
said, it is notable that the different methods com-
pute very similar orderings. This avoids hallu-
cinating distinctions among systems that are not
really there, and captures the intuition that some
systems are basically equivalent. The chief ben-
efit of the TrueSkill model is not in outputting a
better complete ranking of the systems, but lies in
its reduced variance, which allow us to cluster the
systems with less data. There is also the unex-
plored avenue of using TrueSkill to drive the data
collection, steering the annotations of judges to-
wards evenly matched systems during the collec-
tion phase, potentially allowing confident results
to be presented while collecting even less data.

There is, of course, more work to be done.
We have produced this year statistically significant
clusters with a third of the data required last year,
which is an improvement. Models of relative abil-
ity are a natural fit for the manual evaluation, and
the introduction of an online Bayesian approach
to data collection present further opportunities to
reduce the amount of data needed. These methods
also provide a framework for extending the models
in a variety of potentially useful ways, including
modeling annotator bias, incorporating sentence
metadata (such as length, difficulty, or subtopic),
and adding features of the sentence pairs.

4 Quality Estimation Task

Machine translation quality estimation is the task
of predicting a quality score for a machine trans-
lated text without access to reference translations.
The most common approach is to treat the problem
as a supervised machine learning task, using stan-
dard regression or classification algorithms. The
third edition of the WMT shared task on qual-
ity estimation builds on the previous editions of
the task (Callison-Burch et al., 2012; Bojar et al.,
2013), with tasks including both sentence-level
and word-level estimation, with new training and
test datasets.

The goals of this year’s shared task were:

• To investigate the effectiveness of different
quality labels.

• To explore word-level quality prediction at
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Expected Wins Hopkins & May TrueSkill
UEDIN-SYNTAX UEDIN-SYNTAX UEDIN-SYNTAX

ONLINE-B ONLINE-B ONLINE-B

ONLINE-A UEDIN-STANFORD ONLINE-A
UEDIN-STANFORD PROMT-HYBRID PROMT-HYBRID

PROMT-RULE ONLINE-A PROMT-RULE

PROMT-HYBRID PROMT-RULE UEDIN-STANFORD

EU-BRIDGE EU-BRIDGE EU-BRIDGE

RBMT4 UEDIN-PHRASE RBMT4
UEDIN-PHRASE RBMT4 UEDIN-PHRASE

RBMT1 RBMT1 RBMT1
KIT KIT KIT

STANFORD-UNC STANFORD-UNC STANFORD-UNC

CIMS CIMS CIMS

STANFORD STANFORD STANFORD

UU UU UU

ONLINE-C ONLINE-C ONLINE-C

IMS-TTT UU-DOCENT IMS-TTT
UU-DOCENT IMS-TTT UU-DOCENT

Table 9: A comparison of the rankings produced by Expected Wins, Hopkins & May, and TrueSkill for English–German (the
task with the most systems and the largest cluster). The lines extending all the way across mark the official English–German
clustering (computed from TrueSkill with 90% confidence intervals), while bold entries mark the start of new clusters within
each method or column (computed at the 95% confidence level). The TrueSkill clusterings contain all the system reorderings
across the other two ranking methods.

different levels of granularity.

• To study the effects of training and test
datasets with mixed domains, language pairs
and MT systems.

• To examine the effectiveness of quality pre-
diction methods on human translations.

Four tasks were proposed: Tasks 1.1, 1.2, 1.3
are defined at the sentence-level (Sections 4.1),
while Task 2, at the word-level (Section 4.2). Each
task provides one or more datasets with up to four
language pairs each: English-Spanish, English-
German, German-English, Spanish-English, and
up to four alternative translations generated by:
a statistical MT system (SMT), a rule-based MT
system (RBMT), a hybrid MT system, and a hu-
man. These datasets were annotated with differ-
ent labels for quality by professional translators as
part of the QTLaunchPad9 project. External re-
sources (e.g. parallel corpora) were provided to
participants. Any additional resources, including
additional quality estimation training data, could

9http://www.qt21.eu/launchpad/

be used by participants (no distinction between
open and close tracks is made). Participants were
also provided with a software package to extract
quality estimation features and perform model
learning, with a suggested list of baseline features
and learning method for sentence-level prediction.
Participants, described in Section 4.3, could sub-
mit up to two systems for each task.

Data used for building specific MT systems or
internal system information (such as n-best lists)
were not made available this year as multiple MT
systems were used to produced the datasets, in-
cluding rule-based systems. In addition, part of
the translations were produced by humans. Infor-
mation on the sources of translations was not pro-
vided either. Therefore, as a general rule, partici-
pants were only allowed to use black-box features.

4.1 Sentence-level Quality Estimation
For the sentence-level tasks, two variants of the
results could be submitted for each task and lan-
guage pair:

• Scoring: An absolute quality score for each
sentence translation according to the type of
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prediction, to be interpreted as an error met-
ric: lower scores mean better translations.

• Ranking: A ranking of sentence translations
for all source test sentences from best to
worst. For this variant, it does not matter how
the ranking is produced (from HTER predic-
tions, likert predictions, or even without ma-
chine learning).

Evaluation was performed against the true label
and/or HTER ranking using the same metrics as in
previous years:

• Scoring: Mean Average Error (MAE) (pri-
mary metric), Root Mean Squared Error
(RMSE).

• Ranking: DeltaAvg (primary metric) (Bojar
et al., 2013) and Spearman’s rank correlation.

For all sentence-level these tasks, the same 17
features as in WMT12-13 were used to build base-
line systems. The SVM regression algorithm
within QUEST (Specia et al., 2013)10 was applied
for that with RBF kernel and grid search for pa-
rameter optimisation.

Task 1.1 Predicting post-editing effort
Data in this task is labelled with discrete and
absolute scores for perceived post-editing effort,
where:

• 1 = Perfect translation, no post-editing
needed at all.

• 2 = Near miss translation: translation con-
tains maximum of 2-3 errors, and possibly
additional errors that can be easily fixed (cap-
italisation, punctuation, etc.).

• 3 = Very low quality translation, cannot be
easily fixed.

The datasets were annotated in a “triage” phase
aimed at selecting translations of type “2” (near
miss) that could be annotated for errors at the
word-level using the MQM metric (see Task 2, be-
low) for a more fine-grained and systematic trans-
lation quality analysis. Word-level errors in trans-
lations of type “3” are too difficult if not impos-
sible to annotate and classify, particularly as they
often contain inter-related errors in contiguous or
overlapping word spans.

10http://www.quest.dcs.shef.ac.uk/

For the training of prediction models, we pro-
vide a new dataset consisting of source sen-
tences and their human translations, as well as
two-three versions of machine translations (by an
SMT system, an RBMT system and, for English-
Spanish/German only, a hybrid system), all in the
news domain, extracted from tests sets of various
WMT years and MT systems that participated in
the translation shared task:

# Source sentences # Target sentences
954 English 3,816 Spanish
350 English 1,400 German
350 German 1,050 English
350 Spanish 1,050 English

As test data, for each language pair and MT sys-
tem (or human translation) we provide a new set
of translations produced by the same MT systems
(and humans) as those used for the training data:

# Source sentences # Target sentences
150 English 600 Spanish
150 English 600 German
150 German 450 English
150 Spanish 450 English

The distribution of true scores in both training
and test sets for each language pair is given in Fig-
ures 3.
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Figure 3: Distribution of true 1-3 scores by langauge pair.

Additionally, we provide some out of domain
test data. These translations were annotated in
the same way as above, each dataset by one Lan-
guage Service Provider (LSP), i.e, one profes-
sional translator, with two LPSs producing data in-
dependently for English-Spanish. They were gen-
erated using the LSPs’ own source data (a different
domain from news), and own MT system (differ-
ent from the three used for the official datasets).
The results on these datasets were not considered
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for the official ranking of the participating sys-
tems:

# Source sentences # Target sentences
971 English 971 Spanish
297 English 297 German
388 Spanish 388 English

Task 1.2 Predicting percentage of edits
In this task we use HTER (Snover et al., 2006) as
quality score. This score is to be interpreted as
the minimum edit distance between the machine
translation and its manually post-edited version,
and its range is [0, 1] (0 when no edit needs to
be made, and 1 when all words need to be edited).
We used TERp (default settings: tokenised, case
insensitive, etc., but capped to 1)11 to compute the
HTER scores.

For practical reasons, the data is a subset of
Task 1.1’s dataset: only translations produced
by the SMT system English-Spanish. As train-
ing data, we provide 896 English-Spanish trans-
lation suggestions and their post-editions. As
test data, we provide a new set of 208 English-
Spanish translations produced by the same SMT
system. Each of the training and test translations
was post-edited by a professional translator using
the CASMACAT12 web-based tool, which also col-
lects post-editing time on a sentence-basis.

Task 1.3 Predicting post-editing time
For this task systems are required to produce, for
each translation, a real valued estimate of the time
(in milliseconds) it takes a translator to post-edit
the translation. The training and test sets are a sub-
set of that uses in Task 1.2 (subject to filtering of
outliers). The difference is that the labels are now
the number of milliseconds that were necessary to
post-edit each translation.

As training data, we provide 650 English-
Spanish translation suggestions and their post-
editions. As test data, we provide a new set of 208
English-Spanish translations (same test data as for
Task 1.2).

4.2 Word-level Quality Estimation

The data for this task is based on a subset of the
datasets used for Task 1.1, for all language pairs,

11http://www.umiacs.umd.edu/˜snover/terp/
12http://casmacat.eu/

human and machine translations: those transla-
tions labelled “2” (near misses), plus additional
data provided by industry (either on the news do-
main or on other domains, such as technical doc-
umentation, produced using their own MT sys-
tems, and also pre-labelled as “2”). All seg-
ments were annotated with word-level labels by
professional translators using the core categories
in MQM (Multidimensional Quality Metrics)13 as
error typology (see Figure 4). Each word or se-
quence of words was annotated with a single error.
For (supposedly rare) cases where a decision be-
tween multiple fine-grained error types could not
be made, annotators were requested to choose a
coarser error category in the hierarchy.

Participants are asked to produce a label for
each token that indicates quality at different lev-
els of granularity:

• Binary classification: an OK / bad label,
where bad indicates the need for editing the
token.

• Level 1 classification: an OK / accuracy /
fluency label, specifying coarser level cate-
gories of errors for each token, or “OK” for
tokens with no error.

• Multi-class classification: one of the labels
specifying the error type for the token (termi-
nology, mistranslation, missing word, etc.) in
Figure 4, or “OK” for tokens with no error.

As training data, we provide tokenised transla-
tion output for all language pairs, human and ma-
chine translations, with tokens annotated with all
issue types listed above, or “OK”. The annotation
was performed manually by professional transla-
tors as part of the QTLaunchPad project. For
the coarser variants, fine-grained errors are gen-
eralised to Accuracy or Fluency, or “bad” for the
binary variant. The amount of available training
data varies by language pair:

# Source sentences # Target sentences
1,957 English 1,957 Spanish
715 English 715 German
350 German 350 English
900 Spanish 900 English

13http://www.qt21.eu/launchpad/content/
training
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Figure 4: MQM metric as error typology.

As test data, we provide additional data points
for all language pairs, human and machine trans-
lations:

# Source sentences # Target sentences
382 English 382 Spanish
150 English 150 German
100 German 100 English
150 Spanish 150 English

In contrast to Tasks 1.1–1.3, no baseline feature
set is provided to the participants.

Similar to last year (Bojar et al., 2013), the
word-level task is primarily evaluated by macro-
averaged F-measure (in %). Because the class dis-
tribution is skewed – in the test data about 78% of
the tokens are marked as “OK” – we compute pre-
cision, recall, and F1 for each class individually,
weighting F1 scores by the frequency of the class
in the test data. This avoids giving undue impor-
tance to less frequent classes. Consider the follow-
ing confusion matrix for Level 1 annotation, i.e.
the three classes (O)K, (F)luency, and (A)ccuracy:

reference
O F A

predicted
O 4172 1482 193
F 1819 1333 214
A 198 133 69

For each of the three classes we assume a binary
setting (one-vs-all) and derive true-positive (tp),
false-positive (fp), and false-negative (fn) counts
from the rows and columns of the confusion ma-

trix as follows:

tpO = 4172
fpO = 1482 + 193 = 1675
fnO = 1819 + 198 = 2017
tpF = 1333
fpF = 1819 + 214 = 2033
fnF = 1482 + 133 = 1615
tpA = 69
fpA = 198 + 133 = 331
fnA = 193 + 214 = 407

We continue to compute F1 scores for each
class c ∈ {O,F,A}:

precisionc = tpc/(tpc + fpc)
recallc = tpc/(tpc + fnc)

F1,c =
2 · precisionc · recallc
precisionc + recallc

yielding:

precisionO = 4172/(4172 + 1675) = 0.7135
recallO = 4172/(4172 + 2017) = 0.6741

F1,O =
2 · 0.7135 · 0.6741
0.7135 + 0.6741

= 0.6932

· · ·
F1,F = 0.4222
F1,A = 0.1575

Finally, we compute the average of F1,c scores
weighted by the occurrence count N(c) of c:

weightedF1,ALL =
1∑

cN(c)

∑
c

Nc · F1,c

weightedF1,ERR =
1∑

c:c 6=O N(c)

∑
c:c 6=O

Nc · F1,c
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which for the above example gives:

weightedF1,ALL =
1

6189 + 2948 + 476
·

(6189 · 0.6932 + 2948 · 0.4222
+476 · 0.1575) = 0.5836

weightedF1,ERR =
1

2948 + 476
·

(2948 · 0.4222 + 476 · 0.1575)
= 0.3854

We choose F1,ERR as our primary evaluation mea-
sure because it most closely mimics the common
application of F1 scores in binary classification:
one is interested in the performance in detecting a
positive class, which in this case would be erro-
neous words. This does, however, ignore the num-
ber of correctly classified words of the OK class,
which is why we also report F1,ALL. In addition,
we follow Powers (2011) and report Matthews
Correlation Coefficient (MCC), averaged in the
same way as F1, as our secondary metric. Finally,
for contrast we also report Accuracy (ACC).

4.3 Participants
Table 10 lists all participating teams. Each team
was allowed up to two submissions for each task
and language pair. In the descriptions below, par-
ticipation in specific tasks is denoted by a task
identifier: T1.1, T1.2, T1.3, and T2.

Sentence-level baseline system (T1.1, T1.2,
T1.3): QUEST is used to extract 17 system-
independent features from source and trans-
lation sentences and parallel corpora (same
features as in the WMT12 shared task):

• number of tokens in the source and tar-
get sentences.
• average source token length.
• average number of occurrences of the

target word within the target sentence.
• number of punctuation marks in source

and target sentences.
• language model (LM) probability of

source and target sentences based on
models for the WMT News Commen-
tary corpus.
• average number of translations per

source word in the sentence as given by
IBM Model 1 extracted from the WMT

News Commentary parallel corpus, and
thresholded so that P (t|s) > 0.2, or
so that P (t|s) > 0.01 weighted by the
inverse frequency of each word in the
source side of the parallel corpus.

• percentage of unigrams, bigrams and tri-
grams in frequency quartiles 1 (lower
frequency words) and 4 (higher fre-
quency words) in the source language
extracted from the WMT News Com-
mentary corpus.

• percentage of unigrams in the source
sentence seen in the source side of the
WMT News Commentary corpus.

These features are used to train a Support
Vector Machine (SVM) regression algorithm
using a radial basis function kernel within
the SCIKIT-LEARN toolkit. The γ, ε and C
parameters were optimised via grid search
with 5-fold cross validation on the training
set. We note that although the system is re-
ferred to as “baseline”, it is in fact a strong
system. It has proved robust across a range
of language pairs, MT systems, and text do-
mains for predicting various forms of post-
editing effort (Callison-Burch et al., 2012;
Bojar et al., 2013).

DCU (T1.1): DCU-MIXED and DCU-SVR use
a selection of features available in QUEST,
such as punctuation statistics, LM perplex-
ity, n-gram frequency quartile statistics and
coarse-grained POS frequency ratios, and
four additional feature types: combined POS
and stop word LM features, source-side
pseudo-reference features, inverse glass-box
features for translating the translation and er-
ror grammar parsing features. For machine
learning, the QUEST framework is expanded
to combine logistic regression and support
vector regression and to handle cross- valida-
tion and randomisation in a way that training
items with the same source side are kept to-
gether. External resources are monolingual
corpora taken from the WMT 2014 transla-
tion task for LMs, the MT system used for the
inverse glass-box features (Li et al., 2014b)
and, for error grammar parsing, the Penn-
Treebank and an error grammar derived from
it (Foster, 2007).
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ID Participating team
DCU Dublin City University Team 1, Ireland (Hokamp et al., 2014)
DFKI German Research Centre for Artificial Intelligence, Germany (Avramidis,

2014)
FBK-UPV-UEDIN Fondazione Bruno Kessler, Italy, UPV Universitat Politècnica de València,

Spain & University of Edinburgh, UK (Camargo de Souza et al., 2014)
LIG Laboratoire d’Informatique Grenoble, France (Luong et al., 2014)

LIMSI Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur,
France (Wisniewski et al., 2014)

MULTILIZER Multilizer, Finland
RTM-DCU Dublin City University Team 2, Ireland (Bicici and Way, 2014)
SHEF-lite University of Sheffield Team 1, UK (Beck et al., 2014)
USHEFF University of Sheffield Team 2, UK (Scarton and Specia, 2014)

YANDEX Yandex, Russia

Table 10: Participants in the WMT14 Quality Estimation shared task.

DFKI (T1.2): DFKI/SVR builds upon the base-
line system (above) by adding non-redundant
data from the WMT13 task for predicting
the same label (HTER) and additional fea-
tures such as (a) rule-based language cor-
rections (language tool) (b), PCFG parsing
statistics and counts of tree labels, (c) po-
sition statistics of parsing labels, (d) posi-
tion statistics of trigrams with low probabil-
ity. DFKI/SVRxdata uses a similar setting,
with the addition of more training data from
non-minimally post-edited translation out-
puts (references), filtered based on a thresh-
old on the edit distance between the MT out-
put and the freely-translated reference.

FBK-UPV-UEDIN (T1.2, T1.3, T2): The sub-
missions for the word-level task (T2) use fea-
tures extracted from word posterior probabil-
ities and confusion network descriptors com-
puted over the 100k-best hypothesis transla-
tions generated by a phrase-based SMT sys-
tem. They also use features from word lexi-
cons, and POS tags of each word for source
and translation sentences. The predictions of
the Binary model are used as a feature for the
Level 1 and Multi-class settings. Both condi-
tional random fields (CRF) and bidirectional
long short-term memory recurrent neural net-
works (BLSTM-RNNs) are used for the Bi-
nary setting, and BLSTM-RNNs only for the
Level 1 and Multi-class settings.

The sentence-level QE submissions (T1.2
and T1.3) are trained on black-box features
extracted using QUEST in addition to fea-

tures based on word alignments, word poste-
rior probabilities and diversity scores (Souza
et al., 2013). These features are computed
over 100k-best hypothesis translations also
used for task 2. In addition, a set of ratios
computed from the word-level predictions of
the model trained on the binary setting of
task 2 is used. A total of 221 features and
the extremely randomised trees (Geurts et al.,
2006) learning algorithm are used to train re-
gression models.

LIG (T2): Conditional Random Fields classi-
fiers are trained with features used in LIG’s
WMT13 systems (Luong et al., 2013): tar-
get and source words, alignment informa-
tion, source and target alignment context,
LM scores, target and source POS tags,
lexical categorisations (stopword, punctua-
tion, proper name, numerical), constituent
label, depth in the constituent tree, target
polysemy count, pseudo reference. These
are combined with novel features: word
occurrence in multiple translation systems
and POS tag-based LM scores (longest tar-
get/source n-gram length and backoff score
for POS tag). These features require external
NLP tools and resources such as: TreeTag-
ger, GIZA++, Bekerley parser, Link Gram-
mar parser, WordNet and BabelNet, Google
Translate (pseudo-reference). For the binary
task, the optimal classification threshold is
tuned based on a development set split from
the original training set. Feature selection is
employed over the all features (for the binary
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task only), with the Sequential Backward Se-
lection algorithm. The best performing fea-
ture set is then also used for the Level 1 and
Multi-class variants.

LIMSI (T2): The submission relies on a ran-
dom forest classifier and considers only 16
dense and continuous features. To prevent
sparsity issues, lexicalised information such
as the word or the previous word identities
is not included. The features considered are
mostly classic MT features and can be cat-
egorised into two classes: association fea-
tures, which describe the quality of the as-
sociation between the source sentence and
each target word, and fluency features, which
describe the ’quality’ of the translation hy-
potheses. The latter rely on different lan-
guage models (either on POS or on words)
and the former on IBM Model 1 translation
probabilities and on pseudo- references, i.e.
translation produced by an independent MT
system. Random forests are known to per-
form well in tasks like this one, in which
only a few dense and continuous features are
available, possibly because of their ability to
take into account complex interactions be-
tween features and to automatically partition
the continuous feature values into a discrete
set of intervals that achieves the best classifi-
cation performance. Since they predict the
class probabilities, it is possible to directly
optimize the F1 score during training by find-
ing, with a grid search method, the decision
threshold that achieved the best F1 score on
the training set.

MULTILIZER (T1.2, T1.3): The 80 black-box
features from QUEST are used in addition to
new features based on using other MT en-
gines for forward and backward translations.
In forward translations, the idea is that dif-
ferent MT engines make different mistakes.
Therefore, when several forward translations
are similar to each other, these translations
are more likely to be correct. This is con-
firmed by the Pearson correlation of similar-
ities between the forward translations against
the true scores (above 0.5). A backward
translation is very error-prone and therefore
it has to be used in combination with for-
ward translations. A single back-translation

similar to original source segment does not
bring much information. Instead, when sev-
eral MT engines give back-translations simi-
lar to this source segment, one can conclude
that the translation is reliable. Those transla-
tions where similarities both in forward trans-
lation and backward translation are high are
intuitively more likely to be good. A simple
feature selection method that omits all fea-
tures with Pearson correlation against the true
scores below 0.2 is used. The systems sub-
mitted are obtained using linear regression
models.

RTM-DCU (T1.1, T1.2, T1.3, T2): RTM-DCU
systems are based on referential translation
machines (RTM) (Biçici, 2013) and parallel
feature decay algorithms (ParFDA5) (Biçici
et al., 2014), which allow language and MT
system-independent predictions. For each
task, individual RTM models are developed
using the parallel corpora and the language
model corpora distributed by the WMT14
translation task and the language model cor-
pora provided by LDC for English and Span-
ish. RTMs use 337 to 437 sentence-level fea-
tures for coverage and diversity, IBM1 and
sentence translation performance, retrieval
closeness and minimum Bayes retrieval risk,
distributional similarity and entropy, IBM2
alignment, character n-grams, sentence read-
ability, and parse output tree structures. The
features use ngrams defined over text or com-
mon cover link (CCL) (Seginer, 2007) struc-
tures as the basic units of information over
which similarity calculations are performed.
Learning models include ridge regression
(RR), support vector machines (SVR), and
regression trees (TREE), which are applied
after partial least squares (PLS) or feature
selection (FS). For word-level prediction,
generalised linear models (GLM) (Collins,
2002) and GLM with dynamic learning
(GLMd) (Biçici, 2013) are used with word-
level features including CCL links, word
length, location, prefix, suffix, form, context,
and alignment, totalling up to a couple of mil-
lion features.

SHEF-lite (T1.1, T1.2, T1.3): These submis-
sions use the framework of Multi-task Gaus-
sian Processes, where multiple datasets are
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combined in a multi-task setting similar to
the one used by Cohn and Specia (2013).
For T1.1, data for all language pairs is put
together, and each language is considered a
task. For T1.2 and T1.3, additional datasets
from previous shared task years are used,
each encoded as a different task. For all tasks,
the QUEST framework is used to extract a set
of 80 black-box features (a superset of the 17
baseline features). To cope with the large size
of the datasets, the SHEF-lite-sparse submis-
sion uses Sparse Gaussian Processes, which
provide sensible sparse approximations using
only a subset of instances (inducing inputs)
to speed up training and prediction. For this
“sparse” submission, feature selection is per-
formed following the approach of Shah et al.
(2013) by ranking features according to their
learned length-scales and selecting the top 40
features.

USHEFF (T1.1, T1.2, T1.3): USHEFF submis-
sions exploit the use of consensus among
MT systems by comparing the MT sys-
tem output to several alternative translations
generated by other MT systems (pseudo-
references). The comparison is done using
standard evaluation metrics (BLEU, TER,
METEOR, ROUGE for all tasks, and two
metrics based on syntactic similarities from
shallow and dependency parser information
for T1.2 and T1.3). Figures extracted from
such metrics are used as features to com-
plement prediction models trained on the 17
baseline features. Different from the standard
use of pseudo-reference features, these fea-
tures do not assume that the alternative MT
systems are better than the system of inter-
est. A more realistic scenario is considered
where the quality of the pseudo-references is
not known. For T1, no external systems in
addition to those provided for the shared task
are used: for a given translation, all alter-
native translations for the same source seg-
ment (two or three, depending on the lan-
guage pair) are used as pseudo-references.
For T1.2 and T1.3, for each source sentence,
all alternative translations produced by MT
systems on the same data (WMT12/13) are
used as pseudo-references. The hypothesis
is that by using translations from several MT
systems one can find consensual information

and this can smooth out the effect of “coinci-
dences” in the similarities between systems’
translations. SVM regression with radial ba-
sis function kernel and hyper-parameters op-
timised via grid search is used to build the
models.

YANDEX (T1.1): Both submissions are based
on the the 80 black-box features, plus an
LM score from a larger language model,
a pseudo-reference, and several additional
features based on POS tags and syntactic
parsers. The first attempt uses an extract
of the top 5 features selected with a greedy
search from the set of all features. SVM re-
gression is used as machine learning algo-
rithm. The second attempt uses the same
features processed with Yandex’ implemen-
tation of the gradient tree boosting (Ma-
trixNet).

4.4 Results

In what follows we give the official results for all
tasks followed by a discussion that highlights the
main findings for each of the tasks.

Task 1.1 Predicting post-editing effort
Table 11 summarises the results for the ranking
variant of Task 1.1. They are sorted from best to
worst using the DeltaAvg metric scores as primary
key and the Spearman’s rank correlation scores as
secondary key.

The winning submissions for the ranking vari-
ant of Task 1.1 are as follows: for English-Spanish
it is RTM-DCU/RTM-TREE, with a DeltaAvg
score of 0.26; for Spanish-English it is USH-
EFF, with a DeltaAvg score of 0.23; for English-
German it is again RTM-DCU/RTM-TREE, with a
DeltaAvg score of 0.39; and for German-English it
is RTM-DCU/RTM-RR, with a DeltaAvg score of
0.38. These winning submissions are better than
the baseline system by a large margin, which indi-
cates that current best performance in MT quality
estimation has reached levels that are clearly be-
yond what the baseline system can produce. As for
the other systems, according to DeltaAvg, com-
pared to the previous year results a smaller per-
centage of systems is able to beat the baseline.
This might be a consequence of the use of the met-
ric for the prediction of only three discrete labels.

The results for the scoring task are presented in
Table 12, sorted from best to worst using the MAE
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System ID DeltaAvg Spearman Corr
English-Spanish

• RTM-DCU/RTM-PLS-TREE 0.26 0.38
• RTM-DCU/RTM-TREE 0.26 0.41

• YANDEX/SHAD BOOSTEDTREES2 0.23 0.35
USHEFF 0.21 0.33

SHEFF-lite 0.21 0.33
YANDEX/SHAD SVR1 0.18 0.29

SHEFF-lite-sparse 0.17 0.27
Baseline SVM 0.14 0.22

Spanish-English
• USHEFF 0.23 0.30

• RTM-DCU/RTM-PLS-RR 0.20 0.35
• RTM-DCU/RTM-FS-RR 0.19 0.36

Baseline SVM 0.12 0.21
SHEFF-lite-sparse 0.12 0.17

SHEFF-lite 0.11 0.15
English-German

• RTM-DCU/RTM-TREE 0.39 0.54
RTM-DCU/RTM-PLS-TREE 0.33 0.42

USHEFF 0.26 0.41
SHEFF-lite 0.26 0.36

Baseline SVM 0.23 0.34
SHEFF-lite-sparse 0.23 0.33

German-English
• RTM-DCU/RTM-RR 0.38 0.51

• RTM-DCU/RTM-PLS-RR 0.35 0.45
USHEFF 0.28 0.30

SHEFF-lite 0.24 0.27
Baseline SVM 0.21 0.25

SHEFF-lite-sparse 0.14 0.17

Table 11: Official results for the ranking variant of the WMT14 Quality Evaluation Task 1.1. The winning submissions
are indicated by a •. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (1M times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.
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System ID MAE RMSE
English-Spanish

• RTM-DCU/RTM-PLS-TREE 0.49 0.61
• SHEFF-lite 0.49 0.63
• USHEFF 0.49 0.63

• SHEFF-lite/sparse 0.49 0.69
• RTM-DCU/RTM-TREE 0.49 0.61

Baseline SVM 0.52 0.66
YANDEX/SHAD BOOSTEDTREES2 0.56 0.68

YANDEX/SHAD SVR1 0.64 0.81
DCU-Chris/SVR 0.66 0.88

DCU-Chris/MIXED 0.94 1.14
Spanish-English

• RTM-DCU/RTM-FS-RR 0.53 0.64
• SHEFF-lite/sparse 0.54 0.69

• RTM-DCU/RTM-PLS-RR 0.55 0.71
USHEFF 0.57 0.67

Baseline SVM 0.57 0.68
SHEFF-lite 0.62 0.77

DCU-Chris/MIXED 0.65 0.91
English-German

• RTM-DCU/RTM-TREE 0.58 0.68
RTM-DCU/RTM-PLS-TREE 0.60 0.71

SHEFF-lite 0.63 0.74
USHEFF 0.64 0.75

SHEFF-lite/sparse 0.64 0.75
Baseline SVM 0.64 0.76

DCU-Chris/MIXED 0.69 0.98
German-English

• RTM-DCU/RTM-RR 0.55 0.67
• RTM-DCU/RTM-PLS-RR 0.57 0.74

USHEFF 0.63 0.76
SHEFF-lite 0.65 0.77

Baseline SVM 0.65 0.78

Table 12: Official results for the scoring variant of the WMT14 Quality Evaluation Task 1.1. The winning submissions
are indicated by a •. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (1M times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.
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metric scores as primary key and the RMSE metric
scores as secondary key.

The winning submissions for the scoring variant
of Task 1.1 are as follows: for English-Spanish it
is RTM-DCU/RTM-TREE with a MAE of 0.49;
for Spanish-English it is RTM-DCU/RTM-FS-
RR with a MAE of 0.53; for English-German
it is again RTM-DCU/RTM-TREE, with a MAE
of 0.58; and for German-English it is RTM-
DCU/RTM-RR with a MAE of 0.55. These sub-
missions are again much better than the baseline
system, which under the scoring variant seems
to perform at a middle-of-the-pack level or lower
compared to the overall pool of submissions.
Overall, more systems are able to outperform the
baseline according to the scoring metric.

The top system for most language pairs are
essentially based on the same core techniques
(RTM-DCU) according to both the DeltaAvg and
MAE metrics. The ranking of other systems, how-
ever, can be substantially different according to the
two metrics.

Task 1.2 Predicting percentage of edits
Table 13 summarises the results for the ranking
variant of Task 1.2. For readability purposes we
have used a multiplication-factor of 100 in the
scoring script, which makes the HTER numbers
(both predicted and gold) to be in the [0, 100]
range. They are sorted from best to worst using
the DeltaAvg metric scores as primary key and the
Spearman’s rank correlation scores as secondary
key.

The winning submission for the ranking vari-
ant of Task 1.2 is RTM-DCU/RTM-SVR, with a
DeltaAvg score of 9.31. There is a large mar-
gin between this score and the baseline score of
DeltaAvg 5.08, which indicates again that current
best performance has reached levels that are much
beyond what this baseline system can produce.
The vast majority of the submissions perform bet-
ter than the baseline (the only exception is the sub-
mission from SHEFF-lite, for which the authors
report a major issue with the learning algorithm).

The results for the scoring variant are presented
in Table 14, sorted from best to worst by using the
MAE metric scores as primary key and the RMSE
metric scores as secondary key.

The winning submission for the scoring variant
of Task 1.2 is FBK-UPV-UEDIN/WP with a MAE
of 12.89, while the baseline system has a MAE
of 15.23. Most of the submissions perform better

than the baseline.

Task 1.3 Predicting post-editing time
Table 15 summarises the results for the ranking
variant of Task 1.3. For readability purposes, we
have used a multiplication-factor of 0.001 in the
scoring script, which makes the time (both pre-
dicted and gold) to be measured in seconds. They
are sorted from best to worst using the DeltaAvg
metric scores as primary key and the Spearman’s
rank correlation scores as secondary key.

The winning submission for the ranking vari-
ant of Task 1.3 is RTM-DCU/RTM-RR, with a
DeltaAvg score of 17.02 (when predicting sec-
onds). The interesting aspect of these results is
that the DeltaAvg numbers have a direct real-
world interpretation, in terms of time spent (or
saved, depending on one’s view-point) for post-
editing machine-produced translations. A more
elaborate discussion on this point can be found in
Section 4.5.

The winning submission for the scoring variant
of Task 1.3 is RTM-DCU/RTM-SVR, with a MAE
of 16.77. Note that all of the submissions perform
significantly better than the baseline, which has a
MAE of 21.49, and that the majority is not signif-
icantly worse than the top scoring submission.

Task 2 Predicting word-level edits
The results for Task 2 are summarised in Tables
17–19. The results are ordered by F1 score for
the Error (BAD) class. For comparison, two triv-
ial baselines are included, one that marks every
word as correct and that marks every word with
the most common error class found in the training
data. Both baselines are clearly useless for any ap-
plication, but help put the results in perspective.
Most teams submitted systems for a single lan-
guage pair: English-Spanish; only a single team
produced predictions for all four pairs.

Table 17 gives the results of the binary (OK vs.
BAD) classification variant of Task 2. The win-
ning submissions for this variant are as follows:
for English-Spanish it is FBK-UPV-UEDIN/RNN
with a weighted F1 of 48.73; for Spanish-
English it is RTM-DCU/RTM-GLMd with a
weighted F1 of 29.14; for English-German it is
RTM-DCU/RTM-GLM with a weighted F1 of
45.30; and for German-English it is again RTM-
DCU/RTM-GLM with a weighted F1 of 26.13.

Remarkably, for three out of four language
pairs, the systems fail to beat our trivial baseline of
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System ID DeltaAvg Spearman Corr
English-Spanish
• RTM-DCU/RTM-SVR 9.31 0.53
• RTM-DCU/RTM-TREE 8.57 0.48

• USHEFF 7.93 0.45
SHEFF-lite/sparse 7.69 0.43

Baseline 5.08 0.31
SHEFF-lite 0.72 0.09

Table 13: Official results for the ranking variant of the WMT14 Quality Evaluation Task 1.2. The winning submissions
are indicated by a •. These are the top-scoring submission and those that are not significantly worse according to bootstrap
resampling (100k times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system
at a statistically significant level according to the same test.

System ID MAE RMSE
English-Spanish
• FBK-UPV-UEDIN/WP 12.89 16.74
• RTM-DCU/RTM-SVR 13.40 16.69

• USHEFF 13.61 17.84
RTM-DCU/RTM-TREE 14.03 17.48

DFKI/SVR 14.32 17.74
FBK-UPV-UEDIN/NOWP 14.38 18.10

SHEFF-lite/sparse 15.04 18.38
MULTILIZER 15.04 20.86

Baseline 15.23 19.48
DFKI/SVRxdata 16.01 19.52

SHEFF-lite 18.15 23.41

Table 14: Official results for the scoring variant of the WMT14 Quality Evaluation Task 1.2. The winning submissions
are indicated by a •. They are statistically indistinguishable from the top submission according to bootstrap resampling (1M
times) with 95% confidence intervals. The systems in the gray area are not different from the baseline system at a statistically
significant level according to the same test.

System ID DeltaAvg Spearman Corr
English-Spanish
• RTM-DCU/RTM-RR 17.02 0.68
• RTM-DCU/RTM-SVR 16.60 0.67

SHEFF-lite/sparse 16.33 0.63
SHEFF-lite 16.08 0.64

USHEFF 14.98 0.59
Baseline 14.71 0.57

Table 15: Official results for the ranking variant of the WMT14 Quality Evaluation Task 1.3. The winning submissions
are indicated by a •. They are statistically indistinguishable from the top submission according to bootstrap resampling (1M
times) with a 95% confidence interval. The systems in the gray area are not different from the baseline system at a statistically
significant level according to the same test.

35



System ID MAE RMSE
English-Spanish
• RTM-DCU/RTM-SVR 16.77 26.17
•MULTILIZER/MLZ2 17.07 25.83

• SHEFF-lite 17.13 27.33
•MULTILIZER/MLZ1 17.31 25.51
• SHEFF-lite/sparse 17.42 27.35

• FBK-UPV-UEDIN/WP 17.48 25.31
RTM-DCU/RTM-RR 17.50 25.97

FBK-UPV-UEDIN/NOWP 18.69 26.58
USHEFF 21.48 34.28
Baseline 21.49 34.28

Table 16: Official results for the scoring variant of the WMT14 Quality Evaluation Task 1.3. The winning submissions
are indicated by a •. They are statistically indistinguishable from the top submission according to bootstrap resampling (1M
times) with a 95% confidence interval. The systems in the gray area are not different from the baseline system at a statistically
significant level according to the same test.

weighted F1 F1

System ID All Bad ↑ MCC ACC
English-Spanish

Baseline (always OK) 50.43 0.00 0.00 64.38
Baseline (always Bad) 18.71 52.53 0.00 35.62

• FBK-UPV-UEDIN/RNN 62.00 48.73 18.23 61.62
LIMSI/RF 60.55 47.32 15.44 60.09

LIG/FS 63.55 44.47 19.41 64.67
LIG/BL ALL 63.77 44.11 19.91 65.12

FBK-UPV-UEDIN/RNN+tandem+crf 62.17 42.63 16.32 63.26
RTM-DCU/RTM-GLM 60.68 35.08 13.45 63.74

RTM-DCU/RTM-GLMd 60.24 32.89 12.98 63.97
Spanish-English

Baseline (always OK) 74.41 0.00 0.00 82.37
Baseline (always Bad) 5.28 29.98 0.00 17.63

• RTM-DCU/RTM-GLMd 79.54 29.14 25.47 82.98
RTM-DCU/RTM-GLM 79.42 26.91 25.93 83.43

English-German
Baseline (always OK) 59.39 0.00 0.00 71.33
Baseline (always Bad) 12.78 44.57 0.00 28.67

• RTM-DCU/RTM-GLM 71.51 45.30 28.61 72.97
RTM-DCU/RTM-GLMd 68.73 36.91 21.32 71.41

German-English
Baseline (always OK) 67.82 0.00 0.00 77.60
Baseline (always Bad) 8.20 36.60 0.00 22.40

• RTM-DCU/RTM-GLM 72.41 26.13 16.08 76.14
RTM-DCU/RTM-GLMd 71.42 22.97 12.63 75.46

Table 17: Official results for the binary part of the WMT14 Quality Evaluation Task 2. The winning submissions are indicated
by a •. All values are given as percentages.
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marking all the words as wrong. This may either
indicate that the predictions themselves are of low
quality or the chosen evaluation approach is mis-
leading. On the other hand F1 scores are a com-
mon measure of binary classification performance
and no averaging is performed here.

Table 18 gives the results of the Level 1
classification (OK, Fluency, Accuracy) variant
of Task 2. Here the second baseline is to
always predict Fluency errors, as this is the
most common error category in the training
data. The winning submissions of this vari-
ant are as follows: for English-Spanish it
is FBK-UPV-UEDIN/RNN+tandem+crf with a
weighted F1 of 23.94 and for Spanish-English,
English-German, and German-English it is RTM-
DCU/RTM-GLMd with weighted F1 scores of
23.94, 21.94, and 8.57 respectively.

As before, all systems fail to outperform the
single-class baseline for the Spanish-English lan-
guage pair according to our primary metric. How-
ever, for Spanish-English and English-German
both submissions are able to beat the baseline by
large margin. We also observe that the absolute
numbers vary greatly between language pairs.

Table 19 gives the results of the Multi-class
classification variant of Task 2. Again, the sec-
ond baseline is to always predict the most common
error category in the training data, which varies
depending on language pair and produces and in-
creasingly weak baseline as the number of classes
rises.

The winning submissions of this variant are
as follows: for English-Spanish, Spanish-English,
and English-German it is RTM-DCU/RTM-GLM
with weighted F1 scores of 26.84, 8.75, and 15.02
respectively and and for German-English it is
RTM-DCU/RTM-GLMd with a weighted F1 of
3.08. Not only do these systems perform above
our baselines for all but the German-English lan-
guage pair, they also outperform all other sub-
missions for English-Spanish. Remarkably, RTM-
DCU/RTM-GLM wins English-Spanish for all of
the proposed metrics by a sizeable margin.

4.5 Discussion

In what follows, we discuss the main accomplish-
ments of this year’s shared task starting from the
goals we had previously identified for it.

Investigating the effectiveness of different
quality labels

For the sentence-level tasks, the results of this
year’s shared task allow us to investigate the ef-
fectiveness of predicting translation quality using
three very different quality labels: perceived post-
editing effort on a scale of [1-3] (Task 1.1); HTER
scores (Task 1.2); and the time that a translator
takes to post-edit the translation (Task 1.3). One of
the ways one can compare the effectiveness across
all these different labels is to look at how well
the models can produce predictions that correlate
with the gold label that we have at our disposal.
A measure of correlation that does not depend
on the value of the labels is Spearman’s ranking
correlation. From this perspective, the label that
seems the most effective appears to be post-editing
time (Task 1.3), with the best system (RTM-
DCU/RTM-RR) producing a Spearman’s ρ of 0.68
(English-Spanish translations, see Table 15). In
comparison, when perceived post-editing effort la-
bels are used (Task 1.1), the best systems achieve
a Spearman’s ρ of 0.38 and 0.30 for English-
Spanish and Spanish-English translations, respec-
tively, and ρ of 0.54 and 0.51 for English-German
and German-English, respectively (Table 11); for
HTER scores (Task 1.2) the best systems achieve
a Spearman’s ρ of 0.53 for English-Spanish trans-
lations (Table 13).

This comparison across tasks seems to indicate
that, among the three labels we have proposed,
post-editing time seems to be the most learnable,
in the sense that automatic predictions can vest
match the gold labels (in this case, with respect
to the rankings they induce). A possible reason
for this is that post-editing time correlates with the
length of the source sentence whereas HTER is a
normalised measure.

Compared to the results regarding time predic-
tion in the Quality Evaluation shared task from
2013 (Bojar et al., 2013), we note that this time
all submissions were able to beat the baseline sys-
tem (compared to only 1/3 of the submissions in
2013). In addition, better handling of the data
acquisition reduced the number of outliers in this
year’s dataset allowing for numbers that are more
reliably interpretable. As an example of its in-
terpretability, consider the following: the winning
submission for the ranking variant of Task 1.3 is
RTM-DCU/RTM-RR, with a a Spearman’s ρ of
0.68 and a DeltaAvg score of 17.02 (when predict-
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weighted F1 weighted MCC
System ID All Errors ↑ All Errors ACC

English-Spanish
Baseline (always OK) 50.43 0.00 0.00 0.00 64.38

Baseline (always fluency) 14.39 40.41 0.00 0.00 30.67
• FBK-UPV-UEDIN/RNN+tandem+crf 58.36 38.54 16.63 13.89 57.98

FBK-UPV-UEDIN/RNN 60.32 37.25 18.22 15.51 61.75
LIG/BL ALL 58.97 31.79 14.95 11.48 61.13

LIG/FS 58.95 31.78 14.92 11.46 61.10
RTM-DCU/RTM-GLMd 58.23 26.62 12.60 12.76 62.94
RTM-DCU/RTM-GLM 56.47 29.91 8.11 7.96 58.56

Spanish-English
Baseline (always OK) 74.41 0.00 0.00 0.00 82.37

Baseline (always fluency) 2.67 15.13 0.00 0.00 12.24
• RTM-DCU/RTM-GLMd 78.89 23.94 25.41 25.45 83.17

RTM-DCU/RTM-GLM 78.78 21.96 26.31 26.99 83.69
English-German

Baseline (always OK) 59.39 0.00 0.00 0.00 71.33
Baseline (always fluency) 3.83 13.35 0.00 0.00 14.82
• RTM-DCU/RTM-GLMd 64.58 21.94 17.69 15.92 69.26

RTM-DCU/RTM-GLM 64.43 21.10 16.99 14.93 69.34
German-English

Baseline (always OK) 67.82 0.00 0.00 0.00 77.60
Baseline (always fluency) 3.34 14.92 0.00 0.00 13.79
• RTM-DCU/RTM-GLMd 69.17 8.57 10.61 5.76 75.91

RTM-DCU/RTM-GLM 69.09 8.26 9.95 5.76 75.97

Table 18: Official results for the Level 1 classification part of the WMT14 Quality Evaluation Task 2. The winning submissions
are indicated by a •. All values are given as percentages.
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weighted F1 weighted MCC
System ID All Errors ↑ All Errors ACC

English-Spanish
Baseline (always OK) 50.43 0.00 0.00 0.00 64.38

Baseline (always unintelligible) 7.93 22.26 0.00 0.00 21.99
• RTM-DCU/RTM-GLM 60.52 26.84 23.77 21.45 66.83

FBK-UPV-UEDIN/RNN+tandem+crf 52.96 23.07 15.17 10.74 52.13
LIG/BL ALL 56.66 20.50 18.56 13.39 60.39

LIG/FS 56.66 20.50 18.56 13.39 60.39
FBK-UPV-UEDIN/RNN 52.84 17.09 7.66 4.24 57.18
RTM-DCU/RTM-GLMd 51.87 3.22 10.16 4.04 64.42

Spanish-English
Baseline (always OK) 74.41 0.00 0.00 0.00 82.37

Baseline (always word order) 0.34 1.96 0.00 0.00 4.24
• RTM-DCU/RTM-GLM 76.34 8.75 19.82 13.43 83.27
RTM-DCU/RTM-GLMd 76.21 8.19 19.35 15.32 83.17

English-German
Baseline (always OK) 59.39 0.00 0.00 0.00 71.33

Baseline (always mistranslation) 2.48 8.66 0.00 0.00 11.78
• RTM-DCU/RTM-GLM 63.57 15.02 17.57 15.08 70.82
RTM-DCU/RTM-GLMd 63.33 12.48 18.70 13.20 71.45

German-English
Baseline (always OK) 67.82 0.00 0.00 0.00 77.60

Baseline (always word order) 1.56 6.96 0.00 0.00 9.23
• RTM-DCU/RTM-GLMd 67.62 3.08 7.19 1.48 74.73

RTM-DCU/RTM-GLM 67.86 2.36 7.55 1.79 75.75

Table 19: Official results for the Multi-class classification part of the WMT14 Quality Evaluation Task 2. The winning
submissions are indicated by a •. All values are given as percentages.
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ing seconds). This number has a direct real-world
interpretation: using the order proposed by this
system, a human translator would spend, on av-
erage, about 17 seconds less on a sentence taken
from the top of the ranking compared to a sen-
tence picked randomly from the set.14 To put this
number into perspective, for this dataset the av-
erage time to complete a sentence post-editing is
39 seconds. As such, one has an immediate inter-
pretation for the usefulness of using such a rank-
ing: translating around 100 sentences taken from
the top of the rankings would take around 36min
(at about 22 seconds/sentence), while translating
the same number of sentences extracted randomly
from the same dataset would take around 1h5min
(at about 39 seconds/sentence). It is in this sense
that we consider post-editing time an interpretable
label.

Another desirable property of label predictions
is usefulness; this property, however, it highly
task-dependent and therefore cannot be judged in
the absence of a specific task. For instance, an in-
terpretable label like post-editing time may not be
that useful in a task the requires one to place the
machine translations into “ready to publish” and
“not ready to publish” bins. For such an appli-
cation, labels such as the ones used by Task 1.1
are clearly more useful, and also very much inter-
pretable within the scope of the task. Our attempt
at presenting the Quality Prediction task with a va-
riety of prediction labels illustrates a good range
of properties for the proposed labels and enables
one to draw certain conclusions depending on the
needs of the specific task at hand.

For the word-level tasks, different quality labels
equate with using different levels of granularity for
the predictions, which we discuss next.

Exploring word-level quality prediction at
different levels of granularity
Previous work on word-level predictions, e.g. (Bo-
jar et al., 2013) has focused on prediction of auto-
matically derived labels, generally due to practical
considerations as the manual annotation is labour
intensive. While easily applicable, automatic an-
notations, using for example TER alignment be-
tween the machine translation and reference (or
post-edition), face the same problems as automatic

14Note that the 17.02 seconds figure is a difference in real-
time, not predicted time; what is considered in this variant of
Task 1.3 is only the predicted ranking of data points, not the
absolute values of the predictions.

MT evaluation metrics as they fail to account for
different word choices and lack the ability to re-
liably distinguish meaning preserving reorderings
from those that change the semantics of the out-
put. Furthermore, previous automatic annotation
for word-level quality estimation has focused on
binary labels: correct / incorrect, or at most, the
main edit operations that can be captured by align-
ment metrics like TER: correct, insertion, dele-
tion, substitution.

In this year’s task we were able to provide
manual fine-grained annotations at the word-level
produced by humans irrespective of references or
post-editions. Error categories range from fre-
quent ones, such as unintelligible, mistranslation,
and terminology, to rare ones such as additions or
omissions. For example, only 10 out of more than
3,400 errors in the English-Spanish test set fall
into the latter categories, while over 2,000 words
are marked as unintelligible. By hierarchically
grouping errors into coarser categories we aimed
to find a compromise between data sparsity and
the expressiveness of the labels. What marks a
good compromise depends on the use case, which
we do not specify here, and the quality of the finer
grained predictions: if a system is able to predict
even rare errors these may be grouped later if nec-
essary.

Overall, word-level error prediction seems to re-
main a challenging task as evidenced by the fact
that many submissions were unable to beat a triv-
ial baseline. We hypothesise that this is at least
partially due to a mismatch in loss-functions used
in training and testing. We know from the sys-
tem descriptions that some systems were tuned to
optimise squared error or accuracy, while evalua-
tion was performed using weighted F1 scores. On
the other hand, even a comparison of just accuracy
shows that systems struggle to obtain a lower error
rates than the “all-OK” baseline.

Such performance problems are consistent over
the three levels of granularity, contrary to the in-
tuition that binary classification would be easier.
A notable exception is the RTM-DCU/RTM-GLM
system, which is able to beat both the baseline and
all other systems on the Multi-Class variant of the
English-Spanish task – cf. Table 19 – with regard
to all metrics. For this and most other submis-
sions we observe that labels are not consistent for
different granularities, i.e. at token marked with a
specific error in the multi-class variant may still
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carry an “OK” label in binary annotation. Thus,
additional coarse grained annotations may be de-
rived by automatic means. For example, mapping
the multi-class predictions of the above system to
coarser categories improves the F1,ERR score in
Table 17 from 35.08 to 37.02 but does not change
the rank with respect to the other entries.

The fact that coarse grained predictions seem
not to be derived from the fine-grained ones leads
us to believe that most participants treated the
different granularities as independent classifica-
tion tasks. The FBK-UPV-UEDIN team trans-
fers information in the opposite direction by using
their binary predictions as features for Level-1 and
multi-class.

Given the current quality of word-level predic-
tion it remains unclear if these systems can already
be employed in a practical setting, e.g. to focus the
attention of post-editors.

Studying the effects of training and test
datasets with mixed domains, language pairs
and MT systems
This year’s shared task made available datasets for
more than one language pair with the same or dif-
ferent types of annotation, 2-3 multiple MT sys-
tems (plus a human translation) per language pair,
and out-of-domain test data (Tasks 1.1 and 2). In-
stances for each language pair were kept in sep-
arate datasets and thus the “language pair” vari-
able can be analysed independently. However, for
a given language pair, datasets mix translation sys-
tems (and humans) in Task 1.1, and also text do-
mains in Task 2.

Directly comparing the performance across lan-
guage pairs is not possible, given that their
datasets have different numbers of instances (pro-
duced by 3 or 4 systems) and/or different true
score distributions (see Figure 3). For a relative
comparison (although not all systems submitted
results for all language pairs, which is especially
true in Task 2), we observe in Task 1.1 that for all
language pairs generally at least half of the sys-
tems did better than the baseline. To our surprise,
only one submission combined data for multiple
languages together for Task 1.1: SHEF-lite, treat-
ing each language pair data as a different task in
a multi-task learning setting. However, only for
the ’sparse’ variant of the submission significant
gains were reported over modelling each task in-
dependently (with the tasks still sharing the same
data kernel and the same hyperparameters).

The interpretation of the results for Task 2 is
very dependent on the evaluation metric used,
but generally speaking a large variation in per-
formance was found between different languages,
with English-Spanish performing the best, possi-
bly given the much larger number of training in-
stances. Data for Task 2 also presented varied true
score distributions (as shown by the performance
of the baseline (e.g. always “OK”) in Tables 17-
19.

One of the main goals with Task 1.1 (and Task 2
to some extent) was to test the robustness of mod-
els in a blind setting where multiple MT systems
(and human translations) are put together and their
identifiers are now known. All submissions for
these tasks were therefore translation system ag-
nostic, with no submission attempting to perform
meta-identification of the origins of the transla-
tions. For Task 1.1, data from multiple MT sys-
tems was explicitly used by USHEFF though the
idea of consensus translations. Translations from
all but the system of interest for the same source
segment were used as pseudo-references. The
submission significantly outperformed the base-
line for all language pairs and did particularly well
for Spanish-English and English-Spanish.

An in depth analysis of Task 1.1’s datasets on
the difference in prediction performance between
models built and applied for individual transla-
tion systems and models built and tested for all
translations pooled together is presented in (Shah
and Specia, 2014). Not surprisingly, the former
models perform significantly better, with MAE
scores ranging between 0.35 and 0.5 for differ-
ent language pairs and MT systems, and signifi-
cantly lower scores for models trained and tested
on human translations only (MAE scores between
0.2 and 0.35 for different language pairs), against
MAE scores ranging between 0.5 and 0.65 for
models with pooled data.

For Tasks 1.2 and 1.3, two submissions included
English-Spanish data which had been produced by
yet different MT systems (SHEF-lite and DFKI).
While using these additional instances seemed at-
tractive given the small number of instances avail-
able for these tasks, it is not clear what their contri-
bution was. For example, with a reduced set of in-
stances (only 400) from the combined sets, SHEF-
lite/sparse performed significantly better than its
variant SHEF-lite.

Finally, with respect to out-of-domain (different
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text domain and MT system) test data, for Task
1.1, none of the papers submitted included experi-
ments. (Shah and Specia, 2014) applied the mod-
els trained on pooled datasets (as explained above)
for each language pair to the out-of-domain test
sets. The results were surprisingly positive, with
average MAE score of 0.5, compared to the 0.5-
0.65 range for in-domain data (see above). Further
analysis is necessary to understand the reasons for
that.

In Task 2, the official training and test sets al-
ready include out-of-domain data because of the
very small amount of in-domain data available,
and thus is is hard to isolate the effect of this data
on the results.

Examining the effectiveness of quality
prediction methods on human translations
Datasets for Tasks 1.1 and 2 contain human trans-
lations, in addition to the automatic translations
from various MT systems. Predicting human
translation quality is an area that has been largely
unexplored. Previous work has looked into dis-
tinguishing human from machine translations (e.g.
(Gamon et al., 2005)), but this problem setting is
somehow artificial, and moreover arguably harder
to solve nowadays given the higher general qual-
ity of current MT systems (Shah and Specia,
2014). Although human translations are obviously
of higher quality in general, many segments are
translated by MT systems with the same or similar
levels of quality as human translation. This is par-
ticularly true for Task 2, since data had been pre-
viously categorised and only “near misses” were
selected for the word-level annotation, i.e., human
and machine translations that were both nearly
perfect in this case.

While no distinction was made between human
and machine translations in our tasks, we believe
the mix of these two types of translations has had
a negative impact in prediction performance. Intu-
itively, one can expect errors in human translation
to be more subtle, and hence more difficult to cap-
ture via standard quality estimation features. For
example, an incorrect lexical choice (due to, e.g.,
ambiguity) which still fits the context and does not
make the translation ungrammatical is unlikely to
be captured. We hoped that participants would de-
sign features for this particular type of translation,
but although linguistically motivated features have
been exploited, they did not seem appropriate for
human translations.

It is interesting to mention the indirect use of
human translations by USHEFF for Tasks 1.1-1.3:
given a translation for a source segment, all other
translations for the same segment were used as
pseudo-references. Apart from when this transla-
tion was actually the human translation, the hu-
man translation was effectively used as a refer-
ence. While this reference was mixed with 2-
3 other pseudo-references (other machine transla-
tions) for the feature computations, these features
led to significant gains in performance over the
baseline features Scarton and Specia (2014).

We believe that more investigation is needed for
human translation quality prediction. Tasks ded-
icated to this type of data at both sentence- and
word-level in the next editions of this shared task
would be a possible starting point. The acquisi-
tion of such data is however much more costly, as
it is arguably hard to find examples of low quality
human translation, unless specific settings, such as
translation learner corpora, are considered.

5 Medical Translation Task

The Medical Translation Task addresses the prob-
lem of domain-specific and genre-specific ma-
chine translation. The task is split into two sub-
tasks: summary translation, focused on transla-
tion of sentences from summaries of medical ar-
ticles, and query translation, focused on transla-
tion of queries entered by users into medical infor-
mation search engines.

In general, texts of specific domains and gen-
res are characterized by the occurrence of special
vocabulary and syntactic constructions which are
rare or even absent in traditional (general-domain)
training data and therefore difficult for MT. Spe-
cific training data (containing such vocabulary and
syntactic constructions) is usually scarce or not
available at all. Medicine, however, is an exam-
ple of a domain for which in-domain training data
(both parallel and monolingual) is publicly avail-
able in amounts which allow to train a complete
SMT system or to adapt an existing one.

5.1 Task Description

In the Medical Translation Task, we provided links
to various medical-domain training resources and
asked participants to use the data to train or adapt
their systems to translate unseen test sets for both
subtasks between English and Czech (CS), Ger-
man (DE), and French (FR), in both directions.
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The summary translation test data is domain-
specific, but otherwise can be considered as ordi-
nary sentences. On the other hand, the query trans-
lation test data is also specific for its genre (gen-
eral style) – it contains short sequences of (more
or less) of independent terms rather than complete
and grammatical sentences, the usual target of cur-
rent MT systems.

Similarly to the standard Translation Task, the
participants of the Medical Translation Task were
allowed to use only the provided resources in the
constrained task (in addition to data allowed in
the constrained standard Translation Task), but
could exploit any additional resources in the un-
constrained task. The submissions were expected
with true letter casing and detokenized. The trans-
lation quality was measured using automatic eval-
uation metrics, manual evaluation was not per-
formed.

5.2 Test and Development Data

The test and development data sets for this task
were provided by the EU FP7 project Khres-
moi.15 This projects develops a multi-lingual
multi-modal search and access system for biomed-
ical information and documents and its MT com-
ponent allows users to use non-English queries to
search in English documents and see summaries
of retrieved documents in their preferred language
(Czech, German, or French). The statistics of the
data sets are presented in Tables 20 and 21.

For the summary translation subtask, 1,000
and 500 sentences were provided for test devel-
opment purposes, respectively. The sentences
were randomly sampled from automatically gen-
erated summaries (extracts) of English documents
(web pages) containing medical information rel-
evant to 50 topics provided for the CLEF 2013
eHealth Task 3.16 Out-of-domain and ungram-
matical sentences were manually removed. The
sentences were then translated by medical experts
into Czech, German and French, and the transla-
tions were reviewed. Each sentence was provided
with the corresponding document ID and topic ID.
The set also included a description for each of the
50 topics. The data package (Khresmoi Summary
Translation Test Data 1.1) is now available from
the LINDAT/CLARIN repository17 and more de-

15http://khresmoi.eu/
16https://sites.google.com/site/

shareclefehealth/
17http://hdl.handle.net/11858/

tails can be found in Zdeňka Urešová and Pecina
(2014).

For the query translation subtask, the main
test set contains 1,000 queries for test and 508
queries for development purposes. The original
English queries were extracted at random from
real user query logs provided by the Health on the
Net foundation18 (queries by general public) and
the Trip database19 (queries by medical experts).
Each query was translated into Czech, German,
and French by medical experts and the transla-
tions were reviewed. The data package (Khresmoi
Query Translation Test Data 1.0) is available from
the LINDAT/CLARIN repository.20

An additional test set for the query translation
subtask was adopted from the CLEF 2013 eHealth
Task 3 (Pecina et al., 2014). It contains 50 queries
constructed from titles of the test topics (originally
in English) translated into Czech, German, and
French by medical experts. The participants were
asked to translate the queries back to English and
the resulting translations were used in an informa-
tion retrieval (IR) experiment for extrinsic evalua-
tion.

5.3 Training Data

This section reviews the in-domain resources
which were allowed for the constrained Medical
Translation Task in addition to resources for the
constrained standard Translation Task (see Section
2). Most of the corpora are available for direct
download, others can be obtained upon registra-
tion. The corpora usually employ their own, more
or less complex data format. To lower the entry
barrier, we provided a set of easy-to-use scripts to
convert the data to a plain text format suitable for
MT training.

5.3.1 Parallel Training Data
The medical-domain parallel data includes the fol-
lowing corpora (see Table 22 for statistics): The
EMEA corpus (Tiedemann, 2009) contains doc-
uments from the European Medicines Agency,
automatically processed and aligned on sentence
level. It is available for many language pairs, in-
cluding those relevant to this task. UMLS is a
multilingual metathesaurus of health and biomed-

00-097C-0000-0023-866E-1
18http://www.hon.ch/
19http://www.tripdatabase.com/
20http://hdl.handle.net/11858/

00-097C-0000-0022-D9BF-5
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sents tokens
total Czech German French English

dev 500 9,209 9,924 12,369 10,350
test 1,000 19,191 20,831 26,183 21,423

Table 20: Statistics of summary test data.

queries tokens
total general expert Czech German French English

dev 508 249 259 1,128 1,041 1,335 1,084
test 1,000 500 500 2,121 1,951 2,490 2,067

Table 21: Statistics of query test data.

L1–L2 Czech–English DE–EN FR–EN
data set sents L1 tokens L2 tokens sents L1 tokens L2 tokens sents L1 tokens L2 tokens
EMEA 1,053 13,872 14,378 1,108 13,946 14,953 1,092 17,605 14,786
UMLS 1,441 4,248 5,579 2,001 6,613 8,153 2,171 8,505 8,524
Wiki 3 5 6 10 19 22 8 19 17
MuchMore 29 688 740
PatTr 1,848 102,418 106,727 2,201 127,098 108,665
COPPA 664 49,016 39,933

Table 22: Statistics of the in-domain parallel training data allowed for the constrained task (in thousands).

data set English Czech German French
PatTR 121,592 53,242 54,608
UMLS 7,991 63 24 37
Wiki 26,945 1,784 10,232 8,376
AACT 13,341
DrugBank 953
FMA 884
GENIA 557
GREC 62
PIL 662

Table 23: Sizes of monolingual training data allowed for the
constrained tasks (in thousands of tokens).

ical vocabularies and standards (U.S. National Li-
brary of Medicine, 2009). The UMLS dataset
was constructed by selecting the concepts which
have translations in the respective languages. The
Wiki dataset contains bilingual pairs of titles of
Wikipedia articles belonging to the categories
identified to be medical-domain within the Khres-
moi project. It is available for all three lan-
guage pairs. The MuchMore Springer Corpus
is a German–English parallel corpus of medical
journals abstracts published by Springer (Buitelaar
et al., 2003). PatTR is a parallel corpus extracted
from the MAREC patent collection (Wäschle and
Riezler, 2012). It is available for German–English
and French–English. For the medical domain,
we only consider text from patents indicated to
be from the medicine-related categories (A61,
C12N, C12P). COPPA (Corpus of Parallel Patent
Applications (Pouliquen and Mazenc, 2011) is a
French–English parallel corpus extracted from the
MAREC patent collection (Wäschle and Riezler,
2012). The medical-domain subset is identified by
the same categories as in PatTR.

5.3.2 Monolingual Training Data
The medical-domain monolingual data consists of
the following corpora (statistics are presented in
Table 23): The monolingual UMLS dataset con-

tains concept descriptions in CS, DE, and FR ex-
tracted from the UMLS Metathesaurus (see Sec-
tion 5.3.1). The monolingual Wiki dataset con-
sists of articles belonging to the categories iden-
tified to be medical-domain within the Khresmoi
project. The PatTR dataset contains non-parallel
data extracted from the medical patents included
in the PatTR corpus (see Section 5.3.1). AACT is a
collection of restructured and reformatted English
texts publicly available and downloadable from
ClinicalTrials.gov, containing clinical studies con-
ducted around the world. DrugBank is a bioin-
formatics and cheminformatics resource contain-
ing drug descriptions (Knox et al., 2011). GENIA
is a corpus of biomedical literature compiled and
annotated within the GENIA project (Kim et al.,
2003). FMA stands for the Foundational Model
of Anatomy Ontology, a knowledge source for
biomedical informatics concerned with symbolic
representation of the phenotypic structure of the
human body (Rosse and Mejino Jr., 2008). GREC
(Gene Regulation Event Corpus) is a semantically
annotated English corpus of abstracts of biomedi-
cal papers (Thompson et al., 2009). The PIL cor-
pus is a collection of documents giving instruc-
tions to patients about their medication (Bouayad-
Agha et al., 2000).

5.4 Participants

A total of eight teams participated in the Medical
Translation Task by submitting their systems to at
least one subtask for one or more translation direc-
tions. A list of the participants is given in Table 24;
we provide short descriptions of their systems in
the following.
CUNI was involved in the organization of the task,
and their primary goal was to set up a baseline for
both the subtasks and for all translation directions.
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ID Participating team
CUNI Charles University in Prague (Dušek et al., 2014)
DCU-Q Dublin City University (Okita et al., 2014)
DCU-S Dublin City University (Zhang et al., 2014)
LIMSI Laboratoire dInformatique pour la Mecanique et les Sciences de lIngénieur (Pécheux et al., 2014)
POSTECH Pohang University of Science and Technology (Li et al., 2014a)
UEDIN University of Edinburgh (Durrani et al., 2014a)
UM-DA University of Macau (Wang et al., 2014)
UM-WDA University of Macau (Lu et al., 2014)

Table 24: Participants in the WMT14 Medical Translation Task.

Their systems are based on the Moses phrase-
based toolkit and linear interpolation of in-domain
and out-of-domain language models and phrase ta-
bles. The constrained/unconstrained systems dif-
fer in the training data only. The constrained
ones are built using all allowed training data; the
unconstrained ones take advantage of additional
web-crawled monolingual data used for training of
the language models, and additional parallel non-
medical data from the PatTr and COPPA patent
collections.
DCU-Q submitted a system designed specifically
for terminology translation in the query translation
task for EN–FR and FR–EN. This system supports
six terminology extraction methods and is able to
detect rare word pairs including zero-appearance
word pairs. It uses monotonic decoding with lat-
tice inputs, avoiding unnecessary hypothesis ex-
pansions by the reordering model.
DCU-S submitted a system to the FR–EN sum-
mary translation subtask only. The system is
similar to DCU’s system for patent translation
(phrased-based using Moses) but adapted to trans-
late medical summaries and reports.
LIMSI took part in the summary translation sub-
task for English to French.Their primary submis-
sion uses a combination of two translation sys-
tems: NCODE, based on bilingual n-gram trans-
lation models; and an on-the-fly estimation of
the parameters of Moses along with a vector
space model to perform domain adaptation. A
continuous-space language model is also used in
a post-processing step for each system.
POSTECH submitted a phrase-based SMT sys-
tem and query translation system for the DE–EN
language pair in both subtasks. They analysed
three types of query formation, generated query
translation candidates using term-to-term dictio-
naries and a phrase-based system, and then scored
them using a co-occurrence word frequency mea-
sure to select the best candidate.
UEDIN applied the Moses phrase-based system to

all language pairs and both subtasks. They used
the hierarchical reordering model and the OSM
feature, same as in UEDIN’s news translation sys-
tem, and applied compound splitting to German
input. They used separate language models built
on in-domain and out-of-domain data with linear
interpolation. For all language pairs except CS-
EN and DE-EN, they selected data for the transla-
tion model using modified Moore-Lewis filtering.
For DE-EN and CS-EN, they concatenated all the
supplied parallel training data.
UM-DA submitted systems for all language pairs
in the summary translation subtask based on a
combination of different adaptation steps, namely
domain-specific pre-processing, language model
adaptation, translation model adaptation, numeric
adaptation, and hyphenated word adaptation. Data
for the domain-adapted language and translation
models were selected using various data selection
techniques.
UM-WDA submitted systems for all language
pairs in the summary translation subtask. Their
systems are domain-adapted using web-crawled
in-domain resources: bilingual dictionaries and
monolingual data. The translation model and lan-
guage model trained on the crawled data were in-
terpolated with the best-performing language and
translation model employed in the UM-DA sys-
tems.

5.5 Results

MT quality in the Medical Translation Task
is evaluated using automatic evaluation metrics:
BLEU (Papineni et al., 2002), TER (Snover et al.,
2006), PER (Tillmann et al., 1997), and CDER
(Leusch et al., 2006). BLEU scores are reported as
percentage and all error rates are reported as one
minus the original value, also as percentage, so
that all metrics are in the 0-100 range, and higher
scores indicate better translations.

The main reason for not conducting human
evaluation, as it happens in the standard Trans-
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original normalized truecased normalized lowercased
ID BLEU BLEU 1-TER 1-PER 1-CDER BLEU 1-TER 1-PER 1-CDER

Czech→English
CUNI 29.64 29.79±1.07 47.45±1.15 61.64±1.06 52.18±0.98 31.68±1.14 49.84±1.10 64.38±1.06 54.10±0.96
CUNI 22.44 22.57±0.95 41.43±1.16 55.46±1.09 46.42±0.96 32.34±1.12 50.24±1.20 65.07±1.10 54.42±0.96

UEDIN 36.65 36.87±1.23 54.35±1.19 67.16±1.00 57.61±1.01 38.02±1.24 56.14±1.17 69.24±1.01 58.96±0.96
UM-DA 37.62 37.79±1.26 54.55±1.20 68.29±0.88 57.28±1.03 38.81±1.28 56.04±1.20 70.06±0.82 58.45±1.05

CUNI 22.92 23.06±0.97 42.49±1.10 56.10±1.12 47.13±0.95 33.18±1.15 51.48±1.15 66.00±1.03 55.30±0.96
CUNI 22.69 22.84±0.98 42.21±1.14 56.01±1.11 46.79±0.94 32.84±1.13 51.10±1.11 65.79±1.07 54.81±0.96

UM-WDA 37.35 37.53±1.26 54.39±1.19 68.21±0.83 57.16±1.07 38.61±1.27 55.92±1.17 70.02±0.81 58.36±1.07
ONLINE 39.57±1.21 58.24±1.14 70.16±0.78 60.04±1.02 40.62±1.23 59.72±1.11 71.94±0.74 61.26±1.01

German→English
CUNI 28.20 28.34±1.12 46.66±1.13 61.53±1.03 50.57±0.93 30.69±1.19 48.91±1.16 64.12±1.04 52.52±0.95
CUNI 28.85 28.99±1.15 47.12±1.15 61.98±1.07 50.72±0.98 31.37±1.21 49.29±1.13 64.53±1.05 52.64±0.98

POSTECH 25.92 25.99±1.06 43.66±1.14 59.62±0.92 47.13±0.90 26.97±1.06 45.13±1.12 61.53±0.89 48.37±0.88
UEDIN 37.31 37.53±1.19 55.72±1.14 68.82±0.99 58.35±0.95 38.60±1.25 57.18±1.12 70.46±0.98 59.53±0.94
UM-DA 35.71 35.81±1.23 53.08±1.16 66.82±0.98 55.91±0.96 36.55±1.27 54.01±1.13 68.05±0.97 56.78±0.95

CUNI 30.58 30.71±1.10 48.68±1.09 63.19±1.08 52.72±0.94 33.14±1.19 50.98±1.06 65.88±1.04 54.74±0.94
CUNI 30.22 30.32±1.12 47.71±1.18 62.20±1.10 52.17±0.91 32.75±1.20 50.00±1.14 64.87±1.06 54.19±0.92

UM-WDA 32.70 32.88±1.19 49.60±1.18 63.74±1.01 53.50±0.96 33.95±1.23 51.05±1.19 65.54±0.98 54.73±0.96
ONLINE 41.18±1.24 59.33±1.09 70.95±0.92 61.92±1.01 42.29±1.23 60.76±1.08 72.51±0.88 63.06±0.96

French→English
CUNI 34.42 34.55±1.20 52.24±1.17 64.52±1.03 56.48±0.91 36.52±1.23 54.35±1.12 67.07±1.00 58.34±0.91
CUNI 33.67 33.59±1.16 50.39±1.23 61.75±1.16 56.74±0.97 35.55±1.21 52.55±1.26 64.45±1.13 58.63±0.91

DCU-B 44.85 45.01±1.24 62.57±1.12 74.11±0.78 64.33±0.99 46.12±1.26 64.04±1.06 75.84±0.74 65.55±0.94
UEDIN 46.44 46.68±1.26 64.12±1.16 74.47±0.87 66.40±0.96 48.01±1.29 65.70±1.15 76.30±0.86 67.76±0.91
UM-DA 47.08 47.22±1.33 64.08±1.16 75.41±0.88 66.15±0.96 48.23±1.31 65.36±1.10 76.95±0.89 67.18±0.93

CUNI 34.74 34.89±1.12 52.39±1.16 63.76±1.09 57.29±0.94 36.84±1.17 54.56±1.13 66.43±1.07 59.14±0.90
CUNI 35.04 34.99±1.18 52.11±1.24 63.24±1.09 57.51±0.97 37.04±1.18 54.38±1.17 66.02±1.05 59.55±0.93

UM-WDA 43.84 44.06±1.32 61.14±1.18 73.13±0.87 63.09±1.00 45.17±1.36 62.63±1.15 74.94±0.84 64.37±0.99
ONLINE 46.99±1.35 64.31±1.12 76.07±0.78 66.09±1.00 47.99±1.33 65.65±1.07 77.65±0.75 67.20±0.96

English→Czech
CUNI 17.36 17.65±0.96 37.17±1.02 49.13±0.98 40.31±0.95 18.75±0.96 38.32±1.02 50.82±0.91 41.39±0.94
CUNI 16.64 16.89±0.93 36.57±1.05 48.79±0.98 39.46±0.90 17.94±0.96 37.74±1.03 50.50±0.97 40.59±0.91

UEDIN 23.45 23.74±1.00 44.20±1.10 55.38±0.88 46.23±0.99 24.20±1.00 44.92±1.08 56.38±0.90 46.78±1.00
UM-DA 22.61 22.72±0.98 42.73±1.16 54.12±0.93 44.73±1.01 23.12±1.01 43.41±1.14 55.11±0.93 45.32±1.02

CUNI 20.56 20.84±1.01 39.98±1.09 51.98±0.99 42.86±1.00 22.03±1.05 41.19±1.08 53.66±0.97 43.93±1.01
CUNI 19.50 19.72±0.97 38.09±1.10 50.12±1.06 41.50±0.96 20.91±1.02 39.26±1.12 51.79±1.04 42.59±0.96

UM-WDA 22.14 22.33±0.96 42.30±1.11 53.89±0.92 44.48±1.01 22.72±0.97 43.02±1.09 54.89±0.95 45.08±0.99
ONLINE 33.45±1.28 51.64±1.28 61.82±1.10 53.97±1.18 34.02±1.31 52.35±1.22 62.84±1.08 54.52±1.18

English→German
CUNI 12.52 12.64±0.77 29.84±0.99 45.38±1.14 34.69±0.81 16.63±0.91 33.63±1.07 50.03±1.24 38.43±0.87
CUNI 12.42 12.53±0.77 29.02±1.05 44.27±1.16 34.62±0.78 16.41±0.91 32.87±1.08 48.99±1.21 38.37±0.86

POSTECH 15.46 15.59±0.91 34.41±1.01 49.00±0.83 37.11±0.90 15.98±0.92 34.98±1.00 49.94±0.81 37.60±0.87
UEDIN 20.88 21.01±1.03 40.03±1.08 55.54±0.91 42.95±0.90 21.40±1.03 40.55±1.08 56.33±0.92 43.41±0.90
UM-DA 20.89 21.09±1.07 40.76±1.03 55.45±0.89 43.02±0.93 21.52±1.08 41.31±1.01 56.38±0.90 43.58±0.91

CUNI 14.29 14.42±0.81 31.82±1.03 47.01±1.13 36.81±0.79 18.87±0.90 35.76±1.11 51.76±1.17 40.65±0.87
CUNI 13.44 13.58±0.75 30.37±1.03 45.80±1.14 35.80±0.76 17.84±0.89 34.41±1.13 50.75±1.18 39.85±0.78

UM-WDA 18.77 18.91±1.00 37.92±1.02 53.59±0.85 40.90±0.86 19.30±1.02 38.42±1.01 54.40±0.85 41.34±0.86
ONLINE 23.92±1.06 44.33±0.97 57.47±0.80 46.35±0.91 24.29±1.07 44.83±0.98 58.20±0.80 46.71±0.92

English→French
CUNI 30.30 30.67±1.11 46.59±1.09 59.83±1.04 50.51±0.93 32.06±1.12 48.01±1.09 61.66±1.00 51.83±0.94
CUNI 29.35 29.71±1.10 45.84±1.07 58.81±1.04 50.00±0.96 31.02±1.10 47.24±1.09 60.57±1.02 51.31±0.94

LIMSI 40.14 43.54±1.22 59.70±1.04 69.45±0.86 61.35±0.96 44.04±1.22 60.32±1.03 70.20±0.85 61.90±0.94
LIMSI 38.83 42.21±1.13 58.88±1.01 68.70±0.81 60.59±0.93 42.69±1.12 59.53±0.98 69.50±0.80 61.17±0.91

UEDIN 40.74 44.24±1.16 60.66±1.07 70.35±0.82 62.28±0.95 44.85±1.17 61.43±1.05 71.27±0.81 62.94±0.91
UM-DA 41.24 41.68±1.12 58.72±1.06 69.37±0.78 60.12±0.95 42.16±1.11 59.39±1.05 70.21±0.77 60.71±0.92

CUNI 32.23 32.61±1.09 48.48±1.08 61.13±1.01 52.24±0.93 34.08±1.10 49.93±1.11 62.92±0.99 53.65±0.92
CUNI 32.45 32.84±1.06 48.68±1.06 61.32±0.98 52.35±0.94 34.22±1.07 50.09±1.04 63.04±0.96 53.67±0.91

UM-WDA 40.78 41.16±1.13 58.20±0.99 68.93±0.84 59.64±0.94 41.79±1.12 59.10±0.96 70.01±0.84 60.39±0.91
ONLINE 58.63±1.26 70.70±1.12 78.22±0.81 71.89±0.96 59.27±1.26 71.50±1.10 79.16±0.81 72.63±0.94

Table 25: Official results of translation quality evaluation in the medical summary translation subtask.

46



original normalized truecased normalized lowercased
ID BLEU BLEU 1-TER 1-PER 1-CDER BLEU 1-TER 1-PER 1-CDER

Czech→English
CUNI 10.71 10.57±3.42 15.72±2.77 23.37±3.03 18.68±2.42 30.13±4.85 53.38±3.01 62.53±2.84 55.44±2.87
CUNI 9.92 9.78±3.04 16.84±2.84 23.80±3.08 19.85±2.40 28.21±4.56 54.15±3.04 62.56±2.99 55.91±2.79

UEDIN 24.66 24.68±4.52 39.88±3.05 49.97±3.29 41.81±2.80 28.25±4.94 45.31±3.14 55.66±3.06 46.67±2.77
CUNI 12.00 11.86±3.42 18.49±2.74 24.67±2.85 21.08±2.29 31.91±4.81 57.61±3.13 65.02±2.99 59.24±2.69
CUNI 10.54 10.39±3.48 18.86±2.48 26.65±2.05 20.53±2.08 32.39±5.45 56.79±3.02 65.52±2.26 57.96±2.56

ONLINE 28.88±4.96 47.31±3.35 55.19±3.21 49.88±2.89 35.33±5.20 55.80±3.20 64.05±2.97 57.94±2.85
German→English

CUNI 10.90 10.74±3.41 18.89±2.39 26.09±2.00 20.29±2.07 32.15±5.23 55.56±2.90 63.68±2.34 56.45±2.62
CUNI 10.71 10.55±3.47 18.40±2.35 25.45±2.04 19.84±2.07 32.06±5.19 54.85±2.91 62.87±2.39 55.52±2.61

POSTECH 18.06 17.97±4.38 28.57±3.30 40.38±2.77 31.79±2.80 21.99±4.65 35.76±3.35 47.84±2.82 38.84±2.92
POSTECH 17.99 17.88±4.72 29.79±3.04 41.15±2.48 32.49±2.63 24.41±4.83 41.72±3.19 53.33±2.55 44.06±2.88

UEDIN 23.33 23.39±4.37 38.55±3.65 48.21±3.43 40.75±3.05 27.17±4.63 43.87±3.52 53.76±3.48 45.72±3.03
CUNI 10.54 10.39±3.48 18.86±2.48 26.65±2.05 20.53±2.08 32.39±5.45 56.79±3.02 65.52±2.26 57.96±2.56
CUNI 8.75 8.49±3.60 19.10±2.27 24.98±1.95 19.95±2.02 30.00±5.59 56.07±2.92 62.92±2.32 56.27±2.56

ONLINE 19.97±4.46 37.03±3.26 43.91±3.22 40.95±2.93 33.86±4.87 53.28±3.28 60.86±3.22 56.33±2.98
French→English

CUNI 13.90 13.79±3.61 18.49±2.55 28.35±2.81 20.36±2.20 34.97±5.34 59.54±2.94 72.30±2.63 58.86±2.76
CUNI 12.10 11.95±3.41 17.23±2.57 27.12±2.88 19.15±2.28 33.74±5.01 58.95±2.96 71.25±2.76 58.20±2.81

DCU-Q 30.85 31.24±5.08 58.88±2.97 67.94±2.62 59.19±2.62 36.88±5.07 66.38±2.85 75.86±2.37 66.29±2.55
DCU-Q 26.51 26.16±4.40 48.02±3.72 57.34±3.24 53.56±2.79 28.61±4.52 53.65±3.73 63.51±3.21 59.07±2.79
UEDIN 27.20 27.60±3.98 38.54±3.22 48.81±3.26 39.77±2.95 32.23±4.27 43.66±3.20 54.31±3.17 44.53±2.79

CUNI 14.03 14.00±3.30 20.11±2.38 29.00±2.71 21.62±2.22 38.98±5.08 62.90±2.87 74.49±2.45 62.12±2.64
CUNI 13.38 13.16±3.52 17.79±2.56 28.84±2.81 19.17±2.23 35.00±5.20 59.52±2.98 73.08±2.57 58.41±2.68

ONLINE 32.96±5.04 53.68±3.21 64.27±2.80 54.40±2.66 38.09±5.52 61.44±3.08 72.59±2.61 61.60±2.78
English→Czech

CUNI 8.37 8.00±3.65 17.74±2.23 26.46±1.96 19.48±2.10 19.49±4.60 41.53±2.94 51.34±2.51 42.54±2.74
CUNI 9.04 8.75±3.64 18.25±2.27 26.97±1.92 19.69±2.11 21.46±5.05 42.36±3.09 51.99±2.40 43.18±2.68

UEDIN 12.57 12.40±3.61 21.15±2.96 33.56±2.80 22.30±2.67 14.06±3.80 24.92±2.90 37.85±2.72 25.58±2.70
UEDIN 6.64 6.21±4.73 -2.35±3.06 5.95±3.48 -0.97±3.12 14.35±3.52 14.51±3.19 24.96±3.50 15.11±3.10

CUNI 9.06 8.64±3.82 19.92±2.24 26.97±1.94 20.82±2.06 22.42±5.24 44.89±2.94 52.89±2.40 45.36±2.78
CUNI 8.49 8.01±6.05 18.13±2.28 25.19±1.86 19.19±2.01 21.04±4.80 42.66±2.87 50.34±2.47 43.30±2.74

ONLINE 21.09±4.60 48.56±2.82 54.72±2.51 48.30±2.83 24.37±4.80 51.93±2.74 58.10±2.50 51.62±2.80
English→German

CUNI 10.17 10.01±3.92 26.48±3.24 36.71±3.37 29.26±2.96 13.02±4.17 31.96±3.41 42.39±3.21 34.61±2.95
CUNI 9.98 9.69±3.94 26.16±3.19 35.50±3.23 28.86±2.94 12.90±4.28 31.75±3.33 41.24±3.21 34.38±3.05

POSTECH 13.43 13.01±5.91 26.38±3.09 35.75±3.16 27.86±2.82 15.05±5.71 30.45±3.10 39.89±3.14 31.79±3.00
POSTECH 13.41 13.15±5.21 22.18±3.09 30.89±3.31 24.17±3.06 14.96±5.15 26.13±3.19 34.92±3.40 27.98±3.12

UEDIN 10.45 10.14±3.86 23.44±3.43 34.55±3.34 25.46±3.17 11.91±4.42 27.91±3.45 39.08±3.42 29.63±3.31
CUNI 8.91 7.72±6.48 30.05±3.22 40.65±2.71 31.91±2.88 13.66±5.37 35.51±3.28 46.12±2.74 37.27±3.01
CUNI 9.14 8.69±6.44 27.66±3.31 37.95±3.45 31.00±2.82 14.03±5.92 33.53±3.45 44.03±3.53 36.73±3.00

ONLINE 20.07±6.06 41.07±3.23 47.41±2.86 41.61±3.02 21.67±6.23 43.78±3.23 50.18±2.95 44.26±3.06
English→French

CUNI 13.12 12.92±2.84 21.95±2.41 33.19±2.09 23.70±2.24 28.42±3.98 51.43±2.90 63.74±2.35 52.64±2.58
CUNI 12.80 12.65±2.81 19.16±2.61 31.61±2.21 21.91±2.32 27.52±4.05 47.47±3.08 61.43±2.37 49.82±2.72

DCU-Q 27.69 27.84±4.11 48.97±3.06 60.90±2.55 51.84±2.83 28.98±4.16 51.73±3.10 63.84±2.47 54.43±2.76
UEDIN 20.16 21.76±3.42 31.66±4.23 44.37±4.13 44.29±2.73 23.25±3.49 35.38±4.19 48.52±4.07 47.94±2.75

CUNI 13.78 13.57±3.00 21.92±2.51 33.47±2.03 24.16±2.32 30.07±4.10 51.12±3.08 63.61±2.45 52.96±2.67
CUNI 15.27 15.24±3.12 23.58±2.54 34.39±2.54 25.79±2.32 31.40±4.15 53.60±2.96 65.39±2.57 55.47±2.69

ONLINE 28.93±3.66 49.20±3.08 60.85±2.69 51.68±2.78 30.88±3.66 52.25±3.08 64.06±2.62 54.59±2.68
Table 26: Official results of translation quality evaluation in the medical query translation subtask.

source lang. ID P@5 P@10 NDCG@5 NDCG@10 MAP Rprec bpref rel
Czech→English CUNI 0.3280 0.3340 0.2873 0.2936 0.2217 0.2362 0.3473 1461
German→English CUNI 0.2800 0.3000 0.2467 0.2630 0.2057 0.2077 0.3310 1426
French→English CUNI 0.3280 0.3380 0.2811 0.2882 0.2206 0.2284 0.3504 1481

DCU-Q 0.3480 0.3460 0.3060 0.3072 0.2252 0.2358 0.3659 1524
UEDIN 0.4440 0.4300 0.3793 0.3826 0.2843 0.2935 0.3936 1544

English (monolingual) 0.4600 0.4700 0.4091 0.4205 0.3035 0.3198 0.3858 1638
Table 27: Official results of retrieval evaluation in the query translation subtask.
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lation Task, was the lack of domain expertise of
prospective raters. While in the standard task, the
only requirement for the raters was to be a na-
tive speaker of the target language, in the Med-
ical Translation Task, a very good knowledge of
the domain would be necessary to provide reli-
able judgements and the raters with such an ex-
pertise (medical doctors and native speakers) were
not available.

The complete results of the task are presented
in Table 25 (for summary translation) and Ta-
bles 26 and 27 (for query translation). Partici-
pant IDs given in bold indicate primary submis-
sions, IDs in normal font refer to contrastive sub-
missions. The first section for each translation di-
rection (white background) refers to constrained
submissions and the second one (light-gray back-
ground) to unconstrained submissions. The col-
umn denoted as “original” contains BLEU scores
as reported by the Matrix submission system ob-
tained on the original submitted translations. Due
to punctuation inconsistency in the original refer-
ence translations, we decided to perform punctu-
ation normalization before calculating the official
scores. The columns denoted as “normalized true-
cased” contain scores obtained on the submitted
translations after punctuation normalization and
the columns denoted as “normalized lowercased”
contain scores obtained after punctuation normal-
ization and lowercasing. The normalization script
is available in the package with summary transla-
tion test data. The confidence intervals were ob-
tained by bootstrap resampling with a confidence
level of 95%. Figures in bold denote the best con-
strained system and, if its score is higher, the best
unconstrained system for each translation direc-
tion and each metric. For comparison, we also
present results of a major on-line translation sys-
tem (denoted as ONLINE).

The results of the extrinsic evaluation of query
translation submissions are given in 27. We used
the CLEF 2013 eHealth Task 3 test collection con-
taining about 1 million web pages (in English),
50 test queries (originally in English and trans-
lated to Czech, German, and French), and their
relevance assessments. Some of the participants
of the WMT Medical Task (three teams with five
submissions in total) submitted translations of the
queries (from Czech, German, and French) into
English and these translations were used to query
the CLEF 2013 eHealth Task 3 test collection us-

ing a state-of-the-art system based on a BM25
model, described in Pecina et al. (2014). Origi-
nally, we asked for 10 best translations for each
query, but only the best one were used for the
evaluation. The results are provided in terms of
standard IR evaluation measures: precision at a
cut-off of 5 and 10 documents (P@5, P@10),
normalized discounted cumulative gain (Järvelin
and Kekäläinen, 2002) at 5 and 10 documents
(NDCG@5, NDCG@10), mean average precision
(MAP) (Voorhees and Harman, 2005), precision
reached after R documents retrieved, where R in-
dicates the number of the relevant documents for
each query in the entire collection (Rprec), binary
preference (bpref) (Buckley and Voorhees, 2004),
and number or relevant documents retrieved (rel).
The cross-lingual results are also compared with
the monolingual one (obtained by using the refer-
ence (English) translations of the test topics) to see
how the system would perform if the queries were
translated perfectly.

5.6 Discussion and Conclusion

Both the subtasks turned out to be quite challeng-
ing not only because of the specific domain – in
summary sentences, we can observe much higher
density of terminology than in ordinary sentences;
the queries, which are also rich in terminology, do
not form sentences at all.

Most submissions were based on systems par-
ticipating in the standard Translation Task and
trained on the provided data or its subsets CUNI
provided baseline systems for all language pairs in
both subtasks, which turned to be relatively strong
for the query translation task, especially in trans-
lation to English, but only in terms of scores ob-
tained on normalized and lowercased translations
since their truecasing component did not perform
well.

In the summary translation subtask, the best
overall results were achieved by the UEDIN team
which won for DE–EN, EN–CS, and EN–FR, fol-
lowed by the UM-DA team, which performed on
par with UEDIN in all other translation.

The unconstrained submissions in almost all
cases did not outperform the results of the con-
strained submissions. Some improvements were
observed in the query translations subtasks by the
CUNI’s unconstrained system with language mod-
els trained on larger in-domain data.

The ONLINE system outperforms all other sub-
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missions with only two exceptions – the UM-DA’s
and UEDIN’s systems for the summary translation
in the FR–EN direction, though the score differ-
ences are within the 95% confidence interval.

In the query translation subtask, DCU-Q built
a system designed specifically for terminology
translation between French and English and out-
performed all other participants in translation into
English; however, the confidence intervals in the
query translation task are much wider and most of
the differences in scores of the automatic metrics
are not statistically significant.

The extrinsic evaluation in the cross-lingual in-
formation retrieval was conducted for translations
into English only. CUNI provided the baselines
for all directions, but other submissions were done
for FR–EN only. Here, the winner is UEDIN, who
outperformed both CUNI and DCU-Q, and their
scores are very close to those obtained using the
reference English translations.
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Wäschle, K. and Riezler, S. (2012). Analyz-
ing parallelism and domain similarities in the
MAREC patent corpus. In Salampasis, M. and
Larsen, B., editors, Multidisciplinary Informa-
tion Retrieval, volume 7356 of Lecture Notes
in Computer Science, pages 12–27. Springer
Berlin Heidelberg.

Williams, P., Sennrich, R., Nadejde, M., Huck, M.,
Hasler, E., and Koehn, P. (2014). Edinburghs
syntax-based systems at wmt 2014. In Proceed-
ings of the Ninth Workshop on Statistical Ma-
chine Translation, Baltimore, Maryland, USA.
Association for Computational Linguistics.
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A Pairwise System Comparisons by Human Judges

Tables 28–37 show pairwise comparisons between systems for each language pair. The numbers in each
of the tables’ cells indicate the percentage of times that the system in that column was judged to be better
than the system in that row, ignoring ties. Bolding indicates the winner of the two systems.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine
differences (rather than differences that are attributable to chance). In the following tables ? indicates sta-
tistical significance at p ≤ 0.10, † indicates statistical significance at p ≤ 0.05, and ‡ indicates statistical
significance at p ≤ 0.01, according to the Sign Test.

Each table contains final rows showing how likely a system would win when paired against a randomly
selected system (the expected win ratio score) and the rank range according the official method used in
Table 8. Gray lines separate clusters based on non-overlapping rank ranges.
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UEDIN-UNCNSTR .50 – .51 .48 .42‡ .37‡ .42‡ .39‡ .31‡ .26‡

CU-BOJAR .58‡ .49 – .49 .45‡ .44‡ .40‡ .36‡ .32‡ .24‡
CU-FUNKY .52 .52 .51 – .48 .47† .44‡ .34‡ .33‡ .26‡
ONLINE-B .56‡ .58‡ .55‡ .52 – .48 .47† .41‡ .31‡ .26‡

UEDIN-PHRASE .57‡ .63‡ .56‡ .53† .52 – .48 .44‡ .32‡ .27‡
ONLINE-A .59‡ .58‡ .60‡ .56‡ .53† .52 – .45‡ .37‡ .30‡
CU-TECTO .65‡ .61‡ .64‡ .66‡ .59‡ .56‡ .55‡ – .42‡ .30‡

COMMERCIAL1 .70‡ .69‡ .68‡ .67‡ .69‡ .68‡ .63‡ .58‡ – .40‡
COMMERCIAL2 .76‡ .74‡ .76‡ .74‡ .74‡ .73‡ .70‡ .70‡ .60‡ –

score .60 .59 .58 .57 .54 .52 .50 .44 .36 .28
rank 1-3 1-3 1-4 3-4 5-6 5-6 7 8 9 10

Table 29: Head to head comparison, ignoring ties, for English-Czech systems
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ONLINE-B – .46 .40‡ .41‡ .35‡ .42‡ .38‡ .35‡ .40‡ .31‡ .33‡ .32‡ .22‡
UEDIN-SYNTAX .54 – .51 .47 .47 .45 .45? .39‡ .36‡ .38‡ .35‡ .34‡ .27‡

ONLINE-A .60‡ .49 – .42† .44† .51 .41‡ .38‡ .44? .42‡ .38‡ .31‡ .20‡
LIMSI-KIT .59‡ .53 .58† – .55 .53 .31‡ .45? .39‡ .41‡ .37‡ .35‡ .29‡

EU-BRIDGE .65‡ .53 .56† .45 – .45 .44? .48 .40‡ .37‡ .39‡ .37‡ .30‡
UEDIN-PHRASE .58‡ .55 .49 .47 .55 – .48 .39‡ .34‡ .45? .40‡ .40‡ .34‡

KIT .62‡ .55? .59‡ .69‡ .56? .52 – .45? .41‡ .45? .47 .40‡ .31‡
RWTH .65‡ .61‡ .62‡ .55? .52 .61‡ .55? – .54 .44† .44† .38‡ .37‡

DCU-ICTCAS .60‡ .64‡ .56? .61‡ .60‡ .66‡ .59‡ .46 – .51 .49 .46? .40‡
CMU .69‡ .62‡ .58‡ .59‡ .63‡ .55? .55? .56† .49 – .53 .42‡ .43†

RBMT4 .67‡ .65‡ .62‡ .63‡ .61‡ .60‡ .53 .56† .51 .47 – .51 .37‡
RBMT1 .68‡ .66‡ .69‡ .65‡ .63‡ .60‡ .60‡ .62‡ .54? .58‡ .49 – .38‡

ONLINE-C .78‡ .73‡ .80‡ .71‡ .70‡ .66‡ .69‡ .63‡ .60‡ .57† .63‡ .62‡ –
score .63 .58 .58 .55 .55 .54 .49 .47 .45 .44 .44 .40 .32
rank 1 2-3 2-3 4-6 4-6 4-6 7-8 7-8 9-11 9-11 9-11 12 13

Table 30: Head to head comparison, ignoring ties, for German-English systems
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UEDIN-SYNTAX – .55? .46? .45? .46? .44† .41‡ .45† .43‡ .41‡ .38‡ .38‡ .36‡ .33‡ .38‡ .30‡ .30‡ .25‡
ONLINE-B .45? – .50 .48 .50 .47 .43† .46? .41‡ .45† .39‡ .39‡ .37‡ .32‡ .35‡ .34‡ .30‡ .29‡
ONLINE-A .54? .50 – .44† .52 .50 .45? .43‡ .43† .42‡ .39‡ .41‡ .42‡ .42‡ .37‡ .44† .38‡ .33‡

PROMT-HYBRID .55? .52 .56† – .45? .47 .47 .46? .50 .44† .42‡ .40‡ .41‡ .38‡ .39‡ .39‡ .33‡ .34‡
PROMT-RULE .54? .50 .48 .55? – .51 .47 .47 .45? .38‡ .42‡ .40‡ .43† .41‡ .43† .38‡ .35‡ .29‡

UEDIN-STANFORD .56† .53 .50 .53 .49 – .48 .50 .47 .44† .46 .36‡ .36‡ .36‡ .36‡ .35‡ .30‡ .32‡
EU-BRIDGE .59‡ .57† .55? .53 .53 .52 – .46? .43† .52 .42‡ .42‡ .45? .35‡ .36‡ .41‡ .38‡ .30‡

RBMT4 .55† .54? .57‡ .54? .53 .50 .54? – .53 .49 .44† .49 .50 .47 .40‡ .42‡ .38‡ .40‡
UEDIN-PHRASE .57‡ .59‡ .57† .50 .55? .53 .57† .47 – .50 .55? .47 .45? .44† .43† .42‡ .37‡ .34‡

RBMT1 .59‡ .55† .58‡ .56† .62‡ .56† .48 .51 .50 – .47 .47 .45† .47 .43‡ .42‡ .38‡ .41‡
KIT .62‡ .61‡ .61‡ .58‡ .58‡ .54 .58‡ .56† .45? .53 – .47 .49 .46 .43‡ .48 .34‡ .37‡

STANFORD-UNC .62‡ .61‡ .59‡ .60‡ .60‡ .64‡ .58‡ .51 .53 .53 .53 – .48 .47 .45† .45? .39‡ .41‡
CIMS .64‡ .63‡ .58‡ .59‡ .57† .64‡ .55? .50 .55? .55† .51 .52 – .53 .42‡ .52 .47 .42‡

STANFORD .67‡ .68‡ .58‡ .62‡ .59‡ .64‡ .65‡ .53 .56† .53 .54 .53 .47 – .53 .42‡ .39‡ .48
UU .62‡ .65‡ .62‡ .61‡ .57† .64‡ .64‡ .60‡ .57† .57‡ .57‡ .55† .58‡ .47 – .46? .45† .38‡

ONLINE-C .70‡ .66‡ .56† .61‡ .62‡ .65‡ .59‡ .58‡ .58‡ .58‡ .52 .55? .48 .58‡ .54? – .48 .47
IMS-TTT .70‡ .70‡ .62‡ .67‡ .65‡ .70‡ .62‡ .62‡ .63‡ .62‡ .66‡ .61‡ .53 .61‡ .55† .52 – .49

UU-DOCENT .75‡ .71‡ .67‡ .66‡ .71‡ .68‡ .70‡ .60‡ .66‡ .59‡ .63‡ .59‡ .58‡ .52 .62‡ .53 .51 –
score .60 .59 .56 .56 .56 .56 .54 .51 .51 .50 .48 .47 .46 .44 .43 .42 .38 .37
rank 1-2 1-2 3-6 3-6 3-6 3-6 7 8-10 8-10 8-10 11-12 11-13 12-14 13-15 14-16 15-16 17-18 17-18

Table 31: Head to head comparison, ignoring ties, for English-German systems
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UEDIN-PHRASE – .48 .48 .45‡ .43‡ .28‡ .28‡ .19‡
KIT .52 – .54† .48 .44‡ .31‡ .29‡ .21‡

ONLINE-B .52 .46† – .51 .47 .31‡ .30‡ .24‡
STANFORD .55‡ .52 .49 – .46† .34‡ .30‡ .23‡
ONLINE-A .57‡ .56‡ .53 .54† – .32‡ .29‡ .21‡

RBMT1 .72‡ .69‡ .69‡ .66‡ .68‡ – .42‡ .33‡
RBMT4 .72‡ .71‡ .70‡ .70‡ .71‡ .58‡ – .39‡

ONLINE-C .81‡ .79‡ .76‡ .77‡ .79‡ .67‡ .61‡ –
score .63 .60 .59 .58 .57 .40 .35 .25
rank 1 2-4 2-4 2-4 5 6 7 8

Table 32: Head to head comparison, ignoring ties, for French-English systems
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ONLINE-B – .46? .48 .46? .50 .41‡ .39‡ .39‡ .37‡ .38‡ .37‡ .35‡ .27‡
UEDIN-PHRASE .54? – .50 .47 .46 .46? .42‡ .41‡ .46? .42‡ .35‡ .34‡ .33‡

KIT .52 .50 – .53 .51 .50 .43‡ .49 .41‡ .42‡ .35‡ .37‡ .29‡
MATRAN .54? .53 .47 – .49 .50 .43‡ .43‡ .38‡ .48 .40‡ .34‡ .32‡

MATRAN-RULES .50 .54 .49 .51 – .53 .40‡ .45† .46? .42‡ .44† .40‡ .34‡
ONLINE-A .59‡ .54? .50 .50 .47 – .44† .49 .47 .45? .42‡ .37‡ .34‡

UU-DOCENT .61‡ .58‡ .57‡ .57‡ .60‡ .56† – .43‡ .52 .46? .39‡ .44† .33‡
PROMT-HYBRID .61‡ .59‡ .51 .57‡ .55† .51 .57‡ – .50 .41‡ .46? .44† .35‡

UA .63‡ .54? .59‡ .62‡ .54? .53 .48 .50 – .49 .46? .43‡ .34‡
PROMT-RULE .62‡ .58‡ .58‡ .52 .58‡ .55? .54? .59‡ .51 – .47 .39‡ .37‡

RBMT1 .63‡ .65‡ .65‡ .60‡ .56† .58‡ .61‡ .54? .54? .53 – .46? .45†
RBMT4 .65‡ .66‡ .63‡ .66‡ .60‡ .63‡ .56† .56† .57‡ .61‡ .54? – .45?

ONLINE-C .73‡ .67‡ .71‡ .67‡ .66‡ .66‡ .67‡ .65‡ .66‡ .63‡ .55† .55? –
score .59 .57 .55 .55 .54 .53 .49 .49 .48 .47 .43 .40 .34
rank 1 2-4 2-5 2-5 4-6 4-6 7-9 7-10 7-10 8-10 11 12 13

Table 33: Head to head comparison, ignoring ties, for English-French systems
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ONLINE-B – .36‡ .33‡ .37‡ .31‡ .21‡ .20‡ .14‡ .00
ONLINE-A .64‡ – .48 .47? .44‡ .31‡ .30‡ .24‡ .12‡

UEDIN-SYNTAX .67‡ .52 – .47 .46† .33‡ .29‡ .24‡ .12‡
CMU .63‡ .53? .53 – .47 .37‡ .31‡ .26‡ .11‡

UEDIN-PHRASE .69‡ .56‡ .54† .53 – .40‡ .33‡ .25‡ .11‡
AFRL .79‡ .69‡ .67‡ .63‡ .60‡ – .53 .40‡ .16‡

IIT-BOMBAY .80‡ .70‡ .71‡ .69‡ .67‡ .47 – .44‡ .19‡
DCU-LINGO24 .86‡ .76‡ .76‡ .74‡ .75‡ .60‡ .56‡ – .19‡

IIIT-HYDERABAD .94‡ .88‡ .88‡ .89‡ .89‡ .84‡ .81‡ .81‡ –
score .75 .62 .61 .60 .57 .44 .41 .34 .13
rank 1 2-3 2-4 3-4 5 6-7 6-7 8 9

Table 34: Head to head comparison, ignoring ties, for Hindi-English systems
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ONLINE-B – .49 .28‡ .29‡ .27‡ .23‡ .22‡ .20‡ .17‡ .12‡ .13‡ .13‡
ONLINE-A .51 – .31‡ .29‡ .27‡ .25‡ .20‡ .20‡ .21‡ .19‡ .16‡ .15‡

UEDIN-UNCNSTR .72‡ .69‡ – .44† .49 .39‡ .40‡ .34‡ .39‡ .29‡ .30‡ .27‡
UEDIN-PHRASE .71‡ .71‡ .56† – .48 .45† .44† .39‡ .37‡ .31‡ .31‡ .32‡

CU-MOSES .73‡ .73‡ .51 .52 – .47 .42‡ .40‡ .45? .36‡ .35‡ .33‡
IIT-BOMBAY .77‡ .75‡ .61‡ .55† .53 – .50 .47 .45† .41‡ .40‡ .36‡

IPN-UPV-CNTXT .78‡ .80‡ .60‡ .56† .58‡ .50 – .51 .41‡ .40‡ .40‡ .37‡
DCU-LINGO24 .80‡ .80‡ .66‡ .61‡ .60‡ .53 .49 – .52 .41‡ .41‡ .39‡

IPN-UPV-NODEV .83‡ .79‡ .61‡ .63‡ .55? .55† .59‡ .48 – .46? .44† .38‡
MANAWI-H1 .88‡ .81‡ .71‡ .69‡ .64‡ .59‡ .60‡ .59‡ .54? – .35‡ .34‡

MANAWI .87‡ .84‡ .70‡ .69‡ .65‡ .60‡ .60‡ .59‡ .56† .65‡ – .39‡
MANAWI-RMOOV .87‡ .85‡ .73‡ .68‡ .67‡ .64‡ .63‡ .61‡ .62‡ .66‡ .61‡ –

score .77 .75 .57 .54 .52 .47 .46 .43 .42 .38 .35 .31
rank 1 2 3 4-5 4-5 6-7 6-7 8-9 8-9 10-11 10-11 12

Table 35: Head to head comparison, ignoring ties, for English-Hindi systems
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AFRL-PE – .42‡ .40‡ .39‡ .39‡ .41‡ .35‡ .39‡ .28‡ .26‡ .26‡ .29‡ .21‡
ONLINE-B .58‡ – .42‡ .43‡ .45† .45† .42‡ .43‡ .46? .37‡ .33‡ .29‡ .31‡
ONLINE-A .60‡ .58‡ – .50 .45† .51 .47 .45† .42‡ .40‡ .33‡ .32‡ .30‡

PROMT-HYBRID .61‡ .57‡ .50 – .47 .45? .49 .44† .43‡ .44† .39‡ .31‡ .27‡
PROMT-RULE .61‡ .55† .55† .53 – .46? .47 .49 .48 .42‡ .36‡ .34‡ .30‡

UEDIN-PHRASE .59‡ .55† .49 .55? .54? – .49 .50 .47 .44† .32‡ .37‡ .29‡
YANDEX .65‡ .58‡ .53 .51 .53 .51 – .48 .50 .43‡ .34‡ .36‡ .34‡

ONLINE-G .61‡ .57‡ .55† .56† .51 .50 .52 – .48 .43‡ .39‡ .35‡ .30‡
AFRL .72‡ .54? .58‡ .57‡ .52 .53 .50 .52 – .44† .41‡ .41‡ .37‡

UEDIN-SYNTAX .74‡ .63‡ .60‡ .56† .58‡ .56† .57‡ .57‡ .56† – .51 .36‡ .37‡
KAZNU .74‡ .67‡ .67‡ .61‡ .64‡ .68‡ .66‡ .61‡ .59‡ .49 – .44† .38‡
RBMT1 .71‡ .71‡ .68‡ .69‡ .66‡ .63‡ .64‡ .65‡ .59‡ .64‡ .56† – .47
RBMT4 .79‡ .69‡ .70‡ .73‡ .70‡ .71‡ .66‡ .70‡ .63‡ .63‡ .62‡ .53 –

score .66 .58 .55 .55 .53 .53 .52 .51 .49 .45 .40 .36 .32
rank 1 2 3-5 3-5 4-7 5-8 5-8 5-8 9 10 11 12 13

Table 36: Head to head comparison, ignoring ties, for Russian-English systems
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PROMT-RULE – .51 .45† .43‡ .43‡ .39‡ .38‡ .15‡ .00
ONLINE-B .49 – .50 .47? .38‡ .36‡ .38‡ .16‡ .13‡

PROMT-HYBRID .55† .50 – .49 .47 .39‡ .40‡ .18‡ .15‡
UEDIN-UNCNSTR .57‡ .53? .51 – .50 .44‡ .36‡ .25‡ .18‡

ONLINE-G .57‡ .62‡ .53 .50 – .46? .44‡ .23‡ .18‡
ONLINE-A .61‡ .64‡ .61‡ .56‡ .54? – .49 .24‡ .18‡

UEDIN-PHRASE .62‡ .62‡ .60‡ .64‡ .56‡ .51 – .30‡ .21‡
RBMT4 .85‡ .84‡ .82‡ .75‡ .77‡ .76‡ .70‡ – .42‡
RBMT1 .91‡ .87‡ .85‡ .82‡ .82‡ .82‡ .79‡ .58‡ –

score .64 .64 .61 .58 .55 .51 .49 .26 .19
rank 1-2 1-2 3 4-5 4-5 6-7 6-7 8 9

Table 37: Head to head comparison, ignoring ties, for English-Russian systems

58



Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 59–65,
Baltimore, Maryland USA, June 26–27, 2014. c©2014 Association for Computational Linguistics

Parallel FDA5 for Fast Deployment of Accurate
Statistical Machine Translation Systems

Ergun Biçici
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Abstract

We use parallel FDA5, an efficiently pa-
rameterized and optimized parallel im-
plementation of feature decay algorithms
for fast deployment of accurate statistical
machine translation systems, taking only
about half a day for each translation di-
rection. We build Parallel FDA5 Moses
SMT systems for all language pairs in
the WMT14 translation task and obtain
SMT performance close to the top Moses
systems with an average of 3.49 BLEU
points difference using significantly less
resources for training and development.

1 Introduction

Parallel FDA5 is developed for fast deployment
of accurate statistical machine translation systems
using an efficiently parameterized and optimized
parallel implementation of feature decay algo-
rithms (Biçici and Yuret, 2014). Parallel FDA5
takes about half a day for each translation direc-
tion. We achieve SMT performance that is on par
with the top constrained Moses SMT systems.

Statistical machine translation (SMT) is a data
intensive problem. If you have the translations for
the source sentences you are translating in your
training set or even portions of it, then the trans-
lation task becomes easier. If some tokens are not
found in the training data then you cannot trans-
late them and if some translated word do not ap-
pear in your language model (LM) corpus, then it
becomes harder for the SMT engine to find its cor-
rect position in the translation. The importance of
parallel FDA5 increases with the proliferation of
training material available for building SMT sys-
tems. Table 2 presents the statistics of the avail-
able training and LM corpora for the constrained
(C) systems as well as the statistics of the Parallel
FDA5 selected training and LM corpora.

Parallel FDA5 runs separate FDA5 models on
randomized subsets of the training data and com-
bines the selections afterwards. We run parallel
FDA5 SMT experiments using Moses (Koehn et
al., 2007) in all language pairs in WMT14 (Bojar
et al., 2014) and obtain SMT performance close to
the top constrained Moses systems training using
all of the training material. Parallel FDA5 allows
rapid prototyping of SMT systems for a given tar-
get domain or task and can be very useful for MT
in target domains with limited resources or in dis-
aster and crisis situations (Lewis et al., 2011).

2 Parallel FDA5 for Instance Selection

2.1 FDA5

FDA is developed mainly for building high per-
formance SMT systems using fewer yet relevant
data that is selected for increasing the coverage of
the test set features while maximizing their diver-
sity (Biçici and Yuret, 2011; Biçici, 2011). Par-
allel FDA parallelize instance selection and sig-
nificantly reduces the time to deploy accurate MT
systems in the presence of large training data from
weeks to half a day and still achieve state-of-
the-art SMT performance (Biçici, 2013). FDA5
is developed for efficient parameterization, opti-
mization, and implementation of FDA (Biçici and
Yuret, 2014). FDA5 can be used in both trans-
ductive learning scenarios where test set is used to
select the training data or in active learning sce-
narios where training set itself is used to obtain a
sorting of the training data and select.

We run transductive learning experiments in
this work such that the instance selection is per-
formed for the given test set. According to
SMT experiments performed on the 2 million sen-
tence English-German section of the Europarl cor-
pus (Biçici and Yuret, 2014), FDA5 can increase
the performance by 0.41 BLEU points compared
to using all of the available training data and by
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Algorithm 1: Parallel FDA5
Input: Parallel training sentences U , test set

features F , and desired number of
training instances N .

Output: Subset of the parallel sentences to be
used as the training data L ⊆ U .

1 U ← shuffle(U)
2 UUU ,M ← split(U , N)
3 L← {}
4 foreach Ui ∈ UUU do
5 〈Li, si〉 ← FDA5(Ui,F ,M)
6 L← L ∪ 〈Li, si〉
7 L ← merge(L)

3.22 BLEU points compared to random selection.
FDA5 is also used for selecting the training set
in the WMT14 medical translation task (Calixto
et al., 2014) and the tuning set in the WMT14
German-English translation task (Li et al., 2014).

FDA5 has 5 parameters that effect the instance
scores based on the three formulas used:

• Initialization:

init(f) = log(|U|/CU (f))i |f |l (1)

• Decay:

decay(f) = init(f)(1+CL(f))−cdCL(f)

(2)

• Sentence score:

sentScore(S) =
1
|S|s

∑
f∈F (S)

fvalue(f)

(3)

CL(f) returns the count of feature f in L. d
is the feature score polynomial decay factor, c is
the feature score exponential decay factor, s is
the sentence score length exponent, i is the initial
feature score idf exponent, and l is the initial
feature score n-gram length exponent. FDA5 is
available at http://github.com/bicici/FDA

and the FDA5 optimizer is available at
http://github.com/bicici/FDAOptimization.

2.2 Parallel FDA5
Parallel FDA5 (ParFDA5) is presented in Algo-
rithm 1, which first shuffles the training sentences,
U and runs individual FDA5 models on the multi-
ple splits from which equal number of sentences,

M , are selected. We use ParFDA5 for select-
ing parallel training data and LM data for build-
ing SMT systems. merge combines k sorted ar-
rays, Li, into one sorted array in O(Mk log k) us-
ing their scores, si, where Mk is the total number
of elements in all of the input arrays. 1 ParFDA5
makes FDA5 more scalable to domains with large
training corpora and allows rapid deployment of
SMT systems. By selecting from random splits of
the original corpus, we work with different n-gram
feature distributions in each split and prevent fea-
ture values from becoming negligible, which can
enhance the diversity.

2.3 Language Model Data Selection

We select the LM training data with ParFDA5
based on the following observation (Biçici, 2013):

No word not appearing in the training
set can appear in the translation.

It is impossible for an SMT system to translate a
word unseen in the training corpus nor can it trans-
late it with a word not found in the target side of
the training set 2. Thus we are only interested
in correctly ordering the words appearing in the
training corpus and collecting the sentences that
contain them for building the LM. At the same
time, a compact and more relevant LM corpus is
also useful for modeling longer range dependen-
cies with higher order n-gram models. We use
1-gram features for LM corpus selection since we
don’t know which phrases will be generated by the
translation model. After the LM corpus selection,
the target side of the parallel training data is added
to the LM corpus.

3 Results

We run ParFDA5 SMT experiments for all lan-
guage pairs in both directions in the WMT14
translation task (Bojar et al., 2014), which include
English-Czech (en-cs), English-German (en-de),
English-French (en-fr), English-Hindi (en-hi), and
English-Russian (en-ru). We true-case all of the
corpora, use 150-best lists during tuning, set the
LM order to a value between 7 and 10 for all lan-
guage pairs, and train the LM using SRILM (Stol-
cke, 2002). We set the maximum sentence length
filter to 126 and for GIZA++ (Och and Ney, 2003),

1 (Cormen et al., 2009), question 6.5-9. Merging k sorted
lists into one sorted list using a min-heap for k-way merging.

2Unless the translation is a verbatim copy of the source.
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S → T
Training Data LM Data

Data #word S (M) #word T (M) #sent (K) SCOV TCOV #word (M) TCOV
en-cs C 253.5 223.4 16068 0.8282 0.7046 717.0 0.8539
en-cs ParFDA5 22.0 19.6 1205 0.8161 0.6062 325.8 0.8238
cs-en C 223.4 253.5 16068 0.7046 0.8282 5541.9 0.9552
cs-en ParFDA5 19.3 22.0 1205 0.7046 0.7581 351.0 0.9132
en-de C 116.0 109.5 4511 0.812 0.7101 1573.8 0.8921
en-de ParFDA5 16.7 16.8 845 0.8033 0.6316 206.9 0.8184
de-en C 109.5 116.0 4511 0.7101 0.812 5446.8 0.9525
de-en ParFDA5 17.8 19.6 845 0.7087 0.753 339.5 0.9082
en-fr C 1096.1 1287.8 40344 0.8885 0.9163 2534.5 0.9611
en-fr ParFDA5 22.6 26.6 1008 0.8735 0.8412 737.4 0.9491
fr-en C 1287.8 1096.1 40344 0.9163 0.8885 6255.8 0.9675
fr-en ParFDA5 20.9 19.3 1008 0.8963 0.7845 463.4 0.9282
en-hi C 3.4 5.0 306 0.5467 0.5986 36.3 0.7972
en-hi ParFDA5 3.3 4.9 254 0.5467 0.5976 41.2 0.8115
hi-en C 5.0 3.4 306 0.5986 0.5467 5350.4 0.9473
hi-en ParFDA5 5.0 3.3 284 0.5985 0.5466 966.8 0.9209
en-ru C 49.6 46.1 2531 0.7992 0.6823 590.8 0.8679
en-ru ParFDA5 19.6 18.6 1107 0.7991 0.6388 282.1 0.8447
ru-en C 46.1 49.6 2531 0.6823 0.7992 5380.6 0.9567
ru-en ParFDA5 16.6 19.4 1107 0.6821 0.7586 225.1 0.9009

Table 2: The data statistics for the available training and LM corpora for the constrained (C) submissions
compared with the ParFDA5 selected training and LM corpora statistics. #words is in millions (M) and
#sents is in thousands (K).

S → T d c s i l

Tr
ai

ni
ng

,n
=

2

en-de 1.0 0.5817 1.4176 5.0001 -3.154
de-en 1.0 1.0924 1.3604 5.0001 -4.341
en-cs 1.0 0.0676 0.8299 5.0001 -0.8788
cs-en 1.0 1.5063 0.7777 3.223 -2.3824
en-ru 1.0 0.6519 1.6877 5.0001 -1.1888
ru-en 1.0 1.607 3.0001 0.0 -1.8247
en-hi 1.0 3.0001 3.0001 1.5701 -1.5699
hi-en 1.0 0.0 1.1001 5.0001 -0.8264
en-fr 1.0 0.8143 0.801 3.5996 -1.3394
fr-en 1.0 0.19 1.0106 5.0001 1.238

L
M

,n
=

1

en-de 1.0 0.1924 1.0487 5.0001 4.9404
de-en 1.0 1.7877 3.0001 3.1213 -0.4147
en-cs 1.0 0.4988 1.1586 5.0001 -5.0001
cs-en 0.9255 0.2787 0.7439 3.7264 -2.0564
en-ru 1.0 1.4419 2.239 1.5543 -0.5097
ru-en 1.0 2.4844 3.0001 4.6669 3.7978
en-hi 1.0 0.0 0.0 5.0001 -4.944
hi-en 1.0 0.3053 3.0001 5.0001 4.1216
en-fr 1.0 3.0001 2.0452 3.0229 3.4364
fr-en 1.0 0.7467 0.7641 5.0001 5.0001

Table 1: Optimized ParFDA5 parameters for se-
lecting the training set using 2-grams or the LM
corpus using 1-grams.

max-fertility is set to 10, with the number of itera-
tions set to 7,3,5,5,7 for IBM models 1,2,3,4, and
the HMM model and 70 word classes are learned
over 3 iterations with the mkcls tool during train-
ing. The development set contains 5000 sentences,
2000 of which are randomly sampled from pre-
vious years’ development sets (2008-2012) and
3000 come from the development set for WMT14.

3.1 Optimized ParFDA5 Parameters

Table 1 presents the optimized ParFDA5 parame-
ters obtained using the development set. Transla-
tion direction specific differences are visible. A
negative value for l shows that FDA5 prefers
shorter features, which we observe mainly when
the target language is English. We also observe
higher exponential decay rates when the target lan-
guage is mainly English. For optimizing the pa-
rameters for selecting LM corpus instances, we
still use a parallel corpus and instead of optimiz-
ing for TCOV, we optimize for SCOV such that
we select instances that are relevant for the target
training corpus but still maximize the coverage of
source features and be able to represent the source
sentences within a translation task. The selected
LM corpus is prepared for a translation task.

3.2 Data Selection

We select the same number of sentences with Par-
allel FDA (Biçici, 2013), which is roughly 15%
of the training corpus for en-de, 35% for ru-en,
6% for cs-en, and 2% for en-fr. After the training
set selection, we select the LM data using the tar-
get side of the training set as the target domain to
select LM instances for. For en and fr, we have
access to the LDC Gigaword corpora (Parker et
al., 2011; Graff et al., 2011), from which we ex-
tract only the story type news. We select 15 mil-
lion sentences for each LM not including the se-
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S → T
Time (Min) Space (MB)

ParFDA5 Moses
Overall

Moses
Train LM Total Train Tune Total PT LM ALL

en-cs 5 28 34 375 702 1162 1196 1871 5865 19746
cs-en 7 65 72 358 448 867 939 1808 4906 18650
en-de 8 29 38 302 1059 1459 1497 1676 2923 18313
de-en 8 85 93 358 474 924 1017 1854 5219 19247
en-fr 23 60 84 488 781 1372 1456 2309 9577 24362
fr-en 21 99 120 315 490 897 1017 1845 4888 17466
en-hi 2 9 11 91 366 511 522 269 817 4292
hi-en 1 36 37 91 330 467 504 285 9697 3845
en-ru 11 25 35 358 369 837 872 2174 4770 21283
ru-en 10 62 71 309 510 895 966 1939 2735 19537

Table 3: The space and time required for building the ParFDA5 Moses SMT systems. The sizes are in
MB and time in minutes. PT stands for the phrase table. ALL does not contain the size of the LM.

BLEUc
S → en en→ T

cs-en de-en fr-en hi-en ru-en en-cs en-de en-fr en-hi en-ru
WMT14C 0.288 0.28 0.35 0.139 0.318 0.21 0.201 0.358 0.111 0.287
ParFDA5 0.256 0.239 0.319 0.105 0.282 0.172 0.168 0.325 0.07 0.257
diff 0.032 0.041 0.031 0.034 0.036 0.038 0.033 0.033 0.041 0.03
LM order 9 9 9 9 9 9 9 7 10 9

Table 4: BLEUc for the top constrained result in WMT14 (WMT14C) and for ParFDA5 results, their
difference to WMT14C, and the LM order used are presented. Average difference is 3.49 BLEU points.

lected training set, which is added later. The statis-
tics of the ParFDA5 selected training data and the
available training data for the constrained transla-
tion task is given in Table 2. The size of the LM
corpora includes both the LDC and the monolin-
gual LM corpora provided by WMT14. Table 2
shows the significant size differences between the
constrained dataset (C) and the ParFDA5 selected
data. Table 2 also present the source and target
coverage (SCOV and TCOV) in terms of the 2-
grams of the test set observed in the training data
or the LM data. The quality of the training cor-
pus can be measured by TCOV, which is found to
correlate well with the BLEU performance achiev-
able (Biçici and Yuret, 2011; Biçici, 2011).

3.3 Computing Statistics

We quantify the time and space requirements for
running ParFDA5 SMT systems for each trans-
lation direction. The space and time required
for building the ParFDA5 Moses SMT systems
are given in Table 3 where the sizes are in MB
and the time in minutes. PT stands for the
phrase table. We used Moses version 2.1.1, from
www.statmt.org/moses. Building a ParFDA5

Moses SMT system takes about half a day.

3.4 Translation Results
The results of our two ParFDA5 SMT experiments
for each language pair and their tokenized BLEU
performance, BLEUc, together with the LM order
used and the top constrained submissions to the
WMT14 are given in Table 4 3, which use phrase-
based Moses for comparison 4. We observed sig-
nificant gains (+0.23 BLEU points) using higher
order LMs last year (Biçici, 2013) and therefore
we use LMs of order 7 to 10. The test set con-
tains 10,000 sentences and only 3000 of which are
used for evaluation, which can make the transduc-
tive learning application of ParFDA5 harder. In
the transductive learning setting, ParFDA5 is se-
lecting target test task specific SMT resources and
therefore, having irrelevant instances in the test set
may decrease the performance by causing FDA5
to select more domain specific data and less task
specific. ParFDA5 significantly reduces the time
required for training, development, and deploy-
ment of an SMT system for a given translation

3We use the results from matrix.statmt.org.
4Phrase-based Moses systems usually rank in the top 3.
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ppl
OOV log OOV = −19 log OOV = −11

Translation T order train FDA5 FDA5 LM % red. train FDA5 FDA5 LM % red. train FDA5 FDA5 LM % red.

en-cs en

3

866 1205 525 0.39

1764 1731 938 0.47 1370 1218 805 0.41
4 1788 1746 877 0.51 1389 1229 753 0.46
5 1799 1752 868 0.52 1398 1233 745 0.47
6 1802 1753 867 0.52 1400 1234 744 0.47

cs-en cs

3

557 706 276 0.5

480 419 333 0.31 408 342 307 0.25
4 487 422 292 0.4 415 344 269 0.35
5 495 424 285 0.42 421 346 263 0.38
6 497 425 284 0.43 423 346 262 0.38

en-de en

3

1666 2116 744 0.55

1323 1605 747 0.44 831 890 607 0.27
4 1307 1596 689 0.47 821 885 560 0.32
5 1307 1596 680 0.48 822 885 553 0.33
6 1308 1596 679 0.48 822 885 552 0.33

de-en de

3

691 849 417 0.4

482 498 394 0.18 386 379 345 0.11
4 470 490 344 0.27 376 373 301 0.2
5 470 490 336 0.29 377 373 293 0.22
6 471 490 334 0.29 377 373 292 0.23

en-fr en
3

270 411 153 0.43
185 167 173 0.07 173 151 166 0.04

4 170 160 135 0.21 159 144 130 0.19
5 171 160 126 0.27 160 145 121 0.24

fr-en fr
3

306 604 179 0.42
349 325 275 0.21 320 275 261 0.19

4 338 321 235 0.3 310 271 224 0.28
5 342 322 228 0.33 314 272 217 0.31

en-hi en

3

2035 2123 950 0.53

242 246 114 0.53 168 168 96 0.43
4 237 241 87 0.63 164 165 73 0.55
5 238 242 78 0.67 165 165 66 0.6
6 239 242 75 0.68 165 165 64 0.62

hi-en hi

3

1842 1860 623 0.66

1894 1898 482 0.75 915 911 377 0.59
4 1910 1914 398 0.79 923 919 312 0.66
5 1915 1919 378 0.8 925 921 296 0.68
6 1915 1919 378 0.8 926 921 296 0.68

en-ru en

3

959 1176 585 0.39

1067 1171 668 0.37 814 840 566 0.3
4 1053 1159 603 0.43 803 831 511 0.36
5 1052 1159 591 0.44 802 831 501 0.38
6 1052 1159 588 0.44 802 831 498 0.38

ru-en ru

3

558 689 340 0.39

385 398 363 0.06 334 334 333 0.0
4 377 391 325 0.14 327 328 298 0.09
5 378 392 318 0.16 328 329 292 0.11
6 378 392 318 0.16 328 329 291 0.11

Table 5: Perplexity comparison of the LM built from the training corpus (train), ParFDA5 selected
training corpus (FDA5), and the ParFDA5 selected LM corpus (FDA5 LM). % red. column lists the
percentage of reduction.

task. The average difference to the top constrained
submission in WMT14 is 3.49 BLEU points. For
en-ru and en-cs, true-casing the LM using a true-
caser trained on all of the available training data
decreased the performance by 0.5 and 0.9 BLEU
points respectively and for cs-en and fr-en, in-
creased the performance by 0.2 and 0.5 BLEU
points. We use the true-cased LM results using
a true-caser trained on all of the available train-
ing data for all language pairs where for hi-en,
the true-caser is trained on the ParFDA5 selected
training data.

3.5 LM Data Quality

A LM training data selected for a given transla-
tion task allows us to train higher order language

models, model longer range dependencies better,
and at the same time, achieve lower perplexity
as given in Table 5. We compare the perplexity
of the ParFDA5 selected LM with a LM trained
on the ParFDA5 selected training data and a LM
trained using all of the available training corpora.
To be able to compare the perplexities, we take
the OOV tokens into consideration during calcu-
lations (Biçici, 2013). We present results for the
cases when we handle OOV words with a cost
of −19 or −11 each in Table 5. We are able to
achieve significant reductions in the number of
OOV tokens and the perplexity, reaching up to
66% reduction in the number of OOV tokens and
up to 80% reduction in the perplexity.
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BLEUc
S → en en→ T

cs-en de-en fr-en ru-en en-cs en-de en-fr en-ru
ParFDA5 0.256 0.239 0.319 0.282 0.172 0.168 0.325 0.257
ParFDA 0.243 0.241 0.254 0.223 0.171 0.179 0.238 0.173
diff 0.013 -0.002 0.065 0.059 0.001 -0.011 0.087 0.084

Table 7: Parallel FDA5 WMT14 results compared with parallel FDA WMT13 results. Training set sizes
are given in millions (M) of words on the target side. Average difference is 3.7 BLEU points.

BLEUc
S → en en→ T

cs-en fr-en en-cs en-fr
ParFDA5 0.256 0.319 0.172 0.325
ParFDA5 15% 0.248 0.321 0.178 0.333
diff -0.008 0.002 0.006 0.008

Table 6: ParFDA5 results, ParFDA5 results using
15% of the training set, and their difference.

3.6 Using 15% of the Available Training Set

In the FDA5 results (Biçici and Yuret, 2014),
we found that selecting 15% of the best train-
ing set size maximizes the performance for the
English-German out-of-domain translation task
and achieves 0.41 BLEU points improvement over
a baseline system using all of the available train-
ing data. We run additional experiments select-
ing 15% of the training data for fr-en and cs-en
language pairs to see the effect of increased train-
ing sets selected with ParFDA5. The results are
given in Table 6 where most of the results improve.
The slight performance decrease for cs-en may be
due to using a true-caser trained on only the se-
lected training data. We observe larger gains in
the en→ T translations.

3.7 ParFDA5 versus Parallel FDA

We compare this year’s results with the results
we obtained last year (Biçici, 2013) in Table 7.
The task setting is different in WMT14 since the
test set contains 10,000 sentences but only 3000
of these are used as the actual test set, which
can make the transductive learning application of
ParFDA5 harder. We select the same number of
instances for the training sets but 5 million more
instances for the LM corpus this year. The aver-
age difference to the top constrained submission
in WMT13 was 2.88 BLEU points (Biçici, 2013)
and this has increased to 3.49 BLEU points in
WMT14. On average, the performance improved
3.7 BLEU points when compared with ParFDA re-
sults last year. For the fr-en, en-fr, and en-ru trans-

lation directions, we observe increases in the per-
formance. This may be due to better modeling of
the target domain by better parameterization and
optimization that FDA5 is providing. We observe
some decrease in the performance in en-de and de-
en results. Since the training material remained
the same for WMT13 and WMT14 and the mod-
eling power of FDA5 increased, building a domain
specific rather than a task specific ParFDA5 model
may be the reason for the decrease.

4 Conclusion

We use parallel FDA5 for solving computational
scalability problems caused by the abundance of
training data for SMT models and LMs and still
achieve SMT performance that is on par with
the top performing SMT systems. Parallel FDA5
raises the bar of expectations from SMT with
highly accurate translations and lower the bar to
entry for SMT into new domains and tasks by al-
lowing fast deployment of SMT systems in about
half a day. Parallel FDA5 enables a shift from gen-
eral purpose SMT systems towards task adaptive
SMT solutions.
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Abstract

This paper describes the Yandex School
of Data Analysis Russian-English system
submitted to the ACL 2014 Ninth Work-
shop on Statistical Machine Translation
shared translation task. We start with the
system that we developed last year and in-
vestigate a few methods that were success-
ful at the previous translation task includ-
ing unpruned language model, operation
sequence model and the new reparameter-
ization of IBM Model 2. Next we propose
a {simple yet practical} algorithm to trans-
form Russian sentence into a more easily
translatable form before decoding. The al-
gorithm is based on the linguistic intuition
of native Russian speakers, also fluent in
English.

1 Introduction

The annual shared translation task organized
within the ACL Workshop on Statistical Machine
Translation (WMT) aims to evaluate the state of
the art in machine translation for a variety of lan-
guages. We participate in the Russian to English
translation direction.

The rest of the paper is organized as follows.
Our baseline system as well as the experiments
concerning the methods already discussed in lit-
erature are described in Section 2. In Section 3 we
present an algorithm we use to transform the Rus-
sian sentence before translation. In Section 4 we
discuss the results and conclude.

2 Initial System Development

We use all the Russian-English parallel data avail-
able in the constraint track and the Common Crawl
English monolingual corpus.

2.1 Baseline
We use the phrase-based Moses statistical ma-
chine translation system (Koehn et al., 2007) with
mostly default settings and a few changes (Borisov
et al., 2013) made in the following steps.

Data Preprocessing includes filtering out non
Russian-English sentence pairs and correction of
spelling errors.

Phrase Table Smoothing uses Good-Turing
scheme (Foster et al., 2006).

Consensus Decoding selects the translation
with minimum Bayes risk (Kumar and Byrne,
2004).

Handling of Unknown Words comprises incor-
poration of proper names from Wiki Headlines
parallel data provided by CMU1 and translitera-
tion. We improve the transliteration algorithm in
Section 2.4.

Note that unlike last year we do not use word
alignments computed for the lemmatized word
forms.

2.2 Language Model
We use 5-gram unpruned language model with
modified Kneser-Ney discount estimated with
KenLM toolkit (Heafield et al., 2013).

2.3 Word alignment
Word alignments are generated using the
fast_align tool (Dyer et al., 2013), which is much
faster than IBM Model 4 from MGIZA++ (Gao
and Vogel, 2008) and outperforms the latter in
terms of BLEU. Results are given in Table 1.

2.4 Transliteration
We employ machine transliteration to generate ad-
ditional translation options for out-of-vocabulary

1http://www.statmt.org/wmt14/
wiki-titles.tgz
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MGIZA++ fast_align
Run Time 22 h 14 m 2h 49 m
Perplexity

– ru→en 97.00 90.37
– en→ru 209.36 216.71

BLEU
– WMT13 25.27 25.49
– WMT14 31.76 31.92

Table 1: Comparison of word alignment tools:
MGIZA++ vs. fast_align. fast_align runs ten
times as fast and outperforms the IBM Model 4
from MGIZA++ in terms of BLEU scores.

words. The transformation model we use is a
transfeme based model (Duan and Hsu, 2011),
which is analogous to translation model in phrase-
based machine translation. Transformation units,
or transfemes, are trained with Moses using the
default settings. Decoding is very similar to beam
search. We build a trie from the words in English
monolingual corpus, and search in it, based on the
transformation model.

2.5 Operation Sequence Model

The Operation Sequence N-gram Model (OSM)
(Durrani et al., 2011) integrates reordering opera-
tions and lexical translations into a heterogeneous
sequence of minimal translation units (MTUs) and
learns a Markov model over it. Reordering deci-
sions influence lexical selections and vice versa
thus improving the translation model. We use
OSM as a feature function in phrase-based SMT.
Please, refer to (Durrani et al., 2013) for imple-
mentation details.

3 Morphological Transformations

Russian is a fusional synthetic language, mean-
ing that the relations between words are redundant
and encoded inside the words. Adjectives alter
their form to reflect the gender, case, number and
in some cases, animacy of the nouns, resulting in
dozens of different word forms matching a single
English word. An example is given in Table 2.
Verbs in Russian are typically constructed from
the morphemes corresponding to functional words
in English (to, shall, will, was, were, has, have,
had, been, etc.). This Russian phenomenon leads
to two problems: data sparsity and high number of
one-to-many alignments, which both may result in
translation quality degradation.

Number
SG PL

Case Gender
NOM MASC летний
NOM FEM летняя летние
NOM NEUT летнее
GEN MASC летнего
GEN FEM летней летних
GEN NEUT летнего
DAT MASC летнему
DAT FEM летней летним
DAT NEUT летнему
ACC MASC, AN летнего
ACC MASC, INAN летний летним
ACC FEM летнюю
ACC NEUT летнее
INS MASC летним
INS FEM летней летним
INS FEM летнею
INS NEUT летним
ABL MASC летнем
ABL FEM летней летних
ABL NEUT летнем

Table 2: Russian word forms corresponding to the
English word "summer" (adj.).

Hereafter, we propose an algorithm to transform
the original Russian sentence into a more easily
translatable form. The algorithm is based on the
linguistic intuition of native Russian speakers, also
fluent in English.

3.1 Approach
Based on the output from Russian morphological
analyzer we rewrite the input sentence based on
the following principles:

1. the original sentence is restorable
(by a Russian native speaker)

2. redundant information is omitted

3. word alignment is less ambiguous

3.2 Algorithm
The algorithm consists of two steps.

On the first step we employ in-house Rus-
sian morphological analyzer similar to Mys-
tem (Segalovich, 2003) to convert each word
(WORD) into a tuple containing its canonical form
(LEMMA), part of speech tag (POS) and a set
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Category Abbr. Values
Animacy ANIM AN, INAN
Aspect ASP IMPERF, PERF
Case CASE NOM, GEN, DAT, ACC, INS, ABL
Comparison Type COMP COMP, SURP
Gender GEND MASC, FEM, NEUT
Mood MOOD IND, IMP, COND, SBJV
Number NUM SG, PL
Participle Type PART ACT, PASS
Person PERS PERS1, PERS2, PERS3
Tense TNS PRES, NPST, PST

Table 3: Morphological Categories

of other grammemes associated with the word
(GRAMMEMES). The tuple is later referred to as
LPG. If the canonical form or part of speech are
ambiguous, we set LEMMA to WORD; POS to
"undefined"; and GRAMMEMES to ∅. Gram-
memes are grouped into grammatical categories
listed in Table 3.

WORD −→ LEMMA + POS + GRAMMEMES

On the second step, the LPGs are converted into
tokens that, we hope, will better match English
structure. Some grammemes result in separate to-
kens, others stay with the lemma, and the rest get
dropped. The full set of morphological transfor-
mations we use is given in Table 4.

An example of applying the algorithm to a Rus-
sian sentence is given in Figure 1.

3.3 Results
The translation has been improved in several
ways:

Incorrect Use of Tenses happens quite often in
statistical machine translation, which is especially
vexing in simple cases such as asks instead of
asked, explains instead of explain along with more
difficult ones e.g. has increased instead of would
increase. The proposed algorithm achieves con-
siderable improvement, since it explicitly models
tenses and all its relevant properties.

Missing Articles is a common problem of
most Russian-English translation systems, be-
cause there are no articles in Russian. Our model
creates an auxiliary token for each noun, which re-
flects its case and motivates an article.

Use of Simple Vocabulary is not desirable
when the source text is a vocabulary-flourished

летним днём 

летний.adj+ø   ins  день.n+sg 

on a summer day 

летний, adj, 
{inan, dat|ins, ø, male|neut, sg|pl} 

день,  noun, 
{inan, ins, male, sg} 

Figure 1: An illustration of the proposed algorithm
to transform Russian sentence летним днём (let-
nim dnem), meaning on a summer day, into a more
easily translatable form. First, for each word we
extract its canonical form, part of speech tag and a
set of associated morphological properties (gram-
memes). Then we apply hand-crafted rules (Ta-
ble 4) to transform them into separate tokens.

one. News are full of academic, bookish, inkhorn,
and other rare words. Phrase Table smoothing
methods discount the translation probabilities for
rare phrase pairs, preventing them from appearing
in English translation, while many of these rare
phrase pairs are correct. The good thing is that the
phrase pairs containing the transformed Russian
words may not be rare themselves, and thereby are
not discounted so heavily. A more effective use of
English vocabulary has been observed on WMT13
test dataset (see Table 5).

We have demonstrated the improvements on a
qualitative level. The quantitative results are sum-
marized in Table 6 (baseline – without morpholog-
ical transformations; proposed – with morpholog-
ical transformations).
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LPG⇒ tokens
LEMMA, adj,

{ANIM, CASE, COMP, GEND, NUM}
⇓

LEMMA.adj+COMP
LEMMA, noun,

{ANIM, CASE, GEND, NUM}
⇓

CASE LEMMA.n+NUM
LEMMA, verb (ger), {ASP, TNS}

⇓
LEMMA.vg+ASP+TNS

LEMMA, verb (inf), {ASP}
⇓

LEMMA.vi+ASP
LEMMA, verb (part), {PART, ASP, TNS}

⇓
LEMMA.vp+PART+ASP+TNS

LEMMA, verb (–),
{PART, ASP, MOOD, TENSE,

NUM, PERS}
⇓

1. TNS={PRES} | TNS={NPST} & ASP={IMPERF}

a. PERS3 ∈ PERS & SG ∈ NUM
LEMMA.v+pres+MOOD+PERS+NUM

b. otherwise
LEMMA.v+pres+MOOD

2. TNS={PST}
ASP LEMMA.v+pst+MOOD

3. TNS={NPST} & ASP={IMPERF}
fut LEMMA.v+MOOD

4. if ambiguous

LEMMA.v+PART+ASP+MOOD
+TNS+NUM+PERS

LEMMA, OTHER, GRAMMEMES
⇓

LEMMA.POS+GRAMMEMES

Table 4: A set of rules we use to transform
the LPGs (LEMMA, POS, GRAMMEMES), ex-
tracted on the first step, into individual tokens.

4 Discussion and Conclusion

We described the Yandex School of Data Anal-
ysis Russian-English system submitted to the
ACL 2014 Ninth Workshop on Statistical Machine
Translation shared translation task. The main con-
tribution of this work is an algorithm to transform
the Russian sentence into a more easily translat-

Input Translation
разногласия (a) differences
(raznoglasiya) (b) disputes
пропагандистом (a) promoter
(propagandistom) (b) propagandist
преимущественно (a) mainly
(preimuschestvenno) (b) predominantly

Table 5: Morphological Transformations lead to
more effective use of English vocabulary. Trans-
lations marked with "a" were produced using the
baseline system; with "b" also use Morphological
Transformations.

Baseline Proposed
Distinct Words 899,992 564,354
OOV Words

– WMT13 829 590
– WMT14 884 660

Perplexity
– ru→en 90.37 99.81
– en→ru 216.71 128.15

BLEU
– WMT13 25.49 25.63
– WMT14 31.92 32.56

Table 6: Results of Morphological Transforma-
tions. We improved the statistical characteristics
of our models by reducing the number of distinct
words by 37% and managed to translate 25% of
previously untranslated words. BLEU scores were
improved by 0.14 and 0.64 points for WMT13 and
WMT14 test sets respectively.

able form before decoding. Significant improve-
ments in human satisfaction and BLEU scores
have been demonstrated from applying this algo-
rithm.

One limitation of the proposed algorithm is that
it does not take into account the relations between
words sharing the same root. E.g. the word аисти-
ных (aistinyh) meaning stork (adj.) is handled in-
dependently from the word аист (aist) meaning
stork (n.). Our system as well as the major online
services (Bing, Google, Yandex) transliterated this
word, but the word aistinyh does not make much
sense to a non-Russian reader. It might be worth-
while to study this problem in more detail.

Another direction for future work is to apply
the proposed algorithm in reverse direction. We
suggest the following two-step procedure. English
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sentence is first translated into Russian∗ (Russian
after applying the morphological transformations),
and at the next step it is translated again with an
auxiliary SMT system trained on the (Russian*,
Russian) parallel corpus created from the Russian
monolingual corpus.
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Abstract

We present the CimS submissions to the
2014 Shared Task for the language pair
EN→DE. We address the major problems
that arise when translating into German:
complex nominal and verbal morphol-
ogy, productive compounding and flex-
ible word ordering. Our morphology-
aware translation systems handle word
formation issues on different levels of
morpho-syntactic modeling.

1 Introduction

In our shared task submissions, we focus on the
English to German translation direction: we ad-
dress different levels of productivity of the Ger-
man language, i.e., nominal and verbal inflec-
tion and productive word formation, which lead
to data sparsity and thus confuse classical SMT
systems.

Our basic goal is to make the two languages
as morphosyntactically similar as possible. We
use a parser and a morphological analyser to re-
move linguistic features from German that are
not present in English and reorder the English
input to make it more similar to the German sen-
tence structure. Prior to training, all words are
lemmatised and compounds are split into single
words. This is not only beneficial for word align-
ment, but it also allows us to generalise over in-
flectional variants of the same lexemes and over
single words which could occur in one place as a
standalone word and in another place as part of
a compound. Translation happens in two steps:
first, we translate from English into split, lemma-
tised German and then, we perform compound
merging and generation of inflection as a post-
processing step. This way, we are able to cre-
ate German compounds and inflectional vari-
ants that have not been seen in the parallel train-
ing data.

In this paper, we investigate the performance of
well-established source-side reordering, nomi-
nal re-inflection and compound processing sys-
tems on an up-to-date shared task. In addition,
we present experimental results on a verbal in-
flection component and a syntax-based variant
including source-side reordering.

2 Related Work

Re-Inflection The two-step translation ap-
proach we use was described by e.g. Toutanova
et al. (2008) and Jeong et al. (2010), who use
a number of morphological and syntactic
features derived from both source and target
language. More recently, Fraser et al. (2012)
describe a similar approach for German using
different CRF-based feature prediction models,
one for each of the four grammatical features
to be predicted for German words in noun
phrases, namely number, gender, case and
definiteness. This approach also handles word-
formation issues such as portmanteau splitting
and compounding. Weller et al. (2013) added
subcategorization information in combination
with source-side syntactic features in order to
improve the prediction of case.

De Gispert and Mariño (2008) generate verbal
inflection for translation from English into Span-
ish. They use classifiers trained not only on tar-
get language but also on source language fea-
tures, which is even more crucial for the predic-
tion of verbs than it is for nominal inflection.

More recently, Williams and Koehn (2011)
translate directly into target language surface
forms. Agreement within NPs and PPs, and also
between subject and verb is considered during
the decoding process: they use string-to-tree
translation, where the target language (German)
morphology is expressed as a set of unification
constraints automatically learned from a mor-
phologically annotated German corpus.
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Compound Processing Compound splitting
for SMT has been addressed by numerous dif-
ferent groups, for translation from German
to English, e.g. using corpus-based frequen-
cies (Koehn and Knight, 2003), using POS-
constraints (Stymne et al., 2008), a lattice-based
approach propagating the splitting decision to
the decoder (Dyer, 2009), a rule-based morpho-
logical analyser (Fritzinger and Fraser, 2010) or
unsupervised, language-independent segmen-
tation (Macherey et al., 2011).

Compound processing in the other translation
direction, however, has been much less investi-
gated. Popović et al. (2006) describe a list-based
approach, in which words are only re-combined
if they have been seen as compounds in a huge
corpus. However this approach is limited to
the list’s coverage. The approach of Stymne
(2009) overcomes this coverage issue by mak-
ing use of a POS-markup which distinguishes
former compound modifiers from former heads
and thus allows for their adequate recombina-
tion after translation. An extension of this ap-
proach is reported in Stymne and Cancedda
(2011) where a CRF-model is used for compound
prediction. In Cap et al. (2014) their approach
is extended through using source-language fea-
tures and lemmatisation, allowing for maximal
generalisation over compound parts.

Source-side Reordering One major problem in
English to German translation is the divergent
clausal ordering: in particular, German verbs
tend to occur at the very end of clauses, whereas
English sticks to a rigid SVO order in most cases.
Collins et al. (2005), Fraser (2009) and Gojun
and Fraser (2012) showed that restructuring the
source language so that it corresponds to the ex-
pected structure of the target language is helpful
for SMT.

3 Inflection Prediction

German has a rich morphology, both for nom-
inal and verbal inflection. It requires differ-
ent forms of agreement, e.g., for adjectives and
nouns or verbs and their subjects. Traditional
phrase-based SMT systems often get such agree-
ments wrong. In our systems, we explicitly
model agreement using a two-step approach:
first we translate from English into lemmatised
German and then generate fully inflected forms
in a second step. In this section, we describe our

nominal inflection component and first experi-
mental steps towards verbal re-inflection.

3.1 Noun Phrase Inflection

Prior to training, the German data is re-
duced to a lemmatised representation contain-
ing translation-relevant morphological features.
For nominal inflection, the lemmas are marked
with number and gender: gender is considered
as part of the lemma, whereas number is indi-
rectly determined by the source-side, as we ex-
pect nouns to be translated with their appro-
priate number value. We use a linear chain
CRF (Lafferty et al., 2001) to predict the mor-
phological features (number, gender, case and
strong/weak). The features that are part of the
lemma of nouns (number, gender) are propa-
gated over the rest of the linguistic phrase. In
contrast, case depends on the role of the NP in
the sentence (e.g. subject or direct/indirect ob-
ject) and is thus to be determined entirely from
the respective context in the sentence. The value
for strong/weak depends on the combination of
the other features. Based on the lemma and the
predicted features, inflected forms are then gen-
erated using the rule-based morphological anal-
yser SMOR (Schmid et al., 2004). This system is
described in more detail in Fraser et al. (2012).

3.2 Verbal Inflection

German verbs agree in number and person with
their subjects. We thus have to derive this in-
formation from a noun phrase in nominative
case (= the subject) near the verb. This informa-
tion comes from the nominal inflection predic-
tion described in section 3.1. We predict tense
and mode of the verb using a maximum-entropy
classifier which is trained on English and Ger-
man contextual information. After deriving all
information needed for the generation of the
verbs, the inflected forms are generated with
SMOR.

4 Compound Processing

In English to German translation, compound
processing is more difficult than in the oppo-
site direction. Not only do compounds have to
be split accurately, but they also have to be put
together correctly after decoding. The disflu-
ency of MT output and the difficulty of deciding
which single words should be merged into com-
pounds make this task even more challenging.
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Figure 1: Pipeline overview of our primary CimS-CoRI system.

We combine compound processing with in-
flection prediction (see Section 3) and thus ex-
tend the two-step approach respectively: com-
pounds are split and lemmatised simultane-
ously, again using SMOR. This allows for maxi-
mal generalisation over former compound parts
and independently occurring simple words. We
use this split representation for training. Af-
ter decoding, we re-combine words into com-
pounds again, using our extended CRF-based
approach, which is based on Stymne and Can-
cedda (2011), but includes source-language fea-
tures and allows for maximal generalisation
through lemmatisation. More details can be
found in Cap et al. (2014). We then use SMOR

to generate sound German compounds (includ-
ing morphological transformations such as in-
troduction or deletion of filler letters). Finally,
the whole text including the newly-created com-
pounds, is re-inflected using the nominal in-
flection prediction models as described in Sec-
tion 3.1 above. This procedure allows us to create
compounds that have not been seen in the par-
allel training data, and also inflectional variants
of seen compounds. See Figure 1 for an overview
of our compound processing pipeline.

4.1 Portmanteaus

Portmanteaus are a special kind of compound.
They are a fusion of a preposition and a defi-
nite article (thus not productive) and their case
must agree with the case of the noun. For ex-
ample, “zum” can be split into “zu” + “dem” =
to+theDati ve . They introduce additional spar-
sity to the training data: imagine a noun oc-
curred with its definite article in the training

data, but not with the portemanteau required at
testing time. Splitting portemanteaus allows a
phrase-based SMT system to access phrases cov-
ering nouns and their corresponding definite ar-
ticles. In a post-processing step, definite articles
are then re-merged with their preceding prepo-
sitions to restore the original portmanteau, see
(Fraser et al., 2012) for details. This generalisa-
tion effect is even larger as we not only split port-
manteaus, but also lemmatise the articles.

5 System descriptions

Our shared task submissions include different
combinations of the inflection and compound
processing procedures as described in the pre-
vious two sections. We give an overview of all
our systems in Table 1. Note that we did not
re-train the compound processing CRFs on the
new dataset, but used our models trained on the
2009 training data instead. However, this does
not hurt performance, as the CRF we use is not
trained on surface forms, but only frequencies
and source-side features instead. See (Fraser et
al., 2012) and (Cap et al., 2014) for more details
on how we trained the respective CRFs. In con-
trast, the verbal classifier has been trained on
WMT 2014 data.

6 Experimental Settings

In all our systems, we only used data distributed
for the shared task. All available German data
was morphologically analysed with SMOR. For
lemmatisation of the German training data, we
disambiguated SMOR using POS tags we ob-
tained through parsing the German section of
the parallel training data with BitPar (Schmid,
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No.
apprart nominal compound verbal source-side
splitting inflection processing inflection reordering

CimS-RI X X
CimS-CoRIP X X X
CimS-RIVe X X X
CimS-CoRIVe X X X X
CimS-Syntax-RORI X X X

Table 1: Overview of our submission systems.RI = nominal Re-Inflection, Co = Compound process-
ing, Ve = Verbal inflection, RO = source-side Re-Ordering. Syntax = syntax-based SMT P = primary
submission.

2004) and tagging the big monolingual training
data using RFTagger (Schmid and Laws, 2008)1.
Note that we did not normalise German lan-
guage e.g. with respect to old vs. new writing
convention etc. as we did in previous submis-
sions (e.g. (Fraser, 2009)).

For the compound prediction CRFs using syn-
tactic features derived from the source language,
we parsed the English section of the parallel
data using EGRET, a re-implementation of the
Berkeley-Parser by Hui Zhang2. Before training
our models on the English data, we normalised
all occurrences of British vs. American English
variants to British English. We did so for train-
ing, tuning and testing input.

Language Model We trained 5-gram language
models based on all available German monolin-
gual training data from the shared task (roughly
1.5 billion words) using the SRILM toolkit (Stol-
cke, 2002) with Kneser-Ney smoothing. We then
used KenLM (Heafield, 2011) for faster process-
ing. For each of our experiments, we trained
a separate language model on the whole data
set, corresponding to the different underspeci-
fied representations of German used in our ex-
periments, e.g. lemmatised for CimS-RI, lemma-
tised with split compounds for CimS-CoRI, etc.

Phrase-based Translation model We per-
formed word alignment using the multithreaded
GIZA++ toolkit (Och and Ney, 2003; Gao and
Vogel, 2008). For translation model training and
decoding, we used the Moses toolkit (Koehn
et al., 2007) to build phrase-based statistical
machine translation systems, following the
instructions for the baseline system for the
shared task, using only default settings.

1We could not parse the whole monolingual dataset due
to time-constraints and thus used RFTagger as a substitute.

2available from https://sites.google.com/
site/zhangh1982/egret.

Syntax-based Translation model As a variant
to the phrase-based systems, we applied the in-
flection prediction system to a string-to-tree sys-
tem with GHKM extraction (Galley et al. (2004),
Williams and Koehn (2012)). We used the same
data-sets as for the phrase-based systems, and
applied BitPar (Schmid, 2004) to obtain target-
side trees. For this system, we used source-side
reordering according to Gojun and Fraser (2012)
relying on parses obtained with EGRET3.

Tuning For tuning of feature weights, we used
batch-mira with ’–safe-hope’ (Cherry and Foster,
2012) until convergence (or maximal 25 runs).
We used the 3,000 sentences of newstest2012 for
tuning. Each experiment was tuned separately,
optimising Bleu scores (Papineni et al., 2002)
against a lemmatised version of the tuning ref-
erence. In the compound processing systems we
integrated the CRF-based prediction and merg-
ing procedure into each tuning iteration and
scored each output against the same unsplit and
lemmatised reference as the other systems.

Testing After decoding, the underspecified
representation has to be retransformed into
fluent German text, i.e., compounds need to
be re-combined and all words have to be re-
inflected. The whole procedure can be divided
into the following steps:

1a) translation into lemmatised German
representation (RI, RIVe)

1b) translation into split and lemmatised
German (CoRi, CoRIVe)

2) compound merging (CoRI, CoRIVe):
3) nominal inflection prediction and gen-

eration of full forms using SMOR (all)
4) verbal re-inflection (RIVe, CoRIVe)
5) merging of portmanteaus (all)

3Note that we observed some data-related issues on the
Syntax-RORI experiments that we hope to resolve in the
near future.
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Experiment
mert.log Bleu ci Bleu cs Bleu ci Bleu cs

news2012 news2013 news2013 news2014 news2014

raw 16.52 18.62 17.61 17.80 17.25

CimS-RI 18.51 19.23 18.38 18.33 17.75
CimS-CoRIP 18.36 19.13 18.25 18.51 17.87

CimS-RIVe 19.08 18.89 18.06 17.86 17.31
CimS-CoRIVe 18.69 18.60 17.77 17.38 16.78

CimS-Syntax-RORI 18.26 19.04 18.17 18.15 17.59

Table 2: Bleu scores for all CimS-submissions of the 2014 shared task. ci = case-insensitive, cs = case-
sensitive; P = primary submission.

After these post-processing steps, the text was
automatically recapitalised and detokenised, us-
ing the tools provided by the shared task, which
we trained on the whole German dataset. We cal-
culated Bleu (Papineni et al., 2002) scores using
the NIST script version 13a.

7 Results

We evaluated our systems with the 3,000 sen-
tences of last year’s newstest2013 and also the
2,737 sentences of the 2014 blind test set for the
German-English language pair. The Bleu scores
of our systems are given in Table 2, where raw
denotes our baseline system which we ran with-
out any pre- or postprocessing whatsoever. Note
that the big gap in mert.log scores between raw
and the CimS-systems comes from the fact that
raw is scored against the original (i.e. fully in-
flected) version of the tuning reference, while the
CimS-systems are scored against the stemmed
tuning reference.

As for the Bleu scores of the test sets, we ob-
serve similar improvements for the CimS-RI and
CimS-CoRI systems of +0.5/0.6 with respect to
the raw baseline as we did in previous experi-
ments (Cap et al., 2014)4. In contrast, our sys-
tems incorporating verbal prediction inflection
(CimS-RIVe/CoRIVe) cannot yet catch up with
the performance of the well-investigated nom-
inal inflection and compound processing sys-
tems (CimS-RI/CoRI). We attribute this partly to
the positive influence we assume fully inflected
verbs to have in nominal inflection prediction
models, but as the verb processing systems are
still under development, there might be other is-
sues we have not discovered yet. We plan to re-

4We will have a closer look at the data from a compound
processing view in Section 7.1 below.

visit these systems and improve them.
Finally, the syntax-based reordering system

yields scores that are competitive to those of
CimS-RI/CoRI. While Syntax-RORI so far only in-
corporates source-side reordering and nominal
re-inflection, we plan to investigate further ex-
tensions of this approach in the future.

7.1 Additional Evaluation

We manually screened the filtered 2014 test set
and identified 3,456 German compound tokens,
whereof 862 did not occur in the parallel training
data and thereof, 244 did not even occur in the
monolingual training data. For each of our sys-
tems, we calculated the number of compound
reference matches they produced. The results
are given in Table 3.

system ref new
raw 827 0
CimS-RI . 864 5
CimS-CoRIP 1,064 109
CimS-RIVe 853 5
CimS-CoRIVe 1,070 122
CimS-Syntax-RORI 900 20

Table 3: Numbers of compounds produced by
the systems that matched the reference (ref ) and
did not occur in the parallel training data (new).

The compound processing systems (with Co
in the name) generate many more correct com-
pounds than comparable systems without com-
pound handling. Compared to the raw base-
line, CoRI/CoRIVe did not only produce 237/243
more reference matches, but also 109/122 com-
pounds that matched the reference but did not
occur in the parallel training data. A lookup of
those 109/122 compounds in the monolingual
training data (consisting of roughly 1.5 billion
words) revealed, that 8/6 of them did not oc-
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cur there either5. These were thus not accessi-
ble to a list-based compound merging approach
either. This result also shows that despite the
fact that CoRIVe does not yield a competitive
translation quality performance yet, the com-
pound processing component seems to bene-
fit from the verbal inflection and it is definitely
worth more investigation in the future.

Moreover, it can be seen from Table 3 that
the re-inflection systems (*RI*) produce more
reference matches than the raw baseline. In-
terestingly, they even produce some reference
matches that have not been seen in the par-
allel training data due to inflectional variation,
and in the case of the syntax-based system due
to a naive list-based compound merging: even
though it has not been trained on a split repre-
sentation of German text, it might occasionally
occur that two German nouns occur next to each
other in the MT output. If so, these two words are
merged into a compound, using a list-based ap-
proach, similar to Popović et al. (2006).

8 Reordering

For the system CimS-Syntax-RORI, English data
parsed with EGRET was reordered using scripts
written for parse trees produced by the con-
stituent parser (Charniak and Johnson, 2005),
using a model we trained on the standard Penn
Treebank sections. Unfortunately, the reorder-
ing scripts could not be straightforwardly ap-
plied to EGRET parses and require more signifi-
cant modifications than we first expected.

We thus decided to parse the Europarl data
(v7) with (Charniak and Johnson, 2005) instead
and run our reordering scripts on it (CimS-RO).
For evaluation purposes, we build a baseline sys-
tem raw’ which has been trained only on Eu-
roparl. Tuning and testing setup is the same as
for the systems described in Section 6 with the
difference that the weights have been tuned on
newstest2013. The evaluation results are shown
in Table 4. Similarly to previous results reported
in (Gojun and Fraser, 2012), the CimS-RO system
shows an improvement of 0.5 Bleu points when
compared to the raw’ baseline .

5Namely: Testflugzeugen (test airplanes), Medientri-
bunal (media tribunal), RBS-Mitarbeiter (RBS worker),
Schulmauersanierung (school wall renovation), Anti-
Terror-Organisationen (anti-terror organisations), and
Tabakimpfstoffe (tobacco-plant-created vaccines) in both
and in CoRI also Hand-gepäckgebühr (hand luggage fee)
and Haftungsstreitigkeiten (liability litigation).

Experiment
mert.log Bleu ci Bleu cs

news2013 news2014 news2014

raw’ 16.87 16.25 15.31

CimS-RO 17.76 16.81 15.81

Table 4: Evaluation of the reordering system
trained on Europarl v7.

9 Summary

We presented the CimS systems, a set of
morphology-aware translation systems cus-
tomised for translation from English to German.
Each system operates on a different level of
morphological description, be it nominal inflec-
tion, verbal inflection, compound processing
or source-side reordering. Some of the systems
are well-established (RI, CoRI and RO), others
are still under developement (RIVe, CoRIVe and
Syntax-RORI). However, all of them, with the ex-
ception of CoRIVe, lead to improved translation
quality when evaluated against a contrastive
baseline without linguistic processing. In an
additional evaluation, we could show that the
compound processing systems are able to create
a considerable number of compounds unseen
in the parallel training data.

In the future, we will investigate further com-
binations and extensions of our morphological
components, including reordering, compound
processing and verbal inflection. There are still
many many interesting challenges to be solved
in all of these areas, and this is especially true for
verbal inflection.
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Abstract

This paper describes the IPN-UPV partici-
pation on the English-to-Hindi translation
task from WMT 2014 International Evalu-
ation Campaign. The system presented is
based on Moses and enhanced with deep
learning by means of a source-context fea-
ture function. This feature depends on the
input sentence to translate, which makes
it more challenging to adapt it into the
Moses framework. This work reports the
experimental details of the system putting
special emphasis on: how the feature func-
tion is integrated in Moses and how the
deep learning representations are trained
and used.

1 Introduction

This paper describes the joint participation of the
Instituto Politécnico Nacional (IPN) and the Uni-
versitat Politècnica de Valencia (UPV) in cooper-
ation with Institute for Infocomm Research (I2R)
on the 9th Workshop on Statistical Machine Trans-
lation (WMT 2014). In particular, our participa-
tion was in the English-to-Hindi translation task.

Our baseline system is an standard phrase-
based SMT system built with Moses (Koehn et al.,
2007). Starting from this system we propose to in-
troduce a source-context feature function inspired
by previous works (R. Costa-jussà and Banchs,
2011; Banchs and Costa-jussà, 2011). The main
novelty of this work is that the source-context fea-
ture is computed in a new deep representation.

The rest of the paper is organized as follows.
Section 2 presents the motivation of this seman-
tic feature and the description of how the source
context feature function is added to Moses. Sec-
tion 3 explains how both the latent semantic in-
dexing and deep representation of sentences are
used to better compute similarities among source

contexts. Section 4 details the WMT experimental
framework and results, which proves the relevance
of the technique proposed. Finally, section 5 re-
ports the main conclusions of this system descrip-
tion paper.

2 Integration of a deep source-context
feature function in Moses

This section reports the motivation and descrip-
tion of the source-context feature function, to-
gether with the explanation of how it is integrated
in Moses.

2.1 Motivation and description

Source context information in the phrase-based
system is limited to the length of the translation
units (phrases). Also, all training sentences con-
tribute equally to the final translation.

We propose a source-context feature func-
tion which measures the similarity between
the input sentence and all training sen-
tences. In this way, the translation unit
should be extended from source|||target to
source|||target|||trainingsentence, with the
trainingsentence the sentence from which
the source and target phrases were extracted.
The measured similarity is used to favour those
translation units that have been extracted from
training sentences that are similar to the current
sentence to be translated and to penalize those
translation units that have been extracted from
unrelated or dissimilar training sentences as
shown in Figure 2.1.

In the proposed feature, sentence similarity is
measured by means of the cosine distance in a
reduced dimension vector-space model, which is
constructed either by means of standard latent se-
mantic analysis or using deep representation as de-
cribed in section 3.
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S1: we could not book the room in time

T1: hm smy m�\ EVkV aArE?ft nhF\ kr sk�\

S2: I want to write the book in time

T2: m{\ smy m�\ EktAb ElKnA cAhtA h� 

Input: i am reading a nice book

book : EktAb
book : aArE?ft krnA

S2

S1

Input

Figure 1: Illustration of the method

2.2 Integration in Moses
As defined in the section above and, previously,
in (R. Costa-jussà and Banchs, 2011; Banchs
and Costa-jussà, 2011), the value of the proposed
source context similarity feature depends on each
individual input sentence to be translated by the
system. We are computing the similarity between
the source input sentence and all the source train-
ing sentences.

This definition implies the feature function de-
pends on the input sentence to be translated. To
implement this requirement, we followed our pre-
vious implementation of an off-line version of the
proposed methodology, which, although very in-
efficient in the practice, allows us to evaluate the
impact of the source-context feature on a state-of-
the-art phrase-based translation system. This prac-
tical implementation follows the next procedure:

1. Two sentence similarity matrices are com-
puted: one between sentences in the develop-
ment and training sets, and the other between
sentences in the test and training datasets.

2. Each matrix entry mij should contain the
similarity score between the ith sentence in
the training set and the jth sentence in the de-
velopment (or test) set.

3. For each sentence s in the test and develop-
ment sets, a phrase pair list LS of all poten-
tial phrases that can be used during decoding
is extracted from the aligned training set.

4. The corresponding source-context similarity
values are assigned to each phrase in lists LS

according to values in the corresponding sim-
ilarity matrices.

5. Each phrase list LS is collapsed into a phrase
table TS by removing repetitions (when re-
moving repeated entries in the list, the largest
value of the source-context similarity feature
is retained).

6. Each phrase table is completed by adding
standard feature values (which are computed
in the standard manner).

7. Moses is used on a sentence-per-sentence ba-
sis, using a different translation table for each
development (or test) sentence.

3 Representation of Sentences

We represent the sentences of the source language
in the latent space by means of linear and non-
linear dimensionality reduction techniques. Such
models can be seen as topic models where the low-
dimensional embedding of the sentences represent
conditional latent topics.

3.1 Deep Autoencoders
The non-linear dimensionality reduction tech-
nique we employ is based on the concept of deep
learning, specifically deep autoencoders. Autoen-
coders are three-layer networks (input layer, hid-
den layer and output layer) which try to learn an
identity function. In the neural network represen-
tation of autoencoder (Rumelhart et al., 1986), the
visible layer corresponds to the input layer and
hidden layer corresponds to the latent features.
The autoencoder tries to learn an abstract repre-
sentation of the data in the hidden layer in such
a way that minimizes reconstruction error. When
the dimension of the hidden layer is sufficiently
small, autoencoder is able to generalise and derive
powerful low-dimensional representation of data.
We consider bag-of-words representation of text
sentences where the visible layer is binary feature
vector (v) where vi corresponds to the presence
or absence of ith word. We use binary restricted
Boltzmann machines to construct an autoencoder
as shown in (Hinton et al., 2006). Latent repre-
sentation of the input sentence can be obtained as
shown below:

p(h|v) = σ(W ∗ v + b) (1)

where W is the symmetric weight matrix between
visible and hidden layer and b is hidden layer
bias vector and σ(x) is sigmoid logistic function
1/(1 + exp(−x)).
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Autoencoders with single hidden layer do not
have any advantage over linear methods like
PCA (Bourlard and Kamp, 1988), hence we
consider deep autoencoder by stacking multiple
RBMs on top of each other (Hinton and Salakhut-
dinov, 2006). The autoencoders have always been
difficult to train through back-propagation until
greedy layerwise pre-training was found (Hinton
and Salakhutdinov, 2006; Hinton et al., 2006; Ben-
gio et al., 2006). The pre-training initialises the
network parameters in such a way that fine-tuning
them through back-propagation becomes very ef-
fective and efficient (Erhan et al., 2010).

3.2 Latent Semantic Indexing

Linear dimensionality reduction technique, latent
semantic indexing (LSI) is used to represent sen-
tences in abstract space (Deerwester et al., 1990).
The term-sentence matrix (X) is created where xij

denotes the occurrence of ith term in jth sentence.
Matrix X is factorized using singular value decom-
position (SVD) method to obtain top m principle
components and the sentences are represented in
this m dimensional latent space.

4 Experiments

This section describes the experiments carried out
in the context of WMT 2014. For English-Hindi
the parallel training data was collected by Charles
University and consisted of 3.6M English words
and 3.97M Hindi words. There was a monolingual
corpus for Hindi comming from different sources
which consisted of 790.8M Hindi words. In ad-
dition, there was a development corpus of news
data translated specifically for the task which con-
sisted of 10.3m English words and 10.1m Hindi
words. For internal experimentation we built a
test set extracted from the training set. We se-
lected randomly 429 sentences from the training
corpus which appeared only once, removed them
from training and used them as internal test set.
Monolingual Hindi corpus was used to build a
larger language model. The language model was
computed doing an interpolation of the language
model trained on the Hindi part of the bilingual
corpus (3.97M words) and the language model
trained on the monolingual Hindi corpus (790.8M
words). Interpolation was optimised in the de-
velopment set provided by the organizers. Both
language models interpolated were 5-grams using
Kneser-Ney smoothing.

The preprocessing of the corpus was done with
the standard tools from Moses. English was low-
ercased and tokenized. Hindi was tokenized with
the simple tokenizer provided by the organizers.
We cleaned the corpus using standard parameters
(i.e. we keep sentences between 1 and 80 words
of length).

For training, we used the default Moses op-
tions, which include: the grow-diag-final and
word alignment symmetrization, the lexicalized
reordering, relative frequencies (conditional and
posterior probabilities) with phrase discounting,
lexical weights and phrase bonus for the trans-
lation model (with phrases up to length 10), a
language model (see details below) and a word
bonus model. Optimisation was done using the
MERT algorithm available in Moses. Optimisa-
tion is slow because of the way integration of the
feature function is done that it requires one phrase
table for each input sentence.

During translation, we dropped unknown words
and used the option of minimum bayes risk de-
coding. Postprocessing consisted in de-tokenizing
Hindi using the standard detokenizer of Moses
(the English version).

4.1 Autoencoder training

The architecture of autoencoder we consider was
n-500-128-500-n where n is the vocabulary size.
The training sentences were stemmed, stopwords
were removed and also the terms with sentences
frequency1 less than 20 were also removed. This
resulted in vocabulary size n=7299.

The RBMs were pretrained using Contrastive
Divergence (CD) with step size 1 (Hinton, 2002).
After pretraining, the RBMs were stacked on top
of each other and unrolled to create deep autoen-
coder (Hinton and Salakhutdinov, 2006). During
the fine-tuning stage, we backpropagated the re-
construction error to update network parameters.
The size of mini-batches during pretraining and
fine-tuning were 25 and 100 respectively. Weight
decay was used to prevent overfitting. Addition-
ally, in order to encourage sparsity in the hid-
den units, Kullback-Leibler sparsity regularization
was used. We used GPU2 based implementation of
autoencoder to train the models which took around
4.5 hours for full training.

1total number of training sentences in which the term ap-
pears

2NVIDIA GeForce GTX Titan with Memory 5 GiB and
2688 CUDA cores
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4.2 Results

Table 1 shows the improvements in terms of
BLEU of adding deep context over the baseline
system for English-to-Hindi (En2Hi) over devel-
opment and test sets. Adding source-context infor-
mation using deep learning outperforms the latent
semantic analysis methodology.

En2Hi
Dev Test

baseline 9.42 14.99
+lsi 9.83 15.12
+deep context 10.40† 15.43†

Table 1: BLEU scores for En2Hi translation task..
† depicts statistical significance (p-value<0.05).

Our source-context feature function may be
more discriminative in a task like English-to-Hindi
where the target language has a larger vocabulary
than the source one.

Table 2 shows an example of how the translation
is improving in terms of lexical semantics which is
the goal of the methodology presented in the pa-
per. The most frequent sense of word cry is ronA,
which literally means “to cry” while the example
in Table 2 refers to the sense of cry as cFK, which
means to scream. Our method could identify the
context and hence the source context feature (scf )
of the unit cry|||cFK is higher than for the unit
scf (cry|||ronA) as shown in Table 3 and for this
particular input sentence.

5 Conclusion

This paper reports the IPN-UPV participation in
the WMT 2014 Evaluation Campaign. The system
is Moses-based with an additional feature function
based on deep learning. This feature function in-
troduces source-context information in the stan-
dard Moses system by adding the information of
how similar is the input sentence to the different
training sentences. Significant improvements over

System Translation
Source soft cry from the depth
Baseline ghrAiyo\ s� m� lAym ron� lgt�
+deep context ghrAiyo\ s� m� lAym cFK
Reference ghrAiyo\ s� koml cFK

Table 2: Manual analysis of a translation output.

cp pp scf
cry|||ronA 0.23 0.06 0.85
cry|||cFK 0.15 0.04 0.90

Table 3: Probability values (conditional, cp, and
posterior, pp, as standard features in a phrase-
based system) for the word cry and two Hindi
translations.

the baseline system are reported in the task from
English to Hindi.

As further work, we will implement our feature
function in Moses using suffix arrays in order to
make it more efficient.
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Abstract

This paper describes the joined submis-
sion of LIMSI and KIT to the Shared
Translation Task for the German-to-
English direction. The system consists
of a phrase-based translation system us-
ing a pre-reordering approach. The base-
line system already includes several mod-
els like conventional language models on
different word factors and a discriminative
word lexicon. This system is used to gen-
erate a k-best list. In a second step, the
list is reranked using SOUL language and
translation models (Le et al., 2011).

Originally, SOUL translation models were
applied to n-gram-based translation sys-
tems that use tuples as translation units
instead of phrase pairs. In this article,
we describe their integration into the KIT
phrase-based system. Experimental re-
sults show that their use can yield sig-
nificant improvements in terms of BLEU
score.

1 Introduction

This paper describes the KIT-LIMSI system for
the Shared Task of the ACL 2014 Ninth Work-
shop on Statistical Machine Translation. The sys-
tem participates in the German-to-English trans-
lation task. It consists of two main components.
First, a k-best list is generated using a phrase-
based machine translation system. This system
will be described in Section 2. Afterwards, the k-
best list is reranked using SOUL (Structured OUt-
put Layer) models. Thereby, a neural network lan-
guage model (Le et al., 2011), as well as several
translation models (Le et al., 2012a) are used. A
detailed description of these models can be found
in Section 3. While the translation system uses
phrase pairs, the SOUL translation model uses tu-

ples as described in the n-gram approach (Mariño
et al., 2006). We describe the integration of the
SOUL models into the translation system in Sec-
tion 3.2. Section 4 summarizes the experimen-
tal results and compares two different tuning al-
gorithms: Minimum Error Rate Training (Och,
2003) and k-best Batch Margin Infused Relaxed
Algorithm (Cherry and Foster, 2012).

2 Baseline system

The KIT translation system is an in-house imple-
mentation of the phrase-based approach and in-
cludes a pre-ordering step. This system is fully
described in Vogel (2003).

To train translation models, the provided Eu-
roparl, NC and Common Crawl parallel corpora
are used. The target side of those parallel corpora,
the News Shuffle corpus and the GigaWord cor-
pus are used as monolingual training data for the
different language models. Optimization is done
with Minimum Error Rate Training as described
in Venugopal et al. (2005), using newstest2012
and newstest2013 as development and test data,
respectively.

Compound splitting (Koehn and Knight, 2003)
is performed on the source side (German) of the
corpus before training. Since the web-crawled
Common Crawl corpus is noisy, this corpus is
first filtered using an SVM classifier as described
in Mediani et al. (2011).

The word alignment is generated using the
GIZA++ Toolkit (Och and Ney, 2003). Phrase
extraction and scoring is done using the Moses
toolkit (Koehn et al., 2007). Phrase pair proba-
bilities are computed using modified Kneser-Ney
smoothing (Foster et al., 2006).

We apply short-range reorderings (Rottmann
and Vogel, 2007) and long-range reorder-
ings (Niehues and Kolss, 2009) based on part-of-
speech tags. The POS tags are generated using
the TreeTagger (Schmid, 1994). Rewriting rules
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based on POS sequences are learnt automatically
to perform source sentence reordering according
to the target language word order. The long-range
reordering rules are further applied to the training
corpus to create reordering lattices to extract the
phrases for the translation model. In addition,
a tree-based reordering model (Herrmann et al.,
2013) trained on syntactic parse trees (Rafferty
and Manning, 2008; Klein and Manning, 2003)
is applied to the source sentence. In addition
to these pre-reordering models, a lexicalized
reordering model (Koehn et al., 2005) is applied
during decoding.

Language models are trained with the SRILM
toolkit (Stolcke, 2002) using modified Kneser-Ney
smoothing (Chen and Goodman, 1996). The sys-
tem uses a 4-gram word-based language model
trained on all monolingual data and an additional
language model trained on automatically selected
data (Moore and Lewis, 2010). The system fur-
ther applies a language model based on 1000 auto-
matically learned word classes using the MKCLS
algorithm (Och, 1999). In addition, a bilingual
language model (Niehues et al., 2011) is used as
well as a discriminative word lexicon (DWL) us-
ing source context to guide the word choices in the
target sentence.

3 SOUL models for statistical machine
translation

Neural networks, working on top of conventional
n-gram back-off language models (BOLMs), have
been introduced in (Bengio et al., 2003; Schwenk,
2007) as a potential means to improve discrete
language models. The SOUL model (Le et al.,
2011) is a specific neural network architecture that
allows us to estimate n-gram models using large
vocabularies, thereby making the training of large
neural network models feasible both for target lan-
guage models and translation models (Le et al.,
2012a).

3.1 SOUL translation models

While the integration of SOUL target language
models is straightforward, SOUL translation mod-
els rely on a specific decomposition of the joint
probability P (s, t) of a sentence pair, where s is a
sequence of I reordered source words (s1, ..., sI )1

1In the context of the n-gram translation model, (s, t) thus
denotes an aligned sentence pair, where the source words are
reordered.

and t contains J target words (t1, ..., tJ ). In the
n-gram approach (Mariño et al., 2006; Crego et
al., 2011), this segmentation is a by-product of
source reordering, and ultimately derives from ini-
tial word and phrase alignments. In this frame-
work, the basic translation units are tuples, which
are analogous to phrase pairs, and represent a
matching u = (s, t) between a source phrase s
and a target phrase t.

Using the n-gram assumption, the joint proba-
bility of a segmented sentence pair using L tupels
decomposes as:

P (s, t) =
L∏

i=1

P (ui|ui−1, ..., ui−n+1) (1)

A first issue with this decomposition is that the
elementary units are bilingual pairs. Therefore,
the underlying vocabulary and hence the number
of parameters can be quite large, even for small
translation tasks. Due to data sparsity issues, such
models are bound to face severe estimation prob-
lems. Another problem with Equation (1) is that
the source and target sides play symmetric roles,
whereas the source side is known, and the tar-
get side must be predicted. To overcome some
of these issues, the n-gram probability in Equa-
tion (1) can be factored by first decomposing tu-
ples in two (source and target) parts, and then de-
composing the source and target parts at the word
level.

Let sk
i denote the kth word of source part of the

tuple si. Let us consider the example of Figure 1,
s111 corresponds to the source word nobel, s411 to
the source word paix, and similarly t211 is the tar-
get word peace. We finally define hn−1(tki ) as the
sequence of the n−1 words preceding tki in the tar-
get sentence, and hn−1(sk

i ) as the n−1 words pre-
ceding sk

i in the reordered source sentence: in Fig-
ure 1, h3(t211) thus refers to the three word context
receive the nobel associated with the target word
peace. Using these notations, Equation 1 can be
rewritten as:

P (s, t) =
L∏

i=1

[ |ti|∏
k=1

P
(
tki |hn−1(tki ), h

n−1(s1i+1)
)

×
|si|∏
k=1

P
(
sk
i |hn−1(t1i ), h

n−1(sk
i )
)] (2)

This decomposition relies on the n-gram assump-
tion, this time at the word level. Therefore, this
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 s̅8: à 

 t̅8: to 

 s̅9: recevoir 

 t̅9: receive 

 s̅10: le 

 t̅10: the 

 s̅11: nobel de la paix 

 t̅11: nobel peace 

 s̅12: prix 

 t̅12: prize 

 u8  u9  u10  u11  u12 

s :   .... 

t :   .... 

à recevoir le prix nobel de la paixorg :   ....

....

....

Figure 1: Extract of a French-English sentence pair segmented into bilingual units. The original (org)
French sentence appears at the top of the figure, just above the reordered source s and the target t. The
pair (s, t) decomposes into a sequence of L bilingual units (tuples) u1, ..., uL. Each tuple ui contains a
source and a target phrase: si and ti.

model estimates the joint probability of a sentence
pair using two sliding windows of length n, one
for each language; however, the moves of these
windows remain synchronized by the tuple seg-
mentation. Moreover, the context is not limited
to the current phrase, and continues to include
words in adjacent phrases. Equation (2) involves
two terms that will be further denoted as TrgSrc
and Src, respectively P

(
tki |hn−1(tki ), h

n−1(s1i+1)
)

and P
(
sk
i |hn−1(t1i ), h

n−1(sk
i )
)
. It is worth notic-

ing that the joint probability of a sentence pair
can also be decomposed by considering the fol-
lowing two terms: P

(
sk
i |hn−1(sk

i ), h
n−1(t1i+1)

)
and P

(
tki |hn−1(s1i ), h

n−1(tki )
)
. These two terms

will be further denoted by SrcTrg and Trg. There-
fore, adding SOUL translation models means that
4 scores are added to the phrase-based systems.

3.2 Integration

During the training step, the SOUL translation
models are trained as described in (Le et al.,
2012a). The main changes concern the inference
step. Given the computational cost of computing
n-gram probabilities with neural network models,
a solution is to resort to a two-pass approach: the
first pass uses a conventional system to produce
a k-best list (the k most likely hypotheses); in
the second pass, probabilities are computed by the
SOUL models for each hypothesis and added as
new features. Then the k-best list is reordered ac-
cording to a combination of all features including
these new features. In the following experiments,
we use 10-gram SOUL models to rescore 300-
best lists. Since the phrase-based system described
in Section 2 uses source reordering, the decoder
was modified in order to generate k-best lists that
contain necessary word alignment information be-
tween the reordered source sentence and its asso-

ciated target hypothesis. The goal is to recover
the information that is illustrated in Figure 1 and
to apply the n-gram decomposition of a sentence
pair.

These (target and bilingual) neural network
models produce scores for each hypothesis in the
k-best list; these new features, along with the fea-
tures from the baseline system, are then provided
to a new phase which runs the traditional Mini-
mum Error Rate Training (MERT ) (Och, 2003), or
a recently proposed k-best Batch Margin Infused
Relaxed Algorithm (KBMIRA ) (Cherry and Fos-
ter, 2012) for tuning purpose. The SOUL mod-
els used for this year’s evaluation are similar to
those described in Allauzen et al. (2013) and Le
et al. (2012b). However, since compared to these
evaluations less parallel data is available for the
German-to-English task, we use smaller vocabu-
laries of about 100K words.

4 Results

We evaluated the SOUL models on the German-
to-English translation task using two systems to
generate the k-best lists. The first system used
all models of the baseline system except the DWL
model and the other one used all models.

Table 1 summarizes experimental results in
terms of BLEU scores when the tuning is per-
formed using KBMIRA. As described in Section
3, the probability of a phrase pair can be decom-
posed into products of words’ probabilities in 2
different ways: we can first estimate the probabil-
ity of words in the source phrase given the context,
and then the probability of the target phrase given
its associated source phrase and context words
(see Equation (2)); or inversely we can generate
the target side before the source side. The for-
mer proceeds by adding Src and TrgSrc scores as
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No DWL DWL
Soul models Dev Test Dev Test
No 26.02 27.02 26.27 27.46
Target 26.30 27.42 26.43 27.85
Translation st 26.46 27.70 26.66 28.04
Translation ts 26.48 27.41 26.61 28.00
All Translation 26.50 27.86 26.70 28.08
All SOUL models 26.62 27.84 26.75 28.10

Table 1: Results using KBMIRA

No DWL DWL
Soul models Dev Test Dev Test
No 26.02 27.02 26.27 27.46
Target 26.18 27.09 26.44 27.54
Translation st 26.36 27.59 26.66 27.80
Translation ts 26.44 27.69 26.63 27.94
All Translation 26.53 27.65 26.69 27.99
All SOUL models 26.47 27.68 26.66 28.01

Table 2: Results using MERT. Results in bold correpond to the submitted system.

2 new features into the k-best list, and the latter by
adding Trg and SrcTrg scores. These 2 methods
correspond respectively to the Translation ts and
Translation st lines in the Table 1. The 4 trans-
lation models may also be added simultaneously
(All Translations). The first line gives baseline
results without SOUL models, while the Target
line shows results in adding only SOUL language
model. The last line (All SOUL models) shows
the results for adding all neural network models
into the baseline systems.

As evident in Table 1, using the SOUL trans-
lation models yields generally better results than
using the SOUL target language model, yielding
about 0.2 BLEU point differences on dev and test
sets. We can therefore assume that the SOUL
translation models provide richer information that,
to some extent, covers that contained in the neural
network language model. Indeed, these 4 trans-
lation models take into account not only lexi-
cal probabilities of translating target words given
source words (or in the inverse order), but also the
probabilities of generating words in the target side
(Trg model) as does a language model, with the
same context length over both source and target
sides. It is therefore not surprising that adding the
SOUL language model along with all translation
models (the last line in the table) does not give sig-

nificant improvement compared to the other con-
figurations. The different ways of using the SOUL
translation models perform very similarly.

Table 2 summarizes the results using MERT in-
stead of KBMIRA. We can observe that using KB-
MIRA results in 0.1 to 0.2 BLEU point improve-
ments compared to MERT. Moreover, this impact
becomes more important when more features are
considered (the last line when all 5 neural net-
work models are added into the baseline systems).
In short, the use of neural network models yields
up to 0.6 BLEU improvement on the DWL sys-
tem, and a 0.8 BLEU gain on the system without
DWL. Unfortunately, the experiments with KB-
MIRA were carried out after the the submission
date. Therefore the submitted system corresponds
to the last line of table 2 indicated in bold.

5 Conclusion

We presented a system with two main features: a
phrase-based translation system which uses pre-
reordering and the integration of SOUL target lan-
guage and translation models. Although the trans-
lation performance of the baseline system is al-
ready very competitive, the rescoring by SOUL
models improve the performance significantly. In
the rescoring step, we used a continuous language
model as well as four continuous translation mod-
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els. When combining the different SOUL models,
the translation models are observed to be more im-
portant in increasing the translation performance
than the language model. Moreover, we observe a
slight benefit to use KBMIRA instead of the stan-
dard MERT tuning algorithm. It is worth noticing
that using KBMIRA improves the performance
but also reduces the variance of the final results.

As future work, the integration of the SOUL
translation models could be improved in differ-
ent ways. For SOUL translation models, there
is a mismatch between translation units used dur-
ing the training step and those used by the de-
coder. The former are derived using the n-gram-
based approach, while the latter use the conven-
tional phrase extraction heuristic. We assume that
reducing this mismatch could improve the overall
performance. This can be achieved for instance
using forced decoding to infer a segmentation of
the training data into translation units. Then the
SOUL translation models can be trained using
this segmentation. For the SOUL target language
model, in these experiments we only used the En-
glish part of the parallel data for training. Results
may be improved by including all the monolingual
data.
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Abstract

In this paper, we describe our English-
Hindi and Hindi-English statistical sys-
tems submitted to the WMT14 shared task.
The core components of our translation
systems are phrase based (Hindi-English)
and factored (English-Hindi) SMT sys-
tems. We show that the use of num-
ber, case and Tree Adjoining Grammar
information as factors helps to improve
English-Hindi translation, primarily by
generating morphological inflections cor-
rectly. We show improvements to the
translation systems using pre-procesing
and post-processing components. To over-
come the structural divergence between
English and Hindi, we preorder the source
side sentence to conform to the target lan-
guage word order. Since parallel cor-
pus is limited, many words are not trans-
lated. We translate out-of-vocabulary
words and transliterate named entities in
a post-processing stage. We also investi-
gate ranking of translations from multiple
systems to select the best translation.

1 Introduction

India is a multilingual country with Hindi be-
ing the most widely spoken language. Hindi and
English act as link languages across the coun-
try and languages of official communication for
the Union Government. Thus, the importance of
English⇔Hindi translation is obvious. Over the
last decade, several rule based (Sinha, 1995) , in-
terlingua based (Dave et. al., 2001) and statistical
methods (Ramanathan et. al., 2008) have been ex-
plored for English-Hindi translation.

In the WMT 2014 shared task, we undertake
the challenge of improving translation between the
English and Hindi language pair using Statisti-
cal Machine Translation (SMT) techniques. The

WMT 2014 shared task has provided a standard-
ized test set to evaluate multiple approaches and
avails the largest publicly downloadable English-
Hindi parallel corpus. Using these resources,
we have developed a phrase-based and a factored
based system for Hindi-English and English-Hindi
translation respectively, with pre-processing and
post-processing components to handle structural
divergence and morphlogical richness of Hindi.
Section 2 describes the issues in Hindi↔English
translation.

The rest of the paper is organized as follows.
Section 3 describes corpus preparation and exper-
imental setup. Section 4 and Section 5 describe
our English-Hindi and Hindi-English translation
systems respectively. Section 6 describes the post-
processing operations on the output from the core
translation system for handling OOV and named
entities, and for reranking outputs from multiple
systems. Section 7 mentions the details regarding
our systems submitted to WMT shared task. Sec-
tion 8 concludes the paper.

2 Problems in Hindi⇔English
Translation

Languages can be differentiated in terms of
structural divergences and morphological mani-
festations. English is structurally classified as
a Subject-Verb-Object (SVO) language with a
poor morphology whereas Hindi is a morpho-
logically rich, Subject-Object-Verb (SOV) lan-
guage. Largely, these divergences are responsi-
ble for the difficulties in translation using a phrase
based/factored model, which we summarize in this
section.

2.1 English-to-Hindi

The fundamental structural differences described
earlier result in large distance verb and modi-
fier movements across English-Hindi. Local re-
ordering models prove to be inadequate to over-
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come the problem; hence, we transformed the
source side sentence using pre-ordering rules to
conform to the target word order. Availability of
robust parsers for English makes this approach for
English-Hindi translation effective.

As far as morphology is concerned, Hindi is
more richer in terms of case-markers, inflection-
rich surface forms including verb forms etc. Hindi
exhibits gender agreement and syncretism in in-
flections, which are not observed in English. We
attempt to enrich the source side English corpus
with linguistic factors in order to overcome the
morphological disparity.

2.2 Hindi-to-English

The lack of accurate linguistic parsers makes it dif-
ficult to overcome the structural divergence using
preordering rules. In order to preorder Hindi sen-
tences, we build rules using shallow parsing infor-
mation. The source side reordering helps to reduce
the decoder’s search complexity and learn better
phrase tables. Some of the other challenges in gen-
eration of English output are: (1) generation of ar-
ticles, which Hindi lacks, (2) heavy overloading of
English prepositions, making it difficult to predict
them.

3 Experimental Setup

We process the corpus through appropriate filters
for normalization and then create a train-test split.

3.1 English Corpus Normalization

To begin with, the English data was tokenized us-
ing the Stanford tokenizer (Klein and Manning,
2003) and then true-cased using truecase.perl pro-
vided in MOSES toolkit.

3.2 Hindi Corpus Normalization

For Hindi data, we first normalize the corpus us-
ing NLP Indic Library (Kunchukuttan et. al.,
2014)1. Normalization is followed by tokeniza-
tion, wherein we make use of the trivtokenizer.pl2

provided with WMT14 shared task. In Table 1, we
highlight some of the post normalization statistics
for en-hi parallel corpora.

1https://bitbucket.org/anoopk/indic_
nlp_library

2http://ufallab.ms.mff.cuni.cz/~bojar/
hindencorp/

English Hindi
Token 2,898,810 3,092,555
Types 95,551 118,285
Total Characters 18,513,761 17,961,357
Total sentences 289,832 289,832
Sentences (word
count ≤ 10)

188,993 182,777

Sentences (word
count > 10)

100,839 107,055

Table 1: en-hi corpora statistics, post normalisa-
tion.

3.3 Data Split
Before splitting the data, we first randomize the
parallel corpus. We filter out English sentences
longer than 50 words along with their parallel
Hindi translations. After filtering, we select 5000
sentences which are 10 to 20 words long as the test
data, while remaining 284,832 sentences are used
for training.

4 English-to-Hindi (en-hi) translation

We use the MOSES toolkit (Koehn et. al., 2007a)
for carrying out various experiments. Starting with
Phrase Based Statistical Machine Translation (PB-
SMT)(Koehn et. al., 2003) as baseline system we
go ahead with pre-order PBSMT described in Sec-
tion 4.1. After pre-ordering, we train a Factor
Based SMT(Koehn, 2007b) model, where we add
factors on the pre-ordered source corpus. In Fac-
tor Based SMT we have two variations- (a) using
Supertag as factor described in Section 4.2 and (b)
using number, case as factors described in Section
4.3.

4.1 Pre-ordering source corpus
Research has shown that pre-ordering source lan-
guage to conform to target language word order
significantly improves translation quality (Collins
et. al, 2005). There are many variations of pre-
ordering systems primarily emerging from either
rule based or statistical methods. We use rule
based pre-ordering approach developed by (Pa-
tel et. al., 2013), which uses the Stanford parser
(Klein and Manning, 2003) for parsing English
sentences. This approach is an extension to an ear-
lier approach developed by (Ramanathan et. al.,
2008). The existing source reordering system re-
quires the input text to contain only surface form,
however, we extended it to support surface form
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along with its factors like POS, lemma etc.. An
example of improvement in translation after pre-
ordering is shown below:
Example: trying to replace bad ideas with good
ideas .
Phr: replace b� r� EvcAro\ ko aQC� EvcAro\ k�
sAT
(replace bure vichaaron ko acche vichaaron ke
saath)
Gloss: replace bad ideas good ideas with
Pre-order PBSMT: aQC� EvcAro\ s� b� r� EvcAro\
ko bdln� kF koEff kr rh� h{\
(acche vichaaron se bure vichaaron ko badalane
ki koshish kara rahe hain)
Gloss: good ideas with bad ideas to replace trying

4.2 Supertag as Factor
The notion of Supertag was first proposed by
Joshi and Srinivas (1994). Supertags are elemen-
tary trees of Lexicalized Tree Adjoining Grammar
(LTAG) (Joshi and Schabes, 1991). They provide
syntactic as well as dependency information at the
word level by imposing complex constraints in a
local context. These elementary trees are com-
bined in some manner to form a parse tree, due
to which, supertagging is also known as “An ap-
proach to almost parsing”(Bangalore and Joshi,
1999). A supertag can also be viewed as frag-
ments of parse trees associated with each lexi-
cal item. Figure 1 shows an example of su-
pertagged sentence “The purchase price includes
taxes”described in (Hassan et. al., 2007). It clearly
shows the sub-categorization information avail-
able in the verb include, which takes subject NP
to its left and an object NP to its right.

Figure 1: LTAG supertag sequence obtained using
MICA Parser.

Use of supertags as factors has already been
studied by Hassan (2007) in context of Arabic-
English SMT. They use supertag language model
along with supertagged English corpus. Ours
is the first study in using supertag as factor
for English-to-Hindi translation on a pre-ordered
source corpus.

We use MICA Parser (Bangalore et. al., 2009)
for obtaining supertags. After supertagging we run
pre-ordering system preserving the supertags in it.
For translation, we create mapping from source-
word|supertag to target-word. An example of im-
provement in translation by using supertag as fac-
tor is shown below:
Example: trying to understand what your child is
saying to you
Phr: aApkA bÎA aAps� ÈA kh rhA h{ yh
(aapkaa bacchaa aapse kya kaha rahaa hai yaha)
Gloss: your child you what saying is this
Supertag Fact: aApkA bÎA aAps� ÈA kh rhA
h{ , us� smJn� kF koEff krnA
(aapkaa bacchaa aapse kya kaha rahaa hai, use
samajhane kii koshish karnaa)
Gloss: your child to you what saying is , that un-
derstand try

4.3 Number, Case as Factor

In this section, we discuss how to generate correct
noun inflections while translating from English to
Hindi. There has been previous work done in order
to solve the problem of data sparsity due to com-
plex verb morphology for English to Hindi trans-
lation (Gandhe, 2011). Noun inflections in Hindi
are affected by the number and case of the noun
only. Number can be singular or plural, whereas,
case can be direct or oblique. We use the factored
SMT model to incorporate this linguistic informa-
tion during training of the translation models. We
attach root-word, number and case as factors to
English nouns. On the other hand, to Hindi nouns
we attach root-word and suffix as factors. We de-
fine the translation and generation step as follows:

• Translation step (T0): Translates English
root|number|case to Hindi root|suffix

• Generation step (G0): Generates Hindi sur-
face word from Hindi root|suffix

An example of improvement in translation by
using number and case as factors is shown below:
Example: Two sets of statistics
Phr: do k� aA kw�
(do ke aankade)
Gloss: two of statistics
Num-Case Fact: aA kwo\ k� do s�V
(aankadon ke do set)
Gloss: statistics of two sets
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4.3.1 Generating number and case factors
With the help of syntactic and morphological
tools, we extract the number and case of the En-
glish nouns as follows:

• Number factor: We use Stanford POS tag-
ger3 to identify the English noun entities
(Toutanova, 2003). The POS tagger itself dif-
ferentiates between singular and plural nouns
by using different tags.

• Case factor: It is difficult to find the
direct/oblique case of the nouns as En-
glish nouns do not contain this information.
Hence, to get the case information, we need
to find out features of an English sentence
that correspond to direct/oblique case of the
parallel nouns in Hindi sentence. We use
object of preposition, subject, direct object,
tense as our features. These features are
extracted using semantic relations provided
by Stanford’s typed dependencies (Marneffe,
2008).

4.4 Results
Listed below are different statistical systems
trained using Moses:

• Phrase Based model (Phr)

• Phrase Based model with pre-ordered source
corpus (PhrReord)

• Factor Based Model with factors on pre-
ordered source corpus

– Supertag as factor (PhrReord+STag)
– Number, Case as factor (PhrReord+NC)

We evaluated translation systems with BLEU and
TER as shown in Table 2. Evaluation on the devel-
opment set shows that factor based models achieve
competitive scores as compared to the baseline
system, whereas, evaluation on the WMT14 test
set shows significant improvement in the perfor-
mance of factor based models.

5 Hindi-to-English (hi-en) translation

As English follows SVO word order and Hindi fol-
lows SOV word order, simple distortion penalty in
phrase-based models can not handle the reordering
well. For the shared task, we follow the approach

3http://nlp.stanford.edu/software/tagger.shtml

Development WMT14
Model BLEU TER BLEU TER
Phr 27.62 0.63 8.0 0.84
PhrReord 28.64 0.62 8.6 0.86
PhrReord+STag 27.05 0.64 9.8 0.83
PhrReord+NC 27.50 0.64 10.1 0.83

Table 2: English-to-Hindi automatic evaluation on
development set and on WMT14 test set.

that pre-orders the source sentence to conform to
target word order.

A substantial volume of work has been done
in the field of source-side reordering for machine
translation. Most of the experiments are based on
applying reordering rules at the nodes of the parse
tree of the source sentence. These reordering rules
can be automatically learnt (Genzel, 2010). But,
many source languages do not have a good robust
parser. Hence, instead we can use shallow pars-
ing techniques to get chunks of words and then
reorder them. Reordering rules can be learned au-
tomatically from chunked data (Zhang, 2007).

Hindi does not have a functional constituency
or dependency parser available, as of now. But,
a shallow parser4 is available for Hindi. Hence,
we follow a chunk-based pre-ordering approach,
wherein, we develop a set of rules to reorder
the chunks in a source sentence. The follow-
ing are the chunks tags generated by this shallow
parser: Noun chunks (NP), Verb chunks (VGF,
VGNF, VGNN), Adjectival chunks (JJP), Ad-
verb chunks (RBP), Negatives (NEGP), Conjuncts
(CCP), Chunk fragments (FRAGP), and miscella-
neous entities (BLK) (Bharati, 2006).

5.1 Development of rules

After chunking an input sentence, we apply hand-
crafted reordering rules on these chunks. Follow-
ing sections describe these rules. Note that we ap-
ply rules in the same order they are listed below.

5.1.1 Merging of chunks
After chunking, we merge the adjacent chunks, if
they follow same order in target language.

1. Merge {JJP VGF} chunks (Consider this
chunk as a single VGF chunk)
e.g., vEZt h{ (varnit hai), E-Tt h{ (sthit hai)

4http://ltrc.iiit.ac.in/showfile.php?
filename=downloads/shallow_parser.php
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2. Merge adjacent verb chunks (Consider this
chunk as a single verb chunk)
e.g., EgrtA h{ (girataa hai), l� BAtA h{ (lub-
haataa hai)

3. Merge NP and JJP chunks separated by com-
mas and CCP (Consider this chunk as a single
NP chunk)
e.g., bwA aOr ahm (badaa aur aham)

5.1.2 Preposition chunk reordering
Next we find sequence of contiguous chunks sep-
arated by prepositions (Can end in verb chunks).
We apply following reordering rules on these con-
tiguous chunks:

1. Reorder multi-word preposition locally by re-
versing the order of words in that chunk
e.g., k� alAvA (ke alaawaa) → alAvA k�,
k� sAmn� (ke saamane)→ sAmn� k�

2. Reorder contiguous preposition chunk by re-
versing the order of chunks (Consider this
chunk as a single noun chunk)
e.g., Eh\d� Dm m�\ tFT kA bwA mh(v (hinduu
dharma me tirtha ka badaa mahatva)→ bwA
mh(v kA tFT m�\ Eh\d� Dm

5.1.3 Verb chunk reordering
We find contiguous verb chunks and apply follow-
ing reordering rules:

1. Reorder chunks locally by reversing the order
of the chunks
e.g., vEZt h{ (varnit hai)→ h{ vEZt

2. Verb chunk placement: We place the new
verb chunk after first NP chunk. Same rule
applies for all verb chunks in a sentence, i.e.,
we place each verb chunk after first NP chunk
of the clause to which the verb belongs.

Note that, even though placing verb chunk af-
ter first NP chunk may be wrong reordering.
But we also use distortion window of 6 to 20
while using phrase-based model. Hence, fur-
ther reordering of verb chunks can be some-
what handled by phrase-based model itself.

Thus, using chunker and reordering rules, we
get a source-reordered Hindi sentence.

5.2 Results

We trained two different translation models:

• Phrase-based model without source reorder-
ing (Phr)

• Phrase-based model with chunk-based source
reordering (PhrReord)

Development WMT14
Model BLEU TER BLEU TER

Phr 27.53 0.59 13.5 0.87
PhrReord 25.06 0.62 13.7 0.90

Table 3: Hindi-to-English automatic evaluation on
development set and on WMT14 test set.

Table 3 shows evaluation scores for develop-
ment set and WMT14 test set. Even though we do
not see significant improvement in automatic eval-
uation of PhrReord, but this model contributes in
improving translation quality after ranking, as dis-
cussed in Section 5. In subjective evaluation we
found many translation to be better in PhrReord
model as shown in the following examples:

Example 1: sn 2004 s� v� kI bAr coVg}-t
rh� h{\ |
(sana 2004 se ve kaii baar chotagrasta rahe hain.)
Phr: since 2004 he is injured sometimes .
PhrReord: he was injured many times since 2004
.
Example 2: aobAmA kA rA£~ pEt pd k� c� nAv
þcAr h�t� bnAyA aAEDkAErk jAl-Tl
(obama ka rashtrapti pad ke chunaav prachaar
hetu banaayaa aadhikarik jaalsthal)
Phr: of Obama for election campaign
PhrReord: official website of Obama created for
President campaign

6 Post processing

All experimental results reported in this paper are
after post processing the translation output. In post
processing, we remove some Out-of-Vocabulary
(OOV) words as described in subsection 6.1, after
which we transliterate the remaining OOV words.

6.1 Removing OOV
We noticed, there are many words in the training
corpus which were not present in the phrase ta-
ble, but, were present in the lexical tranlsation ta-
ble. So we used the lexical table as a dictionary
to lookup bilingual translations. Table 4 gives the
statistics of number of OOV reduced.
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Model Before After
Phrased Based 2313 1354
Phrase Based (pre-order) 2256 1334
Supertag as factor 4361 1611
Num-Case as factor 2628 1341

Table 4: Statistics showing number of OOV be-
fore and after post processing the English-to-Hindi
translation output of Development set.

6.2 Transliteration of Untranslated Words

OOV words which were not present in the lexi-
cal translation table were then transliterated using
a naive transliteration system. The transliteration
step was applied on Hindi-to-English translation
outputs only. After transliteration we noticed frac-
tional improvements in BLEU score varying from
0.1 to 0.5.

6.3 Ranking of Ensemble MT Output

We propose a ranking framework to select the best
translation output from an ensemble of multiple
MT systems. In order to exploit the strength of
each system, we augment the translation pipeline
with a ranking module as a post processing step.
For English-to-Hindi ranking we combine the
output of both factor based models, whereas,
for Hindi-to-English ranking we combine phrase
based and phrase based with pre-ordering outputs.

For most of the systems, the output translations
are adequate but not fluent enough. So, based on
their fluency scores, we decided to rank the candi-
date translations. Fluency is well quantified by LM
log probability score and Perplexity. For a given
translation , we compute these scores by querying
the 5-gram language model built using SRILM.
Table 5 shows more than 4% relative improvement
in BLEU score for en-hi as well as hi-en transla-
tion system after applying ranking module.

Model BLEU METEOR TER
Phr(en-hi) 27.62 0.41 0.63
After Ranking (en-hi) 28.82 0.42 0.63
Phr(hi-en) 27.53 0.27 0.59
After Ranking (hi-en) 28.69 0.27 0.59

Table 5: Comparision of ranking score with base-
line

7 Primary Systems in WMT14

For English-to-Hindi, we submitted the ranked
output of factored models trained on pre-ordered
source corpus. For Hindi-to-English, we submit-
ted the ranked output of phrase based and pre-
ordered phrase based models. Table 6 shows eval-
uation scores of these systems on WMT14 test set.

Lang. pair BLEU TER
en-hi 10.4 0.83
hi-en 14.5 0.89

Table 6: WMT14 evaluation for en-hi and hi-en.

8 Conclusion

We conclude that the difficulties in English-Hindi
MT can be tackled by the use of factor based SMT
and various pre-processing and post processing
techniques. Following are our primary contribu-
tions towards English-Hindi machine translation:

• Use of supertag factors for better translation
of structurally complex sentences

• Use of number-case factors for accurately
generating noun inflections in Hindi

• Use of shallow parsing for pre-ordering Hindi
source corpus

We also observed that simple ranking strategy ben-
efits in getting the best translation from an ensem-
ble of translation systems.
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Abstract

This paper describes the University of Ed-
inburgh’s (UEDIN) phrase-based submis-
sions to the translation and medical trans-
lation shared tasks of the 2014 Work-
shop on Statistical Machine Translation
(WMT). We participated in all language
pairs. We have improved upon our 2013
system by i) using generalized represen-
tations, specifically automatic word clus-
ters for translations out of English, ii) us-
ing unsupervised character-based models
to translate unknown words in Russian-
English and Hindi-English pairs, iii) syn-
thesizing Hindi data from closely-related
Urdu data, and iv) building huge language
on the common crawl corpus.

1 Translation Task

Our baseline systems are based on the setup de-
scribed in (Durrani et al., 2013b) that we used
for the Eighth Workshop on Statistical Machine
Translation (Bojar et al., 2013). The notable fea-
tures of these systems are described in the follow-
ing section. The experiments that we carried out
for this year’s translation task are described in the
following sections.

1.1 Baseline

We trained our systems with the following set-
tings: a maximum sentence length of 80, grow-
diag-final-and symmetrization of GIZA++ align-
ments, an interpolated Kneser-Ney smoothed 5-
gram language model with KenLM (Heafield,
2011) used at runtime, hierarchical lexicalized re-
ordering (Galley and Manning, 2008), a lexically-
driven 5-gram operation sequence model (OSM)

(Durrani et al., 2013a) with 4 count-based sup-
portive features, sparse domain indicator, phrase
length, and count bin features (Blunsom and Os-
borne, 2008; Chiang et al., 2009), a distortion limit
of 6, maximum phrase-length of 5, 100-best trans-
lation options, Minimum Bayes Risk decoding
(Kumar and Byrne, 2004), Cube Pruning (Huang
and Chiang, 2007), with a stack-size of 1000
during tuning and 5000 during test and the no-
reordering-over-punctuation heuristic (Koehn and
Haddow, 2009). We used POS and morphologi-
cal tags as additional factors in phrase translation
models (Koehn and Hoang, 2007) for German-
English language pairs. We also trained target se-
quence models on the in-domain subset of the par-
allel corpus using Kneser-Ney smoothed 7-gram
models. We used syntactic-preordering (Collins
et al., 2005) and compound splitting (Koehn and
Knight, 2003) for German-to-English systems.
We used trivia tokenizer for tokenizing Hindi.

The systems were tuned on a very large tun-
ing set consisting of the test sets from 2008-2012,
with a total of 13,071 sentences. We used news-
test 2013 for the dev experiments. For Russian-
English pairs news-test 2012 was used for tuning
and for Hindi-English pairs, we divided the news-
dev 2014 into two halves, used the first half for
tuning and second for dev experiments.

1.2 Using Generalized Word Representations

We explored the use of automatic word clusters
in phrase-based models (Durrani et al., 2014a).
We computed the clusters with GIZA++’s mkcls
(Och, 1999) on the source and target side of the
parallel training corpus. Clusters are word classes
that are optimized to reduce n-gram perplexity.
By generating a cluster identifier for each out-
put word, we are able to add an n-gram model
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over these identifiers as an additional scoring func-
tion. The inclusion of such an additional factor
is trivial given the factored model implementation
(Koehn and Hoang, 2007) of Moses (Koehn et al.,
2007). The n-gram model is trained in the similar
way as the regular language model. We trained
domain-specific language models separately and
then linearly interpolated them using SRILM with
weights optimized on the tuning set (Schwenk and
Koehn, 2008).

We also trained OSM models over cluster-ids
(?). The lexically driven OSM model falls back to
very small context sizes of two to three operations
due to data sparsity. Learning operation sequences
over cluster-ids enables us to learn richer trans-
lation and reordering patterns that can generalize
better in sparse data conditions. Table 1 shows
gains from adding target LM and OSM models
over cluster-ids. Using word clusters was found
more useful translating from English-to-*.

from English into English

Lang B0 +Cid ∆ B0 +Cid ∆

de 20.60 20.85 +0.25 27.44 27.34 -0.10
cs 18.84 19.39 +0.55 26.42 26.42 ±0.00
fr 30.73 30.82 +0.09 31.64 31.76 +0.12
ru 18.78 19.67 +0.89 24.45 24.63 +0.18
hi 10.39 10.52 +0.13 15.48 15.26 -0.22

Table 1: Using Word Clusters in Phrase-based and
OSM models – B0 = System without Clusters,
+Cid = with Cluster

We also trained OSM models over POS and
morph tags. For the English-to-German sys-
tem we added an OSM model over [pos, morph]
(source:pos, target:morph) and for the German-
to-English system we added an OSM model over
[morph,pos] (source:morph, target:pos), a config-
uration that was found to work best in our previous
experiments (Birch et al., 2013). Table 2 shows
gains from additionally using OSM models over
POS/morph tags.

Lang B0 +OSMp,m ∆

en-de 20.44 20.60 +0.16
de-en 27.24 27.44 +0.20

Table 2: Using POS and Morph Tags in
OSM models – B0 = Baseline, +OSMp,m =
POS/Morph-based OSM

1.3 Unsupervised Transliteration Model
Last year, our Russian-English systems performed
badly on the human evaluation. In comparison
other participants that used transliteration did well.
We could not train a transliteration system due
to unavailability of a transliteration training data.
This year we used an EM-based method to in-
duce unsupervised transliteration models (Durrani
et al., 2014b). We extracted transliteration pairs
automatically from the word-aligned parallel data
and used it to learn a transliteration system. We
then built transliteration phrase-tables for trans-
lating OOV words and used the post-decoding
method (Method 2 as described in the paper) to
translate these.

Pair Training OOV B0 +Tr ∆

ru-en 232K 1356 24.63 25.06 +0.41
en-ru 232K 681 19.67 19.91 +0.24
hi-en 38K 503 14.67 15.48 +0.81
en-hi 38K 394 11.76 12.83 +1.07

Table 3: Using Unsupervised Transliteration
Model – Training = Extracted Transliteration Cor-
pus (types), OOV = Out-of-vocabulary words (to-
kens) B0 = System without Transliteration, +Tr

= Transliterating OOVs

Table 3 shows the number (types) of translit-
eration pairs extracted using unsupervised min-
ing, number of OOV words (tokens) in each pair
and the gains achieved by transliterating unknown
words.

1.4 Synthesizing Hindi Data from Urdu
Hindi and Urdu are closely related language pairs
that share grammatical structure and have a large
overlap in vocabulary. This provides a strong
motivation to transform any Urdu-English paral-
lel data into Hindi-English by translating the Urdu
part into Hindi. We made use of the Urdu-English
segment of the Indic multi-parallel corpus (Post
et al., 2012) which contains roughly 87K sentence
pairs. The Hindi-English segment of this corpus
is a subset of parallel data made available for the
translation task but is completely disjoint from the
Urdu-English segment.

We initially trained a Urdu-to-Hindi SMT sys-
tem using a very tiny EMILLE1 corpus (Baker

1EMILLE corpus contains roughly 12000 sentences of
Hindi and Urdu comparable data. From these we were able
to sentence align 7000 sentences to build an Urdu-to-Hindi
system.
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et al., 2002). But we found this system to be use-
less for translating the Urdu part of Indic data due
to domain mismatch and huge number of OOV
words (approximately 310K tokens). To reduce
sparsity we synthesized additional phrase-tables
using interpolation and transliteration.

Interpolation: We trained two phrase transla-
tion tables p(ūi|ēi) and p(ēi|h̄i), from Urdu-
English (Indic corpus) and Hindi-English (Hin-
dEnCorp (Bojar et al., 2014)) bilingual cor-
pora. Given the phrase-table for Urdu-English
p(ūi|ēi) and the phrase-table for English-Hindi
p(ēi|h̄i), we estimated a Urdu-Hindi phrase-table
p(ūi|h̄i) using the well-known convolution model
(Utiyama and Isahara, 2007; Wu and Wang, 2007):

p(ūi|h̄i) =
∑
ēi

p(ūi|ēi)p(ēi|h̄i)

The number of entries in the baseline Urdu-to-
Hindi phrase-table were approximately 254K. Us-
ing interpolation we were able to build a phrase-
table containing roughly 10M phrases. This re-
duced the number of OOV tokens from 310K to
approximately 50K.

Transliteration: Urdu and Hindi are written in
different scripts (Arabic and Devanagri respec-
tively). We added a transliteration component
to our Urdu-to-Hindi system. An unsupervised
transliteration model is learned from the word-
alignments of Urdu-Hindi parallel data. We were
able to extract around 2800 transliteration pairs.
To learn a richer transliteration model, we addi-
tionally fed the interpolated phrase-table, as de-
scribed above, to the transliteration miner. We
were able to mine additional 21000 translitera-
tion pairs and built a Urdu-Hindi character-based
model from it. The transliteration module can
be used to translate the 50K OOV words but
previous research (Durrani et al., 2010; Nakov
and Tiedemann, 2012) has shown that translit-
eration is useful for more than just translating
OOV words when translating closely related lan-
guage pairs. To fully capitalize on the large over-
lap in Hindi–Urdu vocabulary, we transliterated
each word in the Urdu test-data into Hindi and
produced a phrase-table with 100-best transliter-
ations. The two synthesized (triangulated and
transliterated) phrase-tables are then used along
with the baseline Urdu-to-Hindi phrase-table in
a log-linear model. Detailed results on Urdu-to-
Hindi baseline and improvements obtained from

using transliteration and triangulated phrase-tables
are presented in Durrani and Koehn (2014). Using
our best Urdu-to-Hindi system, we translated the
Urdu part of the multi-indic corpus to form Hindi-
English parallel data. Table 4 shows results from
using the synthesized Hindi-English corpus in iso-
lation (Syn) and on top of the baseline system
(B0 + Syn).

Pair B0 Syn ∆ B0 + Syn ∆

hi-en 14.28 10.49 -3.79 14.72 +0.44
en-hi 10.59 9.01 -1.58 11.76 +1.17

Table 4: Evaluating Synthesized (Syn) Hindi-
English Parallel Data, B0 = System without Syn-
thesized Data

1.5 Huge Language Models

Our unconstrained submissions use an additional
language model trained on web pages from the
2012, 2013, and winter 2013 CommonCrawl.2

The additional language model is the only differ-
ence between the constrained and unconstrained
submissions; we did not use additional parallel
data. These language models were trained on text
provided by the CommonCrawl foundation, which
they converted to UTF-8 after stripping HTML.
Languages were detected using the Compact Lan-
guage Detection 23 and, except for Hindi where
we lack tools, sentences were split with the Eu-
roparl sentence splitter (Koehn, 2005). All text
was then deduplicated, minimizing the impact of
boilerplate, such as social media sharing buttons.
We then tokenized and truecased the text as usual.
Statistics are shown in Table 5. A full description
of the pipeline, including a public data release, ap-
pears in Buck et al. (2014).

Lang Lines (B) Tokens (B) Bytes

en 59.13 975.63 5.14 TiB
de 3.87 51.93 317.46 GiB
fr 3.04 49.31 273.96 GiB
ru 1.79 21.41 220.62 GiB
cs 0.47 5.79 34.67 GiB
hi 0.01 0.28 3.39 GiB

Table 5: Size of huge language model training data

We built unpruned modified Kneser-Ney lan-
guage models using lmplz (Heafield et al., 2013).

2http://commoncrawl.org
3https://code.google.com/p/cld2/
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Pair B0 +L

newstest 2013 2014 2013 2014

en-de 20.85 20.10 – 20.61 +0.51
en-cs 19.39 21.00 20.03 +0.64 21.60 +0.60
en-ru 19.90 28.70 20.80 +0.90 29.90 +1.20
en-hi 11.43 11.10 12.83 +1.40 12.50 +1.40
hi-en 15.48 13.90 – 14.80 +0.90

Table 6: Gains obtained by using huge language
models – B0 = Baseline, +L = Adding Huge LM

While the Hindi and Czech models are small
enough to run directly, models for other languages
are quite large.We therefore created a filter that op-
erates directly on files in KenLM trie binary for-
mat, preserving only n-grams whose words all ap-
pear in the target side vocabulary of at least one
source sentence. For example, an English lan-
guage model trained on just the 2012 and 2013
crawls takes 3.5 TB without any quantization. Af-
ter filtering to the Hindi-English tuning set, the
model fit in 908 GB, again without quantization.
We were then able to tune the system on a machine
with 1 TB RAM. Results are shown in Table 6; we
did not submit to English-French because the sys-
tem takes too long to tune.

1.6 Miscellaneous

Hindi-English: 1) A large number of Hindi sen-
tences in the Hindi-English parallel corpus were
ending with a full-stop “.”, although the end-of-
the-sentence marker in Hindi is “Danda” (|). Re-
placing full-stops with Danda gave improvement
of +0.20 for hi-en and +0.40 in en-hi. 2) Using
Wiki subtitles did not give any improvement in
BLEU and were in fact harmful for the en-hi di-
rection.

Russian-English: We tried to improve word-
alignments by integrating a transliteration sub-
model into GIZA++ word aligner. The probabil-
ity of a word pair is calculated as an interpola-
tion of the transliteration probability and transla-
tion probability stored in the t-table of the differ-
ent alignment models used by the GIZA++ aligner.
This interpolation is done for all iterations of all
alignment models (See Sajjad et al. (2013) for de-
tails). Due to shortage of time we could only run it
for Russian-to-English. The improved alignments
gave a gain of +0.21 on news-test 2013 and +0.40
on news-test 2014.

Pair GIZA++ Fast Align ∆

de-en 24.02 23.89 –.13
fr-en 30.78 30.66 –.12
es-en 34.07 34.24 +.17
cs-en 22.63 22.44 –.19
ru-en 31.68 32.03 +.35
en-de 18.04 17.88 –.16
en-fr 28.96 28.83 –.13
en-es 34.15 34.32 +.17
en-cs 15.70 16.02 +.32

avg +.03

Table 7: Comparison of fast word alignment
method (Dyer et al., 2013) against GIZA++
(WMT 2013 data condition, test on new-
stest2012). The method was not used in the official
submission.

Pair Baseline MSD Hier. MSD Hier. MSLR

de-en 27.04 27.10 +.06 27.17 +.13
fr-en 31.63 - 31.65 +.02
es-en 31.20 31.14 –.06 31.25 +.05
cs-en 26.11 26.32 +.21 26.26 +.15
ru-en 24.09 24.01 –.08 24.19 +.11
en-de 20.43 20.34 –.09 20.32 -.11
en-fr 30.54 - 30.52 –.02
en-es 30.36 30.44 +.08 30.51 +.15
en-cs 18.53 18.59 +.06 18.66 +.13
en-ru 18.37 18.47 +.10 18.19 –.18

avg + .035 +.045

Table 8: Hierarchical lexicalized reordering model
(Galley and Manning, 2008).

Fast align: In preliminary experiments, we
compared the fast word alignment method by
Dyer et al. (2013) against our traditional use of
GIZA++. Results are quite mixed (Table 7), rang-
ing from a gain of +.35 for Russian-English to a
loss of –.19 for Czech-English. We stayed with
GIZA++ for all of our other experiments.

Hierarchical lexicalized reordering model:
We explored the use of the hierarchical lexicalized
reordering model (Galley and Manning, 2008)
in two variants: using the same orientations as
our traditional model (monotone, discontinuous,
swap), and one that distinguishes the discontin-
uous orientations to the left and right. Table 8
shows slight improvements with these models, so
we used them in our baseline.

Threshold filtering of phrase table: We exper-
imented with discarding some phrase table entry
due to their low probability. We found that phrase
translations with the phrase translation probability
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φ(f |e)<10−4 can be safely discarded with almost
no change in translations. However, discarding
phrase translations with the inverse phrase transla-
tion probability φ(e|f)<10−4 is more risky, espe-
cially with morphologically rich target languages,
so we kept those.

1.7 Summary

Table 9 shows cumulative gains obtained from us-
ing word classes, transliteration and big language
models4 over the baseline system. Our German-
English constrained systems were used for EU-
Bridge system combination, a collaborative effort
to improve the state-of-the-art in machine transla-
tion (See Freitag et al. (2014) for details).

from English into English

Lang B0 B1 ∆ B0 B1 ∆

de 20.44 20.85 +0.41 27.24 27.44 +0.20
cs 18.84 20.03 +1.19 26.42 26.42 ±0.00
fr 30.73 30.82 +0.09 31.64 31.76 +0.12
ru 18.78 20.81 +2.03 24.45 25.21 +0.76
hi 9.27 12.83 +3.56 14.08 15.48 +1.40

Table 9: Cumulative gains obtained for each lan-
guage – B0 = Baseline, B1 = Best System

2 Medical Translation Task

For the medical translation task, the organisers
supplied several medical domain corpora (detailed
on the task website), as well some out-of-domain
patent data, and also all the data available for the
constrained track of the news translation task was
permitted. In general, we attempted to use all of
this data, except for the LDC Gigaword language
model data (for reasons of time) and we divided
the data into “in-domain” and “out-of-domain”
corpora. The data sets are summarised in Tables
10 and 11.

In order to create systems for the medical trans-
lation tasks, we used phrase-based Moses with ex-
actly the same settings as for the news translation
task, including the OSM (Durrani et al., 2011),
and compound splitting Koehn and Knight (2003)
for German source. We did not use word clusters
(Section 1.2), as they did not give good results on
this task, but we have yet to find a reason for this.
For language model training, we decided not to
build separate models on each corpus as there was

4Cumulative gains do not include gains obtain from big
language models for hi-en and en-de.

Data Set cs-en de-en fr-en
coppa-in n n y
PatTR-in-claims n y y
PatTR-in-abstract n y y
PatTR-in-titles n y y
UMLS y y y
MuchMore n y n
EMEA y y y
WikiTitles y y y
PatTR-out n y y
coppa-out n n y
MultiUN n n y
czeng y n n
europarl y y y
news-comm y y y
commoncrawl y y y
FrEnGiga n n y

Table 10: Parallel data sets used in the medical
translation task. The sets above the line were clas-
sified as “in-domain” and those below as “out-of-
domain”.

Data Set cs de en fr
PIL n n y n
DrugBank n n y n
WikiArticles y y y y
PatTR-in-description n y y y
GENIA n n y n
FMA n n y n
AACT n n y n
PatTR-out-description n y y y

Table 11: Additional monolingual data used in
the medical translation task. Those above the line
were classified as “in-domain” and the one below
as “out-of-domain”. We also used the target sides
of all the parallel corpora for language modelling.

a large variation in corpus sizes. Instead we con-
catenated the in-domain target sides with the in-
domain extra monolingual data to create training
data for an in-domain language model, and simi-
larly for the out-of-domain data. The two language
models were interpolated using SRILM, minimis-
ing perplexity on the Khresmoi summary develop-
ment data.

During system development, we only had 500
sentences of development data (SUMMARY-DEV)
from the Khresmoi project, so we decided to se-
lect further development and devtest data from the
EMEA corpus, reasoning that it was fairly close
in domain to SUMMARY-DEV. We selected a tun-
ing set (5000 sentence pairs, which were added to
SUMMARY-DEV) and a devtest set (3000 sentence
pairs) from EMEA after first de-duplicating it, and
ignoring sentence pairs which were too short, or
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contained too many capital letters or numbers. The
EMEA contains many duplicated sentences, and
we removed all sentence pairs where either side
was a duplicate, reducing the size of the corpus
to about 25% of the original. We also removed
EMEA from Czeng, since otherwise it would over-
lap with our selected development sets.

We also experimented with modified Moore-
Lewis (Moore and Lewis, 2010; Axelrod et al.,
2011) data selection, using the EMEA corpus as
the in-domain corpus (for the language model re-
quired in MML) and selecting from all the out-of-
domain data.

When running on the final test set (SUMMARY-
TEST) we found that it was better to tune just on
SUMMARY-DEV, even though it was much smaller
than the EMEA dev set we had selected. All but
two (cs-en, de-en) of our submitted systems used
the MML selection, because it worked better on
our EMEA devtest set. However, as can be seen
from Table 12, systems built with all the data gen-
erally perform better. We concluded that EMEA
was not a good representative of the Khresmoi
data, perhaps because of domain differences, or
perhaps just because of the alignment noise that
appears (from informal inspection) to be present
in EMEA.

from English into English

in in+20 in+out in in+20 in+out

de 18.59 20.88 – 36.17 – 38.57
cs 18.78 23.45 23.77 30.12 – 36.32
fr 35.24 40.74 41.04 45.15 46.44 46.58

Table 12: Results (cased BLEU) on the khresmoi
summary test set. The “in” systems include all
in-domain data, the “in+20” systems also include
20% of the out-of-domain data and the “out” sys-
tems include all data. The submitted systems are
shown in italics, except for de-en and cs-en where
we submitted a “in+out” systems. For de-en, this
was tuned on SUMMARY-DEV plus the EMEA dev
set and scored 37.31, whilst for cs-en we included
LDC Giga in the LM, and scored 36.65.

For translating the Khresmoi queries, we used
the same systems as for the summaries, except that
generally we did not retune on the SUMMARY-DEV

data. We added a post-processing script to strip
out extraneous stop words, which improved BLEU,
but we would not expect it to matter in a real CLIR
system as it would do its own stop-word removal.
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Abstract

This paper describes one of the col-
laborative efforts within EU-BRIDGE to
further advance the state of the art in
machine translation between two Euro-
pean language pairs, German→English
and English→German. Three research
institutes involved in the EU-BRIDGE
project combined their individual machine
translation systems and participated with a
joint setup in the shared translation task of
the evaluation campaign at the ACL 2014
Eighth Workshop on Statistical Machine
Translation (WMT 2014).

We combined up to nine different machine
translation engines via system combina-
tion. RWTH Aachen University, the Uni-
versity of Edinburgh, and Karlsruhe In-
stitute of Technology developed several
individual systems which serve as sys-
tem combination input. We devoted spe-
cial attention to building syntax-based sys-
tems and combining them with the phrase-
based ones. The joint setups yield em-
pirical gains of up to 1.6 points in BLEU

and 1.0 points in TER on the WMT news-
test2013 test set compared to the best sin-
gle systems.

1 Introduction

EU-BRIDGE1 is a European research project
which is aimed at developing innovative speech
translation technology. This paper describes a

1http://www.eu-bridge.eu

joint WMT submission of three EU-BRIDGE
project partners. RWTH Aachen University
(RWTH), the University of Edinburgh (UEDIN)
and Karlsruhe Institute of Technology (KIT) all
provided several individual systems which were
combined by means of the RWTH Aachen system
combination approach (Freitag et al., 2014). As
distinguished from our EU-BRIDGE joint submis-
sion to the IWSLT 2013 evaluation campaign (Fre-
itag et al., 2013), we particularly focused on trans-
lation of news text (instead of talks) for WMT. Be-
sides, we put an emphasis on engineering syntax-
based systems in order to combine them with our
more established phrase-based engines. We built
combined system setups for translation from Ger-
man to English as well as from English to Ger-
man. This paper gives some insight into the tech-
nology behind the system combination framework
and the combined engines which have been used
to produce the joint EU-BRIDGE submission to
the WMT 2014 translation task.

The remainder of the paper is structured as fol-
lows: We first describe the individual systems by
RWTH Aachen University (Section 2), the Uni-
versity of Edinburgh (Section 3), and Karlsruhe
Institute of Technology (Section 4). We then
present the techniques for machine translation sys-
tem combination in Section 5. Experimental re-
sults are given in Section 6. We finally conclude
the paper with Section 7.

2 RWTH Aachen University

RWTH (Peitz et al., 2014) employs both the
phrase-based (RWTH scss) and the hierarchical
(RWTH hiero) decoder implemented in RWTH’s
publicly available translation toolkit Jane (Vilar
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et al., 2010; Wuebker et al., 2012). The model
weights of all systems have been tuned with stan-
dard Minimum Error Rate Training (Och, 2003)
on a concatenation of the newstest2011 and news-
test2012 sets. RWTH used BLEU as optimiza-
tion objective. Both for language model estima-
tion and querying at decoding, the KenLM toolkit
(Heafield et al., 2013) is used. All RWTH sys-
tems include the standard set of models provided
by Jane. Both systems have been augmented with
a hierarchical orientation model (Galley and Man-
ning, 2008; Huck et al., 2013) and a cluster lan-
guage model (Wuebker et al., 2013). The phrase-
based system (RWTH scss) has been further im-
proved by maximum expected BLEU training sim-
ilar to (He and Deng, 2012). The latter has been
performed on a selection from the News Commen-
tary, Europarl and Common Crawl corpora based
on language and translation model cross-entropies
(Mansour et al., 2011).

3 University of Edinburgh

UEDIN contributed phrase-based and syntax-
based systems to both the German→English and
the English→German joint submission.

3.1 Phrase-based Systems

UEDIN’s phrase-based systems (Durrani et al.,
2014) have been trained using the Moses toolkit
(Koehn et al., 2007), replicating the settings de-
scribed in (Durrani et al., 2013b). The features
include: a maximum sentence length of 80, grow-
diag-final-and symmetrization of GIZA++ align-
ments, an interpolated Kneser-Ney smoothed 5-
gram language model with KenLM (Heafield,
2011) used at runtime, a lexically-driven 5-gram
operation sequence model (OSM) (Durrani et al.,
2013a), msd-bidirectional-fe lexicalized reorder-
ing, sparse lexical and domain features (Hasler
et al., 2012), a distortion limit of 6, a maxi-
mum phrase length of 5, 100-best translation op-
tions, Minimum Bayes Risk decoding (Kumar and
Byrne, 2004), cube pruning (Huang and Chiang,
2007), with a stack size of 1000 during tuning and
5000 during testing and the no-reordering-over-
punctuation heuristic. UEDIN uses POS and mor-
phological target sequence models built on the in-
domain subset of the parallel corpus using Kneser-
Ney smoothed 7-gram models as additional factors
in phrase translation models (Koehn and Hoang,
2007). UEDIN has furthermore built OSM mod-

els over POS and morph sequences following
Durrani et al. (2013c). The English→German
system additionally comprises a target-side LM
over automatically built word classes (Birch et
al., 2013). UEDIN has applied syntactic pre-
reordering (Collins et al., 2005) and compound
splitting (Koehn and Knight, 2003) of the source
side for the German→English system. The sys-
tems have been tuned on a very large tuning set
consisting of the test sets from 2008-2012, with
a total of 13,071 sentences. UEDIN used news-
test2013 as held-out test set. On top of UEDIN
phrase-based 1 system, UEDIN phrase-based 2
augments word classes as additional factor and
learns an interpolated target sequence model over
cluster IDs. Furthermore, it learns OSM models
over POS, morph and word classes.

3.2 Syntax-based Systems

UEDIN’s syntax-based systems (Williams et al.,
2014) follow the GHKM syntax approach as pro-
posed by Galley, Hopkins, Knight, and Marcu
(Galley et al., 2004). The open source Moses
implementation has been employed to extract
GHKM rules (Williams and Koehn, 2012). Com-
posed rules (Galley et al., 2006) are extracted in
addition to minimal rules, but only up to the fol-
lowing limits: at most twenty tree nodes per rule,
a maximum depth of five, and a maximum size of
five. Singleton hierarchical rules are dropped.

The features for the syntax-based systems com-
prise Good-Turing-smoothed phrase translation
probabilities, lexical translation probabilities in
both directions, word and phrase penalty, a rule
rareness penalty, a monolingual PCFG probability,
and a 5-gram language model. UEDIN has used
the SRILM toolkit (Stolcke, 2002) to train the lan-
guage model and relies on KenLM for language
model scoring during decoding. Model weights
are optimized to maximize BLEU. 2000 sentences
from the newstest2008-2012 sets have been se-
lected as a development set. The selected sen-
tences obtained high sentence-level BLEU scores
when being translated with a baseline phrase-
based system, and each contain less than 30 words
for more rapid tuning. Decoding for the syntax-
based systems is carried out with cube pruning
using Moses’ hierarchical decoder (Hoang et al.,
2009).

UEDIN’s German→English syntax-based setup
is a string-to-tree system with compound splitting
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on the German source-language side and syntactic
annotation from the Berkeley Parser (Petrov et al.,
2006) on the English target-language side.

For English→German, UEDIN has trained var-
ious string-to-tree GHKM syntax systems which
differ with respect to the syntactic annotation. A
tree-to-string system and a string-to-string system
(with rules that are not syntactically decorated)
have been trained as well. The English→German
UEDIN GHKM system names in Table 3 denote:

UEDIN GHKM S2T (ParZu): A string-to-tree
system trained with target-side syntactic an-
notation obtained with ParZu (Sennrich et
al., 2013). It uses a modified syntactic label
set, target-side compound splitting, and addi-
tional syntactic constraints.

UEDIN GHKM S2T (BitPar): A string-to-tree
system trained with target-side syntactic
annotation obtained with BitPar (Schmid,
2004).

UEDIN GHKM S2T (Stanford): A string-to-
tree system trained with target-side syntactic
annotation obtained with the German Stan-
ford Parser (Rafferty and Manning, 2008a).

UEDIN GHKM S2T (Berkeley): A string-to-
tree system trained with target-side syntactic
annotation obtained with the German Berke-
ley Parser (Petrov and Klein, 2007; Petrov
and Klein, 2008).

UEDIN GHKM T2S (Berkeley): A tree-to-
string system trained with source-side syn-
tactic annotation obtained with the English
Berkeley Parser (Petrov et al., 2006).

UEDIN GHKM S2S (Berkeley): A string-to-
string system. The extraction is GHKM-
based with syntactic target-side annotation
from the German Berkeley Parser, but we
strip off the syntactic labels. The final gram-
mar contains rules with a single generic non-
terminal instead of syntactic ones, plus rules
that have been added from plain phrase-based
extraction (Huck et al., 2014).

4 Karlsruhe Institute of Technology

The KIT translations (Herrmann et al., 2014) are
generated by an in-house phrase-based transla-
tions system (Vogel, 2003). The provided News
Commentary, Europarl, and Common Crawl par-
allel corpora are used for training the translation

model. The monolingual part of those parallel
corpora, the News Shuffle corpus for both direc-
tions and additionally the Gigaword corpus for
German→English are used as monolingual train-
ing data for the different language models. Opti-
mization is done with Minimum Error Rate Train-
ing as described in (Venugopal et al., 2005), using
newstest2012 and newstest2013 as development
and test data respectively.

Compound splitting (Koehn and Knight, 2003)
is performed on the source side of the corpus for
German→English translation before training. In
order to improve the quality of the web-crawled
Common Crawl corpus, noisy sentence pairs are
filtered out using an SVM classifier as described
by Mediani et al. (2011).

The word alignment for German→English is
generated using the GIZA++ toolkit (Och and Ney,
2003). For English→German, KIT uses discrimi-
native word alignment (Niehues and Vogel, 2008).
Phrase extraction and scoring is done using the
Moses toolkit (Koehn et al., 2007). Phrase pair
probabilities are computed using modified Kneser-
Ney smoothing as in (Foster et al., 2006).

In both systems KIT applies short-range re-
orderings (Rottmann and Vogel, 2007) and long-
range reorderings (Niehues and Kolss, 2009)
based on POS tags (Schmid, 1994) to perform
source sentence reordering according to the target
language word order. The long-range reordering
rules are applied to the training corpus to create
reordering lattices to extract the phrases for the
translation model. In addition, a tree-based re-
ordering model (Herrmann et al., 2013) trained
on syntactic parse trees (Rafferty and Manning,
2008b; Klein and Manning, 2003) as well as a lex-
icalized reordering model (Koehn et al., 2005) are
applied.

Language models are trained with the SRILM
toolkit (Stolcke, 2002) and use modified Kneser-
Ney smoothing. Both systems utilize a lan-
guage model based on automatically learned
word classes using the MKCLS algorithm (Och,
1999). The English→German system comprises
language models based on fine-grained part-of-
speech tags (Schmid and Laws, 2008). In addi-
tion, a bilingual language model (Niehues et al.,
2011) is used as well as a discriminative word lex-
icon (Mauser et al., 2009) using source context to
guide the word choices in the target sentence.
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In total, the English→German system uses the
following language models: two 4-gram word-
based language models trained on the parallel data
and the filtered Common Crawl data separately,
two 5-gram POS-based language models trained
on the same data as the word-based language mod-
els, and a 4-gram cluster-based language model
trained on 1,000 MKCLS word classes.

The German→English system uses a 4-gram
word-based language model trained on all mono-
lingual data and an additional language model
trained on automatically selected data (Moore and
Lewis, 2010). Again, a 4-gram cluster-based
language model trained on 1000 MKCLS word
classes is applied.

5 System Combination

System combination is used to produce consen-
sus translations from multiple hypotheses which
are outputs of different translation engines. The
consensus translations can be better in terms of
translation quality than any of the individual hy-
potheses. To combine the engines of the project
partners for the EU-BRIDGE joint setups, we ap-
ply a system combination implementation that has
been developed at RWTH Aachen University.

The implementation of RWTH’s approach to
machine translation system combination is de-
scribed in (Freitag et al., 2014). This approach
includes an enhanced alignment and reordering
framework. Alignments between the system out-
puts are learned using METEOR (Banerjee and
Lavie, 2005). A confusion network is then built
using one of the hypotheses as “primary” hypoth-
esis. We do not make a hard decision on which
of the hypotheses to use for that, but instead com-
bine all possible confusion networks into a single
lattice. Majority voting on the generated lattice
is performed using the prior probabilities for each
system as well as other statistical models, e.g. a
special n-gram language model which is learned
on the input hypotheses. Scaling factors of the
models are optimized using the Minimum Error
Rate Training algorithm. The translation with the
best total score within the lattice is selected as con-
sensus translation.

6 Results

In this section, we present our experimental results
on the two translation tasks, German→English
and English→German. The weights of the in-

dividual system engines have been optimized on
different test sets which partially or fully include
newstest2011 or newstest2012. System combina-
tion weights are either optimized on newstest2011
or newstest2012. We kept newstest2013 as an un-
seen test set which has not been used for tuning
the system combination or any of the individual
systems.

6.1 German→English
The automatic scores of all individual systems
as well as of our final system combination sub-
mission are given in Table 1. KIT, UEDIN and
RWTH are each providing one individual phrase-
based system output. RWTH (hiero) and UEDIN
(GHKM) are providing additional systems based
on the hierarchical translation model and a string-
to-tree syntax model. The pairwise difference
of the single system performances is up to 1.3
points in BLEU and 2.5 points in TER. For
German→English, our system combination pa-
rameters are optimized on newstest2012. System
combination gives us a gain of 1.6 points in BLEU

and 1.0 points in TER for newstest2013 compared
to the best single system.

In Table 2 the pairwise BLEU scores for all in-
dividual systems as well as for the system combi-
nation output are given. The pairwise BLEU score
of both RWTH systems (taking one as hypothesis
and the other one as reference) is the highest for all
pairs of individual system outputs. A high BLEU

score means similar hypotheses. The syntax-based
system of UEDIN and RWTH scss differ mostly,
which can be observed from the fact of the low-
est pairwise BLEU score. Furthermore, we can
see that better performing individual systems have
higher BLEU scores when evaluating against the
system combination output.

In Figure 1 system combination output is com-
pared to the best single system KIT. We distribute
the sentence-level BLEU scores of all sentences of
newstest2013. To allow for sentence-wise evalu-
ation, all bi-, tri-, and four-gram counts are ini-
tialized with 1 instead of 0. Many sentences have
been improved by system combination. Neverthe-
less, some sentences fall off in quality compared
to the individual system output of KIT.

6.2 English→German
The results of all English→German system setups
are given in Table 3. For the English→German
translation task, only UEDIN and KIT are con-
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system newstest2011 newstest2012 newstest2013
BLEU TER BLEU TER BLEU TER

KIT 25.0 57.6 25.2 57.4 27.5 54.4
UEDIN 23.9 59.2 24.7 58.3 27.4 55.0
RWTH scss 23.6 59.5 24.2 58.5 27.0 55.0
RWTH hiero 23.3 59.9 24.1 59.0 26.7 55.9
UEDIN GHKM S2T (Berkeley) 23.0 60.1 23.2 60.8 26.2 56.9
syscom 25.6 57.1 26.4 56.5 29.1 53.4

Table 1: Results for the German→English translation task. The system combination is tuned on news-
test2012, newstest2013 is used as held-out test set for all individual systems and system combination.
Bold font indicates system combination results that are significantly better than the best single system
with p < 0.05.

KIT UEDIN RWTH scss RWTH hiero UEDIN S2T syscom
KIT 59.07 57.60 57.91 55.62 77.68
UEDIN 59.17 56.96 57.84 59.89 72.89
RWTH scss 57.64 56.90 64.94 53.10 71.16
RWTH hiero 57.98 57.80 64.97 55.73 70.87
UEDIN S2T 55.75 59.95 53.19 55.82 65.35
syscom 77.76 72.83 71.17 70.85 65.24

Table 2: Cross BLEU scores for the German→English newstest2013 test set. (Pairwise BLEU scores:
each entry is taking the horizontal system as hypothesis and the other one as reference.)

system newstest2011 newstest2012 newstest2013
BLEU TER BLEU TER BLEU TER

UEDIN phrase-based 1 17.5 67.3 18.2 65.0 20.5 62.7
UEDIN phrase-based 2 17.8 66.9 18.5 64.6 20.8 62.3
UEDIN GHKM S2T (ParZu) 17.2 67.6 18.0 65.5 20.2 62.8
UEDIN GHKM S2T (BitPar) 16.3 69.0 17.3 66.6 19.5 63.9
UEDIN GHKM S2T (Stanford) 16.1 69.2 17.2 67.0 19.0 64.2
UEDIN GHKM S2T (Berkeley) 16.3 68.9 17.2 66.7 19.3 63.8
UEDIN GHKM T2S (Berkeley) 16.7 68.9 17.5 66.9 19.5 63.8
UEDIN GHKM S2S (Berkeley) 16.3 69.2 17.3 66.8 19.1 64.3
KIT 17.1 67.0 17.8 64.8 20.2 62.2
syscom 18.4 65.0 18.7 63.4 21.3 60.6

Table 3: Results for the English→German translation task. The system combination is tuned on news-
test2011, newstest2013 is used as held-out test set for all individual systems and system combination.
Bold font indicates system combination results that are significantly (Bisani and Ney, 2004) better than
the best single system with p< 0.05. Italic font indicates system combination results that are significantly
better than the best single system with p < 0.1.

tributing individual systems. KIT is providing a
phrase-based system output, UEDIN is providing
two phrase-based system outputs and six syntax-
based ones (GHKM). For English→German, our
system combination parameters are optimized on
newstest2011. Combining all nine different sys-
tem outputs yields an improvement of 0.5 points
in BLEU and 1.7 points in TER over the best sin-
gle system performance.

In Table 4 the cross BLEU scores for all
English→German systems are given. The individ-
ual system of KIT and the syntax-based ParZu sys-
tem of UEDIN have the lowest BLEU score when
scored against each other. Both approaches are
quite different and both are coming from differ-
ent institutes. In contrast, both phrase-based sys-
tems pbt 1 and pbt 2 from UEDIN are very sim-
ilar and hence have a high pairwise BLEU score.
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pbt 1 pbt 2 ParZu BitPar Stanford S2T T2S S2S KIT syscom
pbt 1 75.84 51.61 53.93 55.32 54.79 54.52 60.92 54.80 70.12
pbt 2 75.84 51.96 53.39 53.93 53.97 53.10 57.32 54.04 73.75
ParZu 51.57 51.91 56.67 55.11 56.05 52.13 51.22 48.14 68.39
BitPar 54.00 53.45 56.78 64.59 65.67 56.33 56.62 49.23 62.08
Stanford 55.37 53.98 55.19 64.56 69.22 58.81 61.19 50.50 61.51
S2T 54.83 54.02 56.14 65.64 69.21 59.32 60.16 50.07 62.81
T2S 54.57 53.15 52.21 56.30 58.81 59.32 59.34 50.01 63.13
S2S 60.96 57.36 51.29 56.59 61.18 60.15 59.33 53.68 60.46
KIT 54.75 53.98 48.13 49.13 50.41 49.98 49.93 53.59 63.33
syscom 70.01 73.63 68.32 61.92 61.37 62.67 62.99 60.32 63.27

Table 4: Cross BLEU scores for the German→English newstest2013 test set. (Pairwise BLEU scores:
each entry is taking the horizontal system as reference and the other one as hypothesis.)
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Figure 1: Sentence distribution for the
German→English newstest2013 test set compar-
ing system combination output against the best
individual system.

As for the German→English translation direction,
the best performing individual system outputs are
also having the highest BLEU scores when evalu-
ated against the final system combination output.

In Figure 2 system combination output is com-
pared to the best single system pbt 2. We distribute
the sentence-level BLEU scores of all sentences
of newstest2013. Many sentences have been im-
proved by system combination. But there is still
room for improvement as some sentences are still
better in terms of sentence-level BLEU in the indi-
vidual best system pbt 2.

7 Conclusion

We achieved significantly better translation perfor-
mance with gains of up to +1.6 points in BLEU

and -1.0 points in TER by combining up to nine
different machine translation systems. Three dif-
ferent research institutes (RWTH Aachen Univer-
sity, University of Edinburgh, Karlsruhe Institute
of Technology) provided machine translation en-
gines based on different approaches like phrase-
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Figure 2: Sentence distribution for the
English→German newstest2013 test set compar-
ing system combination output against the best
individual system.

based, hierarchical phrase-based, and syntax-
based. For English→German, we included six
different syntax-based systems, which were com-
bined to our final combined translation. The au-
tomatic scores of all submitted system outputs for
the actual 2014 evaluation set are presented on the
WMT submission page.2 Our joint submission is
the best submission in terms of BLEU and TER for
both translation directions German→English and
English→German without adding any new data.
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Abstract
We present a new version of Phrasal, an
open-source toolkit for statistical phrase-
based machine translation. This revision
includes features that support emerging re-
search trends such as (a) tuning with large
feature sets, (b) tuning on large datasets like
the bitext, and (c) web-based interactive ma-
chine translation. A direct comparison with
Moses shows favorable results in terms of
decoding speed and tuning time.

1 Introduction
In the early part of the last decade, phrase-based ma-
chine translation (MT) (Koehn et al., 2003) emerged
as the preeminent design of statistical MT systems.
However, most systems were proprietary or closed-
source, so progress was initially constrained by
the high engineering barrier to entry into the field.
Then Moses (Koehn et al., 2007) was released.
What followed was a flowering of work on all as-
pects of the translation problem, from rule extrac-
tion to deployment issues. Other toolkits appeared
including Joshua (Post et al., 2013), Jane (Wuebker
et al., 2012), cdec (Dyer et al., 2010) and the first
version of our package, Phrasal (Cer et al., 2010), a
Java-based, open source package.
This paper presents a completely re-designed

release of Phrasal that lowers the barrier to entry
into several exciting areas of MT research. First,
Phrasal exposes a simple yet flexible feature API for
building large-scale, feature-rich systems. Second,
Phrasal provides multi-threaded decoding and on-
line tuning for learning feature-rich models on very
large datasets, including the bitext. Third, Phrasal
supplies the key ingredients for web-based, inter-
active MT: an asynchronous RESTful JSON web
service implemented as a J2EE servlet, integrated
pre- and post-processing, and fast search.
Revisions to Phrasal were guided by several de-

sign choices. First, we optimized the system for
multi-core architectures, eschewing distributed in-
frastructure like Hadoop and MapReduce. While

“scaling-out” with distributed infrastructure is the
conventional industry and academic choice, we find
that “scaling-up” on a single large-node is an at-
tractive yet overlooked alternative (Appuswamy et
al., 2013). A single “scale-up” node is usually
competitive in terms of cost and performance, and
multi-core code has fewer dependencies in terms
of software and expertise. Second, Phrasal makes
extensive use of Java interfaces and reflection. This
is especially helpful in the feature API. A feature
function can be added to the system by simply im-
plementing an interface and specifying the class
name on the decoder command line. There is no
need to modify or recompile anything other than
the new feature function.
This paper presents a direct comparison of

Phrasal and Moses that shows favorable results
in terms of decoding speed and tuning time. An
indirect comparison via the WMT2014 shared
task (Neidert et al., 2014) showed that Phrasal
compares favorably to Moses in an evaluation
setting. The source code is freely available at:
http://nlp.stanford.edu/software/phrasal/

2 Standard System Pipeline

This section describes the steps required to build
a phrase-based MT system from raw text. Each
step is implemented as a stand-alone executable.
For convenience, the Phrasal distribution includes
a script that coordinates the steps.

2.1 Prerequisites
Phrasal assumes offline preparation of word align-
ments and at least one target-side language model.

Word Alignment The rule extractor can accom-
modate either unsymmetrized or symmetrized
alignments. Unsymmetrized alignments can be
produced with either GIZA++ or the Berkeley
Aligner (Liang et al., 2006). Phrasal then applies
symmetrization on-the-fly using heuristics such as
grow-diag or grow-diag-final. If the alignments are
symmetrized separately, then Phrasal accepts align-
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ments in the i-j Pharaoh format, which indicates
that source token i is aligned to target token j.

Language Modeling Phrasal can load any n-
gram language model saved in the ARPA format.
There are two LM loaders. The Java-based loader is
used by default and is appropriate for small-scale ex-
periments and pure-Java environments. The C++
KenLM (Heafield, 2011) loader1 is best for large-
scale LMs such as the unfiltered models produced
by lmplz (Heafield et al., 2013). Profiling shows
that LM queries often account for more than 50% of
the CPU time in a Phrasal decoding run, so we de-
signed the Phrasal KenLM loader to execute queries
mostly in C++ for efficiency. The KenLM bind-
ing efficiently passes full strings to C++ via JNI.
KenLM then iterates over the string, returning a
score and a state length. Phrasal can load multiple
language models, and includes native support for
the class-based language models that have become
popular in recent evaluations (Wuebker et al., 2012;
Ammar et al., 2013; Durrani et al., 2013).

2.2 Rule Extraction
The next step in the pipeline is extraction of a phrase
table. Phrasal includes a multi-threaded version
of the rule extraction algorithm of Och and Ney
(2004). Phrase tables can be filtered to a specific
data set—as is common in research environments.
When filtering, the rule extractor lowers memory
utilization by splitting the data into arbitrary-sized
chunks and extracting rules from each chunk.
The rule extractor includes a feature API that is

independent of the decoder feature API. This al-
lows for storage of static rule feature values in the
phrase table. Static rule features are useful in two
cases. First, if a feature value depends on bitext
statistics, which are not accessible during tuning
or decoding, then that feature should be stored in
the phrase table. Examples are the standard phrase
translation probabilities, and the dense rule count
and rule uniqueness indicators described by Green
et al. (2013). Second, if a feature depends only
on the rule and is unlikely to change, then it may
be more efficient to store that feature value in the
phrase table. An example is a feature template that
indicates inclusion in a specific data domain (Dur-
rani et al., 2013). Rule extractor feature templates
must implement the FeatureExtractor inter-
face and are loaded via reflection.

1Invoked by prefixing the LM path with the “kenlm:”.

The rule extractor can also create lexicalized re-
ordering tables. The standard phrase orientation
model (Tillmann, 2004) and the hierarchical model
of Galley and Manning (2008) are available.

2.3 Tuning
Once a language model has been estimated and a
phrase table has been extracted, the next step is to
estimate model weights. Phrasal supports tuning
over n-best lists, which permits rapid experimenta-
tion with different error metrics and loss functions.
Lattice-based tuning, while in principle more pow-
erful, requires metrics and losses that factor over
lattices, and in practice works no better than n-best
tuning (Cherry and Foster, 2012).
Tuning requires a parallel set {(ft, et)}Tt=1 of

source sentences ft and target references et.2
Phrasal follows the log-linear approach to phrase-
based translation (Och and Ney, 2004) in which
the predictive translation distribution p(e|f ;w) is
modeled directly as

p(e|f ;w) =
1

Z(f)
exp

[
w>φ(e, f)

]
(1)

where w ∈ Rd is the vector of model parameters,
φ(·) ∈ Rd is a feature map, and Z(f) is an appro-
priate normalizing constant.

MT differs from other machine learning settings
in that it is not common to tune to log-likelihood
under (1). Instead, a gold error metric G(e′, e) is
chosen that specifies the similarity between a hy-
pothesis e′ and a reference e, and that error is min-
imized over the tuning set. Phrasal includes Java
implementations of BLEU (Papineni et al., 2002),
NIST, and WER, and bindings for TER (Snover et
al., 2006) and METEOR (Denkowski and Lavie,
2011). The error metric is incorporated into a loss
function ` that returns the loss at either the sentence-
or corpus- level.
For conventional corpus-level (batch) tuning,

Phrasal includes multi-threaded implementations
of MERT (Och, 2003) and PRO (Hopkins and
May, 2011). The MERT implementation uses the
line search of Cer et al. (2008) to directly min-
imize corpus-level error. The PRO implementa-
tion uses a pairwise logistic loss to minimize the
number of inversions in the ranked n-best lists.
These batch implementations accumulate n-best
lists across epochs.

2For simplicity, we assume one reference, but the multi-
reference case is analogous.
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Online tuning is faster and more scalable than
batch tuning, and sometimes leads to better solu-
tions for non-convex settings like MT (Bottou and
Bousquet, 2011). Weight updates are performed
after each tuning example is decoded, and n-best
lists are not accumulated. Consequently, online tun-
ing is preferable for large tuning sets, or for rapid
iteration during development. Phrasal includes the
AdaGrad-based (Duchi et al., 2011) tuner of Green
et al. (2013). The regularization options are L2,
efficient L1 for feature selection (Duchi and Singer,
2009), or L1 + L2 (elastic net). There are two on-
line loss functions: a pairwise (PRO) objective and
a listwise minimum expected error objective (Och,
2003). These online loss functions require sentence-
level error metrics, several of which are available in
the toolkit: BLEU+1 (Lin and Och, 2004), Nakov
BLEU (Nakov et al., 2012), and TER.

2.4 Decoding
The Phrasal decoder can be invoked either program-
matically as a Java object or as a standalone appli-
cation. In both cases the decoder is configured via
options that specify the language model, phrase
table, weight vector w, etc. The decoder is multi-
threaded, with one decoding instance per thread.
Each decoding instance has its own weight vector,
so in the programmatic case, it is possible to decode
simultaneously under different weight vectors.

Two search procedures are included. The default
is the phrase-based variant of cube pruning (Huang
and Chiang, 2007). The standard multi-stack beam
search (Och and Ney, 2004) is also an option. Ei-
ther procedure can be configured in one of several
recombination modes. The “Pharaoh” mode only
considers linear distortion, source coverage, and
target LM history. The “Exact” mode considers
these states in addition to any feature that declares
recombination state (see section 3.3).

The decoder includes several options for deploy-
ment environments such as an unknown word API,
pre-/post-processing APIs, and both full and prefix-
based force decoding.

2.5 Evaluation and Post-processing
All of the error metrics available for tuning can
also be invoked for evaluation. For significance
testing, the toolkit includes an implementation of
the permutation test of Riezler and Maxwell (2005),
which was shown to be less susceptible to Type-I
error than bootstrap re-sampling (Koehn, 2004).

r : s(r,w) r ∈ R axiom

d : w(d) r : s(r,w)
d′ : s(d′,w) r /∈ cov(d) item

|cov(d)| = |s| goal

Table 1: Phrase-based MT as deductive inference.
This notation can be read as follows: if the an-
tecedents on the top are true, then the consequent
on the bottom is true subject to the conditions on
the right. The new item d′ is creating by appending
r to the ordered sequence of rules that define d.

Phrasal also includes two truecasing packages.
The LM-based truecaser (Lita et al., 2003) requires
an LM estimated from cased, tokenized text. A
subsequent detokenization step is thus necessary. A
more convenient alternative is the CRF-based post-
processor that can be trained to invert an arbitrary
pre-processor. This post-processor can perform
truecasing and detokenization in one pass.

3 Feature API
Phrasal supports dynamic feature extraction dur-
ing tuning and decoding. In the API, feature tem-
plates are called featurizers. There are two types
with associated interfaces: RuleFeaturizer
and DerivationFeaturizer. One way to il-
lustrate these two featurizers is to consider phrase-
based decoding as a deductive system. Let r =
〈f, e〉 be a rule in a set R, which is conventionally
called the phrase table. Let d = {ri}Ni=1 be an
ordered sequence of derivation N rules called a
derivation, which specifies a translation for some
source input sequence s (which, by some abuse of
notation, is equivalent to f in Eq. (1)). Finally,
define functions cov(d) as the source coverage set
of d as a bit vector and s(·, w) as the score of a rule
or derivation under w.3 The expression r /∈ cov(d)
means that r maps to an empty/uncovered span in
cov(d). Table 1 shows the deductive system.

3.1 Dynamic Rule Features
RuleFeaturizers are invoked when scoring axioms,
which do not require any derivation context. The
static rule features described in section 2.2 also
contribute to axiom scoring, and differ only from
RuleFeaturizers in that they are stored permanently
in the phrase table. In contrast, RuleFeaturizers

3Note that s(d,w) = w>φ(d) in the log-linear formulation
of MT (see Eq. (1)).
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Listing 1: A RuleFeaturizer, which depends
only on a translation rule.
public class WordPenaltyFeaturizer
implements RuleFeaturizer {

@Override
public List<FeatureValue>
ruleFeaturize(Featurizable f) {

List<FeatureValue> features =
Generics.newLinkedList();

// Extract single feature
features.add(new FeatureValue(
"WordPenalty", f.targetPhrase.size()));

return features;
}
}

are extracted during decoding. An example feature
template is the word penalty, which is simply the
dimension of the target side of r (Listing 1).
Featurizable wraps decoder state from

which features can be extracted. RuleFeaturizers
are extracted during each phrase table query and
cached, so they can be simply efficiently retrieved
during decoding.
Once the feature is compiled, it is simply speci-

fied on the command-line when the decoder is exe-
cuted. No other configuration is required.

3.2 Derivation Features
DerivationFeaturizers are invoked when scoring
items, and thus depend on some derivation context.
An example is the LM, which requires the n-gram
context from d to score r when creating the new
hypothesis d′ (Listing 2).
The LM featurizer first looks up the recombi-

nation state of the derivation, which contains the
n-gram context. Then it queries the LM by passing
the rule and context, and sets the new state as the
result of the LM query. Finally, it returns a feature
“LM” with the value of the LM query.

3.3 Recombination State
Listing 2 shows a state lookup during feature ex-
traction. Phrase-based MT feature design differs
significantly from that of convex classifiers in terms
of the interaction with inference. For example, in
a maximum entropy classifier inference is exact,
so a good optimizer can simply nullify bad fea-
tures to retain baseline accuracy. In contrast, MT
feature templates affect search through both future
cost heuristics and recombination state. Bad fea-
tures can introduce search errors and thus decrease

Listing 2: A DerivationFeaturizer, which
must lookup and save recombination state for ex-
traction.
public class NGramLanguageModelFeaturizer
extends DerivationFeaturizer {

@Override
public List<FeatureValue> featurize(
Featurizable f) {

// Get recombination state
LMState priorState = f.prior.getState(this);

// LM query
LMState state = lm.score(f.targetPhrase, priorState);

List<FeatureValue> features =
Generics.newLinkedList();

// Extract single feature
features.add(
new FeatureValue("LM", state.getScore()));

// Set new recombination state
f.setState(this, state);

return features;
}
}

accuracy, sometimes catastrophically.
The feature API allows DerivationFeaturizers

to explicitly declare recombination state via the
FeaturizerState interface.4 The interface re-
quires a state equality operator and a hash code
function. Then the search procedure will only re-
combine derivations with equal states. For example,
the state of the n-gram LM DerivationFeaturizer
(Listing 2) is the n-1 gram context, and the hash-
code is a hash of that context string. Only deriva-
tions for which the equality operator of LMState
returns true can be recombined.

4 Web Service
Machine translation output is increasingly uti-
lized in computer-assisted translation (CAT) work-
benches. To support deployment, Phrasal includes
a lightweight J2EE servlet that exposes a REST-
ful JSON API for querying a trained system. The
toolkit includes a standalone servlet container, but
the servlet may also be incorporated into a J2EE
server. The servlet requires just one input param-
eter: the Phrasal configuration file, which is also
used for tuning and decoding. Consequently, after
running the standard pipeline, the trained system
can be deployed with one command.

4To control future cost estimation, the designer would need
to write a new heuristic that considers perhaps a subset of
the full feature map. There is a separate API for future cost
heuristics.
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4.1 Standard Web Service
The standard web service supports two types of
requests. The first is TranslationRequest,
which performs full decoding on a source input.
The JSON message structure is:

Listing 3: TranslationRequest message.
TranslationRequest {
srcLang :(string),
tgtLang :(string),
srcText :(string),
tgtText :(string),
limit :(integer),
properties :(object)

}

The srcLang and tgtLang fields are ignored by
the servlet, but can be used by a middleware proxy
to route requests to Phrasal servlet instances, one
per language pair. The srcText field is the source
input, and properties is a Javascript associa-
tive array that can contain key/value pairs to pass
to the feature API. For example, we often use the
properties field to pass domain information
with each request.

Phrasal will perform full decoding and respond
with the message:

Listing 4: TranslationReply message,
which is returned upon successful processing of
TranslationRequest.
TranslationReply {
resultList :[
{tgtText :(string),
align :(string),
score :(float)

},...]
}

resultList is a ranked n-best list of transla-
tions, each with target tokens, word alignments,
and a score.
The second request type is RuleRequest,

which enables phrase table queries. These requests
are processed very quickly since decoding is not
required. The JSON message structure is:

Listing 5: RuleRequest message, which
prompts a direct lookup into the phrase table.
RuleRequest {
srcLang :(string),
tgtLang :(string),
srcText :(string),
limit :(integer),
properties :(object)

}

limit is the maximum number of translations to
return. The response message is analogous to that
for TranslationRequest, so we omit it.

4.2 Interactive Machine Translation
Interactive machine translation (Bisbey and Kay,
1972) pairs human and machine translators in hopes
of increasing the throughput of high quality trans-
lation. It is an old idea that is again in focus. One
challenge is to present relevant machine suggestions
to humans. To that end, Phrasal supports context-
sensitive translation queries via prefix decod-
ing. Consider again the TranslationRequest
message. When the tgtText field is empty, the
source input is decoded from scratch. But when
this field contains a prefix, Phrasal returns transla-
tions that begin with the prefix. The search proce-
dure force decodes the prefix, and then completes
the translation via conventional decoding. Conse-
quently, if the user has typed a partial translation,
Phrasal can suggest completions conditioned on
that prefix. The longer the prefix, the faster the de-
coding, since the user prefix constrains the search
space. This feature allows Phrasal to produce in-
creasingly precise suggestions as the user works.

5 Experiments
We compare Phrasal and Moses by restricting an
existing large-scale system to a set of common fea-
tures. We start with the Arabic–English system of
Green et al. (2014), which is built from 6.6M paral-
lel segments. The system includes a 5-gram English
LM estimated from the target-side of the bitext and
990M English monolingual tokens. The feature set
is their dense baseline, but without lexicalized re-
ordering and the two extended phrase table features.
This leaves the nine baseline features also imple-
mented by Moses. We use the same phrase table,
phrase table query limit (20), and distortion limit
(5) for both decoders. The tuning set (mt023568)
contains 5,604 segments, and the development set
(mt04) contains 1,075 segments.

We ran all experiments on a dedicated server with
16 physical cores and 128GB of memory.

Figure 1 shows single-threaded decoding time
of the dev set as a function of the cube pruning
pop limit. At very low limits Moses is faster than
Phrasal, but then slows sharply. In contrast, Phrasal
scales linearly and is thus faster at higher pop limits.

Figure 2 shows multi-threaded decoding time of
the dev set with the cube pruning pop limit fixed
at 1,200. Here Phrasal is initially faster, but Moses
becomes more efficient at four threads. There are
two possible explanations. First, profiling shows
that LM queries account for approximately 75%
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Figure 1: Development set decoding time as a
function of the cube pruning pop limit.

of the Phrasal CPU-time. KenLM is written in
C++, and Phrasal queries it via JNI. It appears
as though multi-threading across this boundary is
a source of inefficiency. Second, we observe that
the Java parallel garbage collector (GC) runs up to
seven threads, which become increasingly active
as the number of decoder threads increases. These
and other Java overhead threads must be scheduled,
limiting gains as the number of decoding threads
approaches the number of physical cores.
Finally, Figure 3 shows tuning BLEU as a func-

tion of wallclock time. For Moses we chose the
batch MIRA implementation of Cherry and Fos-
ter (2012), which is popular for tuning feature-rich
systems. Phrasal uses the online tuner with the ex-
pected BLEU objective (Green et al., 2014). Moses
achieves a maximum BLEU score of 47.63 after
143 minutes of tuning, while Phrasal reaches this
level after just 17 minutes, later reaching a maxi-
mum BLEU of 47.75 after 42 minutes. Much of
the speedup can be attributed to phrase table and
LM loading time: the Phrasal tuner loads these data
structures just once, while the Moses tuner loads
them every epoch. Of course, this loading time be-
comes more significant with larger-scale systems.

6 Conclusion

We presented a revised version of Phrasal, an open-
source, phrase-based MT toolkit. The revisions
support new directions in MT research including
feature-rich models, large-scale tuning, and web-
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Figure 2: Development set decoding time as a
function of the threadpool size.

●

●

●

●
●●

●
●●●

●
●●

●●
●●

●●
●

●

●
●●●

45

46

47

48

0 100 200
Time (minutes)

A
pp

ro
x.

 B
L

E
U

−
4

System
● Phrasal

Moses

Figure 3: Approximate BLEU-4 during tuning
as a function of time over 25 tuning epochs. The
horizontal axis is accumulated time, while each
point indicates BLEU at the end of an epoch.

based interactive MT. A direct comparison with
Moses showed favorable performance on a large-
scale translation system.
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Abstract

We describe the Uppsala University sys-
tems for WMT14. We look at the integra-
tion of a model for translating pronomi-
nal anaphora and a syntactic dependency
projection model for English–French. Fur-
thermore, we investigate post-ordering and
tunable POS distortion models for English–
German.

1 Introduction

In this paper we describe the Uppsala University
systems for WMT14. We present three different
systems. Two of them are based on the document-
level decoder Docent (Hardmeier et al., 2012; Hard-
meier et al., 2013a). In our English–French sys-
tem we extend Docent to handle pronoun anaphora,
and in our English–German system we add part-
of-speech phrase-distortion models to Docent. For
German–English we also have a system based on
Moses (Koehn et al., 2007). Again the focus is
on word order, this time by using pre- and post-
reordering.

2 Document-Level Decoding

Traditional SMT decoders translate texts as bags
of sentences, assuming independence between sen-
tences. This assumption allows efficient algorithms
for exploring a large search space based on dy-
namic programming (Och et al., 2001). Because of
the dynamic programming assumptions it is hard to
directly include discourse-level and long-distance
features into a traditional SMT decoder.

In contrast to this very popular stack decoding
approach, our decoder Docent (Hardmeier et al.,
2012; Hardmeier et al., 2013a) implements a search
procedure based on local search. At any stage of
the search process, its search state consists of a
complete document translation, making it easy for
feature models to access the complete document

with its current translation at any point in time. The
search algorithm is a stochastic variant of standard
hill climbing. At each step, it generates a successor
of the current search state by randomly applying
one of a set of state changing operations to a ran-
dom location in the document, and accepts the new
state if it has a better score than the previous state.
The operations are to change the translation of a
phrase, to change the word order by swapping the
positions of two phrases or moving a sequence of
phrases, and to resegment phrases. The initial state
can either be initialized randomly, or be based on
an initial run from Moses. This setup is not limited
by dynamic programming constraints, and enables
the use of the full translated target document to
extract features.

3 English–French

Our English–French system is a phrase-based SMT
system with a combination of two decoders, Moses
(Koehn et al., 2007) and Docent (Hardmeier et al.,
2013a). The fundamental setup is loosely based
on the system submitted by Cho et al. (2013) to
the WMT 2013 shared task. Our phrase table is
trained on data taken from the News commentary,
Europarl, UN, Common crawl and 109 corpora.
The first three of these corpora were included in-
tegrally into the training set after filtering out sen-
tences of more than 80 words. The Common crawl
and 109 data sets were run through an additional
filtering step with an SVM classifier, closely fol-
lowing Mediani et al. (2011). The system includes
three language models, a regular 6-gram model
with modified Kneser-Ney smoothing (Chen and
Goodman, 1998) trained with KenLM (Heafield,
2011), a 4-gram bilingual language model (Niehues
et al., 2011) with Kneser-Ney smoothing trained
with KenLM and a 9-gram model over Brown clus-
ters (Brown et al., 1992) with Witten-Bell smooth-
ing (Witten and Bell, 1991) trained with SRILM
(Stolcke, 2002).
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The latest version released in March is equipped with . . . It is sold at . . .

La dernière version lancée en mars est dotée de . . . • est vendue . . .

Figure 1: Pronominal Anaphora Model

Our baseline system achieved a cased BLEU
score of 33.2 points on the newstest2014 data set.
Since the anaphora model used in our submission
suffered from a serious bug, we do not discuss the
results of the primary submission in more detail.

3.1 Pronominal Anaphora Model

Our pronominal anaphora model is an adaptation
of the pronoun prediction model described by Hard-
meier et al. (2013b) to SMT. The model consists
of a neural network that discriminatively predicts
the translation of a source language pronoun from
a short list of possible target language pronouns us-
ing features from the context of the source language
pronouns and from the translations of possibly re-
mote antecedents. The objective of this model is to
handle situations like the one depicted in Figure 1,
where the correct choice of a target-language pro-
noun is subject to morphosyntactic agreement with
its antecedent. This problem consists of several
steps. To score a pronoun, the system must decide
if a pronoun is anaphoric and, if so, find potential
antecedents. Then, it can predict what pronouns
are likely to occur in the translation. Our pronoun
prediction model is trained on both tasks jointly,
including anaphora resolution as a set of latent vari-
ables. At test time, we split the network in two
parts. The anaphora resolution part is run sepa-
rately as a preprocessing step, whereas the pronoun
prediction part is integrated into the document-level
decoder with two additional feature models.

The features correspond to two copies of the neu-
ral network, one to handle the singular pronoun it
and one to handle the plural pronoun they. Each net-
work just predicts a binary distinction between two
cases, il and elle for the singular network and ils
and elles for the plural network. Unlike Hardmeier
et al. (2013b), we do not use an OTHER category to
capture cases that should not be translated with any
of these options. Instead, we treat all other cases in
the phrase table and activate the anaphora models
only if one of their target pronouns actually occurs
in the output.

To achieve this, we generate pronouns in two
steps. In the phrase table training corpus, we re-

place all pronouns that should be handled by the
classifier, i.e. instances of il and elle aligned to it
and instances of ils and elles aligned to they, with
special placeholders. At decoding time, if a place-
holder is encountered in a target language phrase,
the applicable pronouns are generated with equal
translation model probability, and the anaphora
model adds a score to discriminate between them.

To reduce the influence of the language model
on pronoun choice and give full control to the
anaphora model, our primary language model is
trained on text containing placeholders instead of
pronouns. Since all output pronouns can also be
generated without the interaction of the anaphora
model if they are not aligned to a source language
pronoun, we must make sure that the language
model sees training data for both placeholders and
actual pronouns. However, for the monolingual
training corpora we have no word alignments to
decide whether or not to replace a pronoun by a
placeholder. To get around this problem, we train a
6-gram placeholder language model on the target
language side of the Europarl and News commen-
tary corpora. Then, we use the Viterbi n-gram
model decoder of SRILM (Stolcke, 2002) to map
pronouns in the entire language model training set
to placeholders where appropriate. No substitu-
tions are made in the bilingual language model or
the Brown cluster language model.

3.2 Dependency Projection Model

Our English–French system also includes a depen-
dency projection model, which uses source-side
dependency structure to model target-side relations
between words. This model assigns a score to each
dependency arc in the source language by consider-
ing the target words aligned to the head and the de-
pendent. In Figure 2, for instance, there is an nsub-
jpass arc connecting dominated to production. The
head is aligned to the target word dominée, while
the dependent is aligned to the set {production,de}.
The score is computed by a neural network taking
as features the head and dependent words and their
part-of-speech tags in the source language, the tar-
get word sets aligned to the head and dependent,
the label of the dependency arc, the distance be-
tween the head and dependent word in the source
language as well as the shortest distance between
any pair of words in the aligned sets. The network
is a binary classifier trained to discriminate positive
examples extracted from human-made reference

123



Domestic meat production is dominated by chicken .

amod

nn

nsubjpass

auxpass prep pobj

punct

La production intérieure de viande est dominée par le poulet .

Figure 2: Dependency projection model

translations from negative examples extracted from
n-best lists generated by a baseline SMT system.

4 English–German

For English–German we have two systems, one
based on Moses, and one based on Docent. In both
cases we have focused on word order, particularly
for verbs and particles.

Both our systems are trained on the same data
made available by WMT. The Common crawl data
was filtered using the method of Stymne et al.
(2013). We use factored models with POS tags
as a second output factor for German. The possi-
bility to use language models for different factors
has been added to our Docent decoder. Language
models include an in-domain news language model,
an out-of-domain model trained on the target side
of the parallel training data and a POS language
model trained on tagged news data. The LMs are
trained in the same way as for English–French.
All systems are tuned using MERT (Och, 2003).
Phrase-tables are filtered using entropy-based prun-
ing (Johnson et al., 2007) as implemented in Moses.
All BLEU scores are given for uncased data.

4.1 Pre-Ordered Alignment and
Post-Ordered Translation

The use of syntactic reordering as a separate pre-
processing step has already a long tradition in sta-
tistical MT. Handcrafted rules (Collins et al., 2005;
Popović and Ney, 2006) or data-driven models (Xia
and McCord, 2004; Genzel, 2010; Rottmann and
Vogel, 2007; Niehues and Kolss, 2009) for pre-
ordering training data and system input have been
explored in numerous publications. For certain
language pairs, such as German and English, this
method can be very effective and often improves
the quality of standard SMT systems significantly.
Typically, the source language is reordered to better
match the syntax of the target language when trans-
lating between languages that exhibit consistent
word order differences, which are difficult to handle

by SMT systems with limited reordering capabil-
ities such as phrase-based models. Preordering is
often done on the entire training data as well to op-
timize translation models for the pre-ordered input.
Less common is the idea of post-ordering, which
refers to a separate step after translating source lan-
guage input to an intermediate target language with
corrupted (source-language like) word order (Na et
al., 2009; Sudoh et al., 2011).

In our experiments, we focus on the translation
from English to German. Post-ordering becomes
attractive for several reasons: One reason is the
common split of verb-particle constructions that
can lead to long distance dependencies in German
clauses. Phrase-based systems and n-gram lan-
guage models are not able to handle such relations
beyond a certain distance and it is desirable to keep
them as connected units in the phrase translation
tables. Another reason is the possible distance of
finite and infinitival verbs in German verb phrases
that can lead to the same problems described above
with verb-particle constructions. The auxiliary or
modal verb is placed at the second position but
the main verb appears at the end of the associated
verb phrase. The distances can be arbitrarily long
and long-range dependencies are quite frequent.
Similarly, negation particles and adverbials move
away from the inflected verb forms in certain con-
structions. For more details on specific phenomena
in German, we refer to (Collins et al., 2005; Go-
jun and Fraser, 2012). Pre-ordering, i.e. moving
English words into German word order does not
seem to be a good option as we loose the con-
nection between related items when moving par-
ticles and main verbs away from their associated
elements. Hence, we are interested in reordering
the target language German into English word or-
der which can be beneficial in two ways: (i) Re-
ordering the German part of the parallel training
data makes it possible to improve word alignment
(which tends to prefer monotonic mappings) and
subsequent phrase extraction which leads to better
translation models. (ii) We can explore a two-step
procedure in which we train a phrase-based SMT
model for translating English into German with
English word order first (which covers many long-
distance relations locally) and then apply a second
system that moves words into place according to
correct German syntax (which may involve long-
range distortion).

For simplicity, we base our experiments on hand-
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crafted rules for some of the special cases discussed
above. For efficiency reasons, we define our rules
over POS tag patterns rather than on full syntac-
tic parse trees. We rely on TreeTagger and apply
rules to join verbs in discontinuous verb phrases
and to move verb-finals in subordinate clauses, to
move verb particles, adverbials and negation par-
ticles. Table 1 shows two examples of reordered
sentences together with the original sentences in
English and German. Our rules implement rough
heuristics to identify clause boundaries and word
positions. We do not properly evaluate these rules
but focus on the down-stream evaluation of the MT
system instead.

It is therefore dangerous to extrapolate from short-term trends.
Daher ist es gefährlich, aus kurzfristigen Trends Prognosen abzuleiten.
Daher ist gefährlich es, abzuleiten aus kurzfristigen Trends Prognosen.

The fall of Saddam ushers in the right circumstances.
Der Sturz von Saddam leitet solche richtigen Umstände ein.
Der Sturz von Saddam ein leitet solche richtigen Umstände.

Table 1: Two examples of pre-ordering outputs.
The first two lines are the original English and
German sentences and the third line shows the re-
ordered sentence.

We use three systems based on Moses to com-
pare the effect of reordering on alignment and trans-
lation. All systems are case-sensitive phrase-based
systems with lexicalized reordering trained on data
provided by WMT. Word alignment is performed
using fast align (Dyer et al., 2013). For tuning we
use newstest2011. Additionally, we also test paral-
lel data from OPUS (Tiedemann, 2012) filtered by
a method adopted from Mediani et al. (2011).

To contrast our baseline system, we trained a
phrase-based model on parallel data that has been
aligned on data pre-ordered using the reordering
rules for German, which has been restored to the
original word order after word alignment and be-
fore phrase extraction (similar to (Carpuat et al.,
2010; Stymne et al., 2010)). We expect that the
word alignment is improved by reducing crossings
and long-distance links. However, the translation
model as such has the same limitations as the base-
line system in terms of long-range distortions. The
final system is a two-step model in which we apply
translation and language models trained on pre-
ordered target language data to perform the first
step, which also includes a reordered POS language
model. The second step is also treated as a transla-
tion problem as in Sudoh et al. (2011), and in our

case we use a phrase-based model here with lexical-
ized reordering and a rather large distortion limit
of 12 words. Another possibility would be to apply
another rule set that reverts the misplaced words
to the grammatically correct positions. This, how-
ever, would require deeper syntactic information
about the target language to, for example, distin-
guish main from subordinate clauses. Instead, our
model is trained on parallel target language data
with the pre-ordered version as input and the orig-
inal version as output language. For this model,
both sides are tagged and a POS language model
is used again as one of the target language factors
in decoding. Table 2 shows the results in terms of
BLEU scores on the newstest sets from 2013 and
2014.

newstest2013 newstest2014
baseline 19.3 19.1
pre 19.4 19.3
post 18.6 18.7
baseline+OPUS 19.5 19.3
pre+OPUS 19.5 19.3
post+OPUS 19.7 18.8

Table 2: BLEU4 scores for English-German sys-
tems (w/o OPUS): Standard phrase-based (base-
line); phrase-based with pre-ordered parallel cor-
pus used for word alignment (pre); two-step phrase-
based with post-reordering (post)

The results show that pre-ordering has some ef-
fect on word alignment quality in terms of support-
ing better phrase extractions in subsequent steps.
Our experiments show a consistent but small im-
provement for models trained on data that have
been prepared in this way. In contrast, the two-step
procedure is more difficult to judge in terms of au-
tomatic metrics. On the 2013 newstest data we can
see another small improvement in the setup that
includes OPUS data but in most cases the BLEU
scores go down, even below the baseline. The
short-comings of the two-step procedure are ob-
vious. Separating translation and reordering in a
pipeline adds the risk of error propagation. Fur-
thermore, reducing the second step to single-best
translations is a strong limitation and using phrase-
based models for the final reordering procedure is
probably not the wisest decision. However, manual
inspections reveals that many interesting phenom-
ena can be handled even with this simplistic setup.

Table 3 illustrates this with a few selected out-
comes of our three systems. They show how verb-
particle constructions with long-range distortion
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reference Schauspieler Orlando Bloom hat sich zur Trennung von seiner Frau , Topmodel Miranda Kerr , geäußert .
baseline Schauspieler Orlando Bloom hat die Trennung von seiner Frau , Supermodel Miranda Kerr .
pre-ordering Schauspieler Orlando Bloom hat angekündigt , die Trennung von seiner Frau , Supermodel Miranda Kerr .
post-ordering Schauspieler Orlando Bloom hat seine Trennung von seiner Frau angekündigt , Supermodel Miranda Kerr .
reference Er gab bei einer früheren Befragung den Kokainbesitz zu .
baseline Er gab den Besitz von Kokain in einer früheren Anhörung .
pre-ordering Er räumte den Besitz von Kokain in einer früheren Anhörung .
post-ordering Er räumte den Besitz von Kokain in einer früheren Anhörung ein .
reference Borussia Dortmund kündigte daraufhin harte Konsequenzen an .
baseline Borussia Dortmund kündigte an , es werde schwere Folgen .
pre-ordering Borussia Dortmund hat angekündigt , dass es schwerwiegende Konsequenzen .
post-ordering Borussia Dortmund kündigte an , dass es schwere Folgen geben werde .

Table 3: Selected translation examples from the newstest 2014 data; the human reference translation; the
baseline system, pre-ordering for word alignment and two-step translation with post-ordering.

such as “räumte ... ein” can be created and how
discontinuous verb phrases can be handled (“hat ...
angekündigt”) with the two-step procedure. The
model is also often better in producing verb finals
in subordinate clauses (see the final example with
“geben werde”). Note that many of these improve-
ments do not get any credit by metrics like BLEU.
For example the acceptable expression “räumte ein”
which is synonymous to “gab zu” obtains less credit
then the incomplete baseline translation. Interest-
ing is also to see the effect of pre-ordering when
used for alignment only in the second system. The
first example in Table 3, for example, includes a
correct main verb which is omitted in the baseline
translation, probably because it is not extracted as
a valid translation option.

4.2 Part-of-Speech Phrase-Distortion Models
Traditional SMT distortion models consist of two
parts. A distance-based distortion cost is based
on the position of the last word in a phrase, com-
pared to the first word in the next phrase, given the
source phrase order. A hard distortion limit blocks
translations where the distortion is too large. The
distortion limit serves to decrease the complexity
of the decoder, thus increasing its speed.

In the Docent decoder, the distortion limit is not
implemented as a hard limit, but as a feature, which
could be seen as a soft constraint. We showed in
previous work (Stymne et al., 2013) that it was
useful to relax the hard distortion limit by either
using a soft constraint, which could be tuned, or
removing the limit completely. In that work we
still used the standard parametrization of distortion,
based on the positions of the first and last words in
phrases.

Our Docent decoder, however, always provides
us with a full target translation that is step-wise im-
proved, which means that we can apply distortion

measures on the phrase-level without resorting to
heuristics, which, for instance, are needed in the
case of the lexicalized reordering models in Moses
(Koehn et al., 2005). Because of this it is possible
to use phrase-based distortion, where we calculate
distortion based on the order of phrases, not on the
order of some words. It is possible to parametrize
phrase-distortion in different ways. In this work we
use the phrase-distortion distance and a soft limit
on the distortion distance, to mimic the word-based
distortion. In our experiments we always set the
soft limit to a distance of four phrases. In addition
we use a measure based on how many crossings
a phrase order gives rise to. We thus have three
phrase-distortion features.

As captured by lexicalized reordering models,
different phrases have different tendencies to move.
To capture this to some extent, we also decided
to add part-of-speech (POS) classes to our mod-
els. POS has previously successfully been used
in pre-reordering approaches (Popović and Ney,
2006; Niehues and Kolss, 2009). The word types
that are most likely to move long distances in
English–German translation are verbs and parti-
cles. Based on this observation we split phrases
into two classes, phrases that only contains verbs
and particles, and all other phrases. For these two
groups we use separate phrase-distortion features,
thus having a total of six part-of-speech phrase-
distortion features. All of these features are soft,
and are optimized during tuning.

In our system we initialize Docent by running
Moses with a standard distortion model and lexi-
calized reordering, and then continuing the search
with Docent including our part-of-speech phrase-
distortion features. Tuning was done separately for
the two components, first for the Moses component,
and then for the Docent component initialized by
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reference Laut Dmitrij Kislow von der Organisation ”Pravo na oryzhie” kann man eine Pistole vom Typ Makarow für 100 bis 300 Dollar kaufen.
baseline Laut Dmitry Kislov aus der Rechten zu Waffen, eine Makarov Gun-spiele erworben werden können für 100-300 Dollar.
POS+phrase Laut Dmitry Kislov von die Rechte an Waffen, eine Pistole Makarov für 100-300 Dollar erworben werden können.
reference Die Waffen gelangen über mehrere Kanäle auf den Schwarzmarkt.
baseline Der ”Schwarze” Markt der Waffen ist wieder aufgefüllt über mehrere Kanäle.
POS+phrase Der ”Schwarze” Markt der Waffen durch mehrere Kanäle wieder aufgefüllt ist.
reference Mehr Kameras könnten möglicherweise das Problem lösen...
baseline Möglicherweise könnte das Problem lösen, eine große Anzahl von Kameras...
POS+phrase Möglicherweise, eine große Anzahl von Kameras könnte das Problem lösen...

Table 4: Selected translation examples from the newstest2013 data; the human reference translation; the
baseline system (Moses with lexicalized reordering) and the system with a POS+phrase distortion model.

Moses with lexicalized reordering with its tuned
weights. We used newstest2009 for tuning. The
training data was lowercased for training and de-
coding, and recasing was performed using a sec-
ond Moses run trained on News data. As baselines
we present two Moses systems, without and with
lexicalized reordering, in addition to standard dis-
tortion features.

Table 5 shows results with our different distor-
tion models. Overall the differences are quite small.
The clearest difference is between the two Moses
baselines, where the lexicalized reordering model
leads to an improvement. With Docent, both the
word distortion and phrase distortion without POS
do not help to improve on Moses, with a small de-
crease in scores on one dataset. This is not very
surprising, since lexical distortion is currently not
supported by Docent, and the distortion models are
thus weaker than the ones implemented in Moses.
For our POS phrase distortion, however, we see a
small improvement compared to Moses, despite the
lack of lexicalized distortion. This shows that this
distortion model is actually useful, and can even
successfully replace lexicalized reordering. In fu-
ture work, we plan to combine this method with a
lexicalized reordering model, to see if the two mod-
els have complementary strengths. Our submitted
system uses the POS phrase-distortion model.

System Distortion newstest2013 newstest2014
Moses word 19.4 19.3
Moses word+LexReo 19.6 19.6
Docent word 19.5 19.6
Docent phrase 19.5 19.6
Docent POS+phrase 19.7 19.7

Table 5: BLEU4 scores for English–German sys-
tems with different distortion models.

If we inspect the translations, most of the differ-
ences between the Moses baseline and the system
with POS+phrase distortion are actually due to lex-
ical choice. Table 4 shows some examples where

there are word order differences. The result is quite
mixed with respect to the placement of verbs. In
the first example, both systems put the verbs to-
gether but in different positions, instead of splitting
them like the reference suggests. In the second
example, our system erroneously put the verbs at
the end, which would be fine if the sentence had
been a subordinate clause. In the third example,
the baseline system has the correct placement of
the auxiliary “könnte”, while our system is bet-
ter at placing the main verb “lösen”. In general,
this indicates that our system is able to support
long-distance distortion as it is needed in certain
cases but sometimes overuses this flexibility. A
better model would certainly need to incorporate
syntactic information to distinguish main from sub-
ordinate clauses. However, this would add a lot of
complexity to the model.

5 Conclusion

We have described the three Uppsala University
systems for WMT14. In the English–French sys-
tem we extend our document-level decoder Do-
cent (Hardmeier et al., 2013a) to handle pronoun
anaphora and introduced a dependency projection
model. In our two English–German system we
explore different methods for handling reordering,
based on Docent and Moses. In particular, we look
at post-ordering as a separate step and tunable POS
phrase distortion.
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Maja Popović and Hermann Ney. 2006. POS-based re-
orderings for statistical machine translation. In Pro-
ceedings of the 5th International Conference on Lan-
guage Resources and Evaluation (LREC’06), pages
1278–1283, Genoa, Italy.

Kay Rottmann and Stephan Vogel. 2007. Word re-
ordering in statistical machine translation with a
POS-based distortion model. In Proceedings of
the 11th International Conference on Theoretical
and Methodological Issues in Machine Translation,
pages 171–180, Skövde, Sweden.
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Abstract

In this paper, we present the KIT
systems participating in the Shared
Translation Task translating between
English↔German and English↔French.
All translations are generated using
phrase-based translation systems, using
different kinds of word-based, part-of-
speech-based and cluster-based language
models trained on the provided data.
Additional models include bilingual lan-
guage models, reordering models based
on part-of-speech tags and syntactic parse
trees, as well as a lexicalized reordering
model. In order to make use of noisy
web-crawled data, we apply filtering
and data selection methods for language
modeling. A discriminative word lexicon
using source context information proved
beneficial for all translation directions.

1 Introduction

We describe the KIT systems for the Shared Trans-
lation Task of the ACL 2014 Ninth Workshop on
Statistical Machine Translation. We participated
in the English↔German and English↔French
translation directions, using a phrase-based de-
coder with lattice input.

The paper is organized as follows: the next sec-
tion describes the data used for each translation
direction. Section 3 gives a detailed description of
our systems including all the models. The trans-
lation results for all directions are presented after-
wards and we close with a conclusion.

2 Data

We utilize the provided EPPS, NC and Common
Crawl parallel corpora for English→German and
German→English, plus Giga for English→French
and French→English. The monolingual part

of those parallel corpora, the News Shuffle
corpus for all four directions and additionally
the Gigaword corpus for English→French and
German→English are used as monolingual train-
ing data for the different language models. For
optimizing the system parameters, newstest2012
and newstest2013 are used as development and
test data respectively.

3 System Description

Before training we perform a common preprocess-
ing of the raw data, which includes removing long
sentences and sentences with a length mismatch
exceeding a certain threshold. Afterwards, we nor-
malize special symbols, dates, and numbers. Then
we perform smart-casing of the first letter of every
sentence. Compound splitting (Koehn and Knight,
2003) is performed on the source side of the cor-
pus for German→English translation. In order to
improve the quality of the web-crawled Common
Crawl corpus, we filter out noisy sentence pairs us-
ing an SVM classifier for all four translation tasks
as described in Mediani et al. (2011).

Unless stated otherwise, we use 4-gram lan-
guage models (LM) with modified Kneser-Ney
smoothing, trained with the SRILM toolkit (Stol-
cke, 2002). All translations are generated by
an in-house phrase-based translation system (Vo-
gel, 2003), and we use Minimum Error Rate
Training (MERT) as described in Venugopal et
al. (2005) for optimization. The word align-
ment of the parallel corpora is generated using
the GIZA++ Toolkit (Och and Ney, 2003) for
both directions. Afterwards, the alignments are
combined using the grow-diag-final-and heuris-
tic. For English→German, we use discrimi-
native word alignment trained on hand-aligned
data as described in Niehues and Vogel (2008).
The phrase table (PT) is built using the Moses
toolkit (Koehn et al., 2007). The phrase scoring
for the small data sets (German↔English) is also
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done by the Moses toolkit, whereas the bigger sets
(French↔English) are scored by our in-house par-
allel phrase scorer (Mediani et al., 2012a). The
phrase pair probabilities are computed using mod-
ified Kneser-Ney smoothing as described in Foster
et al. (2006).

Since German is a highly inflected language,
we try to alleviate the out-of-vocabulary prob-
lem through quasi-morphological operations that
change the lexical entry of a known word form to
an unknown word form as described in Niehues
and Waibel (2011).

3.1 Word Reordering Models

We apply automatically learned reordering rules
based on part-of-speech (POS) sequences and syn-
tactic parse tree constituents to perform source
sentence reordering according to the target lan-
guage word order. The rules are learned
from a parallel corpus with POS tags (Schmid,
1994) for the source side and a word align-
ment to learn reordering rules that cover short
range (Rottmann and Vogel, 2007) and long
range reorderings (Niehues and Kolss, 2009).
In addition, we apply a tree-based reordering
model (Herrmann et al., 2013) to better address
the differences in word order between German and
English. Here, a word alignment and syntactic
parse trees (Rafferty and Manning, 2008; Klein
and Manning, 2003) for the source side of the
training corpus are required to learn rules on how
to reorder the constituents in the source sentence.
The POS-based and tree-based reordering rules
are applied to each input sentence before transla-
tion. The resulting reordered sentence variants as
well as the original sentence are encoded in a re-
ordering lattice. The lattice, which also includes
the original position of each word, is used as input
to the decoder.

In order to acquire phrase pairs matching the
reordered sentence variants, we perform lattice
phrase extraction (LPE) on the training corpus
where phrase are extracted from the reordered
word lattices instead of the original sentences.

In addition, we use a lexicalized reordering
model (Koehn et al., 2005) which stores reorder-
ing probabilities for each phrase pair. During
decoding the lexicalized reordering model deter-
mines the reordering orientation of each phrase
pair at the phrase boundaries. The probability for
the respective orientation with respect to the orig-

inal position of the words is included as an addi-
tional score in the log-linear model of the transla-
tion system.

3.2 Adaptation
In the French→English and English→French sys-
tems, we perform adaptation for translation mod-
els as well as for language models. The EPPS and
NC corpora are used as in-domain data for the di-
rection English→French, while NC corpus is the
in-domain data for French→English.

Two phrase tables are built: one is the out-
of-domain phrase table, which is trained on all
corpora; the other is the in-domain phrase table,
which is trained on in-domain data. We adapt the
translation model by using the scores from the two
phrase tables with the backoff approach described
in Niehues and Waibel (2012). This results in a
phrase table with six scores, the four scores from
the general phrase table as well as the two condi-
tional probabilities from the in-domain phrase ta-
ble. In addition, we take the union of the candidate
phrase pairs collected from both phrase tables A
detailed description of the union method can be
found in Mediani et al. (2012b).

The language model is adapted by log-linearly
combining the general language model and an in-
domain language model. We train a separate lan-
guage model using only the in-domain data. Then
it is used as an additional language model during
decoding. Optimal weights are set during tuning
by MERT.

3.3 Special Language Models
In addition to word-based language models, we
use different types of non-word language models
for each of the systems. With the help of a bilin-
gual language model (Niehues et al., 2011) we
are able to increase the bilingual context between
source and target words beyond phrase bound-
aries. This language model is trained on bilin-
gual tokens created from a target word and all its
aligned source words. The tokens are ordered ac-
cording to the target language word order.

Furthermore, we use language models based
on fine-grained part-of-speech tags (Schmid and
Laws, 2008) as well as word classes to allevi-
ate the sparsity problem for surface words. The
word classes are automatically learned by clus-
tering the words of the corpus using the MKCLS
algorithm (Och, 1999). These n-gram language
models are trained on the target language corpus,
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where the words have been replaced either by their
corresponding POS tag or cluster ID. During de-
coding, these language models are used as addi-
tional models in the log-linear combination.

The data selection language model is trained
on data automatically selected using cross-entropy
differences between development sets from pre-
vious WMT workshops and the noisy crawled
data (Moore and Lewis, 2010). We selected the
top 10M sentences to train this language model.

3.4 Discriminative Word Lexicon

A discriminative word lexicon (DWL) models the
probability of a target word appearing in the trans-
lation given the words of the source sentence.
DWLs were first introduced by Mauser et al.
(2009). For every target word, they train a maxi-
mum entropy model to determine whether this tar-
get word should be in the translated sentence or
not using one feature per source word.

We use two simplifications of this model that
have shown beneficial to translation quality and
training time in the past (Mediani et al., 2011).
Firstly, we calculate the score for every phrase pair
before translating. Secondly, we restrict the nega-
tive training examples to words that occur within
matching phrase pairs.

In this evaluation, we extended the DWL
with n-gram source context features proposed
by Niehues and Waibel (2013). Instead of rep-
resenting the source sentence as a bag-of-words,
we model it as a bag-of-n-grams. This allows us
to include information about source word order in
the model. We used one feature per n-gram up to
the order of three and applied count filtering for
bigrams and trigrams.

4 Results

This section presents the participating systems
used for the submissions in the four translation
directions of the evaluation. We describe the in-
dividual components that form part of each of
the systems and report the translation qualities
achieved during system development. The scores
are reported in case-sensitive BLEU (Papineni et
al., 2002).

4.1 English-French

The development of our English→French system
is shown in Table 1.

It is noteworthy that, for this direction, we chose
to tune on a subset of 1,000 pairs from news-
test2012, due to the long time the whole set takes
to be decoded. In a preliminary set of experiments
(not reported here), we found no significant differ-
ences between tuning on the small or the big devel-
opment sets. The translation model of the baseline
system is trained on the whole parallel data after
filtering (EPPS, NC, Common Crawl, Giga). The
same data was also used for language modeling.
We also use POS-based reordering.

The biggest improvement was due to using two
additional language models. One consists of a log-
linear interpolation of individual language models
trained on the target side of the parallel data, the
News shuffle, Gigaword and NC corpora. In ad-
dition, an in-domain language model trained only
on NC data is used. This improves the score by
more than 1.4 points. Adaptation of the translation
model towards a smaller model trained on EPPS
and NC brings an additional 0.3 points.

Another 0.3 BLEU points could be gained by
using other special language models: a bilingual
language model together with a 4-gram cluster
language model (trained on all monolingual data
using the MKCLS tool and 500 clusters). Incor-
porating a lexicalized reordering model into the
system had a very noticeable effect on test namely
more than half a BLEU point.

Finally, using a discriminative word lexicon
with source context has a very small positive ef-
fect on the test score, however more than 0.3 on
dev. This final configuration was the basis of our
submitted official translation.

System Dev Test
Baseline 15.63 27.61
+ Big LMs 16.56 29.02
+ PT Adaptation 16.77 29.32
+ Bilingual + Cluster LM 16.87 29.64
+ Lexicalized Reordering 16.92 30.17
+ Source DWL 17.28 30.19

Table 1: Experiments for English→French

4.2 French-English

Several experiments were conducted for the
French→English translation system. They are
summarized in Table 2.

The baseline system is essentially a phrase-
based translation system with some preprocess-
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ing steps on the source side and utilizing the
short-range POS-based reordering on all parallel
data and fine-grained monolingual corpora such as
EPPS and NC.

Adapting the translation model using a small in-
domain phrase table trained on NC data only helps
us gain more than 0.4 BLEU points.

Using non-word language models including a
bilingual language model and a 4-gram 50-cluster
language model trained on the whole parallel data
attains 0.24 BLEU points on the test set.

Lexicalized reordering improves our system on
the development set by 0.3 BLEU points but has
less effect on the test set with a minor improve-
ment of around 0.1 BLEU points.

We achieve our best system, which is used for
the evaluation, by adding a DWL with source con-
text yielding 31.54 BLEU points on the test set.

System Dev Test
Baseline 30.16 30.70
+ LM Adaptation 30.58 30.94
+ PT Adaptation 30.69 31.14
+ Bilingual + Cluster LM 30.85 31.38
+ Lexicalized Reordering 31.14 31.46
+ Source DWL 31.19 31.54

Table 2: Experiments for French→English

4.3 English-German

Table 3 presents how the English-German transla-
tion system is improved step by step.

In the baseline system, we used parallel data
which consists of the EPPS and NC corpora. The
phrase table is built using discriminative word
alignment. For word reordering, we use word lat-
tices with long range reordering rules. Five lan-
guage models are used in the baseline system; two
word-based language models, a bilingual language
model, and two 9-gram POS-based language mod-
els. The two word-based language models use 4-
gram context and are trained on the parallel data
and the filtered Common Crawl data separately,
while the bilingual language model is built only
on the Common Crawl corpus. The two POS-
based language models are also based on the paral-
lel data and the filtered crawled data, respectively.

When using a 9-gram cluster language model,
we get a slight improvement. The cluster is trained
with 1,000 classes using EPPS, NC, and Common
Crawl data.

We use the filtered crawled data in addition to
the parallel data in order to build the phrase table;
this gave us 1 BLEU point of improvement.

The system is improved by 0.1 BLEU points
when we use lattice phrase extraction along with
lexicalized reordering rules.

Tree-based reordering rules improved the sys-
tem performance further by another 0.1 BLEU
points.

By reducing the context of the two POS-based
language models from 9-grams to 5-grams and
shortening the context of the language model
trained on word classes to 4-grams, the score on
the development set hardly changes but we can see
a slightly improvement for the test case.

Finally, we use the DWL with source context
and build a big bilingual language model using
both the crawled and parallel data. By doing so,
we improved the translation performance by an-
other 0.3 BLEU points. This system was used for
the translation of the official test set.

System Dev Test
Baseline 16.64 18.60
+ Cluster LM 16.76 18.66
+ Common Crawl Data 17.27 19.66
+ LPE + Lexicalized Reordering 17.45 19.75
+ Tree Rules 17.53 19.85
+ Shorter n-grams 17.55 19.92
+ Source DWL + Big BiLM 17.82 20.21

Table 3: Experiments for English→German

4.4 German-English

Table 4 shows the development steps of the
German-English translation system.

For the baseline system, the training data of the
translation model consists of EPPS, NC and the
filtered parallel crawled data. The phrase table
is built using GIZA++ word alignment and lattice
phrase extraction. All language models are trained
with SRILM and scored in the decoding process
with KenLM (Heafield, 2011). We use word lat-
tices generated by short and long range reordering
rules as input to the decoder. In addition, a bilin-
gual language model and a target language model
trained on word clusters with 1,000 classes are in-
cluded in the system.

Enhancing the word reordering with tree-based
reordering rules and a lexicalized reordering
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model improved the system performance by 0.6
BLEU points.

Adding a language model trained on selected
data from the monolingual corpora gave another
small improvement.

The DWL with source context increased the
score on the test set by another 0.5 BLEU points
and applying morphological operations to un-
known words reduced the out-of-vocabulary rate,
even though no improvement in BLEU can be ob-
served. This system was used to generate the
translation submitted to the evaluation.

System Dev Test
Baseline 24.40 26.34
+ Tree Rules 24.71 26.86
+ Lexicalized Reordering 24.89 26.93
+ LM Data Selection 24.96 27.03
+ Source DWL 25.32 27.53
+ Morphological Operations - 27.53

Table 4: Experiments for German→English

5 Conclusion

In this paper, we have described the systems
developed for our participation in the Shared
Translation Task of the WMT 2014 evaluation
for English↔German and English↔French. All
translations were generated using a phrase-based
translation system which was extended by addi-
tional models such as bilingual and fine-grained
part-of-speech language models. Discriminative
word lexica with source context proved beneficial
in all four language directions.

For English-French translation using a smaller
development set performed reasonably well and
reduced development time. The most noticeable
gain comes from log-linear interpolation of multi-
ple language models.

Due to the large amounts and diversity of
the data available for French-English, adapta-
tion methods and non-word language models con-
tribute the major improvements to the system.

For English-German translation, the crawled
data and a DWL using source context to guide
word choice brought most of the improvements.

Enhanced word reordering models, namely
tree-based reordering rules and a lexicalized re-
ordering model as well as the source-side fea-
tures for the discriminative word lexicon helped

improve the system performance for German-
English translation.

In average we achieved an improvement of over
1.5 BLEU over the respective baselines for all our
systems.
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Abstract

This paper describes the DCU submis-
sion to WMT 2014 on German-English
translation task. Our system uses phrase-
based translation model with several pop-
ular techniques, including Lexicalized
Reordering Model, Operation Sequence
Model and Language Model interpolation.
Our final submission is the result of sys-
tem combination on several systems which
have different pre-processing and align-
ments.

1 Introduction

On the German-English translation task of WMT
2014, we submitted a system which is built with
Moses phrase-based model (Koehn et al., 2007).

For system training, we use all provided
German-English parallel data, and conducted sev-
eral pre-processing steps to clean the data. In ad-
dition, in order to improve the translation quali-
ty, we adopted some popular techniques, includ-
ing three Lexicalized Reordering Models (Axel-
rod et al., 2005; Galley and Manning, 2008), a 9-
gram Operation Sequence Model (Durrani et al.,
2011) and Language Model interpolation on sev-
eral datasets. And then we use system combina-
tion on several systems with different settings to
produce the final outputs.

Our phrase-based systems are tuned with k-best
MIRA (Cherry and Foster, 2012) on development
set. We set the maximum iteration to be 25.

The Language Models in our systems are
trained with SRILM (Stolcke, 2002). We trained

Corpus Filtered Out (%)
Bilingual 7.17
Monolingual (English) 1.05

Table 1: Results of language detection: percentage
of filtered out sentences

a 5-gram model with Kneser-Ney discounting
(Chen and Goodman, 1996).

In the next sections, we will describe our system
in detail. In section 2, we will explain our pre-
processing steps on corpus. Then in section 3, we
will describe some techniques we have tried for
this task and the experiment results. In section 4,
our final configuration for submitted system will
be presented. And we conclude in the last section.

2 Pre-processing

We use all the training data for German-English
translation, including Europarl, News Commen-
tary and Common Crawl. The first thing we no-
ticed is that some Non-German and Non-English
sentences are included in our training data. So we
apply Language Detection (Shuyo, 2010) for both
monolingual and bilingual corpora. For mono-
lingual data (only including English sentences in
our task), we filter out sentences which are detect-
ed as other language with probability more than
0.999995. And for bilingual data, A sentence
pair is filtered out if the language detector detect-
s a different language with probability more than
0.999995 on either the source or the target. The
filtering results are given in Table 1.

In our experiment, German compound word-
s are splitted based on frequency (Koehn and
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Knight, 2003). In addition, for both monolingual
and bilingual data, we apply tokenization, nor-
malizing punctuation and truecasing using Moses
scripts. For parallel training data, we also filter out
sentence pairs containing more than 80 tokens on
either side and sentence pairs whose length ratio
between source and target side is larger than 3.

3 Techniques

In our preliminary experiments, we take newstest
2013 as our test data and newstest 2008-2012 as
our development data. In total, we have more
than 10,000 sentences for tuning. The tuning step
would be very time-consuming if we use them al-
l. So in this section, we use Feature Decay Al-
gorithm (FDA) (Biçici and Yuret, 2014) to select
2000 sentences as our development set. Table 2
shows that system performance does not increase
with larger tuning set and the system using only
2K sentences selected by FDA is better than the
baseline tuned with all the development data.

In this section, alignment model is trained
by MGIZA++ (Gao and Vogel, 2008) with
grow-diag-final-and heuristic function.
And other settings are mostly default values in
Moses.

3.1 Lexicalized Reordering Model

German and English have different word order
which brings a challenge in German-English ma-
chine translation. In our system, we adopt three
Lexicalized Reordering Models (LRMs) for ad-
dressing this problem. They are word-based LRM
(wLRM), phrase-based LRM (pLRM) and hierar-
chal LRM (hLRM).

These three models have different effect on the
translation. Word-based and phrase-based LRMs
are focus on local reordering phenomenon, while
hierarchical LRM could be applied into longer re-
ordering problem. Figure 1 shows the differences
(Galley and Manning, 2008). And Table 3 shows
effectiveness of different LRMs.

In our system based on Moses, we
use wbe-msd-bidirectional-fe,
phrase-msd-bidirectional-fe and
hier-mslr-bidirectional-fe to specify
these three LRMs. From Table 2, we could see
that LRMs significantly improves the translation.

Figure 1: Occurrence of a swap according to
the three orientation models: word-based, phrase-
based, and hierarchical. Black squares represen-
t word alignments, and gray squares represen-
t blocks identified by phrase-extract. In (a), block
bi = (ei, fai) is recognized as a swap according to
all three models. In (b), bi is not recognized as a
swap by the word-based model. In (c), bi is rec-
ognized as a swap only by the hierarchical model.
(Galley and Manning, 2008)

3.2 Operation Sequence Model

The Operation Sequence Model (OSM) (Durrani
et al., 2011) explains the translation procedure as
a linear sequence of operations which generates
source and target sentences in parallel. Durrani
et al. (2011) defined four translation operations:
Generate(X,Y), Continue Source Concept, Gener-
ate Source Only (X) and Generate Identical, as
well as three reordering operations: Insert Gap,
Jump Back(W) and Jump Forward. These oper-
ations are described as follows.

• Generate(X,Y) make the words in Y and the
first word in X added to target and source
string respectively.

• Continue Source Concept adds the word in
the queue from Generate(X,Y) to the source
string.

• Generate Source Only (X) puts X in the
source string at the current position.

• Generate Identical generates the same word
for both sides.

• Insert Gap inserts a gap in the source side for
future use.

• Jump Back (W) makes the position for trans-
lation be the Wth closest gap to the current
position.

• Jump Forward moves the position to the in-
dex after the right-most source word.
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Systems Tuning Set newstest 2013
Baseline – 24.1

+FDA – 24.2
+LRMs 24.0 25.4

+OSM 24.4 26.2
+LM Interpolation 24.6 26.4

+Factored Model – 25.9
+Sparse Feature 25.6 25.9

+TM Combination 24.1 25.4
+OSM Interpolation 24.4 26.0

Table 2: Preliminary results on tuning set and test set (newstest 2013). All scores on test set are case-
sensitive BLEU[%] scores. And scores on tuning set are case-insensitive BLEU[%] directly from tuning
result. Baseline uses all the data from newstest 2008-2012 for tuning.

Systems Tuning Set (uncased) newstest 2013
Baseline+FDA – 24.2

+wLRM 23.8 25.1
+pLRM 23.9 25.2

+hLRM 24.0 25.4
+pLRM 23.8 25.1
+hLRM 23.7 25.2

Table 3: System BLEU[%] scores when different LRMs are adopted.

The probability of an operation sequence O =
(o1o2 · · · oJ) is:

p(O) =
J∏

j=1

p(oj |oj−n+1 · · · oj−1) (1)

where n indicates the number of previous opera-
tions used.

In this paper we train a 9-gram OSM on train-
ing data and integrate this model directly into log-
linear framework (OSM is now available to use
in Moses). Our experiment shows OSM improves
our system by about 0.8 BLEU (see Table 2).

3.3 Language Model Interpolation

In our baseline, Language Model (LM) is trained
on all the monolingual data provided. In this sec-
tion, we try to build a large language model by in-
cluding data from English Gigaword fifth edition
(only taking partial data with size of 1.6G), En-
glish side of UN corpus and English side of 109

French-English corpus. Instead of training a s-
ingle model on all data, we interpolate language
models trained on each subset (monolingual data
provided is splitted into three parts: News 2007-
2013, Europarl and News Commentary) by tuning

weights to minimize perplexity of language model
measured on the target side of development set.

In our experiment, after interpolation, the lan-
guage model doesn’t get a much lower perplexity,
but it slightly improves the system, as shown in
Table 2.

3.4 Other Tries

In addition to the techniques mentioned above, we
also try some other approaches. Unfortunately al-
l of these methods described in this section are
non-effective in our experiments. The results are
shown in Table 2.

• Factored Model (Koehn and Hoang, 2007):
We tried to integrate a target POS factored
model into our system with a 9-gram POS
language model to address the problem of
word selection and word order. But ex-
periment doesn’t show improvement. The
English POS is from Stanford POS Tagger
(Toutanova et al., 2003).

• Translation Model Combination: In this ex-
periment, we try to use the method of (Sen-
nrich, 2012) to combine phrase tables or re-
ordering tables from different subsets of data
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to minimize perplexity measured on develop-
ment set. We try to split the training data in
two ways. One is according to data source,
resulting in three subsets: Europarl, News
Commentary and Common Crawl. Another
one is to use data selection. We use FDA to
select 200K sentence pairs as in-domain data
and the rest as out-domain data. Unfortunate-
ly both experiments failed. In Table 2, we on-
ly report results of phrase table combination
on FDA-based data sets.

• OSM Interpolation: Since OSM in our sys-
tem could be taken as a special language
model, we try to use the idea of interpolation
similar with language model to make OSM
adapted to some data. Training data are s-
plitted into two subsets with FDA. We train
9-gram OSM on each subsets and interpolate
them according to OSM trained on the devel-
opment set.

• Sparse Features: For each source phrase,
there is usually more than one corresponding
translation option. Each different translation
may be optimal in different contexts. Thus
in our systems, similar to (He et al., 2008)
which proposed a Maximum Entropy-based
rule selection for the hierarchical phrase-
based model, features which describe the
context of phrases, are designed to select the
right translation. But different with (He et
al., 2008), we use sparse features to mod-
el the context. And instead of using syn-
tactic POS, we adopt independent POS-like
features: cluster ID of word. In our experi-
ment mkcls was used to cluster words into 50
groups. And all features are generalized to
cluster ID.

4 Submission

Based on our preliminary experiments in the sec-
tion above, we use LRMs, OSM and LM inter-
polation in our final system for newstest 2014.
But as we find that Language Models trained on
UN corpus and 109 French-English corpus have
a very high perplexity and in order to speed up
the translation by reducing the model size, in this
section, we interpolate only three language model-
s from monolingual data provided, English Giga-
word fifth edition and target side of training data.
In addition, we also try some different methods for

final submission. And the results are shown in Ta-
ble 4.

• Development Set Selection: Instead of using
FDA which is dependent on test set, we use
the method of (Nadejde et al., 2013) to se-
lect tuning set from newstest 2008-2013 for
the final system. We only keep 2K sentences
which have more than 30 words and higher
BLEU score. The experiment result is shown
in Table 4 ( The system is indicated as Base-
line).

• Pre-processing: In our preliminary exper-
iments, sentences are tokenized without
changing hyphen. Thus we build another sys-
tem where all the hyphens are tokenized ag-
gressively.

• SyMGIZA++: Better alignment could lead to
better translation. So we carry out some ex-
periments on SyMGIZA++ aligner (Junczys-
Dowmunt and Sza, 2012), which modifies the
original IBM/GIZA++ word alignment mod-
els to allow to update the symmetrized mod-
els between chosen iterations of the original
training algorithms. Experiment shows this
new alignment improves translation quality.

• Multi-alignment Selection: We also try to use
multi-alignment selection (Tu et al., 2012)
to generate a ”better” alignment from three
alignmens: MGIZA++ with function grow-
diag-final-and, SyMGIZA++ with function
grow-diag-final-and and fast alignment (Dy-
er et al., 2013). Although this method show
comparable or better result on development
set, it fails on test set.

Since we build a few systems with different
setting on Moses phrase-based model, a straight-
forward thinking is to obtain the better transla-
tion from several different translation systems. So
we use system combination (Heafield and Lavie,
2010) on the 1-best outputs of three systems (in-
dicated with ∗ in table 4). And this results in our
best system so far, as shown in Table 4. In our final
submission, this result is taken as primary.

5 Conclusion

This paper describes our submitted system to
WMT 2014 in detail. This system is based on
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Systems Tuning Set newstest 2014
Baseline∗ 34.2 25.6

+SyMGIZA++∗ 34.3 26.0
+Multi-Alignment Selection 34.4 25.6

+Hyphen-Splitted 33.9 25.9
+SyMGIZA++∗ 34.0 26.0

+Multi-Alignment Selection 34.0 25.7
System Combination – 26.5

Table 4: Experiment results on newstest 2014. We report case-sensitive BLEU[%] score on test set and
case-insensitive BLEU[%] on tuning set which is directly from tuning result. Baseline is the phrase-based
system with LRMs, OSM and LM interpolation on smaller datasets, tuned with selected development set.
Systems indicated with ∗ are used for system combination.

Moses phrase-based model, and integrates Lexi-
calized Reordering Models, Operation Sequence
Model and Language Model interpolation. Al-
so system combination is used on several system-
s which have different pre-processing and align-
ment.

Acknowledgments

This work is supported by EC Marie-Curie initial
training Network EXPERT (EXPloiting Empiri-
cal appRoaches to Translation) project (http:
//expert-itn.eu). Thanks to Johannes Lev-
eling for his help on German compound splitting.
And thanks to Jia Xu and Jian Zhang for their ad-
vice and help on this paper and experiments.

References
Amittai Axelrod, Ra Birch Mayne, Chris Callison-

burch, Miles Osborne, and David Talbot. 2005. Ed-
inburgh system description for the 2005 iwslt speech
translation evaluation. In Proceedings of the Inter-
national Workshop on Spoken Language Translation
(IWSLT).
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Abstract

We describe the CMU systems submitted
to the 2014 WMT shared translation task.
We participated in two language pairs,
German–English and Hindi–English. Our
innovations include: a label coarsening
scheme for syntactic tree-to-tree transla-
tion, a host of new discriminative features,
several modules to create “synthetic trans-
lation options” that can generalize beyond
what is directly observed in the training
data, and a method of combining the out-
put of multiple word aligners to uncover
extra phrase pairs and grammar rules.

1 Introduction

The MT research group at Carnegie Mellon Uni-
versity’s Language Technologies Institute partici-
pated in two language pairs for the 2014 Workshop
on Machine Translation shared translation task:
German–English and Hindi–English. Our systems
showcase our multi-phase approach to translation,
in which synthetic translation options supple-
ment the default translation rule inventory that is
extracted from word-aligned training data.

In the German–English system, we used our
compound splitter (Dyer, 2009) to reduce data
sparsity, and we allowed the translator to back
off to translating lemmas when it detected case-
inflected OOVs. We also demonstrate our group’s
syntactic system with coarsened nonterminal types
(Hanneman and Lavie, 2011) as a contrastive
German–English submission.

In both the German–English and Hindi–English
systems, we used an array of supplemental ideas to
enhance translation quality, ranging from lemma-
tization and synthesis of inflected phrase pairs to
novel reordering and rule preference features.

2 Core System Components

The decoder infrastructure we used was cdec
(Dyer et al., 2010). For our primary systems,
all data was tokenized using cdec’s tokenization
tool. Only the constrained data resources pro-
vided for the shared task were used for training
both the translation and language models. Word
alignments were generated using both FastAlign
(Dyer et al., 2013) and GIZA++ (Och and Ney,
2003). All our language models were estimated
using KenLM (Heafield, 2011). Translation model
parameters were chosen using MIRA (Eidelman,
2012) to optimize BLEU (Papineni et al., 2002)
on a held-out development set.

Our data was filtered using qe-clean
(Denkowski et al., 2012), with a cutoff of
two standard deviations from the mean. All
data was left in fully cased form, save the first
letter of each segment, which was changed to
whichever form the first token more commonly
used throughout the data. As such, words like The
were lowercased at the beginning of segments,
while words like Obama remained capitalized.

Our primary German–English and Hindi–
English systems were Hiero-based (Chiang,
2007), while our contrastive German–English sys-
tem used cdec’s tree-to-tree SCFG formalism.

Before submitting, we ran cdec’s implementa-
tion of MBR on 500-best lists from each of our
systems. For both language pairs, we used the
Nelder–Mead method to optimize the MBR pa-
rameters. In the German–English system, we ran
MBR on 500 hypotheses, combining the output of
the Hiero and tree-to-tree systems.

The remainder of the paper will focus on our
primary innovations in the two language pairs.
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3 Common System Improvements

A number of our techniques were used for both our
German–English and Hindi–English primary sub-
missions. These techniques each fall into one of
three categories: those that create translation rules,
those involving language models, or those that add
translation features. A comparison of these tech-
niques and their performance across the two lan-
guage pairs can be found in Section 6.

3.1 Rule-Centric Enhancements

While many of our methods of enhancing the
translation model with extra rules are language-
specific, three were shared between language
pairs.

First, we added sentence-boundary tokens <s>
and </s> to the beginning and end of each line in
the data, on both the source and target sides.

Second, we aligned all of our training data us-
ing both FastAlign and GIZA++ and simply con-
catenated two copies of the training corpus, one
aligned with each aligner, and extracted rules from
the resulting double corpus.

Third, we hand-wrote a list of rules that trans-
form numbers, dates, times, and currencies into
well-formed English equivalents, handling differ-
ences such as the month and day reversal in dates
or conversion from 24-hour time to 12-hour time.

3.2 Employed Language Models

Each of our primary systems uses a total of three
language models.

The first is a traditional 4-gram model gen-
erated by interoplating LMs built from each of
the available monolingual corpora. Interpolation
weights were calculated used the SRILM toolkit
(Stolcke, 2002) and 1000 dev sentences from the
Hindi–English system.

The second is a model trained on word clus-
ters instead of surface forms. For this we mapped
the LM vocabulary into 600 clusters based on the
algorithm of Brown et al. (1992) and then con-
structed a 7-gram LM over the resulting clusters,
allowing us to capture more context than our tra-
ditional surface-form language model.

The third is a bigram model over the source side
of each language’s respective bitext. However, at
run time this LM operates on the target-side out-
put of the translator, just like the other two. The
intuition here is that if a source-side LM likes our
output, then we are probably passing through more
than we ought to.

Both source and target surface-form LM used
modified Kneser-Ney smoothing (Kneser and Ney,
1995), while the model over Brown clusters
(Brown et al., 1992) used subtract-0.5 smoothing.

3.3 New Translation Features
In addition to the standard array of features, we
added four new indicator feature templates, lead-
ing to a total of nearly 150,000 total features.

The first set consists of target-side n-gram fea-
tures. For each bigram of Brown clusters in the
output string generated by our translator, we fire
an indicator feature. For example, if we have the
sentence, Nato will ihren Einfluss im Osten stärken
translating as NATO intends to strengthen its influ-
ence in the East, we will fire an indicator features
NGF C367 C128=1, NGF C128 C31=1, etc.

The second set is source-language n-gram fea-
tures. Similar to the previous feature set, we fire
an indicator feature for each ngram of Brown clus-
ters in the output. Here, however, we use n = 1,
and we use the map of source language words to
Brown clusters, rather than the target language’s,
despite the fact that this is examining target lan-
guage output. The intuition here is to allow this
feature to penalize passthroughs differently de-
pending on their source language Brown cluster.
For example, passing through the German word
zeitung (“newspaper”) is probably a bad idea, but
passing through the German word Obama proba-
bly should not be punished as severely.

The third type of feature is source path features.
We can imagine translation as a two-step process
in which we first permute the source words into
some order, then translate them phrase by phrase.
This set of features examines that intermediate
string in which the source words have been per-
muted. Again, we fire an indicator feature for each
bigram in this intermediate string, this time using
surface lexical forms directly instead of first map-
ping them to Brown clusters.

Lastly, we create a new type of rule shape fea-
ture. Traditionally, rule shape features have indi-
cated, for each rule, the sequence of terminal and
non-terminal items on the right-hand side. For ex-
ample, the rule [X] → der [X] :: the [X] might
have an indicator feature Shape TN TN, where
T represents a terminal and N represents a non-
terminal. One can also imagine lexicalizing such
rules by replacing each T with its surface form.
We believe such features would be too sparse, so
instead of replacing each terminal by its surface
form, we instead replace it with its Brown cluster,

143



creating a feature like Shape C37 N C271 N.

4 Hindi–English Specific Improvements

In addition to the enhancements common to the
two primary systems, our Hindi–English system
includes improved data cleaning of development
data, a sophisticated linguistically-informed tok-
enization scheme, a transliteration module, a syn-
thetic phrase generator that improves handling of
function words, and a synthetic phrase generator
that leverages source-side paraphrases. We will
discuss each of these five in turn.

4.1 Development Data Cleaning

Due to a scarcity of clean development data, we
augmented the 520 segments provided with 480
segments randomly drawn from the training data
to form our development set, and drew another
random 1000 segments to serve as a dev test set.

After observing large discrepencies between the
types of segments in our development data and the
well-formed news domain sentences we expected
to be tested on, we made the decision to prune our
tuning set by removing any segment that did not
appear to be a full sentence on both the Hindi and
English sides. While this reduced our tuning set
from 1000 segments back down to 572 segments,
we believe it to be the single largest contributor to
our success on the Hindi–English translation task.

4.2 Nominal Normalization

Another facet of our system was normalization of
Hindi nominals. The Hindi nominal system shows
much more morphological variation than English.
There are two genders (masculine and feminine)
and at least six noun stem endings in pronuncia-
tion and 10 in writing.

The pronominal system also is much richer than
English with many variants depending on whether
pronouns appear with case markers or other post-
positions.

Before normalizing the nouns and pronouns, we
first split these case markers / postpositions from
the nouns / pronouns to result in two words in-
stead of the original combined form. If the case
marker was n� (ne), the ergative case marker in
Hindi, we deleted it as it did not have any trans-
lation in English. All the other postpositions were
left intact while splitting from and normalizing the
nouns and pronouns.

These changes in stem forms contribute to the
sparsity in data; hence, to reduce this sparsity, we

construct for each input segment an input lattice
that allows the decoder to use the split or original
forms of all nouns or pronouns, as well as allowing
it to keep or delete the case marker ne.

4.3 Transliteration

We used the 12,000 Hindi–English transliteration
pairs from the ACL 2012 NEWS workshop on
transliteration to train a linear-chained CRF tag-
ger1 that labels each character in the Hindi token
with a sequence of zero or more English characters
(Ammar et al., 2012). At decoding, unseen Hindi
tokens are fed to the transliterator, which produces
the 100 most probable transliterations. We add
a synthetic translation option for each candidate
transliteration.

In addition to this sophisticated transliteration
scheme, we also employ a rule-based translitera-
tor that specifically targets acronyms. In Hindi,
many acronyms are spelled out phonetically, such
as NSA being rendered as enese (en.es.e). We
detected such words in the input segments and
generated synthetic translation options both with
and without periods (e.g. N.S.A. and NSA).

4.4 Synthetic Handling of Function Words

In different language pairs, individual source
words may have many different possible trans-
lations, e.g., when the target language word has
many different morphological inflections or is sur-
rounded by different function words that have no
direct counterpart in the source language. There-
fore, when very large quantities of parallel data
are not available, we can expect our phrasal inven-
tory to be incomplete. Synthetic translation option
generation seeks to fill these gaps using secondary
generation processes that exploit existing phrase
pairs to produce plausible phrase translation alter-
natives that are not directly extractable from the
training data (Tsvetkov et al., 2013; Chahuneau et
al., 2013).

To generate synthetic phrases, we first remove
function words from the source and target sides
of existing non-gappy phrase pairs. We manually
constructed English and Hindi lists of common
function words, including articles, auxiliaries, pro-
nouns, and adpositions. We then employ the
SRILM hidden-ngram utility (Stolcke, 2002) to re-
store missing function words according to an n-
gram language model probability, and add the re-
sulting synthetic phrases to our phrase table.

1https://github.com/wammar/transliterator
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4.5 Paraphrase-Based Synthetic Phrases
We used a graph-based method to obtain transla-
tion distributions for source phrases that are not
present in the phrase table extracted from the par-
allel corpus. Monolingual data is used to construct
separate similarity graphs over phrases (word se-
quences or n-grams), using distributional features
extracted from the corpora. The source similar-
ity graph consists of phrase nodes representing se-
quences of words in the source language. In our
instance, we restricted the phrases to bigrams, and
the bigrams come from both the phrase table (the
labeled phrases) and from the evaluation set but
not present in the phrase table (unlabeled phrases).

The labels for these source phrases, namely the
target phrasal inventory, can also be represented
in a graph form, where the distributional features
can also be computed from the target monolingual
data. Translation information is then propagated
from the labeled phrases to the unlabeled phrases
in the source graph, proportional to how similar
the phrases are to each other on the source side,
as well as how similar the translation candidates
are to each other on the target side. The newly
acquired translation distributions for the unlabeled
phrases are written out to a secondary phrase table.
For more information, see Saluja et al. (2014).

5 German–English Specific
Improvements

Our German–English system also had its own
suite of tricks, including the use of “pseudo-
references” and special handling of morphologi-
cally inflected OOVs.

5.1 Pseudo-References
The development sets provided have only a sin-
gle reference, which is known to be sub-optimal
for tuning of discriminative models. As such,
we use the output of one or more of last year’s
top performing systems as pseudo-references dur-
ing tuning. We experimented with using just one
pseudo-reference, taken from last year’s Spanish–
English winner (Durrani et al., 2013), and with
using four pseudo-references, including the out-
put of last year’s winning Czech–English, French–
English, and Russian–English systems (Pino et al.,
2013).

5.2 Morphological OOVs
Examination of the output of our baseline sys-
tems lead us to conclude that the majority of our

system’s OOVs were due to morphologically in-
flected nouns in the input data, particularly those
in genitive case. As such, for each OOV in the
input, we attempt to remove the German genitive
case marker -s or -es. We then run the resulting
form f through our baseline translator to obtain a
translation e of the lemma. Finally, we add two
translation rules to our translation table: f → e,
and f → e’s.

6 Results

As we added each feature to our systems, we
first ran a one-off experiment comparing our base-
line system with and without each individual fea-
ture. The results of that set of experiments are
shown in Table 1 for Hindi–English and Table 2
for German–English. Features marked with a *
were not included in our final system submission.

The most surprising result is the strength of
our Hindi–English baseline system. With no extra
bells or whistles, it is already half a BLEU point
ahead of the second best system submitted to this
shared task. We believe this is due to our filter-
ing of the tuning set, which allowed our system to
generate translations more similar in length to the
final test set.

Another interesting result is that only one fea-
ture set, namely our rule shape features based on
Brown clusters, helped on the test set in both lan-
guage pairs. No feature hurt the BLEU score on
the test set in both language pairs, meaning the
majority of features helped in one language and
hurt in the other.

If we compare results on the tuning sets, how-
ever, some clearer patterns arise. Brown cluster
language models, n-gram features, and our new
rule shape features all helped.

Furthermore, there were a few features, such as
the Brown cluster language model and tuning to
Meteor (Denkowski and Lavie, 2011), that helped
substantially in one language pair while just barely
hurting the other. In particular, the fact that tuning
to Meteor instead of BLEU can actually help both
BLEU and Meteor scores was rather unexpected.

7 German–English Syntax System

In addition to our primary German–English sys-
tem, we also submitted a contrastive German–
English system showcasing our group’s tree-to-
tree syntax-based translation formalism.
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Test (2014) Dev Test (2012)
System BLEU Met TER BLEU Met TER
Baseline 15.7 25.3 68.0 11.4 22.9 70.3
*Meteor Tuning 15.2 25.8 71.3 12.8 23.7 71.3
Sentence Boundaries 15.2 25.4 69.1 12.1 23.4 70.0
Double Aligners 16.1 25.5 66.6 11.9 23.1 69.2
Manual Number Rules 15.7 25.4 68.5 11.6 23.0 70.3
Brown Cluster LM 15.6 25.1 67.3 11.5 22.7 69.8
*Source LM 14.2 25.1 72.1 11.3 23.0 72.3
N-Gram Features 15.6 25.2 67.9 12.2 23.2 69.2
Src N-Gram Features 15.3 25.2 68.9 12.0 23.4 69.5
Src Path Features 15.8 25.6 68.8 11.9 23.3 70.4
Brown Rule Shape 15.9 25.4 67.2 11.8 22.9 69.6
Lattice Input 15.2 25.8 71.3 11.4 22.9 70.3
CRF Transliterator 15.7 25.7 69.4 12.1 23.5 70.1
Acronym Translit. 15.8 25.8 68.8 12.4 23.4 70.2
Synth. Func. Words 15.7 25.3 67.8 11.4 22.8 70.4
Source Paraphrases 15.6 25.2 67.7 11.5 22.7 69.9
Final Submission 16.7

Table 1: BLEU, Meteor, and TER results for one-off experiments conducted on the primary Hiero Hindi–
English system. Each line is the baseline plus that one feature, non-cumulatively. Lines marked with a *
were not included in our final WMT submission.

Test (2014) Dev Test (2012)
System BLEU Met TER BLEU Met TER
Baseline 25.3 30.4 52.6 26.2 31.3 53.6
*Meteor Tuning 26.2 31.3 53.1 26.9 32.2 54.4
Sentence Boundaries 25.4 30.5 52.2 26.1 31.4 53.3
Double Aligners 25.2 30.4 52.5 26.0 31.3 53.6
Manual Number Rules 25.3 30.3 52.5 26.1 31.4 53.4
Brown Cluster LM 26.4 31.0 51.9 27.0 31.8 53.2
*Source LM 25.8 30.6 52.4 26.4 31.5 53.4
N-Gram Features 25.4 30.4 52.6 26.7 31.6 53.0
Src N-Gram Features 25.3 30.5 52.5 26.2 31.5 53.4
Src Path Features 25.0 30.1 52.6 26.0 31.2 53.3
Brown Rule Shape 25.5 30.5 52.4 26.3 31.5 53.2
One Pseudo Ref 25.5 30.4 52.6 34.4 32.7 49.3
*Four Psuedo Refs 22.6 29.2 52.6 49.8 35.0 46.1
OOV Morphology 25.5 30.5 52.4 26.3 31.5 53.3
Final Submission 27.1

Table 2: BLEU, Meteor, and TER results for one-off experiments conducted on the primary Hiero
German–English system. Each line is the baseline plus that one feature, non-cumulatively.

Dev (2013) Dev Test (2012)
System BLEU Met TER BLEU Met TER
Baseline 20.98 29.81 58.47 18.65 28.72 61.80
+ Label coarsening 23.07 30.71 56.46 20.43 29.34 60.16
+ Meteor tuning 23.48 30.90 56.18 20.96 29.60 59.87
+ Brown LM + Lattice + Synthetic 24.46 31.41 56.66 21.50 30.28 60.51
+ Span limit 15 24.20 31.25 55.48 21.75 29.97 59.18
+ Pseudo-references 24.55 31.30 56.22 22.10 30.12 59.73

Table 3: BLEU, Meteor, and TER results for experiments conducted in the tree-to-tree German–English
system. The system in the bottom line was submitted to WMT as a contrastive entry.

7.1 Basic System Construction

Since all training data for the tree-to-tree system
must be parsed in addition to being word-aligned,
we prepared separate copies of the training, tun-
ing, and testing data that are more suitable for in-
put into constituency parsing. Importantly, we left

the data in its original mixed-case format. We used
the Stanford tokenizer to replicate Penn Treebank
tokenization on the English side. On the German
side, we developed new in-house normalization
and tokenization script.

We filtered tokenized training sentences by sen-
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tence length, token length, and sentence length ra-
tio. The final corpus for parsing and word align-
ment contained 3,897,805 lines, or approximately
86 percent of the total training resources released
under the WMT constrained track. Word align-
ment was carried out using FastAlign (Dyer et
al., 2013), while for parsing we used the Berke-
ley parser (Petrov et al., 2006).

Given the parsed and aligned corpus, we ex-
tracted synchronous context-free grammar rules
using the method of Hanneman et al. (2011).

In addition to aligning subtrees that natively ex-
ist in the input trees, our grammar extractor also
introduces “virtual nodes.” These are new and
possibly overlapping constituents that subdivide
regions of flat structure by combining two adja-
cent sibling nodes into a single nonterminal for
the purposes of rule extraction. Virtual nodes
are similar in spirit to the “A+B” extended cate-
gories of SAMT (Zollmann and Venugopal, 2006),
and their nonterminal labels are constructed in the
same way, but with the added restriction that they
do not violate any existing syntactic structure in
the parse tree.

7.2 Improvements

Nonterminals in our tree-to-tree grammar are
made up of pairs of symbols: one from the source
side and one from the target side. With virtual
nodes included, this led to an initial German–
English grammar containing 153,219 distinct non-
terminals — a far larger set than is used in SAMT,
tree-to-string, string-to-tree, or Hiero systems. To
combat the sparsity introduce by this large nonter-
minal set, we coarsened the label set with an ag-
glomerative label-clustering technique(Hanneman
and Lavie, 2011; Hanneman and Lavie, 2013).
The stopping point was somewhat arbitrarily cho-
sen to be a grammar of 916 labels.

Table 3 shows a significant improvement in
translation quality due to coarsening the label set:
approximately +1.8 BLEU, +0.6 Meteor, and –1.6
TER on our dev test set, newtest2012.2

In the MERT runs, however, we noticed that the
length of the MT output can be highly variable,
ranging on the tuning set from a low of 92.8% of
the reference length to a high of 99.1% in another.
We were able to limit this instability by tuning to
Meteor instead of BLEU. Aside from a modest

2We follow the advice of Clark et al. (2011) and eval-
uate our tree-to-tree experiments over multiple independent
MERT runs. All scores in Table 3 are averages of two or
three runs, depending on the row.

score improvement, we note that the variability in
length ratio is reduced from 6.3% to 2.8%.

Specific difficulties of the German–English lan-
guage pair led to three additional system compo-
nents to try to combat them.

First, we introduced a second language model
trained on Brown clusters instead of surface forms.

Next we attempted to overcome the sparsity
of German input by making use of cdec’s lattice
input functionality introduce compound-split ver-
sions of dev and test sentences.

Finally, we attempted to improve our grammar’s
coverage of new German words by introducing
synthetic rules for otherwise out-of-vocabulary
items. Each token in a test sentence that the gram-
mar cannot translate generates a synthetic rule al-
lowing the token to be translated as itself. The left-
hand-side label is decided heuristically: a (coars-
ened) “noun” label if the German OOV starts with
a capital letter, a “number” label if the OOV con-
tains only digits and select punctuation characters,
an “adjective” label if the OOV otherwise starts
with a lowercase letter or a number, or a “symbol”
label for anything left over.

The effect of all three of these improvements
combined is shown in the fourth row of Table 3.

By default our previous experiments were per-
formed with a span limit of 12 tokens. Increasing
this limit to 15 has a mixed effect on metric scores,
as shown in the fifth row of Table 3. Since two out
of three metrics report improvement, we left the
longer span limit in effect in our final system.

Our final improvement was to augment our tun-
ing set with the same set of pseudo-references
as our Hiero systems. We found that using one
pseudo-reference versus four pseudo-references
had negligible effect on the (single-reference) tun-
ing scores, but four produced a better improve-
ment on the test set.

The best MERT run of this final system (bottom
line of Table 3) was submitted to the WMT 2014
evaluation as a contrastive entry.
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Abstract

We describe Stanford’s participation in
the French-English and English-German
tracks of the 2014 Workshop on Statisti-
cal Machine Translation (WMT). Our sys-
tems used large feature sets, word classes,
and an optional unconstrained language
model. Among constrained systems, ours
performed the best according to uncased
BLEU: 36.0% for French-English and
20.9% for English-German.

1 Introduction
Phrasal (Green et al., 2014b) is a phrase-based ma-
chine translation system (Och and Ney, 2004) with
an online, adaptive tuning algorithm (Green et al.,
2013c) which allows efficient tuning of feature-
rich translation models. We improved upon the
basic Phrasal system with sparse features over word
classes, class-based language models, and a web-
scale language model.
We submitted one constrained French-English

(Fr-En) system, one unconstrained English-German
(En-De) system with a huge language model, and
one constrained English-German system without it.
Each system was built using over 100,000 features
and was tuned on over 10,000 sentences. This paper
describes our submitted systems and discusses how
the improvements affect translation quality.

2 Data Preparation & Post-Processing
We used all relevant data allowed by the con-
strained condition, with the exception of HindEn-
Corp and Wiki Headlines, which we deemed too
noisy. Specifically, our parallel data consists of the
Europarl version 7 (Koehn, 2005), parallel Com-
monCrawl (Smith et al., 2013), French-English UN,
Giga-FrEn, and News Commentary corpora pro-
vided by the evaluation. For monolingual data, we

∗These authors contributed equally.

Sentences Tokens

En-De 4.5M 222M
Fr-En 36.3M 2.1B

Table 1: Gross parallel corpus statistics after pre-
processing.

Constrained LM Unconstrained LM

German 1.7B 38.9 B
English 7.2B -

Table 2: Number of tokens in pre-processed mono-
lingual corpora used to estimate the language mod-
els. We split the constrained English data into two
models: 3.7 billion tokens from Gigaword and 3.5
billion tokens from all other sources.

used the provided news crawl data from all years,
English Gigaword version 5 (Parker et al., 2011),
and target sides of the parallel data. This includes
English from the Yandex, CzEng, and parallel Com-
monCrawl corpora. For parallel CommonCrawl,
we concatenated the English halves for various lan-
guage pairs and then deduplicated at the sentence
level.
In addition, our unconstrained English-German

system used German text extracted from the en-
tire 2012, 2013, and winter 2013 CommonCrawl1
corpora by Buck et al. (2014).
Tables 1 and 2 show the sizes of the pre-

processed corpora of parallel text and monolingual
text from which our systems were built.

2.1 Pre-Processing
We used Stanford CoreNLP to tokenize the English
and German data according to the Penn Treebank
standard (Marcus et al., 1993). The French source
data was tokenized similarly to the French Treebank

1http://commoncrawl.org
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(Abeillé et al., 2003) using the Stanford French
tokenizer (Green et al., 2013b).
We also lowercased the data and removed any

control characters. Further, we filtered out all lines
that consisted mainly of punctuation marks, re-
moved characters that are frequently used as bullet
points and standardized white spaces and newlines.
We additionally filtered out sentences longer than
100 tokens from the parallel corpora in order to
speed up model learning.

2.2 Alignment
For both systems, we used the Berkeley Aligner
(Liang et al., 2006) with default settings to align
the parallel data. We symmetrized the alignments
using the grow-diag heuristic.

2.3 Language Models
Our systems used up to three language models.

2.3.1 Constrained Language Models
For En-De, we used lmplz (Heafield et al., 2013)
to estimate a 5-gram language model on all WMT
German monolingual data and the German side of
the parallel Common Crawl corpus. To query the
model, we used KenLM (Heafield, 2011).

For the Fr-En system, we also estimated a 5-gram
language model from all the monolingual English
data and the English side of the parallel Common
Crawl, UN, Giga-FrEn, CzEng and Yandex corpora
using the same procedure as above. Additionally,
we estimated a second language model from the
English Gigaword corpus.
All of these language models used interpolated

modified Kneser-Ney smoothing (Kneser and Ney,
1995; Chen and Goodman, 1998).

2.3.2 Unconstrained Language Model
Our unconstrained En-De submission used an ad-
ditional language model trained on German web
text gathered by the Common Crawl Foundation
and processed by Buck et al. (2014). This cor-
pus was formed from the 2012, 2013, and winter
2013 CommonCrawl releases, which consist of web
pages converted to UTF-8 encoding with HTML
stripped. Applying the Compact Language Detec-
tor 2,2 2.89% of the data was identified as German,
amounting to 1 TB of uncompressed text. After
splitting sentences with the Europarl sentence split-
ter (Koehn, 2005), the text was deduplicated at the
sentence level to reduce the impact of boilerplate

2https://code.google.com/p/cld2/

Order 1 2 3 4 5

Count 226 1,916 6,883 13,292 17,576

Table 3: Number of unique n-grams, in millions,
appearing in the Common Crawl German language
model.

and pages that appeared in multiple crawls, discard-
ing 78% of the data. We treated the resulting data
as normal text, pre-processing it as described in
Section 2.1 to yield 38.9 billion tokens. We built
an unpruned interpolated modified Kneser-Ney lan-
guage model with this corpus (Table 3) and added
it as an additional feature alongside the constrained
language models. At 38.9 billion tokens after dedu-
plication, this monolingual data is almost 23 times
as large as the rest of the German monolingual cor-
pus. Since the test data was also collected from the
web, we cannot be sure that the test sentences were
not in the language model. However, substantial
portions of the test set are translations from other
languages, which were not posted online until after
2013.

2.3.3 Word-Class Language Model
We also built a word-class language model for the
En-De system. We trained 512 word classes on
the constrained German data using the predictive
one-sided class model of Whittaker and Woodland
(2001) with the parallelized clustering algorithm of
Uszkoreit and Brants (2008) by Green et al. (2014a).
All tokens were mapped to their word class; infre-
quent tokens appearing fewer than 5 times were
mapped to a special cluster for unknown tokens.
Finally, we estimated a 7-gram language model on
the mapped corpus with SRILM (Stolcke, 2002)
using Witten-Bell smoothing (Bell et al., 1990).

2.4 Tuning and Test Data
For development, we tuned our systems on all
13,573 sentences contained in the newstest2008-
2012 data sets and tested on the 3,000 sentences of
the newstest2013 data set. The final system weights
were chosen among all tuning iterations using per-
formance on the newstest2013 data set.

2.5 Post-Processing
Our post-processor recases and detokenizes sys-
tem output. For the English-German system, we
combined both tasks by using a Conditional Ran-
dom Field (CRF) model (Lafferty et al., 2001) to
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learn transformations between the raw output char-
acters and the post-processed versions. For each
test dataset, we trained a separate model on 500,000
sentences selected using the Feature Decay Algo-
rithm for bitext selection (Biçici and Yuret, 2011).
Features used include the character type of the cur-
rent and surrounding characters, the token type of
the current and surrounding tokens, and the position
of the character within its token.

The English output was recased using a language
model based recaser (Lita et al., 2003). The lan-
guage model was trained on the English side of the
Fr-En parallel data using lmplz.

3 Translation System
We built our translation systems using Phrasal.

3.1 Features
Our translation model has 19 dense features that
were computed for all translation hypotheses: the
nine Moses (Koehn et al., 2007) baseline features,
the eight hierarchical lexicalized reordering model
features by Galley and Manning (2008), the log
count of each rule, and an indicator for unique rules.
On top of that, the model uses the following addi-
tional features of Green et al. (2014a).

Rule indicator features: An indicator feature for
each translation rule. To combat overfitting, this
feature fires only for rules that occur more than
50 times in the parallel data. Additional indicator
features were constructed by mapping the words in
each rule to their corresponding word classes.

Target unigram class: An indicator feature for
the class of each target word.

Alignments: An indicator feature for each align-
ment in a translation rule, including multi-word
alignments. Again, class-based translation rules
were used to extract additional indicator features.

Source class deletion: An indicator feature for
the class of each unaligned source word in a trans-
lation rule.

Punctuation count ratio: The ratio of target
punctuation tokens to source punctuation tokens
for each derivation.

Functionword ratio: The ratio of target function
words to source functionwords. The functionwords
for each language are the 35 most frequent words
on each side of the parallel data. Numbers and
punctuation marks are not included in this list.

Target-class bigram boundary: An indicator
feature for the concatenation of the word class of
the rightmost word in the left rule and the word
class of the leftmost word in the right rule in each
adjacent rule pair in a derivation.

Length features: Indicator features for the length
of the source side and for the length of the target
side of the translation rule and an indicator feature
for the concatenation of the two lengths.

Rule orientation features: An indicator feature
for each translation rule combined with its orienta-
tion class (monotone, swap, or discontinuous). This
feature also fires only for rules that occur more than
50 times in the parallel data. Again, class-based
translation rules were used to extract additional fea-
tures.

Signed linear distortion: The signed linear dis-
tortion δ for two rules a and b is δ = r(a)−l(b)+1,
where r(x) is the rightmost source index of rule x
and l(x) is the leftmost source index of rule x. Each
adjacent rule pair in a derivation has an indicator
feature for the signed linear distortion of this pair.

Many of these features consider word classes
instead of the actual tokens. For the target side, we
used the same word classes as we used to train the
class-based language model. For the source side,
we trained word classes on all available data using
the same method.

3.2 Tuning
We used an online, adaptive tuning algorithm
(Green et al., 2013c) to learn the feature weights.
The loss function is an online variant of expected
BLEU (Green et al., 2014a). As a sentence-level
metric, we used the extended BLEU+1 metric that
smooths the unigram precision as well as the refer-
ence length (Nakov et al., 2012). For feature selec-
tion, we used L1 regularization. Each tuning epoch
produces a different set of weights; we tried all of
them on newstest2013, which was held out from the
tuning set, then picked the weights that produced
the best uncased BLEU score.

3.3 System Parameters
We started off with the parameters of our systems
for the WMT 2013 Translation Task (Green et
al., 2013a) and optimized the L1-regularization
strength. Both systems used the following tuning
parameters: a 200-best list, a learning rate of 0.02
and a mini-batch size of 20. The En-De system
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Track Stanford Best Rank

En-De constrained 19.9 20.1 3
En-De unconstrained 20.0 20.6 5
Fr-En constrained 34.5 35.0 3

(a) cased BLEU (%)

Track Stanford Best Rank

En-De constrained 20.7 20.7 1
En-De unconstrained 20.9 21.0 3
Fr-En constrained 36.0 36.0 1

(b) uncased BLEU (%)

Table 4: Official results in terms of cased and uncased BLEU of our submitted systems compared to the
best systems for each track. The ranks for the unconstrained system are calculated relative to all primary
submissions for the language pair, whereas the ranks for the constrained systems are relative to only the
constrained systems submitted.

used a phrase length limit of 8, a distortion limit of
6 and a L1-regularization strength of 0.0002. The
Fr-En system used a phrase length limit of 9, a dis-
tortion limit of 5 and a L1-regularization strength
of 0.0001.

During tuning, we set the stack size for cube prun-
ing to Phrasal’s default value of 1200. To decode
the test set, we increased the stack size to 3000.

4 Results

Table 4 shows the official results of our systems
compared to other submissions to the WMT shared
task. Both our En-De and Fr-En systems achieved
the highest uncased BLEU scores among all con-
strained submissions. However, our recaser evi-
dently performed quite poorly compared to other
systems, so our constrained systems ranked third by
cased BLEU score. Our unconstrained En-De sub-
mission ranked third among all systems by uncased
BLEU and fifth by cased BLEU.
To demonstrate the effectiveness of the individ-

ual improvements, we show results for four differ-
ent En-De systems: (1) A baseline that contains
only the 19 dense features, (2) a feature-rich trans-
lation system with the additional rich features, (3)
a feature-rich translation system with an additional
word class LM, and (4) a feature-rich translation
system with an additional wordclass LM and a huge
language model. For Fr-En we only built systems
(1)-(3). Results for all systems can be seen in Table
5 and Table 6. From these results, we can see that
both language pairs benefitted from adding rich fea-
tures (+0.4 BLEU for En-De and +0.5 BLEU for
Fr-En). However, we only see improvements from
the class-based language model in the case of the
En-De system (+0.4 BLEU). For this reason our Fr-
En submission did not use a class-based language
model. Using additional data in the form of a huge
language model further improved our En-De sys-

tem by almost 1% BLEU on the newstest2013 data
set. However, we only saw 0.2 BLEU improvement
on the newstest2014 data set.

4.1 Analysis
Gains from rich features are in line with the gains
we saw in the WMT 2013 translation task (Green
et al., 2013a). We suspect that rich features would
improve the translation quality a lot more if we had
several reference translations to tune on.
The word class language model seemed to im-

prove only translations in our En-De system while
it had no effect on BLEU in our Fr-En system. One
of the main reasons seems to be that the 7-gram
word class language model helped particularly with
long range reordering, which happens far more fre-
quently in the En-De language pair compared to the
Fr-En pair. For example, in the following transla-
tion, we can see that the system with the class-based
language model successfully translated the verb in
the second clause (set in italic) while the system
without the class-based language model did not
translate the verb.

Source: It became clear to me that this is my path.

Feature-rich: Es wurde mir klar, dass das mein
Weg.

Word class LM: Es wurde mir klar, dass das mein
Weg ist.

We can also see that the long range of the word
class language model improved grammaticality as
shown in the following example:

Source: Meanwhile, more than 40 percent of the
population are HIV positive.

Feature-rich: Inzwischen sind mehr als 40
Prozent der Bevölkerung sind HIV positiv.
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#iterations tune 2013 2013 cased 2014 2014 cased

Dense 8 16.9 19.6 18.7 20.0 19.2
Feature-rich 10 20.1 20.0 19.0 20.0 19.2
+ Word class LM 15 21.1 20.4 19.5 20.7 19.9
+ Huge LM 9 21.0 21.3 20.3 20.9 20.1

Table 5: En-De BLEU results. The tuning set is newstest2008–2012. Scores on newstest2014 were
computed after the system submission deadline using the released references.

#iterations tune 2013 2013 cased 2014 2014 cased

Dense 1 29.1 32.0 30.4 35.6 34.0
Feature-rich 12 37.2 32.5 30.9 36.0 34.5
+ Word class LM 14 35.7 32.3 30.7 – –

Table 6: Fr-En BLEU results. The tuning set is newstest2008–2012. Scores on newstest2014 were
computed after the system submission deadline using the released references.

Word class LM: Unterdessen mehr als 40 Prozent
der Bevölkerung sind HIV positiv.

In this example, the system without the class-
based language model translated the verb twice. In
the second translation, the class-based language
model prevented this long range disagreement. An
analysis of the differences in the translation output
of our Fr-En systems showed that the word class
languagemodelmainly led to different word choices
but does not seem to help grammatically.

4.2 Casing

Our system performed comparatively poorly at cas-
ing, as shown in Table 4. In analysis after the eval-
uation, we found many of these errors related to
words with internal capitals, such as “McCaskill”,
because the limited recaser we used, which is based
on a language model, considered only all lowercase,
an initial capital, or all uppercase words. We ad-
dressed this issue by allowing any casing seen in the
monolingual data. Some words were not seen at all
in the monolingual data but, since the target side of
the parallel data was included in monolingual data,
these words must have come from the source sen-
tence. In such situations, we preserved the word’s
original case. Table 7 shows the results with the re-
vised casing model. We gained about 0.24% BLEU
for German recasing and 0.15% BLEU for English
recasing over our submitted systems. In future work,
we plan to compare with a truecased system.

En-De Fr-En

Uncased Oracle 20.71 36.05
Conditional Random Field 19.85 –

Limited Recaser 19.82 34.51
Revised Recaser 20.09 34.66

Table 7: Casing results on newstest2014 performed
after the evaluation. The oracle scores are uncased
BLEU (%) while all other scores are cased. Sub-
mitted systems are shown in italic.

5 Negative Results

We experimented with several additions that did not
make it into the final submissions.

5.1 Preordering
One of the key challenges when translating from
English to German is the long-range reordering of
verbs. For this reason, we implemented a depen-
dency tree based reordering system (Lerner and
Petrov, 2013). We parsed all source side sentences
using the Stanford Dependency Parser (De Marn-
effe et al., 2006) and trained the preordering system
on the entire bitext. Then we preordered the source
side of the bitext and the tuning and development
data sets using our preordering system, realigned
the bitext and tuned a machine translation system
using the preordered data. While preordering im-
proved verb reordering in many cases, many other
parts of the sentences were often also reordered
which led to an overall decrease in translation qual-

154



ity. Therefore, we concluded that this systemwill re-
quire further development before it is useful within
our translation system.

5.2 Minimum Bayes Risk Decoding
We further attempted to improve our output by re-
ordering the best 1000 translations for each sentence
using Minimum Bayes Risk decoding (Kumar and
Byrne, 2004) with BLEU as the distance measure.
This in effect increases the score of candidates that
are “closer” to the other likely translations, where
“closeness” is measured by the BLEU score for the
candidate when the other translations are used as the
reference. Choosing the best translation following
this reordering improved overall performance when
tuned on the first half of the newstest2013 test set by
only 0.03 BLEU points for the English-German sys-
tem and 0.005 BLEU points for the French-English
system, so we abandoned this approach.

6 Conclusion

We submitted three systems: one constrained Fr-En
system, one constrained En-De system, and one un-
constrained En-De system. Among all constrained
systems, ours performed the best according to un-
cased BLEU. The key differentiating components
of our systems are class-based features, word class
language models, and a huge web-scale language
model. In ongoing work, we are investigating pre-
ordering for En-De translation as well as improved
recasing.
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Abstract

This paper describes the statistical ma-
chine translation (SMT) systems devel-
oped at RWTH Aachen University for the
German→English translation task of the
ACL 2014 Eighth Workshop on Statisti-
cal Machine Translation (WMT 2014).
Both hierarchical and phrase-based SMT
systems are applied employing hierarchi-
cal phrase reordering and word class lan-
guage models. For the phrase-based sys-
tem, we run discriminative phrase training.
In addition, we describe our preprocessing
pipeline for German→English.

1 Introduction

For the WMT 2014 shared translation task1

RWTH utilized state-of-the-art phrase-based and
hierarchical translation systems. First, we describe
our preprocessing pipeline for the language pair
German→English in Section 2. Furthermore, we
utilize morpho-syntactic analysis to preprocess the
data (Section 2.3). In Section 3, we give a survey
of the employed systems and the basic methods
they implement. More details are given about the
discriminative phrase training (Section 3.4) and
the hierarchical reordering model for hierarchical
machine translation (Section 3.5). Experimental
results are discussed in Section 4.

2 Preprocessing

In this section we will describe the modification of
our preprocessing pipeline compared to our 2013
WMT German→English setup.

2.1 Categorization
We put some effort in building better categories for
digits and written numbers. All written numbers

1http://www.statmt.org/wmt14/
translation-task.html

were categorized. In 2013 they were just handled
as normal words which leads to a higher number of
out-of-vocabulary words. For German→English,
in most cases for numbers like ’3,000’ or ’2.34’
the decimal mark ’,’ and the thousands separator
’.’ has to be inverted. As the training data and also
the test sets contain several errors for numbers in
the source as well as in the target part, we put more
effort into producing correct English numbers.

2.2 Remove Foreign Languages

The WMT German→English corpus contains
some bilingual sentence pairs with non-German
source or/and non-English target sentences. For
this WMT translation task, we filtered all non-
matching language pairs (in terms of source lan-
guage German and target language English) from
our bilingual training set.

First, we filtered languages which contain non-
ascii characters. For example Chinese, Arabic or
Russian can be easily filtered when deleting sen-
tences which contain more than 70 percent non-
ascii words. The first examples of Table 1 was
filtered due to the fact, that the source sentence
contains too many non-ascii characters.

In a second step, we filtered European lan-
guages containing ascii characters. We used the
WMT monolingual corpora in Czech, French,
Spanish, English and German to filter these lan-
guages from our bilingual data. We could both
delete a sentence pair if it contains a wrong source
language or a wrong target language. That is the
reason why we even search for English sentences
in the source part and for German sentences in
the target part. For each language, we built a
word count of all words in the monolingual data
for each language separately. We removed punc-
tuation which are no indicator of a language. In
our experiments, we only considered words with
frequency higher than 20 (e.g. to ignore names).
Given the word frequency, we removed a bilingual
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Table 1: Examples of sentences removed in preprocessing.

Example
remove non-ascii symbols 高效的技以抵消影响 .

zum Bericht Añoveros Trı́as de Bes
remove wrong languages from target Honni soit qui mal y pense !

as you yourself have said : travailler plus pour gagner plus
remove wrong languages from source je déclare interrompue la session du Parlement européen .

Quelle der Tabelle : “ what Does the European Union do ? ”

sentence pair from our training data if more than
70 percent of the words had a higher count in a
different language then the one we expected. In
Table 1 some example sentences, which were re-
moved, are illustrated.

In Table 2 the amount of sentences and the cor-
responding vocabulary sizes of partial and totally
cleaned data sets are given. Further we provide the
number of out-of-vocabulary words (OOVs) for
newstest2012. The vocabulary size could be re-
duced by ∼130k words for both source and target
side of our bilingual training data while the OOV
rate kept the same. Our experiments showed, that
the translation quality is the same with or with-
out removing wrong sentences. Nevertheless, we
reduced the training data size and also the vocabu-
lary size without any degradation in terms of trans-
lation quality.

2.3 Morpho-syntactic Analysis

In order to reduce the source vocabulary size for
the German→English translation further, the Ger-
man text is preprocessed by splitting German com-
pound words with the frequency-based method de-
scribed in (Koehn and Knight, 2003). To reduce
translation complexity, we employ the long-range
part-of-speech based reordering rules proposed by
Popović and Ney (2006).

3 Translation Systems

In this evaluation, we employ phrase-based trans-
lation and hierarchical phrase-based translation.
Both approaches are implemented in Jane (Vilar et
al., 2012; Wuebker et al., 2012), a statistical ma-
chine translation toolkit which has been developed
at RWTH Aachen University and is freely avail-
able for non-commercial use.2 In the newest inter-
nal version, we use the KenLM Language Model
Interface provided by (Heafield, 2011) for both de-
coders.

2http://www.hltpr.rwth-aachen.de/jane/

3.1 Phrase-based System

In the phrase-based decoder (source cardinality
synchronous search, SCSS, Wuebker et al. (2012)),
we use the standard set of models with phrase
translation probabilities and lexical smoothing in
both directions, word and phrase penalty, distance-
based distortion model, an n-gram target language
model and three binary count features. Additional
models used in this evaluation are the hierarchical
reordering model (HRM) (Galley and Manning,
2008) and a word class language model (wcLM)
(Wuebker et al., 2013). The parameter weights
are optimized with minimum error rate training
(MERT) (Och, 2003). The optimization criterion
is BLEU (Papineni et al., 2002).

3.2 Hierarchical Phrase-based System

In hierarchical phrase-based translation (Chiang,
2007), a weighted synchronous context-free gram-
mar is induced from parallel text. In addition to
contiguous lexical phrases, hierarchical phrases
with up to two gaps are extracted. The search is
carried out with a parsing-based procedure. The
standard models integrated into our Jane hierar-
chical systems (Vilar et al., 2010; Huck et al.,
2012) are: Phrase translation probabilities and lex-
ical smoothing probabilities in both translation di-
rections, word and phrase penalty, binary features
marking hierarchical phrases, glue rule, and rules
with non-terminals at the boundaries, three binary
count features, and an n-gram language model.
We utilize the cube pruning algorithm for decod-
ing (Huck et al., 2013a) and optimize the model
weights with MERT. The optimization criterion is
BLEU.

3.3 Other Tools and Techniques

We employ GIZA++ (Och and Ney, 2003) to train
word alignments. The two trained alignments
are heuristically merged to obtain a symmetrized
word alignment for phrase extraction. All lan-
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Table 2: Corpus statistics after each filtering step and compound splitting.

Vocabulary OOVs
Sentences German English newstest2012

Preprocessing 2013 4.19M 1.43M 784K 1019
Preprocessing 2014 4.19M 1.42M 773K 1018

+ remove non-ascii symbols 4.17M 1.36M 713K 1021
+ remove wrong languages from target 4.15M 1.34M 675K 1027

+ remove wrong languages from source 4.08M 1.30M 655K 1039
+ compound splitting 4.08M 652K 655K 441

guage models (LMs) are created with the SRILM
toolkit (Stolcke, 2002) or with the KenLM lan-
guage model toolkit (Heafield et al., 2013) and are
standard 4-gram LMs with interpolated modified
Kneser-Ney smoothing (Kneser and Ney, 1995;
Chen and Goodman, 1998). We evaluate in true-
case with BLEU and TER (Snover et al., 2006).

3.4 Discriminative Phrase Training

In our baseline translation systems the phrase ta-
bles are created by a heuristic extraction from
word alignments and the probabilities are esti-
mated as relative frequencies, which is still the
state-of-the-art for many standard SMT systems.
Here, we applied a more sophisticated discrimi-
native phrase training method for the WMT 2014
German→English task. Similar to (He and Deng,
2012), a gradient-based method is used to opti-
mize a maximum expected BLEU objective, for
which we define BLEU on the sentence level with
smoothed 3-gram and 4-gram precisions. To that
end, the training data is decoded to generate 100-
best lists. We apply a leave-one-out heuristic
(Wuebker et al., 2010) to make better use of the
training data. Using these n-best lists, we itera-
tively perform updates on the phrasal translation
scores of the phrase table. After each iteration,
we run MERT, evaluate on the development set
and select the best performing iteration. In this
work, we perform two rounds of discriminative
training on two separate data sets. In the first
round, training is performed on the concatenation
of newstest2008 through newstest2010 and an au-
tomatic selection from the News-commentary, Eu-
roparl and Common Crawl corpora. The selec-
tion is based on cross-entropy difference of lan-
guage models and IBM-1 models as described by
Mansour et al. (2011) and contains 258K sentence
pairs. The training took 4.5 hours for 30 iterations.
On top of the final phrase-based systems, a second

round of discriminative training is run on the full
news-commentary corpus concatenated with new-
stest2008 through newstest2010.

3.5 A Phrase Orientation Model for
Hierarchical Machine Translation

In Huck et al. (2013b) a lexicalized reorder-
ing model for hierarchical phrase-based machine
translation was introduced. The model scores
monotone, swap, and discontinuous phrase ori-
entations in the manner of the one presented by
(Tillmann, 2004). Since improvements were re-
ported on a Chinese→English translation task, we
investigate the impact of this model on a European
language pair. As in German the word order is
more flexible compared with the target language
English, we expect that an additional reordering
model could improve the translation quality. In
our experiments we use the same settings which
worked best in (Huck et al., 2013b).

4 Setup

We trained the phrase-based and the hierarchical
translation system on all available bilingual train-
ing data. Corpus statistics can be found in the
last row of Table 2. The language model are
4-grams trained on the respective target side of
the bilingual data, 1

2 of the Shuffled News Crawl
corpus, 1

4 of the 109 French-English corpus and
1
2 of the LDC Gigaword Fifth Edition corpus.
The monolingual data selection is based on cross-
entropy difference as described in (Moore and
Lewis, 2010). For the baseline language model,
we trained separate models for each corpus, which
were then interpolated. For our final experiments,
we also trained a single unpruned language model
on the concatenation of all monolingual data with
KenLM.
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Table 3: Results (truecase) for the German→English translation task. BLEU and TER are given in
percentage. All HPBT setups are tuned on the concatenation of newstest2012 and newstest2013. The
very first SCSS setups are optimized on newstest2012 only.

newstest2011 newstest2012 newstest2013
BLEU TER BLEU TER BLEU TER

SCSS +HRM 22.4 60.1 23.7 59.0 25.9 55.7
+wcLM 22.8 59.6 24.0 58.6 26.3 55.4

+1st round discr. 23.0 59.5 24.2 58.2 26.8 55.1
+tune11+12. 23.4 59.5 24.2 58.6 26.8 55.2

+unprunedLM 23.6 59.5 24.2 58.6 27.1 55.0
+2nd round discr. 23.7 59.5 24.4 58.5 27.2 55.0

HPBT baseline 23.3 59.9 24.2 58.9 26.7 55.6
+wcLM 23.4 59.8 24.1 58.9 26.8 55.6
+HRM 23.3 60.0 24.2 58.9 26.9 55.5
+HRM +wcLM 23.3 59.9 24.1 59.1 26.7 55.9

4.1 Experimental Results

The results of the phrase-based system (SCSS)
as well as the hierarchical phrase-based system
(HPBT) are summarized in Table 3.

The phrase-based baseline system, which in-
cludes the hierarchical reordering model by (Gal-
ley and Manning, 2008) and is tuned on new-
stest2012, reaches a performance of 25.9% BLEU

on newstest2013. Adding the word class language
model improves performance by 0.4% BLEU ab-
solute and the first round of discriminative phrase
training by 0.5% BLEU absolute. Next, we
switched to tuning on a concatenation of new-
stest2011 and newstest2012, which we expect to
be more reliable with respect to unseen data. Al-
though the BLEU score does not improve and TER

goes up slightly, we kept this tuning set in the sub-
sequent setups, as it yielded longer translations,
which in our experience will usually be preferred
by human evaluators. Switching from the inter-
polated language model to the unpruned language
model trained with KenLM on the full concate-
nated monolingual training data in a single pass
gained us another 0.3% BLEU. For the final sys-
tem, we ran a second round of discriminative train-
ing on different training data (cf. Section 3.4),
which increased performance by 0.1% BLEU to
the final score 27.2.

For the phrase-based system, we also exper-
imented with weighted phrase extraction (Man-
sour and Ney, 2012), but did not observe improve-
ments.

The hierarchical phrase-based baseline without

any additional model is on the same level as the
phrase-based system including the word class lan-
guage model, hierarchical reordering model and
discriminative phrase training in terms of BLEU.
However, extending the system with a word class
language model or the additional reordering mod-
els does not seem to help. Even the combination
of both models does not improve the translation
quality. Note, that the hierarchical system was
tuned on the concatenation newstest2011 and new-
stest2012. The final system employs both word
class language model and hierarchical reordering
model.

Both phrase-based and hierarchical phrase-
based final systems are used in the EU-Bridge sys-
tem combination (Freitag et al., 2014).

5 Conclusion

For the participation in the WMT 2014 shared
translation task, RWTH experimented with both
phrase-based and hierarchical translation systems.
For both approaches, we applied a hierarchical
phrase reordering model and a word class lan-
guage model. For the phrase-based system we em-
ployed discriminative phrase training. Addition-
ally, improvements of our preprocessing pipeline
compared to our WMT 2013 setup were described.
New introduced categories lead to a lower amount
of out-of-vocabulary words. Filtering the corpus
for wrong languages gives us lower vocabulary
sizes for source and target without loosing any per-
formance.

160



Acknowledgments

The research leading to these results has partially
received funding from the European Union Sev-
enth Framework Programme (FP7/2007-2013) un-
der grant agreement no 287658.

Furthermore, this material is partially based
upon work supported by the DARPA BOLT
project under Contract No. HR0011- 12-C-0015.
Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of
the authors and do not necessarily reflect the views
of DARPA.

References
Stanley F. Chen and Joshua Goodman. 1998. An

Empirical Study of Smoothing Techniques for Lan-
guage Modeling. Technical Report TR-10-98, Com-
puter Science Group, Harvard University, Cam-
bridge, Massachusetts, USA, August.

David Chiang. 2007. Hierarchical Phrase-Based
Translation. Computational Linguistics, 33(2):201–
228.

Markus Freitag, Stephan Peitz, Joern Wuebker, Her-
mann Ney, Matthias Huck, Rico Sennrich, Nadir
Durrani, Maria Nadejde, Philip Williams, Philipp
Koehn, Teresa Herrmann, Eunah Cho, and Alex
Waibel. 2014. EU-BRIDGE MT: Combined Ma-
chine Translation. In Proceedings of the ACL 2014
Ninth Workshop on Statistical Machine Translation,
Baltimore, MD, USA, June.

Michel Galley and Christopher D. Manning. 2008. A
Simple and Effective Hierarchical Phrase Reorder-
ing Model. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 847–855, Honolulu, Hawaii, USA,
October.

Xiaodong He and Li Deng. 2012. Maximum Expected
BLEU Training of Phrase and Lexicon Translation
Models. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 292–301, Jeju, Republic of Korea, Jul.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690–696,
Sofia, Bulgaria, August.

Kenneth Heafield. 2011. KenLM: faster and smaller
language model queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation, pages 187–197, Edinburgh, Scot-
land, United Kingdom, July.

Matthias Huck, Jan-Thorsten Peter, Markus Freitag,
Stephan Peitz, and Hermann Ney. 2012. Hierar-
chical Phrase-Based Translation with Jane 2. The
Prague Bulletin of Mathematical Linguistics, 98:37–
50, October.

Matthias Huck, David Vilar, Markus Freitag, and Her-
mann Ney. 2013a. A Performance Study of
Cube Pruning for Large-Scale Hierarchical Machine
Translation. In Proceedings of the NAACL 7th Work-
shop on Syntax, Semantics and Structure in Statis-
tical Translation, pages 29–38, Atlanta, Georgia,
USA, June.

Matthias Huck, Joern Wuebker, Felix Rietig, and Her-
mann Ney. 2013b. A phrase orientation model
for hierarchical machine translation. In ACL 2013
Eighth Workshop on Statistical Machine Transla-
tion, pages 452–463, Sofia, Bulgaria, August.

Reinhard Kneser and Hermann Ney. 1995. Im-
proved Backing-Off for M-gram Language Model-
ing. In Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing, vol-
ume 1, pages 181–184, May.

Philipp Koehn and Kevin Knight. 2003. Empirical
Methods for Compound Splitting. In Proceedings of
European Chapter of the ACL (EACL 2009), pages
187–194.

Saab Mansour and Hermann Ney. 2012. A Simple and
Effective Weighted Phrase Extraction for Machine
Translation Adaptation. In Proceedings of the Inter-
national Workshop on Spoken Language Translation
(IWSLT), pages 193–200, Hong Kong, December.

Saab Mansour, Joern Wuebker, and Hermann Ney.
2011. Combining Translation and Language Model
Scoring for Domain-Specific Data Filtering. In Pro-
ceedings of the International Workshop on Spoken
Language Translation (IWSLT), pages 222–229, San
Francisco, California, USA, December.

Robert C. Moore and William Lewis. 2010. Intelligent
Selection of Language Model Training Data. In ACL
(Short Papers), pages 220–224, Uppsala, Sweden,
July.

Franz Josef Och and Hermann Ney. 2003. A System-
atic Comparison of Various Statistical Alignment
Models. Computational Linguistics, 29(1):19–51,
March.

Franz Josef Och. 2003. Minimum Error Rate Training
in Statistical Machine Translation. In Proc. of the
41th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 160–167, Sapporo,
Japan, July.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Proceed-
ings of the 41st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA, July.

161
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Abstract

We present the IMS-TTT submission to
WMT14, an experimental statistical tree-
to-tree machine translation system based
on the multi-bottom up tree transducer in-
cluding rule extraction, tuning and decod-
ing. Thanks to input parse forests and
a “no pruning” strategy during decoding,
the obtained translations are competitive.
The drawbacks are a restricted coverage
of 70% on test data, in part due to ex-
act input parse tree matching, and a rela-
tively high runtime. Advantages include
easy redecoding with a different weight
vector, since the full translation forests can
be stored after the first decoding pass.

1 Introduction

In this contribution, we present an implementation
of a translation model that is based on `MBOT
(the multi bottom-up tree transducer of Arnold and
Dauchet (1982) and Lilin (1978)). Intuitively, an
MBOT is a synchronous tree sequence substitution
grammar (STSSG, Zhang et al. (2008a); Zhang et
al. (2008b); Sun et al. (2009)) that has discon-
tiguities only on the target side (Maletti, 2011).
From an algorithmic point of view, this makes the
MBOT more appealing than STSSG as demon-
strated by Maletti (2010). Formally, MBOT is
expressive enough to express all sensible trans-
lations (Maletti, 2012)1. Figure 2 displays sam-
ple rules of the MBOT variant, called `MBOT,

∗This work was supported by Deutsche Forschungsge-
meinschaft grants Models of Morphosyntax for Statistical
Machine Translation (Phase 2) and MA/4959/1–1.

1A translation is sensible if it is of linear size increase
and can be computed by some (potentially copying) top-down
tree transducer.

that we use (in a graphical representation of the
trees and the alignment). Recently, a shallow ver-
sion of MBOT has been integrated into the popular
Moses toolkit (Braune et al., 2013). Our imple-
mentation is exact in the sense that it does abso-
lutely no pruning during decoding and thus pre-
serves all translation candidates, while having no
mechanism to handle unknown structures. (We
added dummy rules that leave unseen lexical ma-
terial untranslated.) The coverage is thus limited,
but still considerably high. Source-side and target-
side syntax restrict the search space so that decod-
ing stays tractable. Only the language model scor-
ing is implemented as a separate reranker2. This
has several advantages: (1) We can use input parse
forests (Liu et al., 2009). (2) Not only is the out-
put optimal with regard to the theoretical model,
also the space of translation candidates can be ef-
ficiently stored as a weighted regular tree gram-
mar. The best translations can then be extracted
using the k-best algorithm by Huang and Chiang
(2005). Rule weights can be changed without the
need for explicit redecoding, the parameters of the
log-linear model can be changed, and even new
features can be added. These properties are espe-
cially helpful in tuning, where only the k-best al-
gorithm has to be re-run in each iteration. A model
in similar spirit has been described by Huang et al.
(2006); however, it used target syntax only (using
a top-down tree-to-string transducer backwards),
and was restricted to sentences of length at most
25. We do not make such restrictions.

The theoretical aspects of `MBOT and their use
in our translation model are presented in Section 2.
Based on this, we implemented a machine transla-
tion system that we are going to make available to

2Strictly speaking, this does introduce pruning into the
pipeline.
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the public. Section 4 presents the most important
components of our `MBOT implementation, and
Section 5 presents our submission to the WMT14
shared translation task.

2 Theoretical Model

In this section, we present the theoretical genera-
tive model that is used in our approach to syntax-
based machine translation: the multi bottom-up
tree transducer (Maletti, 2011). We omit the tech-
nical details and give graphical examples only to
illustrate how the device works, but refer to the lit-
erature for the theoretical background. Roughly
speaking, a local multi bottom-up tree transducer
(`MBOT) has rules that replace one nonterminal
symbol N on the source side by a tree, and a se-
quence of nonterminal symbols on the target side
linked to N by one tree each. These trees again
have linked nonterminals, thus allowing further
rule applications.

Our `MBOT rules are obtained automatically
from data like that in Figure 1. Thus, we (word)
align the bilingual text and parse it in both the
source and the target language. In this manner we
obtain sentence pairs like the one shown in Fig-
ure 1. To these sentence pairs we apply the rule
extraction method of Maletti (2011). The rules
extracted from the sentence pair of Figure 1 are
shown in Figure 2. Note the discontiguous align-
ment of went to ist and gegangen, resulting in dis-
contiguous rules.

The application of those rules is illustrated in
Figure 3 (a pre-translation is a pair consisting of a
source tree and a sequence of target trees). While
it shows a synchronous derivation, our main use
case of `MBOT rules is forward application or in-
put restriction, that is the calculation of all target
trees that can be derived given a source tree. For
a given synchronous derivation d, the source tree
generated by d is s(d), and the target tree is t(d).
The yield of a tree is the string obtained by con-
catenating its leaves.

Apart from `MBOT application to input trees,
we can even apply `MBOT to parse forests and
even weighted regular tree grammars (RTGs)
(Fülöp and Vogler, 2009). RTGs offer an ef-
ficient representation of weighted forests, which
are sets of trees such that each individual tree is
equipped with a weight. This representation is
even more efficient than packed forests (Mi et al.,
2008) and moreover can represent an infinite num-

ber of weighted trees. The most important prop-
erty that we utilize is that the output tree language
is regular, so we can represent it by an RTG (cf.
preservation of regularity (Maletti, 2011)). In-
deed, every input tree can only be transformed into
finitely many output trees by our model, so for a
given finite input forest (which the output of the
parser is) the computed output forest will also be
finite and thus regular.

3 Translation Model

Given a source language sentence e and corre-
sponding weighted parse forest F (e), our trans-
lation model aims to find the best corresponding
target language translation ĝ;3 i.e.,

ĝ = arg maxg p(g|e) .

We estimate the probability p(g|e) through a log-
linear combination of component models with pa-
rameters λm scored on the derivations d such that
the source tree of d is in the parse forest of e and
the yield of the target tree reads g. With

D(e, g) = {d | s(d) ∈ F (e) and yield(t(d)) = g},

we thus have: 4

p(g|e) ∝
∑

d∈D(e,g)

11∏
m=1

hm(d)λm

Our model uses the following features hm(·) for a
derivation:
(1) Translation weight normalized by source root

symbol
(2) Translation weight normalized by all root

symbols
(3) Translation weight normalized by leaves on

the source side
(4) Lexical translation weight source→ target
(5) Lexical translation weight target→ source
(6) Target side language model: p(g)
(7) Number of words in g
(8) Number of rules used in the derivation
(9) Number of gaps in the target side sequences
(10) Penalty for rules that have more lexical ma-

terial on the source side than on the target side
or vice versa (absolute value)

3Our main translation direction is English to German.
4While this is the clean theoretical formulation, we make

two approximations to D(e, g): (1) The parser we use returns
a pruned parse forest. (2) We only sum over derivations with
the same target sentence that actually appear in the k-best list.
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Figure 1: Aligned parsed sentences.
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Figure 2: Extracted rules.

(11) Input parse tree probability assigned to s(t)
by the parser of e

The rule weights required for (1) are relative
frequencies normalized over all extracted rules
with the same root symbol on the left-hand side. In
the same fashion the rule weights required for (2)
are relative frequencies normalized over all rules
with the same root symbols on both sides. The
lexical weights for (4) and (5) are obtained by mul-
tiplying the word translations w(gi|ej) [respec-
tively, w(ej |gi)] of lexically aligned words (gi, ej)
across (possibly discontiguous) target side se-
quences.5 Whenever a source word ej is aligned
to multiple target words, we average over the word
translations:6

h4(d)

=
∏

lexical item
e occurs in s(d)

average {w(g|e) | g aligned to e}

4 Implementation

Our implementation is very close to the theoretical
model and consists of several independent compo-

5The lexical alignments are different from the links used
to link nonterminals.

6If the word ej has no alignment to a target word, then
it is assumed to be aligned to a special NULL word and this
alignment is scored.

nents, most of which are implemented in Python.
The system does not have any dependencies other
than the need for parsers for the source and tar-
get language, a word alignment tool and option-
ally an implementation of some tuning algorithm.
A schematic depiction of the training and decod-
ing pipeline can be seen in Figure 4.

Rule extraction From a parallel corpus of
which both halves have been parsed and word
aligned, multi bottom-up tree transducer rules are
extracted according to the procedure laid out in
(Maletti, 2011). In order to handle unknown
words, we add dummy identity translation rules
for lexical material that was not present in the
training data.

Translation model building Given a set of
rules, translation weights (see above) are com-
puted for each unique rule. The translation model
is then converted into a source, a weight and a tar-
get model. The source model (an RTG represented
in an efficient binary format) is used for decod-
ing and maps input trees to trees over rule iden-
tifiers representing derivations. The weight model
and the target model can be used to reconstruct the
weight and the target realization of a given deriva-
tion.
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Composing 3 rules:

VP

VBD NP
→
(

VAFIN-HD-Sg ,
VP-OC/pp

PP-MO/V VVPP-HD

)

VBD

went
→
( VAFIN-HD-Sg

ist
,

VVPP-HD

gegangen

) NP

NN

home

→
( PP-MO/V

APPR-AC

nach

ADJD-HD-Pos/N

hause

)

Obtained pre-translation:

VP

VBD

went

NP

NN

home

→
( VAFIN-HD-Sg

ist
,

VP-OC/pp

PP-MO/V

APPR-AC

nach

ADJD-HD-Pos/N

hause

VVPP-HD

gegangen

)

Figure 3: Synchronous rule application.

Figure 4: Our machine translation system.
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Decoder The decoder transforms a forest of in-
put sentence parse trees to a forest of transla-
tion derivations by means of forward application.
These derivations are trees over the set of rules
(represented by rule identifiers). One of the most
useful aspects of our model is the fact that decod-
ing is completely independent of the weights, as
no pruning is performed and all translation candi-
dates are preserved in the translation forest. Thus,
even after decoding, the weight model can be
changed, augmented by new features, etc.; even
the target model can be changed, e.g. to support
parse tree output instead of string output. In all
of our experiments, we used string output, but it is
conceivable to use other realizations. For instance,
a syntactic language model could be used for out-
put tree scoring. Also, recasing is extremely easy
when we have part-of-speech tags to base our de-
cision on (proper names are typically uppercase,
as are all nouns in German).

Another benefit of having a packed representa-
tion of all candidates is that we can easily check
whether the reference translation is included in the
candidate set (“force decoding”). The freedom to
allow arbitrary target models that rewrite deriva-
tions is related to current work on interpreted reg-
ular tree grammars (Koller and Kuhlmann, 2011),
where arbitrary algebras can be used to compute a
realization of the output tree.

k-best extractor From the translation derivation
RTGs, a k-best list of derivations can be extracted
(Huang and Chiang, 2005) very efficiently. This
is the only step that has to be repeated if the rule
weights or the parameters of the log-linear model
change. The derivations are then mapped to tar-
get language sentences (if several derivations re-
alize the same target sentence, their weights are
summed) and reranked according to a language
model (as was done in Huang et al. (2006)). This
is the only part of the pipeline where we deviate
from the theoretical log-linear model, and this is
where we might make search errors. In principle,
one could integrate the language model by inter-
section with the translation model (as the stateful
MBOT model is closed under intersection with fi-
nite automata), but this is (currently) not computa-
tionally feasible due to the size of models.

Tuning Minimum error rate training (Och,
2003) is implemented using Z-MERT7 (Zaidan,

7http://cs.jhu.edu/˜ozaidan/zmert/

2009). A set of source sentences has to be (forest-
)parsed and decoded; the translation forests are
stored on disk. Then, in each iteration of Z-MERT,
it suffices to extract k-best lists from the transla-
tion forests according to the current weight vector.

5 WMT14 Experimental setup

We used the training data that was made avail-
able for the WMT14 shared translation task on
English–German8. It consists of three parallel cor-
pora (1.9M sentences of European parliament pro-
ceedings, 201K sentences of newswire text, and
2M sentences of web text) and additional mono-
lingual news data for language model training.

The English half of the parallel data was parsed
using Egret9 which is a re-implementation of the
Berkeley parser (Petrov et al., 2006). For the Ger-
man parse, we used the BitPar parser (Schmid,
2004; Schmid, 2006). The BitPar German gram-
mar is highly detailed, which makes the syntac-
tic information contained in the parses extremely
useful. Part-of-speech tags and category label are
augmented by case, number and gender informa-
tion, as can be seen in the German parse tree in
Figure 1. We only kept the best parse for each
sentence during training. After parsing, we pre-
pared three versions of the German corpus: a)
RAW, with no morphological post-processing; b)
UNSPLIT, using SMOR, a rule-based morpho-
logical analyser (Schmid et al., 2004), to reduce
words to their base form; c) SPLIT, using SMOR
to reduce words to their base form and split com-
pound nouns. After translation, compounds were
merged again, and words were re-inflected. Pre-
vious experiments using SMOR to lemmatise and
split compounds in phrase-based SMT showed im-
proved translation performances, see (Cap et al.,
2014a) for details.

We then trained three 5-gram language models
on monolingual data using KenLM10 (Heafield,
2011; Heafield et al., 2013 to appear) for the
three setups. For SPLIT and UNSPLIT, we were
only able to use the German side of the parallel
data, since parsing is a prerequisite for our mor-
phological post-processing and we did not have
the resources to parse more data. For RAW, we
additionally used the monolingual German data

8http://www.statmt.org/wmt14/
translation-task.html

9https://sites.google.com/site/
zhangh1982/egret

10http://kheafield.com/code/kenlm/

167



system BLEU BLEU-cased TER
RAW 17.0 16.4 .770
UNSPLIT 16.4 15.8 .773
SPLIT 16.3 15.7 .773

Table 1: BLEU and TER scores of the submitted
systems.

that was distributed for the shared task. Word
alignment for all three setups was achieved using
GIZA++11. As usual, we discarded sentence pairs
where one sentence was significantly longer than
the other, as well as those that were too long or too
short.

For tuning, we chose the WMT12 test set (3,003
sentences of newswire text), available as part
of the development data for the WMT13 shared
translation task. Since our system had limited cov-
erage on this tuning set, we limited ourselves to
the first a subset of sentences we could translate.

When translating the test set, our models used
parse trees delivered by the Egret parser. After
translation, recasing was done by examining the
output syntax tree, using a simple heuristics look-
ing for nouns and sentence boundaries. Since cov-
erage on the test set was also limited, we used the
systems as described in (Cap et al., 2014b)12 as a
fallback to translate sentences that our system was
not able to translate.

6 Results

We report the overall translation quality, as listed
on http://matrix.statmt.org/, mea-
sured using BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006), in Table 1.

We assume that the poor performance of UN-
SPLIT and SPLIT compared to RAW is due to the
fact that we use a significantly smaller language
model (as explained above) for these two settings.
A detailed analysis will follow after the end of the
manual evaluation period.

7 Conclusion and further work

We presented our submission to the WMT14
shared translation task based on a novel, promising
“full syntax, no pruning” tree-to-tree approach to
statistical machine translation, inspired by Huang

11https://code.google.com/p/giza-pp/
12We use raw as described in (Cap et al., 2014b) as a fall-

back for RAW, RI for UNSPLIT and CoRI for SPLIT.

et al. (2006). There are, however, still major draw-
backs and open problems associated with our ap-
proach. Firstly, the coverage can still be signifi-
cantly improved. In these experiments, our model
was able to translate only 70% of the test sen-
tences. To some extent, this number can be im-
proved by providing more training data. Also,
more rules can be extracted if we not only use the
best parse for rule extraction, but multiple parse
trees, or even switch to forest-based rule extrac-
tion (Mi and Huang, 2008). Finally, the size of the
input parse forest plays a role. For instance, if we
only supply the best parse to our model, transla-
tion will fail for approximately half of the input.

However, there are inherent coverage limits.
Since our model is extremely strict, it will never
be able to translate sentences whose parse trees
contain structures it has never seen before, since
it has to match at least one input parse tree ex-
actly. While we implemented a simple solution to
handle unknown words, the issue with unknown
structures is not so easy to solve without breaking
the otherwise theoretically sound approach. Pos-
sibly, glue rules can help.

The second drawback is runtime. We were
able to translate about 15 sentences per hour on
one processor. Distributing the translation task
on different machines, we were able to translate
the WMT14 test set (10k sentences) in roughly
four days. Given that the trend goes towards par-
allel programming, and considering the fact that
our decoder is written in the rather slow language
Python, we are confident that this is not a major
problem. We were able to run the whole pipeline
of training, tuning and evaluation on the WMT14
shared task data in less than one week. We are cur-
rently investigating whether A* k-best algorithms
(Pauls and Klein, 2009; Pauls et al., 2010) can help
to guide the translation process while maintaining
optimality.

Thirdly, currently the language model is not in-
tegrated, but implemented as a separate rerank-
ing component. We are aware that this might in-
troduce search errors, and that an integrated lan-
guage model might improve translation quality
(see e.g. Chiang (2007) where 3–4 BLEU points
are gained by LM integration). Some research on
this topic already exists, e.g. (Rush and Collins,
2011) who use dual decomposition, and (Aziz et
al., 2013) who replace intersection with an upper
bound which is easier to compute.
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Abstract
This paper presents the machine trans-
lation systems submitted by the Abu-
MaTran project to the WMT 2014 trans-
lation task. The language pair concerned
is English–French with a focus on French
as the target language. The French to En-
glish translation direction is also consid-
ered, based on the word alignment com-
puted in the other direction. Large lan-
guage and translation models are built us-
ing all the datasets provided by the shared
task organisers, as well as the monolin-
gual data from LDC. To build the trans-
lation models, we apply a two-step data
selection method based on bilingual cross-
entropy difference and vocabulary satura-
tion, considering each parallel corpus in-
dividually. Synthetic translation rules are
extracted from the development sets and
used to train another translation model.
We then interpolate the translation mod-
els, minimising the perplexity on the de-
velopment sets, to obtain our final SMT
system. Our submission for the English to
French translation task was ranked second
amongst nine teams and a total of twenty
submissions.

1 Introduction

This paper presents the systems submitted by the
Abu-MaTran project (runs named DCU-Prompsit-
UA) to the WMT 2014 translation task for the
English–French language pair. Phrase-based sta-
tistical machine translation (SMT) systems were
submitted, considering the two translation direc-
tions, with the focus on the English to French di-
rection. Language models (LMs) and translation

models (TMs) are trained using all the data pro-
vided by the shared task organisers, as well as
the Gigaword monolingual corpora distributed by
LDC.

To train the LMs, monolingual corpora and the
target side of the parallel corpora are first used
individually to train models. Then the individ-
ual models are interpolated according to perplex-
ity minimisation on the development sets.

To train the TMs, first a baseline is built us-
ing the News Commentary parallel corpus. Sec-
ond, each remaining parallel corpus is processed
individually using bilingual cross-entropy differ-
ence (Axelrod et al., 2011) in order to sepa-
rate pseudo in-domain and out-of-domain sen-
tence pairs, and filtering the pseudo out-of-
domain instances with the vocabulary saturation
approach (Lewis and Eetemadi, 2013). Third,
synthetic translation rules are automatically ex-
tracted from the development set and used to train
another translation model following a novel ap-
proach (Sánchez-Cartagena et al., 2014). Finally,
we interpolate the four translation models (base-
line, in-domain, filtered out-of-domain and rules)
by minimising the perplexity obtained on the de-
velopment sets and investigate the best tuning and
decoding parameters.

The reminder of this paper is organised as fol-
lows: the datasets and tools used in our experi-
ments are described in Section 2. Then, details
about the LMs and TMs are given in Section 3 and
Section 4 respectively. Finally, we evaluate the
performance of the final SMT system according to
different tuning and decoding parameters in Sec-
tion 5 before presenting conclusions in Section 6.
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2 Datasets and Tools

We use all the monolingual and parallel datasets
in English and French provided by the shared task
organisers, as well as the LDC Gigaword for the
same languages1. For each language, a true-case
model is trained using all the data, using the train-
truecaser.perl script included in the MOSES tool-
kit (Koehn et al., 2007).

Punctuation marks of all the monolingual and
parallel corpora are then normalised using the
script normalize-punctuation.perl provided by the
organisers, before being tokenised and true-cased
using the scripts distributed with the MOSES tool-
kit. The same pre-processing steps are applied to
the development and test sets. As development
sets, we used all the test sets from previous years
of WMT, from 2008 to 2013 (newstest2008-2013).

Finally, the training parallel corpora are cleaned
using the script clean-corpus-n.perl, keeping the
sentences longer than 1 word, shorter than 80
words, and with a length ratio between sentence
pairs lower than 4.2 The statistics about the cor-
pora used in our experiments after pre-processing
are presented in Table 1.

For training LMs we use KENLM (Heafield et
al., 2013) and the SRILM tool-kit (Stolcke et al.,
2011). For training TMs, we use MOSES (Koehn
et al., 2007) version 2.1 with MGIZA++ (Och and
Ney, 2003; Gao and Vogel, 2008). These tools are
used with default parameters for our experiments
except when explicitly said.

The decoder used to generate translations is
MOSES using features weights optimised with
MERT (Och, 2003). As our approach relies on
training individual TMs, one for each parallel cor-
pus, our final TM is obtained by linearly interpo-
lating the individual ones. The interpolation of
TMs is performed using the script tmcombine.py,
minimising the cross-entropy between the TM
and the concatenated development sets from 2008
to 2012 (noted newstest2008-2012), as described
in Sennrich (2012). Finally, we make use of the
findings from WMT 2013 brought by the win-
ning team (Durrani et al., 2013) and decide to use
the Operation Sequence Model (OSM), based on
minimal translation units and Markov chains over
sequences of operations, implemented in MOSES

1LDC2011T07 English Gigaword Fifth Edition,
LDC2011T10 French Gigaword Third Edition

2This ratio was empirically chosen based on words fertil-
ity between English and French.

Corpus Sentences (k) Words (M)

Monolingual Data – English
Europarl v7 2,218.2 59.9
News Commentary v8 304.2 7.4
News Shuffled 2007 3,782.5 90.2
News Shuffled 2008 12,954.5 308.1
News Shuffled 2009 14,680.0 347.0
News Shuffled 2010 6,797.2 157.8
News Shuffled 2011 15,437.7 358.1
News Shuffled 2012 14,869.7 345.5
News Shuffled 2013 21,688.4 495.2
LDC afp 7,184.9 869.5
LDC apw 8,829.4 1,426.7
LDC cna 618.4 45.7
LDC ltw 986.9 321.1
LDC nyt 5,327.7 1,723.9
LDC wpb 108.8 20.8
LDC xin 5,121.9 423.7

Monolingual Data – French
Europarl v7 2,190.6 63.5
News Commentary v8 227.0 6.5
News Shuffled 2007 119.0 2.7
News Shuffled 2008 4,718.8 110.3
News Shuffled 2009 4,366.7 105.3
News Shuffled 2010 1,846.5 44.8
News Shuffled 2011 6,030.1 146.1
News Shuffled 2012 4,114.4 100.8
News Shuffled 2013 9,256.3 220.2
LDC afp 6,793.5 784.5
LDC apw 2,525.1 271.3

Parallel Data

109 Corpus 21,327.1 549.0 (EN)
642.5 (FR)

Common Crawl 3,168.5 76.0 (EN)
82.7 (FR)

Europarl v7 1,965.5 52.5 (EN)
56.7 (FR)

News Commentary v9 181.3 4.5 (EN)
5.3 (FR)

UN 12,354.7 313.4 (EN)
356.5 (FR)

Table 1: Data statistics after pre-processing of the
monolingual and parallel corpora used in our ex-
periments.

and introduced by Durrani et al. (2011).

3 Language Models

The LMs are trained in the same way for both
languages. First, each monolingual and parallel
corpus is considered individually (except the par-
allel version of Europarl and News Commentary)
and used to train a 5-gram LM with the modified
Kneser-Ney smoothing method. We then interpo-
late the individual LMs using the script compute-
best-mix available with the SRILM tool-kit (Stol-
cke et al., 2011), based on their perplexity scores
on the concatenation of the development sets from
2008 to 2012 (the 2013 version is held-out for the
tuning of the TMs).
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The final LM for French contains all the word
sequences from 1 to 5-grams contained in the
training corpora without any pruning. However,
with the computing resources at our disposal, the
English LMs could not be interpolated without
pruning non-frequent n-grams. Thus, n-grams
with n ∈ [3; 5] with a frequency lower than 2 were
removed. Details about the final LMs are given in
Table 2.

1-gram 2-gram 3-gram 4-gram 5-gram

English 13.4 198.6 381.2 776.3 1,068.7
French 6.0 75.5 353.2 850.8 1,354.0

Table 2: Statistics, in millions of n-grams, of the
interpolated LMs.

4 Translation Models

In this Section, we describe the TMs trained for
the shared task. First, we present the two-step data
selection process which aims to (i) separate in and
out-of-domain parallel sentences and (ii) reduce
the total amount of out-of-domain data. Second,
a novel approach for the automatic extraction of
translation rules and their use to enrich the phrase
table is detailed.

4.1 Parallel Data Filtering and Vocabulary
Saturation

Amongst the parallel corpora provided by the
shared task organisers, only News Commentary
can be considered as in-domain regarding the de-
velopment and test sets. We use this training
corpus to build our baseline SMT system. The
other parallel corpora are individually filtered us-
ing bilingual cross-entropy difference (Moore and
Lewis, 2010; Axelrod et al., 2011). This data
filtering method relies on four LMs, two in the
source and two in the target language, which
aim to model particular features of in and out-of-
domain sentences.

We build the in-domain LMs using the source
and target sides of the News Commentary paral-
lel corpus. Out-of-domain LMs are trained on a
vocabulary-constrained subset of each remaining
parallel corpus individually using the SRILM tool-
kit, which leads to eight models (four in the source
language and four in the target language).3

3The subsets contain the same number of sentences and
the same vocabulary as News Commentary.

Then, for each out-of-domain parallel corpus,
we compute the bilingual cross-entropy difference
of each sentence pair as:

[Hin(Ssrc)−Hout(Ssrc)] + [Hin(Strg)−Hout(Strg)] (1)

where Ssrc and Strg are the source and the tar-
get sides of a sentence pair, Hin and Hout are
the cross-entropies of the in and out-of-domain
LMs given a sentence pair. The sentence pairs are
then ranked and the lowest-scoring ones are taken
to train the pseudo in-domain TMs. However,
the cross-entropy difference threshold required to
split a corpus in two parts (pseudo in and out-of-
domain) is usually set empirically by testing sev-
eral subset sizes of the top-ranked sentence pairs.
This method is costly in our setup as it would lead
to training and evaluating multiple SMT systems
for each of the pseudo in-domain parallel corpora.

In order to save time and computing power,
we consider only pseudo in-domain sentence pairs
those with a bilingual cross-entropy difference be-
low 0, i.e. those deemed more similar to the
in-domain LMs than to the out-of-domain LMs
(Hin < Hout). A sample of the distribution of
scores for the out-of-domain corpora is shown in
Figure 1. The resulting pseudo in-domain corpora
are used to train individual TMs, as detailed in Ta-
ble 3.
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Figure 1: Sample of ranked sentence-pairs (10k)
of each of the out-of-domain parallel corpora with
bilingual cross-entropy difference

The results obtained using the pseudo in-
domain data show BLEU (Papineni et al., 2002)
scores superior or equal to the baseline score.
Only the Europarl subset is slightly lower than
the baseline, while the subset taken from the 109

corpus reaches the highest BLEU compared to the
other systems (30.29). This is mainly due to the
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size of this subset which is ten times larger than
the one taken from Europarl. The last row of Ta-
ble 3 shows the BLEU score obtained after interpo-
lating the four pseudo in-domain translation mod-
els. This system outperforms the best pseudo in-
domain one by 0.5 absolute points.

Corpus Sentences (k) BLEUdev

Baseline 181.3 27.76

Common Crawl 208.3 27.73
Europarl 142.0 27.63
109 Corpus 1,442.4 30.29
UN 642.4 28.91

Interpolation - 30.78

Table 3: Number of sentence pairs and BLEU
scores reported by MERT on English–French new-
stest2013 for the pseudo in-domain corpora ob-
tained by filtering the out-of-domain corpora with
bilingual cross-entropy difference. The interpola-
tion of pseudo in-domain models is evaluated in
the last row.

After evaluating the pseudo in-domain parallel
data, the remaining sentence pairs for each cor-
pora are considered out-of-domain according to
our filtering approach. However, they may still
contain useful information, thus we make use of
these corpora by building individual TMs for each
corpus (in a similar way we built the pseudo in-
domain models). The total amount of remaining
data (more than 33 million sentence pairs) makes
the training process costly in terms of time and
computing power. In order to reduce these costs,
sentence pairs with a bilingual cross-entropy dif-
ference higher than 10 were filtered out, as we no-
ticed that most of the sentences above this thresh-
old contain noise (non-alphanumeric characters,
foreign languages, etc.).

We also limit the size of the remaining data by
applying the vocabulary saturation method (Lewis
and Eetemadi, 2013). For the out-of-domain sub-
set of each corpus, we traverse the sentence pairs
in the order they are ranked by perplexity differ-
ence and filter out those sentence pairs for which
we have seen already each 1-gram at least 10
times. Each out-of-domain subset from each par-
allel corpus is then used to train a TM before inter-
polating them to create the pseudo out-of-domain
TM. The results reported by MERT obtained on
the newstest2013 development set are detailed in
Table 4.

Mainly due to the sizes of the pseudo out-of-

Corpus Sentences (k) BLEUdev

Baseline 181.3 27.76

Common Crawl 1,598.7 29.84
Europarl 461.9 28.87
109 Corpus 5,153.0 30.50
UN 1,707.3 29.03

Interpolation - 31.37

Table 4: Number of sentence pairs and BLEU

scores reported by MERT on English–French
newstest2013 for the pseudo out-of-domain cor-
pora obtained by filtering the out-of-domain cor-
pora with bilingual cross-entropy difference, keep-
ing sentence pairs below an entropy score of 10
and applying vocabulary saturation. The interpo-
lation of pseudo out-of-domain models is evalu-
ated in the last row.

domain subsets, the reported BLEU scores are
higher than the baseline for the four individual
SMT systems and the interpolated one. This latter
system outperforms the baseline by 3.61 absolute
points. Compared to the results obtained with the
pseudo in-domain data, we observe a slight im-
provement of the BLEU scores using the pseudo
out-of-domain data. However, despite the com-
paratively larger sizes of the latter datasets, the
BLEU scores reached are not that higher. For in-
stance with the 109 corpus, the pseudo in and out-
of-domain subsets contain 1.4 and 5.1 million sen-
tence pairs respectively, and the two systems reach
30.3 and 30.5 BLEU. These scores indicate that
the pseudo in-domain SMT systems are more ef-
ficient on the English–French newstest2013 devel-
opment set.

4.2 Extraction of Translation Rules

A synthetic phrase-table based on shallow-transfer
MT rules and dictionaries is built as follows. First,
a set of shallow-transfer rules is inferred from the
concatenation of the newstest2008-2012 develop-
ment corpora exactly in the same way as in the
UA-Prompsit submission to this translation shared
task (Sánchez-Cartagena et al., 2014). In sum-
mary, rules are obtained from a set of bilingual
phrases extracted from the parallel corpus after
its morphological analysis and part-of-speech dis-
ambiguation with the tools in the Apertium rule-
based MT platform (Forcada et al., 2011).

The extraction algorithm commonly used in
phrase-based SMT is followed with some added
heuristics which ensure that the bilingual phrases
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extracted are compatible with the bilingual dic-
tionary. Then, many different rules are generated
from each bilingual phrase; each of them encodes
a different degree of generalisation over the partic-
ular example it has been extracted from. Finally,
the minimum set of rules which correctly repro-
duces all the bilingual phrases is found based on
integer linear programming search (Garfinkel and
Nemhauser, 1972).

Once the rules have been inferred, the phrase
table is built from them and the original rule-
based MT dictionaries, following the method
by Sánchez-Cartagena et al. (2011), which was
one of winning systems4 (together with two on-
line SMT systems) in the pairwise manual evalu-
ation of the WMT11 English–Spanish translation
task (Callison-Burch et al., 2011). This phrase-
table is then interpolated with the baseline TM and
the results are presented in Table 5. A slight im-
provement over the baseline is observed, which
motivates the use of synthetic rules in our final MT
system. This small improvement may be related
to the small coverage of the Apertium dictionar-
ies: the English–French bilingual dictionary has a
low number of entries compared to more mature
language pairs in Apertium which have around 20
times more bilingual entries.

System BLEUdev

Baseline 27.76
Baseline+Rules 28.06

Table 5: BLEU scores reported by MERT on
English–French newstest2013 for the baseline
SMT system standalone and with automatically
extracted translation rules.

5 Tuning and Decoding

We present in this Section a short selection of our
experiments, amongst 15+ different configura-
tions, conducted on the interpolation of TMs, tun-
ing and decoding parameters. We first interpolate
the four TMs: the baseline, the pseudo in and out-
of-domain, and the translation rules, minimising
the perplexity obtained on the concatenated de-
velopment sets from 2008 to 2012 (newstest2008-
2012). We investigate the use of OSM trained on
pseudo in-domain data only or using all the paral-
lel data available. Finally, we make variations of

4No other system was found statistically significantly bet-
ter using the sign test at p ≤ 0.1.

the number of n-bests used by MERT.
Results obtained on the development set new-

stest2013 are reported in Table 6. These scores
show that adding OSM to the interpolated trans-
lation models slightly degrades BLEU. However,
by increasing the number of n-bests considered by
MERT to 200-bests, the SMT system with OSM
outperforms the systems evaluated previously in
our experiments. Adding the synthetic translation
rules degrades BLEU (as indicated by the last row
in the Table), thus we decide to submit two sys-
tems to the shared task: one without and one with
synthetic rules. By submitting a system without
synthetic rules, we also ensure that our SMT sys-
tem is constrained according to the shared task
guidelines.

System BLEUdev

Baseline 27.76
+ pseudo in + pseudo out 31.93
+ OSM 31.90
+ MERT 200-best 32.21
+ Rules 32.10

Table 6: BLEU scores reported by MERT on
English–French newstest2013 development set.

As MERT is not suitable when a large number
of features are used (our system uses 19 fetures),
we switch to the Margin Infused Relaxed Algo-
rithm (MIRA) for our submitted systems (Watan-
abe et al., 2007). The development set used is
newstest2012, as we aim to select the best decod-
ing parameters according to the scores obtained
when decoding the newstest2013 corpus, after de-
truecasing and de-tokenising using the scripts dis-
tributed with MOSES. This setup allowed us to
compare our results with the participants of the
translation shared task last year. We pick the de-
coding parameters leading to the best results in
terms of BLEU and decode the official test set of
WMT14 newstest2014. The results are reported in
Table 7. Results on newstest2013 show that the de-
coding parameters investigation leads to an over-
all improvement of 0.1 BLEU absolute. The re-
sults on newstest2014 show that adding synthetic
rules did not help improving BLEU and degraded
slightly TER (Snover et al., 2006) scores.

In addition to our English→French submission,
we submitted a French→English translation. Our
French→English MT system is built on the align-
ments obtained from the English→French direc-
tion. The training processes between the two sys-
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System BLEU13A TER

newstest2013
Best tuning 31.02 60.77
cube-pruning (pop-limit 10000) 31.04 60.71
increased table-limit (100) 31.06 60.77
monotonic reordering 31.07 60.69
Best decoding 31.14 60.66

newstest2014
Best decoding 34.90 54.70
Best decoding + Rules 34.90 54.80

Table 7: Case sensitive results obtained with
our final English–French SMT system on new-
stest2013 when experimenting with different de-
coding parameters. The best parameters are kept
to translate the WMT14 test set (newstest2014)
and official results are reported in the last two
rows.

tems are identical, except for the synthetic rules
which are not extracted for the French→English
direction. Tuning and decoding parameters for
this latter translation direction are the best ones
obtained in our previous experiments on this
shared task. The case-sensitive scores obtained
for French→English on newstest2014 are 35.0
BLEU13A and 53.1 TER, which ranks us at the
fifth position for this translation direction.

6 Conclusion

We have presented the MT systems developed by
the Abu-MaTran project for the WMT14 trans-
lation shared task. We focused on the French–
English language pair and particularly on the
English→French direction. We have used a two-
step data selection process based on bilingual
cross-entropy difference and vocabulary satura-
tion, as well as a novel approach for the extraction
of synthetic translation rules and their use to en-
rich the phrase table. For the LMs and the TMs,
we rely on training individual models per corpus
before interpolating them by minimising perplex-
ity according to the development set. Finally, we
made use of the findings of WMT13 by including
an OSM model.

Our English→French translation system was
ranked second amongst nine teams and a total of
twenty submissions, while our French→English
submission was ranked fifth. As future work,
we plan to investigate the effect of adding to the
phrase table synthetic translation rules based on
larger dictionaries. We also would like to study the
link between OSM and the different decoding pa-

rameters implemented in MOSES, as we observed
inconsistent results in our experiments.
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tegrating Shallow-transfer Rules into Phrase-based
Statistical Machine Translation. In Proceedings of
MT Summit XIII, pages 562–569.

Vı́ctor M. Sánchez-Cartagena, Juan Antonio Pérez-
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Abstract

This paper describes the system jointly de-
veloped by members of the Departament
de Llenguatges i Sistemes Informàtics
at Universitat d’Alacant and the Promp-
sit Language Engineering company for
the shared translation task of the 2014
Workshop on Statistical Machine Trans-
lation. We present a phrase-based sta-
tistical machine translation system whose
phrase table is enriched with information
obtained from dictionaries and shallow-
transfer rules like those used in rule-based
machine translation. The novelty of our
approach lies in the fact that the transfer
rules used were not written by humans, but
automatically inferred from a parallel cor-
pus.

1 Introduction

This paper describes the system jointly submitted
by the Departament de Llenguatges i Sistemes In-
formàtics at Universitat d’Alacant and the Promp-
sit Language Engineering company to the shared
translation task of the ACL 2014 Ninth Workshop
on Statistical Machine Translation (WMT 2014).
We participated in the English–French translation
task with a hybrid system that combines, in a
phrase-based statistical machine translation (PB-
SMT) system, bilingual phrases obtained from par-
allel corpora in the usual way (Koehn, 2010, ch.
5), and also bilingual phrases obtained from the
existing dictionaries in the Apertium rule-based
machine translation (RBMT) platform (Forcada et
al., 2011) and a number of shallow-transfer ma-
chine translation rules automatically inferred from
a small subset of the training corpus.

Among the different approaches for adding lin-
guistic information to SMT systems (Costa-Jussà
and Farrús, 2014), we followed the path we started
with our submission to the Spanish–English WMT
2011 shared translation task (Sánchez-Cartagena

et al., 2011b) which consisted of enriching the
phrase table of a PBSMT system with phrase pairs
generated using the dictionaries and rules in the
Apertium (Forcada et al., 2011) Spanish–English
RBMT system; our approach was one of the win-
ners1 (together with two online SMT systems that
were not submitted for the task but were included
in the evaluation by the organisers and a system by
Systran) in the pairwise manual evaluation of the
English–Spanish translation task (Callison-Burch
et al., 2011). In this submission, however, we
only borrow the dictionaries from the Apertium
English–French RBMT system and use them to au-
tomatically infer the rules from a parallel corpus.
We therefore avoid the need for human-written
rules, which are usually written by trained experts,
and explore a novel way to add morphological
information to PBSMT. The rules inferred from
corpora and used to enlarge the phrase table are
shallow-transfer rules that build their output with
the help of the bilingual dictionary and work on
flat intermediate representations (see section 3.1);
no syntactic parsing is consequently required.

The rest of the paper is organised as follows.
The following section outlines related hybrid ap-
proaches. Section 3 formally defines the RBMT
paradigm and summarises the method followed
to automatically infer the shallow-transfer rules,
whereas the enrichment of the phrase table is de-
scribed in section 4. Sections 5 and 6 describe, re-
spectively, the resources we used to build our sub-
mission and the results achieved for the English–
French language pair. The paper ends with some
concluding remarks.

2 Related work

Linguistic data from RBMT systems have already
been used to enrich SMT systems (Tyers, 2009;
Schwenk et al., 2009; Eisele et al., 2008; Sánchez-
Cartagena et al., 2011a). We have already proved

1No other system was found statistically significantly bet-
ter using the sign test at p ≤ 0.10.
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that using hand-written rules and dictionaries from
RBMT yields better results than using only dictio-
naries (Sánchez-Cartagena et al., 2011a).

However, in the approach we present in this pa-
per, rules are automatically inferred from a paral-
lel corpus after converting it into the intermedi-
ate representation used by the Apertium RBMT
platform (see section 3.3). It can be therefore
seen as a novel method to add morphological in-
formation to SMT, as factored translation models
do (Koehn and Hoang, 2007; Graham and van
Genabith, 2010). Unlike factored models, we do
not estimate independent statistical models for the
translation of the different factors (lemmas, lexi-
cal categories, morphological inflection attributes,
etc.) and for the generation of the final surface
forms. Instead, we first infer a set of rules that deal
with the grammatical divergences between the lan-
guages involved by performing operations such as
reorderings, gender and number agreements, etc.
Afterwards, we add synthetic phrase pairs gener-
ated from these rules and the Apertium dictionar-
ies to the data from which the well-known, classi-
cal PBSMT models (Koehn, 2010) are estimated.
The rules in our approach operate on the source-
language (SL) morphological attributes of the in-
put words and on the target-language (TL) mor-
phological attributes of their translation according
to a bilingual dictionary. In addition, they do no
contain probabilities or scores, thus they increase
the predictability of the output and can be easily
corrected by humans. This fact also represents a
significant difference with the probabilistic rules
used by certain approaches that aim at improving
the grammaticality of the SMT output (Riezler and
Maxwell III, 2006; Bojar and Hajič, 2008).

With respect to the rule inference approach,
other approaches such as those by Sánchez-
Martı́nez and Forcada (2009) and Caseli et al.
(2006) can be found in literature; however, our ap-
proach is the first strategy for shallow-transfer rule
inference which generalises to unseen combina-
tions of morphological inflection attributes in the
training corpus (Sánchez-Cartagena et al., 2014).

3 Inferring shallow-transfer rules from
parallel corpora

3.1 Shallow-transfer rule-based machine
translation

The RBMT process can be split into three different
steps (Hutchins and Somers, 1992): (i) analysis of
the SL text to build an SL intermediate represen-

tation; (ii) transfer from that SL intermediate rep-
resentation into a TL intermediate representation;
and (iii) generation of the final translation from the
TL intermediate representation.

Shallow-transfer RBMT systems use relatively
simple intermediate representations, which are
based on lexical forms consisting of lemma, part
of speech and morphological inflection informa-
tion of the words, and apply simple shallow-
transfer rules that operate on sequences of lexical
forms: this kind of systems do not perform full
parsing. For instance, for translating the English
sentence I like Pierre’s house into French with
the Apertium shallow-transfer RBMT platform we
have used to build our submission, the following
steps are carried out. First, the sentence is anal-
ysed as the following sequence of lexical forms:

I PRN-p:1.num:sg
like VB-t:pres.p:ǫ:num:ǫ

Pierre PN
’s POS
house N-gen:ǫ.num:sg

This sequence is made up of a personal pronoun
(PRN) in first person (p:1) singular (num:sg)
with lemma I, the verb (VB) like in present tense
(t:pres), a proper noun (PN) with lemma Pierre,
the possessive ending (POS), and a noun (N) in sin-
gular with lemma house. Some morphological in-
flection attributes have an empty value ǫ because
they do not apply to the corresponding language.

Then, structural transfer rules are applied to ob-
tain the TL intermediate representation with the
help of the bilingual dictionary, which provides
the individual translation of each SL lexical form
(including its morphological information). In this
case, two rules are applied: the first one makes the
verb to agree with the personal pronoun, while the
second one translates the English possessive con-
struction into French. The resulting sequence of
TL lexical forms is:

Je PRN-p:1.num:sg
aime VB-t:pres.p:1:num:sg
le DT-gen:f.num:sg
maison N-gen:f.num:sg
de PR
Pierre PN

Note that a preposition (PR) with lemma de and a
determiner (DT) with lemma le and the same gen-
der and number as the common noun have been
added by the rule. Finally, the translation into TL
is generated from the TL lexical forms: J’aime la
maison de Pierre.
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s1 : PN s2 : POS s3 : N-gen:*.num:*

t1 : le DT-gen:$3
t.num:$3

s t2 : N-gen:$3
t.num:$3

s t3 : de PR t4 : PN

Figure 1: Shallow-transfer rule for the translation of the English Saxon genitive construction into French.

3.2 A rule formalism suitable for rule
inference

Figure 1 shows the second rule applied in the
example from the previous section encoded with
the formalism we have defined for rule infer-
ence (Sánchez-Cartagena et al., 2014). Each rule
contains a sequence of SL word classes (depicted
as the sequence of boxes at the top of the figure)
and TL word classes (the sequence of boxes be-
low them). The sequence of SL word classes de-
fines the set of sequences of lexical forms which
will match the rule. Each SL word class si defines
the conditions that must be met by the i-th lexical
form matching the rule and contains an optional
lemma (no lemma means that any SL lemma is al-
lowed), a lexical category and a set of morpholog-
ical inflection attributes and their expected values.
A wildcard (asterisk) as the value of a morpholog-
ical inflection attribute means that it matches any
possible value. Thus, the rule from the example
matches any proper noun followed by a possessive
ending and a noun, regardless of its gender and
number.

As regards the TL word classes, they contain
the same elements as the SL word classes and de-
fine the output of the rule. An empty lemma in a
TL word class means that it is obtained by looking
up in the bilingual dictionary the SL lexical form
matching the aligned SL word class (alignments
are represented as lines connecting SL and TL
word classes). The reference value $i

s means that
the value of a morphological inflection attribute is
copied from the SL lexical form matching the i-th
SL word class, while the reference value $i

t means
that the value is taken from the TL lexical form ob-
tained after looking up in the bilingual dictionary
the aforementioned SL lexical form. The rule de-
picted in Figure 1 generates a sequence of four TL
lexical forms. The first one is a determiner whose
lemma is le, its gender is obtained from the gender
of the TL lexical form resulting after looking up in
the bilingual dictionary the third matching SL lex-
ical form ($3

t ), that is, the common noun, while its

number is directly obtained from the same SL lexi-
cal form before dictionary look-up ($3

s). Although
they have not been used in this example, explicit
values can be used in the morphological inflection
attributes of the SL and TL word classes, thus re-
stricting the SL lexical forms to which the rule can
be applied to those having the values in the corre-
sponding SL word classes,2 and explicitly stating
the value that the TL lexical forms produced by
the rule will have, respectively.

3.3 Rule inference algorithm

The set of rules that will be used to generate the
phrase pairs that will be integrated into the PB-
SMT system’s phrase table, encoded with the for-
malism presented in the previous section, are ob-
tained from the parallel corpus by applying the
steps described in this section. They are a subset
of the steps followed by Sánchez-Cartagena et al.
(2014) to infer shallow-transfer rules to be used in
Apertium from small parallel corpora.

First, both sides of the parallel corpus are mor-
phologically analysed and converted into the inter-
mediate representations used by Apertium. Word
alignments are then obtained by symmetrising
(using the refined intersection method proposed
by Och and Ney (2003)) the set of alignments
provided by GIZA++ (Och and Ney, 2003) when
it is run on both translations directions. After-
wards, the bilingual phrase pairs compatible with
the alignments are extracted as it is usually done
in SMT (Koehn, 2010, Sec. 5.2.3), and those that
are not compatible with the bilingual dictionary of
the Apertium English–French RBMT system3 or

2In addition to that criterion, our formalism also permits
restricting the application of a rule to the SL lexical forms
that, after being looked up in the bilingual dictionary, the
TL lexical forms obtained from them have specific morpho-
logical inflection attribute values (Sánchez-Cartagena et al.,
2014) although no restrictions of this type are imposed in the
rule depicted in Figure 1.

3If the words that belong to open lexical categories (those
that carry the meaning of the sentence: nouns, verbs, adjec-
tives, etc.) are aligned with other words that do not match
the translation present in the bilingual dictionary, the rule in-
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contain punctuation marks or unknown words are
discarded. Finally, from each bilingual phrase pair,
all the possible rules which correctly reproduce it
—when the rule is applied to the SL side of the
phrase pair, its TL side is obtained— are gener-
ated as follows. First, a very specific rule, which
matches only the SL phrase in the bilingual phrase
pair is generated; more general rules are then cre-
ated by modifying this initial rule. The modifica-
tions to the initial rule consist of removing lem-
mas from the SL and TL word classes, introduc-
ing wildcard values in the morphological inflec-
tion attributes of the SL word classes and adding
reference values in the morphological inflection at-
tributes of the TL word classes. The result of this
process is a huge set of rules with different levels
of generalisation. Obviously, not all the rules in
this set will be used: the best ones are automati-
cally selected by considering all the rules obtained
from the different bilingual phrase pairs extracted
from the corpus and finding the minimum set of
rules that meets the following two conditions:

1. Each bilingual phrase pair is correctly repro-
duced by at least one rule.

2. If a rule matches the SL side of bilingual
phrase pair but does not correctly reproduce
its TL side, there is another rule that is more
specific (i.e. less general) than it, and cor-
rectly reproduces its TL side.

This minimisation problem is formulated as an in-
teger linear programming4 problem (Garfinkel and
Nemhauser, 1972) and solved using the branch
and cut algorithm (Xu et al., 2009).

From the small subset of the huge initial rules
obtained by solving the minimisation problem, the
rules whose effect can be achieved by combining
shorter rules or by translating all or some of the
words in isolation (i.e. word for word) are re-
moved. In this way, the number of rules is further
reduced and long rules, which are more prone to
overgeneralisation because they are inferred from
fewer bilingual phrase pairs, are discarded.5

ference algorithm is likely to infer many very specific rules
that try to correct that lexical mismatch. Since the aim of
our approach is learning general rules that deal with the
grammatical divergences between languages, the bilingual
phrases that contain the aforementioned alignments are dis-
carded. Words from closed lexical categories, that usually
suffer deeper changes when the sentence is translated to a dif-
ferent language, are not subject to this restriction.

4An integer linear programming problem involves the op-
timisation (maximisation or minimisation) of a linear objec-
tive function subject to linear inequality constraints.

5Although longer rules contain more context information,

4 Enhancing phrase-based SMT with
shallow-transfer linguistic resources

The set of shallow-transfer rules inferred from the
parallel corpus are integrated in the PBSMT sys-
tem, together with the RBMT dictionaries, using
the same method we used for our WMT 2011
shared translation task subsmission (Sánchez-
Cartagena et al., 2011b). However, it is important
to stress that, until now, this strategy had only been
tested when the rules to be integrated were hand-
written and not automatically obtained from cor-
pora.

Our strategy involves adding to the phrase ta-
ble of the PBSMT system all the bilingual phrase
pairs which either match a shallow-transfer rule or
an entry in the bilingual dictionary. Generating the
set of bilingual phrase pairs which match bilingual
dictionary entries is straightforward. First, all the
SL surface forms that are recognised by Apertium
and their corresponding lexical forms are gener-
ated. Then, these SL lexical forms are translated
using the bilingual dictionary, and finally their TL
surface forms are generated.

Bilingual phrase pairs which match structural
transfer rules are generated in a similar way. First,
the SL sentences to be translated are analysed with
Apertium to get their SL lexical forms, and then
the sequences of lexical forms that match a struc-
tural transfer rule are translated with that rule and
passed through the rest of the Apertium pipeline
in order to get their translations. If a sequence
of SL lexical forms is matched by more than one
structural transfer rule, it will be used to generate
as many bilingual phrase pairs as different rules
it matches. This differs from the way in which
Apertium translates, as it only applies the longest
rule. Note also that the test set is used to guide the
phrase extraction in order to avoid the generation
of an unmanageable set of phrase pairs.

We add these bilingual phrase pairs directly to
the phrase table, rather than adding them to the
training corpus and relying on the phrase extrac-
tion algorithm (Koehn, 2010, sec. 5.2.3), in order
to avoid splitting the multi-word expressions pro-
vided by Apertium into smaller phrases (Schwenk
et al., 2009, sec. 2). The bilingual phrase pairs
are added only once to the list of corpus-extracted
phrase pairs, and then the phrase translation prob-
abilities are computed by relative frequency as
usual (Koehn, 2010, sec. 5.2.5). A boolean feature

for our rule inferring algorithm there are fewer bilingual
phrases from which to infer them, and consequently fewer
evidence from which to extract the right reference attributes.
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function to flag bilingual phrase pairs obtained
from the RBMT resources is added to the phrase
table in order to conveniently weight the synthetic
RBMT phrase pairs.

5 System training

We built a baseline PBSMT Moses (Koehn et
al., 2007) system6 from a subset of the paral-
lel corpora distributed as part of the WMT 2014
shared translation task, namely Europarl (Koehn,
2005), News Commentary and Common Crawl,
and a subset of the French monolingual corpora,
namely Common Crawl, Europarl, News Com-
mentary and News Crawl. The language model
was built with the KenLM language modelling
toolkit (Heafield et al., 2013), which was used
to train a 5-gram language model using inter-
polated Kneser-Ney discounting (Goodman and
Chen, 1998). Word alignments were computed
by means of GIZA++ (Och and Ney, 2003). The
weights of the different feature functions were op-
timised by means of minimum error rate train-
ing (Och, 2003) on the 2013 WMT test set.7

The phrase table of this baseline system was
then enriched with phrase pairs generated from
rules automatically inferred from the concatena-
tion of the test corpora distributed for the WMT
2008–2012 shared translation tasks, and from the
English–French bilingual dictionary in the Aper-
tium platform.8 Since the minimisation problem
which needs to be solved in order to obtain the
rules is very time-consuming, we chose a small
rule inference corpus similar to this year’s test set.
The bilingual dictionary, which contains mappings
between SL and TL lemmas, consists of 13 088 en-
tries and is quite small compared to the Spanish–
English bilingual dictionary we used in our sub-
mission to WMT 2011 (Sánchez-Cartagena et al.,
2011b), which consisted of 326 228 bilingual en-
tries. This is because the English–French Aper-
tium linguistic resources were automatically built
by crossing data from other existing language
pairs.

Table 1 summarises the data about the corpora
used to build our submission, both for the PBSMT
baseline system and for the rules used to enrich its
phrase table.

The corpus used to automatically infer the rules

6No factored models were used.
7The corpora can be downloaded from http://www.

statmt.org/wmt14/translation-task.html.
8https://svn.code.sf.net/p/apertium/

svn/incubator/apertium-en-fr

Task Corpus Sentences

Translation model

Europarl 2 007 723
News Commentary 183 251
Common Crawl 3 244 152
Total 5 435 126
Total clean 4 196 987

Language model

Common Crawl 3 244 152
Europarl 2 190 579
News Commentary 227 013
News Crawl 30 451 749
Total 36 113 493

Rule inference newstest 2008–2012 13 071
Tuning newstest2013 3 000
Test newstest2014 3 003

Table 1: Size of the corpora used in the experi-
ments. The bilingual training corpora was cleaned
up to remove empty parallel sentences and those
containing more than 40 tokens.

was split into two parts: the larger one (4/5 of
the corpus) was used for actual rule inference as
described in section 3.3; the remaining corpus
was used as a development corpus as explained
next. For each rule z, first the proportion r(z) of
bilingual phrase pairs correctly reproduced by the
rule divided by the number of bilingual phrases
it matches is computed. Rules whose proportion
r(z) is lower than a threshold value δ are then
discarded before solving the minimisation prob-
lem. The value of δ is chosen so that it maximises,
on the development corpus, the BLEU score (Pap-
ineni et al., 2002) obtained by an Apertium-based
system which uses the inferred rules; in our sub-
mission δ = 0.15. In addition, rules that do not
correctly reproduce at least 100 bilingual phrase
pairs were also discarded in order to make the min-
imisation problem computationally feasible.

6 Results and discussion

Table 2 reports the translation performance as
measured by BLEU (Papineni et al., 2002),
TER (Snover et al., 2006) and METEOR (Baner-
jee and Lavie, 2005) achieved by the baseline PB-
SMT, our submission (UA-Prompsit), Apertium
when it uses the set of inferred rules, and Aper-
tium when it uses no rules at all (word-for-word
translation). The size of the phrase table and the
amount of unknown words in the test set are also
reported when applicable.

According to the three evaluation metrics, the
translation performance of our submission is very
close to that of the PBSMT baseline (slightly bet-
ter according to BLEU and TER, and slightly
worse according to METEOR). The difference be-
tween both systems computed by paired bootstrap
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system BLEU TER METEOR # of unknown words phrase table size
baseline 0.3232 0.5807 0.5441 870 100 530 734
UA-Prompsit 0.3258 0.5781 0.5432 861 100 585 182
Apertium-rules 0.0995 0.7767 0.3168 4 743 -
Apertium-word-for-word 0.0631 0.8368 0.2617 4 743 -

Table 2: Case-insensitive BLEU, TER, and METEOR scores obtained, on the newstest2014 test set, by
the baseline PBSMT system (baseline), the hybrid system submitted to the WMT 2014 shared translation
task (UA-Prompsit), Apertium when it uses the set of inferred rules (Apertium-rules), and Apertium
when it uses no rules at all (Apertium-word-for-word). The number of unknown words and the size of
the phrase table are also reported when applicable.

resampling (Koehn, 2004) is not statistically sig-
nificant for any of the three evaluation metrics
(1 000 iterations, p = 0.05).

An inspection of the 86 rules inferred shows
that they encode some of the transformations that
one would expect from a set of English–French
rules, such as gender and number agreements be-
tween nouns, determiners and adjectives, prepo-
sition changes, and the introduction of the aux-
iliary verb avoir for the past tense. In addition,
the improvement over word-for-word translation
achieved when they are used by Apertium is statis-
tically significant for the three evaluation metrics.

One of the reasons for not improving the base-
line PBMT system might be the small coverage
of the Apertium dictionaries. As already men-
tioned in the previous section, the English–French
bilingual dictionary has a low number of entries
compared to more mature language pairs in Aper-
tium which have around 20 times more bilingual
entries. Table 1 shows some effects of such a
small dictionary: the number of unknown words
for the Apertium-based system is really high, and
with regards to UA-Prompsit, its coverage barely
increases when compared to the PBSMT baseline.
We plan to test the approach presented in this paper
with language pairs for which more mature dictio-
naries are available in the Apertium project.

In addition to this, due to the tight schedule, we
had to remove the rules not reproducing at least
100 bilingual phrase pairs in order to solve the min-
imisation problem in a short amount of time. This
has clearly reduced the amount of rules inferred
and prevented some useful information present in
the parallel corpus from being incorporated in the
form of rules. For instance, no rule matching a
sequence longer than 3 lexical forms has been ex-
tracted (long bilingual phrases are less frequent
than short ones). Future research directions for
alleviating this problem include setting the mini-
mum number of reproduced bilingual phrases in-
dependently for each sequence of SL lexical cate-

gories (Sánchez-Cartagena et al., 2014).

7 Concluding remarks

We have presented the MT system submitted
jointly by the Departament de Llenguatges i Sis-
temes Informàtics at Universitat d’Alacant and
Prompsit Language Engineering to the WMT
2014 shared translation task. We developed a
hybrid system for the English–French language
pair which enriches the phrase table of a stan-
dard PBSMT system with phrase pairs generated
from the Apertium RBMT dictionaries and a set of
shallow-transfer rules automatically inferred from
a parallel corpus, also with the help of the dic-
tionaries. This submission aims at solving one
strong limitation of a previous submission of our
team (Sánchez-Cartagena et al., 2011b): the need
for a hand-crafted set of shallow-transfer rules,
which can only be written by people with a deep
knowledge of the languages involved. Our ap-
proach outperforms a standard PBSMT system
built from the same data by a small, non statisti-
cally significant margin, according to two of the
three evaluation metrics used. The low coverage
of the dictionaries used and the aggressive pruning
carried out when solving the minimisation prob-
lem needed to infer the rules are probably the rea-
sons behind such a small improvement over the
baseline.
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Abstract

This paper describes the AFRL sta-
tistical MT system and the improve-
ments that were developed during the
WMT14 evaluation campaign. As part
of these efforts we experimented with
a number of extensions to the stan-
dard phrase-based model that improve
performance on Russian to English
and Hindi to English translation tasks.
In addition, we describe our efforts
to make use of monolingual English
speakers to correct the output of ma-
chine translation, and present the re-
sults of monolingual postediting of the
entire 3003 sentences of the WMT14
Russian-English test set.

1 Introduction

As part of the 2014 Workshop on Machine
Translation (WMT14) shared translation task,
the human language technology team at the
Air Force Research Laboratory participated
in two language pairs: Russian-English and
Hindi-English. Our machine translation sys-
tem represents enhancements to our system
from IWSLT 2013 (Kazi et al., 2013). In this
paper, we focus on enhancements to our pro-
cedures with regard to data processing and the
handling of unknown words.

In addition, we describe our efforts to make
use of monolingual English speakers to correct
the output of machine translation, and present
the results of monolingual postediting of the
entire 3003 sentences of the WMT14 Russian-
English test set. Using a binary adequacy clas-
sification, we evaluate the entire postedited

†This work is sponsored by the Air Force Research
Laboratory under Air Force contract FA-8650-09-D-
6939-029.

test set for correctness against the reference
translations. Using bilingual judges, we fur-
ther evaluate a substantial subset of the post-
edited test set using a more fine-grained ade-
quacy metric; using this metric, we show that
monolingual posteditors can successfully pro-
duce postedited translations that convey all or
most of the meaning of the original source sen-
tence in up to 87.8% of sentences.

2 System Description

We submitted systems for the Russian-to-
English and Hindi-to-English MT shared
tasks. In all submitted systems, we use the
phrase-based moses decoder (Koehn et al.,
2007). We used only the constrained data sup-
plied by the evaluation for each language pair
for training our systems.

2.1 Data Preparation
Before training our systems, a cleaning pass
was performed on all data. Unicode charac-
ters in the unallocated and private use ranges
were all removed, along with C0 and C1 con-
trol characters, zero-width and non-breaking
spaces and joiners, directionality and para-
graph markers.

2.1.1 Hindi Processing
The HindEnCorp corpus (Bojar et al., 2014)
is distributed in tokenized form; in order to
ensure a uniform tokenization standard across
all of our data, we began by detokenized this
data using the Moses detokenization scripts.
In addition to normalizing various extended
Latin punctuation marks to their Basic Latin
equivalents, following Bojar et al. (2010) we
normalized Devanagari Danda (U+0964),
Double Danda (U+0965), and Abbrevia-
tion Sign (U+0970) punctuation marks to
Latin Full Stop (U+002E), any Devana-
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gari Digit to the equivalent ASCII Digit,
and decomposed all Hindi data into Unicode
Normalization Form D (Davis and Whistler,
2013) using charlint.1 In addition, we per-
formed Hindi diacritic and vowel normaliza-
tion, following Larkey et al. (2003).

Since no Hindi-English development test
set was provided in WMT14, we randomly
sampled 1500 sentence pairs from the Hindi-
English parallel training data to serve this pur-
pose. Upon discovering duplicate sentences in
the corpus, 552 sentences that overlapped with
the training portion were removed from the
sample, leaving a development test set of 948
sentences.

2.1.2 Russian Processing
The Russian sentences contained many exam-
ples of mixed-character spelling, in which both
Latin and Cyrillic characters are used in a sin-
gle word, relying on the visual similarity of the
characters. For example, although the first
letter and last letter in the word cейчас ap-
pear visually indistinguishable, we find that
the former is U+0063 Latin Small Letter
C and the latter is U+0441 Cyrillic Small
Letter Es. We created a spelling normal-
ization program to convert these words to all
Cyrillic or all Latin characters, with a pref-
erence for all-Cyrillic conversion if possible.
Normalization also removes U+0301 Combin-
ing Acute Accent ( ̲́) and converts U+00F2
Latin Small Letter O with Grave (ò)
and U+00F3 Latin Small Letter O with
Acute (ó) to the unaccented U+043E Cyril-
lic Small Letter O (о).

The Russian-English Common Crawl par-
allel corpus (Smith et al., 2013) is relatively
noisy. A number of Russian source sentences
are incorrectly encoded using characters in the
Latin-1 supplement block; we correct these
sentences by shifting these characters ahead
by 350hex code points into the correct Cyrillic
character range.2

We examine the Common Crawl parallel
sentences and mark for removal any non-
Russian source sentences and non-English tar-
get sentences. Target sentences were marked
as non-English if more than half of the charac-

1http://www.w3.org/International/charlint
2For example: “Ñïðàâêà ïî ãîðîäàì Ðîññèè è ìèðà.”

becomes “Справка по городам России и мира.”

ters in the sentence were non-Latin, or if more
than half of the words were unknown to the
aspell English spelling correction program,
not counting short words, which frequently
occur as (possibly false) cognates across lan-
guages (English die vs. German die, English
on vs. French on, for example). Because
aspell does not recognize some proper names,
brand names, and borrowed words as known
English words, this method incorrectly flags
for removal some English sentences which have
a high proportion of these types of words.

Source sentences were marked as non-
Russian if less than one-third of the charac-
ters were within the Russian Cyrillic range, or
if non-Russian characters equal or outnumber
Russian characters and the sentence contains
no contiguous sequence of at least three Rus-
sian characters. Some portions of the Cyrillic
character set are not used in typical Russian
text; source sentences were therefore marked
for removal if they contained Cyrillic exten-
sion characters Ukrainian I (і І), Yi(ї Ї),
Ghe With Upturn (ґ Ґ) or Ie (є Є) in ei-
ther upper- or lowercase, with exceptions for
U+0406 Ukrainian I (І) in Roman numerals
and for U+0491 Ghe With Upturn (ґ) when
it occurred as an encoding error artifact.3

Sentence pairs where the source was identi-
fied as non-Russian or the target was identified
as non-English were removed from the parallel
corpus. Overall, 12% of the parallel sentences
were excluded based on a non-Russian source
sentence (94k instances) or a non-English tar-
get sentence (11.8k instances).

Our Russian-English parallel training data
includes a parallel corpus extracted from
Wikipedia headlines (Ammar et al., 2013),
provided as part of the WMT14 shared trans-
lation task. Two files in this parallel cor-
pus (wiki.ru-en and guessed-names.ru-en)
contained some overlapping data. We re-
moved 6415 duplicate lines within wiki.ru-en
(about 1.4%), and removed 94 lines of
guessed-names.ru-en that were already
present in wiki.ru-en (about 0.17%).

3Specifically, we allowed lines containing ґ where it
appears as an encoding error in place of an apostro-
phe within English words. For example: “Песня The
Kelly Family Iґm So Happy представлена вам Lyrics-
Keeper.”
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2.2 Machine Translation
Our baseline system is a variant of the MIT-
LL/AFRL IWSLT 2013 system (Kazi et al.,
2013) with some modifications to the training
and decoding processes.

2.2.1 Phrase Table Training
For our Russian-English system, we trained
a phrase table using the Moses Experiment
Management System (Koehn, 2010b), with
mgiza (Gao and Vogel, 2008) as the word
aligner; this phrase table was trained using the
Russian-English Common Crawl, News Com-
mentary, Yandex (Bojar et al., 2013), and
Wikipedia headlines parallel corpora.

The phrase table for our Hindi-English sys-
tem was trained using a similar in-house train-
ing pipeline, making use of the HindEnCorp
and Wikipedia headlines parallel corpora.

2.2.2 Language Model Training
During the training process we built n-gram
language models (LMs) for use in decoding
and rescoring using the KenLM language mod-
elling toolkit (Heafield et al., 2013). Class-
based language models (Brown et al., 1992)
were also trained, for later use in n-best list
rescoring, using the SRILM language mod-
elling toolkit (Stolcke, 2002).We trained a 6-
gram language model from the LDC English
Gigaword Fifth Edition, for use in both the
Hindi-English and Russian-English systems.
All language models were binarized in order
to reduce model disk usage and loading time.

For the Russian-to-English task, we concate-
nated the English portion of the parallel train-
ing data for the WMT 2014 shared transla-
tion task (Common Crawl, News Commen-
tary, Wiki Headlines and Yandex corpora) in
addition to the shared task English monolin-
gual training data (Europarl, News Commen-
tary and News Crawl corpora) into a training
set for a large 6-gram language model using
KenLM. We denote this model as “BigLM”. In-
dividual 6-gram models were also constructed
from each respective corpus.

For the Hindi-to-English task, individual 6-
gram models were constructed from the re-
spective English portions of the HindEnCorp
and Wikipedia headlines parallel corpora, and
from the monolingual English sections of the
Europarl and News Crawl corpora.

Decoding Features
P(f | e)
P(e | f)

Pw(f | e)
Pw(e | f)

Phrase Penalty
Lexical Backoff
Word Penalty

Distortion Model
Unknown Word Penalty

Lexicalized Reordering Model
Operation Sequence Model

Rescoring Features
Pclass(E) – 7-gram class-based LM

Plex(F | E) – sentence-level averaged
lexical translation score

Table 1: Models used in log-linear combina-
tion

2.2.3 Decoding, n-best List Rescoring,
and Optimization

We decode using the phrase-based moses de-
coder (Koehn et al., 2007), choosing the best
translation for each source sentence according
to a linear combination of decoding features:

Ê = arg max
E

∑
∀r

λrhr(E, F) (1)

We make use of a standard set of decoding
features, listed in Table 1. In contrast to our
IWSLT 2013 system, all experiments submit-
ted to this year’s WMT evaluation made use
of version 2.1 of moses, and incorporated ad-
ditional decoding features, namely the Oper-
ation Sequence Model (Durrani et al., 2011)
and Lexicalized Reordering Model (Tillman,
2004; Galley and Manning, 2008).

Following Shen et al. (2006), we use
the word-level lexical translation probabili-
ties Pw(fj | ei) to obtain a sentence-level aver-
aged lexical translation score (Eq. 2), which is
added as an additional feature to each n-best
list entry.

Plex(F | E) =
∏

j∈1...J

1
I + 1

∑
i∈1...I

Pw(fj | ei)

(2)
Shen et al. (2006) use the term “IBM model 1
score” to describe the value calculated in Eq.
2. While the lexical probability distribution
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from IBM Model 1 (Brown et al., 1993) could
in fact be used as the Pw(fj | ei) in Eq. 2, in
practice we use a variant of Pw(fj | ei) defined
by Koehn et al. (2003).

We also add a 7-gram class language model
score Pclass(E) (Brown et al., 1992) as an ad-
ditional feature of each n-best list entry. After
adding these features to each translation in an
n-best list, Eq. 1 is applied, rescoring the en-
tries to extract new 1-best translations.

To optimize system performance we train
scaling factors, λr, for both decoding and
rescoring features so as to minimize an ob-
jective error criterion. In our systems we use
DREM (Kazi et al., 2013) or PRO (Hopkins
and May, 2011) to perform this optimization.
For development data during optimization,
we used newstest2013 for the Russian-to-
English task and newsdev2014 for the Hindi-
to-English task supplied by WMT14.

2.2.4 Unknown Words
For the Hindi-to-English task, unknown words
were marked during the decoding process and
were transliterated by the icu4j Devanagari-
to-Latin transliterator.4

For the Russian-to-English task, we selec-
tively stemmed and inflected input words not
found in the phrase table. Each input sentence
was examined to identify any source words
which did not occur as a phrase of length 1
in the phrase table. For each such unknown
word, we used treetagger (Schmid, 1994;
Schmid, 1995) to identify the part of speech,
and then we removed inflectional endings to
derive a stem. We applied all possible Rus-
sian inflectional endings for the given part of
speech; if an inflected form of the unknown
word could be found as a stand-alone phrase
in the phrase table, that form was used to re-
place the unknown word in the original Rus-
sian file. If multiple candidates were found,
we used the one with the highest frequency of
occurrence in the training data. This process
replaces words that we know we cannot trans-
late with semantically similar words that we
can translate, replacing unknown words like
фотоном “photon” (instrumental case) with
a known morphological variant фотон “pho-
ton” (nominative case) that is found in the

4http://site.icu-project.org

BLEU BLEU-cased

Sy
st

em

1 hi-en 13.1 12.1
2 ru-en 32.0 30.8
3 ru-en 32.2 31.0
4 ru-en 31.5 30.3
5 ru-en 33.0 31.1

Table 2: Translation results, as measured by
BLEU (Papineni et al., 2002).

phrase table. Selective stemming of just the
unknown words allows us to retain informa-
tion that would be lost if we applied stemming
to all the data.

Any remaining unknown words were
transliterated as a post-process, using a
simple letter-mapping from Cyrillic characters
to Latin characters representing their typical
sounds.

2.3 MT Results
Our best Hindi-English system for
newstest2014 is listed in Table 2 as System
1. This system uses a combination of 6-gram
language models built from HindEnCorp,
News Commentary, Europarl, and News
Crawl corpora. Transliteration of unknown
words was performed after decoding but
before n-best list rescoring.

System 2 is Russian-English, and handles
unknown words following §2.2.4. We used as
independent decoder features separate 6-gram
LMs trained respectively on Common Crawl,
Europarl, News Crawl, Wiki headlines and
Yandex corpora. This system was optimized
with DREM. No rescoring was performed. We
also tested a variant of System 2 which did
perform rescoring. That variant (not listed in
Table 2) performed worse than System 2, with
scores of 31.2 BLEU and 30.1 BLEU-cased.

System 3, our best Russian-English system
for newstest2014, used the BigLM and Giga-
word language models (see §2.2.2) as indepen-
dent decoder features and was optimized with
DREM. Rescoring was performed after de-
coding. Instead of following §2.2.4, unknown
words were dropped to maximize BLEU score.
We note that the optimizer assigned weights of
0.314 and 0.003 to the BigLM and Gigaword
models, respectively, suggesting that the opti-
mizer found the BigLM to be much more use-
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Figure 1: Posteditor user interface

Documents Sentences Words

Po
st

ed
ito

r

1 44 950 20086
2 21 280 6031
3 25 476 10194
4 25 298 6164
5 20 301 5809
6 15 210 4433
7 10 140 2650
8 15 348 6743

All 175 3003 62110

Table 3: Number of documents within the
Russian-English test set processed by each
monolingual human posteditor. Number of
machine translated sentences processed by
each posteditor is also listed, along with the
total number of words in the corresponding
Russian source sentences.

# ✓ # ✗ % ✓

Po
st

ed
ito

r

1 684 266 72.0%
2 190 90 67.9%
3 308 168 64.7%
4 162 136 54.4%
5 194 107 64.5%
6 94 116 44.8%
7 88 52 62.9%
8 196 152 56.3%

All 1916 1087 63.8%

Table 4: For each monolingual posteditor, the
number and percentage of sentences judged to
be correct (✓) versus incorrect (✗) according
to a monolingual human judge.6

12 The postedited translation is superior
to the reference translation

10 The meaning of the Russian source
sentence is fully conveyed in the post-
edited translation

8 Most of the meaning is conveyed
6 Misunderstands the sentence in a ma-

jor way; or has many small mistakes
4 Very little meaning is conveyed
2 The translation makes no sense at all

Table 5: Evaluation guidelines for bilingual
human judges, adapted from Albrecht et al.
(2009).

Evaluation Category
2 4 6 8 10 12

0.2% 2.2% 9.8% 24.7% 60.2% 2.8%

Table 6: Percentage of evaluated sentences
judged to be in each category by a bilingual
judge. Category labels are defined in Table 5.

Evaluation Category
2 4 6 8 10 12

# ✗ 2 20 72 89 79 4
# ✓ 0 1 21 146 493 23
% ✓ 0% 5% 23% 62% 86% 85%

Table 7: Number of sentences in each evalu-
ation category (see Table 5) that were judged
as correct (✓) or incorrect (✗) according to a
monolingual human judge.
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ful than the Gigaword LM. This intuition was
confirmed by an experimental variation of Sys-
tem 3 (not listed in Table 2) where we omitted
the BigLM; that variant performed substan-
tially worse, with scores of 25.3 BLEU and
24.2 BLEU-cased. We also tested a variant
of System 3 which did not perform rescoring;
that variant (also not listed in Table 2) per-
formed worse, with scores of 31.7 BLEU and
30.6 BLEU-cased.

The results of monolingual postediting (see
§3) of System 4 (a variant of System 2 tuned
using PRO) uncased output is System 5. Due
to time constraints, the monolingual post-
editing experiments in §3 were conducted (us-
ing the machine translation results from Sys-
tem 4) before the results of Systems 2 and 3
were available. The Moses recaser was applied
in all experiments except for System 5.

3 Monolingual Postediting

Postediting is the process whereby a human
user corrects the output of a machine trans-
lation system. The use of basic postediting
tools by bilingual human translators has been
shown to yield substantial increases in terms
of productivity (Plitt and Masselot, 2010) as
well as improvements in translation quality
(Green et al., 2013) when compared to bilin-
gual human translators working without as-
sistance from machine translation and post-
editing tools. More sophisticated interactive
interfaces (Langlais et al., 2000; Barrachina
et al., 2009; Koehn, 2009b; Denkowski and
Lavie, 2012) may also provide benefit (Koehn,
2009a).

We hypothesize that for at least some lan-
guage pairs, monolingual posteditors with no
knowledge of the source language can success-
fully translate a substantial fraction of test
sentences. We expect this to be the case espe-
cially when the monolingual humans are do-
main experts with regard to the documents to
be translated. If this hypothesis is confirmed,
this could allow for multi-stage translation
workflows, where less highly skilled monolin-
gual posteditors triage the translation pro-
cess, postediting many of the sentences, while
forwarding on the most difficult sentences to
more highly skilled bilingual translators.

Small-scale studies have suggested that

monolingual human posteditors, working
without knowledge of the source language, can
also improve the quality of machine trans-
lation output (Callison-Burch, 2005; Koehn,
2010a; Mitchell et al., 2013), especially if well-
designed tools provide automated linguistic
analysis of source sentences (Albrecht et al.,
2009).

In this study, we designed a simple user in-
terface for postediting that presents the user
with the source sentence, machine transla-
tion, and word alignments for each sentence
in a test document (Figure 1). While it may
seem counter-intuitive to present monolingual
posteditors with the source sentence, we found
that the presence of alignment links between
source words and target words can in fact aid
a monolingual posteditor, especially with re-
gard to correcting word order. For example, in
our experiments posteditors encountered some
sentences where a word or phrase was enclosed
within bracketing punctuation marks (such as
quotation marks, commas, or parentheses) in
the source sentence, and the machine transla-
tion system incorrectly reordered the word or
phrase outside the enclosing punctuation; by
examining the alignment links the posteditors
were able to correct such reordering mistakes.

The Russian-English test set comprises 175
documents in the news domain, totaling 3003
sentences. We assigned each test document
to one of 8 monolingual5 posteditors (Table
3). The postediting tool did not record tim-
ing information. However, several posteditors
informally reported that they were able to pro-
cess on average approximately four documents
per hour; if accurate, this would indicate a
processing speed of around one sentence per
minute.

Following Koehn (2010a), we evaluated
postedited translation quality according to
a binary adequacy metric, as judged by a
monolingual English speaker6 against the En-

5All posteditors are native English speakers. Poste-
ditors 2 and 3 know Chinese and Arabic, respectively,
but not Russian. Posteditor 8 understands the Cyrillic
character set and has a minimal Russian vocabulary
from two undergraduate semesters of Russian taken
several years ago.

6All monolingual adequacy judgements were per-
formed by Posteditor 1. Additional analysis of Post-
editor 1’s 950 postedited translations were indepen-
dently judged by bilingual judges against the reference
and the source sentence (Table 7).
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glish references. In this metric, incorrect
spellings of transliterated proper names were
not grounds to judge as incorrect an otherwise
adequate postedited translation. Binary ade-
quacy results are shown in Table 4; we observe
that correctness varied widely between poste-
ditors (44.8–72.0%), and between documents.

Interestingly, several posteditors self-
reported that they could tell which documents
were originally written in English and were
subsequently translated into Russian, and
which were originally written in Russian,
based on observations that sentences from
the latter were substantially more difficult to
postedit. Once per-document source language
data is released by WMT14 organizers, we
intend to examine translation quality on a
per-document basis and test whether postedi-
tors did indeed perform worse on documents
which originated in Russian.

Using bilingual judges, we further evaluate a
substantial subset of the postedited test set us-
ing a more fine-grained adequacy metric (Ta-
ble 5). Because of time constraints, only the
first 950 postedited sentences of the test set6

were evaluated in this manner. Each sentence
was evaluated by one of two bilingual human
judges. In addition to the 2-10 point scale of
Albrecht et al. (2009), judges were instructed
to indicate (with a score of 12) any sentences
where the postedited machine translation was
superior to the reference translation. Using
this metric, we show in Table 6 that monolin-
gual posteditors can successfully produce post-
edited translations that convey all or most of
the meaning of the original source sentence in
up to 87.8% of sentences; this includes 2.8%
which were superior to the reference.

Finally, as part of WMT14, the results of
our Systems 1 (hi-en), 3 (ru-en), and 5 (post-
edited ru-en) were ranked by monolingual hu-
man judges against the machine translation
output of other WMT14 participants. These
judgements are reported in WMT (2014).

Due to time constraints, the machine trans-
lations (from System 4) presented to postedi-
tors were not evaluated by human judges, nei-
ther using our 12-point evaluation scale nor
as part of the WMT human evaluation rank-
ings. However, to enable such evaluation by
future researchers, and to enable replication of

our experimental evaluation, the System 4 ma-
chine translations, the postedited translations,
and the monolingual and bilingual evaluation
results are released as supplementary data to
accompany this paper.

4 Conclusion
In this paper, we present data preparation and
language-specific processing techniques for our
Hindi-English and Russian-English submis-
sions to the 2014 Workshop on Machine Trans-
lation (WMT14) shared translation task. Our
submissions examine the effectiveness of han-
dling various monolingual target language cor-
pora as individual component language mod-
els (System 2) or alternatively, concatenated
together into a single big language model (Sys-
tem 3). We also examine the utility of n-
best list rescoring using class language model
and lexicalized translation model rescoring
features.

In addition, we present the results of mono-
lingual postediting of the entire 3003 sentences
of the WMT14 Russian-English test set. Post-
editing was performed by monolingual English
speakers, who corrected the output of ma-
chine translation without access to external
resources, such as bilingual dictionaries or on-
line search engines. This system scored high-
est according to BLEU of all Russian-English
submissions to WMT14.

Using a binary adequacy classification, we
evaluate the entire postedited test set for cor-
rectness against the reference translations. Us-
ing bilingual judges, we further evaluate a sub-
stantial subset of the postedited test set us-
ing a more fine-grained adequacy metric; using
this metric, we show that monolingual postedi-
tors can successfully produce postedited trans-
lations that convey all or most of the meaning
of the original source sentence in up to 87.8%
of sentences.
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Ney, Jesús Tomás, Enrique Vidal, and Juan-
Miguel Vilar. 2009. Statistical approaches to
computer-assisted translation. Computational
Linguistics, 35(1):3–28, March.
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Abstract

We present our English→Czech and
English→Hindi submissions for this
year’s WMT translation task. For
English→Czech, we build upon last year’s
CHIMERA and evaluate several setups.
English→Hindi is a new language pair for
this year. We experimented with reverse
self-training to acquire more (synthetic)
parallel data and with modeling target-side
morphology.

1 Introduction

In this paper, we describe translation systems sub-
mitted by Charles University (CU or CUNI) to the
Translation task of the Ninth Workshop on Statis-
tical Machine Translation (WMT) 2014.

In §2, we present our English→Czech systems,
CU-TECTOMT, CU-BOJAR, CU-DEPFIX and CU-
FUNKY. The systems are very similar to our sub-
missions (Bojar et al., 2013) from last year, the
main novelty being our experiments with domain-
specific and document-specific language models.

In §3, we describe our experiments with
English→Hindi translation, which is a translation
pair new both to us and to WMT. We unsuccess-
fully experimented with reverse self-training and a
morphological-tags-based language model, and so
our final submission, CU-MOSES, is only a basic
instance of Moses.

2 English→Czech

Our submissions for English→Czech build upon
last year’s successful CHIMERA system (Bojar
et al., 2013). We combine several different ap-
proaches:

• factored phrase-based Moses model (§2.1),

• domain-adapted language model (§2.2),

• document-specific language models (§2.3),

• deep-syntactic MT system TectoMT (§2.4),

• automatic post-editing system Depfix (§2.5).

We combined the approaches in several ways
into our four submissions, as made clear by Ta-
ble 1. CU-TECTOMT is the stand-alone TectoMT
translation system, while the other submissions
are Moses-based, using TectoMT indirectly to pro-
vide an additional phrase-table. CU-BOJAR uses
a factored model and a domain-adapted language
model; in CU-DEPFIX, Depfix post-processing is
added; and CU-FUNKY also employs document-
specific language models.

C
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U
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K
Y

TectoMT (§2.4) D D D D

Factored Moses (§2.1) D D D

Adapted LM (§2.2) D D D

Document-specific LMs (§2.3) D

Depfix (§2.5) D D

Table 1: EN→CS systems submitted to WMT.

2.1 Our Baseline Factored Moses System
Our baseline translation system (denoted “Base-
line” in the following) is similar to last year – we
trained a factored Moses model on the concatena-
tion of CzEng (Bojar et al., 2012) and Europarl
(Koehn, 2005), see Table 2. We use two fac-
tors: tag, which is the part-of-speech tag, and stc,
which is “supervised truecasing”, i.e. the surface
form with letter case set according to the lemma;
see (Bojar et al., 2013). Our factored Moses sys-
tem translates from English stc to Czech stc | tag
in one translation step.

Our basic language models are identical to last
year’s submission. We added an adapted language
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Tokens [M]
Corpus Sents [M] English Czech
CzEng 1.0 14.83 235.67 205.17
Europarl 0.65 17.61 15.00

Table 2: English→Czech parallel data.

Corpus Sents [M] Tokens [M]
CzEng 1.0 14.83 205.17
CWC Articles 36.72 626.86
CNC News 28.08 483.88
CNA 47.00 830.32
Newspapers 64.39 1040.80
News Crawl 24.91 444.84
Total 215.93 3631.87

Table 3: Czech monolingual data.

model which we describe in the following section.
Tables 3 and 4 show basic data about the language
models. Aside from modeling surface forms, our
language models also capture morphological co-
herence to some degree.

2.2 Adapted Language Model

We used the 2013 News Crawl to create a language
model adapted to the domain of the test set (i.e.
news domain) using data selection based on infor-
mation retrieval (Tamchyna et al., 2012). We use
the Baseline system to translate the source sides of
WMT test sets 2012–2014. The translations then
constitute a “query corpus” for Lucene.1 For each
sentence in the query corpus, we use Lucene to
retrieve 20 most similar sentences from the 2013
News Crawl. After de-duplication, we obtained a
monolingual corpus of roughly 250 thousand sen-
tences and trained an additional 6-gram language
model on this data.

Domain Factor Order Sents Tokens ARPA.gz Trie
[M] [M] [GB] [GB]

General stc 4 201.31 3430.92 28.2 11.8
General stc 7 24.91 444.84 13.1 8.1
General tag 10 14.83 205.17 7.2 3.0
News stc 6 0.25 4.73 0.2 –

Table 4: Czech LMs used in CU-BOJAR. The last
small model is described in §2.2.

1http://lucene.apache.org

2.3 Document-Specific Language Models

CU-FUNKY further extends the idea described in
§2.2. Taking advantage of document IDs which
are included in WMT development and test data,
we split our dev- (WMT 13) and test-set (WMT
14) into documents. We translate each document
with the Baseline system and use Lucene to re-
trieve 10,000 most similar target-side sentences
from News Crawl 2013 for each document sen-
tence.

Using this procedure, we obtain a corpus for
each document. On average, the corpora con-
tain roughly 208 thousand sentences after de-
duplication. Each corpus then serves as the
training data for the document-specific language
model.

We implemented an alternative to
moses-parallel.perl which splits the
input corpus based on document IDs and runs a
separate Moses instance/job for each document.
Moreover, it allows to modify the Moses config-
uration file according to document ID. We use
this feature to plant the correct document-specific
language model to each job.

In tuning, our technique only adds one weight.
In each split, the weight corresponds to a differ-
ent language model. The optimizer then hope-
fully averages the utility of this document-specific
LM across all documents. The same weight is ap-
plied also in the test set translation, exchanging the
document-specific LM file.

2.4 TectoMT Deep-Syntactic MT System

TectoMT2 was one of the three key components
in last year’s CHIMERA. It is a linguistically-
motivated tree-to-tree deep-syntactic translation
system with transfer based on Maximum Entropy
context-sensitive translation models (Mareček et
al., 2010) and Hidden Tree Markov Models
(Žabokrtský and Popel, 2009). It is trained on
the WMT-provided data: CzEng 1.0 (parallel data)
and News Crawl (2007–2012 Czech monolingual
sets).

We maintain the same approach to combining
TectoMT with Moses as last year – we translate
WMT test sets from years 2007–2014 and use
them as additional synthetic parallel training data –
a corpus consisting of the test set source side (En-
glish) and TectoMT output (synthetic Czech). We
then use the standard extraction pipeline to create

2http://ufal.mff.cuni.cz/tectomt/
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an additional phrase table from this corpus. The
translated data overlap completely both with our
development and test data for Moses so that tuning
can assign an appropriate weight to the synthetic
phrase table.

2.5 Depfix Automatic Post-Editing

As in the previous years, we used Depfix (Rosa,
2013) to post-process the translations. Depfix is
an automatic post-editing system which is mainly
rule-based and uses various linguistic tools (tag-
gers, parsers, morphological generators, etc.) to
detect and correct errors, especially grammatical
ones. The system was slightly improved since last
year, and a new fixing rule was added for correct-
ing word order in noun clusters translated as geni-
tive constructions.

In English, a noun can behave as an adjective,
as in “according to the house owners”, while in
Czech, this is not possible, and a genitive construc-
tion has to be used instead, similarly to “according
to the owners of the house” – the modifier is in the
genitive morphological case and follows the noun.
However, SMT systems translating into Czech do
not usually focus much on word reordering, which
leads to non-fluent or incomprehensible construc-
tions, such as “podle domugen vlastnı́kůgen” (ac-
cording to-the-house of-the-owners). Fortunately,
such cases are easy to distinguish with the help
of a dependency parser and a morphological tag-
ger – genitive modifiers usually do not precede the
head but follow it (unless they are parts of named
entities), so we can safely switch the word order
to the correct one: “podle vlastnı́kůgen domugen”
(according to-the-owners of-the-house).

2.6 Results

We report scores of automatic metrics as shown in
the submission system,3 namely (case-sensitive)
BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006). The results, summarized in Ta-
ble 5, show that CU-FUNKY is the most success-
ful of our systems according to BLEU, while
the simpler CU-DEPFIX wins in TER. The re-
sults of manual evaluation suggest that CU-DEPFIX

(dubbed CHIMERA) remains the best performing
English→Czech system.

In comparison to other English→Czech sys-
tems submitted to WMT 2014, CU-FUNKY ranked
as the second in BLEU, and CU-DEPFIX ranked

3http://matrix.statmt.org/

as the second in TER; the winning system, ac-
cording to both of these metrics, was UEDIN-
UNCONSTRAINED.

System BLEU TER Manual
CU-DEPFIX 21.1 0.670 0.373
UEDIN-UNCONSTRAINED 21.6 0.667 0.357
CU-BOJAR 20.9 0.674 0.333
CU-FUNKY 21.2 0.675 0.287
GOOGLE TRANSLATE 20.2 0.687 0.168
CU-TECTOMT 15.2 0.716 -0.177
CU-BOJAR +full 2013 news 20.7 0.677 –

Table 5: Scores of automatic metrics and results of
manual evaluation for our systems. The table also
lists the best system according to automatic met-
rics and Google Translate as the best-performing
commercial system.

Our analysis of CU-FUNKY suggests that it is
not the best performing system on average (de-
spite achieving the highest BLEU scores from our
submissions), but that it is rather the most volatile
system. Some sentences were obviously improved
compared to CU-BOJAR but most got degraded es-
pecially in adequacy. We are well aware of the
many shortcomings our current implementation
has, the most severe of which lie in the sentence
selection by Lucene. For instance, we do not use
any stopwords or keyword detection methods, and
also pretending that each sentence in our monolin-
gual corpus is a “document” for the information
retrieval system is far from ideal.

We also evaluated a version of CU-BOJAR which
uses not only the adapted LM but also an addi-
tional LM trained on the full 2013 News Crawl
data (see “CU-BOJAR +full 2013 news” in Table 5)
but found no improvement compared to using just
the adapted model (trained on a subset of the data).

3 English→Hindi

English-Hindi is a new language pair this
year. We submitted an unconstrained system for
English→Hindi translation.

We used HindEnCorp (Bojar et al., 2014) as the
sole source of parallel data (nearly 276 thousand
sentence pairs, around 3.95 million English tokens
and 4.09 million Hindi tokens).

Given that no test set from previous years was
available and that the size of the development set
provided by WMT organizers was only 500 sen-
tence pairs, we held out the first 5000 sentence
pairs of HindEnCorp for this purpose. Our de-
velopment set then consisted of the 500 provided
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Corpus Sents [M] Tokens [M]
NewsCrawl 1.27 27.27
HindEnCorp 0.28 4.09
HindMonoCorp 43.38 945.43
Total 44.93 976.80

Table 6: Hindi monolingual data.

sentences plus 1500 sentence pairs from HindEn-
Corp. The remaining 3500 sentence pairs taken
from HindEnCorp constituted our test set.

As for monolingual data, we used the News
Crawl corpora provided for the task and the new
monolingual HindMonoCorp, which makes our
submission unconstrained. Table 6 shows statis-
tics of our monolingual data.

We tagged and lemmatized the English data us-
ing Morče (Spoustová et al., 2007) and the Hindi
data using Siva Reddy’s POS tagger.4

3.1 Baseline System

The baseline system was eventually our best-
performing one. Its design is completely straight-
forward – it uses one phrase table trained on
all parallel data (we translate from “supervised-
truecased” English into Hindi forms) and one 5-
gram language model trained on all monolingual
data. We used KenLM (Heafield et al., 2013) for
estimating the model as the data was rather large
(see Table 6).

We used GIZA++ (Och and Ney, 2000) as
our word alignment tool. We experimented with
several coarser representations to make the final
alignment more reliable. Table 7 shows the re-
sults. The factor “stem4” refers to simply taking
the first four characters of each word. For lem-
mas, we used the outputs of the tools mentioned
above. However, lemmas as output by the Hindi
tagger were not much coarser than surface forms
– the ratio between the number of types is merely
1.11 – so we also tried “stemming” the lemmas
(lemma4). Of these variants, stem4-stem4 align-
ment worked best and we used it for the rest of our
experiments.

3.2 Reverse Self-Training

Bojar and Tamchyna (2011) showed a simple tech-
nique for improving translation quality in situa-
tions where there is only a small amount of par-

4http://sivareddy.in/downloads#hindi_
tools

English Hindi BLEU
stem4 stem4 22.96±1.17
lemma lemma4 22.59±1.17
lemma lemma 22.41±1.20

Table 7: Comparison of different factor combina-
tions for word alignment.

allel data available but where there is a sufficient
quantity of target-side monolingual texts. The so-
called “reverse self-training” uses a factored sys-
tem trained in the opposite direction to translate
the large monolingual data into the source lan-
guage. The translation (in the source language,
i.e. English in our case) and the original target-
side data (Hindi) can be used as additional syn-
thetic parallel data. The authors recommend creat-
ing a separate phrase table from it and combining
the two translation models as alternatives in the
log-linear model (letting tuning weigh their impor-
tance).

The factored setup of the reverse system
(Hindi→English) is essential – alternative decod-
ing paths with a back-off to a coarser representa-
tion (e.g. stems) on the source side (Hindi) give
the system the ability to generalize beyond surface
forms observed in the training data. The main aim
of this technique is to learn new forms of known
words.

The technique is thus aimed at translating into a
morphologically richer language than the source.
Indeed, the authors showed that if the target lan-
guage has considerably more word types than the
source, the gains achieved by reverse self-training
are higher. In this respect, English→Hindi is not
an ideal candidate given that the ratio we observed
is only 1.2.

The choice of back-off representation is impor-
tant. We measure the vocabulary reduction of
several options and summarize the results in Ta-
ble 8. E.g. for stem4, the vocabulary size is
roughly 30% compared to the number of surface
word forms.

Bojar and Tamchyna (2011) achieved the best
results using “nosuf3” (“suffix trimming”, i.e. cut-
ting of the last 3 characters of each word); how-
ever, they experimented with European languages
and the highest reduction of vocabulary reported
in the paper is to roughly one half. In our case, the
vocabulary is reduced much more, so we opted for
a more conservative back-off, namely “nosuf2”.
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Back-off % of vocab. size
stem4 30.21
lemma4 32.36
nosuf3 36.36
nosuf2 50.76
stem5 53.48
lemma5 57.47
lemma 90.09

Table 8: Options for back-off factors in reverse
self-training and the percentage of their vocabu-
lary size compared to surface forms.

We translated roughly 2 million sentences from
the Hindi monolingual data, focusing on news
to maintain a domain match with the WMT test
set. However, adding the synthetic phrase table
did not bring any improvement and in fact, the
BLEU score dropped to 22.37±1.17 (baseline is
22.96±1.17).

We can attribute the failure of reverse self-
training to the nature of the language pair at hand.
While Hindi has some synthetic properties (e.g.
future tense of verbs or inflection of adjectives are
marked by suffixes), its inflectional morphemes
are realized mainly by post-positions which are
separated from their head-words. Overlooking this
essential property, we attempted to use reverse
self-training but our technique could contribute
only very little.

3.3 Target-Side Morphology

We also experimented with a setup that tradition-
ally works very well for English→Czech trans-
lation: using a high-order language model on
morphological tags to explicitly model target-side
morphological coherence in translation. We used
the same monolingual data as for the baseline lan-
guage model; however, the order of our morpho-
logical language model was set to 10.

This setup also brought no improvement over
the baseline – in fact, the BLEU score dropped
even further to 22.27±1.14.

4 Conclusion

We presented our contributions to the Translation
task of WMT 2014.

As we have focused on English→Czech trans-
lation for many years, we have developed sev-
eral complex and well-performing systems for it
– an adaptation of the phrase-based Moses sys-

tem, a linguistically-motivated syntax-based Tec-
toMT system, and an automatic post-editing Dep-
fix system. We combine the individual systems
using a very simple yet effective method and the
combined system called CHIMERA confirmed its
state-of-the-art performance.

For English→Hindi translation, which was a
new task for us, we managed to get competitive
results by using a baseline Moses setup, but were
unable to improve upon those by employing ad-
vanced techniques that had proven to be effective
for other translation directions.
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Aleš Tamchyna, Petra Galuščáková, Amir Kamran,
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Abstract

We describe the Manawi1 (mAnEv) sys-
tem submitted to the 2014 WMT transla-
tion shared task. We participated in the
English-Hindi (EN-HI) and Hindi-English
(HI-EN) language pair and achieved 0.792
for the Translation Error Rate (TER)
score2 for EN-HI, the lowest among the
competing systems. Our main innova-
tions are (i) the usage of outputs from
NLP tools, viz. billingual multi-word ex-
pression extractor and named-entity rec-
ognizer to improve SMT quality and (ii)
the introduction of a novel filter method
based on sentence-alignment features. The
Manawi system showed the potential of
improving translation quality by incorpo-
rating multiple NLP tools within the MT
pipeline.

1 Introduction

In this paper, we present Saarland University
(USAAR) submission to Workshop for Machine
Translation 2014 (WMT 2014) using the Manawi
MT system. We participated in the generic trans-
lation shared task for the English-Hindi (EN-HI)
and Hindi-English (HI-EN) language pairs.

Our Manawi system showcased the incorpora-
tion of NLP tools output within the MT pipeline; a
bilingual MWE extractor and a bilingual NE rec-
ognizer for English and Hindi were implemented.
The output from these NLP tools was appended to
the training corpus prior to the SMT model train-
ing with the MOSES toolkit (Koehn et al., 2007).
The resulting system achieves the lowest Transla-
tion Error Rate (TER) among competing systems
for the English-Hindi language pair.

1Multi-word expression And Named-entity And
Wikipedia titles (Manawi)

2Lower TER often results in better translation

The rest of the paper is structured as follow:
Section 2 describes the implementation of the NLP
tools; Section 3 outlines the corpus pre-processing
before the MT training process; Section 4 de-
scribes the MT system setup; Section 5 describes
a simple post-processing component to handle
Out-Of-Vocabulary words; Section 6 presents the
WMT shared task results for the Manawi system
and Section 6 concludes the paper.

2 NLP Tools Implementation

2.1 Bilingual MWE in MT

Multi-Word Expressions (MWE) are defined as
“idiosyncratic interpretations that cross word
boundaries” (Sag et al., 2002). MWE can be made
up of collocations (e.g. seem ridiculous : behuda
dikhai), frozen expressions (e.g. exception han-
dling : apavada sancalaka) or name entities (e.g.
Johnny Cash : Johni Kesh). Jackendoff (1997)
claims that the frequency of MWE and the fre-
quency of single words in a speaker’s lexicon are
almost equivalent.

Bilingual MWE has shown to be useful for
a variety of NLP applications such as multilin-
gual information retrieval (Vechtomova, 2005)
and Crosslingual/Multilingual Word Sense Dis-
ambiguation (Tan and Bond, 2013; Finlayson and
Kulkarni, 2011). For machine translation, vari-
ous studies had introduced bilingual MWE to im-
prove MT system performance. Lambert (2005)
introduced bilingual MWE by grouping them as
a single token before training alignment models
and they showed that it improved alignment and
translation quality. Ren et al. (2009) integrated
an in-domain bilingual MWE using log likelihood
ratio based hierarchical reducing algorithm and
gained +0.61 BLEU score. Similarly, Santanu et
al. (2010) single tokenized MWE before training a
phrase-based SMT model and achieved 50% im-
provement in BLEU score.
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In order to improve the word alignment quality,
Venkatapathy and Joshi (2006) reported a discrim-
inative approach to use the compositionality infor-
mation of verb-based multi-word expressions. Pal
et al. (2011) discussed the effects of incorporating
prior alignment of MWE and NEs directly or indi-
rectly into Phrase-based SMT systems.

2.2 Bilingual MWE Extraction

Monolingual MWE extraction revolves around
three approaches (i) rule-based methods relying
on morphosyntactic patterns, (ii) statistical meth-
ods which use association/frequency measures to
determine ngrams as MWE and (iii) hybrid ap-
proaches that combine the rule-based and statis-
tical methods.

However, where bilingual MWE extraction
techniques are concerned, they operate around
two main modus operandi (i) extracting mono-
lingual MWE separately and aligning them at
word/phrasal level afterwards or (ii) aligning par-
allel text at word/phrasal level and then extracting
MWE.

We implemented a language independent bilin-
gual MWE extractor, (Muwee), that produces a
parallel dictionary of MWE without the need for
any word/phrasal-level alignment. Muwee makes
use of the fact that the number of highly collocated
MWE should be the same for each sentences pair.
Muwee first extracts MWE separately from the

source and target sentences; the MWE are ex-
tracted based on bigrams that reports a Point-
wise Mutual Information (PMI) score of above
10. Then for each parallel sentence, if the number
of MWE are equivalent for the source and target,
the bigrams are joint together as a string and con-
tiguous duplicate words are deleted. The removal
of contiguous duplicate words is grounded on the
fact that linguistically motivated MWE that forms
grammatical phrases had shown to improve SMT
performances (Pal et al., 2013). Figure 1 presents
an example of the MWE extraction process.

Figure 1: Muwee Extraction Process

2.3 Named-entity Recognition

Named-Entity (NE) recognition is the task of iden-
tifying entities such as names of people, organi-
zations and locations. Given a perfect MWE ex-
traction system, NEs would have been captured by
MWE extraction. However, the state-of-art MWE
extractors have yet been perfected.

To compliment the MWE extracted by Muwee,
we implemented a bilingual NE extractor by
combining outputs from the (i) Stanford English
NE Recognizer (NER)3 and (ii) a Do-It-Yourself
(DIY) Hindi NER using CRF++ toolkit4 with an-
notated data from NER-SSEA 2008 shared task
(Rajeev Sangal and Singh, 2008). We trained a
Conditional Random Field classifier for the Hindi
NER using unigram features, bigram features and
a context window of two words to the left and to
the right. And we used the DIY Hindi NER and
Stanford NER tool to monolingually annotate the
NEs from training corpus for the EN-HI / HI-EN
language pair.

Similar to the Muwee bilingual extraction cri-
teria, if the number of NEs are the same on the
source and target language, the NEs were joint to-
gether as a string. We note that sometimes the
bilingual NER output contains more than one NE
per sentence. For example, our bilingual NER ex-
tractor outputs “Kalpna Chawla Gurdeep Pand-
her”, which contains two NEs ‘Kalpna Chawla’
and ‘Gurdeep Pandher’. Although the resulting
bilingual NE does not provide a perfect NE dic-
tionary, it filters out NEs from the sentence and
improves word alignments at the start of the MT
pipeline.

3 Corpus Preprocessing

The performance of any data driven SMT depends
on the quality of training data. Previous stud-
ies had shown that filtering out low quality sen-
tence pairs improves the quality of machine trans-
lation. For instance, the Moore-Lewis filter re-
moves sentence pairs based on source-side cross-
entropy differences (Moore and Lewis, 2010) and
the Edinburgh’s MT system used the Modified
Moore-Lewis filtering (Axelrod et al., 2011) in
WMT 2013 shared task (Durrani et al., 2013).
CNGL-DCU system extended the Moore-Lewis
filter by incorporating lemmas and named enti-

3http://nlp.stanford.edu/software/CRF-NER.shtml
4http://crfpp.googlecode.com
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ties in their definition of perplexity5 (Rubino et al.,
2013; Toral, 2013).

The RWTH Aachen system filtered the Com-
mon Crawl Corpus by keeping only sentence pairs
that contains at least 70% of the word from a
known vocabulary dataset extracted from the other
corpora in the WMT 2013 shared task (Peitz et
al., 2013). The Docent system from Uppsala Uni-
versity also performed data cleaning on the Com-
mon Crawl dataset prior to SMT but they were
using more aggressive conditions by (i) remov-
ing documents that were identified correctly us-
ing a language identification module and (ii) re-
moving documents that falls below a threshold
value of alignment points and sentence length ra-
tio (Stymne et al., 2013). Our approach to data
cleaning is similar to the Uppsala’s system but in-
stead of capitalizing on word-alignments features,
we were cleaning the data based on sentence align-
ment features.

3.1 GaCha Filtering: Filter by Character
Mean Ratio

Stymne et al. (2013) improved translation qual-
ity by cleaning the Common Crawl corpus during
the WMT 2013 shared task. They filtered out doc-
uments exceeding 60 words and cleaned the re-
mainder of the corpus by exploiting the number
of alignment points in word alignments between
sentence pairs. Their hypothesis was that sentence
pairs with very few alignment points in the inter-
section would mostly likely not be parallel. This
is based on the fact that when using GIZA++ (Och
and Ney, 2003), the intersection of alignments is
more sparse than the standard SMT symmetriza-
tion heuristics like grow-diag-final-and (Koehn,
2005).

Different from Stymne et al., our hypothesis for
non-parallelness adheres to sentence level align-
ment criteria as defined in the Gale-Church algo-
rithm (Gale and Church, 1993). If a sentence pair
is parallel, the ratio of the number of characters in
the source and target sentence should be coherent
to the global ratio of the number of source-target
characters in a fully parallel corpus. The Gale-
Church algorithm had its parameters tuned to suit
European languages and Tan (2013) had demon-
strated that sentence-level alignments can be im-
proved by using corpus specific parameters. When

5The exponent of cross-entropy may be regarded as per-
plexity

using variable parameters to the Gale-Church al-
gorithm, Tan showed that instead of the default
parameters set in the original Gale-Church algo-
rithm, using mean ratio of the noisy corpus can
also improve sentence level alignments although
the ratio from a clean corpus would achieve even
better alignments.

Given the premises of the sentence level align-
ment hypothesis, we clean the training corpus by
first calculating the global mean ratio of the num-
ber of characters of source sentence to target sen-
tence and then filter out sentence pairs that exceeds
or fall below 20% of the global ratio. We call this
method, GaCha filtering; this cleaning method is
more aggressive than cleaning methods described
by Stymne et al. but it filters out noisy sen-
tence level alignments created by non-language
specific parameters used by sentence aligners such
as Gale-Church algorithm.

3.2 Filtering Noise in HindEnCorp

After manual inspection 100 random sentence
pairs from the HindEnCorp (Bojar et al., 2014),
we found that documents were often misaligned
at sentence level or contains HTML special char-
acters. To further reduce the noise in the Hin-
dEnCorp, the Manawi system was only trained
a subset of the HindEnCorp from the follow-
ing sources (i) DanielPipes, (ii) TIDES and (iii)
EILMT. Lastly, we filtered the training data on al-
lowing a maximum of 100 tokens per language per
sentence.

Finally, the cleaned data contained 87,692 sen-
tences, only ∼36% of the original HindEnCorp
training data.

4 System Setup

Data: To train the baseline translation model,
we have used the cleaned subset of the data as
described in Section 3. For the Manawi model,
we added the NLP outputs from the MWE and
NE extractors presented in Section 2. To train the
monolingual language model, we used the Hindi
sentences from the HindEnCorp.

System: We used the standard log-linear
Phrase based SMT model provided from the
MOSES toolkit.

Configuration: We experimented with various
maximum phrase length for the translation and n-

203



Manawi Submissions (EN-HI) BLEU BLEU TER
(cased)

PB-SMT + MWE + NE 9.9 7.1 0.869
PB-SMT + MWE + NE + Wiki (Manawi) 7.7 7.6 0.864
Manawi + GaCha Filter 8.9 8.9 0.818
Manawi + GaCha Filter + Handle OOV 8.8 8.8 0.800
Manawi + GaCha Filter + Remove OOV 8,9 8.8 0.792

Table 1: Manawi System Submissions @ WMT 2014 Translation Shared Task for English-Hindi

Manawi Submissions (HI-EN) BLEU BLEU TER
(cased)

PB-SMT + MWE + NE + Wiki (Manawi) 7.7 7.6 0.864
Manawi + GaCha Filter 8.9 8.9 0.818

Table 2: Manawi System Submissions @ WMT 2014 Translation Shared Task for Hindi-English

gram settings for the language model. And we
found that using a maximum phrase length of 5
and 4-gram language model produced best result
in terms of BLEU and TER for our baseline model
(i.e. without the incorporation of outputs from the
NLP tools). The other experimental settings were:

• GIZA++ implementation of IBM word align-
ment model 4 with grow-diagonal-final-and
heuristics for performing word alignment and
phrase-extraction (Koehn et al., 2003)

• Minimum Error Rate Training (MERT) (Och,
2003) on a held-out development set, target
language model with Kneser-Ney smoothing
(Kneser and Ney, 1995) using language mod-
els trained with SRILM (Stolcke, 2002)

• Reordering model6 was trained on bidirec-
tional (i.e. using both forward and back-
ward models) and conditioned on both source
and target language. The reordering model
is built by calculating the probabilities of the
phrase pair being associated with the given
orientation.

Innovation: We demonstrated the incorporation
of multiple NLP tools outputs in the SMT pipline
by simply using automatically extracted bilingual
MWE and NEs as additional parallel data to the
cleaned data and ran the translation and statistical
model as per the baseline configurations.

6For reordering we used lexicalized reordering model,
which consists of three different types of reordering by
conditioning the orientation of previous and next phrases-
monotone (m), swap (s) and discontinuous (d).

5 Post-processing

The MOSES decoder produces translations with
Out-Of-Vocabulary (OOV) words that were not
translated from the source language. The Manawi
system post-processed the decoder output by (i)
handling OOV words by replacing each OOV
word with the most probable translation using the
lexical files generated by GIZA++ and (ii) remov-
ing OOV words from the decoded outputs.

6 Results

Table 1 summarizes the Manawi system sub-
missions for the English-Hindi language pair for
WMT 2014 generic translation shared task. The
basic Manawi system is a Phrase-based SMT
(PB-SMT) setup using extracted MWE and NEs
and Wikipedia titles as additional parallel data (i.e.
PB-SMT+MWE+NE+Wiki in Table 1). The ba-
sic Manawi system achieved 7.7 BLEU score and
0.864 TER.

After filtering the data before training the trans-
lation model, the Manawi system performed bet-
ter at 8.9 BLEU and 0.818 TER. By adding the
post-processing component, we achieved the low-
est TER score among competing team at 0.792.

7 Conclusion

The Manawi system showed how simple yet ef-
fective pre-processing and integration of output
from NLP tools improves the performance of MT
systems. Using GaCha filtering to remove noisy
data and using automatically extracted MWE and
NEs as additional parallel data improve word and
phrasal alignments at the start of the MT pipeline
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which eventually improves the quality of machine
translation. The best setup for the Manawi system
achieved the best TER score among the competing
system.

Also, the incremental improvements made by
step-wise implementation of (i) filtering, (ii) in-
corporating outputs from NLP tools and (iii) post-
processing showed that individual components of
the Manawi can be integrated into other MT sys-
tems without detrimental effects.
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Abstract

This paper describes the string-to-tree sys-
tems built at the University of Edin-
burgh for the WMT 2014 shared trans-
lation task. We developed systems for
English-German, Czech-English, French-
English, German-English, Hindi-English,
and Russian-English. This year we
improved our English-German system
through target-side compound splitting,
morphosyntactic constraints, and refine-
ments to parse tree annotation; we ad-
dressed the out-of-vocabulary problem us-
ing transliteration for Hindi and Rus-
sian and using morphological reduction
for Russian; we improved our German-
English system through tree binarization;
and we reduced system development time
by filtering the tuning sets.

1 Introduction

For this year’s WMT shared translation task we
built syntax-based systems for six language pairs:

• English-German • German-English
• Czech-English • Hindi-English
• French-English • Russian-English

As last year (Nadejde et al., 2013), our systems are
based on the string-to-tree pipeline implemented
in the Moses toolkit (Koehn et al., 2007).

We paid particular attention to the production of
grammatical German, trying various parsers and
incorporating target-side compound splitting and
morphosyntactic constraints; for Hindi and Rus-
sian, we employed the new Moses transliteration
model to handle out-of-vocabulary words; and for
German to English, we experimented with tree bi-
narization, obtaining good results from right bina-
rization.

We also present our first syntax-based results
for French-English, the scale of which defeated us

last year. This year we were able to train a sys-
tem using all available training data, a task that
was made considerably easier through principled
filtering of the tuning set. Although our system
was not ready in time for human evaluation, we
present BLEU scores in this paper.

In addition to the five single-system submis-
sions described here, we also contributed our
English-German and German-English systems for
use in the collaborative EU-BRIDGE system com-
bination effort (Freitag et al., 2014).

This paper is organised as follows. In Sec-
tion 2 we describe the core setup that is com-
mon to all systems. In subsequent sections we de-
scribe language-pair specific variations and exten-
sions. For each language pair, we present results
for both the development test set (newstest2013
in most cases) and for the filtered test set (new-
stest2014) that was provided after the system sub-
mission deadline. We refer to these as ‘devtest’
and ‘test’, respectively.

2 System Overview

2.1 Pre-processing

The training data was normalized using the WMT
normalize-punctuation.perl script then
tokenized and truecased. Where the target lan-
guage was English, we used the Moses tokenizer’s
-penn option, which uses a tokenization scheme
that more closely matches that of the parser. For
the English-German system we used the default
Moses tokenization scheme, which is similar to
that of the German parsers.

For the systems that translate into English, we
used the Berkeley parser (Petrov et al., 2006;
Petrov and Klein, 2007) to parse the target-side of
the training corpus. As we will describe in Sec-
tion 3, we tried a variety of parsers for German.

We did not perform any corpus filtering other
than the standard Moses method, which removes
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sentence pairs with dubious length ratios and sen-
tence pairs where parsing fails for the target-side
sentence.

2.2 Translation Model
Our translation grammar is a synchronous context-
free grammar (SCFG) with phrase-structure labels
on the target side and the generic non-terminal la-
bel X on the source side.

The grammar was extracted from the word-
aligned parallel data using the Moses implemen-
tation (Williams and Koehn, 2012) of the GHKM
algorithm (Galley et al., 2004; Galley et al., 2006).
For word alignment we used MGIZA++ (Gao and
Vogel, 2008), a multi-threaded implementation of
GIZA++ (Och and Ney, 2003).

Minimal GHKM rules were composed into
larger rules subject to parameterized restrictions
on size defined in terms of the resulting target tree
fragment. A good choice of parameter settings
depends on the annotation style of the target-side
parse trees. We used the settings shown in Table 1,
which were chosen empirically during the devel-
opment of last years’ systems:

Parameter Value
Rule depth 5
Node count 20
Rule size 5

Table 1: Parameter settings for rule composition.

Further to the restrictions on rule composition,
fully non-lexical unary rules were eliminated us-
ing the method described in Chung et al. (2011)
and rules with scope greater than 3 (Hopkins and
Langmead, 2010) were pruned from the trans-
lation grammar. Scope pruning makes parsing
tractable without the need for grammar binariza-
tion.

2.3 Language Model
We used all available monolingual data to train
5-gram language models. Language models
for each monolingual corpus were trained using
the SRILM toolkit (Stolcke, 2002) with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) and then interpolated using weights tuned to
minimize perplexity on the development set.

2.4 Feature Functions
Our feature functions are unchanged from the pre-
vious two years. They include the n-gram lan-

guage model probability of the derivation’s target
yield, its word count, and various scores for the
synchronous derivation.

Each grammar rule has a number of pre-
computed scores. For a grammar rule r of the form

C → 〈α, β,∼〉
where C is a target-side non-terminal label, α is a
string of source terminals and non-terminals, β is
a string of target terminals and non-terminals, and
∼ is a one-to-one correspondence between source
and target non-terminals, we score the rule accord-
ing to the following functions:

• p (C, β | α,∼) and p (α | C, β,∼), the direct
and indirect translation probabilities.

• plex (β | α) and plex (α | β), the direct and
indirect lexical weights (Koehn et al., 2003).

• ppcfg (π), the monolingual PCFG probability
of the tree fragment π from which the rule
was extracted.

• exp(−1/count(r)), a rule rareness penalty.

• exp(1), a rule penalty. The main grammar
and glue grammars have distinct penalty fea-
tures.

2.5 Tuning
The feature weights were tuned using the Moses
implementation of MERT (Och, 2003) for all sys-
tems except English-to-German, for which we
used k-best MIRA (Cherry and Foster, 2012) due
to the larger number of features.

We used tuning sentences drawn from all of
the previous years’ test sets (except newstest2013,
which was used as the development test set). In
order to speed up the tuning process, we used sub-
sets of the full tuning sets with sentence pairs up
to length 30 (Max-30) and further applied a fil-
tering technique to reduce the tuning set size to
2,000 sentence pairs for the language pairs involv-
ing German, French and Czech1. We also experi-
mented with random subsets of size 2,000.

For the filtering technique, we make the as-
sumption that finding suitable weights for all the
feature functions requires the optimizer to see a
range of feature values and to see hypotheses that
can partially match the reference translations in
order to rank the hypotheses. For example, if a

1For Russian and Hindi, the development sets are smaller
and no filtering was applied.
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tuning example contains many out-of-vocabulary
words or is difficult to translate for other reasons,
this will result in low quality translation hypothe-
ses and provide the system with little evidence for
which features are useful to produce good transla-
tions. Therefore, we select high quality examples
using a smooth version of sentence-BLEU com-
puted on the 1-best output of a single decoder run
on the development set. Standard sentence-BLEU

tends to select short examples because they are
more likely to have perfect n-gram matches with
the reference translation. Very short sentence pairs
are less informative for tuning but also tend to have
more extreme source-target length ratios which
can affect the weight of the word penalty. Thus,
we penalize short examples by padding the de-
coder output with a fixed number of non-matching
tokens2 to the left and right before computing
sentence-BLEU. This has the effect of reducing
the precision of short sentences against the refer-
ence translation while affecting longer sentences
proportionally less. Experiments on phrase-based
systems have shown that the resulting tuning sets
are of comparable diversity as randomly selected
sets in terms of their feature vectors and maintain
BLEU scores in comparison with tuning on the en-
tire development set.

Table 2 shows the size of the full tuning sets
and the size of the subsets with up to length 30,
Table 3 shows the results of tuning with different
sets. Reducing the tuning sets to Max-30 results
in a speed-up in tuning time but affects the per-
formance on some of the devtest/test sets (mostly
for Czech-English). However, tuning on the full
set took more than 18 days using 12 cores for
German-English which is not feasible when try-
ing out several model variations. Further filter-
ing these subsets to a size of 2,000 sentence pairs
as described above maintains the BLEU scores in
most cases and even improves the scores in some
cases. This indicates that the quality of the se-
lected examples is more important than the total
number of tuning examples. However, the exper-
iments with random subsets from Max-30 show
that random selection also yields results which im-
prove over the results with Max-30 in most cases,
though are not always as good as with the filtered
sets.3 The filtered tuning sets yield reasonable per-

2These can be arbitrary tokens that do not match any ref-
erence token.

3For random subsets from the full tuning set the perfor-
mance was similar but resulted in standard deviations of up

formance compared to the full tuning sets except
for the German-English devtest set where perfor-
mance drops by 0.5 BLEU4.

Tuning set Cs-En En-De De-En
Full 13,055 13,071 13,071
Max-30 10,392 9,151 10,610

Table 2: Size of full tuning sets and with sentence
length up to 30.

devtest
Tuning set Cs-En En-De De-En
Full 25.1 19.9 26.7
Max-30 24.7 19.8 26.2
Filtered 24.9 19.8 26.2
Random 24.8 19.7 26.4

test
Tuning set Cs-En En-De De-En
Full 27.5 19.2 26.9
Max-30 27.2 19.2 27.0
Filtered 27.5 19.1 27.2
Random 27.3 19.4 27.0

Table 3: BLEU results on devtest and test sets with
different tuning sets: Full, Max-30, filtered subsets
of Max-30 and average of three random subsets of
Max-30 (size of filtered/random subsets: 2,000).

3 English to German

We use the projective output of the dependency
parser ParZu (Sennrich et al., 2013) for the syn-
tactic annotation of our primary submission. Con-
trastive systems were built with other parsers: Bit-
Par (Schmid, 2004), the German Stanford Parser
(Rafferty and Manning, 2008), and the German
Berkeley Parser (Petrov and Klein, 2007; Petrov
and Klein, 2008).

The set of syntactic labels provided by ParZu
has been refined to reduce overgeneralization phe-
nomena. Specifically, we disambiguate the labels
ROOT (used for the root of a sentence, but also
commas, punctuation marks, and sentence frag-
ments), KON and CJ (coordinations of different
constituents), and GMOD (pre- or postmodifying
genitive modifier).

to 0.36 across three random sets.
4Note however that due to the long tuning times, we are

reporting single tuning runs.
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Figure 1: Syntactic representation of split com-
pound Bundesberufungsgericht (Engl: federal ap-
peals court).

We discriminatively learn non-terminal labels
for unknown words using sparse features, rather
than estimating a probability distribution of non-
terminal labels from singleton statistics in the
training corpus.

We perform target-side compound splitting, us-
ing a hybrid method described by Fritzinger and
Fraser (2010) that combines a finite-state mor-
phology and corpus statistics. As finite-state mor-
phology analyzer, we use Zmorge (Sennrich and
Kunz, 2014). An original contribution of our
experiments is a syntactic representation of split
compounds which eliminates typical problems
with target-side compound splitting, namely er-
roneous reorderings and compound merging. We
represent split compounds as a syntactic tree with
the last segment as head, preceded by a modifier.
A modifier consists of an optional modifier, a seg-
ment and a (possibly empty) joining element. An
example is shown in Figure 1. This hierarchical
representation ensures that compounds can be eas-
ily merged in post-processing (by removing the
spaces and special characters around joining ele-
ments), and that no segments are placed outside of
a compound in the translation.

We use unification-based constraints to model
morphological agreement within German noun
phrases, and between subjects and verbs (Williams
and Koehn, 2011). Additionally, we add con-
straints that operate on the internal tree structure of
the translation hypotheses, to enforce several syn-
tactic constraints that were frequently violated in
the baseline system:

• correct subcategorization of auxiliary/modal
verbs in regards to the inflection of the full
verb.

• passive clauses are not allowed to have ac-
cusative objects.

system
BLEU

devtest test
Stanford Parser 19.0 18.3
Berkeley Parser 19.3 18.6
BitPar 19.5 18.6
ParZu 19.6 19.1
+ modified label set 19.8 19.1
+ discriminative UNK weights 19.9 19.2
+ German compound splitting 20.0 19.8
+ grammatical constraints 20.2 20.1

Table 4: English to German translation results
on devtest (newstest2013) and test (newstest2014)
sets.

• relative clauses must contain a relative (or in-
terrogative) pronoun in their first constituent.

Table 4 shows BLEU scores with systems
trained with different parsers, and for our exten-
sions of the baseline system.

4 Czech to English

For Czech to English we used the core setup de-
scribed in Section 2 without modification. Table 5
shows the BLEU scores.

BLEU

system devtest test
baseline 24.8 27.0

Table 5: Czech to English results on the devtest
(newstest2013) and test (newstest2014) sets.

5 French to English

For French to English, alignment of the parallel
corpus was performed using fast_align (Dyer et
al., 2013) instead of MGIZA++ due to the large
volume of parallel data.

Table 6 shows BLEU scores for the system and
Table 7 shows the resulting grammar sizes after
filtering for the evaluation sets.

BLEU

system devtest test
baseline 29.4 32.3

Table 6: French to English results on the devtest
(newsdev2013) and test (newstest2014) sets.
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system devtest test
baseline 86,341,766 88,657,327

Table 7: Grammar sizes of the French to En-
glish system after filtering for the devtest (new-
stest2013) and test (newstest2014) sets.

6 German to English

German compounds were split using the script
provided with Moses.

For training the primary system, the target parse
trees were restructured before rule extraction by
right binarization. Since binarization strategies
increase the tree depth and number of nodes by
adding virtual non-terminals, we increased the ex-
traction parameters to: Rule Depth = 7, Node
Count = 100, Rule Size = 7. A thorough in-
vestigation of binarization methods for restructur-
ing Penn Treebank style trees was carried out by
Wang et al. (2007).

Table 8 shows BLEU scores for the baseline
system and two systems employing different bi-
narization strategies. Table 9 shows the result-
ing grammar sizes after filtering for the evaluation
sets. Results on the development set showed no
improvement when left binarization was used for
restructuring the trees, although the grammar size
increased significantly.

BLEU

system devtest test
baseline 26.2 27.2
+ right binarization (primary) 26.8 28.2
+ left binarization 26.3 -

Table 8: German to English results on the devtest
(newsdev2013) and test (newstest2014) sets.

system devtest test
baseline 11,462,976 13,811,304
+ right binarization 24,851,982 29,133,910
+ left binarization 21,387,976 -

Table 9: Grammar sizes of the German to En-
glish systems after filtering for the devtest (new-
stest2013) and test (newstest2014) sets.

7 Hindi to English

English-Hindi has the least parallel training data
of this year’s language pairs. Out-of-vocabulary

(OOV) input words are therefore a comparatively
large source of translation error: in the devtest set
(newsdev2014) and filtered test set (newstest2014)
the average OOV rates are 1.08 and 1.16 unknown
words per sentence, respectively.

Assuming a significant fraction of OOV words
to be named entities and thus amenable to translit-
eration, we applied the post-processing translitera-
tion method described in Durrani et al. (2014) and
implemented in Moses. In brief, this is an unsuper-
vised method that i) uses EM to induce a corpus of
transliteration examples from the parallel training
data; ii) learns a monotone character-level phrase-
based SMT model from the transliteration corpus;
and iii) substitutes transliterations for OOVs in the
system output by using the monolingual language
model and other features to select between translit-
eration candidates.5

Table 10 shows BLEU scores with and without
transliteration on the devtest and filtered test sets.
Due to a bug in the submitted system, the language
model trained on the HindEnCorp corpus was used
for transliteration candidate selection rather than
the full interpolated language model. This was
fixed subsequent to submission.

BLEU

system devtest test
baseline 12.9 14.7
+ transliteration (submission) 13.3 15.1
+ transliteration (fixed) 13.6 15.5

Table 10: Hindi to English results with and with-
out transliteration on the devtest (newsdev2014)
and test (newstest2014) sets.

Transliteration increased 1-gram precision from
48.1% to 49.4% for devtest and from 49.1% to
50.6% for test. Of the 2,913 OOV words in test,
938 (32.2%) of transliterations exactly match the
reference. Manual inspection reveals that there are
also many near matches. For instance, translitera-
tion produces Bernat Jackie where the reference is
Jacqui Barnat.

8 Russian to English

Compared to Hindi-English, the Russian-English
language pair has over six times as much parallel
data. Nonetheless, OOVs remain a problem: the
average OOV rates are approximately half those

5This is the variant referred to as Method 2 in Dur-
rani et al. (2014).
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of Hindi-English, at 0.47 and 0.51 unknown words
per sentence for the devtest (newstest2013) and fil-
tered test (newstest2014) sets, respectively. We
address this in part using the same transliteration
method as for Hindi-English.

Data sparsity issues for this language pair are
exacerbated by the rich inflectional morphology of
Russian. Many Russian word forms express gram-
matical distinctions that are either absent from En-
glish translations (like grammatical gender) or are
expressed by different means (like grammatical
function being expressed through syntactic config-
uration rather than case). We adopt the widely-
used approach of simplifying morphologically-
complex source forms to remove distinctions that
we believe to be redundant. Our method is simi-
lar to that of Weller et al. (2013) except that ours
is much more conservative (in their experiments,
Weller et al. (2013) found morphological reduc-
tion to harm translation indicating that useful in-
formation was likely to have been discarded).

We used TreeTagger (Schmid, 1994) to obtain
a lemma-tag pair for each Russian word. The tag
specifies the word class and various morphosyn-
tactic feature values. For example, the adjective
республиканская (‘republican’) gets the lemma-
tag pair республиканский + Afpfsnf, where
the code A indicates the word class and the re-
maining codes indicate values for the type, degree,
gender, number, case, and definiteness features.

Like Weller et al. (2013), we selectively re-
placed surface forms with their lemmas and re-
duced tags, reducing tags through feature dele-
tion. We restricted morphological reduction to ad-
jectives and verbs, leaving all other word forms
unchanged. Table 11 shows the features that
were deleted. We focused on contextual inflec-
tion, making the assumption that inflectional dis-
tinctions required by agreement alone were the
least likely to be useful for translation (since the
same information was marked elsewhere in the
sentence) and also the most likely to be the source
of ‘spurious’ variation.

Table 12 shows the BLEU scores for Russian-
English with transliteration and morphological re-
duction. The effect of transliteration was smaller
than for Hindi-English, as might be expected from
the lower baseline OOV rate. 1-gram precision in-
creased from 57.1% to 57.6% for devtest and from
62.9% to 63.6% for test. Morphological reduction
decreased the initial OOV rates by 3.5% and 4.1%

Adjective Verb
Type 7 Type 7

Degree 3 VForm 3

Gender 7 Tense 3

Number 7 Person 3

Case 7 Number 3

Definiteness 7 Gender 7

Voice 3

Definiteness 7

Aspect 3

Case 3

Table 11: Feature values that are retained (3)
or deleted (7) during morphological reduction of
Russian.

BLEU

system devtest test
baseline 23.3 29.7
+ transliteration 23.7 30.3
+ morphological reduction 23.8 30.3

Table 12: Russian to English results on the devtest
(newstest2013) and test (newstest2014) sets.

on the devtest and filtered test sets. After both
morphological and transliteration the 1-gram pre-
cisions for devtest and test were 57.7% and 63.8%.

9 Conclusion

We have described Edinburgh’s syntax-based sys-
tems in the WMT 2014 shared translation task.
Building upon the already-strong string-to-tree
systems developed for previous years’ shared
translation tasks, we have achieved substantial im-
provements over our baseline setup: we improved
translation into German through target-side com-
pound splitting, morphosyntactic constraints, and
refinements to parse tree annotation; we have ad-
dressed unknown words using transliteration (for
Hindi and Russian) and morphological reduction
(for Russian); and we have improved our German-
English system through tree binarization.
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Abstract

This paper describes the DCU-Lingo24
submission to WMT 2014 for the Hindi-
English translation task. We exploit
miscellaneous methods in our system,
including: Context-Informed PB-SMT,
OOV Word Conversion (OWC), Multi-
Alignment Combination (MAC), Oper-
ation Sequence Model (OSM), Stem-
ming Align and Normal Phrase Extraction
(SANPE), and Language Model Interpola-
tion (LMI). We also describe various pre-
processing steps we tried for Hindi in this
task.

1 Introduction

This paper describes the DCU-Lingo24 submis-
sion to WMT 2014 for the Hindi-English transla-
tion task.

All our experiments on WMT 2014 are built
upon the Moses phrase-based model (PB-SMT)
(Koehn et al., 2007) and tuned with MERT
(Och, 2003). Starting from this baseline system,
we exploit various methods including Context-
Informed PB-SMT (CIPBSMT), zero-shot learn-
ing (Palatucci et al., 2009) using neural network-
based language modelling (Bengio et al., 2000;
Mikolov et al., 2013) for OOV word conversion,
various lexical reordering models (Axelrod et al.,
2005; Galley and Manning, 2008), various Mul-
tiple Alignment Combination (MAC) (Tu et al.,
2012), Operation Sequence Model (OSM) (Dur-
rani et al., 2011) and Language Model Interpola-
tion(LMI).

In the next section, the preprocessing steps are
explained. In Section 3 a detailed explanation of
the technique we exploit is provided. Then in Sec-
tion 4, we provide our experimental results and re-
sultant discussion.

2 Pre-processing Steps

We use all the training data provided for Hindi–
English translation. Following Bojar et al. (2010),
we apply a number of normalisation methods on
the Hindi corpus. The HindEnCorp parallel cor-
pus compiles several sources of parallel data. We
observe that the source-side (Hindi) of the TIDES
data source contains font-related noise, i.e. many
Hindi sentences are a mixture of two different en-
codings: UTF-81 and WX2 notations. We pre-
pared a WX-to-UTF-8 font conversion script for
Hindi which converts all WX encoded characters
into UTF-8, thus removing all WX encoding ap-
pearing in the TIDES data.

We also observe that a portion of the English
training corpus contained the following bracket-
like sequences of characters: -LRB-, -LSB-, -
LCB-, -RRB-, -RSB-, and -RCB-.3 For consis-
tency, those character sequences in the training
data were replaced by the corresponding brackets.

For English – both monolingual and the target
side of the bilingual data – we perform tokeniza-
tion, normalization of punctuation, and truecasing.
For parallel training data, we filter sentences pairs
containing more than 80 tokens on either side and

1http://en.wikipedia.org/wiki/UTF-8
2http://en.wikipedia.org/wiki/WX_notation
3The acronyms stand for (Left|Right)

(Round|Square|Curly) Bracket.
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sentence pairs with length difference larger than 3
times.

3 Techniques Deployed

3.1 Combination of Various Lexical
Reordering Model (LRM)

Clearly, Hindi and English have quite different
word orders, so we adopt three lexical reordering
models to address this problem. They are word-
based LRM and phrase-based LRM, which mainly
focus on local reordering phenomena, and hierar-
chical phrase-based LRM, which mainly focuses
on longer distance reordering (Galley and Man-
ning, 2008).

3.2 Operation Sequence Model
The Operation Sequence Model (OSM) of Dur-
rani et al. (2011) defines four translation opera-
tions: Generate(X,Y), Continue Source Concept,
Generate Source Only (X) and Generate Identical,
as well as three reordering operations: Insert Gap,
Jump Back(W) and Jump Forward.

The probability of an operation sequence O =
(o1o2 · · · oJ) is calculated as in (1):

p(O) =
J∏

j=1

p(oj |oj−n+1 · · · oj−1) (1)

where n indicates the number of previous opera-
tions used.

We employ a 9-order OSM in our framework.

3.3 Language Model Interpolation (LMI)
We build a large language model by including data
from the English Gigaword fifth edition, the En-
glish side of the UN corpus, the English side of the
109 French–English corpus and the English side of
the Hindi–English parallel data provided by the or-
ganisers. We interpolate language models trained
using each dataset, with the monolingual data pro-
vided split into three parts (news 2007-2013, Eu-
roparl (?) and news commentary) and the weights
tuned to minimize perplexity on the target side of
the devset.

The language models in our systems are trained
with SRILM (Stolcke, 2002). We train a 5-gram
model with Kneser-Ney discounting (Chen and
Goodman, 1996).

3.4 Context-informed PB-SMT
Haque et al. (2011) express a context-dependent
phrase translation as a multi-class classification

problem, where a source phrase with given addi-
tional context information is classified into a dis-
tribution over possible target phrases. The size of
this distribution needs to be limited, and would
ideally omit irrelevant target phrase translations
that the standard PB-SMT (Koehn et al., 2003) ap-
proach would normally include. Following Haque
et al. (2011), we derive a context-informed feature
ĥmbl that is expressed as the conditional probabil-
ity of the target phrase êk given the source phrase
f̂k and its context information (CI), as in (2):

ĥmbl = log P(êk|f̂k,CI(f̂k)) (2)

Here, CI may include any feature that can pro-
vide useful information to disambiguate the given
source phrase. In our experiment, we use CCG su-
pertag (Steedman, 2000) as a contextual features.
CCG supertag expresses the specific syntactic be-
haviour of a word in terms of the arguments it
takes, and more generally the syntactic environ-
ment in which it appears.

We consider the CCG supertags of the context
words, as well as of the focus phrase itself. In our
model, the supertag of a multi-word focus phrase
is the concatenation of the supertags of the words
composing that phrase. We generate a window
of size 2l + 1 features (we set l:=2), including
the concatenated complex supertag of the focus
phrase. Accordingly, the supertag-based contex-
tual information (CIst) is described as in (3):

CIst(f̂k) = {st(fik−l), ..., st(fik−1), st(f̂k),
st(fjk+1), ..., st(fjk+l)}

(3)

For the Hindi-to-English translation task, we use
part-of-speech (PoS) tags4 of the source phrase
and the neighbouring words as the contextual fea-
ture, owing to the fact that supertaggers are readily
available only for English.

We use a memory-based machine learning
(MBL) classifier (TRIBL: (Daelemans, 2005))5

that is able to estimate P(êk|f̂k,CI(f̂k)) by
similarity-based reasoning over memorized
nearest-neighbour examples of source–target
phrase translations. Thus, we derive the feature
ĥmbl defined in Equation (2). In addition to ĥmbl,

4In order to obtain PoS tags of Hindi words,
we used the LTRC shallow parser for Hindi from
http://ltrc.iiit.ac.in/analyzer/hindi/shallow-parser-hin-
4.0.fc8.tar.gz.

5An implementation of TRIBL is freely available as part
of the TiMBL software package, which can be downloaded
from http://ilk.uvt.nl/timbl.
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we derive a simple two-valued feature ĥbest,
defined in Equation (4):

ĥbest =

{
1 if êk maximizes P(êk|f̂k,CI(f̂k))
u 0 otherwise

(4)
where ĥbest is set to 1 when êk is one of the tar-
get phrases with highest probability according to
P(êk|f̂k,CI(f̂k)) for each source phrase f̂k; oth-
erwise ĥbest is set to 0.000001. We performed ex-
periments by integrating these two features ĥmbl

and ĥbest directly into the log-linear model of
Moses. Their weights are optimized using mini-
mum error-rate training (MERT)(Och, 2003) on a
held-out development set for each of the experi-
ments.

3.5 Morphological Segmentation

Haque et al. (2012) applied a morphological suffix
separation process in a Bengali-to-English trans-
lation task and showed that suffix separation sig-
nificantly reduces data sparseness in the Bengali
corpus. They also showed an SMT model trained
on the suffix-stripped training data significantly
outperforms the state-of-the-art PB-SMT baseline.
Like Bengali, Hindi is a morphologically very rich
and highly inflected Indian language. As done
previously for Bengali-to-English (Haque et al.,
2012), we employ a suffix-stripping method for
lemmatizing inflected Hindi words in the WMT
Hindi-to-English translation task. Following Das-
gupta and Ng (2006), we developed an unsu-
pervised morphological segmentation method for
Hindi. We also used a Hindi lightweight stem-
mer (Ramanathan and Rao, 2003) in order to pre-
pare a training corpus with only Hindi stems. We
prepared Hindi-to-English SMT systems on the
both types of training data (i.e. suffix-stripped and
stemmed).6

3.6 Multi-Alignment Combination (MAC)

Word alignment is a critical component of MT
systems. Various methods for word alignment
have been proposed, and different models can pro-
duce signicantly different outputs. For example,
Tu et al. (2012) demonstrates that the alignment
agreement between the two best-known alignment
tools, namely Giza++(Och and Ney, 2003) and

6Suffixes were separated and completely removed from
the training data.

the Berkeley aligner7 (Liang et al., 2006), is be-
low 70%. Taking into consideration the small size
of the the corpus, in order to extract more ef-
fective phrase tables, we concatenate three align-
ments: Giza++ with grow-diag-final-and, Giza++
with intersection, and that derived from the Berke-
ley aligner.

3.7 Stemming Alignment and Normal Phrase
Extraction (SANPE)

The rich morphology of Hindi will cause word
alignment sparsity, which results in poor align-
ment quality. Furthermore, word stemming on
the Hindi side usually results in too many English
words being aligned to one stemmed Hindi word,
i.e. we encounter the problem of phrase over-
extraction. Therefore, we conduct word alignment
with the stemmed version of Hindi, and then at
the phrase extraction step, we replace the stemmed
form with the original Hindi form.

3.8 OOV Word Conversion Method

Our algorithm for OOV word conversion uses the
recently developed zero-shot learning (Palatucci
et al., 2009) using neural network language mod-
elling (Bengio et al., 2000; Mikolov et al., 2013).
The same technique is used in (Okita et al., 2014).
This method requires neither parallel nor compa-
rable corpora, but rather two monolingual corpora.
In our context, we prepare two monolingual cor-
pora on both sides, which are neither parallel nor
comparable, and a small amount of already known
correspondences between words on the source and
target sides (henceforth, we refer to this as the
‘dictionary’). Then, we train both sides with the
neural network language model, and use a contin-
uous space representation to project words to each
other on the basis of a small amount of correspon-
dences in the dictionary. The following algorithm
shows the steps involved:

1. Prepare the monolingual source and target
sentences.

2. Prepare the dictionary which consists of U
entries of source and target sentences com-
prising non-stop-words.

3. Train the neural network language model on
the source side and obtain the real vectors of
X dimensions for each word.

7http://code.google.com/p/berkeleyaligner/
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4. Train the neural network language model on
the target side and obtain the real vectors of
X dimensions for each word.

5. Using the real vectors obtained in the above
steps, obtain the linear mapping between the
dictionary items in two continuous spaces us-
ing canonical component analysis (CCA).

In our experiments we use U the same as the en-
tries of Wiki corpus, which is provided among
WMT14 corpora, and X as 50. The resulted pro-
jection by this algorithm can be used as the OOV
word conversion which projects from the source
language which among OOV words into the tar-
get language. The overall algorithm which uses
the projection which we build in the above step is
shown in the following.

1. Collect unknown words in the translation out-
puts.

2. Do Hindi named-entity recognition (NER) to
detect noun phrases.

3. If they are noun phrases, do the projection
from each unknown word in the source side
into the target words (We use the projection
prepared in the above steps). If they are not
noun phrases, run the transliteration to con-
vert each of them.

We perform Hindi NER by training CRF++ (Kudo
et al., 2004) using the Hindi named entity corpus,
and use the Hindi shallow parser (Begum et al.,
2008) for preprocessing of the inputs.

4 Results and Discussion

4.1 Data

We conduct our experiments on the standard
datasets released in the WMT14 shared translation
task. We use HindEnCorp8 (Bojar et al., 2014)
parallel corpus for MT system building. We also
used the CommonCrawl Hindi monolingual cor-
pus (Bojar et al., 2014) in order to build an addi-
tional language model for Hindi.

For the Hindi-to-English direction, we also em-
ployed monolingual English data used in the other
translation tasks for building the English language
model.

8http://ufallab.ms.mff.cuni.cz/ bojar/hindencorp/

4.2 Moses Baseline

We employ a standard Moses PB-SMT model as
our baseline. The Hindi side is preprocessed but
unstemmed. We use Giza++ to perform word
alignment, the phrase table is extracted via the
grow-diag-final-and heuristic and the max-phrase-
length is set to 7.

4.3 Automatic Evaluation

Experiments BLEU
Moses Baseline 8.7
Context-Based 9.4
Context-Based + CommonCrawl LM 11.4

Table 1: BLEU scores of the English-to-Hindi MT
Systems on the WMT test set.

Experiments BLEU
Moses Baseline 10.1
Context-Based 10.1
Suffix-Stripped 10.0
OWC 11.2
OSM 10.3
Three LRMs 10.5
MAC 10.7
SANPE 10.6
LMI 10.9
LMI+SANPE+MAC+ThreeLRMs+OSM 11.7

Table 2: BLEU scores of the Hindi-to-English MT
Systems on the WMT test set.

We prepared a number of MT systems for both
English-to-Hindi and Hindi-to-English, and sub-
mitted their runs in the WMT 2014 Evaluation
Matrix. The BLEU scores of the different English-
to-Hindi MT systems (Moses Baseline, Context-
Based (CCG) MT system, and Context-Based
(CCG) MT system with an additional LM built
on the CommonCrawl Hindi monolingual corpus
(Bojar et al., 2014)) on the WMT 2014 English-
to-Hindi test set are reported in Table 1. As can
be seen from Table 1, Context-Based (CCG) MT
system produces 0.7 BLEU points improvement
(8.04% relative) over the Moses Baseline. When
we add an additional large LM built on the Com-
monCrawl data to the Context-Based (CCG) MT
system, we achieved a 2 BLEU-point improve-
ment (21.3% relative) (cf. last row in Table 1) over
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the Context-Based (CCG) MT system.9

The BLEU scores of the different Hindi-to-
English MT systems on the WMT 2014 Hindi-
to-English test set are reported in Table 2. The
first row of Table 2 shows the BLEU score for
the Baseline MT system. We note that the per-
formance of the Context-Based (PoS) MT system
obtains identical performance to the Moses base-
line (10.1 BLEU points) on the WMT 2014 Hindi-
to-English test set.

We employed a source language (Hindi) nor-
malisation technique, namely suffix separation,
but unfortunately this did not bring about any
improvement for the Hindi-to-English translation
task. The improvement gained by individually
employing OSM, three lexical reordering mod-
els, Multi-alignment Combination, Stem-align and
normal Phrase Extraction and Language Model In-
terpolation can be seen in Table 2. Our best sys-
tem is achieved by combining OSM, Three LMR,
MAC, SANPE and LMI, which results in a 1.6
BLEU point improvement over the Baseline.
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Abstract

This paper presents the participation of
the Charles University team in the WMT
2014 Medical Translation Task. Our sys-
tems are developed within the Khresmoi
project, a large integrated project aim-
ing to deliver a multi-lingual multi-modal
search and access system for biomedical
information and documents. Being in-
volved in the organization of the Medi-
cal Translation Task, our primary goal is
to set up a baseline for both its subtasks
(summary translation and query transla-
tion) and for all translation directions.
Our systems are based on the phrase-
based Moses system and standard meth-
ods for domain adaptation. The con-
strained/unconstrained systems differ in
the training data only.

1 Introduction

The WMT 2014 Medical Translation Task poses
an interesting challenge for Machine Translation
(MT). In the “standard” translation task, the end
application is the translation itself. In the Medi-
cal Translation Task, the MT system is considered
a part of a larger system for Cross-Lingual Infor-
mation Retrieval (CLIR) and is used to solve two
different problems: (i) translation of user search
queries, and (ii) translation of summaries of re-
trieved documents.

In query translation, the end user does not even
necessarily see the MT output as their queries are
translated and search is performed on documents
in the target language. In summary translation, the
sentences to be translated come from document
summaries (snippets) displayed to provide infor-
mation on each of the documents retrieved by the

search. Therefore, translation quality may not be
the most important measure in this task – the per-
formance of the CLIR system as a whole is the
final criterion. Another fundamental difference
from the standard task is the nature of the trans-
lated texts. While we can consider document sum-
maries to be ordinary texts (despite their higher in-
formation density in terms of terminology from a
narrow domain), search queries in the medical do-
main are an extremely specific type of data, and
traditional techniques for system development and
domain adaptation are truly put to a test here.

This work is a part of the of the large integrated
EU-funded Khresmoi project.1 Among other
goals, such as joint text and image retrieval of ra-
diodiagnostic records, Khresmoi aims to develop
technology for transparent cross-lingual search of
medical sources for both professionals and laypeo-
ple, with the emphasis primarily on publicly avail-
able web sources.

In this paper, we describe the Khresmoi sys-
tems submitted to the WMT 2014 Medical Trans-
lation Task. We participate in both subtasks (sum-
mary translation and query translation) for all
language pairs (Czech–English, German–English,
and French–English) in both directions (to English
and from English). Our systems are based on the
Moses phrase-based translation toolkit and stan-
dard methods for domain adaptation. We submit
one constrained and one unconstrained system for
each subtask and translation direction. The con-
strained and unconstrained systems differ in train-
ing data only: The former use all allowed training
data, the latter take advantage of additional web-
crawled data.

We first summarize previous works in MT do-
main adaptation in Section 2, then describe the
data we used for our systems in Section 3. Sec-

1http://www.khresmoi.eu/
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tion 4 contains an account of the submitted sys-
tems and their performance in translation of search
queries and document summaries. Section 5 con-
cludes the paper.

2 Related work

To put our work in the context of other approaches,
we first describe previous work on domain adap-
tation in Statistical Machine Translation (SMT),
then focus specifically on SMT in the medical do-
main.

2.1 Domain adaptation of Statistical machine
translation

Many works on domain adaptation examine the
usage of available in-domain data to directly im-
prove in-domain performance of SMT. Some au-
thors attempt to combine the predictions of two
separate (in-domain and general-domain) transla-
tion models (Langlais, 2002; Sanchis-Trilles and
Casacuberta, 2010; Bisazza et al., 2011; Nakov,
2008) or language models (Koehn and Schroeder,
2007). Wu and Wang (2004) use in-domain data
to improve word alignment in the training phase.
Carpuat et al. (2012) explore the possibility of us-
ing word sense disambiguation to discriminate be-
tween domains.

Other approaches concentrate on the acquisition
of larger in-domain corpora. Some of them ex-
ploit existing general-domain corpora by select-
ing data that resemble the properties of in-domain
data (e.g., using cross-entropy), thus building a
larger pseudo-in-domain training corpus. This
technique is used to adapt language models (Eck
et al., 2004b; Moore and Lewis, 2010) as well as
translation models (Hildebrand et al., 2005; Axel-
rod et al., 2011) or their combination (Mansour et
al., 2011). Similar approaches to domain adapta-
tion are also applied in other tasks, e.g., automatic
speech recognition (Byrne et al., 2004).

2.2 Statistical machine translation in the
medical domain

Eck et al. (2004a) employ an SMT system for the
translation of dialogues between doctors and pa-
tients and show that according to automatic met-
rics, a dictionary extracted from the Unified Medi-
cal Language System (UMLS) Metathesaurus and
its semantic type classification (U.S. National Li-
brary of Medicine, 2009) significantly improves
translation quality from Spanish to English when

applied to generalize the training data.
Wu et al. (2011) analyze the quality of MT on

PubMed2 titles and whether it is sufficient for pa-
tients. The conclusions are very positive espe-
cially for languages with large training resources
(English, Spanish, German) – the average fluency
and content scores (based on human evaluation)
are above four on a five-point scale. In automatic
evaluation, their systems substantially outperform
Google Translate. However, the SMT systems are
specifically trained, tuned, and tested on the do-
main of PubMed titles, and it is not evident how
they would perform on other medical texts.

Costa-jussà et al. (2012) are less optimistic re-
garding SMT quality in the medical domain. They
analyze and evaluate the quality of public web-
based MT systems (such as Google Translate) and
conclude that in both automatic and manual eval-
uation (on 7 language pairs), the performance of
these systems is still not good enough to be used
in daily routines of medical doctors in hospitals.

Jimeno Yepes et al. (2013) propose a method
for obtaining in-domain parallel corpora from ti-
tles and abstracts of publications in the MED-
LINE3 database. The acquired corpora contain
from 30,000 to 130,000 sentence pairs (depending
on the language pair) and are reported to improve
translation quality when used for SMT training,
compared to a baseline trained on out-of-domain
data. However, the authors use only one source
of in-domain parallel data to adapt the translation
model, and do not use any in-domain monolingual
data to adapt the language model.

In this work, we investigate methods combining
the different kinds of data – general-domain, in-
domain, and pseudo-in-domain – to find the opti-
mal approach to this problem.

3 Data description

This section includes an overview of the parallel
and monolingual data sources used to train our
systems. Following the task specification, they
are split into constrained and unconstrained sec-
tions. The constrained section includes medical-
domain data provided for this task (extracted by
the provided scripts), and general-domain texts
provided as constrained data for the standard task
(“general domain” here is used to denote data

2http://www.ncbi.nlm.nih.gov/pubmed/
3http://www.nlm.nih.gov/pubs/

factsheets/medline.html
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Czech–English German–English French–English
dom set pairs source target pairs source target pairs source target
med con 2,498 18,126 19,964 4,998 123,686 130,598 6,139 202,245 171,928
gen con 15,788 226,711 260,505 4,520 112,818 119,404 40,842 1,470,016 1,211,516
gen unc – – – 9,320 525,782 574,373 13,809 961,991 808,222

Table 1: Number of sentence pairs and tokens (source/target) in parallel training data (in thousands).

dom set English Czech German French
med con 172,991 1,848 63,499 63,022
gen con 6,132,107 627,493 1,728,065 1,837,457
med unc 3,275,272 36,348 361,881 908,911
gen unc 618,084 – 339,595 204,025

Table 2: Number of tokens in monolingual training data (in thousands).

which comes from a mixture of various different
domains, mostly news, parliament proceedings,
web-crawls, etc.). The unconstrained section con-
tains automatically crawled data from medical and
health websites and non-medical data from patent
collections.

3.1 Parallel data

The parallel data summary is presented in Table 1.
The main sources of the medical-domain data

for all the language pairs include the EMEA cor-
pus (Tiedemann, 2009), the UMLS metathesaurus
of health and biomedical vocabularies and stan-
dards (U.S. National Library of Medicine, 2009),
and bilingual titles of Wikipedia articles belonging
to the categories identified to be medical domain.
Additional medical-domain data comes from the
MAREC patent collection: PatTR (Wäschle and
Riezler, 2012) available for DE–EN and FR–EN,
and COPPA (Pouliquen and Mazenc, 2011) for
FR–EN (only patents from the medical categories
A61, C12N, and C12P are allowed in the con-
strained systems).

The constrained general-domain data include
three parallel corpora for all the language pairs:
CommonCrawl (Smith et al., 2013), Europarl ver-
sion 6 (Koehn, 2005), the News Commentary cor-
pus (Callison-Burch et al., 2012). Further, the con-
strained data include CzEng (Bojar et al., 2012)
for CS–EN and the UN corpus for FR–EN.

For our unconstrained experiments, we also em-
ploy parallel data from the non-medical patents
from the PatTR and COPPA collections (other cat-
egories than A61, C12N, and C12P).

3.2 Monolingual data

The monolingual data is summarized in Table 2.
The main sources of the medical-domain mono-

lingual data for all languages involve Wikipedia
pages, UMLS concept descriptions, and non-
parallel texts extracted from the medical patents
of the PatTR collections. For English, the main
source is the AACT collection of texts from Clin-
icalTrials.gov. Smaller resources include: Drug-
Bank (Knox et al., 2011), GENIA (Kim et al.,
2003), FMA (Rosse and Mejino Jr., 2008), GREC
(Thompson et al., 2009), and PIL (Bouayad-Agha
et al., 2000).

In the unconstrained systems, we use additional
monolingual data from web pages crawled within
the Khresmoi project: a collection of about one
million HON-certified4 webpages in English re-
leased as the test collection for the CLEF 2013
eHealth Task 3 evaluation campaign,5 additional
web-crawled HON-certified pages (not publicly
available), and other webcrawled medical-domain
related webpages.

The constrained general-domain resources in-
clude: the News corpus for CS, DE, EN, and FR
collected for the purpose of the WMT 2014 Stan-
dard Task, monolingual parts of the Europarl and
News-Commentary corpora, and the Gigaword for
EN and FR.

For the FR–EN and DE–EN unconstrained sys-
tems, the additional general domain monolingual
data is taken from monolingual texts of non-
medical patents in the PatTR collection.

4https://www.hon.ch/
5https://sites.google.com/site/

shareclefehealth/
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Figure 1: Distribution of the domain-specificity
scores in the English–French parallel data sets.

3.3 Data preprocessing

The data consisting of crawled web pages, namely
CLEF, HON, and non-HON, needed to be cleaned
and transformed into a set of sentences. The
Boilerpipe (Kohlschütter et al., 2010) and Justext
(Pomikálek, 2011) tools were used to remove boil-
erplate texts and extract just the main content from
the web pages. The YALI language detection tool
(Majliš, 2012) trained on both in-domain and gen-
eral domain data then filtered out those cleaned
pages which were not identified as written in one
of the concerned languages.

The rest of the preprocessing procedure was ap-
plied to all the datasets mentioned above, both
parallel and monolingual. The data were tok-
enized and normalized by converting or omit-
ting some (mostly punctuation) characters. A
set of language-dependent heuristics was applied
in an attempt to restore and normalize the open-
ing/closing quotation marks, i.e. convert "quoted"
to “quoted” (Zeman, 2012). The motivation here
is twofold: First, we hope that paired quota-
tion marks could occasionally work as brackets
and better denote parallel phrases for Moses; sec-
ond, if Moses learns to output directed quotation
marks, the subsequent detokenization will be eas-
ier. For all systems which translate from German,
decompounding is employed to reduce source-side
data sparsity. We used BananaSplit for this task
(Müller and Gurevych, 2006).

We perform all training and internal evaluation
on lowercased data; we trained recasers to post-
process the final submissions.
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Figure 2: Distribution of the domain-specificity
scores in the French monolingual data sets.

4 Submitted systems

We first describe our technique of psedo-in-
domain data selection in Section 4.1, then com-
pare two methods of combining the selected data
in Section 4.2. This, along with using constrained
and unconstrained data sets to train the systems
(see Section 3), amounts to a total of four system
variants submitted for each task. A description of
the system settings used is given in Section 4.3.

4.1 Data selection

We follow an approach originally proposed for
selection of monolingual sentences for language
modeling (Moore and Lewis, 2010) and its modi-
fication applied to selection of parallel sentences
(Axelrod et al., 2011). This technique assumes
two language models for sentence scoring, one
trained on (true) in-domain text and one trained
on (any) general-domain text in the same lan-
guage (e.g., English). For both data domains
(general and medical), we score each sentence
by the difference of its cross-perplexity given the
in-domain language model and cross-perplexity
given the general-domain language model (in this
order). We only keep sentences with a negative
score in our data, assuming that these are the
most “medical-like”. Visualisation of the domain-
specificity scores (cross-perplexity difference) in
the FR–EN parallel data and FR monolingual data
is illustrated in Figures 1 and 2, respectively.6 The
scores (Y axis) are presented for each sentence in
increasing order from left to right (X axis).

6For the medical domain, constrained and unconstrained
parallel data are identical.
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cs→en de→en en→cs en→de en→fr fr→en
con concat 33.64±1.14 32.84±1.24 18.10±0.94 18.29±0.92 33.39±1.11 36.71±1.17
con interpol 32.94±1.11 32.31±1.20 18.96±0.93 18.41±0.93 34.06±1.11 37.42±1.21
unc concat 34.10±1.11 34.52±1.20 21.12±1.03 19.76±0.92 36.23±1.03 38.15±1.16
unc interpol 34.48±1.16 34.92±1.17 22.15±1.06 20.81±0.95 36.26±1.13 37.91±1.13

Table 3: BLEU scores of summary translations.

cs→en de→en en→cs en→de en→fr fr→en
con concat 30.87±4.70 33.21±5.03 23.25±4.85 17.72±4.75 28.64±3.77 35.56±4.94
con interpol 32.46±5.05 33.74±4.97 21.56±4.80 16.90±4.39 29.34±3.73 35.28±5.26
unc concat 34.88±5.04 31.24±5.59 22.61±4.91 19.13±5.66 33.08±3.80 36.73±4.88
unc interpol 33.82±5.16 34.19±5.27 23.93±5.16 15.87±11.31 31.19±3.73 40.25±5.14

Table 4: BLEU scores of query translations.

The two language models for sentence scoring
are trained with a restricted vocabulary extracted
from the in-domain training data as words occur-
ring at least twice (singletons and other words are
treated as out-of-vocabulary). In our experiments,
we apply this technique to select both monolin-
gual data for language models and parallel data
for translation models. Selection of parallel data
is based on the English side only. The in-domain
models are trained on the monolingual data in the
target language (constrained or unconstrained, de-
pending on the setting). The general-domain mod-
els are trained on the WMT News data.

Compared to the approach of Moore and Lewis
(2010) and Axelrod et al. (2011), we prune the
model vocabulary more aggressively – we discard
not only the singletons, but also all words with
non-Latin characters, which helps clean the mod-
els from noise introduced by the automatic process
of data acquisition by web crawling.

4.2 Data combination

For both parallel and monolingual data, we obtain
two data sets after applying the data selection:

• “medical-like” data from the medical domain

• “medical-like” data from the general domain.

For each language pair and for each system
type (constrained/unconstrained), we submitted
two system variants which differ in how the se-
lected data are combined. The first variant uses
a simple concatenation of the two datasets both
for parallel data and for language model data. In
the second variant, we train separate models for

each section and use linear interpolation to com-
bine them into a single model. For language mod-
els, we use the SRILM linear interpolation feature
(Stolcke, 2002). We interpolate phrase tables us-
ing Tmcombine (Sennrich, 2012). In both cases,
the held-out set for minimizing the perplexity is
the system development set.

4.3 System details

We compute word alignment on lowercase 4-cha-
racter stems using fast align (Dyer et al., 2013).
We create phrase tables using the Moses toolkit
(Koehn et al., 2007) with standard settings. We
train 5-gram language models on the target-side
lowercase forms using SRILM. We use MERT
(Och, 2003) to tune model weights in our systems
on the development data provided for the task.

The only difference between the system variants
for query and summary translation is the tuning
set. In both cases, we use the respective sets pro-
vided offcially for the shared task.

4.4 Results

Tables 3 and 4 show case-insensitive BLEU scores
of our systems.7 As expected, the unconstrained
systems outperform the constrained ones. Linear
interpolation outperforms data concatenation quite
reliably across language pairs for summary trans-
lation. While the picture for query translation is
similar, there is more variance in the results, so
we cannot state that interpolation definitely works

7As we use the same recasers for both summary and query
translation, our systems are heavily penalized for wrong let-
ter case in query translation. However, letter case is not taken
into account in most CLIR systems. All BLEU scores re-
ported in this paper will be case-insensitive for this reason.
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better in this case. This is due to the sizes of the
development and test sets and most importantly
due to sentence lengths – queries are very short,
making BLEU unreliable, MERT unstable, and
bootstrap resampling intervals wide.

If we compare our score to the other competi-
tors, we are clearly worse than the best systems for
summary translation. From this perspective, our
data filtering seems overly eager (i.e., discarding
all sentence pairs with a positive perplexity differ-
ence). An experiment which we leave for future
work is doing one more round of interpolation to
combine a model trained on the data with negative
perplexity with models trained on the remainder.

5 Conclusions

We described the Charles University MT system
used in the Shared Medical Translation Task of
WMT 2014. Our primary goal was to set up a
baseline for both the subtasks and all translation
directions. The systems are based on the Moses
toolkit, pseudo-in-domain data selection based on
perplexity difference and two different methods of
in-domain and out-of-domain data combination:
simple data concatenation and linear model inter-
polation.

We report results of constrained and uncon-
strained systems which differ in the training data
only. In most experiments, using additional data
improved the results compared to the constrained
systems and using linear model interpolation out-
performed data concatenation. While our systems
are on par with best results for case-insensitive
BLEU score in query translation, our overly ea-
ger data selection techniques caused lower scores
in summary translation. In future work, we plan
to include a special out-of-domain model in our
setup to compensate for this problem.
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Canada. ACL.
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M. Majliš. 2012. Yet another language identifier. In
Proceedings of the Student Research Workshop at
the 13th Conference of the European Chapter of the
Association for Computational Linguistics, pages
46–54, Avignon, France. ACL.

S. Mansour, J. Wuebker, and H. Ney. 2011. Com-
bining translation and language model scoring for
domain-specific data filtering. In International
Workshop on Spoken Language Translation, pages
222–229, San Francisco, CA, USA. ISCA.

R. C. Moore and W. Lewis. 2010. Intelligent selection
of language model training data. In Proceedings of
the ACL 2010 Conference Short Papers, pages 220–
224, Uppsala, Sweden. ACL.

C. Müller and I. Gurevych. 2006. Exploring the po-
tential of semantic relatedness in information re-
trieval. In LWA 2006 Lernen – Wissensentdeck-
ung – Adaptivität, 9.-11.10.2006, Hildesheimer In-
formatikberichte, pages 126–131, Hildesheim, Ger-
many. Universität Hildesheim.

P. Nakov. 2008. Improving English–Spanish statistical
machine translation: Experiments in domain adapta-
tion, sentence paraphrasing, tokenization, and recas-
ing. In Proceedings of the Third Workshop on Statis-
tical Machine Translation, pages 147–150, Colum-
bus, OH, USA. ACL.

F. J. Och. 2003. Minimum error rate training in statis-
tical machine translation. In ACL ’03: Proceedings
of the 41st Annual Meeting on Association for Com-
putational Linguistics, pages 160–167, Morristown,
NJ, USA. ACL.
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Abstract 

This short paper presents a system description 
for intrinsic evaluation of the WMT 14’s med-
ical text translation task. Our systems consist 
of phrase-based statistical machine translation 
system and query translation system between 
German-English language pairs. Our work fo-
cuses on the query translation task and we 
achieved the highest BLEU score among the 
all submitted systems for the English-German 
intrinsic query translation evaluation.  

1 Overview 

The goal of WMT14’s medical text translation 
task is investigation of capability of machine 
translation (MT) technologies when it is applied 
to translating texts and query terms in medical 
domain. In our work, we focus on its application 
on cross-lingual information retrieval (CLIR) 
and evaluation of query translation task. 

CLIR techniques aim to increase the accessi-
bility of web documents written by foreign lan-
guage. One of the key techniques of cross-lingual 
IR is query translation, which aims to translate 
the input query into relevant terms in target lan-
guage.  

One way to translate queries is dictionary-
based query translation. However, an input query 
usually consists of multiple terms, which cause 
low coverage of bilingual dictionary. Alternative 
way is translating queries using statistical ma-
chine translation (SMT) system. However, trans-
lation model could contain some noise that is 
meaningless translation. The goal of our method 
is to overcome the shortcomings of these ap-
proaches by a heuristic hybrid approach.  

As a baseline, we use phrase-based statistical 
machine translation (PBSMT) (Koehn, Och, & 
Marcu, 2003) techniques to handle queries that 
consist of multiple terms. To identify multiple 
terms in a query, we analyze three cases of the 
formation of queries and generate query transla-
tion candidates using term-to-term dictionaries 
and PBSMT system, and then score these candi-

dates using co-occurrence word frequency meas-
ure to select the best candidate.  

We have done experiment on two language 
pairs 

• English-German 

• German-English 

The rest of parts in this paper are organized as 
following: section 2 describes the techniques and 
system settings used in our experiment, section 3 
presents used corpus and experiment result, and 
section 4 shows a brief conclusion of our work.  

2 Method 

2.1 Phrase-based machine translation sys-
tem 

The phrase-based statistical machine translation 
system is implemented using MOSE’S toolkits 
(Koehn et al., 2007). Bidirectional word align-
ments were built by MGIZA 1 , a multi-thread 
version of GIZA++ (Och & Ney, 2003), run on a 
24 threads machine. The alignment symmetriza-
tion method is grow-diag-final-and (Koehn et al., 
2003), and lexicalized-reordering method is msd-
bidirectional-fe (Koehn et al., 2007). 

For each monolingual corpus, we used a five-
gram language model, which was built by 
IRSTLM toolkit2 (Federico, Bertoldi, & Cettolo, 
2008) with improved Kneser Ney smoothing 
(Chen & Goodman, 1996; Kneser & Ney, 1995). 
The language model was integrated as a log-
linear feature to decoder.  

All the sentences in the training, development 
and test corpus were tokenized by inserting spac-
es between words and punctuations, and then 
converted to most probable cases by truecaseing. 
Both tokenization and truecasing were done by 
embedded tools in the MOSE’S toolkits. Finally, 
all the sentences in the train corpus were cleaned 
with maximum length 80.  

1 http://www.kyloo.net/software 
2 http://sourceforge.net/projects/irstlm 
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Figure 1. Flow from queries to query translation candidates for each case. 

 
2.2 Query translation system 

In general, an input query is not a full sentence. 
Instead, most of queries contain one or more 
phrases that consist of several keywords. Fur-
thermore, in the medical domain, many key-
words are unfamiliar terminologies for general 
users. Therefore, term-to-term translation dic-
tionaries in medical domain could be useful re-
sources to translate the queries. In our experi-
ment, we used the parallel terms from Unified 
Medical Language System (UMLS) and titles of 
Wikipedia in medical domain, as the term-to-
term translation dictionary. 

First of all, if a given query is a combination 
of two or more phrases that concatenated by 
terms like comma, coordinate conjunction, then 
the given query is divided into several single 
phrases, and each of them is translated by our 
SMT system as a new single query. If the new 
query satisfies one of cases shown in Figure 1, 
then its query translation candidates are selected 
according to the corresponding case, and select 
the best one of them using proposed measures. 
Otherwise, if the new query does not satisfy any 
case, the top 1 result by our PBSMT system is 
selected as the best query translation candidate. 
Our method combines the translation results of 
single queries by following rules: 1) if the origi-

nal query consists of multiple phrases concate-
nated by functional words like coordinate con-
junctions, then the translation results are com-
bined by translated functional words, 2) if the 
original query is concatenated by punctuation, 
then the results are combined by the original 
punctuation. Finally, the final result is selected 
by comparing the result from QT system and 
PBSMT system using the co-occurrence word 
frequency measure (see Section 2.2.4). The fol-
lowing three subsections describe how we select 
translation candidate case by case. 

2.2.1 Case 1: Full matching 

If a single query exactly matches one instance in 
the dictionary, query translation candidates are 
the target-side entries in the translation diction-
ary (Case 1 in Figure 1). If a query translation 
candidate qt is a sequence of words (w1 to wn), it 
is ranked by the co-occurrence word frequency 
measure (CF) using the provided articles of Wik-
ipedia in the medical domain: 

 

,              (1) 

where freq(w1) is the frequency of a unigram w1 
in the articles; freq(wi, wi-1) is the frequency of a 
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bigram “wi wi-1” in the articles; and Nuni and Nbi is 
the sum of frequency of all unigram and bigram, 
respectively. 

2.2.2 Case 2: Full inclusion 

If a source-side entry of the term-to-term transla-
tion dictionary exactly includes a query, its query 
translation candidate is its SMT result whose all 
words appear in the target-side entry of the trans-
lation dictionary (Case 2 in Figure 1). Among the 
top 10 results by our PBSMT system, we select 
the results satisfying this case, and rank them 
using CF and our PBSMT result score 
(ScoreSMT): 

 

,  (2) 

where λ is the weight by the provided develop-
ment set; and QT is the set of query translation 
candidates for a query. 

2.2.3 Case 1: Full matching 

If the left phrase tleft or right phrase tright of a que-
ry exactly matches one instance in the dictionary, 
its query translation candidate is its SMT result 
that includes all words in the target-side entry of 
the translation dictionary (Case 3 in Figure 1). 
To rank our SMT results satisfying this case, if 
the total number of words in tleft and tright is same 
or larger than that in a query, ScoreQT is used, 
and the other case uses the weighted ScoreQT 
(WScoreQT): 

 
,  (3) 

where N(tleft) is the number of words in tleft; and q 
is a given query. 

2.2.4 Select final result 

If a query satisfies any case above, and the can-
didate with highest score is selected, then we 
compare the candidate with translation of origi-
nal query directly obtained from PBSMT system 
using equation (1). The final result would be the 
result with higher score between them.  

3 Experiment  

3.1 Corpus 

We only use constrained data provided by WMT 
2014 medical translation task.  

To train PBSMT system, we use parallel cor-
pora 

• EMEA 

• MuchMore 

• Wikipedia-titles 

• Patent-abstract, claim, title 

• UMLS 

We simply mixed up all available parallel cor-
pora to train a unique translation model.  

And for English-German language pair we use 
monolingual corpora 

• Wikipedia-articles 

• Patent-descriptions 

• UMLS descriptions 

And for German-English language pair we use 
monolingual corpora 

• Wikipedia-articles 

• Patent-descriptions 

• UMLS descriptions 

• AACT 

• GENIA 

• GREC 

• FMA 

• PIL 

We also use target side of parallel corpora as 
additional monolingual resource to train lan-
guage model. We separately train a 5-gram lan-
guage model for each monolingual corpus and 
integrate them as features to log-linear model in 
the PBSMT system.  

For the query translation (QT) system, we use 
parallel corpus Wikipedia-titles and UMLS dic-
tionary, and use monolingual corpus Wikipedia-
articles.  

3.2 Experiment Setting 

For the tuning of PBSMT system, we use devel-
opment set provided by WMT 14 medical task 
(khresmoi-summary-dev). And we use query 
translation development set (khresmoi-query-
dev) for the tuning of QT system.  

We test our systems on two test set provided 
by WMT 14 medical task. 

• khresmoi-summary-test (for PBSMT) 

• khresmoi-query-test (for QT) 
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For comparison with result from QT system, 
we translate the test set of query translation task 
(khresmoi-query-test) using PBSMT system 
without any post-processing. 

In our experiment, the performance of transla-
tion system is measured by BLEU (%) and trans-
lation error rate - TER (%). All these results are 
evaluated from the evaluation website3.  

3.3 Experiment Result 

Table 1 shows the results for the task of transla-
tion of sentences from summaries of medical 
articles.  

Table 2 shows the results for the task of trans-
lation of queries entered by users of medical in-
formation search engines. The performance of 
QT system is relatively higher than PBSMT sys-
tem. Especially, the BLEU score of QT system 
on English-German language pair is the highest 
score among the all submitted systems.  

 
Language Pair BLEU TER 
English-German 15.8 0.746 
German-English 26.9 0.618 

 
Table 1: BLEU scores of result from PBSMT system 

for summary translation task. 
 

Language Pair BLEU TER 
PBSMT English-German 15.1 0.748 

 German-English 22.1 0.638 
QT English-German 15.3 0.746 
 German-English 24.5 0.586 

 
Table 2: BLEU scores of result for query translation 

task. 

4 Conclusion 

We describe the PBSMT system and QT system 
that are developed for summary translation and 
query translation of WMT 14 medical translation 
task. We focus on intrinsic query translation 
evaluation and propose a hybrid approach by 
combining dictionary-based approach and SMT 
based approach using heuristics. The result of 
query translation experiment shows that our 
method obtained higher translation accuracy than 
the baseline (PBSMT) system. 
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Abstract

This paper describes adapting statistical 

machine translation (SMT) systems to 

medical domain using in-domain and 

general-domain data as well as web-

crawled in-domain resources. In order to 

complement the limited in-domain corpo-

ra, we apply domain focused web-

crawling approaches to acquire in-

domain monolingual data and bilingual 

lexicon from the Internet. The collected 

data is used for adapting the language 

model and translation model to boost the 

overall translation quality. Besides, we 

propose an alternative filtering approach

to clean the crawled data and to further 

optimize the domain-specific SMT sys-

tem. We attend the medical summary

sentence unconstrained translation task of 

the Ninth Workshop on Statistical Ma-

chine Translation (WMT2014). Our sys-

tems achieve the second best BLEU 

scores for Czech-English, fourth for 

French-English, English-French language 

pairs and the third best results for re-

minding pairs.

1 Introduction

In this paper, we report the experiments carried 

out by the NLP
2
CT Laboratory at University of 

Macau for WMT2014 medical sentence transla-

tion task on six language pairs: Czech-English 

(cs-en), French-English (fr-en), German-English 

(de-en) and the reverse direction pairs (i.e., en-cs, 

en-fr and en-de). 

As data in specific domain are usually rela-

tively scarce, the use of web resources to com-

plement the training resources provides an effec-

tive way to enhance the SMT systems (Resnik 

and smith, 2003; Esplà-Gomis and Forcada, 2010; 

Pecina et al., 2011; Pecina et al., 2012; Pecina et 

al., 2014). In our experiments, we not only use 

all available training data provided by the

WMT2014 standard translation task
1

(general-

domain data) and medical translation task
2

(in-

domain data), but also acquire addition in-

domain bilingual translations (i.e. dictionary) and 

monolingual data from online sources.

First of all, we collect the medical terminolo-

gies from the web. This tiny but significant par-

allel data are helpful to reduce the out-of-

vocabulary words (OOVs) in translation models. 

In addition, the use of larger language models 

during decoding is aided by more efficient stor-

age and inference (Heafield, 2011). Thus, we 

crawl more in-domain monolingual data from the 

Internet based on domain focused web-crawling

approach. In order to detect and remove out-

domain data from the crawled data, we not only 

explore text-to-topic classifier, but also propose 

an alternative filtering approach combined the 

existing one (text-to-topic classifier) with per-

plexity. After carefully pre-processing all the 

available training data, we apply language model 

adaptation and translation model adaptation us-

ing various kinds of training corpora. Experi-

mental results show that the presented approach-

es are helpful to further boost the baseline system.

The reminder of this paper is organized as fol-

lows. In Section 2, we detail the workflow of 

web resources acquisition. Section 3 describes 

the pre-processing steps for the corpora. Section 

5 presents the baseline system. Section 6 reports 

the experimental results and discussions. Finally, 

                                                
1 http://www.statmt.org/wmt14/translation-task.html.
2 http://www.statmt.org/wmt14/medical-task/.
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the submitted systems and the official results are 

reported in Section 7.

2 Domain Focused Web-Crawling

In this section, we introduce our domain focused 

web-crawling approaches on acquisition of in-

domain translation terminologies and monolin-

gual sentences. 

2.1 Bilingual Dictionary

Terminology is a system of words used to name 

things in a particular discipline. The in-domain 

vocabulary size directly affects the performance 

of domain-specific SMT systems. Small size of 

in-domain vocabulary may result in serious 

OOVs problem in a translation system. Therefore, 

we crawl medical terminologies from some 

online sources such as dict.cc
3
, where the vocab-

ularies are divided into different subjects. We 

obtain the related bilingual entries in medicine 

subject by using Scala build-in XML parser and 

XPath. After cleaning, we collected 28,600, 

37,407, and 37,600 entries in total for cs-en, de-

en, and fr-en respectively.

2.2 Monolingual Data

The workflow for acquiring in-domain resources 

consists of a number of steps such as domain 

identification, text normalization, language iden-

tification, noise filtering, and post-processing as 

well as parallel sentence identification.

Firstly we use an open-source crawler, Com-

bine
4
, to crawl webpages from the Internet. In 

order to classify these webpages as relevant to 

the medical domain, we use a list of triplets 

<term, relevance weight, topic class> as the 

basic entries to define the topic. Term is a word 

or phrase. We select terms for each language 

from the following sources: 

 The Wikipedia title corpus, a WMT2014 of-

ficial data set consisting of titles of medical 

articles. 

 The dict.cc dictionary, as is described in Sec-

tion 2.1.

 The DrugBank corpus, which is a WMT2014 

official data set on bioinformatics and 

cheminformatics.

For the parallel data, i.e. Wikipedia and dict.cc 

dictionary, we separate the source and target text 

into individual text and use either side of them

for constructing the term list for different lan-

                                                
3 http://www.dict.cc/.
4 http://combine.it.lth.se/.

guages. Regarding the DrugBank corpus, we di-

rectly extract the terms from the “name” field. 

The vocabulary size of collected text for each 

language is shown in Table 1.

EN CS DE FR

Wikipedia Titles 12,684 3,404 10,396 8,436

dict.cc 29,294 16,564 29,963 22,513

DrugBank 2,788

Total 44,766 19,968 40,359 30,949

Table 1: Size of terms used for topic definition.

Relevance weight is the score for each occur-

rence of the term, which is assigned by its length, 

i.e., number of tokens. The topic class indicates 

the topics. In this study, we are interested in 

medical domain, the topic class is always marked 

with “MED” in our topic definition. 

The topic relevance of each document is cal-

culated
5

as follows:

  ∑ ∑      
   

  
   

 
   (1)

where  is the amount of terms in the topic defi-

nition;   
 is the weight of term  ;   

 is the 

weight of term at location  .    is the number of 

occurrences of term  at  position. In implemen-

tation, we use the default values for setting and

parameters. Another input required by the crawl-

er is a list of seed URLs, which are web sites that 

related to medical topic. We limit the crawler 

from getting the pages within the http domain 

guided by the seed links. We acquired the list 

from the Open Directory Project
6
, which is a re-

pository maintained by volunteer editors. Totally, 

we collected 12,849 URLs from the medicine

category.

Text normalization is to convert the text of 

each HTML page into UTF-8 encoding accord-

ing to the content_charset of the header. In addi-

tion, HTML pages often consist of a number of 

irrelevant contents such as the navigation links, 

advertisements disclaimers, etc., which may neg-

atively affect the performance of SMT system. 

Therefore, we use the Boilerpipe tool 

(Kohlschütter et al., 2010) to filter these noisy

data and preserve the useful content that is 

marked by the tag, <canonicalDocument>. The 

resulting text is saved in an XML file, which will 

be further processed by the subsequent tasks. For 

language identification, we use the language-

detection
7

toolkit to determine the possible lan-

                                                
5

http://combine.it.lth.se/documentation/DocMain/node6.html.
6 http://www.dmoz.org/Health/Medicine/.
7 https://code.google.com/p/language-detection/.
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guage of the text, and discard the articles which 

are in the right language we are interested.

2.3 Data Filtering

The web-crawled documents (described in Sec-

tion 2.2) may consist a number of out-domain 

data, which would harm the domain-specific lan-

guage and translation models. We explore and 

propose two filtering approaches for this task. 

The first one is to filter the documents based on 

their relative score, Eq. (1). We rank all the doc-

uments according to their relative scores and se-

lect top K percentage of entire collection for fur-

ther processing. 

Second, we use a combination method, which 

takes both the perplexity and relative score into 

account for the selection. Perplexity-based data 

selection has shown to be a powerful mean on 

SMT domain adaptation (Wang et al., 2013; 

Wang et al., 2014; Toral, 2013; Rubino et al., 

2013; Duh et al., 2013). The combination method 

is carried out as follows: we first retrieve the 

documents based on their relative scores. The 

documents are then split into sentences, and

ranked according to their perplexity using Eq. (2)

(Stolcke et al., 2002). The used language model 

is trained on the official in-domain data. Finally, 

top N percentage of ranked sentences are consid-

ered as additional relevant in-domain data. 

    ( )        
 ( )

    (2)

where  is a input sentence or document,  ( ) is 

the probability of  -gram segments estimated 

from the training set.     is the number of 

tokens of an input string.

3 Pre-processing

Both official training data and web-crawled re-

sources are processed using the Moses scripts
8
, 

this includes the text tokenization, truecasing and 

length cleaning. For trusecasing, we use both the 

target side of parallel corpora and monolingual 

data to train the trucase models. We consider the 

target system is intended for summary translation, 

the sentences tend to be short in length. We re-

move sentence pairs which are more than 80 

words at length in either sides of the parallel text.

In addition to these general data filtering steps,

we introduce some extra steps to pre-process the 

training data. The first step is to remove the du-

plicate sentences. In data-driven methods, the 

more frequent a term occurs, the higher probabil-

                                                
8 http://www.statmt.org/moses/?n=Moses.Baseline.

ity it biases. Duplicate data may lead to unpre-

dicted behavior during the decoding. Therefore, 

we keep only the distinct sentences in monolin-

gual corpus. By taking into account multiple 

translations in parallel corpus, we remove the 

duplicate sentence pairs. We also use a biomedi-

cal sentence splitter
9

(Rune et al., 2007) to split 

sentences in monolingual corpora. The statistics 

of the data are provided in Table 2.

4 Baseline System

We built our baseline system on an optimized 

level. It is trained on all official in-domain train-

ing corpora and a portion of general-domain data. 

We apply the Moore-Lewis method (Moore and 

Lewis, 2010) and modified Moore-Lewis method 

(Axelrod et al., 2011) for selecting in-domain 

data from the general-domain monolingual and 

parallel corpora, respectively. The top M per-

centages of ranked sentences are selected as a 

pseudo in-domain data to train an additional LM

and TM. For LM, we linearly interpolate the ad-

ditional LM with in-domain LM. For TM, the 

additional model is log-linearly interpolated with 

the in-domain model using the multi-decoding 

method described in (Koehn and Schroeder, 

2007). Finally, LM adaptation and TM adapta-

tion are combined to further improve the transla-

tion quality of baseline system.

5 Experiments and Results

The official medical summary development sets 

(dev) are used for tuning and evaluating the 

comparative systems. The official medical sum-

mary test sets (test) are only used in our final 

submitted systems.

The experiments were carried out with the 

Moses 1.0
10

(Koehn et al., 2007). The translation 

and the re-ordering model utilizes the “grow-

diag-final” symmetrized word-to-word align-

ments created with MGIZA++
11

(Och and Ney, 

2003; Gao and Vogel, 2008) and the training 

scripts from Moses. A 5-gram LM was trained 

using the SRILM toolkit
12

(Stolcke et al., 2002), 

exploiting improved modified Kneser-Ney 

smoothing, and quantizing both probabilities and 

back-off weights. For the log-linear model train-

ing, we take the minimum-error-rate training 

(MERT) method as described in (Och, 2003).

                                                
9 http://www.nactem.ac.uk/y-matsu/geniass/.
10 http://www.statmt.org/moses/.
11 http://www.kyloo.net/software/doku.php/mgiza:overview.
12 http://www.speech.sri.com/projects/srilm/.
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In the following sub-sections, we describe the

results of baseline systems, which are trained on 

the official corpora. We also present the en-

hanced systems that make use of the web-

crawled bilingual dictionary and monolingual 

data as the additional training resources. Two

variants of enhanced system are constructed 

based on different filtering criteria.

5.1 Baseline System

The baseline systems is constructed based on the 

combination of TM adaptation and LM adapta-

tion, where the corresponding selection thresh-

olds ( ) are manually tuned. Table 3 shows the 

BLEU scores of baseline systems as well as the

threshold values of for general-domain mono-

lingual corpora and parallel corpora selection, 

respectively.

By looking into the results, we find that en-cs 

system performs poorly, because of the limited 

in-domain parallel and monolingual corpora 

(shown in Table 2). While the fr-en and en-fr 

systems achieve the best scores, due the availa-

bility of the high volume training data. We ex-

periment with different values of  ={0, 25, 50, 

75, 100} that indicates the percentages of sen-

tences out of the general corpus used for con-

structing the LM adaptation and TM adaptation. 

After tuning the parameter  , we find that

BLEU scores of different systems peak at differ-

ent values of  . LM adaptation can achieve the 

best translation results for cs-en, en-fr and de-en 

pairs when  =25, en-cs and en-de pairs when 

 =50, and fr-en pair when  =75. While TM 

adaptation yields the best scores for en-fr and en-

de pairs at  =25 and cs-en and fr-en pairs at 

 =50, de-en pair when  =75 and en-cs pair at 

 =100.

Lang. Pair BLEU
Mono.

(M%)

Parallel

(M%)

en-cs 17.57 50% 100%

cs-en 31.29 25% 50%

en-fr 38.36 25% 25%

fr-en 44.36 75% 50%

en-de 18.01 50% 25%

de-en 32.50 25% 75%

Table 3: BLEU scores of baseline systems for 

different language pairs.

5.2 Based on Relevance Score Filtering

As described in Section 2.3, we use the relevance

score to filter out the non-in-domain documents. 

Once again, we evaluate different values of 

Data Set Lang. Sent. Words Vocab. Ave. Len. Sites Docs

In-domain 

Parallel Data

cs/en 1,770,421
9,373,482/

10,605,222

134,998/

156,402

5.29/

5.99

de/en 3,894,099
52,211,730/

58,544,608

1,146,262/

487,850

13.41/

15.03

fr/en 4,579,533
77,866,237/

68,429,649

495,856/

556,587

17.00/

14.94

General-

domain 

Parallel Data

cs/en 12,426,374
180,349,215/

183,841,805

1,614,023/

1,661,830

14.51/

14.79

de/en 4,421,961
106,001,775/

112,294,414

1,912,953/

919,046

23.97/

25.39

fr/en 36,342,530
1,131,027,766/

953,644,980

3,149,336/

3,324,481

31.12/

26.24

In-domain 

Mono. Data

cs 106,548 1,779,677 150,672 16.70

fr 1,424,539 53,839,928 644,484 37.79

de 2,222,502 53,840,304 1,415,202 24.23

en 7,802,610 199430649 1,709,594 25.56

General-

domain 

Mono. Data

cs 33,408,340 567,174,266 3,431,946 16.98

fr 30,850,165 780,965,861 2,142,470 25.31

de 84,633,641 1,548,187,668 10,726,992 18.29

en 85,254,788 2,033,096,800 4,488,816 23.85

Web-crawled 

In-domain 

Mono. Data

en 8,448,566 280,211,580 3,047,758 33.16 26 1,601

cs 44,198 1,280,326 137,179 28.96 4 388

de 473,171 14,087,687 728,652 29.77 17 968

fr 852,036 35,339,445 718,141 41.47 10 683

Table 2: Statistics summary of corpora after pre-processing.
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 ={0, 25, 50, 75, 100} that represents the per-

centages of crawled documents we used for 

training the LMs. In Table 4, we show the abso-

lute BLEU scores of the evaluated systems, listed 

with the optimized thresholds, and the relative 

improvements (Δ%) in compared to the baseline 

system. The size of additional training data (for 

LM) is displayed at the last column.

Lang. 

Pair

Docs

( %)
BLEU

Δ 

(%)
Sent.

en-cs 50 17.59 0.11 31,065 

en-de 75 18.52 2.83 435,547 

en-fr 50 39.08 1.88 743,735 

cs-en 75 32.22 2.97 7,943,931

de-en 25 33.50 3.08 4,951,189

fr-en 100 45.45 2.46 8,448,566

Table 4: Evaluation results for systems that 

trained on relevance-score-filtered documents.

The relevance score filtering approach yields 

an improvement of 3.08% of BLEU score for de-

en pair that is the best result among the language 

pairs. On the other hand, en-cs pair obtains a 

marginal gain. The reason is very obvious that 

the training data is very insufficient. Empirical 

results of all language pairs expect fr-en indicate

that data filtering is the necessity to improve the 

system performance.

5.3 Based on Moore-Lewis Filtering

In this approach, we need to determine the values 

of two parameters, top  documents and top  
sentences, where  ={100, 75, 50} and  ={75, 

50, 25},    . When  =100, it is a conven-

tional perplexity-based data selection method, i.e. 

no document will be filtered. Table 5 shows the 

combination of different  and  that gives the 

best translation score for each language pair. We 

provide the absolute BLEU for each system, to-

gether with relative improvements (Δ%) that 

compared to the baseline system.

Lang.  

Pair

Docs

( %)

Target 

Size ( %)
BLEU Δ (%)

en-cs 50 25 17.69 0.68

en-de 100 50 18.03 0.11

en-fr 100 50 38.73 0.96

cs-en 100 25 32.20 2.91

de-en 100 25 33.10 1.85

fr-en 100 25 45.22 1.94

Table 5: Evaluation results for systems that 

trained on combination filtering approach.

In this shared task, we have a quality and 

quantity in-domain monolingual training data for 

English. All the systems that take English as the 

target translation always outperform the other

reverse pairs. Besides, we found the systems 

based on the perplexity data selection method

tend to achieve a better scores in BLEU.

6 Official Results and Conclusions

We described our study on developing uncon-

strained systems in the medical translation task 

of 2014 Workshop on Statistical Machine Trans-

lation. In this work, we adopt the web crawling 

strategy for acquiring the in-domain monolingual 

data.  In detection the domain data, we exploited 

Moore-Lewis data selection method to filter the 

collected data in addition to the build-in scoring 

model provided by the crawler toolkit. However, 

after investigation, we found that the two meth-

ods are very competitive to each other.

The systems we submitted to the shared task 

were built using the language models and trans-

lation models that yield the best results in the 

individual testing. The official test set is convert-

ed into the recased and detokenized SGML for-

mat. Table 9 presents the official results of our 

submissions for every language pair.

Lang. 

Pair

BLEU of Combined 

systems

Official 

BLEU

en-cs 23.16 (+5.59) 22.10

cs-en 36.8 (+5.51) 37.40

en-fr 40.34 (+1.98) 40.80

fr-en 45.79 (+1.43) 43.80

en-de 19.36 (+1.35) 18.80

de-en 34.17 (+1.67) 32.70

Table 6: BLEU scores of the submitted systems 

for the medical translation task in six language 

pairs.
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Abstract

This paper describes the Dublin City
University terminology translation system
used for our participation in the query
translation subtask in the medical trans-
lation task in the Workshop on Statisti-
cal Machine Translation (WMT14). We
deployed six different kinds of terminol-
ogy extraction methods, and participated
in three different tasks: FR–EN and EN–
FR query tasks, and the CLIR task. We
obtained 36.2 BLEU points absolute for
FR–EN and 28.8 BLEU points absolute
for EN–FR tasks where we obtained the
first place in both tasks. We obtained 51.8
BLEU points absolute for the CLIR task.

1 Introduction

This paper describes the terminology translation
system developed at Dublin City University for
our participation in the query translation subtask at
the Workshop on Statistical Machine Translation
(WMT14). We developed six kinds of terminol-
ogy extraction methods for the problem of medi-
cal terminology translation, especially where rare
and new words are considered. We have several
motivations which we address before providing a
description of the actual algorithms undeprinning
our work.

First, terminology translation cannot be seen
just as a simple extension of the translation process
if we use an analogy from human translation. Ter-
minology translation can be considered as more
important and a quite different task than transla-
tion per se, so we need a considerably different
way of solving this particular problem. Bilingual
terminology selection has been claimed to be the
touchstone in human translation, especially where
scientific and legal translation are concerned. Ter-
minology selection is often the hardest and most

time-consuming process in the translation work-
flow. Depending on the particular requirements of
the use-case (Way, 2013), users may not object to
disfluent translations, but will invariably be very
sensitive to the wrong selection of terminology,
even if the meaning of the chosen terms is correct.
This is especially true if this selected terminology
does not match with that preferred by the users
themselves, in which case users are likely to ex-
press some kind of complaint; it may even be that
the entire translation is rejected as sub-standard or
inappropriate on such grounds.

Second, we look at how to handle new and rare
words. If we inspect the process of human trans-
lation more closely, it is easy to identify several
differences compared to the methods used in sta-
tistical MT (SMT). Unless stipulated by the client,
the selection of bilingual terminology can be a
highly subjective process. Accordingly, it is not
necessarily the bilingual term-pair with the highest
probability that is chosen by the human translator.
It is often the case that statistical methods often
forget about or delete less frequent n-grams, but
rely on more frequent n-grams using maximum
likelihood or Maximum A Priori (MAP) meth-
ods. If some terminology is highly suitable, a
human translator can use it quite freely. Further-
more, there are a lot of new words in reality for
which new target equivalents have to be created by
the translators themselves, so the question arises
as to how human translators actually select ap-
propriate new terminology. Transliteration, which
is often supported by many Asian languages in-
cluding Hindi, Japanese, and Chinese, is perhaps
the easiest things to do under such circumstances.
Slight modifications of alphabets/accented charac-
ters can sometimes successfully create a valid new
term, even for European languages.

The remainder of this paper is organized as fol-
lows. Section 2 describes our algorithms. Our
decoding strategy in Section 3. Our experimen-
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tal settings and results are presented in Section 4,
and we conclude in Section 5.

2 Our Methods

Apart from the conventional statistical approach to
extract bilingual terminology, this medical query
task reminds us of two frequently occurring prob-
lems which are often ignored: (i) “Can we forget
about terminology which occurs only once in a
corpus?”, and (ii) “What can we do if the termi-
nology does not occur in a corpus?” These two
problems require computationally quite different
approaches than what is usually done in the stan-
dard statistical approach. Furthermore, the medi-
cal query task in WMT14 provides a wide range of
corpora: parallel and monolingual corpora, as well
as dictionaries. These two interesting aspects mo-
tivate our extraction methods which we present in
this section, including one relatively new Machine
Learning algorithm of zero-shot learning arising
from recent developments in the neural network
community (Bengio et al., 2000; Mikolov et al.,
2013b).

2.1 Translation Model

Word alignment (Brown et al., 1993) and phrase
extraction (Koehn et al., 2003) can capture bilin-
gual word- and phrase-pairs with a good deal of
accuracy. We omit further details of these stan-
dard methods which are freely available elsewhere
in the SMT literature (e.g. (Koehn, 2010)).

2.2 Extraction from Parallel Corpora

(Okita et al., 2010) addressed the problem of
capturing bilingual term-pairs from parallel data
which might otherwise not be detected by the
translation model. Hence, the requirement in
Okita et al. is not to use SMT/GIZA++ (Och and
Ney, 2003) to extract term-pairs, which are the
common focus in this medical query translation
task.

The classical algorithm of (Kupiec, 1993) used
in (Okita et al., 2010) counts the statistics of ter-
minology c(etermi , ftermj |st) on the source and
the target sides which jointly occur in a sentence
st after detecting candidate terms via POS tag-
ging, which are then summed up over the entire
corpus

∑N
t=1 c(etermi , ftermj |st). Then, the al-

gorithm adjusts the length of etermi and ftermj .
It can be said that this algorithm captures term-
pairs which occur rather frequently. However, this

apparent strength can also be seen in disadvanta-
geous terms since the search for terminology oc-
curs densely in each of the sentences which in-
creases the computational complexity of this algo-
rithm, and causes the method to take a consider-
able time to run. Furthermore, if we suppose that
most frequent term-pairs are to be extracted via a
standard translation model (as described briefly in
the previous section), our efforts to search among
frequent pairs is not likely to bring about further
gain.

It is possible to approach this in a reverse man-
ner: “less frequent pairs can be outstanding term
candidates”. Accordingly, if our aim changes to
capture only those less frequent pairs, the situation
changes dramatically. The number of terms we
need to capture is considerably decreased. Many
sentences do not include any terminology at all,
and only a relatively small subset of sentences in-
cludes a few terms, such that term-pairs become
sparse with regard to sentences. Term-pairs can
be found rather easily if a candidate term-pair co-
occurs on the source and the target sides and on
the condition that the items in the term-pair actu-
ally correspond with one another.

This condition can be easily checked in various
ways. One way is to translate the source side of
the targeted pairs with the alignment option in the
Moses decoder (Koehn et al., 2007), which we did
in this evaluation campaign. Another way is to use
asupervised aligner, such as the Berkeley aligner
(Haghighi et al., 2009), to align the targeted pairs
and check whether they are actually aligned or not.

We assume two predefined sets of terms at
the outset, Eterm = {eterm1 , . . . , etermn} and
Fterm = {fterm1 , . . . , ftermn}. We search for
possible alignment links between the term-pair
only when they co-occur in the same sentence.
One obvious advantage of this approach is the
computational complexity which is fairly low.

Note that the result of (Okita et al., 2010)
shows that the frequency-based approach of (Ku-
piec, 1993) worked well for NTCIR patent termi-
nology (Fujii et al., 2010), which otherwise would
have been difficult to capture via the traditional
SMT/GIZA++ method. In contrast, however, this
did not work well on the Europarl corpus (Koehn,
2005).
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2.3 Terminology Dictionaries
Terminology dictionaries themselves are obvi-
ously among the most important resources for
bilingual term-pairs. In this medical query transla-
tion subtask, two corpora are provided for this pur-
pose: (i) Unified Medical Language System cor-
pus (UMLS corpus),1 and (ii) Wiki entries.2

2.4 Extraction from Terminology
Dictionaries: lower-order n-grams

Terminology dictionaries provide reliable higher-
order n-gram pairs. However, they do not often
provide the correspondences between the lower-
order n-grams contained therein. For example, the
UMLS corpus provides a term-pair of “abdominal
compartment syndrome ||| syndrome du compar-
timent abdominal” (EN|||FR). However, such ter-
minology dictionaries often do not explicitly pro-
vide the correspondent pairs “abdominal ||| ab-
dominal” (EN|||FR) or “syndrome ||| syndrome”
(EN|||FR). Clearly, these terminology dictionaries
implicitly provide the correspondent pairs. Note
that UMLS and Wiki entries provide terminol-
ogy dictionaries. Hence, it is possible to obtain
some suggestion by higher order n-gram models if
we know their alignments between words on the
source and target sides. Algorithm 1 shows the
overall procedure.

Algorithm 1 Lower-order n-gram extraction algo-
rithm

1: Perform monolingual word alignment for
higher-order n-gram pairs.

2: Collect only the reliable alignment pairs (i.e.
discard unreliable alignment pairs).

3: Extract the lower-order word pairs of our in-
terest.

2.5 Extraction from Monolingual Corpora:
Transliteration and Abbreviation

Monolingual corpora can be used in various ways,
including:

1. Transliteration: Many languages support the
fundamental mechanism of between Euro-
pean and Asian languages. Japanese even
supports a special alphabet – katakana – for
this purpose. Chinese and Hindi also per-
mit transliteration using their own alphabets.

1http://www.nlm.nih.gov/research/umls/.
2http://www.wikipedia.org.

However, even among European languages,
this mechanism makes it possible to find
possible translation counterparts for a given
term. In this query task, we did this only
for the French-to-English direction and only
for words containing accented characters (by
rule-based conversion).

2. Abbreviation: It is often the case that abbre-
viations should be resolved in the same lan-
guage. If the translation includes some ab-
breviation, such as “C. difficile”, this needs
to be investigated exhaustively in the same
language. However, in the specific domain
of medical terminology, it is quite likely that
possible phrase matches will be successfully
identified.

2.6 Extraction from Monolingual Corpora:
Zero-Shot Learning

Algorithm 2 Algorithm to connect two word em-
bedding space

1: Prepare the monolingual source and target
sentences.

2: Prepare the dictionary which consists of U
entries of source and target sentences among
non-stop-words.

3: Train the neural network language model on
the source side and obtain the continuous
space real vectors of X dimensions for each
word.

4: Train the neural network language model on
the target side and obtain the continuous space
real vectors of X dimensions for each word.

5: Using the real vectors obtained in the above
steps, obtain the linear mapping between the
dictionary in two continuous spaces using
canonical component analysis (CCA).

Another interesting terminology extraction
method requires neither parallel nor comparable
corpora, but rather just monolingual corpora on
both sides (possibly unrelated to each other) to-
gether with a small amount of dictionary entries
which provide already known correspondences
between words on the source and target sides
(henceforth, we refer to this as the ‘dictionary’).
This method uses the recently developed zero-shot
learning (Palatucci et al., 2009) using neural net-
work language modelling (Bengio et al., 2000;
Mikolov et al., 2013b). Then, we train both sides
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with the neural network language model, and use
a continuous space representation to project words
to each other on the basis of a small amount of
correspondences in the dictionary. If we assume
that each continuous space is linear (Mikolov et
al., 2013c), we can connect them via linear projec-
tion (Mikolov et al., 2013b). Algorithm 2 shows
this situation.

In our experiments we use U the same as the
entries of Wiki and X as 50. Algorithm 3 shows
the algorithm to extract the counterpart of OOV
words.

Algorithm 3 Algorithm to extract the counterpart
of OOV words.

1: Prepare the projection by Algorithm 2.
2: Detect unknown words in the translation out-

puts.
3: Do the projection of it (the source word) into

the target word using the trained linear map-
pings in the training step.

3 Decoding Strategy

We deploy six kinds of extraction methods: (1)
translation model, (2) extraction from parallel cor-
pora, (3) terminology dictionaries, (4) lower-order
n-grams, (5) transliteration and abbreviation, and
(6) zero-shot learning. Among these we deploy
four of them – (2), (4), (5) and (6) – in a limited
context, while the remaining two are used with-
out any context, mainly owing to time constraints;
only when we did not find the correspondent pairs
via (1) and (3), did we complement this by the
other methods.

The detected bilingual term-pairs using (1) and
(3) can be combined using various methods. One
way is to employ a method similar to (confu-
sion network-based) system combination (Okita
and van Genabith, 2011; Okita and van Genabith,
2012). First we make a lattice: if we regard one
candidate of (1) and two candidates in (3) as trans-
lation outputs where the words of two candidates
in (3) are connected using an underscore (i.e. one
word), we can make a lattice. Then, we can deploy
monotonic decoding over them. If we do this for
the devset and then apply it to the test set, we can
incorporate a possible preference learnt from the
development set, i.e. whether the query transla-
tor prefers method (1) or UMLS/Wiki translation.
MERT process and language model are applied in

a similar manner with (confusion network-based)
system combination (cf. (Okita and van Genabith,
2011)).

We note also that a lattice structure is useful for
handling grammatical coordination. Since queries
are formed by real users, reserved words for
database query such as “AND” (or “ET” (FR)) and
“OR” (or “OU” (FR)) are frequently observed in
the test set. Furthermore, there is repeated use of
“and” more than twice, for example “douleur ab-
nominal et Helicobacter pylori et cancer”, which
makes it very difficult to detect the correct coor-
dination boundaries. The lattice on the input side
can express such ambiguity at the cost of splitting
the source-side sentence in a different manner.

4 Experimental Results

The baseline is obtained in the following way. The
GIZA++ implementation (Och and Ney, 2003) of
IBM Model 4 is used as the baseline for word
alignment: Model 4 is incrementally trained by
performing 5 iterations of Model 1, 5 iterations of
HMM, 3 iterations of Model 3, and 3 iterations
of Model 4. For phrase extraction the grow-diag-
final heuristics described in (Koehn et al., 2003) is
used to derive the refined alignment from bidirec-
tional alignments. We then perform MERT (Och,
2003) which optimizes parameter settings using
the BLEU metric (Papineni et al., 2002), while a 5-
gram language model is derived with Kneser-Ney
smoothing (Kneser and Ney, 1995) trained using
SRILM (Stolcke, 2002). We use the whole train-
ing corpora including the WMT14 translation task
corpora as well as medical domain data. UMLS
and Wikipedia are used just as training corpora for
the baseline.

For the extraction from parallel corpora (cf.
Section 2.2), we used Genia tagger (Tsuruoka and
Tsujii, 2005) and the Berkeley parser (Petrov and
Klein, 2007). For the zero-shot learning (cf. Sec-
tion 2.6) we used scikit learn (Pedregosa et al.,
2011), word2vec (Mikolov et al., 2013a), and a
recurrent neural network (Mikolov, 2012). Other
tools used are in-house software.

Table 2 shows the results for the FR–EN query
task. We obtained 36.2 BLEU points absolute,
which is an improvement of 6.3 BLEU point ab-
solute (21.1% relative) over the baseline. Table
3 shows the results for the EN–FR query task.
We obtained 28.8 BLEU points absolute, which
is an improvement of 8.7 BLEU points abso-
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lute (43% relative) over the baseline. Our sys-
tem was the best system for both of these tasks.
These improvements over the baseline were sta-
tistically significant by a paired bootstrap test
(Koehn, 2004).

Query task FR–EN
Our method baseline

BLEU 36.2 29.9
BLEU cased 30.9 26.5
TER 0.340 0.443

Table 1: Results for FR–EN query task.

extraction LM MERT BLEU (cased)
(1) - (6) all Y 30.9
(1), (2), (3) all Y 30.3
(1), (3), (6) all Y 30.1
(1), (3), (4) all Y 29.1
(1), (3), (5) all Y 29.0
(1) and (3) all Y 29.0
(1) and (3) medical Y 27.5
(1) and (3) WMT Y 27.0
(1) and (3) medical N 25.1
(1) and (3) WMT N 24.3
(1) medical Y 25.9
(1) WMT Y 25.0

Table 2: Table shows the effects of extraction
methods, language model and MERT process. All
the measurements are by BLEU (cased). In this
table, “medical” indicates a language model built
on all the medical corpora while “WMT” indicates
a language model built on all the non-medical cor-
pora. Note that some sentence in testset can be
considered as non-medical domain. Extraction
methods (1) - (6) correspond to those described in
Section 2.1 - 2.6.

Table 4 shows the results for CLIR task. We
obtained 51.8 BLEU points absolute, which is an
improvement of 9.4 BLEU point absolute (22.2%
relative) over the baseline. Although CLIR task al-
lowed 10-best lists, our submission included only
1-best list. This resulted in the score of P@5 of
0.348 and P@10 of 0.346 which correspond to
the second place, despite a good result in terms
of BLEU. This is since unlike BLEU score P@5
and P@10 measure whether the whole elements
in reference and hypothesis are matched or not.
We noticed that our submission included a lot of

Query task EN–FR
Our method baseline

BLEU 28.8 20.1
BLEU cased 27.7 18.7
TER 0.483 0.582

Table 3: Results for EN–FR query task.

near miss sentences only in terms of capitaliza-
tion: “abnominal pain and Helicobacter pylori and
cancer” (reference) and “abnominal pain and heli-
cobacter pylori and cancer” (submission). These
are counted as incorrect in terms of P@5 and
P@10.3 Noted that after submission we obtained
the revised score of P@5 of 0.560 and P@10 of
0.560 with the same method but with 2-best lists
which handles the capitalization varieties.

CLIR task FR–EN
Our method baseline

BLEU 51.8 42.2
BLEU cased 46.0 38.3
TER 0.364 0.398
P@5 0.348 (0.560∗) –
P@10 0.346 (0.560∗) –
NDCG@5 0.306 –
NDCG@10 0.307 –
MAP 0.2252 –
Rprec 0.2358 –
bpref 0.3659 –
relRet 1524 –

Table 4: Results for CLIR task.

5 Conclusion

This paper provides a description of the Dublin
City University terminology translation system for
our participation in the query translation subtask
in the medical translation task in the Workshop on
Statistical Machine Translation (WMT14). We de-
ployed six different kinds of terminology extrac-
tion methods. We obtained 36.2 BLEU points ab-
solute for FR–EN, and 28.8 BLEU points abso-
lute for EN–FR tasks, obtaining first place on both
tasks. We obtained 51.8 BLEU points absolute for
the CLIR task.

3The method which incorporates variation in capitaliza-
tion in its n-best lists outperforms the best result in terms of
P@5 and P@10.
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Abstract

This paper describes LIMSI’s submission
to the first medical translation task at
WMT’14. We report results for English-
French on the subtask of sentence trans-
lation from summaries of medical ar-
ticles. Our main submission uses a
combination of NCODE (n-gram-based)
and MOSES (phrase-based) output and
continuous-space language models used in
a post-processing step for each system.
Other characteristics of our submission in-
clude: the use of sampling for building
MOSES’ phrase table; the implementation
of the vector space model proposed by
Chen et al. (2013); adaptation of the POS-
tagger used by NCODE to the medical do-
main; and a report of error analysis based
on the typology of Vilar et al. (2006).

1 Introduction

This paper describes LIMSI’s submission to the
first medical translation task at WMT’14. This
task is characterized by high-quality input text
and the availability of large amounts of training
data from the same domain, yielding unusually
high translation performance. This prompted us
to experiment with two systems exploring differ-
ent translation spaces, the n-gram-based NCODE

(§2.1) and an on-the-fly variant of the phrase-
based MOSES (§2.2), and to later combine their
output. Further attempts at improving translation
quality were made by resorting to continuous lan-
guage model rescoring (§2.4), vector space sub-
corpus adaptation (§2.3), and POS-tagging adap-
tation to the medical domain (§3.3). We also per-
formed a small-scale error analysis of the outputs
of some of our systems (§5).

2 System Overview

2.1 NCODE

NCODE implements the bilingual n-gram ap-
proach to SMT (Casacuberta and Vidal, 2004;
Mariño et al., 2006; Crego and Mariño, 2006) that
is closely related to the standard phrase-based ap-
proach (Zens et al., 2002). In this framework, the
translation is divided into two steps. To translate
a source sentence f into a target sentence e, the
source sentence is first reordered according to a
set of rewriting rules so as to reproduce the tar-
get word order. This generates a word lattice con-
taining the most promising source permutations,
which is then translated. Since the translation step
is monotonic, the peculiarity of this approach is to
rely on the n-gram assumption to decompose the
joint probability of a sentence pair in a sequence
of bilingual units called tuples.

The best translation is selected by maximizing
a linear combination of feature functions using the
following inference rule:

e∗ = argmax
e,a

K∑
k=1

λkfk(f , e,a) (1)

where K feature functions (fk) are weighted by
a set of coefficients (λk) and a denotes the set of
hidden variables corresponding to the reordering
and segmentation of the source sentence. Along
with the n-gram translation models and target n-
gram language models, 13 conventional features
are combined: 4 lexicon models similar to the ones
used in standard phrase-based systems; 6 lexical-
ized reordering models (Tillmann, 2004; Crego et
al., 2011) aimed at predicting the orientation of
the next translation unit; a “weak” distance-based
distortion model; and finally a word-bonus model
and a tuple-bonus model which compensate for the
system preference for short translations. Features
are estimated during the training phase. Training
source sentences are first reordered so as to match
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the target word order by unfolding the word align-
ments (Crego and Mariño, 2006). Tuples are then
extracted in such a way that a unique segmenta-
tion of the bilingual corpus is achieved (Mariño et
al., 2006) and n-gram translation models are then
estimated over the training corpus composed of tu-
ple sequences made of surface forms or POS tags.
Reordering rules are automatically learned during
the unfolding procedure and are built using part-
of-speech (POS), rather than surface word forms,
to increase their generalization power (Crego and
Mariño, 2006).

2.2 On-the-fly System (OTF)

We develop an alternative approach implement-
ing an on-the-fly estimation of the parameter of
a standard phrase-based model as in (Le et al.,
2012b), also adding an inverse translation model.
Given an input source file, it is possible to compute
only those statistics which are required to trans-
late the phrases it contains. As in previous works
on on-the-fly model estimation for SMT (Callison-
Burch et al., 2005; Lopez, 2008), we first build
a suffix array for the source corpus. Only a lim-
ited number of translation examples, selected by
deterministic random sampling, are then used by
traversing the suffix array appropriately. A coher-
ent translation probability (Lopez, 2008) (which
also takes into account examples where translation
extraction failed) is then estimated. As we cannot
compute exactly an inverse translation probability
(because sampling is performed independently for
each source phrase), we resort to the following ap-
proximation:

p(f̄ |ē) = min
(

1.0,
p(ē|f̄)× freq(f̄)

freq(ē)

)
(2)

where the freq(·) is the number of occurrences of
the given phrase in the whole corpus, and the nu-
merator p(ē|f̄)×freq(f̄) represents the predicted
joint count of f̄ and ē. The other models in this
system are the same as in the default configuration
of MOSES.

2.3 Vector Space Model (VSM)

We used the vector space model (VSM) of Chen
et al. (2013) to perform domain adaptation. In
this approach, each phrase pair (f̄ , ē) present in
the phrase table is represented by a C-dimensional
vector of TF-IDF scores, one for each sub-corpus,
where C represents the number of sub-corpora

(see Table 1). Each component wc(f̄ , ē) is a stan-
dard TF-IDF weight of each phrase pair for the
cth sub-corpus. TF(f̄ , ē) is the raw joint count of
(f̄ , ē) in the sub-corpus; the IDF(f̄ , ē) is the in-
verse document frequency across all sub-corpora.

A similar C-dimensional representation of the
development set is computed as follows: we first
perform word alignment and phrase pairs extrac-
tion. For each extracted phrase pair, we compute
its TF-IDF vector and finally combine all vectors
to obtain the vector for the develompent set:

wdev
c =

J∑
j=0

K∑
k=0

countdev(f̄j , ēk)wc(f̄j , ēk) (3)

where J and K are the total numbers of source
and target phrases extracted from the development
data, respectively, and countdev(f̄j , ēk) is the joint
count of phrase pairs (f̄j , ēk) found in the devel-
opment set. The similarity score between each
phrase pair’s vector and the development set vec-
tor is added into the phrase table as a VSM fea-
ture. We also replace the joint count with the
marginal count of the source/target phrase to com-
pute an alternative average representation for the
development set, thus adding two VSM additional
features.

2.4 SOUL

Neural networks, working on top of conventional
n-gram back-off language models, have been in-
troduced in (Bengio et al., 2003; Schwenk et al.,
2006) as a potential means to improve discrete
language models. As for our submitted transla-
tion systems to WMT’12 and WMT’13 (Le et al.,
2012b; Allauzen et al., 2013), we take advantage
of the recent proposal of (Le et al., 2011). Using
a specific neural network architecture, the Struc-
tured OUtput Layer (SOUL), it becomes possible
to estimate n-gram models that use large vocab-
ulary, thereby making the training of large neural
network language models feasible both for target
language models and translation models (Le et al.,
2012a). Moreover, the peculiar parameterization
of continuous models allows us to consider longer
dependencies than the one used by conventional
n-gram models (e.g. n = 10 instead of n = 4).

Additionally, continuous models can also be
easily and efficiently adapted as in (Lavergne et
al., 2011). Starting from a previously trained
SOUL model, only a few more training epochs are

247



Corpus Sentences Tokens (en-fr) Description wrd-lm pos-lm

in-domain

COPPA 454 246 10-12M -3 -15
EMEA 324 189 6-7M 26 -1
PATTR-ABSTRACTS 634 616 20-24M 22 21
PATTR-CLAIMS 888 725 32-36M 6 2
PATTR-TITLES 385 829 3-4M 4 -17
UMLS 2 166 612 8-8M term dictionary -7 -22
WIKIPEDIA 8 421 17-18k short titles -5 -13

out-of-domain
NEWSCOMMENTARY 171 277 4-5M 6 16
EUROPARL 1 982 937 54-60M -7 -33
GIGA 9 625 480 260-319M 27 52

all parallel all 17M 397-475M concatenation 33 69

target-lm medical-data -146M 69 -
wmt13-data -2 536M 49 -

devel/test

DEVEL 500 10-12k khresmoi-summary
LMTEST 3 000 61-69k see Section 3.4
NEWSTEST12 3 003 73-82k from WMT’12
TEST 1 000 21-26k khresmoi-summary

Table 1: Parallel corpora used in this work, along with the number of sentences and the number of English
and French tokens, respectively. Weights (λk) from our best NCODE configuration are indicated for each
sub-corpora’s bilingual word language model (wrd-lm) and POS factor language model (pos-lm).

needed on a new corpus in order to adapt the pa-
rameters to the new domain.

3 Data and Systems Preparation

3.1 Corpora

We use all the available (constrained) medical data
extracted using the scripts provided by the orga-
nizers. This resulted in 7 sub-corpora from the
medical domain with distinctive features. As out-
of-domain data, we reuse the data processed for
WMT’13 (Allauzen et al., 2013).

For pre-processing of medical data, we closely
followed (Allauzen et al., 2013) so as to be able to
directly integrate existing translation and language
models, using in-house text processing tools for
tokenization and detokenization steps (Déchelotte
et al., 2008). All systems are built using a
“true case” scheme, but sentences fully capital-
ized (plentiful especially in PATTR-TITLES) are
previously lowercased. Duplicate sentence pairs
are removed, yielding a sentence reduction up to
70% for EMEA. Table 1 summarizes the data used
along with some statistics after the cleaning and
pre-processing steps.

3.2 Language Models

A medical-domain 4-gram language model is built
by concatenating the target side of the paral-

lel data and all the available monolingual data1,
with modified Kneser-Ney smoothing (Kneser and
Ney, 1995; Chen and Goodman, 1996), using the
SRILM (Stolcke, 2002) and KENLM (Heafield,
2011) toolkits. Although more similar to term-to-
term dictionaries, UMLS and WIKIPEDIA proved
better to be included in the language model.
The large out-of-domain language model used for
WMT’13 (Allauzen et al., 2013) is additionaly
used (see Table 1).

3.3 Part-of-Speech Tagging
Medical data exhibit many peculiarities, includ-
ing different syntactic constructions and a specific
vocabulary. As standard POS-taggers are known
not to perform very well for this type of texts, we
use a specific model trained on the Penn Treebank
and on medical data from the MedPost project
(Smith et al., 2004). We use Wapiti (Lavergne
et al., 2010), a state-of-the-art CRF implementa-
tion, with a standard feature set. Adaptation is per-
formed as in (Chelba and Acero, 2004) using the
out-of-domain model as a prior when training the
in-domain model on medical data. On a medical
test set, this adaptation leads to a 8 point reduc-
tion of the error rate. A standard model is used for
WMT’13 data. For the French side, due to the lack
of annotaded data for the medical domain, corpora
are tagged using the TreeTagger (Schmid, 1994).

1Attempting include one language model per sub-corpora
yielded a significant drop in performance.
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3.4 Proxy Test Set

For this first edition of a Medical Translation Task,
only a very small development set was made avail-
able (DEVEL in Table 1). This made both system
design and tuning challenging. In fact, with such a
small development set, conventional tuning meth-
ods are known to be very unstable and prone to
overfitting, and it would be suboptimal to select
a configuration based on results on the develop-
ment set only.2 To circumvent this, we artificially
created our own internal test set by randomly se-
lecting 3 000 sentences out from the 30 000 sen-
tences from PATTR-ABSTRACTS having the low-
est perplexity according to 3-gram language mod-
els trained on both sides of the DEVEL set. This
test set, denoted by LMTEST, is however highly
biaised, especially because of the high redundancy
in PATTR-ABSTRACTS, and should be used with
great care when tuning or comparing systems.

3.5 Systems

NCODE We use NCODE with default settings, 3-
gram bilingual translation models on words and 4-
gram bilingual translation factor models on POS,
for each included corpora (see Table 1) and for the
concatenation of them all.

OTF When using our OTF system, all in-
domain and out-of-domain data are concatenated,
respectively. For both corpora, we use a maxi-
mum random sampling size of 1 000 examples and
a maximum phrase length of 15. However, all
sub-corpora but GIGA3 are used to compute the
vectors for VSM features. Decoding is done with
MOSES4 (Koehn et al., 2007).

SOUL Given the computational cost of com-
puting n-gram probabilities with neural network
models, we resort to a reranking approach. In
the following experiments, we use 10-gram SOUL

models to rescore 1 000-best lists. SOUL models
provide five new features: a target language model
score and four translation scores (Le et al., 2012a).

We reused the SOUL models trained for our par-
ticipation to WMT’12 (Le et al., 2012b). More-
over, target language models are adapted by run-
ning 6 more epochs on the new medical data.

2This issue is traditionally solved in Machine Learning by
folded cross-validation, an approach that would be too pro-
hibitive to use here.

3The GIGA corpus is actually very varied in content.
4http://www.statmt.org/moses/

System Combination As NCODE and OTF dif-
fer in many aspects and make different errors, we
use system combination techniques to take advan-
tage of their complementarity. This is done by
reranking the concatenation of the 1 000-best lists
of both systems. For each hypothesis within this
list, we use two global features, corresponding
either to the score computed by the correspond-
ing system or 0 otherwise. We then learn rerank-
ing weights using Minimum Error Rate Training
(MERT) (Och, 2003) on the development set for
this combined list, using only these two features
(SysComb-2). In an alternative configuration, we
use the two systems without the SOUL rescoring,
and add instead the five SOUL scores as features in
the system combination reranking (SysComb-7).

Evaluation Metrics All BLEU scores (Pap-
ineni et al., 2002) are computed using cased
multi-bleu with our internal tokenization. Re-
ported results correspond to the average and stan-
dard deviation across 3 optimization runs to bet-
ter account for the optimizer variance (Clark et al.,
2011).

4 Experiments

4.1 Tuning Optimization Method

MERT is usually used to optimize Equation 1.
However, with up to 42 features when using
SOUL, this method is known to become very sen-
sitive to local minima. Table 2 compares MERT,
a batch variant of the Margin Infused Relaxation
Algorithm (MIRA) (Cherry and Foster, 2012) and
PRO (Hopkins and May, 2011) when tuning an
NCODE system. MIRA slightly outperforms PRO
on DEVEL, but seems prone to overfitting. How-
ever this was not possible to detect before the re-
lease of the test set (TEST), and so we use MIRA
in all our experiments.

DEVEL TEST

MERT 47.0± 0.4 44.1± 0.8

MIRA 47.9± 0.0 44.8± 0.1

PRO 47.1± 0.1 45.1± 0.1

Table 2: Impact of the optimization method during
the tuning process on BLEU score, for a baseline
NCODE system.
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4.2 Importance of the Data Sources

Table 3 shows that using the out-of-domain data
from WMT’13 yields better scores than only using
the provided medical data only. Moreover, com-
bining both data sources drastically boosts perfor-
mance. Table 1 displays the weights (λk) given by
NCODE to the different sub-corpora bilingual lan-
guage models. Three corpora seems particulary
useful: EMEA, PATTR-ABSTRACTS and GIGA.
Note that several models are given a negative
weight, but removing them from the model sur-
prisingly results in a drop of performance.

DEVEL TEST

medical 42.2± 0.1 39.6± 0.1

WMT’13 43.0± 0.1 41.0± 0.0

both 48.3± 0.1 45.4± 0.0

Table 3: BLEU scores obtained by NCODE trained
on medical data only, WMT’13 data only, or both.

4.3 Part-of-Speech Tagging

Using the specialized POS-tagging models for
medical data described in Section 3.3 instead of a
standart POS-tagger, a 0.5 BLEU points increase
is observed. Table 4 suggests that a better POS
tagging quality is mainly beneficial to the reorder-
ing mechanism in NCODE, in contrast with the
POS-POS factor models included as features.

Reordering Factor model DEVEL TEST

std std 47.9± 0.0 44.8± 0.1

std spec 47.9± 0.1 45.0± 0.1

spec std 48.4± 0.1 45.3± 0.1

spec spec 48.3± 0.1 45.4± 0.0

Table 4: BLEU results when using a standard POS
tagging (std) or our medical adapted specialized
method (spec), either for the reordering rule mech-
anism (Reordering) or for the POS-POS bilingual
language models features (Factor model).

4.4 Development and Proxy Test Sets

In Table 5, we assess the importance of domain
adaptation via tuning on the development set used
and investigate the benefits of our internal test set.

Best scores are obtained when using the pro-
vided development set in the tuning process. Us-

DEVEL LMTEST NEWSTEST12 TEST

48.3± 0.1 46.8± 0.1 26.2± 0.1 45.4± 0.0

41.8± 0.2 48.9± 0.1 18.5± 0.1 40.1± 0.1

39.8± 0.1 37.4± 0.2 29.0± 0.1 39.0± 0.3

Table 5: Influence of the choice of the develop-
ment set when using our baseline NCODE system.
Each row corresponds to the choice of a develop-
ment set used in the tuning process, indicated by a
surrounded BLEU score.

Table 6: Contrast of our two main systems and
their combination, when adding SOUL language
(LM) and translation (TM) models. Stars indicate
an adapted LM. BLEU results for the best run on
the development set are reported.

DEVEL TEST

NCODE 48.5 45.2
+ SOUL LM 49.4 45.7
+ SOUL LM∗ 49.8 45.9
+ SOUL LM + TM 50.1 47.0
+ SOUL LM∗+ TM 50.1 47.0

OTF 46.6 42.5
+ VSM 46.9 42.8
+ SOUL LM 48.6 44.0
+ SOUL LM∗ 48.4 44.2
+ SOUL LM + TM 49.6 44.8
+ SOUL LM∗+ TM 49.7 44.9

SysComb-2 50.5 46.6
SysComb-7 50.7 46.5

ing NEWSTEST12 as development set unsurpris-
ingly leads to poor results, as no domain adapta-
tion is carried out. However, using LMTEST does
not result in much better TEST score. We also note
a positive correlation between DEVEL and TEST.
From the first three columns, we decided to use the
DEVEL data set as development set for our sub-
mission, which is a posteriori the right choice.

4.5 NCODE vs. OTF
Table 6 contrasts our different approaches. Prelim-
inary experiments suggest that OTF is a compara-
ble but cheaper alternative to a full MOSES sys-
tem.5 We find a large difference in performance,

5A control experiment for a full MOSES system (using a
single phrase table) yielded a BLEU score of 45.9 on DEVEL
and 43.2 on TEST, and took 3 more days to complete.
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extra missing incorrect unknown

word content filler disamb. form style term order word term all

syscomb 4 13 20 47 62 8 18 21 1 11 205
OTF+VSM+SOUL 4 4 31 44 82 6 20 42 3 12 248

Table 7: Results for manual error analysis following (Vilar et al., 2006) for the first 100 test sentences.

NCODE outperforming OTF by 2.8 BLEU points
on the TEST set. VSM does not yield any signifi-
cant improvement, contrarily to the work of Chen
et al. (2013); it may be the case all individual sub-
corpus are equally good (or bad) at approximating
the stylistic preferences of the TEST set.

4.6 Integrating SOUL
Table 6 shows the substantial impact of adding
SOUL models for both baseline systems. With
only the SOUL LM, improvements on the test set
range from 0.5 BLEU points for NCODE system
to 1.2 points for the OTF system. The adaptation
of SOUL LM with the medical data brings an ad-
ditional improvement of about 0.2 BLEU points.

Adding all SOUL translation models yield an
improvement of 1.8 BLEU points for NCODE and
of 2.4 BLEU points with the OTF system using
VSM models. However, the SOUL adaptation step
has then only a modest impact. In future work, we
plan to also adapt the translation models in order
to increase the benefit of using in-domain data.

4.7 System Combination
Table 6 shows that performing the system combi-
nation allows a gain up to 0.6 BLEU points on the
DEVEL set. However this gain does not transfer to
the TEST set, where instead a drop of 0.5 BLEU
is observed. The system combination using SOUL

scores showed the best result over all of our other
systems on the DEVEL set, so we chose this (a
posteriori sub-obtimal) configuration as our main
system submission.

Our system combination strategy chose for DE-
VEL about 50% hypotheses among those produced
by NCODE and 25% hypotheses from OTF, the
remainder been common to both systems. As ex-
pected, the system combination prefers hypothe-
ses coming from the best system. We can observe
nearly the same distribution for TEST.

5 Error Analysis

The high level of scores for automatic metrics
encouraged us to perform a detailed, small-scale

analysis of our system output, using the error types
proposed by Vilar et al. (2006). A single annota-
tor analyzed the output of our main submission, as
well as our OTF variant. Results are in Table 7.

Looking at the most important types of errors,
assuming the translation hypotheses were to be
used for rapid assimilation of the text content, we
find a moderate number of unknown terms and in-
correctly translated terms. The most frequent er-
ror types include missing fillers, incorrect disam-
biguation, form and order, which all have some
significant impact on automatic metrics. Compar-
ing more specifically the two systems used in this
small-scale study, we find that our combination
(which reused more than 70% of hypotheses from
NCODE) mostly improves over the OTF variant on
the choice of correct word form and word order.
We may attribute this in part to a more efficient
reordering strategy that better exploits POS tags.

6 Conclusion

In this paper, we have demonstrated a successful
approach that makes use of two flexible transla-
tion systems, an n-gram system and an on-the-fly
phrase-based model, in a new medical translation
task, through various approaches to perform do-
main adaptation. When combined with continu-
ous language models, which yield additional gains
of up to 2 BLEU points, moderate to high-quality
translations are obtained, as confirmed by a fine-
grained error analysis. The most challenging part
of the task was undoubtedly the lack on an internal
test to guide system development. Another inter-
esting negative result lies in the absence of success
for our configuration of the vector space model
of Chen et al. (2013) for adaptation. Lastly, a more
careful integration of medical terminology, as pro-
vided by the UMLS, proved necessary.
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Abstract 

This paper explores a number of simple 

and effective techniques to adapt statisti-

cal machine translation (SMT) systems in 

the medical domain. Comparative exper-

iments are conducted on large corpora for 

six language pairs. We not only compare 

each adapted system with the baseline, 

but also combine them to further improve 

the domain-specific systems. Finally, we 

attend the WMT2014 medical summary 

sentence translation constrained task and 

our systems achieve the best BLEU 

scores for Czech-English, English-

German, French-English language pairs 

and the second best BLEU scores for re-

minding pairs. 

 

1. Introduction 

This paper presents the experiments conducted 

by the NLP
2
CT Laboratory at the University of 

Macau for WMT2014 medical sentence transla-

tion task on six language pairs: Czech-English 

(cs-en), French-English (fr-en), German-English 

(de-en) and the reverse direction pairs, i.e., en-cs, 

en-fr and en-de.  

By comparing the medical text with common 

text, we discovered some interesting phenomena 

in medical genre. We apply domain-specific 

techniques in data pre-processing, language 

model adaptation, translation model adaptation, 

numeric and hyphenated words translation.  

Compared to the baseline systems (detailed in 

Section 2 & 3), the results of each method show 

reasonable gains. We combine individual ap-

proach to further improve the performance of our 

systems. To validate the robustness and lan-

guage-independency of individual and combined 

systems, we conduct experiments on the official 

training data (detailed in Section 3) in all six lan-

guage pairs. We anticipate the numeric compari-

son (BLEU scores) on these individual and com-

bined domain adaptation approaches that could 

be valuable for others on building a real-life do-

main-specific system. 

The reminder of this paper is organized as fol-

lows. In Section 2, we detail the configurations 

of our experiments as well as the baseline sys-

tems. Section 3 presents the specific pre-

processing for medical data. In Section 4 and 5, 

we describe the language model (LM) and trans-

lation model (TM) adaptation, respectively. Be-

sides, the techniques for numeric and hyphenated 

words translation are reported in Section 6 and 7. 

Finally, the performance of design systems and 

the official results are reported in Section 8. 

2. Experimental Setup 

All available training data from both WMT2014 

standard translation task
1
 (general-domain data) 

and medical translation task
2
 (in-domain data) 

are used in this study. The official medical sum-

mary development sets (dev) are used for tuning 

and evaluating all the comparative systems. The 

official medical summary test sets (test) are only 

used in our final submitted systems.  

The experiments were carried out with the 

Moses 1.0
3
 (Koehn et al., 2007). The translation 

and the re-ordering model utilizes the “grow-

diag-final” symmetrized word-to-word align-

ments created with MGIZA++
4
 (Och and Ney, 

                                                 
1
 http://www.statmt.org/wmt14/translation-task.html. 

2
 http://www.statmt.org/wmt14/medical-task/. 

3
 http://www.statmt.org/moses/. 

4
 http://www.kyloo.net/software/doku.php/mgiza:overview. 
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2003; Gao and Vogel, 2008) and the training 

scripts from Moses. A 5-gram LM was trained 

using the SRILM toolkit
5
 (Stolcke et al., 2002), 

exploiting improved modified Kneser-Ney 

smoothing, and quantizing both probabilities and 

back-off weights. For the log-linear model train-

ing, we take the minimum-error-rate training 

(MERT) method as described in (Och, 2003). 

3. Task Oriented Pre-processing 

A careful pre-processing on training data is sig-

nificant for building a real-life SMT system. In 

addition to the general data preparing steps used 

for constructing the baseline system, we intro-

duce some extra steps to pre-process the training 

data. 

The first step is to remove the duplicate sen-

tences. In data-driven methods, the more fre-

quent a term occurs, the higher probability it bi-

ases. Duplicate data may lead to unpredicted be-

havior during the decoding. Therefore, we keep 

only the distinct sentences in monolingual cor-

pus. By taking into account multiple translations 

in parallel corpus, we remove the duplicate sen-

tence pairs. The second concern in pre-

processing is symbol normalization. Due to the 

nature of medical genre, symbols such as num-

bers and punctuations are commonly-used to pre-

sent chemical formula, measuring unit, terminol-

ogy and expression. Fig. 1 shows the examples 

of this case. These symbols are more frequent in 

medical article than that in the common texts. 

Besides, the punctuations of apostrophe and sin-

gle quotation are interchangeably used in French 

text, e.g. “l’effet de l'inhibition”. We unify it by 

replacing with the apostrophe. In addition, we 

observe that some monolingual training subsets 

(e.g., Gene Regulation Event Corpus) contain 

sentences of more than 3,000 words in length. To 

avoid the long sentences from harming the true-

case model, we split them into sentences with a 

sentence splitter
6
 (Rune et al., 2007) that is opti-

mized for biomedical texts. On the other hand, 

we consider the target system is intended for 

summary translation, the sentences tend to be 

short in length. For instance, the average sen-

tence lengths in development sets of cs, fr, de 

and en are around 15, 21, 17 and 18, respective-

ly. We remove sentence pairs which are more 

than 80 words at length. In order to that our ex-

periments are reproducible, we give the detailed 

                                                 
5
 http://www.speech.sri.com/projects/srilm/. 

6
 http://www.nactem.ac.uk/y-matsu/geniass/. 

statistics of task oriented pre-processed training 

data in Table 2. 

1,25-OH 

47 to 80% 

10-20 ml/kg 

A&E department 

Infective endocarditis (IE) 

Figure 1. Examples of the segments with sym-

bols in medical texts. 

To validate the effectiveness of the pre-

processing, we compare the SMT systems 

trained on original data
7
(Baseline1) and task-

oriented-processed data (Baseline2), respective-

ly. Table 1 shows the results of the baseline sys-

tems. We found all the Baseline2 systems outper-

form the Baseline1 models, showing that the sys-

tems can benefit from using the processed data. 

For cs-en and en-cs pairs, the BLEU scores im-

prove quite a lot. For other language pairs, the 

translation quality improves slightly.  

By analyzing the Baseline2 results (in Table 1) 

and the statistics of training corpora (in Table 2), 

we can further elaborate and explain the results. 

The en-cs system performs poorly, because of 

the short average length of training sentences, as 

well as the limited size of in-domain parallel and 

monolingual corpora. On the other hand, the fr-

en system achieves the best translation score, as 

we have sufficient training data. The translation 

quality of cs-en, en-fr, fr-en and de-en pairs is 

much higher than those in the other pairs. Hence, 

Baseline2 will be used in the subsequent compar-

isons with the proposed systems described in 

Section 4, 5, 6 and 7. 

Lang. Pair Baseline1 Baseline2 Diff. 

en-cs 12.92 17.57 +4.65 

cs-en 20.85 31.29 +10.44 

en-fr 38.31 38.36 +0.05 

fr-en 44.27 44.36 +0.09 

en-de 17.81 18.01 +0.20 

de-en 32.34 32.50 +0.16 

Table 1: BLEU scores of two baseline systems 

trained on original and processed corpora for 

different language pairs. 

4. Language Model Adaptation 

The use of LMs (trained on large data) during 

decoding is aided by more efficient storage and 

inference (Heafield, 2011). Therefore, we not 

                                                 
7
 Data are processed according to Moses baseline tutorial: 

http://www.statmt.org/moses/?n=Moses.Baseline. 
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Data Set Lang. Sent. Words Vocab. Ave. Len. 

In-domain  

Parallel Data 

cs/en 1,770,421 
9,373,482/ 

10,605,222 

134,998/ 

156,402 
5.29/ 

5.99 

de/en 3,894,099 
52,211,730/ 

58,544,608 

1,146,262/ 

487,850 

13.41/ 

15.03 

fr/en 4,579,533 
77,866,237/ 

68,429,649 

495,856/ 

556,587 

17.00/ 

14.94 

General-domain  

Parallel Data 

cs/en 12,426,374 
180,349,215/ 

183,841,805 

1,614,023/ 

1,661,830 

14.51/ 

14.79 

de/en 4,421,961 
106,001,775/ 

112,294,414 

1,912,953/ 

919,046 

23.97/ 

25.39 

fr/en 36,342,530 
1,131,027,766/ 

953,644,980 

3,149,336/ 

3,324,481 

31.12/ 

26.24 

In-domain  

Mono. Data 

cs 106,548 1,779,677 150,672 16.70 

fr 1,424,539 53,839,928 644,484 37.79 

de 2,222,502 53,840,304 1,415,202 24.23 

en 7,802,610 199430649 1,709,594 25.56 

General-domain  

Mono. Data 

cs 33,408,340 567,174,266 3,431,946 16.98 

fr 30,850,165 780,965,861 2,142,470 25.31 

de 84,633,641 1,548,187,668 10,726,992 18.29 

en 85,254,788 2,033,096,800 4,488,816 23.85 

Table 2: Statistics summary of corpora after pre-processing. 

only use the in-domain training data, but also the 

selected pseudo in-domain data
8
 from general-

domain corpus to enhance the LMs (Toral, 2013; 

Rubino et al., 2013; Duh et al., 2013). Firstly, 

each sentence s in general-domain monolingual 

corpus is scored using the cross-entropy differ-

ence method in (Moore and Lewis, 2010), which 

is calculated as follows: 

 ( ) ( ) ( )I Gscore s H s H s   (1) 

where H(s) is the length-normalized cross-

entropy. I and G are the in-domain and general-

domain corpora, respectively. G is a random sub-

set (same size as the I) of the general-domain 

corpus. Then top N percentages of ranked data 

sentences are selected as a pseudo in-domain 

subset to train an additional LM. Finally, we lin-

early interpolate the additional LM with in-

domain LM.  

We use the top N% of ranked results, where 

N={0, 25, 50, 75, 100} percentages of sentences 

out of the general corpus. Table 3 shows the ab-

solute BLEU points for Baseline2 (N=0), while 

the LM adapted systems are listed with values 

relative to the Baseline2. The results indicate that 

LM adaptation can gain a reasonable improve-

ment if the LMs are trained on more relevant 

data for each pair, instead of using the whole 

training data. For different systems, their BLEU 

                                                 
8
 Axelrod et al. (2011) names the selected data as pseudo in-

domain data. We adopt both terminologies in this paper. 

scores peak at different values of N. It gives the 

best results for cs-en, en-fr and de-en pairs when 

N=25, en-cs and en-de pairs when N=50, and fr-

en pair when N=75. Among them, en-cs and en-

fr achieve the highest BLEU scores. The reason 

is that their original monolingual (in-domain) 

data for training the LMs are not sufficient. 

When introducing the extra pseudo in-domain 

data, the systems improve the translation quality 

by around 2 BLEU points. While for cs-en, fr-en 

and de-en pairs, the gains are small. However, it 

can still achieve a significant improvement of 

0.60 up to 1.12 BLEU points. 

Lang. N=0 N=25 N=50 N=75 N=100 

en-cs 17.57 +1.66 +2.08 +1.72 +2.04 

cs-en 31.29 +0.94 +0.60 +0.66 +0.47 

en-fr 38.36 +1.82 +1.66 +1.60 +0.08 

fr-en 44.36 +0.91 +1.09 +1.12 +0.92 

en-de 18.01 +0.57 +1.02 -4.48 -4.54 

de-en 32.50 +0.60 +0.50 +0.56 +0.38 

Table 3: BLEU scores of LM adapted systems. 

5. Translation Model Adaptation 

As shown in Table 2, general-domain parallel 

corpora are around 1 to 7 times larger than the 

in-domain ones. We suspect if general-domain 

corpus is broad enough to cover some in-domain 

sentences. To observe the domain-specificity of 

general-domain corpus, we firstly evaluate sys-

tems trained on general-domain corpora. In Ta-
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ble 4, we show the BLEU scores of general-

domain systems
9
 on translating the medical sen-

tences. The BLEU scores of the compared sys-

tems are relative to the Baseline2 and the size of 

the used general-domain corpus is relative to the 

corresponding in-domain one. For en-cs, cs-en, 

en-fr and fr-en pairs, the general-domain parallel 

corpora we used are 6 times larger than the orig-

inal ones and we obtain the improved BLEU 

scores by 1.72 up to 3.96 points. While for en-de 

and de-en pairs, the performance drops sharply 

due to the limited training corpus we used. 

Hence we can draw a conclusion: the general-

domain corpus is able to aid the domain-specific 

translation task if the general-domain data is 

large and broad enough in content.  

Lang. Pair BLEU Diff. Corpus 

en-cs 21.53 +3.96 
+601.89% 

cs-en 33.01 +1.72 

en-fr 41.57 +3.21 
+693.59% 

fr-en 47.33 +2.97 

en-de 16.54 -1.47 
+13.63% 

de-en 27.35 -5.15 

Table 4: The BLEU scores of systems trained on 

general-domain corpora. 

Taking into account the performance of gen-

eral-domain system, we explore various data se-

lection methods to derive the pseudo in-domain 

sentence pairs from general-domain parallel cor-

pus for enhancing the TMs (Wang et al., 2013; 

Wang et al., 2014). Firstly, sentence pair in cor-

responding general-domain corpora is scored by 

the modified Moore-Lewis (Axelrod et al., 

2011), which is calculated as follows: 

 
 

g g

( ) ( ) ( )

( ) ( )

I src G src

I t t G t t

score s H s H s

H s H s

 

 

 

   

 (2) 

which is similar to Eq. (1) and the only differ-

ence is that it considers the both the source (src) 

and target (tgt) sides of parallel corpora. Then 

top N percentage of ranked sentence pairs are 

selected as a pseudo in-domain subset to train an 

individual translation model. The additional 

model is log-linearly interpolated with the in-

domain model (Baseline2) using the multi-

decoding method described in (Koehn and 

Schroeder, 2007). 

Similar to LM adaptation, we use the top N% 

of ranked results, where N={0, 25, 50, 75, 100} 

percentages of sentences out of the general cor-

                                                 
9

 General-domain systems are trained only on genera-

domain training corpora (i.e., parallel, monolingual). 

pus. Table 5 shows the absolute BLEU points for 

Baseline2 (N=0), while for the TM adapted sys-

tems we show the values relative to the Base-

line2. For different systems, their BLEU peak at 

different N. For en-fr and en-de pairs, it gives the 

best translation results at N=25. Regarding cs-en 

and fr-en pairs, the optimal performance is 

peaked at N=50. While the best results for de-en 

and en-cs pairs are N=75 and N=100 respective-

ly. Besides, performance of TM adapted system 

heavily depends on the size and (domain) broad-

ness of the general-domain data. For example, 

the improvements of en-de and de-en systems are 

slight due to the small general-domain corpora. 

While the quality of other systems improve about 

3 BLEU points, because of their large and broad 

general-domain corpora.  

Lang. N=0 N=25 N=50 N=75 N=100 

en-cs 17.57 +0.84 +1.53 +1.74 +2.55 

cs-en 31.29 +2.03 +3.12 +3.12 +2.24 

en-fr 38.36 +3.87 +3.66 +3.53 +2.88 

fr-en 44.36 +1.29 +3.36 +1.84 +1.65 

en-de 18.01 +0.02 -0.13 -0.07 0 

de-en 32.50 -0.12 +0.06 +0.31 +0.24 

Table 5: BLEU scores of TM adapted systems. 

6. Numeric Adaptation 

As stated in Section 3, numeric occurs frequently 

in medical texts. However, numeric expression in 

dates, time, measuring unit, chemical formula are 

often sparse, which may lead to OOV problems 

in phrasal translation and reordering. Replacing 

the sparse numbers with placeholders may pro-

duce more reliable statistics for the MT models.  

Moses has support using placeholders in train-

ing and decoding. Firstly, we replace all the 

numbers in monolingual and parallel training 

corpus with a common symbol (a sample phrase 

is illustrated in Fig. 2). Models are then trained 

on these processed data. We use the XML 

markup translation method for decoding.  

Original: Vitamin D 1,25-OH  

Replaced: Vitamin D @num@, @num@-OH 

Figure 2. Examples of placeholders. 

Table 6 shows the results on this number ad-

aptation approach as well as the improvements 

compared to the Baseline2. The method im-

proves the Baseline2 systems by 0.23 to 0.40 

BLEU scores. Although the scores increase 

slightly, we still believe this adaptation method is 

significant for medical domain. The WMT2014 

medical task only focuses on the summary of 
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medical text, which may contain fewer chemical 

expression in compared with the full article. As 

the used of numerical instances increases, place-

holder may play a more important role in domain 

adaptation.  

Lang. Pair BLEU (Dev) Diff. 

en-cs 17.80 +0.23 

cs-en 31.52 +0.23 

en-fr 38.72 +0.36 

fr-en 44.69 +0.33 

en-de 18.41 +0.40 

de-en 32.88 +0.38 

Table 6: BLEU scores of numeric adapted sys-

tems. 

7. Hyphenated Word Adaptation 

Medical texts prefer a kind of compound words, 

hyphenated words, which is composed of more 

than one word. For instance, “slow-growing” and 

“easy-to-use” are composed of words and linked 

with hyphens. These hyphenated words occur 

quite frequently in medical texts. We analyze the 

development sets of cs, fr, en and de respective-

ly, and observe that there are approximately 

3.2%, 11.6%, 12.4% and 19.2% of sentences that 

contain one or more hyphenated words. The high 

ratio of such compound words results in Out-Of-

Vocabulary words (OOV)
10

, and harms the 

phrasal translation and reordering. However, a 

number of those hyphenated words still have 

chance to be translated, although it is not precise-

ly, when they are tokenized into individual 

words.  

Algorithm: Alternative-translation Method 

Input: 

1. A sentence, s, with M hyphenated words 

2. Translation lexicon 

Run: 

1. For i = 1, 2, …, M 

2.   Split the ith hyphenated word (Ci) into 

Pi 

3.   Translate  Pi into Ti 

4.   If (Ti are not OOVs): 

5.      Put alternative translation Ti in XML 

6.    Else: keep Ci unchanged 

Output: 

Sentence, s’, embedded with alternative 

translations for all Ti. 
End 

Table 7: Alternative-translation algorithm. 

                                                 
10

 Default tokenizer does not handle the hyphenated words. 

To resolve this problem, we present an alter-

native-translation method in decoding. Table 7 

shows the proposed algorithm. 

In the implementation, we apply XML markup 

to record the translation (terminology) for each 

compound word. During the decoding, a hyphen-

ated word delimited with markup will be re-

placed with its corresponding translation. Table 8 

shows the BLEU scores of adapted systems ap-

plied to hyphenated translation. This method is 

effective for most language pairs. While the 

translation systems for en-cs and cs-en do not 

benefit from this adaptation, because the hy-

phenated words ratio in the en and cs dev are 

asymmetric. Thus, we only apply this method for 

en-fr, fr-en, de-en and en-de pairs. 

Lang. Pair BLEU (Dev) Diff. 

en-cs 16.84 -0.73 

cs-en 31.23 -0.06 

en-fr 39.12 +0.76 

fr-en 45.02 +0.66 

en-de 18.64 +0.63 

de-en 33.01 +0.51 

Table 8: BLEU scores of hyphenated word 

adapted systems. 

3. Final Results and Conclusions 

According to the performance of each individual 

domain adaptation approach, we combined the 

corresponding models for each language pair. In 

Table 10, we show the BLEU scores and its in-

crements (compared to the Baseline2) of com-

bined systems in the second column. The official 

test set is converted into the recased and deto-

kenized SGML format. The official results of our 

submissions are given in the last column of Table 

9. 

Lang. 

Pair 

BLEU of Com-

bined systems 

Official 

BLEU 

en-cs 23.66 (+6.09) 22.60 

cs-en 38.05 (+6.76) 37.60 

en-fr 42.30 (+3.94) 41.20 

fr-en 48.25 (+3.89) 47.10 

en-de 21.14 (+3.13) 20.90 

de-en 36.03 (+3.53) 35.70 

Table 9: BLEU scores of the submitted systems 

for the medical translation task. 

This paper presents a set of experiments con-

ducted on all available training data for six lan-

guage pairs. We explored various domain adap-

tation approaches for adapting medical transla-
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tion systems. Compared with other methods, lan-

guage model adaptation and translation model 

adaptation are more effective. Other adapted 

techniques are still necessary and important for 

building a real-life system. Although all individ-

ual methods are not fully additive, combining 

them together can further boost the performance 

of the overall domain-specific system. We be-

lieve these empirical approaches could be valua-

ble for SMT development. 
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Abstract

This paper describes Dublin City Uni-
versity’s (DCU) submission to the WMT
2014 Medical Summary task. We re-
port our results on the test data set in
the French to English translation direction.
We also report statistics collected from the
corpora used to train our translation sys-
tem. We conducted our experiment on the
Moses 1.0 phrase-based translation system
framework. We performed a variety of ex-
periments on translation models, reorder-
ing models, operation sequence model and
language model. We also experimented
with data selection and removal the length
constraint for phrase-pair extraction.

1 System Description

1.1 Training Data Statistics and Preparation
The training corpora provided to the medical
translation shared task can be divided into 3 cat-
egories:

Medical in-domain corpora: these corpora
contain documents, patents, articles, terminology
lists, and titles that are representative of the same
medical domain as the development and test data
sets (Table 1, second column).

Medical out-of-domain corpora: these cor-
pora also contain medical documents, patents, ar-
ticles, terminologies lists and titles, but describe
a different domain from the development and test
data sets (Table 1, third column).

General domain corpora: these corpora con-
sist of general-domain text (WMT 2014 general

translation subtask corpora), and encompass vari-
ous domains. (We did not use these corpora in our
system).

Corpus In-domain Out-of-domain
parallel sentence parallel sentence
number number

EMEA 1,092,568 0
COPPA 664,658 2,841,849
PatTR-title 408,502 2,096,270
PatTR-abstract 688,147 3,009,523
PatTR-claims 1,105,230 5,861,621
UMLS 85,705 0
Wikipedia 8,448 0

TOTAL 4,053,258 13,809,263

Table 1: WMT 2014 Medical Translation shared
task parallel training data before preprocessing.

Within all the provided training corpora from
WMT 2014, 70.72% of the medical in domain
bilingual sentences, and 100% of the medical
out-of-domain bilingual sentences were obtained
from patent document collections. Motivated by
these percentages, we view the WMT 2014 med-
ical translation shared task as similar to training
a patent-specific translation system. The mono-
lingual corpora are taken from 9 different cor-
pora collections, and there is no clear demarca-
tion of the in/out-of-domain boundaries (except
the PatTR collection). Our method of differenti-
ating between the in/out-of-domain monolingual
corpora is that only English sentences from the
third column of Table 1, and the patent descrip-
tion documents from PatTR collection, are out-of-
domain monolingual corpora. All other English

260



sentences are treated as an in-domain monolingual
resource.

A patent document usually comprises title, ab-
stract, claims and description fields. The docu-
ments often use its unique formatting and con-
tain linguistic idiosyncrasies, which distinguish
patent-specific translation systems from general
translation systems, in both training and transla-
tion phases (Ceauşu et al., 2011). We have also
found that some common writing styles are con-
stantly used, especially for long sentences. For
example, a typical patent claim begins with

Method of [X], which comprising:

followed by a numbered list. The abstract
field normally contains one paragraph only, but
with multiple sentences. Those long sentences
are necessarily filtered out to facilitate efficient
word alignment, using a tool such as GIZA++
(Och, 2003) word aligner with the default param-
eter settings. However, because statistical ma-
chine translation depends on the training data to
estimate translation probability, more high qual-
ity training data often leads a better translation re-
sult. One possible method of including long sen-
tences into the training cycle is to change the word
aligner’s parameter settings to handle longer sen-
tences; however, aligning long sentences is time
consuming. Our solution is to capture the styled
long sentences and attempt to split them on both
source and target side simultaneously according
to the numbered list or sentence boundary indica-
tions. If the sentence number after splitting are
matching in both source and target sides, and each
sentence pair is within the token length ratio of
3, we assume the split attempt is successful, oth-
erwise the sentences are kept unchanged and will
be filtered out eventually. We applied our splitting
attempt approach on the patent documents at the
data preparation step which consequently results
in 19.35% and 7.1% increase in the number of
sentence pairs compared with the original medical
in-domain (from 4053258 to 4837382) and over-
all medical (from 17862521 to 19124142) datasets
respectively.

Another finding from the training corpora is that
the titles of the patent documents are often capital-
ized in the training corpora. Since we are training
a true-cased translation system, and the transla-
tion inputs contain non-title sentences, capitalized
training sentences will contribute biased weights
to our true-case model. We addressed this issue by

creating a lowercase version of the title corpora,
then we trained our true-case model with the low-
ercased titles corpora and other non-title corpora.
We also included the lowercased title corpora in
the translation system training.

We tokenized the training corpora using the
tokenizer script distributed in the Moses 1.0
framework with additional patent document non-
breaking preferences observed during data prepa-
ration, such as Figs and FIGS etc., and a modified
aggressive setting (split hyphen character in all
cases). Other data preparation steps included char-
acter normalization, character/token based foreign
language detection, HTML/XML tag removal,
case insensitive duplication removal, longer sen-
tence removal (2-80, length ratio 9), resulting in
the preprocessed data shown in Table 2.

Corpus In-domain Out-of-domain
parallel sentence parallel sentence
number number

EMEA 273,532 0
COPPA 1,374,371 6,075,599
PatTR-title 63,856 3,457,164
PatTR-abstract 599,435 2,595,515
PatTR-claims 876,603 4,244,324
UMLS 85,683 0
Wikipedia 8,438 0

TOTAL 3,956,478 16,372,602

Table 2: WMT 2014 Medical Translation shared
task parallel training data after preprocessing
steps.

1.2 Training Data Selection

It is an open secret that high quality and large
quantity of the parallel corpus are the two most
important factors for a high-quality SMT system.
These factors assist the word aligner in producing
a precise alignment model, which in turn brings
benefits to the other SMT training steps.

The quantity factor also helps the SMT system
to cover more translation input variations. In order
to efficiently use the training corpora listed in Ta-
ble 2, we explored some data selection methodolo-
gies. We used the feature decay algorithm (Bicici
et al., 2014) to select the training instances trans-
ductively, using the source side of the test set. We
built systems with the pre-defined selection pro-
portions in token number, 1/64, 1/32, 1/16, 1/8,
1/2, 3/4 and 1 of all the in-domain medical train-
ing data, then searched for the best performing
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system using the test data set as our baseline (Ta-
ble 3). For the purpose of making the potential
baseline systems comparable, instance selection
was employed after word alignment using word
aligner MGIZA++ (Gao and Vogel, 2008) on all
the available data. The transductive learning uses
features extracted from the source data of the de-
velopment set with the default feature decay algo-
rithm weight settings. All of systems were trained
using the default phrase-based training parameter
settings of Moses 1.0 framework, with additional
msd-bidirectional-fe reordering model (Koehn et
al., 2005). We extract phrase pairs based on grow-
diag-final-and (Koehn et al., 2003) heuristics.
The language model was created with open source
IRSTLM toolkit (Federico et al., 2008) using all
the English in-domain data (monolingual and par-
allel). We used 5-gram with modied Kneser-Ney
smoothing (Kneser and Ney, 1995). The tuning
step used minimum error rate training (MERT)
(Och, 2003). The performance was measured by
the test data set in case insensitive BLEU score.

Proportions Test set
case insensitive BLEU

1/64 0.4374
1/32 0.4409
1/16 0.4370
1/8 0.4419
1/4 0.4390
1/2 0.4399
3/4 0.4397
1 0.4260

Table 3: Feature decay algorithm transductive
learning selection on all in-domain data using ex-
tracted features from the source side of the test
data set. We choose system uses 1/8 proportions
of the in-domain data as our baseline system.

Our results show that the system trained with
1/8 proportion of the in-domain medical training
data (398,098 sentence pairs) selected by FDA
outperformed the others. We chose this system as
our baseline system.

2 Experiments

2.1 Maximum Phrase Length

While extracting phrase pairs, collecting longer
phrases is not guaranteed to produce a better qual-
ity phrase table than the shorter settings, even
setting the maximum phrase length to three can

achieve top performance (Koehn et al., 2003).
We take this WMT 2014 opportunity to study the
capability of long phrase lengths ( >=10 ). We
trained translation models with phrase length set-
ting from 10 to 15, employed them to our base-
line system and compared the performance with
the default setting (length = 7).

Phrase Length Phrase Table Test set
Entries case insensitive

BLEU
7 (Baseline) 19.31 0.4419
10 29.67 0.4400
11 32.87 0.4416
12 35.95 0.4444*
13 38.91 0.4448*
14 41.75 0.4444*
15 44.47 0.4362

Table 4: -max-phrase-length setting experiment,
where phrase table entries is in millions. * indi-
actes statistically significant improvement at the p
= 0.05 level.1

As stated in (Koehn et al., 2003) and expected,
the size of the phrase table is linear with respect to
the maximum phrase length restriction. Surpris-
ingly, we also found the performance can still im-
prove after the default length setting, until a peak
point (Table 4).

It is also interesting to see the effect for each
sentence in the test set when the default phrase
length setting in Moses framework is changed. We
first evaluated the sentence level BLEU scores for
the systems listed in Table 4, then compared them
with our baseline system sentence level BLEU
scores and categorised the compared results into
increased, decreased or unaffected groups (Fig-
ure 1). We found that system with -max-phrase-
length set to 12 is influenced the least (158, 118
and 724 sentences have BLEU score increased,
decreased and unaffected respectively) and with
-max-phrase-length sets to 10 is influenced the
most (261, 257 and 482 sentences have BLEU
score increased, decreased and unaffected respec-
tively).

We then looked into the decoding phase and
tried to discover the actual phrase length that was
used to generate the translation outputs. We ex-
posed the translation segmentations by trigger-
ing the -report-segmentation decoding parameter

1The same notation is used for the rest of the tables in this
paper
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decoding

in the Moses framework and computed the per-
centage of different phrases used according to the
phrase token number (Figure 2). The transla-
tion is mostly generated from short source phrases
(length<4) in all the systems during decoding,
which we think is the reason that setting phrase ex-
traction to length 3 can achieve top performance.

We did not carry out more experiments in this
case, as we think there is no absolute maximum
phrase length setting which can fit into all experi-
ments and such experiments depend on many fac-
tors, such as the similarity between the training
corpus and then testing data. The choice to set
-max-phrase-length to 13 is purely directed by the
BLEU score shown in Table 4.

2.2 Reordering Models
Ceauşu et al. (2011) also found that long-range re-
ordering is one of the characteristics of patent doc-
uments; however, long-range reordering increases
the difficulty of SMT training and decoding. We
experimented two approaches to address this chal-
lenge. Apart from the msd-bidirectional-fe lexi-
cal reordering model (Koehn et al., 2005) in our
baseline system, the phrase-based orientation and
hierarchical orientation reordering models (Gal-
ley and Manning, 2008) can capture long distance
dependencies. The phrase-based orientation re-
ordering model is similar to the lexical reordering
approach, the only difference between these two
models is the phrase-based reordering model per-
forms reordering only on the phrase level, but the
hierarchical reordering model does not have such
constraint - it does not require phrases to be ad-
jacent. OSM (Durrani, 2011) (Durrani, 2013b)
is a sequence model integrating the N-gram-based
translation model and reordering model. It de-
fines three operations for reordering and consid-
ers all reordering possibilities within a fixed win-
dow while searching. We experimented with both
reordering models, and found that the system de-
fined with three reordering models performs bet-
ter (Table 5) than OSM. We then tried to use both
OSM and the reordering models together, which
produced the best system at this point.

Systems Test set
case insensitive BLEU

Baseline + 13 0.4448
+ OSM 0.4472
+ pho-ho 0.4551*
+ pho-ho + OSM 0.4561*

Table 5: Reordering Model or/and OSM results

2.3 Two Translation Models
The back-off model aims to produce translations
for the unknown words or unknown phrases in the
primary translation table by yielding the phrase ta-
ble translation probability from primary transla-
tion table to the back-off table, as in (Koehn et
al., 2012a)

pBO(e|f) =

{
p1(e|f) if count1(f) > 0
p2(e|f) otherwise

Moreover, we look at using the back off model
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as a domain adaptation approach, which is to con-
strain the translation options within the target do-
main unless no options can be found, in which
case the translation will be selected from the back-
off model.

Phrase table fill-up (Bisazza et al., 2011) is a
very similar approach with back-off models, it col-
lects and uses the phrase pairs from the out-of-
domain phrase table only when the input is un-
available at the in-domain phrase table. It merges
the in-domain and out-of-domain translation mod-
els into one, where the scores are taken from more
reliable source. To distinguish the source of a
phrase pair entry, fill-up assigns a binary value as
an additional feature at the merged phrase table.

We trained our out-of-domain translation model
separately using all of the out-of-domain medi-
cal data listed at Table 2 with the same parame-
ter settings as our baseline system, then employed
Moses’s back-off model feature to pass the pri-
mary and back-off translation models to the de-
coder at tuning and translation time. The fill-up
tool was sourced from (Bisazza et al., 2011) at
Moses’s distribution. Our experiment results (Ta-
ble 6) show that the fill-up approach performed
better than the back-off model approach.

Systems Test set
case insensitive BLEU

Baseline + 13 + pho-ho + OSM 0.4561
Back-off 0.4573
Fill-up 0.4599*

Table 6: Back-off and fill-up experiment results

2.4 Language Model

Until now, we have reported our results using a
language model trained with all in-domain medi-
cal data only. We also took the similar approach
to (Koehn et al., 2007) and carried out language
model experiments. We trained our out-of-domain
language model with all the out-of-domain En-
glish sentences mentioned in section 1.1, then in-
terpolated the in-domain and out-of-domain lan-
guage model by optimizing the perplexity to the
development data set. We received a similar pic-
ture to (Koehn et al., 2007), where the language
model trained with only in-domain data performed
the best (Table 7).

Our final submission for WMT 2014 Medical
Translation shared task is the * system at Table 7.

Systems Test set
case insensitive BLEU

Baseline + 13 + pho-ho
+ OSM + Fill-up* 0.4599
out-of-domain LM 0.4461
interpolated LM 0.4592

Table 7: Language model experiment results

3 Conclusion

In this paper, we report our results on the WMT
2014 in the French to English translation direc-
tion. We shared our statistics for the bilingual
corpora used to train our translation system. All
systems were trained using the open source Moses
1.0 translation framework. Based on the feature
set of Moses phrased-based translation system, we
carried out our experiments on translation models,
reordering models, operation sequence model and
language model. We also experimented on data
selection and releasing the length restriction while
extracting phrase pairs.
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Alexandru Ceauşu, John Tinsley, Jian Zhang and Andy

Way. 2011. Experiments on domain adaptation for
patent machine translation in the PLuTO project,
The 15th conference of the European Association
for Machine Translation, Leuven, Belgium.

Arianna Bisazza, Nick Ruiz, and Marcello Fed-
erico. 2011. Fill-up versus Interpolation Meth-
ods for Phrase-based SMT Adaptation., In Interna-
tional Workshop on Spoken Language Translation
(IWSLT), San Francisco, CA.

Durrani, N., Schmid, H., and Fraser, A. 2011. A
Joint Sequence Translation Model with Integrated
Reordering., The 49th Annual Meeting of the As-
sociation for Computational Linguistics, Portland,
Oregon, USA.

Durrani, N., Fraser, A., Schmid, H., Hoang, H., and
Koehn, P. 2013b. Can Markov Models Over Min-
imal Translation Units Help Phrase-Based SMT,
The 51th Annual Meeting of the Association for
Computational Linguistics, Sofia, Bulgaria.

264



Ergun Bicici and Deniz Yuret. 2014. Optimizing In-
stance Selection for Statistical Machine Translation
with Feature Decay Algorithms, IEEE/ACM Trans-
actions On Audio, Speech, and Language Process-
ing (TASLP).

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models,
Computational Linguistics, 29(1):1951.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation, The 41th Annual
Meeting of the Association for Computational Lin-
guistics, Sapporo, Japan.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. IRSTLM: an open source toolkit for
handling large scale language models, Interspeech,
Brisbane, Australia.

Michel Galley and Christopher D. Manning. 2008. A
simple and effective hierarchical phrase reordering
model. , The 2008 Conference on Empirical Meth-
ods in Natural Language Processing,pages 848856,
Honolulu, Hawaii, October. Association for Compu-
tational Linguistics.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool, In Software Engi-
neering, Testing, and Quality Assurance for Natu-
ral Language Processing, SETQA-NLP 2008, pages
49-57, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Philipp Koehn, Amittai Axelrod, Alexandra Birch
Mayne, Chris Callison-Burch, Miles Osborne and
David Talbot. 2005. Edinburgh System Description
for the 2005 IWSLT Speech Translation Evaluation,
International Workshop on Spoken Language Trans-
lation.

Philipp Koehn and Josh Schroeder. 2007. Experi-
ments in Domain Adaptation for Statistical Machine
Translation, The Second Workshop on Statistical
Machine Translation, pages 224227, Prague.

Philipp Koehn, Amittai Axelrod, Alexandra Birch
Mayne, Chris Callison-Burch, Miles Osborne and
David Talbot. 2003. Statistical phrase-based trans-
lation, 2003 Conference of the North American
Chapter of the Association for Computational Lin-
guistics on Human Language Technology, pages
4854, Edmonton, Canada.

Philipp Koehn, and Barry Haddow. 2012. Interpolated
backoff for factored translation models., The 10th
Conference of the Association for Machine Transla-
tion in the Americas (AMTA).

Reinhard Kneser and Hermann Ney 1995. Improved
backing-off for m-gram language modeling., IEEE
International Conference on Acoustics, Speech and
Signal Processing, pages 181184.

265



Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 266–274,
Baltimore, Maryland USA, June 26–27, 2014. c©2014 Association for Computational Linguistics

Randomized Significance Tests in Machine Translation

Yvette Graham Nitika Mathur Timothy Baldwin
Department of Computing and Information Systems

The University of Melbourne
ygraham@unimelb.edu.au, nmathur@student.unimelb.edu.au, tb@ldwin.net

Abstract

Randomized methods of significance test-
ing enable estimation of the probability
that an increase in score has occurred sim-
ply by chance. In this paper, we examine
the accuracy of three randomized meth-
ods of significance testing in the context
of machine translation: paired bootstrap
resampling, bootstrap resampling and ap-
proximate randomization. We carry out
a large-scale human evaluation of shared
task systems for two language pairs to
provide a gold standard for tests. Re-
sults show very little difference in accu-
racy across the three methods of signif-
icance testing. Notably, accuracy of all
test/metric combinations for evaluation of
English-to-Spanish are so low that there is
not enough evidence to conclude they are
any better than a random coin toss.

1 Introduction

Automatic metrics, such as BLEU (Papineni et
al., 2002), are widely used in machine translation
(MT) as a substitute for human evaluation. Such
metrics commonly take the form of an automatic
comparison of MT output text with one or more
human reference translations. Small differences
in automatic metric scores can be difficult to inter-
pret, however, and statistical significance testing
provides a way of estimating the likelihood that a
score difference has occurred simply by chance.
For several metrics, such as BLEU, standard sig-
nificance tests cannot be applied due to scores
not comprising the mean of individual sentence
scores, justifying the use of randomized methods.

Bootstrap resampling was one of the early ran-
domized methods proposed for statistical signifi-
cance testing of MT (Germann, 2003; Och, 2003;
Kumar and Byrne, 2004; Koehn, 2004), to assess

for a pair of systems how likely a difference in
BLEU scores occurred by chance. Empirical tests
detailed in Koehn (2004) show that even for test
sets as small as 300 translations, BLEU confidence
intervals can be computed as accurately as if they
had been computed on a test set 100 times as large.

Approximate randomization was subsequently
proposed as an alternate to bootstrap resam-
pling (Riezler and Maxwell, 2005). Theoretically
speaking, approximate randomization has an ad-
vantage over bootstrap resampling, in that it does
not make the assumption that samples are repre-
sentative of the populations from which they are
drawn. Both methods require some adaptation in
order to be used for the purpose of MT evalua-
tion, such as combination with an automatic met-
ric, and therefore it cannot be taken for granted
that approximate randomization will be more ac-
curate in practice. Within MT, approximate ran-
domization for the purpose of statistical testing is
also less common.

Riezler and Maxwell (2005) provide a compar-
ison of approximate randomization with bootstrap
resampling (distinct from paired bootstrap resam-
pling), and conclude that since approximate ran-
domization produces higher p-values for a set of
apparently equally-performing systems, it more
conservatively concludes statistically significant
differences, and recommend preference of approx-
imate randomization over bootstrap resampling
for MT evaluation. Conclusions drawn from ex-
periments provided in Riezler and Maxwell (2005)
are oft-cited, with experiments interpreted as ev-
idence that bootstrap resampling is overly opti-
mistic in reporting significant differences (Riezler
and Maxwell, 2006; Koehn and Monz, 2006; Gal-
ley and Manning, 2008; Green et al., 2010; Monz,
2011; Clark et al., 2011).

Our contribution in this paper is to revisit sta-
tistical significance tests in MT — namely, boot-
strap resampling, paired bootstrap resampling and
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approximate randomization — and find problems
with the published formulations. We redress these
issues, and apply the tests in statistical testing of
two language pairs. Using human judgments of
translation quality, we find only very minor differ-
ences in significance levels across the three tests,
challenging claims made in the literature about rel-
ative merits of tests.

2 Revisiting Statistical Significance Tests
for MT Evaluation

First, we revisit the formulations of bootstrap
resampling and approximate randomization al-
gorithms as presented in Riezler and Maxwell
(2005). At first glance, both methods appear to
be two-tailed tests, with the null hypothesis that
the two systems perform equally well. To facili-
tate a two-tailed test, absolute values of pseudo-
statistics are computed before locating the abso-
lute value of the actual statistic (original differ-
ence in scores). Using absolute values of pseudo-
statistics is not problematic in the approximate
randomization algorithm, and results in a reason-
able two-tailed significance test. However, the
bootstrap algorithm they provide uses an addi-
tional shift-to-zero method of simulating the null
hypothesis. The way in which this shift-to-zero
and absolute values of pseudo-statistics are ap-
plied is non-standard. Combining shift-to-zero
and absolute values of pseudo-statistics results
in all pseudo-statistics that fall below the mean
pseudo-statistic to be omitted from computation of
counts later used to compute p-values. The ver-
sion of the bootstrap algorithm, as provided in the
pseudo-code, is effectively a one-tailed test, and
since this does not happen in the approximate ran-
domization algorithm, experiments appear to com-
pare p-values from a one-tailed bootstrap test di-
rectly with those of a two-tailed approximate ran-
domization test. This inconsistency is not recog-
nized, however, and p-values are compared as if
both tests are two-tailed.

A better comparison of p-values would first re-
quire doubling the values of the one-sided boot-
strap, leaving those of the two-sided approximate
randomization algorithm as-is. The results of the
two tests on this basis are extremely close, and
in fact, in two out of the five comparisons, those
of the bootstrap would have marginally higher p-
values than those of approximate randomization.
As such, it is conceivable to conclude that the ex-

periments actually show no substantial difference
in Type I error between the two tests, which is con-
sistent with results published in other fields of re-
search (Smucker et al., 2007). We also note that
the pseudo-code contains an unconventional com-
putation of mean pseudo-statistics, τB , for shift-
to-zero.

Rather than speculate over whether these is-
sues with the original paper were simply presen-
tational glitches or the actual basis of the experi-
ments reported on in the paper, we present a nor-
malized version of the two-sided bootstrap algo-
rithm in Figure 1, and report on the results of our
own experiments in Section 4. We compare this
method with approximate randomization and also
paired bootstrap resampling (Koehn, 2004), which
is widely used in MT evaluation. We carry out
evaluation over a range of MT systems, not only
including pairs of systems that perform equally
well, but also pairs of systems for which one
system performs marginally better than the other.
This enables evaluation of not only Type I error,
but the overall accuracy of the tests. We carry out
a large-scale human evaluation of all WMT 2012
shared task participating systems for two language
pairs, and collect sufficient human judgments to
facilitate statistical significance tests. This hu-
man evaluation data then provides a gold-standard
against which to compare randomized tests. Since
all randomized tests only function in combina-
tion with an automatic MT evaluation metric, we
present results of each randomized test across four
different MT metrics.

3 Randomized Significance Tests

3.1 Bootstrap Resampling

Bootstrap resampling provides a way of estimat-
ing the population distribution by sampling with
replacement from a representative sample (Efron
and Tibshirani, 1993). The test statistic is taken
as the difference in scores of the two systems,
SX − SY , which has an expected value of 0 under
the null hypothesis that the two systems perform
equally well. A bootstrap pseudo-sample consists
of the translations by the two systems (Xb, Yb) of
a bootstrapped test set (Koehn, 2004), constructed
by sampling with replacement from the original
test set translations. The bootstrap distribution
Sboot of the test statistic is estimated by calculat-
ing the value of the pseudo-statistic SXb

− SYb
for

each pseudo-sample.
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Set c = 0

Compute actual statistic of score differences SX − SY

on test data

Calculate sample mean τB = 1
B

B∑
b=1

SXb − SYb over

bootstrap samples b = 1, ..., B

For bootstrap samples b = 1, ..., B

Sample with replacement from variable tuples test
sentences for systems X and Y

Compute pseudo-statistic SXb − SYb on bootstrap data

If |SXb − SYb − τB | ≥ |SX − SY |
c = c+ 1

If c/B ≤ α
Reject the null hypothesis

Figure 1: Two-sided bootstrap resampling statisti-
cal significance test for automatic MT evaluation

Set c = 0

Compute actual statistic of score differences SX − SY

on test data

For random shuffles r = 1, ..., R

For sentences in test set

Shuffle variable tuples between systems X and Y
with probability 0.5

Compute pseudo-statistic SXr − SYr on shuffled data

If SXr − SYr ≥ SX − SY

c = c+ 1

If c/R ≤ α
Reject the null hypothesis

Figure 2: Approximate randomization statistical
significance test for automatic MT evaluation

The null hypothesis distribution SH0 can be es-
timated from Sboot by applying the shift method
(Noreen, 1989), which assumes that SH0 has the
same shape but a different mean than Sboot. Thus,
Sboot is transformed into SH0 by subtracting the
mean bootstrap statistic from every value in Sboot.

Once this shift-to-zero has taken place, the null
hypothesis is rejected if the probability of observ-
ing a more extreme value than the actual statistic
is lower than a predetermined p-value α, which is
typically set to 0.05. In other words, the score dif-
ference is significant at level 1− α.

Figure 3 provides a one-sided implementation
of bootstrap resampling, whereH0 is that the score
of System X is less than or equal to the score of

Set c = 0

Compute actual statistic of score differences SX − SY

on test data

Calculate sample mean τB = 1
B

B∑
b=1

SXb − SYb over

bootstrap samples b = 1, ..., B

For bootstrap samples b = 1, ..., B

Sample with replacement from variable tuples test
sentences for systems X and Y

Compute pseudo-statistic SXb − SYb on bootstrap data

If SXb − SYb − τB ≥ SX − SY

c = c+ 1

If c/B ≤ α
Reject the null hypothesis

Figure 3: One-sided Bootstrap resampling statisti-
cal significance test for automatic MT evaluation

Set c = 0

For bootstrap samples b = 1, ..., B

If SXb < SYb

c = c+ 1

If c/B ≤ α
Reject the null hypothesis

Figure 4: Paired bootstrap resampling randomized
significance test

System Y . Figure 5 includes a typical example of
bootstrap resampling applied to BLEU, for a pair
of systems for which differences in scores are sig-
nificant, while Figure 6 shows the same for ME-
TEOR but for a pair of systems with no significant
difference in scores.

3.2 Approximate Randomization

Unlike bootstrap, approximate randomization
does not make any assumptions about the popula-
tion distribution. To simulate a distribution for the
null hypothesis that the scores of the two systems
are the same, translations are shuffled between the
two systems so that 50% of each pseudo-sample
is drawn from each system. In the context of ma-
chine translation, this can be interpreted as each
translation being equally likely to have been pro-
duced by one system as the other (Riezler and
Maxwell, 2005).

The test statistic is taken as the difference in
scores of the two systems, SX − SY . If there is
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Figure 5: Pseudo-statistic distributions for a typical pair of systems with close BLEU scores for each
randomized test (System F vs. System G).
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Figure 6: Pseudo-statistic distributions of METEOR with randomized tests (System D vs. System A).

a total of S sentences, then a total of 2S shuffles is
possible. If S is large, instead of generating all 2S

possible combinations, we instead generate sam-
ples by randomly permuting translations between
the two systems with equal probability. The distri-
bution of the test statistic under the null hypoth-
esis is approximated by calculating the pseudo-
statistic, SXr − SYr , for each sample. As before,
the null hypothesis is rejected if the probability of
observing a more extreme value than the actual
test statistic is lower than α.

Figure 2 provides a one-sided implementation
of approximate randomization for MT evaluation,
where the null hypothesis is that the score of Sys-
tem X is less than or equal to the score of System
Y . Figure 5 shows a typical example of pseudo-
statistic distributions for approximate randomiza-
tion for a pair of systems with a small but signifi-
cant score difference according to BLEU, and Fig-
ure 6 shows the same for METEOR applied to a

pair of systems where no significant difference is
concluded.

3.3 Paired Bootstrap Resampling

Paired bootstrap resampling (Koehn, 2004) is
shown in Figure 4. Unlike the other two random-
ized tests, this method makes no attempt to simu-
late the null hypothesis distribution. Instead, boot-
strap samples are used to estimate confidence in-
tervals of score differences, with confidence inter-
vals not containing 0 implying a statistically sig-
nificant difference.

We compare what takes place with the two other
tests, by plotting differences in scores for boot-
strapped samples, SXb

− SYb
, as shown in Fig-

ure 5 for BLEU and Figure 6 for METEOR. Instead
of computing counts with reference to the actual
statistic, the line through the origin provides the
cut-off for counts.
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Figure 7: Human evaluation pairwise significance tests for Spanish-to-English systems (colored cells
denote scores for System row being significantly greater than System column .

4 Evaluation

In order to evaluate the accuracy of the three ran-
domized significance significance tests, we com-
pare conclusions reached in a human evaluation
of shared task participant systems. We carry out
a large-scale human evaluation of all participating
systems from WMT 2012 (Callison-Burch et al.,
2012) for the Spanish-to-English and English-to-
Spanish translation tasks. Large numbers of hu-
man assessments of translations were collected us-
ing Amazon’s Mechanical Turk, with strict qual-
ity control filtering (Graham et al., 2013). A to-
tal of 82,100 human adequacy assessments and
62,400 human fluency assessments were collected.
After the removal of quality control items and
filtering of judgments from low-quality workers,
this resulted in an average of 1,280 adequacy and
1,013 fluency assessments per system for Spanish-
to-English (12 systems), and 1,483 adequacy and
1,534 fluency assessments per system for English-
to-Spanish (11 systems). To remove bias with re-
spect to individual human judge preference scor-
ing severity/leniency, scores provided by each hu-
man assessor were standardized according to the
mean and standard deviation of all scores provided
by that individual.

Significance tests were carried out over the
scores for each pair of systems separately for
adequacy and fluency assessments using the
Wilcoxon rank-sum test. Figure 7 shows pairwise
significance test results for fluency, adequacy and
the combination of the two tests, for all pairs of
Spanish-to-English systems. Combined fluency
and adequacy significance test results are con-
structed as follows: if a system’s adequacy score is

significantly greater than that of another, the com-
bined conclusion is that it is significantly better,
at that significance level. Only when a tie in ad-
equacy scores occurs are fluency judgments used
to break the tie. In this case, p-values from signifi-
cance tests applied to fluency scores of that system
pair are used. For example, in Figure 7, adequacy
scores of System B are not significantly greater
than those of Systems C, D and E, while fluency
scores for System B are significantly greater than
those of the three other systems. The combined re-
sult for each pair of systems is therefore taken as
the p-value from the corresponding fluency signif-
icance test.

We use the combined human evaluation pair-
wise significant tests as a gold standard against
which to evaluate the randomized methods of sta-
tistical significance testing. We evaluate paired
bootstrap resampling (Koehn, 2004) and bootstrap
resampling as shown in Figure 3 and approxi-
mate randomization as shown in Figure 2, each
in combination with four automatic MT metrics:
BLEU (Papineni et al., 2002), NIST (NIST, 2002),
METEOR (Banerjee and Lavie, 2005) and TER

(Snover et al., 2006).

4.1 Results and Discussion

Figure 8 shows the outcome of pairwise random-
ized significance tests for each metric for Spanish-
to-English systems, and Table 1 shows numbers of
correct conclusions and accuracy of each test.

When we compare conclusions made by the
three randomized tests for Spanish-to-English sys-
tems, there is very little difference in p-values for
all pairs of systems. For both BLEU and NIST,
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Paired Bootst. Resamp. Bootst. Resamp. Approx. Rand.

α Conc. Acc.(%) Conc. Acc. (%) Conc. Acc. (%)

0.05

BLEU 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1]

NIST 54 81.8 [70.4, 90.2] 54 81.8 [70.4, 90.2] 54 81.8 [70.4, 90.2]

METEOR 52 78.8 [67.0, 87.9] 52 78.8 [67.0, 87.9] 52 78.8 [67.0, 87.9]

TER 52 78.8 [67.0, 87.9] 52 78.8 [67.0, 87.9] 52 78.8 [67.0, 87.9]

0.01

BLEU 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7]

NIST 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7]

METEOR 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1]

TER 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7]

0.001

BLEU 48 72.7 [60.4, 83.0] 48 72.7 [60.4, 83.0] 48 72.7 [60.4, 83.0]

NIST 48 72.7 [60.4, 83.0] 48 72.7 [60.4, 83.0] 48 72.7 [60.4, 83.0]

METEOR 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1] 52 78.8 [67.0, 87.9]

TER 50 75.8 [63.6, 85.5] 51 77.3 [65.3, 86.7] 52 78.8 [67.0, 87.9]

Table 1: Accuracy of randomized significance tests for Spanish-to-English MT with four automatic
metrics, based on the WMT 2012 participant systems.

Paired Bootst. Resamp. Bootst. Resamp. Approx. Rand.

α Conc. Acc.(%) Conc. Acc. (%) Conc. Acc. (%)

0.05

BLEU 34 61.8 [47.7, 74.6] 34 61.8 [47.7, 74.6] 34 61.8 [47.7, 74.6]

NIST 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

METEOR 31 56.4 [42.3, 69.7] 31 56.4 [42.3, 69.7] 31 56.4 [42.3, 69.7]

TER 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

0.01

BLEU 33 60.0 [45.9, 73.0] 33 60.0 [45.9, 73.0] 33 60.0 [45.9, 73.0]

NIST 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

METEOR 31 56.4 [42.3, 69.7] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

TER 30 54.5 [40.6, 68.0] 30 54.5 [40.6, 68.0] 30 54.5 [40.6, 68.0]

0.001

BLEU 33 60.0 [45.9, 73.0] 33 60.0 [45.9, 73.0] 33 60.0 [45.9, 73.0]

NIST 33 60.0 [45.9, 73.0] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

METEOR 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

TER 30 54.5 [40.6, 68.0] 30 54.5 [40.6, 68.0] 31 56.4 [42.3, 69.7]

Table 2: Accuracy of randomized significance tests for English-to-Spanish MT with four automatic
metrics, based on the WMT 2012 participant systems.

all three randomized methods produce p-values
so similar that when α thresholds are applied, all
three tests produce precisely the same set of pair-
wise conclusions for each metric. When tests are
combined with METEOR and TER, similar results
are observed: at the α thresholds of 0.05 and 0.01,
precisely the same conclusions are drawn for both
metrics combined with each of the three tests, and
at most a difference of two conclusions at the low-

est α level.
Table 2 shows the accuracy of each test on the

English-to-Spanish data, showing much the same
set of conclusions at all α levels. For BLEU and
NIST, all three tests again produce precisely the
same conclusions, at p < 0.01 there is at most a
single different conclusion for METEOR, and only
at the lowest p-value level is there a single differ-
ence for TER.
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Figure 8: Automatic metric pairwise randomized significance test results for Spanish-to-English systems
(colored cells denote scores for System row significantly greater than System column).

Finally, we examine which combination of met-
ric and test is most accurate for each language
pair at the conventional significance level of p <
0.05. For Spanish-to-English evaluation, NIST

combined with any of the three randomized tests

is most accurate, making 54 out of 66 (82%) cor-
rect conclusions. For English-to-Spanish, BLEU

in combination with any of the three randomized
tests, is most accurate at 62%. For both language
pairs, however, differences in accuracy for metrics
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are not significant (Chi-square test).
For English-to-Spanish evaluation, an accuracy

as low as 62% should be a concern. This level
of accuracy for significance testing – only making
the correct conclusion in 6 out of 10 tests – acts
as a reminder that no matter how sophisticated the
significance test, it will never make up for flaws in
an underlying metric. When we take into account
the fact that lower confidence limits all fall below
50%, significance tests based on these metrics for
English-to-Spanish are effectively no better than a
random coin toss.

5 Conclusions

We provided a comparison of bootstrap resam-
pling and approximate randomization significance
tests for a range of automatic machine trans-
lation evaluation metrics. To provide a gold-
standard against which to evaluate randomized
tests, we carried out a large-scale human evalua-
tion of all shared task participating systems for the
Spanish-to-English and English-to-Spanish trans-
lation tasks from WMT 2012. Results showed for
many metrics and significance levels that all three
tests produce precisely the same set of conclu-
sions, and when conclusions do differ, it is com-
monly only by a single contrasting conclusion,
which is not significant. For English-to-Spanish
MT, the results of the different MT evaluation met-
ric/significance test combinations are not signifi-
cantly higher than a random baseline.
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Abstract

Previous studies of the effect of word
alignment on translation quality in SMT
generally explore link level metrics only
and mostly do not show any clear connec-
tions between alignment and SMT qual-
ity. In this paper, we specifically inves-
tigate the impact of word alignment on
two pre-reordering tasks in translation, us-
ing a wider range of quality indicators
than previously done. Experiments on
German–English translation show that re-
ordering may require alignment models
different from those used by the core trans-
lation system. Sparse alignments with
high precision on the link level, for trans-
lation units, and on the subset of cross-
ing links, like intersected HMM models,
are preferred. Unlike SMT performance
the desired alignment characteristics are
similar for small and large training data
for the pre-reordering tasks. Moreover,
we confirm previous research showing that
the fuzzy reordering score is a useful and
cheap proxy for performance on SMT re-
ordering tasks.

1 Introduction

Word alignment is a key component in all state-of-
the-art statistical machine translation (SMT) sys-
tems, and there has been some work exploring the
connection between word alignment quality and
translation quality (Och and Ney, 2003; Fraser and
Marcu, 2007; Lambert et al., 2012). The standard
way to evaluate word alignments in this context is
by using metrics like alignment error rate (AER)
and F-measure on the link level, and the general
conclusion appears to be that translation quality
benefits from alignments with high recall (rather
than precision), at least for large training data. Al-
though many other ways of measuring alignment

quality have been proposed, such as working on
translation units (Ahrenberg et al., 2000; Ayan and
Dorr, 2006; Søgaard and Kuhn, 2009) or using link
degree and related measures (Ahrenberg, 2010),
these methods have not been used to study the re-
lation between alignment and translation quality,
with the exception of Lambert et al. (2012).

Word alignment is also used for many other
tasks besides translation, including term bank
creation (Merkel and Foo, 2007), cross-lingual
annotation projection for part-of-speech tagging
(Yarowsky et al., 2001), semantic roles (Pado and
Lapata, 2005), pronoun anaphora (Postolache et
al., 2006), and cross-lingual clustering (Täckström
et al., 2012). Even within SMT itself, there are
tasks such as reordering that often make crucial
use of word alignments. For instance, source lan-
guage reordering commonly relies on rules learnt
automatically from word-aligned data (e.g., Xia
and McCord (2004)). As far as we know, no one
has studied the impact of alignment quality on
these additional tasks, and it seems to be tacitly
assumed that alignments that are good for transla-
tion are also good for other tasks.

In this paper we set out to explore the impact
of alignment quality on two pre-reordering tasks
for SMT. In doing so, we employ a wider range of
quality indicators than is customary, and for refer-
ence these indicators are used also to assess over-
all translation quality. To allow an in-depth explo-
ration of the connections between several aspects
of word alignment and reordering, we limit our
study to one language pair, German–English. We
think this is a suitable language pair for studying
reordering since it has both short range and long
range reorderings. Our main focus is on using rel-
atively large training data, 2M sentences, but we
also report results with small training data, 170K
sentences. The main conclusion of our study is
that alignments that are optimal for translation are
not necessarily optimal for reordering, where pre-
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cision is of greater importance than recall. For
SMT the best alignments are different depending
on corpus size, but for the reordering tasks results
are stable across training data size.

In section 2 we discuss previous work related
to word alignment and SMT. In section 3, we in-
troduce the word alignment quality indicators we
use, and show experimental results for a number
of alignment systems on an SMT task. In sec-
tion 4, we turn to reordering for SMT and use
the same quality indicators to study the impact of
alignment quality on reordering quality. In section
5 we briefly describe results using small training
data. In section 6, we conclude and suggest direc-
tions for future work.

2 Word Alignment and SMT

Word alignment is the task of relating words
in one language to words in the translation in
another language, see an example in Figure 1.
Word alignment models can be learnt automati-
cally from large corpora of sentence aligned data.
Brown et al. (1993) proposed the so-called IBM
models, which are still widely used. These five
models estimate alignments from corpora using
the expectation-maximization algorithm, and each
model adds some complexity. Model 4 is com-
monly used in SMT systems. There have been
many later suggestions of alternatives to these
models. These are often alternatives to model 2,
such as the HMM model (Vogel et al., 1996) and
fast align (Dyer et al., 2013).

All these generative models produce directional
alignments where one word in the source can be
linked to many target words (1–m links) but not
vice versa. It is generally desirable to also allow
n–1 and n–m links, and to achieve this it is com-
mon practice to perform word alignment in both
directions and to symmetrize them using some
heuristic. A number of common symmetrization
strategies are described in Table 1 (Koehn et al.,
2005). There are also other alternatives, such as
the refined method (Och and Ney, 2003), or link
deletion from the union (Fossum et al., 2008).

There is also a wide range of alternative ap-
proaches to word alignment. For example, various
discriminative models have been proposed in the
literature (Liu et al., 2005; Moore, 2005; Taskar
et al., 2005). Their advantage is that they may
integrate a wide range of features that may lead
to improved alignment quality. However, most of

Symmetrization Description
int: intersection ATS ∩AST

uni: union ATS ∪AST

gd: grow-diag intersection plus adjacent links
from the union if both linked
words are unaligned

gdf: grow-diag-final gd with links from the union
added in a final step if either
linked word is unaligned

gdfa:
grow-diag-final-and

gd with links from the union
added in a final step if both linked
words are unaligned

Table 1: Symmetrization strategies for word align-
ments ATS and AST in two directions

these models require external tools (for creating
linguistic features) and manually aligned training
data, which we do not have for our data sets (be-
sides the data we need for evaluation). Investigat-
ing these types of models are outside the scope of
our current work.

Word alignments are used as an important
knowledge source for training SMT systems. In
word-based SMT, the parameters of the gener-
ative word alignment models are essentially the
translation model of the system. In phrase-based
SMT (PBSMT) (Koehn et al., 2003), which is
among the state-of-the-art systems today, word
alignments are used as a basis for extracting
phrases and estimating phrase alignment probabil-
ities. Similarly, word alignments are also used for
estimating rule probabilities in various kinds of hi-
erarchical and syntactic SMT (Chiang, 2007; Ya-
mada and Knight, 2002; Galley et al., 2004).

Intrinsic evaluation of word alignment is gener-
ally based on a comparison to a gold standard of
human alignments. Based on the gold standard,
metrics like precision, recall and F-measure can
be calculated for each alignment link, see Eqs. 1–
2, where A are hypothesized alignment links and
G are gold standard links. Another common met-
ric is alignment error rate (AER) (Och and Ney,
2000), which is based on a distinction between
sure, S, and possible, P , links in the gold stan-
dard. 1−AER is identical to balanced F-measure
when the gold standard does not make a distinc-
tion between S and P.

Precision(A,G) =
|G ∩A|
|A| (1)

Recall(A,G) =
|G ∩A|
|G| (2)

AER = 1− |P ∩A|+ |S ∩A||S|+ |A| (3)
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Crossing = 8

SKDT =
√

8/66 ≈ 0.65
6 1–1 links
3 multi links
0 null links

Figure 1: An example alignment illustrating n–1, 1–m and crossing links.

The relation between word alignment qual-
ity and PBSMT has been studied by some re-
searchers. Och and Ney (2000) looked at the im-
pact of IBM and HMM models on the alignment
template approach (Och et al., 1999) in terms of
AER. They found that AER correlates with human
evaluation of sentence level quality, but not with
word error rate. Fraser and Marcu (2007) found
that there is no correlation between AER and Bleu
(Papineni et al., 2002), especially not when the P -
set is large. They found that a balanced F-measure
is a better indicator of Bleu, but that a weighted
F-measure is even better (see Eq. 4) mostly with
a higher weight for recall than for precision. This
weight, however, needs to be optimized for each
data set, language pair, and gold standard align-
ment separately.

F(A,G, α) =

(
α

Precision(A,G)
+

1− α
Recall(A,G)

)−1

(4)

Ayan and Dorr (2006) on the other hand found
some evidence for the importance of precision
over recall. However, they used much smaller
training data than Fraser and Marcu (2007). They
also suggested using a measure called consistent
phrase error-rate (CPER), but found that it was
hard to assess the impact of alignment on MT, both
with AER and CPER. Lambert et al. (2012) per-
formed a study where they investigated the effect
of word alignment on MT using a large number of
word alignment indicators. They found that there
was a difference between large and small datasets
in that alignment precision was more important
with small data sets, and recall more important
with large data sets. Overall they did not find any
indicator that was significant over two language
pairs and different corpus sizes. There were more
significant indicators for large datasets, however.

Most researchers who propose new alignment
models perform both a gold standard evalua-
tion and an SMT evaluation (Liang et al., 2006;
Ganchev et al., 2008; Junczys-Dowmunt and Szał,
2012; Dyer et al., 2013). The relation between the
two types of evaluation is often quite weak. Sev-

eral of these studies only show AER on their gold
standard, despite its well-known shortcomings.

Even though many studies have shown some
relation between translation quality and AER or
weighted F-measure, it has rarely been investi-
gated thoroughly in its own right, and, as far as we
are aware, not for other tasks than SMT. Further-
more, most of these studies considers nothing else
but link level agreement. In this paper we take a
broader view on alignment quality and explore the
effect of other types of quality indicators as well.

3 Word Alignment Quality Indicators

We investigate four groups of quality indicators.
The first group is the classic group where met-
rics are calculated on the alignment link level,
which has been used in several studies. In our
experiments we use a gold standard that does not
make use of distinctions between sure and possible
links, as suggested by Fraser and Marcu (2007).
With this, we can calculate the standard metrics
P(recision) R(ecall) and F(-measure). We will
mainly use balanced F-measure, but occasionally
also report weighted F-measure. As noted before,
1−AER is equivalent to balanced F when only
sure links are used, and will thus not be reported
separately.

Søgaard and Kuhn (2009) and Søgaard and Wu
(2009) suggested working on the translation unit
(TU) level, instead of the link level. A translation
unit, or cept (Goutte et al., 2004), is defined as
a maximally connected subgraph of an alignment.
In Figure 1, the twelve links form nine translation
units. Søgaard and Wu (2009) suggest the metric
TUER, translation unit error rate, shown in Eq. 5,
where AU are hypothesized translation units, and
GU are gold standard translation units.1 They use
TUER to establish lower bounds for the cover-
age of alignments from different formalisms, not
to evaluate SMT. While they only use TUER, it

1TUER is similar to CPER (Ayan and Dorr, 2006), which
measures the error rate of extracted phrases. Due to how
phrase extraction handle null links, there are differences,
however.
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is also possible to define Precision, Recall and F-
measure over translation units in the same way as
for alignment links. We will use these three mea-
sures to get a broader picture of TUs in alignment
evaluation. Also in this case, 1−TUER is equiva-
lent to F-measure.

TUER(A,G) = 1− 2|AU ∩GU |
|AU |+ |GU | (5)

The TU metrics are quite strict, since they re-
quire exact matching of TUs. Tiedemann (2005)
suggested the MWU metrics for word alignment
evaluation, which also consider partial matches
of annotated multi-word units, which is a similar
concept to TUs. In those metrics, precision and
recall grow proportionally to the number of cor-
rectly aligned words within translation units. Pro-
posed links are in this way scored according to
their overlap with translation units in the gold stan-
dard. Precision and recall are defined in Eqs. 6–7,
where overlap(XU , Y ) is the number of source
and target words in XU that overlap with transla-
tion units in Y normalized by the size of XU (in
terms of source and target words). Note, that TUs
need to overlap in source and target. Otherwise,
their overlap will be counted as zero.

PMWU =
∑

AU∈A

overlap(AU , G)

|A| (6)

RMWU =
∑

GU∈G

overlap(GU , A)

|G| (7)

There have also been attempts at classifying
alignments in other ways, not related to a gold
standard. Ahrenberg (2010) proposed several
ways to categorize human alignments, including
link degree, reordering of links, and structural cor-
respondence. He used these indicators to profile
hand-aligned corpora from different domains. We
will not use structural correspondence, which re-
quires a dependency parser, and which we believe
is error prone when performed automatically. We
will use what we call link degree, i.e., how many
alignment links each word obtains. Ahrenberg
(2010) used a fine-grained scheme of the percent-
age for different degrees, including isomorphism
1–1, deletion 0–1, reduction m–1, and paraphrase
m–n. Similar link degree classes were used by
Lambert et al. (2012). In this work we will re-
duce these classes into three: 1–1 links, null links,
which combine the 0–1 and 1–0 cases, and multi
links where there are many words on at least one
side.

Ahrenberg (2010) also proposed to measure re-
orderings. He does this by calculating the percent-
age of links with crossings of different lengths. To
define this he only considers adjacent links in the
source using the distance between corresponding
target words, which means that his metric becomes
a directional measure. Reorderings of alignments
was also used by Genzel (2010), who used cross-
ing score, the number of crossing links, to rank
reordering rules. This is non-directional and sim-
pler to calculate than Ahrenberg (2010)’s metrics,
and implicitly covers length since a long distance
reordering leads to a higher number of pairwise
crossing links. Birch and Osborne (2011) sug-
gest using squared Kendall τ distance (SKTD), see
Eq. 8, where n is the number of links, as a basis
of LR-score, an MT metric that takes reordering
into account. They found that squaring τ better
explained reordering, than using only τ . In this
study we will use both, crossing score and SKTD.
Figure 1 shows these scores for an example sen-
tence. These two measures only tell us how much
reordering there is. To quantify this relative to the
gold standard we also report the absolute differ-
ence between the number of gold standard cross-
ings and system crossings, which we call Crossd-
iff. To account for the quality of crossings, to some
extent, we will also report precision, recall, and F-
measure for the subset of translation units that are
involved in a crossing.

SKTD =

√
|crossing link pairs|

(n2 − n)/2
(8)

3.1 Alignment Experiments
We perform all our experiments for German–
English. The alignment indicators are calculated
on a corpus of 987 hand aligned sentences (Pado
and Lapata, 2005). The gold standard contains
explicit null links, which the symmetrized auto-
matic alignments do not. To allow a straightfor-
ward comparison we consistently remove all null
links when comparing system alignments to the
gold standard.

For creating the automatic alignments we used
GIZA++ (Och and Ney, 2003) to compute direc-
tional alignments for model 2–4 and the HMM
model, and fast align (fa) (Dyer et al., 2013) as
newer alternatives to model 2. These models re-
quire large amounts of data to be estimated reli-
ably. To achieve this we concatenated the gold
standard with the large SMT training data (see
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Section 3.2) of 2M sentences during alignment.
For symmetrization we used all methods in Table
1, as implemented in the Moses toolkit (Koehn et
al., 2007) and in fast align (Dyer et al., 2013).

Based on the automatically aligned gold stan-
dard, we calculated all alignment indicators for all
settings. The complete results can be found in
Table 2, where we have ordered the symmetriza-
tion methods with the most sparse, intersection, on
top. Overall we can see that while several of the
alignment methods create a much higher number
of alignment links than the gold standard, they do
not produce many more translation units. This is
very interesting and indicates why link level statis-
tics may not be accurate enough to predict the per-
formance of certain downstream applications. As
expected, the metric scores for translation units
are lower than for link level metrics. This is
partly due to the fact that these measures do not
count any partially correct links; the MWU met-
rics which considers partial matches often have
higher scores than link level metrics. Another
finding is that the number of crossings vary a lot
with more than twice as many as the reference for
model2+union, and less than three times as many
for HMM+intersection. The HMM and fa models
have fewer reorderings than the IBM models.

We are now interested in the relation between
alignment evaluation on the link level and on the
translation unit level, which has not been thor-
oughly investigated before. Table 3 shows the cor-
relations between the various metrics. Both preci-
sion and F-measure at the link level have signifi-
cant correlations to all TU metrics. Link level re-
call, on the other hand, is significantly negatively
correlated with TU precision, but not significantly
correlated to any other TU metric, not even TU re-
call. Link level precision is thus highly important
for matching translation units. We can also note
here that while there is a trade-off between preci-
sion and recall on link level, this is not the case for
translation units, which can have both high pre-
cision and high recall. The same is not true for
MWU, that allows partial matching, where we also
see at least some precision/recall trade-off.

3.2 SMT Experiments

For reference, we first study the impact of align-
ment on SMT performance. Our SMT system
is a standard PBSMT system trained on WMT13

Translation unit
Link level ↓ P R F
P .95 .77 .90
R −.57 −.22 −.42
F .70 .90 .83

Table 3: Pearson correlations between gold stan-
dard word alignment evaluation on the link level
and on translation unit level. Significant correla-
tions are marked with bold (< 0.01).

data.2 We trained a German–English system on
2M sentences from Europarl and News Commen-
tary. We used the target side of the parallel corpus
and the SRILM toolkit (Stolcke, 2002) to train a 5-
gram language model. For training the translation
model and for decoding we used the Moses toolkit
(Koehn et al., 2007). We applied a standard feature
set consisting of a language model feature, four
translation model features, word penalty, phrase
penalty, and distortion cost. For tuning we used
minimum error-rate training (Och, 2003). In or-
der to minimize the risk of tuning influencing the
results, we used a fixed set of weights for each
experiment, tuned on a model 4+gdfa alignment.3

For tuning we used newstest2009 with 2525 sen-
tences, and for testing we used newstest2013 with
3000 sentences. Evaluation was performed using
the Bleu metric (Papineni et al., 2002). The same
system setup was used for the SMT systems with
reordering.

Table 4 shows the results on the SMT task.
Model 3 and 4 with gd/gdfa symmetrization yield
the highest scores. There is a larger difference be-
tween systems with different symmetrization than
between systems with different alignment models.
The sparse intersection symmetrization gives the
poorest results. The top row in Table 5 shows
correlations between Bleu and all word alignment
quality indicators. There are significant correla-
tions with link level recall. A weighted link level
F-measure with α = 0.3 gives a significant corre-
lation of .72, which confirms the results of Fraser
and Marcu (2007). There are no significant corre-
lations with the TU metrics but a positive correla-
tion with the number of TUs. For the MWU met-
rics the correlations are similar to the link level,

2http://www.statmt.org/wmt13/
translation-task.html

3This could have disfavored the other alignments, so we
also performed control experiments where we ran separate
tunings for each alignment. While the absolute results varied
somewhat, the correlations with alignment indicators were
stable.
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m2 m3 m4 HMM fa
inter 18.1 19.1 19.3 18.8 18.9
gd 20.4 20.9 20.9 20.5 20.6
gdfa 20.4 20.7 20.8 20.5 20.5
gdf 19.4 19.7 20.1 19.9 20.0
union 19.2 19.6 19.8 19.7 20.0

Table 4: Baseline Bleu scores for different sym-
metrization heuristics

suggesting that they measure similar things. Intu-
itively it seems important for SMT to match full
translation units, but it might be the case that the
phrase extraction strategy is robust as long as there
are partial matches. There are no significant cor-
relations with link degree or link crossings, ex-
cept a negative correlation with Crossdiff, which
means that it is good to have a similar number of
crossings as the baseline. These results confirm
results from previous studies that link level mea-
sures, especially recall and weighted F-measure
show some correlation with SMT quality whereas
precision does not.

4 Reordering Tasks for SMT

Reordering is an important part of any SMT sys-
tem. One way to address it is to add reorder-
ing models to standard PBSMT systems, for in-
stance lexicalized reordering models (Koehn et al.,
2005), or to directly model reordering in hierarchi-
cal (Chiang, 2007) or syntactic translation models
(Yamada and Knight, 2002). Another type of ap-
proach is preordering, where the source side is re-
ordered to mimic the target side before translation.
There have also been approaches where reordering
is modeled as part of the evaluation of MT systems
(Birch and Osborne, 2011).

We can distinguish two main types of ap-
proaches to preordering in SMT, either by using
hand-written rules, which often operate on syn-
tactic trees (Collins et al., 2005), or by reordering
rules that are learnt automatically based on a word
aligned corpus (Xia and McCord, 2004). The lat-
ter approach is of interest to us, since it is based
on word alignments.

There has been much work on automatic learn-
ing of reordering rules, which can be based on dif-
ferent levels of annotation, such as part-of-speech
tags (Rottmann and Vogel, 2007; Niehues and
Kolss, 2009; Genzel, 2010), chunks (Zhang et
al., 2007) or parse trees (Xia and McCord, 2004).
In general, all these approaches lead to improve-
ments of translation quality. The reordering is

always applied on the translation input. It can
also be applied on the source side of the train-
ing corpora, which sometimes improves the results
(Rottmann and Vogel, 2007), but sometimes does
not make a difference (Stymne, 2012). When pre-
ordering is performed on the translation input, it
can be presented to the decoder as a 1-best reorder-
ing (Xia and McCord, 2004), as an n-best list (Li
et al., 2007), or as a lattice of possible reorderings
(Rottmann and Vogel, 2007; Zhang et al., 2007).

In the preordering studies cited above it is often
not even stated which alignment model was used.
A few authors mention the alignment tool that has
been applied but no comparison between different
alignment models is performed in any of the pa-
pers we are aware of. Li et al. (2007), for exam-
ple, simply state that they used GIZA++ and gdf
symmetrization and that they removed less proba-
ble multi links. Lerner and Petrov (2013) use the
intersection of HMM alignments and claims that
model 4 did not add much value. Genzel (2010)
did mention that using a standard model 4 was
not successful for his rule learning approach. In-
stead he used filtered model-1-alignments, which
he claims was more successful. However, there
are no further analyses or comparisons between
the alignments reported in any of these papers.

Another type of approach to reordering is to
only reorder the data in order to improve word
alignments, and to restore the original word or-
der before training the SMT system. This type
of approach has the advantage that no modifica-
tions are needed for the translation input. This ap-
proach has also been used both with hand-written
rules (Carpuat et al., 2010; Stymne et al., 2010)
and with rules based on initial word alignments on
non-reordered texts (Holmqvist et al., 2009). For
the latter approach a small study of the effect of gd
and gdfa symmetrizations was presented, which
only showed small variations in quality scores
(Holmqvist et al., 2012).

Below we present the two tasks that we study
in this paper: part-of-speech-based reordering for
creating input lattices for SMT and alignment-
based reordering for improving phrase-tables. We
evaluate the performance of these tasks in rela-
tion to the use of different alignment models and
symmetrization heuristics. For these tasks we are
mainly interested in the full translation task, for
which we report Bleu scores. In addition we also
show fuzzy reordering score (FRS), which focuses
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Alignment links Translation units MWU
Total P R F Total P R F P R F

SMT, Bleu .33 −.25 .56 .46 .65 −.20 .16 −.02 −.29 .59 .44
POSReo, FRS −.80 .87 −.49 .75 −.23 .90 .81 .89 .82 −.45 .22
POSReo, Bleu −.64 .74 −.27 .85 .05 .80 .80 .86 .67 −.23 .35
AlignReo, FRS −.77 .88 −.43 .84 −.11 .90 .88 .92 .81 −.37 .31
AlignReo, Bleu −.81 .83 −.58 .61 −.24 .75 .64 .72 .71 −.53 .04

Link degree Link crossings
1-1 null multi Total SKTD P R F Crossdiff

SMT, Bleu .33 −.30 .21 −.05 −.14 −.09 .25 .07 −.63
POSReo, FRS −.41 .84 −.89 −.81 −.70 .90 .21 .86 −.41
POSReo, Bleu −.17 .66 −.80 −.71 −.60 .79 .42 .89 −.49
AlignReo, FRS −.32 .77 −.86 −.80 −.73 .94 .27 .92 −.38
AlignReo, Bleu −.57 .83 −.79 −.93 −.91 .86 −.07 .69 −.52

Table 5: Pearson correlations between different alignment characteristics and scores for the translation
and reordering tasks. Significant correlations are marked with bold (< 0.01).

only on the reordering component (Talbot et al.,
2011). It compares a system reordering to a refer-
ence reordering, by measuring how many chunks
that have to be moved to get an identical word or-
der, see Eq. 9, where C is the number of con-
tiguously aligned chunks, and M the number of
words. To find the reference ordering we apply
the method of Holmqvist et al. (2009), described
in Section 4.2, to the gold standard alignment.

FRS = 1− C − 1

M − 1
(9)

4.1 Part-of-Speech-Based Reordering

Our first reordering task is a part-of-speech-based
preordering method described by Rottmann and
Vogel (2007) and Niehues and Kolss (2009),
which was successfully used for German–English
translation. Rules are learnt from a word aligned
POS-tagged corpus. Based on the alignments, tag
patterns are identified that give rise to specific re-
orderings. These patterns are then scored based
on relative frequency.4 The rules are then applied
to the translation input to create a reordering lat-
tice, with normalized edge scores based on rule
scores. In our experiments we only use rules with
a score higher than 0.2, to limit the size of the lat-
tices. For calculating FRS, we pick the highest
scoring 1-best word order from the lattices.

We learn rules from our entire SMT training
corpus varying alignment models and symmetriza-
tion. To investigate only the effect of word align-
ment for creating reordering rules, we do not

4Note that we do not use words (Rottmann and Vogel,
2007) or wild cards (Niehues and Kolss, 2009) in our rules.

m2 m3 m4 HMM fa
inter .577 .575 .581 .596 .567
gd .555 .559 .570 .589 .546
gdfa .540 .540 .559 .579 .539
gdf .439 .499 .542 .560 .495
union .442 .492 .544 .563 .486

Table 6: Fuzzy reordering scores for part-of-
speech-based reordering for different alignments

m2 m3 m4 HMM fa
inter 21.4 21.6 21.8 21.6 21.6
gd 21.5 21.6 21.6 21.7 21.5
gdfa 21.4 21.5 21.7 21.7 21.4
gdf 20.3 21.0 21.4 21.5 21.0
union 20.3 21.5 21.6 21.5 20.8

Table 7: Bleu scores for part-of-speech-based re-
ordering for different alignments

change the SMT system, which is trained based
on model 4+gdfa alignments. The only thing that
varies for the translation task is thus the input lat-
tice given to this SMT system.

The results are shown in Tables 6 and 7. Most
Bleu scores are better than using the same SMT
system without preordering, with a Bleu score of
20.8. The results on FRS and Bleu are highly cor-
related at .94, despite the fact that we use a lattice
as SMT input, and the 1-best order for FRS. For
both metrics sparse symmetrization like intersec-
tion and gd performs best. Model 4 and HMM
perform best with similar Bleu scores, but FRS is
better for the HMM model.

Table 5 shows the correlations with the word
alignment indicators, in the rows labeled POSReo.
There are strong correlations with all TU metrics,
contrary to the SMT task. There are also signifi-
cant correlations with link level precision and bal-
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anced F-measure. The correlation with weighted
link level F-measure is even higher, .91 for α =
0.6. This is an indication that this algorithm is
more sensitive to precision than the SMT task. As
for the SMT task, the correlation patterns are simi-
lar for the MWU metrics as for link level. For link
degree, null alignments are correlated, but there is
a negative correlation for multi links. The correla-
tions with the number of crossings and SKTD are
negative, which means that it is better to have a
low number of crossings. This may seem counter-
intuitive, but note in Table 1 that many alignments
have a much higher number of crossings than the
baseline. The precision of the crossing links is
highly correlated with performance on this task,
while the recall is not. This tells us that it is impor-
tant that the crossings we find in the alignment are
good, but that it is less important that we find all
crossings. This makes sense since the rule learner
can then learn at least a subset of all existing cross-
ings well.

4.2 Reordering for Alignment

In our second reordering task we investigate
alignment-based reordering for improving phrase-
tables (Holmqvist et al., 2009; Holmqvist et al.,
2012). This strategy first performs a word align-
ment, based on which the source text is reordered
to remove all crossings. A second alignment is
trained on the reordered data, which is then re-
stored to the original order before training the
full SMT system. In Holmqvist et al. (2012) it
was shown that this strategy leads to improve-
ments in link level recall and F-measure as well
as small translation improvements for English–
Swedish. It also led to small improvements for
German–English translation.

Similar to the previous experiments, we now
vary alignment models and symmetrization that
are used for reordering during the first step. The
second step is kept the same using model 4+gdfa
in order to focus on the reordering step in our com-
parisons. Tables 8 and 9 show the results of these
experiments. In this case the reordering strat-
egy was not successful, always producing lower
Bleu scores than the baseline of 20.8. However,
there are some interesting differences in these out-
comes. On this task as well, FRS and Bleu scores
are highly correlated at .89, which was expected,
since this method directly uses the reordered data
to train phrase tables. For the best systems, the

m2 m3 m4 HMM fa
inter .583 .604 .669 .654 .598
gd .548 .583 .646 .642 .561
gdfa .532 .564 .633 .645 .553
gdf .422 .482 .571 .574 .474
union .395 .455 .552 .545 .452

Table 8: Fuzzy reordering scores for alignment-
based reordering for different alignments

m2 m3 m4 HMM fa
inter 19.5 19.5 19.9 20.2 19.4
gd 19.3 19.5 19.8 20.2 19.3
gdfa 19.1 19.2 19.6 20.0 19.2
gdf 18.3 18.2 18.6 19.0 18.9
union 17.4 17.8 18.4 18.8 18.8

Table 9: Bleu scores for alignment-based reorder-
ing for different alignments

FRS scores are higher than for the previous task,
see Table 6, which shows that reordering directly
based on alignments is easier than learning and ap-
plying rules based on them, given suitable align-
ments. On this task, again, the sparser alignments
are the most successful on both tasks. Here, how-
ever, the HMM model gives the best Bleu scores,
and similar FRS scores to model 4.

Table 5 shows the correlations with the word
alignment indicators, in the rows labeled Align-
Reo. The correlation patterns are very similar
to the previous task. A few more indicators are
significantly negatively correlated with alignment-
based reordering than with the other reordering
tasks and metrics. The performance on our two
reordering tasks are significantly correlated at .76.
Again alignments with good scores on TU met-
rics, link level precision and crossing link preci-
sion are preferable. For this task, the best correla-
tion with weighted link level F-measure is .86 for
α = 0.8. Again, we thus see that sparse align-
ments with high precision on all measures includ-
ing the crossing subset, are important.

5 Small Training Data

Since previous work has suggested that training
data size influences the relation between align-
ment and SMT quality for small and large training
data (Lambert et al., 2012), we investigated this is-
sue also for our reordering tasks. We repeated all
our experiments on a small dataset, only the News
Commentary data from WMT13, with 170K sen-
tences. Due to space constraints we cannot show
all results in the paper, but the main findings are
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summarized in this section.
To acquire alignment results we realigned the

gold standard concatenated with the smaller data,
to reflect the actual quality of alignment with a
small dataset. As expected the quality scores tend
to be lower with less data. Overall the same sys-
tems tend to perform good on each metric with the
small and large data, even though there is some
variation in the ranking between systems. On the
SMT task as well, the Bleu scores are lower, as
expected. In this case fast align is doing best fol-
lowed by model 4 and 3. The best symmetrization
is again gd and gdfa. There are also some differ-
ences in the correlation profile. Link recall and
number of translation units are no longer signifi-
cantly correlated, whereas the number of crossings
and SKTD are. The highest correlation for link
level F-measure is .60 for balanced F-measure,
showing that precision is equally important to re-
call with less data.

For the reordering tasks the scores are again
lower. The POS-based reorderings again help over
the baseline SMT, whereas the alignment-based
reordering leads to slightly lower scores. The cor-
relation profile look exactly the same for Bleu
for POS-based reordering. FRS for both tasks
and Bleu for alignment-based reordering have the
same correlation profiles as Bleu for alignment-
based reordering on large data. There are thus
very small differences in the word alignment qual-
ity indicators that are relevant with large and small
training data, while there are some differences on
the SMT task. For weighted link level F-measure,
the highest correlations are found with α = 0.6–
0.7 on the different metrics, again showing that
precision is more important than recall. For FRS
on both tasks and Bleu for alignment-based re-
ordering, model4 and HMM with intersection and
gd still perform best. For Bleu for POS-based re-
ordering, gdfa and model 3 also give good results.

6 Conclusion and Future Work

We have shown that the best combination of align-
ment and symmetrization models for SMT are not
the best models for reordering tasks in our ex-
perimental setting. For SMT, high recall is more
important than precision with large training data,
while precision and recall are of equal impor-
tance with small training data. This finding sup-
ports previous research (Fraser and Marcu, 2007;
Lambert et al., 2012). Translation unit metrics

are not predictive of SMT performance. For the
large data condition model 3 and 4 with gd and
gdfa symmetrization gave the best results, whereas
fast align with gd and gdfa was best with small
training data.

For the two preordering tasks we investigated,
however, link level weighted F-measure that gave
more weight to precision was important, as well as
all TU metrics. It was also important to have high
precision for the crossing subset of TUs. Hence,
it is more important to reliably find some cross-
ings than to find all crossings. This make sense
since the extracted rules or performed reorderings
are likely good in such cases, even if we are not
able to find all possible reorderings. In conclu-
sion, based on this study, we recommend intersec-
tion symmetrization with model 4 and HMM for
SMT reordering tasks.

We have studied two relatively different re-
ordering tasks with two training data sizes, but
found that they to a large extent prefer the same
types of alignments. Moreover, the results on
these two reordering tasks correlates strongly with
FRS, which is much cheaper to calculate than
SMT metrics that may even require retraining of
full SMT systems. This is consistent with Tal-
bot et al. (2011) who suggested FRS for preorder-
ing tasks. We thus would encourage developers
of alignment methods to not only give results for
SMT, but also for FRS, as a proxy for reordering
tasks. Furthermore, it is also useful to give results
on TU metrics in addition to link level metrics to
complement the evaluation.

In this paper, we have looked at existing genera-
tive alignment and symmetrization models. In fu-
ture work, we would also like to investigate other
models, including the removal of low-confidence
links, which has previously been proposed for pre-
reordering (Li et al., 2007; Genzel, 2010). Given
the results, it also seems motivated to develop
or adapt the existing models in general, to bet-
ter fit the properties of specific auxiliary tasks.
Furthermore, we need to validate our findings on
other language pairs, especially for non-related
languages with even more diverse word order.
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Abstract

Scrambling is acceptable reordering of
verb arguments in languages such as
Japanese and German. In automatic eval-
uation of translation quality, BLEU is
the de facto standard method, but BLEU
has only very weak correlation with hu-
man judgements in case of Japanese-to-
English/English-to-Japanese translations.
Therefore, alternative methods, IMPACT
and RIBES, were proposed and they have
shown much stronger correlation than
BLEU. Now, RIBES is widely used in
recent papers on Japanese-related transla-
tions. RIBES compares word order of MT
output with manually translated reference
sentences but it does not regard scram-
bling at all. In this paper, we present a
method to enumerate scrambled sentences
from dependency trees of reference sen-
tences. Our experiments based on NTCIR
Patent MT data show that the method im-
proves sentence-level correlation between
RIBES and human-judged adequacy.

1 Introduction

Statistical Machine Translation has grown with an
automatic evaluation method BLEU (Papineni et
al., 2002). BLEU measures local word order by n-
grams and does not care about global word order.
In JE/EJ translations, this insensitivity degrades
BLEU’s correlation with human judgements.

Therefore, alternative automatic evaluation
methods are proposed. Echizen-ya and Araki
(2007) proposed IMPACT. Isozaki et al. (2010)
presented the idea of RIBES. Hirao et al. (2011)
named this method “RIBES” (Rank-based Intu-
itive Bilingual Evaluation Score). This version of
RIBES was defined as follows:

RIBES = NKT× Pα

Table 1: Meta-evaluation of NTCIR-7 JE task data
(Spearman’s ρ, System-level correlation)
BLEU METEOR ROUGE-L IMPACT RIBES
0.515 0.490 0.903 0.826 0.947

where NKT (Normalized Kendall’s τ ) is defined
by (τ + 1)/2. This NKT is used for measur-
ing word order similarity between a reference sen-
tence and an MT output sentence. Thus, RIBES
penalizes difference of global word order. P is
precision of unigrams. RIBES is defined for each
test sentence and averaged RIBES is used for eval-
uating the entire test corpus.

Table 1 is a table in an IWSLT-2012 invited
talk (http://hltc.cs.ust.hk/iwslt/slides/
Isozaki2012 slides.pdf). METEOR was pro-
posed by Banerjee and Lavie (2005). ROUGE-L
was proposed by Lin and Och (2004). According
to this table, RIBES with α = 0.2 has a very
strong correlation (Spearman’s ρ = 0.947) with
human-judged adequacy. For each sentence,
we use the average of adequacy scores of three
judges. Here, we call this average “Adequacy”.
We focus on Adequacy because current SMT
systems tend to output inadequate sentences.
Note that only single reference translations are
available for this task although use of multiple
references is common for BLEU.

RIBES is publicly available from http://

www.kecl.ntt.co.jp/icl/lirg/ribes/ and
was used as a standard quality measure in recent
NTCIR PatentMT tasks (Goto et al., 2011; Goto
et al., 2013). Table 2 shows the result of meta-
evaluation at NICTR-9/10 PatentMT. The table
shows that RIBES is more reliable than BLEU
and NIST.

Current RIBES has the following improve-
ments.

• BLEU’s Brevity Penalty (BP) was introduced
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Table 2: Meta-evaluation at NTCIR-9/10
PatentMT (Spearman’s ρ, Goto et al. 2011, 2013)

BLEU NIST RIBES
NTCIR-9 JE −0.042 −0.114 0.632
NTCIR-9 EJ −0.029 −0.074 0.716
NTCIR-10 JE 0.31 0.36 0.88
NTCIR-10 EJ 0.36 0.22 0.79

in order to penalize too short sentences.

RIBES = NKT× Pα × BPβ

where α = 0.25 and β = 0.10. BLEU uses
BP for the entire test corpus, but RIBES uses
it for each sentence.

• The word alignment algorithm in the original
RIBES used only bigrams for disambiguation
when the same word appears twice or more
in one sentence. This restriction is now re-
moved, and longer n-grams are used to get a
better alignment.

RIBES is widely used in recent Annual Mee-
ings of the (Japanese) Association for NLP. In-
ternational conference papers on Japanese-related
translations also use RIBES. (Wu et al., 2012;
Neubig et al., 2012; Goto et al., 2012; Hayashi
et al., 2013). Dan et al. (2012) uses RIBES for
Chinese-to-Japanese translation.

However, we have to take “scrambling” into
account when we think of Japanese word order.
Scrambling is also observed in other languages
such as German. Current RIBES does not regard
this fact.

2 Methodology
For instance, a Japanese sentence S1

jon ga sushi-ya de o-sushi wo tabe-ta .
(John ate sushi at a sushi restaurant.)

has the following acceptable word orders.

1. jon ga sushi-ya de o-sushi wo tabe-ta .

2. jon ga o-sushi wo sushi-ya de tabe-ta .

3. sushi-ya de jon ga o-sushi wo tabe-ta .

4. sushi-ya de o-sushi wo jon ga tabe-ta .

5. o-sushi wo jon ga sushi-ya de tabe-ta .

6. o-sushi wo sushi-ya de jon ga tabe-ta .

The boldface short words “ga”, “de”, and
“wo”, are case markers (“Kaku joshi” in
Japanese).

tabe-ta

sushi-ya dejon ga o-sushi wo

Figure 1: Dependency Tree of S1

• “ga” is a nominative case marker that means
the noun phrase before it is the subject of a
following verb/adjective.

• “de” is a locative case marker that means the
noun phrase before it is the location of a fol-
lowing verb/adjective.

• “wo” is an accusative case marker that means
the noun phrase before it is the direct object
of a following verb.

The term “scrambling” stands for these accept-
able permutations. These case markers explicitly
show grammatical cases and reordering of them
does not hurt interpretation of these sentences. Al-
most all other permutations of words are not ac-
ceptable (∗).
∗ jon ga de sushi-ya o-sushi tabe-ta wo .

∗ jon de sushi-ya ga o-sushi wo tabe-ta .

∗ jon tabe-ta ga o-sushi wo sushi-ya de .

∗ sushi-ya ga jon tabe-ta de o-sushi wo .

Most readers unfamiliar with Japanese will not
understand which word order is acceptable.

2.1 Scrambling as Post-Order Traversal of
Depenedncy Trees

Here, we describe this “scrambling” from the
viewpoint of Computer Science. Figure 1 shows
S1’s dependency tree. Each box indicates a “bun-
setsu” or a grammatical chunk of words. Each ar-
row starts from a modifier (dependent) to its head.

The root of S1 is “tabe-ta” (ate). This verb
has three modifiers:

• “jon ga” (John is its subject)

• “sushi-ya de” (A sushi restaurant is its location)

• “o-sushi wo” (Sushi is its object)

It is well known that Japanese is a typical head-
final language. In order to generate a head-final
word order from this dependency tree, we should
output tree nodes in post-order. That is, we have
to output all children of a node N before the node
N itself.
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mi-ta

ato ni kabuki wo

tabe-ta

sushi-ya dejon ga o-sushi wo

Figure 2: Dependency Tree of S2

All of the above acceptable word orders follows
this post-order. Even in post-order traverse, prece-
dence among children is not determined and this
fact leads to different permutations of children. In
the above example, the root “tabe-ta” has three
children, and its permutation is 3! = 6.

2.2 Simple Case Marker Constraint
Figure 2 shows the dependency tree of a more
complicated sentence S2:

jon ga sushi-ya de o-sushi wo tabe-ta
ato ni kabuki wo mi-ta .
(John watched kabuki after eating sushi at a shushi
restaurant)

Kabuki is a traditional Japanese drama performed
in a theatre. In this case, the root “mi-ta”
(watched) has two children: “ato ni” (after it)
and “kabuki wo” (kabuki is its object).

• “ni” is a dative/locative case marker that
means the noun phrase before it is an indi-
rect object or a location/time of a following
verb/adjective.

In this case, we obtain 3!×2! = 12 permutations:

1. *S1P* ato ni kabuki wo mi-ta .

2. kabuki wo *S1P* ato ni mi-ta .

Here, *S1P* is any of the above 3! permutations
of S1. If we use S1’s 3 as *S1P* in S2’s 1, we get

sushi-ya de jon ga o-sushi wo tabe-ta
ato ni kabuki wo mi-ta .

However, we cannot accept all of these permu-
tations equally. For instance,

kabuki wo o-sushi wo sushi-ya de
jon ga tabe-ta ato ni mi-ta .

is comprehensible but strange. This strangness
comes from the two objective markers “wo” be-
fore the first verb “tabe-ta.” Which did John
eat, kabuki or sushi? Semantically, we cannot
eat kabuki (drama), and we can understand this

sentence. But syntactic ambiguity causes this
strangeness. Without semantic knowledge about
kabuki and sushi, we cannot disambiguate this
case.

For readers/listeners, we should avoid such
syntactically ambiguous sentences. Modifiers
(here, “kabuki wo”) of a verb (here, “mi-ta”,
watched) should not be placed before another verb
(here, “tabe-ta”, ate).

In Japanese, verbs and adjectives are used sim-
ilarly. In general, adjectives are not modified by
“wo” case markers. Therefore, we can place “wo”
case markers before adjectives. In the following
sentences, “atarashii” (new) is an adjective
and placing “inu wo” (A dog is the direct object)
before “atarashii” does not make the sentence
ambiguous.

• atarashii ie ni inu wo ture te itta .
((Someone) took the dog to the new house.)

• inu wo atarashii ie ni ture te itta .

This idea leads to the following Simple Case
Marker Constraint:

Definition 1 (Simple Case Marker Constraint)
If a reordered sentence has a case marker phrase
of a verb that precedes another verb before the
verb, the sentence is rejected. “wo” case markers
can precede adjectives before the verb.

This is a primitive heuristic constraint and there
must be better ways to make it more flexible.
If we use Nihongo Goi Taikei (Ikehara et al.,
1997), we will be able to implement such a flex-
isble constraint. For example, some verbs such
as “sai-ta” (bloomed) are never modified by
“wo” case marker phrases. Therefore, the follow-
ing sentence is not ambiguous at all although the
wo phrase precedes “sai-ta”.

• hana ga sai-ta ato ni sono ki wo mi-ta.
((Someone) saw the tree after it bloomed.)

• sono ki wo hana ga sai-ta ato ni mi-ta.

2.3 Evaluation with scrambled sentences
As we mentioned before, RIBES measures global
word order similarity between machine-translated
sentences and reference sentences. It does not re-
gard scrambling at all. When the target language
allows scrambling just like Japanese, RIBES
should consider scrambling.

Once we have a correct dependency tree of the
reference sentence, we enumerate scrambled sen-
tences by reordering children of each node. The
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number of the reordered sentences depend on the
structure of the dependency tree.

Current RIBES code (RIBES-1.02.4) assumes
that every sentence has a fixed number of refer-
ences, but here the number of automatically gen-
erated reference sentences depends on the depen-
dency structure of the original reference sentence.
Therefore, we modified the code for variable num-
bers of reference sentences. RIBES-1.02.4 simply
uses the maximum value of the scores for different
reference sentences, and we followed it.

Here, we compare the following four methods.

• single: We use only single reference transla-
tions provided by the NTCIR organizers.

• postOrder: We generate all permutations of
the given reference sentence generated by
post-order traversals of its dependency tree.
This can be achieved by the following two
steps. First, we enumerate all permutations
of child nodes at each node. Then, we com-
bine these permutations. This is implemented
by cartesian products of the permutation sets.

• caseMarkers: We reorder only “case marker
(kaku joshi) phrases”. Here, a “case marker
phrase” is post-order traversal of a subtree
rooted at a case marker bunsetsu. For in-
stance, the root of the following sentence S3
has a non-case marker child “kaburi ,”
(wear) between case marker children, “jon
ga” and “zubon wo” (Trousers are the ob-
ject). Figure 3 shows its dependency tree.
jon ga shiroi boushi wo kaburi ,
kuroi zubon wo hai te iru.
(John wears a white hat and wears black trousers.)

This is implemented by removing non-case
marker nodes from the set of child nodes
to be reordered in the above “postOrder”
method. For simplicity, we do not reorder
other markers such as the topic marker “wa”
here. This is future work.

• proposed: We reorder only contiguous case
marker children of a node, and we accept sen-
tences that satisfy the aforementioned Sim-
ple Case Marker Constraint. S3’s root node
has two case marker children, but they are
not contiguous. Therefore, we do not reorder
them. We expect that the constraint inhibit
generation of incomprehensible or mislead-
ing sentences.

hai te iru.

kaburi ,jon ga zubon wo

boushi wo

shiroi

kuroi

Figure 3: Dependency Tree of S3

Table 3: Distribution of the number of generated
permutations

#permutations 1 2 4 6 8 12 16 24 >24
single 100 0 0 0 0 0 0 0 0
proposed 70 20 7 3 0 0 0 0 0
caseMarkers 64 23 4 6 2 2 0 2 0
postOrder 1 17 9 11 4 12 1 12 33

3 Results

We applied the above four methods to the ref-
erence sentences of human-judged 100 sentences
of NTCIR-7 Patent MT EJ task. (Fujii et al.,
2008) We applied CaboCha (Kudo and Mat-
sumoto, 2002) to the reference sentences, and
manually corrected the dependency trees because
Japanese dependency parsers are not satisfactory
in terms of sentence accuracy (Tamura et al.,
2007).

To support this manual correction, CaboCha’s
XML output was automatically converted
to dependency tree pictures by using
cabochatrees package for LATEX. http://

softcream.oka-pu.ac.jp/wp/wp-content/

uploads/cabochatrees.pdf. Then, it is easy
to find mistakes of the dependency trees. In
addition, CaboCha’s dependency accuracy is very
high (89–90%) (Kudo and Matsumoto, 2002).
Therefore, it took only one day to fix dependency
trees of one hundred reference sentences.

Table 3 shows distribution of the number of
word orders generated by the above methods. Pos-
tOrder sometimes generates tens of thousands of
permutations.

Figure 4 shows a sentence-level scatter plot
between Adequacy and RIBES for the baseline
Moses system. Each × indicates a sentence.

Arrows indicate significant improvements of
RIBES scores by the proposed method. For in-
stance, the×mark at (5.0, 0.53) corresponds to an
MT output:
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RIBES
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Average of RIBES: 0.706→ 0.719
Pearson’s r: 0.607→ 0.663

Spearman’s ρ: 0.607→ 0.670

Figure 4: Scatter plot between Adequacy and
RIBES for 100 human-judged sentences in the
output of NTCIR-7’s baseline Moses system and
the effects of the proposed method

indekkusu kohna wo zu 25 ni shimesu .

which is a Japanese translation of “FIG.25 shows
the index corner.” The reference sentence for this
sentence is

zu 25 ni indekkusu kohna wo shimeshi
te iru .

In this case, RIBES is 0.53, but all of the three
judges evaluated this as 5 of 5-point scale. That
is, RIBES disagrees with human judges. The pro-
posed method reorders this reference sentence as
follows:

indekkusu kohna wo zu 25 ni shimeshi
te iru .

This is very close to the above MT output and
RIBES is 0.884 for this automatically reordered
reference sentence. This shows that automatic re-
ordering reduces the gap between single-reference
RIBES and Adequacy.

Although RIBES strongly correlates with ade-
quacy at the system level (Table 1), it has only
mediocre correlation with adequacy at the sen-
tence level: Spearman’s ρ is 0.607 for the baseline
Moses system. The “proposed” method improves
it to 0.670.

We can draw similar scatter plots for each sys-
tem. Table 4 summarises such improvement of
correlations. And this is the main result of this

Table 4: Improvement of sentence-level correla-
tion between Adequacy and RIBES for human-
judged NTCIR-7 EJ systems (MAIN RESULT)

Pearson’s r Spearman’s ρ
single→ proposed single→ proposed

tsbmt 0.466 → 0.472 0.439 → 0.452
Moses 0.607 → 0.663 0.607 → 0.670
NTT 0.709 → 0.735 0.692 → 0.727
NICT-ATR 0.620 → 0.631 0.582 → 0.608
kuro 0.555 → 0.608 0.515 → 0.550

Table 5: Increase of averaged RIBES scores
Adeq. RIBES

system single proposed caseMarkers postOrder

tsbmt 3.527 0.715 0.7188 0.719 0.7569

moses 2.897 0.706 0.7192 0.722 0.781
NTT 2.740 0.671 0.683 0.686 0.7565

NICT-ATR 2.587 0.655 0.664 0.670 0.749
kuro 2.420 0.629 0.638 0.647 0.752

paper. The “proposed” method consistently im-
proves sentence-level correlation between Ade-
quacy and RIBES.

Table 5 shows increase of averaged RIBES, but
this increase is not always an improvement. We
expected that “PostOrder” generates not only ac-
ceptable sentences but also incomprehensible or
misleading sentences. This must be harmful to the
automatic evaluation by RIBES. Accoding to this
table, PostOrder gave higher RIBES scores to all
systems and correlation between RIBES and Ade-
quacy is lost as expected.

The ranking by RIBES-1.02.4 with “single”
reference sentences completely agrees with Ad-
equacy, but the weakest constraint, “postOrder”,
disagrees. Spearman’s ρ of the two ranks is 0.800
but Pearson’s r is as low as 0.256. It generates too
many incomprehensible/misleading word orders,
and they also raise RIBES scores of bad transla-
tions. On the other hand, “proposed” and “case-
Markers” agree with Adequacy except the ranks
of tsbmt and the baseline Moses.

4 Concluding Remarks

RIBES is now widely used in Japanese-related
translation evaluation. But RIBES sometimes pe-
nalizes good sentences because it does not re-
gard scrambling. Once we have correct depen-
dency trees of reference sentences, we can auto-
matically enumerate semantically equivalent word
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orders. Less constrained reordering tend to gener-
ate syntactically ambiguous sentences. They be-
come incomprehensible or misleading sentences.
In order to avoid them, we introduced Simple
Case Marker Constraint and restricted permuta-
tions to contiguous case marker children of verbs/
adjectives. Then, sentence-level correlation coef-
ficients were improved.

The proposed enumeration method is also ap-
plicable to other automatic evaluation methods
such as BLEU, IMPACT, and ROUGE-L, but we
have to modify their codes for variable numbers of
multi-reference sentences. We will examine them
in the full paper.

We hope our method is also useful for other lan-
guages that have scrambling.
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Abstract

This paper presents the results of the
WMT14 Metrics Shared Task. We asked
participants of this task to score the
outputs of the MT systems involved in
WMT14 Shared Translation Task. We col-
lected scores of 23 metrics from 12 re-
search groups. In addition to that we com-
puted scores of 6 standard metrics (BLEU,
NIST, WER, PER, TER and CDER) as
baselines. The collected scores were eval-
uated in terms of system level correlation
(how well each metric’s scores correlate
with WMT14 official manual ranking of
systems) and in terms of segment level
correlation (how often a metric agrees with
humans in comparing two translations of a
particular sentence).

1 Introduction

Automatic machine translation metrics play a very
important role in the development of MT systems
and their evaluation. There are many different
metrics of diverse nature and one would like to
assess their quality. For this reason, the Met-
rics Shared Task is held annually at the Workshop
of Statistical Machine Translation1, starting with
Koehn and Monz (2006) and following up to Bo-
jar et al. (2014).

In this task, we asked metrics developers to
score the outputs of WMT14 Shared Translation
Task (Bojar et al., 2014). We have collected the
computed metrics’ scores and use them to evalu-
ate quality of the metrics.

The systems’ outputs, human judgements and
evaluated metrics are described in Section 2. The
quality of the metrics in terms of system level cor-
relation is reported in Section 3. Segment level
correlation with a detailed discussion and a slight

1http://www.statmt.org/wmt13

change in the calculation compared to the previous
year is reported in Section 4.

2 Data

We used the translations of MT systems involved
in WMT14 Shared Translation Task together with
reference translations as the test set for the Met-
rics Task. This dataset consists of 110 systems’
outputs and 10 reference translations in 10 trans-
lation directions (English from and into Czech,
French, German, Hindi and Russian). For most of
the translation directions each system’s output and
the reference translation contain 3003 sentences.
For more details please see the WMT14 overview
paper (Bojar et al., 2014).

2.1 Manual MT Quality Judgements

During the WMT14 Translation Task, a large scale
manual annotation was conducted to compare the
systems. We used these collected human judge-
ments for the evalution of the automatic metrics.

The participants in the manual annotation were
asked to evaluate system outputs by ranking trans-
lated sentences relative to each other. For each
source segment that was included in the procedure,
the annotator was shown the outputs of five sys-
tems to which he or she was supposed to assign
ranks. Ties were allowed.

These collected rank labels for each five-tuple
of systems were then interpreted as 10 pairwise
comparisons of systems and used to assign each
system a score that reflects how high that system
was usually ranked by the annotators. Please see
the WMT14 overview paper for details on how this
score is computed. You can also find inter- and
intra-annotator agreement estimates there.

2.2 Participants of the Metrics Shared Task

Table 1 lists the participants of WMT14 Shared
Metrics Task, along with their metrics. We have
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Metric Participant
APAC Hokkai-Gakuen University (Echizen’ya, 2014)
BEER ILLC – University of Amsterdam (Stanojevic and Sima’an, 2014)

RED-* Dublin City University (Wu and Yu, 2014)
DISCOTK-* Qatar Computing Research Institute (Guzman et al., 2014)

ELEXR University of Tehran (Mahmoudi et al., 2013)
LAYERED Indian Institute of Technology, Bombay (Gautam and Bhattacharyya, 2014)

METEOR Carnegie Mellon University (Denkowski and Lavie, 2014)
AMBER, BLEU-NRC National Research Council of Canada (Chen and Cherry, 2014)

PARMESAN Charles University in Prague (Barančı́ková, 2014)
TBLEU Charles University in Prague (Libovický and Pecina, 2014)

UPC-IPA, UPC-STOUT Technical University of Catalunya (Gonzàlez et al., 2014)
VERTA-W, VERTA-EQ University of Barcelona (Comelles and Atserias, 2014)

Table 1: Participants of WMT14 Metrics Shared Task

collected 23 metrics from a total of 12 research
groups.

In addition to that we have computed the fol-
lowing two groups of standard metrics as base-
lines:

• Mteval. The metrics BLEU (Papineni
et al., 2002) and NIST (Dodding-
ton, 2002) were computed using the
script mteval-v13a.pl2 which is
used in the OpenMT Evaluation Cam-
paign and includes its own tokeniza-
tion. We run mteval with the flag
--international-tokenization
since it performs slightly better (Macháček
and Bojar, 2013).

• Moses Scorer. The metrics TER (Snover
et al., 2006), WER, PER and CDER (Leusch
et al., 2006) were computed using the Moses
scorer which is used in Moses model opti-
mization. To tokenize the sentences we used
the standard tokenizer script as available in
Moses toolkit.

We have normalized all metrics’ scores such
that better translations get higher scores.

3 System-Level Metric Analysis

While the Spearman’s ρ correlation coefficient
was used as the main measure of system-level met-
rics’ quality in the past, we have decided to use
Pearson correlation coefficient as the main mea-
sure this year. At the end of this section we give
reasons for this change.

We use the following formula to compute the
Pearson’s r for each metric and translation direc-
tion:

2http://www.itl.nist.gov/iad/mig/
/tools/

r =
∑n

i=1(Hi − H̄)(Mi − M̄)√∑n
i=1(Hi − H̄)2

√∑n
i=1(Mi − M̄)2

(1)
where H is the vector of human scores of all sys-
tems translating in the given direction, M is the
vector of the corresponding scores as predicted by
the given metric. H̄ and M̄ are their means re-
spectively.

Since we have normalized all metrics such that
better translations get higher score, we consider
metrics with values of Pearson’s r closer to 1 as
better.

You can find the system-level correlations for
translations into English in Table 2 and for trans-
lations out of English in Table 3. Each row in the
tables contains correlations of a metric in each of
the examined translation directions. The metrics
are sorted by average Pearson correlation coeffi-
cient across translation directions. The best results
in each direction are in bold.

The reported empirical confidence intervals of
system level correlations were obtained through
bootstrap resampling of 1000 samples (confidence
level of 95 %).

As in previous years, a lot of metrics outper-
formed BLEU in system level correlation. In
into-English directions, metric DISCOTK-PARTY-
TUNED has the highest correlation in two lan-
guage directions and it is also the best correlated
metric on average according to both Pearson and
Spearman’s coefficients. The second best corre-
lated metric on average (according to Pearson) is
LAYERED which is also the single best metric
in Hindi-to-English direction. Metrics REDSYS

and REDSYSSENT are quite unstable, they win
in French-to-English and Czech-to-English direc-
tions respectively but they perform very poorly in
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other directions.
Except METEOR, none of the participants took

part in the last year metrics task. We can there-
fore compare current and last year results only
for METEOR and baseline metrics. METEOR, the
last year winner, performs generally well in some
directions but it horribly suffers when evaluating
translations from non-Latin script (Russian and es-
pecially Hindi). For the baseline metrics the re-
sults are quite similar across the years. In both
years BLEU performs best among baseline met-
rics, closely followed by CDER. NIST is in the
middle of the list in both years. The remaining
baseline metrics TER, WER and PER perform
much worse.

The results into German are markedly lower
and have broader confidence intervals than the re-
sults in other directions. This could be explained
by a very high number (18) of participating sys-
tems of similar quality. Both human judgements
and automatic metrics are negatively affected by
these circumstances. To preserve the reliability of
overall metrics’ performance across languages, we
decided to exclude English-to-German direction
from the average Pearson and Spearman’s corre-
lation coefficients.

In other out-of-English directions, the best cor-
related metric on average according to Pearson co-
efficient is NIST, even though it does not win in
any single direction. CDER is the second best ac-
cording to Pearson and the best metric according
to Spearman’s. Again it does not win in any single
direction. The metrics PER and WER are quite
unstable. Each of them wins in two directions but
performs very badly in others.

Compared to the last year results, the order of
metrics participating in both years is quite simi-
lar: NIST and CDER performed very well both
years, followed by BLEU. The metrics TER and
WER are again at the end of the list. An interest-
ing change is that PER perform much better this
year.

3.1 Reasons for Pearson correlation
coefficient

In the translation task, there are often similar sys-
tems with human scores very close to each other. It
can therefore easily happen that even a good met-
ric compares two similar systems differently from
humans. We believe that the penalty incurred by
the metric for such a swap should somehow reflect

that the systems were hard to separate.
Since the Spearman’s ρ converts both human

and metric scores to ranks and therefore disregards
the absolute differences in the scores, it does ex-
actly what we feel is not fair. The Pearson corre-
lation coefficient does not suffer from this prob-
lem. We are aware of the fact that Pearson cor-
relation coefficient also reflects whether the rela-
tion between manual and automatic scores is lin-
ear (as opposed to e.g. quadratic). We don’t think
this would be negatively affecting any of the met-
rics since overall, the systems are of a comparable
quality and the metrics are likely to behave lin-
early in this small range of scores.

Moreover, the general agreement to adopt Pear-
son instead of Spearman’s correlation coefficient
was already apparent during the WMT12 work-
shop. This change just did not get through for
WMT13.

4 Segment-Level Metric Analysis

We measure the quality of metrics’ segment-level
scores using Kendall’s τ rank correlation coeffi-
cient. In this type of evaluation, a metric is ex-
pected to predict the result of the manual pairwise
comparison of two systems. Note that the golden
truth is obtained from a compact annotation of five
systems at once, while an experiment with text-to-
speech evaluation techniques by Vazquez-Alvarez
and Huckvale (2002) suggests that a genuine pair-
wise comparison is likely to lead to more stable
results.

In the past, slightly different variations of
Kendall’s τ computation were used in the Metrics
Tasks. Also some of the participants have noticed
a problem with ties in the WMT13 method. There-
fore, we discuss several possible variants in detail
in this paper.

4.1 Notation for Kendall’s τ computation
The basic formula for Kendall’s τ is:

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant| (2)

where Concordant is the set of all human com-
parisons for which a given metric suggests the
same order andDiscordant is the set of all human
comparisons for which a given metric disagrees.
In the original Kendall’s τ , comparisons with hu-
man or metric ties are considered neither concor-
dant nor discordant. However in the past, Metrics
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Tasks (Callison-Burch et al. (2012) and earlier),
comparisons with human ties were considered as
discordant.

To easily see which pairs are counted as concor-
dant and which as discordant, we have developed
the following tabular notation. This is for example
the WMT12 method:

Metric
WMT12 < = >

H
um

an < 1 -1 -1
= X X X
> -1 -1 1

Given such a matrix Ch,m where h,m ∈ {<,=
, >}3 and a metric we compute the Kendall’s τ the
following way:

We insert each extracted human pairwise com-
parison into exactly one of the nine sets Sh,m ac-
cording to human and metric ranks. For example
the set S<,> contains all comparisons where the
left-hand system was ranked better than right-hand
system by humans and it was ranked the other way
round by the metric in question.

To compute the numerator of Kendall’s τ , we
take the coefficients from the matrix Ch,m, use
them to multiply the sizes of the corresponding
sets Sh,m and then sum them up. We do not in-
clude sets for which the value of Ch,m is X. To
compute the denominator of Kendall’s τ , we sim-
ply sum the sizes of all the sets Sh,m except those
where Ch,m = X. To define it formally:

τ =

∑
h,m∈{<,=,>}

Ch,m 6=X

Ch,m|Sh,m|

∑
h,m∈{<,=,>}

Ch,m 6=X

|Sh,m| (3)

4.2 Discussion on Kendall’s τ computation
In 2013, we thought that metric ties should not be
penalized and we decided to excluded them like
the human ties. We will denote this method as
WMT13:

Metric
WMT13 < = >

H
um

an < 1 X -1
= X X X
> -1 X 1

It turned out, however, that it was not a good idea:
metrics could game the scoring by avoiding hard

3Here the relation < always means “is better than” even
for metrics where the better system receives a higher score.

cases and assigning lots of ties. A natural solution
is to count the metrics ties also in denominator to
avoid the problem. We will denote this variant as
WMT14:

Metric
WMT14 < = >

H
um

an < 1 0 -1
= X X X
> -1 0 1

The WMT14 variant does not allow for gaming
the scoring like the WMT13 variant does. Com-
pared to WMT12 method, WMT14 does not pe-
nalize ties.

We were also considering to get human ties in-
volved. The most natural variant would be the fol-
lowing variant denoted as HTIES:

Metric
HTIES < = >

H
um

an < 1 0 -1
= 0 1 0
> -1 0 1

Unfortunately this method allows for gaming the
scoring as well. The least risky choice for metrics
in hard cases would be to assign a tie because it
cannot worsen the Kendall’s τ and there is quite a
high chance that the human rank is also a tie. Met-
rics could be therefore tuned to predict ties often
but such metrics are not very useful. For example,
the simplistic metric which assigns the same score
to all candidates (and therefore all pairs would be
tied by the metric) would get the score equal to
the proportion of ties in all human comparisons. It
would become one of the best performing metrics
in WMT13 even though it is not informative at all.

We have decided to use WMT14 variant as the
main evaluation measure this year, however, we
are also reporting average scores computed by
other variants.

4.3 Kendall’s τ results
The final Kendall’s τ results are shown in Table 4
for directions into English and in Table 5 for di-
rections out of English. Each row in the tables
contains correlations of a metric in given direc-
tions. The metrics are sorted by average corre-
lation across translation directions. The highest
correlation in each column is in bold. The ta-
bles also contain average Kendall’s τ computed by
other variants including the variant WMT13 used
last year. Metrics which did not compute scores in
all directions are at the bottom of the tables. The
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possible values of τ range between -1 (a metric al-
ways predicted a different order than humans did)
and 1 (a metric always predicted the same order as
humans). Metrics with a higher τ are better.

We also computed empirical confidence inter-
vals of Kendall’s τ using bootstrap resampling.
We varied the “golden truth” by sampling from
human judgments. We have generated 1000 new
sets and report the average of the upper and lower
2.5 % empirical bound, which corresponds to the
95 % confidence interval.

In directions into English (Table 4), the
strongest correlated segment-level metric on av-
erage is DISCOTK-PARTY-TUNED followed by
BEER. Unlike the system level correlation, the
results are much more stable here. DISCOTK-
PARTY-TUNED has the highest correlation in 4 of
5 language directions. Generally, the ranking of
metrics is almost the same in each direction.

The only two metrics which also participated
in last year metrics task are METEOR and SENT-
BLEU. In both years, METEOR performed quite
well unlike SENTBLEU which was outperformed
by most of the metrics.

The metric DISCOTK-LIGHT-KOOL is worth
mentioning. It is deliberately designed to assign
the same score for all systems for most of the
segments. It obtained scores very close to zero
(i.e. totally uninformative) in WMT14 variant. In
WMT13 thought it reached the highest score.

In directions out of English (Table 5), the met-
ric with highest correlation on average across all
directions is BEER, followed by METEOR.

5 Conclusion

In this paper, we summarized the results of the
WMT14 Metrics Shared Task, which assesses the
quality of various automatic machine translation
metrics. As in previous years, human judgements
collected in WMT14 serve as the golden truth and
we check how well the metrics predict the judge-
ments at the level of individual sentences as well
as at the level of the whole test set (system-level).

This year, neither the system-level nor the
segment-level scores are directly comparable to
the previous years. The system-level scores are af-
fected by the change of the underlying interpreta-
tion of the collected judgements in the main trans-
lation task evaluation as well as our choice of Pear-
son coefficient instead of Spearman’s rank corre-
lation. The segment-level scores are affected by

the different handling of ties this year. Despite
somewhat sacrificing the year-to-year comparabil-
ity, we believe all changes are towards a fairer
evaluation and thus better in the long term.

As in previous years, segment-level correlations
are much lower than system-level ones, reaching
at most Kendall’s τ of 0.45 for the best performing
metric in its best language pair. So there is quite
some research work to be done. We are happy
to see that many new metrics emerged this year,
which also underlines the importance of the Met-
rics Shared Task.
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Barančı́ková, P. (2014). Parmesan: Improving
Meteor by More Fine-grained Paraphrasing. In
Proceedings of the Ninth Workshop on Statisti-
cal Machine Translation, Baltimore, USA. As-
sociation for Computational Linguistics.

Bojar, O., Buck, C., Federmann, C., Haddow, B.,
Koehn, P., Leveling, J., Monz, C., Pecina, P.,
Post, M., Saint-Amand, H., Soricut, R., Specia,
L., and Tamchyna, A. (2014). Findings of the
2014 workshop on statistical machine transla-
tion. In Proceedings of the Ninth Workshop on
Statistical Machine Translation.

Callison-Burch, C., Koehn, P., Monz, C., Post, M.,
Soricut, R., and Specia, L. (2012). Findings of
the 2012 workshop on statistical machine trans-
lation. In Proceedings of the Seventh Workshop
on Statistical Machine Translation, pages 10–
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Abstract

In this paper we describe experiments on
predicting HTER, as part of our submis-
sion in the Shared Task on Quality Esti-
mation, in the frame of the 9th Workshop
on Statistical Machine Translation. In our
experiment we check whether it is possi-
ble to achieve better HTER prediction by
training four individual regression models
for each one of the edit types (deletions,
insertions, substitutions, shifts), however
no improvements were yielded. We also
had no improvements when investigat-
ing the possibility of adding more data
from other non-minimally post-edited and
freely translated datasets. Best HTER pre-
diction was achieved by adding dedupli-
cated WMT13 data and additional features
such as (a) rule-based language correc-
tions (language tool) (b) PCFG parsing
statistics and count of tree labels (c) posi-
tion statistics of parsing labels (d) position
statistics of tri-grams with low probability.

1 Introduction

As Machine Translation (MT) gets integrated into
regular translation workflows, its use as base for
post-editing is radically increased. As a result,
there is a great demand for methods that can auto-
matically assess the MT outcome and ensure that
it is useful for the translator and can lead to more
productive translation work.

Although many agree that the quality of the
MT output itself is not adequate for the profes-
sional standards, there has not yet been a widely-
accepted way to measure its quality on par with
human translations. One such metric, the Hu-
man Translation Edit Rate (HTER) (Snover et
al., 2006), is the focus of the current submission.
HTER is highly relevant to the need of adapting

MT to the needs of translators, as it aims to mea-
sure how far it is from an acceptable equivalent
translation done by humans.

HTER is used here in the frame of Quality Es-
timation, i.e. having the goal of being able to pre-
dict the post-editing effort in a real case environ-
ment, right before the translation is given to the
user, without real access to the correct translation.
For this purpose the text of the source and the pro-
duced translation is analyzed by automatic tools
in order to infer indications (numerical features)
that may be relevant to the quality of the transla-
tion. These features are used in a statistical model
whose parameters are estimated with common su-
pervised Machine Learning techniques.

This work presents an extensive search over var-
ious set-ups and parameters for such techniques,
aiming to build a model that better predicts HTER
over the data of the Shared Task of the 9th Work-
shop on Statistical Machine Translation.

2 New approaches being tested

2.1 Break HTER apart
HTER is a complex metric, in the sense that it is
calculated as a linear function over specific types
of edit distance. The official algorithm performs
a comparison between the MT output and the cor-
rected version of this output by a human translator,
who performed the minimum number of changes.
The comparison results in counting the number of
insertions, deletions, substitutions and shifts (e.g.
reordering). The final HTER score is the total
number of edits divided by the number of refer-
ence words.

HTER =
#insertions + #dels + #subs + #shifts

#reference words

We notice that the metric is clearly based on four
edit types that are seemingly independent of each
other. This poses the question whether the existing
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approach of learning the entire metric altogether
introduces way too much complexity in the ma-
chine learning process. Instead, we test the hy-
pothesis that it is more effective to build a separate
model for each error type and then put the output
of each model on the overall HTER fraction shown
above.

Following this idea, we score the given transla-
tions again in order to produce all four HTER fac-
tors (insertions, deletions, substitutions and shifts)
and we train four regression models accordingly.
This way, each model can be optimized separately,
in order to better fit the particular error type, unaf-
fected by the noise that other error types may infer.

2.2 Rounding of individual edit type
predictions

Due to the separate model per error type, it is pos-
sible to perform corrections on the predicted error
count for each error type, before the calculation of
the entire HTER score. This may be helpful, given
the observation that continuous statistical models
may produce a real number as prediction for the
count of edits, whereas the actual requirement is
an integer.

Here, we take this opportunity and test the hy-
pothesis that prediction of the overall HTER is bet-
ter, if the output of the four individual models is
rounded to the closest integer, before entered in
the HTER ratio.

2.3 More data by approximating minimal
post-edits

We investigate whether prediction performance
can be improved by adding further data. This rises
from the fact that the original number of sentences
is relatively small, given the amount of usable fea-
tures. Unfortunately, the amount of openly avail-
able resources of minimally post-edited transla-
tions are few, given the fact that this relies on a
costly manual process usually done by profession-
als.

Consequently, we add more training samples,
using reference translations of the source which
are not post-edited. In order to ensure that the ad-
ditional data still resemble minimally post-edited
translations as required for HTER, we include
those additional sentences only if they match spe-
cific similarity criteria. In particular, the trans-
lations are filtered, based on the amount of edits
between the MT output and the reference transla-
tion; sentences with an amount of edits above the

threshold are omitted.

3 Methods

3.1 Machine Learning on a regression
problem

Fitting a statistical model in order to predict con-
tinuous values is clearly a regression problem. The
task takes place on a sentence level, given a set of
features describing the source and translation text,
and the respective edit score for the particular sen-
tence.

For this purpose we use Support Vector Regres-
sion - SVR (Basak et al., 2007), which uses lin-
ear learning machines in order to map a non-linear
function into a feature space induce by a high-
dimensional kernel. Similar to the baseline, the
RBF kernel was used, whose parameters where
adjusted via a grid search, cross-validated (10
folds) on all data that was available for each vari-
ation of the training.

3.2 Features
As explained, the statistical model predicts the
edit counts based on a set of features. Our anal-
ysis focuses on “black-box” features, which only
look superficially on the given text and the pro-
duced translation, without further knowledge on
how this translation was produced. These features
depend on several automatic extraction mecha-
nisms, mostly based on existing language process-
ing tools.

3.2.1 Baseline features
A big set of features is adopted from the baseline
of the Shared Task description:

Language models: provide the smoothed n-
gram probability and the n-gram perplexity of the
sentence.

Source frequency: A set of eight features in-
cludes the percentage of uni-grams, bi-grams and
tri-grams of the processed sentence in frequency
quartiles 1 (lower frequency words) and 4 (higher
frequency words) in the source side of a parallel
corpus (Callison-Burch et al., 2012).

Count-based features include count and per-
centage of tokens, unknown words, punctuation
marks, numbers, tokens which do or do not con-
tain characters “a-z”; the absolute difference be-
tween number of tokens in source and target nor-
malized by source length, number of occurrences
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of the target word within the target hypothesis av-
eraged for all words in the hypothesis (type/token
ratio).

3.2.2 Additional features
Additionally to the baseline features, the following
feature groups are considered:

Rule-based language correction is a result of
hand-written controlled language rules, that indi-
cate mistakes on several pre-defined error cate-
gories (Naber, 2003). We include the number of
errors of each category as a feature.

Parsing Features: We parse the text with a
PCFG grammar (Petrov et al., 2006) and we de-
rive the counts of all node labels (e.g. count of
verb phrases, noun phrases etc.), the parse log-
likelihood and the number of the n-best parse trees
generated (Avramidis et al., 2011). In order to re-
duce unnecessary noise, in some experiments we
separate a group of “basic” parsing labels, which
include only verb phrases, noun phrases, adjec-
tives and subordinate clauses.

Position statistics: This are derivatives of the
previous feature categories and focus on the po-
sition of unknown words, or node tree tags. For
each of them, we calculate the average position in-
dex over the sentence and the standard deviation of
these indices.

3.3 Evaluation
All specific model parameters were tested with
cross validation with 10 equal folds on the train-
ing data. Cross validation is useful as it reduces
the possibility of overfitting, yet using the entire
amount of data.

The regression task is evaluated in terms of
Mean Average Error (MAE).

4 Experiment setup

4.1 Implementation
The open source language tool1 is used to an-
notate source and target sentences with automati-
cally detected monolingual error tags. Language
model features are computed with the SRILM
toolkit (Stolcke, 2002) with an order of 5, based on
monolingual training material from Europarl v7.0
(Koehn, 2005) and News Commentary (Callison-
Burch et al., 2011). For the parsing parsing fea-
tures we used the Berkeley Parser (Petrov and

1Open source at http://languagetool.org

datasets feature set MAE
wmt14 baseline 0.142
wmt14 all features 0.143
wmt14,wmt13 baseline 0.140
wmt14,wmt13 all features 0.138

Table 1: Better scores are achieved when training
with both WMT14 and deduplicated WMT13 data

Klein, 2007) trained over an English and a Span-
ish treebank (Taulé et al., 2008).2 Baseline fea-
tures are extracted using Quest and HTER edits
and scores are recalculated by modifying the orig-
inal TERp code. The annotation process is or-
ganised with the Ruffus library (Goodstadt, 2010)
and the learning algorithms are executed using the
Scikit Learn toolkit (Pedregosa et al., 2011).

4.2 Data
In our effort to reproduce HTER in a higher gran-
ularity, we noticed that HTER scoring on the of-
ficial data was reversed: the calculation was per-
formed by using the MT output as reference and
the human post-edition as hypothesis. Therefore,
the denominator on the “official” scores is the
number of tokens on the MT output. This makes
the prediction even easier, as this number of tokens
is always known.

Apart from the data provided by the WMT14,
we include additional minimally post-edited data
from WMT13. It was observed that about 30% of
the WMT13 data already occurred in the WMT14
set. Since this would negatively affect the credibil-
ity of the cross-fold evaluation (section 3.3) and
also create duplicates, we filtered out incoming
sentences with a string match higher than 85% to
the existing ones.

The rest of the additional data (section 2.3)
was extracted from the test-sets of shared tasks
WMT2008-2011.

5 Results

5.1 Adding data from previous year
Adding deduplicated data from the HTER predic-
tion task of WMT13 (Section 4.2) leads to an im-
provement of about 0.004 of MAE for the best
feature-set, as it can be seen by comparing the re-
spective entries of the two horizontal blocks of Ta-
ble 1.

2although the Spanish grammar performed purely in this
case and was eliminated as a feature
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feature set MAE
baseline (b) 0.140
b + language tool 0.141
b + source parse 0.141
b + parse pos 0.142
b + basic parse pos 0.139
b + parse count 0.139
b + low prob trigram pos 0.139
all without char count 0.139
all without lang. tool 0.139
all features 0.138

Table 2: Comparing models built with several dif-
ferent feature sets, including various combinations
of the features described in section 3.2. All models
trained on combination of WMT14 and WMT13
data

5.2 Feature sets

We tested separately several feature sets, addition-
ally to the baseline feature set and the feature set
containing all features. The feature sets tested
are based on the feature categories explained in
Section 3.2.2 and the results are seen in Table 2.
One can see that there is little improvement on the
MAE score, which is achieved best by using all
features.

Adding individual categories of features on the
baseline has little effect. Namely, the language
tool annotation, the source parse features and the
source and target parse positional features deteri-
orate the MAE score, when added to the baseline
features.

On the contrary, there is a small positive con-
tribution by using the position statistics of only
the “basic” parsing nodes (i.e. noun phrases, verb
phrases, adjectives and subordinate clauses). Sim-
ilarly positive is the effect of the count of parsed
node labels for source and target and the features
indicating the position of tri-grams with low prob-
ability (lower than the deviation of the mean). Al-
though language tool features deteriorate the score
of the baseline model when added, their absense
has a negative effect when compared to the full
feature set.

5.3 Separate vs. single HTER predictor

Table 3 includes comparisons of models that test
the hypothesis mentioned in Section 2.1. For both
models trained over the baseline or with additional
features, the MAE score is higher (worse), when

features mode MAE std +/-
baseline single 0.140 0.012
baseline combined 0.148 0.018
baseline combined round 0.152 0.018
all single 0.138 0.009
all combined 0.160 0.019
all combined round 0.162 0.020

Table 3: The combination of 4 different estima-
tors (combined) does not bring any improvement,
when compared to the single HTER estimator.
Models trained on both WMT14 and WMT13 data

separate models are trained. This indicates that
our hypothesis does not hold, at least for the cur-
rent setting of learning method and feature sets.
Rounding up individual edit type predictions to the
closes integer, before the calculation of the HTER
ratio, deteriorates the scores even more.

5.4 Effect of adding non-postedited sentences

In Table 4 we can see that adding more data, which
are not minimally post-edited (but normal refer-
ences), does not contribute to a better model, even
if we limit the number of edits. The lowest MAE
is 0.176, when compared to the one of our best
model which is 0.138.

The best score when additional sentences are
imported, is achieved by allowing sentences that
have between up to edits, and particularly up to 3
substitutions and up to 1 deletion. Increasing the
number of edits on more than 4, leads to a further
deterioration of the model. One can also see that
adding training instances where MT outputs did
not require any edit, also yields scores worse than
the baseline.

6 Conclusion and further work

In our submission, we process the test set with the
model using all features (Table 2). We addition-
ally submit the model trained with additional fil-
tered sentences, as indicated in the second row of
Table 4.

One of the basic hypothesis of this experiment,
that each edit type can better be learned individu-
ally, was not confirmed given these data and set-
tings. Further work could include more focus on
the individual models and more elaborating on
features that may be specific for each error type.

305



del ins sub shifts total add. sentences MAE std+/-
0 0 0 0 0 275 0.177 0.049
1 0 3 0 4 480 0.176 0.040
1 0 2 0 3 433 0.177 0.040
0 0 4 0 4 432 0.177 0.040
2 1 0 0 3 296 0.177 0.048
2 0 3 0 5 530 0.178 0.038
4 0 2 0 6 485 0.178 0.041
4 4 0 0 8 310 0.178 0.046
2 1 0 1 4 309 0.178 0.047
1 0 5 0 6 558 0.179 0.039
1 4 5 0 10 1019 0.200 0.031

Table 4: Indicative MAE scores achieved by adding filtered not minimally post-edited WMT translation
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Abstract

We describe our systems for the WMT14
Shared Task on Quality Estimation (sub-
tasks 1.1, 1.2 and 1.3). Our submissions
use the framework of Multi-task Gaus-
sian Processes, where we combine multi-
ple datasets in a multi-task setting. Due to
the large size of our datasets we also ex-
periment with Sparse Gaussian Processes,
which aim to speed up training and predic-
tion by providing sensible sparse approxi-
mations.

1 Introduction

The purpose of machine translation (MT) quality
estimation (QE) is to provide a quality prediction
for new, unseen machine translated texts, with-
out relying on reference translations (Blatz et al.,
2004; Specia et al., 2009; Bojar et al., 2013). A
common use of quality predictions is the decision
between post-editing a given machine translated
sentence and translating its source from scratch,
based on whether its post-editing effort is esti-
mated to be lower than the effort of translating the
source sentence.

The WMT 2014 QE shared task defined a group
of tasks related to QE. In this paper, we de-
scribe our submissions for subtasks 1.1, 1.2 and
1.3. Our models are based on Gaussian Pro-
cesses (GPs) (Rasmussen and Williams, 2006),
a non-parametric kernelised probabilistic frame-
work. We propose to combine multiple datasets
to improve our QE models by applying GPs in
a multi-task setting. Our hypothesis is that us-
ing sensible multi-task learning settings gives im-
provements over simply pooling all datasets to-
gether.

Task 1.1 focuses on predicting post-editing ef-
fort for four language pairs: English-Spanish
(en-es), Spanish-English (es-en), English-German

(en-de), and German-English (de-en). Each con-
tains a different number of source sentences and
their human translations, as well as 2-3 versions
of machine translations: by a statistical (SMT)
system, a rule-based system (RBMT) system and,
for en-es/de only, a hybrid system. Source sen-
tences were extracted from tests sets of WMT13
and WMT12, and the translations were produced
by top MT systems of each type and a human
translator. Labels range from 1 to 3, with 1 in-
dicating a perfect translation and 3, a low quality
translation.

The purpose of task 1.2 is to predict HTER
scores (Human Translation Error Rate) (Snover
et al., 2006) using a dataset composed of 896
English-Spanish sentences translated by a MT sys-
tem and post-edited by a professional translator.
Finally, task 1.3 aims at predicting post-editing
time, using a subset of 650 sentences from the
Task 1.2 dataset.

For each task, participants can submit two types
of results: scoring and ranking. For scoring, eval-
uation is made in terms of Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). For
ranking, DeltaAvg and Spearman’s rank correla-
tion were used as evaluation metrics.

2 Model

Gaussian Processes are a Bayesian non-parametric
machine learning framework considered the state-
of-the-art for regression. They assume the pres-
ence of a latent function f : RF → R, which maps
a vector x from feature space F to a scalar value.
Formally, this function is drawn from a GP prior:

f(x) ∼ GP(0, k(x,x′)),

which is parameterised by a mean function (here,
0) and a covariance kernel function k(x,x′). Each
response value is then generated from the function
evaluated at the corresponding input, yi = f(xi)+
η, where η ∼ N (0, σ2

n) is added white-noise.
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Prediction is formulated as a Bayesian inference
under the posterior:

p(y∗|x∗,D) =
∫

f
p(y∗|x∗, f)p(f |D),

where x∗ is a test input, y∗ is the test response
value andD is the training set. The predictive pos-
terior can be solved analitically, resulting in:

y∗ ∼ N (kT
∗ (K + σ2

nI)−1y,

k(x∗, x∗)− kT
∗ (K + σ2

nI)−1k∗),

where k∗ = [k(x∗,x1)k(x∗,x2) . . . k(x∗,xn)]T

is the vector of kernel evaluations between the
training set and the test input and K is the kernel
matrix over the training inputs (the Gram matrix).

The kernel function encodes the covariance
(similarity) between each input pair. While a vari-
ety of kernel functions are available, here we fol-
lowed previous work in QE using GP (Cohn and
Specia, 2013; Shah et al., 2013) and employed
a squared exponential (SE) kernel with automatic
relevance determination (ARD):

k(x,x′) = σ2
f exp

(
−1

2

F∑
i=1

xi − x′i
li

)
,

where F is the number of features, σ2
f is the co-

variance magnitude and li > 0 are the feature
lengthscales.

The resulting model hyperparameters (SE vari-
ance σ2

f , noise variance σ2
n and SE lengthscales li)

were learned from data by maximising the model
likelihood. All our models were trained using the
GPy1 toolkit, an open source implementation of
GPs written in Python.

2.1 Multi-task learning
The GP regression framework can be extended to
multiple outputs by assuming f(x) to be a vec-
tor valued function. These models are commonly
referred as coregionalization models in the GP lit-
erature (Álvarez et al., 2012). Here we refer to
them as multi-task kernels, to emphasize our ap-
plication.

In this work, we employ a separable multi-task
kernel, similar to the one used by Bonilla et al.
(2008) and Cohn and Specia (2013). Consider-
ing a set of D tasks, we define the corresponding
multi-task kernel as:

k((x, d), (x′, d′)) = kdata(x,x′)×Bd,d′ , (1)
1http://sheffieldml.github.io/GPy/

where kdata is a kernel on the input points, d and
d′ are task or metadata information for each input
and B ∈ RD×D is the multi-task matrix, which
encodes task covariances. For task 1.1, we con-
sider each language pair as a different task, while
for tasks 1.2 and 1.3 we use additional datasets
for the same language pair (en-es), treating each
dataset as a different task.

To perform the learning procedure the multi-
task matrix should be parameterised in a sensible
way. We follow the parameterisations proposed
by Cohn and Specia (2013), which we briefly de-
scribe here:

Independent: B = I. In this setting each task is
modelled independently. This is not strictly
equivalent to independent model training be-
cause the tasks share the same data kernel
(and the same hyperparameters);

Pooled: B = 1. Here the task identity is ignored.
This is equivalent to pooling all datasets in a
single task model;

Combined: B = 1 + αI. This setting lever-
ages between independent and pooled mod-
els. Here, α > 0 is treated as an hyperparam-
eter;

Combined+: B = 1 + diag(α). Same as “com-
bined”, but allowing one different α value per
task.

2.2 Sparse Gaussian Processes
The performance bottleneck for GP models is the
Gram matrix inversion, which is O(n3) for stan-
dard GPs, with n being the number of training in-
stances. For multi-task settings this can be a po-
tential issue because these models replicate the in-
stances for each task and the resulting Gram ma-
trix has dimensionality nd × nd, where d is the
number of tasks.

Sparse GPs tackle this problem by approximat-
ing the Gram matrix using only a subset of m in-
ducing inputs. Without loss of generalisation, con-
sider these m points as the first instances in the
training data. We can then expand the Gram ma-
trix in the following way:

K =
[

Kmm Km(n−m)

K(n−m)m K(n−m)(n−m)

]
.

Following the notation in (Rasmussen and
Williams, 2006), we refer Km(n−m) as Kmn and
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its transpose as Knm. The block structure of K
forms the basis of the so-called Nyström approxi-
mation:

K̃ = KnmK−1
mmKmn, (2)

which results in the following predictive posterior:

y∗ ∼ N (kT
m∗G̃

−1Kmny, (3)

k(x∗,x∗)− kT
m∗K

−1
mmkm∗+

σ2
nk

T
m∗G̃

−1km∗),

where G̃ = σ2
nKmm + KmnKnm and km∗ is the

vector of kernel evaluations between test input x∗
and the m inducing inputs. The resulting training
complexity is O(m2n).

The remaining question is how to choose the in-
ducing inputs. We follow the approach of Snelson
and Ghahramani (2006), which note that these in-
ducing inputs do not need to be a subset of the
training data. Their method considers each in-
put as a hyperparameter, which is then optimised
jointly with the kernel hyperparameters.

2.3 Features
For all tasks we used the QuEst framework (Spe-
cia et al., 2013) to extract a set of 80 black-box
features as in Shah et al. (2013), for which we had
all the necessary resources available. Examples of
the features extracted include:

• N-gram-based features:

– Number of tokens in source and target
segments;

– Language model (LM) probability of
source and target segments;

– Percentage of source 1–3-grams ob-
served in different frequency quartiles of
a large corpus of the source language;

– Average number of translations per
source word in the segment as given by
IBM 1 model from a large parallel cor-
pus of the language, with probabilities
thresholded in different ways.

• POS-based features:

– Ratio of percentage of nouns/verbs/etc
in the source and target segments;

– Ratio of punctuation symbols in source
and target segments;

– Percentage of direct object personal or
possessive pronouns incorrectly trans-
lated.

For the full set of features we refer readers to
QuEst website.2

To perform feature selection, we followed the
approach used in Shah et al. (2013) and ranked
the features according to their learned lengthscales
(from the lowest to the highest). The lengthscale
of a feature can be interpreted as the relevance of
such feature for the model. Therefore, the out-
come of a GP model using an ARD kernel can be
viewed as a list of features ranked by relevance,
and this information can be used for feature selec-
tion by discarding the lowest ranked (least useful)
ones.

3 Preliminary Experiments

Our submissions are based on multi-task settings.
For task 1.1, we consider each language pair as a
different task, training one model for all pairs. For
tasks 1.2 and 1.3, we used additional datasets and
encoded each one as a different task (totalling 3
tasks):

WMT13: these are the datasets provided in last
year’s QE shared task (Bojar et al., 2013).
We combined training and test sets, totalling
2, 754 sentences for HTER prediction and
1, 003 sentences for post-editing time predic-
tion, both for English-Spanish.

EAMT11: this dataset is provided by Specia
(2011) and is composed of 1, 000 English-
Spanish sentences annotated in terms of
HTER and post-editing time.

For each task we prepared two submissions: one
trained on a standard GP with the full 80 features
set and another one trained on a sparse GP with
a subset of 40 features. The features were chosen
by training a smaller model on a subset of 400 in-
stances and following the procedure explained in
Section 2.3 for feature selection, with a pre-define
cutoff point on the number of features (40), based
on previous experiments. The sparse models were
trained using 400 inducing inputs.

To select an appropriate multi-task setting for
our submissions we performed preliminary exper-
iments using a 90%/10% split on the correspond-
ing training set for each task. The resulting MAE
scores are shown in Tables 1 and 2, for standard
and sparse GPs, respectively. The boldface fig-
ures correspond to the settings we choose for the

2http://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox
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Task 1.1 Task 1.2 Task 1.3
en-es es-en en-de de-en en-es en-es

Independent 0.4905 0.5325 0.5962 0.5452 0.2047 0.4486
Pooled 0.4957 0.5171 0.6012 0.5612 0.2036 0.8599
Combined 0.4939 0.5162 0.6007 0.5550 0.2321 0.7489
Combined+ 0.4932 0.5182 0.5990 0.5514 0.2296 0.4472

Table 1: MAE results for preliminary experiments on standard GPs. Post-editing time scores for task 1.3
are shown on log time per word.

Task 1.1 Task 1.2 Task 1.3
en-es es-en en-de de-en en-es en-es

Independent 0.5036 0.5274 0.6002 0.5532 0.3432 0.3906
Pooled 0.4890 0.5131 0.5927 0.5532 0.1597 0.6410
Combined 0.4872 0.5183 0.5871 0.5451 0.2871 0.6449
Combined+ 0.4935 0.5255 0.5864 0.5458 0.1659 0.4040

Table 2: MAE results for preliminary experiments on sparse GPs. Post-editing time scores for task 1.3
are shown on log time per word.

official submissions, after re-training on the corre-
sponding full training sets.

To check the speed-ups obtained from using
sparse GPs, we measured wall clock times for
training and prediction in Task 1.1 using the “In-
dependent” multi-task setting. Table 3 shows the
resulting times and the corresponding speed-ups
when comparing to the standard GP. For compar-
ison, we also trained a model using 200 inducing
inputs, although we did not use the results of this
model in our submissions.

Time (secs) Speed-up
Standard GP 12122 –
Sparse GP (m=400) 3376 3.59x
Sparse GP (m=200) 978 12.39x

Table 3: Wall clock times and speed-ups for GPs
training and prediction: full versus sparse GPs.

4 Official Results and Discussion

Table 4 shows the results for Task 1.1. Us-
ing standard GPs we obtained improved results
over the baseline for English-Spanish and English-
German only, with particularly substantial im-
provements for English-Spanish, which also hap-
pens for sparse GPs. This may be related to the
larger size of this dataset when compared to the
others. Our results here are mostly inconclusive
though and we plan to investigate this setting more
in depth in the future. Specifically, due to the

coarse behaviour of the labels, ordinal regression
GP models (like the one proposed in (Chu et al.,
2005)) could be useful for this task.

Results for Task 1.2 are shown in Table 5. The
standard GP model performed unusually poorly
when compared to the baseline or the sparse GP
model. To investigate this, we inspected the re-
sulting model hyperparameters. We found out that
the noise σ2

n was optimised to a very low value,
close to zero, which characterises overfitting. The
same behaviour was not observed with the sparse
model, even though it had a much higher number
of hyperparameters to optimise, and was therefore
more prone to overfitting. We plan to investigate
this issue further but a possible cause could be bad
starting values for the hyperparameters.

Table 6 shows results for Task 1.3. In this task,
the standard GP model outperformed the base-
line, with the sparse GP model following very
closely. These figures represent significant im-
provements compared to our submission to the
same task in last year’s shared task (Beck et al.,
2013), where we were not able to beat the baseline.
The main differences between last year’s and this
year’s models are the use of additional datasets
and a higher number of features (25 vs. 40). The
competitive results for the sparse GP models are
very promising because they show we can com-
bine multiple datasets to improve post-editing time
prediction while employing a sparse model to cope
with speed issues.
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en-es es-en en-de de-en
∆ ρ ∆ ρ ∆ ρ ∆ ρ

Standard GP 0.21 -0.33 0.11 -0.15 0.26 -0.36 0.24 -0.27
Sparse GP 0.17 0.27 0.12 -0.17 0.23 -0.33 0.14 -0.17
Baseline 0.14 -0.22 0.12 -0.21 0.23 -0.34 0.21 -0.25

en-es es-en en-de de-en
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Standard GP 0.49 0.63 0.62 0.77 0.63 0.74 0.65 0.77
Sparse GP 0.54 0.69 0.54 0.69 0.64 0.75 0.66 0.79
Baseline 0.52 0.66 0.57 0.68 0.64 0.76 0.65 0.78

Table 4: Official results for task 1.1. The top table shows results for the ranking subtask (∆: DeltaAvg;
ρ: Spearman’s correlation). The bottom table shows results for the scoring subtask.

Ranking Scoring
∆ ρ MAE RMSE

Standard GP 0.72 0.09 18.15 23.41
Sparse GP 7.69 0.43 15.04 18.38
Baseline 5.08 0.31 15.23 19.48

Table 5: Official results for task 1.2.

Ranking Scoring
∆ ρ MAE RMSE

Standard GP 16.08 0.64 17.13 27.33
Sparse GP 16.33 0.63 17.42 27.35
Baseline 14.71 0.57 21.49 34.28

Table 6: Official results for task 1.3.

5 Conclusions

We proposed a new setting for training QE mod-
els based on Multi-task Gaussian Processes. Our
settings combined different datasets in a sensible
way, by considering each dataset as a different
task and learning task covariances. We also pro-
posed to speed-up training and prediction times
by employing sparse GPs, which becomes crucial
in multi-task settings. The results obtained are
specially promising in the post-editing time task,
where we obtained the same results as with stan-
dard GPs and improved over our models from the
last evaluation campaign.

In the future, we plan to employ our multi-task
models in large-scale settings, like datasets an-
notated through crowdsourcing platforms. These
datasets are usually labelled by dozens of annota-
tors and multi-task GPs have proved an interest-
ing framework for learning the annotation noise
(Cohn and Specia, 2013). However, multiple tasks

can easily make training and prediction times pro-
hibitive, and thus another direction if work is to
use recent advances in sparse GPs, like the one
proposed by Hensman et al. (2013). We believe
that the combination of these approaches could
further improve the state-of-the-art performance in
these tasks.
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Abstract

We use referential translation machines
(RTM) for quality estimation of translation
outputs. RTMs are a computational model
for identifying the translation acts between
any two data sets with respect to interpre-
tants selected in the same domain, which
are effective when making monolingual
and bilingual similarity judgments. RTMs
achieve top performance in automatic, ac-
curate, and language independent predic-
tion of sentence-level and word-level sta-
tistical machine translation (SMT) qual-
ity. RTMs remove the need to access any
SMT system specific information or prior
knowledge of the training data or models
used when generating the translations and
achieve the top performance in WMT13
quality estimation task (QET13). We im-
prove our RTM models with the Parallel
FDA5 instance selection model, with ad-
ditional features for predicting the trans-
lation performance, and with improved
learning models. We develop RTM mod-
els for each WMT14 QET (QET14) sub-
task, obtain improvements over QET13 re-
sults, and rank 1st in all of the tasks and
subtasks of QET14.

1 Introduction

We use referential translation machines (RTM) for
quality estimation of translation outputs, which is
a computational model for identifying the acts of
translation for translating between any given two
data sets with respect to a reference corpus se-
lected in the same domain. RTMs reduce our de-
pendence on any task dependent resource. Predic-
tion of translation quality is important because the
expected translation performance can help in esti-
mating the effort required for correcting the trans-
lations during post-editing by human translators.

Bicici et al. (2013) develop the Machine Trans-
lation Performance Predictor (MTPP), a state-of-
the-art, language independent, and SMT system
extrinsic machine translation performance predic-
tor, which can predict translation quality by look-
ing at the test source sentences and becomes the
2nd overall after also looking at the translation
outputs as well in QET12 (Callison-Burch et al.,
2012). RTMs achieve the top performance in
QET13 (Bojar et al., 2013), ranking 1st or 2nd in
all of the subtasks. RTMs rank 1st in all of the
tasks and subtasks of QET14 (Bojar et al., 2014).

Referential translation models (Section 2)
present an accurate and language independent so-
lution for predicting the performance of natural
language tasks such as the quality estimation of
translation. We improve our RTM models (Biçici,
2013) by:

• using a parameterized, fast implementation
of FDA, FDA5, and our Parallel FDA5 in-
stance selection model (Biçici et al., 2014),

• better modeling of the language in which
similarity judgments are made with improved
optimization and selection of the LM data,

• increased feature set for also modeling the
structural properties of sentences,

• extended learning models.

2 Referential Translation Machine
(RTM)

Referential translation machines provide a compu-
tational model for quality and semantic similarity
judgments in monolingual and bilingual settings
using retrieval of relevant training data (Biçici,
2011; Biçici and Yuret, 2014) as interpretants for
reaching shared semantics (Biçici, 2008). RTMs
achieve top performance when predicting the qual-
ity of translations in QET14 and QET13 (Biçici,
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2013), top performance when predicting mono-
lingual cross-level semantic similarity (Jurgens
et al., 2014), good performance when evaluat-
ing the semantic relatedness of sentences and
their entailment (Marelli et al., 2014), and a
language independent solution and good perfor-
mance when judging the semantic similarity of
sentences (Agirre et al., 2014; Biçici and Way,
2014).

RTM is a computational model for identifying
the acts of translation for translating between any
given two data sets with respect to a reference
corpus selected in the same domain. An RTM
model is based on the selection of interpretants,
data close to both the training set and the test set,
which allow shared semantics by providing con-
text for similarity judgments. In semiotics, an in-
terpretant I interprets the signs used to refer to the
real objects (Biçici, 2008). Each RTM model is
a data translation model between the instances in
the training set and the test set. We use the Parallel
FDA5 (Feature Decay Algorithms) instance selec-
tion model for selecting the interpretants (Biçici
et al., 2014; Biçici and Yuret, 2014) this year,
which allows efficient parameterization, optimiza-
tion, and implementation of FDA, and build an
MTPP model (Section 2.1). We view that acts of
translation are ubiquitously used during commu-
nication:

Every act of communication is an act of
translation (Bliss, 2012).

Given a training set train, a test set test, and
some corpus C, preferably in the same domain as
the training and test sets, the RTM steps are:

1. FDA5(train,test, C)→ I
2. MTPP(I,train)→ Ftrain
3. MTPP(I,test)→ Ftest
4. learn(M,Ftrain)→M
5. predict(M,Ftest)→ q̂

Step 1 selects the interpretants, I, relevant to both
the training and test data. Steps 2 and 3 use I
to map train and test to a new space where
similarities between translation acts can be derived
more easily. Step 4 trains a learning modelM over
the training features, Ftrain, and Step 5 obtains
the predictions. RTM relies on the representative-
ness of I as a medium for building data translation
models between train and test.

Our encouraging results in QET provides a

greater understanding of the acts of translation we
ubiquitously use and how they can be used to pre-
dict the performance of translation and judging the
semantic similarity between text. RTM and MTPP
models are not data or language specific and their
modeling power and good performance are appli-
cable in different domains and tasks.

2.1 The Machine Translation Performance
Predictor (MTPP)

MTPP (Biçici et al., 2013) is a state-of-the-art and
top performing machine translation performance
predictor, which uses machine learning models
over features measuring how well the test set
matches the training set to predict the quality of
a translation without using a reference translation.

2.2 MTPP Features for Translation Acts
MTPP measures the coverage of individual test
sentence features found in the training set and
derives indicators of the closeness of test sen-
tences to the available training data, the difficulty
of translating the sentence, and the presence of
acts of translation for data transformation. Fea-
ture functions use statistics involving the training
set and the test sentences to determine their close-
ness. Since they are language independent, MTPP
allows quality estimation to be performed extrin-
sically. MTPP uses n-gram features defined over
text or common cover link (CCL) (Seginer, 2007)
structures as the basic units of information over
which similarity calculations are made. Unsuper-
vised parsing with CCL extracts links from base
words to head words, representing the grammati-
cal information instantiated in the training and test
data.

We extend the MTPP model we used last
year (Biçici, 2013) in its learning module and the
features included. Categories for the features (S
for source, T for target) used are listed below
where the number of features are given in brackets
for S and T, {#S, #T}, and the detailed descriptions
for some of the features are presented in (Biçici et
al., 2013). The number of features for each task
differs since we perform an initial feature selection
step on the tree structural features (Section 2.3).
The number of features are in the range 337−437.
• Coverage {56, 54}: Measures the degree to

which the test features are found in the train-
ing set for both S ({56}) and T ({54}).
• Perplexity {45, 45}: Measures the fluency of

the sentences according to language models
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(LM). We use both forward ({30}) and back-
ward ({15}) LM features for S and T.
• TreeF {0, 10-110}: 10 base features and up

to 100 selected features of T among parse tree
structures (Section 2.3).
• Retrieval Closeness {16, 12}: Measures the

degree to which sentences close to the test set
are found in the selected training set, I, using
FDA (Biçici and Yuret, 2011a) and BLEU,
F1 (Biçici, 2011), dice, and tf-idf cosine sim-
ilarity metrics.
• IBM2 Alignment Features {0, 22}: Calcu-

lates the sum of the entropy of the dis-
tribution of alignment probabilities for S
(
∑

s∈S −p log p for p = p(t|s) where s and
t are tokens) and T, their average for S and
T, the number of entries with p ≥ 0.2 and
p ≥ 0.01, the entropy of the word align-
ment between S and T and its average, and
word alignment log probability and its value
in terms of bits per word. We also com-
pute word alignment percentage as in (Ca-
margo de Souza et al., 2013) and potential
BLEU, F1, WER, PER scores for S and T.
• IBM1 Translation Probability {4, 12}: Cal-

culates the translation probability of test
sentences using the selected training set,
I (Brown et al., 1993).
• Feature Vector Similarity {8, 8}: Calculates

similarities between vector representations.
• Entropy {2, 8}: Calculates the distributional

similarity of test sentences to the training set
over top N retrieved sentences (Biçici et al.,
2013).
• Length {6, 3}: Calculates the number of

words and characters for S and T and their
average token lengths and their ratios.
• Diversity {3, 3}: Measures the diversity of

co-occurring features in the training set.
• Synthetic Translation Performance {3, 3}:

Calculates translation scores achievable ac-
cording to the n-gram coverage.
• Character n-grams {5}: Calculates cosine

between character n-grams (for n=2,3,4,5,6)
obtained for S and T (Bär et al., 2012).
• Minimum Bayes Retrieval Risk {0, 4}: Cal-

culates the translation probability for the
translation having the minimum Bayes risk
among the retrieved training instances.
• Sentence Translation Performance {0, 3}:

Calculates translation scores obtained ac-
cording to q(T,R) using BLEU (Papineni
et al., 2002), NIST (Doddington, 2002), or
F1 (Biçici and Yuret, 2011b) for q.

• LIX {1, 1}: Calculates the LIX readability
score (Wikipedia, 2013; Björnsson, 1968) for
S and T. 1

For Task 1.1, we have additionally used com-
parative BLEU, NIST, and F1 scores as additional
features, which are obtained by comparing the
translations with each other and averaging the re-
sult (Biçici, 2011).

2.3 Bracketing Tree Structural Features

We use the parse tree outputs obtained by CCL
to derive features based on the bracketing struc-
ture. We derive 5 statistics based on the geometric
properties of the parse trees: number of brackets
used (numB), depth (depthB), average depth (avg
depthB), number of brackets on the right branches
over the number of brackets on the left (R/L) 2, av-
erage right to left branching over all internal tree
nodes (avg R/L). The ratio of the number of right
to left branches shows the degree to which the sen-
tence is right branching or not. Additionally, we
capture the different types of branching present
in a given parse tree identified by the number of
nodes in each of its children.

Table 1 depicts the parsing output obtained by
CCL for the following sentence from WSJ23 3:

Many fund managers argue that now ’s the time
to buy .

We use Tregex (Levy and Andrew, 2006) for vi-
sualizing the output parse trees presented on the
left. The bracketing structure statistics and fea-
tures are given on the right hand side. The root
node of each tree structural feature represents the
number of times that feature is present in the pars-
ing output of a document.

3 RTM in the Quality Estimation Task

We participate in all of the four challenges of the
quality estimation task (QET) (Bojar et al., 2014),
which include English to Spanish (en-es), Span-
ish to English (es-en), English to German (en-
de), and German to English (de-en) translation di-
rections. There are two main categories of chal-
lenges: sentence-level prediction (Task 1.*) and

1LIX= A
B

+ C 100
A

, where A is the number of words, C is
words longer than 6 characters, B is words that start or end
with any of “.”, “:”, “!”, “?” similar to (Hagström, 2012).

2For nodes with uneven number of children, the nodes in
the odd child contribute to the right branches.

3Wall Street Journal (WSJ) corpus section 23, distributed
with Penn Treebank version 3 (Marcus et al., 1993).
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CCL
numB depthB avg depthB R/L avg R/L
24.0 9.0 0.375 2.1429 3.401

2

1 1

1

1 13

1

1 2

1

1 8

1

2 10

1

3 1

1

3 4

1

5 1

1

7 15

Table 1: Tree features for a parsing output by CCL (immediate non-terminals replaced with NP).

word-level prediction (Task 2). Task 1.1 is about
predicting post-editing effort (PEE), Task 1.2 is
about predicting HTER (human-targeted transla-
tion edit rate) (Snover et al., 2006) scores of trans-
lations, Task 1.3 is about predicting post-editing
time (PET), and Task 2 is about binary, ternary, or
multi-class classification of word-level quality.

For each task, we develop individual RTM mod-
els using the parallel corpora and the LM corpora
distributed by the translation task (WMT14) (Bo-
jar et al., 2014) and the LM corpora provided by
LDC for English (Parker et al., 2011) and Span-
ish (Ângelo Mendonça, 2011) 4. The parallel cor-
pora contain 4.5M sentences for de-en with 110M
words for de and 116M words for en and 15.1M
sentences for en-es with 412M words for en and
462M words for es. We do not use any resources
provided by QET including data, software, or
baseline features. Instance selection for the train-
ing set and the language model (LM) corpus is
handled by parallel FDA5 (Biçici et al., 2014),
whose parameters are optimized for each transla-
tion task. LM are trained using SRILM (Stolcke,
2002). We tokenize and true-case all of the cor-
pora. The true-caser is trained on all of the avail-
able training corpus using Moses (Koehn et al.,
2007). Table 2 lists the number of sentences in
the training and test sets for each task.

For each task or subtask, we select 375 thousand
(K) training instances from the available parallel
training corpora as interpretants for the individual
RTM models using parallel FDA5. We add the
selected training set to the 3 million (M) sentences
selected from the available monolingual corpora
for each LM corpus. The statistics of the training
data selected by and used as interpretants in the

4English Gigaword 5th, Spanish Gigaword 3rd edition.

Task Train Test
Task 1.1 (en-es) 3816 600
Task 1.1 (es-en) 1050 450
Task 1.1 (en-de) 1400 600
Task 1.1 (de-en) 1050 450
Task 1.2 (en-es) 896 208
Task 1.3 (en-es) 650 208
Task 2 (en-es) 1957 382
Task 2 (es-en) 900 150
Task 2 (en-de) 715 150
Task 2 (de-en) 350 100

Table 2: Number of sentences in different tasks.

RTM models is given in Table 3. The details of
instance selection with parallel FDA5 are provided
in (Biçici et al., 2014).

Task S T
Task 1.1 (en-es) 6.2 6.9
Task 1.1 (es-en) 7.9 7.4
Task 1.1 (en-de) 6.1 6
Task 1.1 (de-en) 6.9 6.4
Task 1.2 (en-es) 6.1 6.7
Task 1.3 (en-es) 6.2 6.8
Task 2 (en-es) 6.2 6.8
Task 2 (es-en) 7.5 7
Task 2 (en-de) 5.9 5.9
Task 2 (de-en) 6.3 6.8

Table 3: Number of words in I (in millions) se-
lected for each task (S for source, T for target).

3.1 Learning Models and Optimization:
We use ridge regression (RR), support vector re-
gression (SVR) with RBF (radial basis functions)
kernel (Smola and Schölkopf, 2004), and ex-
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Task Translation Model r RMSE MAE RAE

Task1.1

es-en FS-RR 0.3512 0.6394 0.5319 0.9114
es-en PLS-RR 0.3579 0.6746 0.5488 0.9405
en-de PLS-TREE 0.2922 0.7496 0.6223 0.9404
en-de TREE 0.2845 0.7485 0.6241 0.9431
en-es TREE 0.4485 0.619 0.45 0.9271
en-es PLS-TREE 0.4354 0.6213 0.4723 0.973
de-en RR 0.3415 0.7475 0.6245 0.9653
de-en PLS-RR 0.3561 0.7711 0.6236 0.9639

Task1.2
en-es SVR 0.4769 0.203 0.1378 0.8443
en-es TREE 0.4708 0.2031 0.1372 0.8407

Task1.3
en-es SVR 0.6974 21543 14866 0.6613
en-es RR 0.6991 21226 15325 0.6817

Table 4: Training performance of the top 2 individual RTM models prepared for different tasks.

tremely randomized trees (TREE) (Geurts et al.,
2006) as the learning models. TREE is an en-
semble learning method over randomized decision
trees. These models learn a regression function
using the features to estimate a numerical target
value. We also use these learning models after
a feature subset selection with recursive feature
elimination (RFE) (Guyon et al., 2002) or a di-
mensionality reduction and mapping step using
partial least squares (PLS) (Specia et al., 2009),
both of which are described in (Biçici et al., 2013).
We optimize the learning parameters, the num-
ber of features to select, the number of dimen-
sions used for PLS, and the parameters for paral-
lel FDA5. More detailed descriptions of the opti-
mization processes are given in (Biçici et al., 2013;
Biçici et al., 2014). We optimize the learning pa-
rameters by selecting ε close to the standard de-
viation of the noise in the training set (Biçici,
2013) since the optimal value for ε is shown to
have linear dependence to the noise level for dif-
ferent noise models (Smola et al., 1998). We select
the top 2 systems according to their performance
on the training set. For Task 2, we use both Global
Linear Models (GLM) (Collins, 2002) and GLM
with dynamic learning (GLMd) we developed last
year (Biçici, 2013). GLM relies on Viterbi de-
coding, perceptron learning, and flexible feature
definitions. GLMd extends the GLM framework
by parallel perceptron training (McDonald et al.,
2010) and dynamic learning with adaptive weight
updates in the perceptron learning algorithm:

w = w + α (Φ(xi, yi)− Φ(xi, ŷ)) , (1)

where Φ returns a global representation for in-
stance i and the weights are updated by α, which

dynamically decays the amount of the change dur-
ing weight updates at later stages and prevents
large fluctuations with updates.

3.2 Training Results

We use mean absolute error (MAE), relative
absolute error (RAE), root mean squared error
(RMSE), and correlation (r) to evaluate (Biçici,
2013). DeltaAvg (Callison-Burch et al., 2012) cal-
culates the average quality difference between the
top n − 1 quartiles and the overall quality for the
test set. Table 4 provides the training results.

3.3 Test Results

Task 1.1: Predicting the Post-Editing Effort for
Sentence Translations: Task 1.1 is about pre-
dicting post-editing effort (PEE) and their rank-
ing. The results on the test set are given in Ta-
ble 5 where QuEst (Shah et al., 2013) SVR lists
the baseline system results. Rank lists the overall
ranking in the task out of about 10 submissions.
We obtain the rankings by sorting according to the
predicted scores and randomly assigning ranks in
case of ties. RTMs with SVR PLS learning is able
to achieve the top rank in this task.

Task 1.2: Predicting HTER of Sentence Trans-
lations Task 1.2 is about predicting HTER
(human-targeted translation edit rate) (Snover et
al., 2006), where case insensitive translation edit
rate (TER) scores obtained by TERp (Snover et
al., 2009) and their ranking. We derive features
over sentences that are true-cased. The results on
the test set are given in Table 6 where the ranks are
out of about 11 submissions. We are also able to
achieve the top ranking in this task.
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Ranking Translations DeltaAvg r Rank

en-es TREE 0.26 -0.41 1
PLS-TREE 0.26 -0.38 2
QuEst SVR 0.14 -0.22

es-en PLS-RR 0.20 -0.35 2
FS-RR 0.19 -0.36 3
QuEst SVR 0.12 -0.21

en-de TREE 0.39 -0.54 1
PLS-TREE 0.33 -0.42 2
QuEst SVR 0.23 -0.34

de-en RR 0.38 -0.51 1
PLS-RR 0.35 -0.45 2
QuEst SVR 0.21 -0.25

Scoring Translations MAE RMSE Rank

en-es TREE 0.49 0.61 1
PLS-TREE 0.49 0.61 2
QuEst SVR 0.52 0.66

es-en FS-RR 0.53 0.64 1
PLS-RR 0.55 0.71 2
QuEst SVR 0.57 0.68

en-de TREE 0.58 0.68 1
PLS-TREE 0.60 0.71 2
QuEst SVR 0.64 0.76

de-en RR 0.55 0.67 1
PLS-RR 0.57 0.74 2
QuEst SVR 0.65 0.78

Table 5: RTM-DCU Task1.1 results on the test set
and baseline results.

Ranking Translations DeltaAvg r Rank

en-es SVR 9.31 0.53 1
TREE 8.57 0.48 2
QuEst SVR 5.08 0.31

Scoring Translations MAE RMSE Rank

en-es SVR 13.40 16.69 2
TREE 14.03 17.48 4
QuEst SVR 15.23 19.48

Table 6: RTM-DCU Task1.2 results on the test set
and baseline results.

Task 1.3: Predicting Post-Editing Time for Sen-
tence Translations Task 1.3 involves the predic-
tion of the post-editing time (PET) for a translator
to post-edit the MT output. The results on the test
set are given in Table 7 where the ranks are out of
about 10 submissions. RTMs become the top in all
metrics with RR and SVR learning models.

Task 2: Prediction of Word-level Translation
Quality Task 2 is about binary, ternary, or multi-
class classification of word-level quality. We de-
velop individual RTM models for each subtask and
use the GLM and GLMd learning models (Biçici,
2013), for predicting the quality at the word-level.
The features used are similar to last year’s (Biçici,
2013) and broadly categorized as CCL links, word
context based on surrounding words, word align-
ments, word lengths, word locations, word pre-
fixes and suffixes, and word forms (i.e. capital,

Ranking Translations DeltaAvg r Rank

en-es RR 17.02 0.68 1
SVR 16.60 0.67 2
QuEst SVR 14.71 0.57

Scoring Translations MAE RMSE Rank

en-es SVR 16.77 26.17 1
RR 17.50 25.97 7
QuEst SVR 21.49 34.28

Table 7: RTM-DCU Task1.3 results on the test set
and baseline results.

contains digit or punctuation).
The results on the test set are given in Table 8

where the ranks are out of about 8 submissions.
RTMs with GLM or GLMd learning becomes the
top this task as well.

Model Binary Ternary Multi-class
wF1 Rank wF1 Rank wF1 Rank

en-es GLM 0.351 6 0.299 5 0.268 1
GLMd 0.329 7 0.266 6 0.032 7

es-en GLM 0.269 2 0.220 2 0.087 1
GLMd 0.291 1 0.239 1 0.082 2

en-de GLM 0.453 1 0.211 2 0.150 1
GLMd 0.369 2 0.219 1 0.125 2

en-es GLM 0.261 1 0.083 2 0.024 2
GLMd 0.230 2 0.086 1 0.031 1

Table 8: RTM-DCU Task 2 results on the test set.
wF1 is the average weighted F1 score.

3.4 RTMs Across Tasks and Years

We compare the difficulty of tasks according to the
RAE levels achieved. RAE measures the error rel-
ative to the error when predicting the actual mean.
A high RAE is an indicator that the task is hard. In
Table 9, we list the test results including the RAE
obtained for different tasks and subtasks including
RTM results at QET13 (Biçici, 2013). The best
results are obtained for Task 1.3, which shows that
we can only reduce the error with respect to know-
ing and predicting the mean by about 28%.

4 Conclusion

Referential translation machines achieve top per-
formance in automatic, accurate, and language in-
dependent prediction of sentence-level and word-
level statistical machine translation (SMT) qual-
ity. RTMs remove the need to access any SMT
system specific information or prior knowledge of
the training data or models used when generating
the translations.
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Task Translation Model r RMSE MAE RAE

Task1.1

es-en FS-RR 0.3285 0.6373 0.5308 0.9
es-en PLS-RR 0.3105 0.7124 0.5549 0.9409
en-de PLS-TREE 0.4427 0.7091 0.6028 0.8883
en-de TREE 0.5256 0.6788 0.5838 0.8602
en-es TREE 0.4087 0.6114 0.4938 1.0983
en-es PLS-TREE 0.4163 0.6084 0.4852 1.0794
de-en RR 0.5399 0.6735 0.5513 0.8204
de-en PLS-RR 0.4878 0.737 0.567 0.8437

Task1.2
en-es SVR 0.5499 0.1669 0.134 0.8532
en-es TREE 0.5175 0.1748 0.1403 0.8931

Task1.3
en-es SVR 0.6336 26174 16770 0.7223
en-es RR 0.6359 25966 17496 0.7536

QET13 Task1.1 en-es
PLS-SVR 0.5596 0.1683 0.1326 0.8849

SVR 0.5082 0.1728 0.1385 0.924

QET13 Task1.3 en-es
PLS-SVR 0.6752 86.62 49.62 0.6919

SVR 0.6682 90.36 49.21 0.6862

Table 9: Test performance of the top 2 individual RTM models prepared for different tasks and RTM
results from QET13 on similar tasks (Biçici, 2013).
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Ergun Biçici, Qun Liu, and Andy Way. 2014. Par-
allel FDA5 for fast deployment of accurate statisti-
cal machine translation systems. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion, Baltimore, USA, June. Association for Compu-
tational Linguistics.

319
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Abstract

This paper describes the joint submission
of Fondazione Bruno Kessler, Universitat
Politècnica de València and University of
Edinburgh to the Quality Estimation tasks
of the Workshop on Statistical Machine
Translation 2014. We present our submis-
sions for Task 1.2, 1.3 and 2. Our systems
ranked first for Task 1.2 and for the Binary
and Level1 settings in Task 2.

1 Introduction

Quality Estimation (QE) for Machine Translation
(MT) is the task of evaluating the quality of the
output of an MT system without reference transla-
tions. Within the WMT 2014 QE Shared Task four
evaluation tasks were proposed, covering both
word and sentence level QE. In this work we de-
scribe the Fondazione Bruno Kessler (FBK), Uni-
versitat Politècnica de València (UPV) and Uni-
versity of Edinburgh (UEdin) approach and sys-
tem setup for the shared task.

We developed models for two sentence-level
tasks: Task 1.2, scoring for post-editing effort,
and Task 1.3, predicting post-editing time, and
for all word-level variants of Task 2, binary and
multiclass classification. As opposed to previous
editions of the shared task, this year the partici-
pants were not supplied with the MT system that
was used to produce the translation. Furthermore
no system-internal features were provided. Thus,
while the trained models are tuned to detect the
errors of a specific system the features have to be
generated independently (black-box).

2 Sentence Level QE

We submitted runs to two sentence-level tasks:
Task 1.2 and Task 1.3. The first task aims at

∗Contributed equally to this work.

predicting the Human mediated Translation Edit
Rate (HTER) (Snover et al., 2006) between a sug-
gestion generated by a machine translation sys-
tem and its manually post-edited version. The
data set contains 1,104 English-Spanish sentence
pairs post-edited by one translator (896 for train-
ing and 208 for test). The second task requires
to predict the time, in milliseconds, that was re-
quired to post edit a translation given by a ma-
chine translation system. Participants are provided
with 858 English-Spanish sentence pairs, source
and suggestion, along with their respective post-
edited sentence and post-editing time in seconds
(650 data points for training and 208 for test). We
participated in the scoring mode of both tasks.

2.1 Features

For our sentence-level submissions we compute
features using different resources that do not use
the MT system internals. We use the same set of
features for both Task 1.2 and 1.3.

QuEst Black-box features (quest79). We ex-
tract 79 black-box features that capture the com-
plexity, fluency and adequacy aspects of the QE
problem. These features are extracted using the
implementation provided by the QuEst framework
(Specia et al., 2013). Among them are the 17 base-
line features provided by the task organizers.

The complexity features are computed on the
source sentence and indicate the complexity of
translating the segment. Examples of these fea-
tures are the language model (LM) probabilities
of the source sentence computed in a corpus of the
source language, different surface counts like the
number of punctuation marks and the number of
tokens in the source sentence, among others.

The fluency features are computed over the
translation generated by the MT system and in-
dicate how fluent the translation is in the target
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language. One example would again be the LM
probability of the translation given by a LM model
trained on a corpus of the target language. Another
example is the average number of occurrences of
the target word within the target segment.

The third aspect covered by the QuEst features
is the adequacy of the translation with respect to
the source sentence, i.e., how the meaning of the
source is preserved in the translation. Examples of
features are the ratio of nouns, verbs and adjectives
in the source and in the translation. For a more
detailed description of the features in this group
please refer to (Specia et al., 2013).

Word alignment (wla). Following our last
year’s submission (de Souza et al., 2013a) we ex-
plore information about word alignments to ex-
tract quantitative (amount and distribution of the
alignments) and qualitative features (importance
of the aligned terms). Our assumption is that
features that explore what is aligned can bring
improvements to tasks where sentence-level se-
mantic relations need to be identified. We train
the word alignment models with the MGIZA++
toolkit (Gao and Vogel, 2008) implementation of
the IBM models (Brown et al., 1993). The models
are built on the concatenation of Europarl, News
Commentary, and MultiUN parallel corpora made
available in the QE shared task of 2013, compris-
ing about 12.8 million sentence pairs. A more de-
tailed description of the 89 features extracted can
be found in (de Souza et al., 2013a; de Souza et
al., 2013b).

Word Posterior Probabilities (wpp). Using an
external SMT system we produce 100k-best lists
from which we derive Word Posterior Probabili-
ties as detailed in Subsection 3.1.

We use the geometric mean of these probabili-
ties to derive a sentence-level score.

Because the system that we use to produce the
N-best list is not the same that generated the sug-
gestions some suggested words never appear in the
N-best list and thus receive zero probability. To
overcome this issue we first clip the WPPs to a
minimum probability. Using a small sample of the
data to estimate this number we arrive at:

log(p)min = −2.

N-best diversity (div). Using the same 100k-
best list as above we extract a number of measures
that grasp the spatial distribution of hypotheses in

the search space as described in (de Souza et al.,
2013a).

Word Prediction (wpred). We introduce the
use of the predictions provided by the word-level
QE system described in Section 3 to leverage in-
formation for the sentence-level tasks. We com-
bine the binary word-level predictions in different
ways, with the objective of measuring the fluency
of the translation in a more fine-grained way. We
target a quantitative aspect of the words by com-
puting ratios of OK or BAD predictions. Further-
more, we also explore a qualitative aspect by cal-
culating ratios of different classes of words given
by their part-of-speech tags, indicating the qual-
ity of distinct meaningful regions that compose the
translation sentence. In total, we compute 18 fea-
tures:

• number of OK predictions divided by the no.
of words in the translation sentence (1 fea-
ture);

• number of OK function/content words predic-
tions divided by the no. of function/content
words in the translation (2 features);

• number of OK nouns, verbs, proper-nouns,
adjective, pronouns predictions divided by
the total nouns, verbs, proper-nouns, adjec-
tive, pronouns (5 features);

• size of the longest sequence of OK/BAD word
predictions divided by the total number of
OK/BAD predictions in the translation (2 fea-
tures);

• number of OK predicted n-grams divided by
the total number of n-grams in the transla-
tion. We vary n from 2 to 5 (4 features);

• number of words predicted as OK in the
first/second half of the translation divided by
the total number of words in the first/second
half of the translation (2 features).

• number of words predicted as OK in the
first/second quarter of the translation di-
vided by the total number of words in the
first/second quarter of the translation (2 fea-
tures).

For some instances of the sentence-level tasks
we were not able to produce word-level predic-
tions due to an incomplete overlap between the
word-level and sentence-level tasks datasets. For
such data points we use the median of the feature
column for Task 1.2 and the mean for Task 1.3.
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Method Features Train T1.2 Train T1.3 Test T1.2 Test T1.3
SVR baseline 16.90 16864 15.23 21490
ET baseline 16.25 17888 17.73 19400
ET quest79 + wla + wpp 15.62 17474 14.44 18658
ET quest79 + wla + wpp + div2 15.57 17471 14.38 18693
ET quest79 + wla + wpp + div + wpred1 15.05 16392 12.89 17477

Table 1: Training and test results for Task 1.2 and 1.3. Scores are the MAE on a development set
randomly sampled from the training data (20%). Baseline features were provided by the shared task
organizers. We used Support Vector Machines (SVM) regression to train the baseline models (first row).
Submissions are marked with 1 and 2 for primary and secondary, respectively.

2.2 Experimental Setup

We build the sentence-level models for both tasks
(T1.2 and T1.3) with the features described in Sec-
tion 2.1 using one learning algorithm: extremely
randomized trees (ET) (Geurts et al., 2006). ET is
an ensemble of randomized trees in which each
decision tree can be parameterized differently.
When a tree is built, the node splitting step is done
at random by picking the best split among a ran-
dom subset of the input features. All the trees
are grown on the whole training set and the re-
sults of the individual trees are combined by aver-
aging their predictions. The models produced by
this method demonstrated to be robust to a large
number of input features. For our experiments and
submissions we used the ET implementation in-
cluded in the Scikit-learn library (Pedregosa et al.,
2011).

During training we evaluate the models on a
development set. The development set was ob-
tained by randomly sampling 20% of the training
data. The remaining 80% were used for training.
The training process was carried out by optimiz-
ing the ET hyper-parameters with 100 iterations
of random search optimization (Bergstra and Ben-
gio, 2012) set to minimize the mean absolute er-
ror (MAE)1 on 10-fold cross-validation over the
training data. The ET hyper-parameters optimized
are: the number of decision trees in the ensemble,
the maximum number of features to consider when
looking for the best split, the maximum depth of
the trees used in the ensembles, the minimal num-
ber of samples required to split a node of the tree,
and the minimum number of samples in newly cre-
ated leaves. For the final submissions we run the
random search with 1000 iterations over the whole
training dataset.

1Given by MAE =
∑N

i=1 |H(si)−V (si)|
N

, where H(si) is
the hypothesis score for the entry si and V (si) is the gold
standard value for si in a dataset with N entries.

2.3 Results

We train models on different combinations of fea-
ture groups (described in Section 2.1). Experi-
ments results are summarized in Table 1. We have
results with baseline features for both SVR and the
ET models. For Task 1.2, adding features from dif-
ferent groups leads to increasing improvements.
The combination of the quest79, wla and wpp
groups outperforms the SVR baseline for Task 1.2
but not for Task 1.3. However, when compared
to the ET model trained with the baseline fea-
tures, it is possible to observe improvements with
this group of features. In addition, adding the
div group on top of the previous three leads to
marginal improvements for both tasks. The best
feature combination is given when adding the fea-
tures based on the word-level predictions, config-
uring the combination of all the feature groups to-
gether (a total of 221 features). For both tasks
this is our primary submission. The contrastive
run for both tasks is the best feature group com-
bination without the word-prediction-based fea-
tures, quest79, wla, wpp and div for Task 1.2 and
quest79, wla, wpp for Task 1.3.

Results on the test set can be found in the two
last columns of Table 1 and are in line with what
we found in the training phase. The rows that do
not correspond to the official submissions and that
are reported on the test set are experiments done
after the evaluation phase. For both tasks the im-
provements increase as we add features on top of
the baseline feature set and the best performance
is reached when using the word prediction fea-
tures with all the other features. The SVR base-
lines performance are the official numbers pro-
vided by the organizers. For Task 1.2 our primary
submission achieves a MAE score lower than the
score achieved during the training phase, show-
ing that the model is robust. For Task 1.3, how-
ever, we do not observe such trend. Even though
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the primary submission for this task consistently
improves over the other feature combinations, it
does not outperform the score obtained during the
training phase. This might be explained due to
the difference in the distribution between train-
ing and test labels. In Task 1.2 the two distri-
butions are more similar than in Task 1.3, which
presents slightly different distributions between
training and test data.

3 Word-Level QE

Task 2 is the word-level quality estimation of auto-
matically translated news sentences without given
reference translations. Participants are required to
produce a label for each word in one or more of
the following settings:

Binary classification: a OK/BAD label, where
BAD indicates the need for editing the word.

Level1 classification: OK, Accuracy, or
Fluency label specifying a coarser level of
errors for each word, or OK for words with
no error.

Multi-Class classification: one of the 20 error la-
bels described in the shared-task description
or OK for words with no error.

We submit word-level quality estimations for
the English-Spanish translation direction. The cor-
pus contains 1957 training sentences for a total of
47411 Spanish words, and 382 test sentences for a
total of 9613 words.

3.1 Features

Word Posterior Probabilities (WPP) In order
to generate an approximation of the decoder’s
search space as well as an N-best list of possi-
ble translations we re-translate the source using
the system that is available for the 2013 WMT QE
Shared Task (Bojar et al., 2013).

Certainly, there is a mismatch between the orig-
inal system and the one that we used but, since our
system was trained using the same news domain
as the QE data, we assume that both face similar
ambiguous words or possible reorderings. Using
this system we generate a 100k-best list which is
the foundation of several features.

We extract a set of word-level features based on
posterior probabilities computed over N-best lists
as proposed by previous works (Blatz et al., 2004;
Ueffing and Ney, 2007; Sanchis et al., 2007).

Consider a target word ei belonging to a transla-
tion e = e1 . . . ei . . . e|e| generated from a source
sentence f . Let N (f) be the list of N-best trans-
lations for f . We compute features as the nor-
malized sum of probabilities of those translations
S(ei) ⊆ N (f) that “contain” word ei:

1∑
e′′∈N (f) P(e′′ | f)

∑
e′∈S(ei)

P(e′ | f) (1)

where P(e | f) is the probability translation e given
source sentence f according to the SMT model.

We follow (Zens and Ney, 2006) and extract
three different WPP features depending on the
criteria chosen to compute S(ei):

S(ei) = {e′ ∈ N (f) | a=Le(e′, e)∧e′ai
= ei}

S(ei) contain those translations e′ for which the
word Levenshtein-aligned (Levenshtein, 1966) to
position i in e is equal to ei.

S(ei) = {e′ ∈ N (f) | e′i = ei}
A second option is to select those translations

e′ that contain the word ei at position i.

S(ei) = {e′ ∈ N (f) | ∃i′ : e′i′ = ei}
As third option, we select those translations e′

that contain the word ei, disregarding its position.

Confusion Networks (CN) We use the same N-
best list used to compute the WPP features in the
previous section to compute features based on the
graph topology of confusion networks (Luong et
al., 2014). First, we Levenshtein-align all trans-
lations in the N-best list using e as skeleton, and
merge all of them into a confusion network. In this
network, each word-edge is labelled with the pos-
terior probability of the word. The output edges of
each node define different confusion sets of words,
each word belonging to one single confusion set.
Each complete path passing through all nodes in
the network represents one sentence in the N-best
list, and must contain exactly one link from each
confusion set. Looking to the confusion set which
the hypothesis word belongs to, we extract four
different features: maximum and minimum proba-
bility in the set (2 features), number of alternatives
in the set (1 feature) and entropy of the alternatives
in the set (1 feature).

Language Models (LM) As language model
features we produced n-gram length/backoff be-
haviour and conditional probabilities for every
word in the sentence. We employed both an inter-
polated LM taken from the MT system discussed
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in Section 3 as well as a very large LM which we
built on 62 billion tokens of monolingual data ex-
tracted from Common Crawl, a public web crawl.
While generally following the procedure of Buck
et al. (2014) we apply an additional lowercasing
step before training the model.

Word Lexicons (WL) We compute two dif-
ferent features based on statistical word lexi-
cons (Blatz et al., 2004):

Avg. probability: 1
|f |+1

∑|f |
j=0 P(ei | fj)

Max. probability: max0≤j≤|f | P(ei | fj)

where P(e | f) is a probabilistic lexicon, and f0 is
the source “NULL” word (Brown et al., 1993).

POS tags (POS) We extract the part-of-speech
(POS) tags for both source and translation sen-
tences using TreeTagger (Schmid, 1994). We use
the actual POS tag of the target word as a feature.
Specifically, we represent it as a one-hot indicator
vector where all values are equal to zero except
the one representing the current tag of the word,
which is set to one. Regarding the source POS
tags, we first compute the lexical probability of
each target word given each source word. Then,
we compute two different feature vectors for each
target word. On the one hand, we use an indica-
tor vector to represent the POS tag of the maxi-
mum probability source word. On the other hand,
we sum up the indicator vectors for all the source
words each one weighted by the lexical probability
of the corresponding word. As a result, we obtain
a vector that represents the probability distribution
of source POS tags for each target word. Addi-
tionally, we extract a binary feature that indicates
whether the word is a stop word or not.2

Stacking (S) Finally, we also exploit the diverse
granularity of the word labels. The word classes
for the Level1 and Multi-class conditions are fine
grained versions of the Binary annotation, i.e. the
OK examples are the same for all cases.

We re-use our binary predictions as an addi-
tional feature for the finer-grained classes. How-
ever, due to time constrains, we were not able to
run the proper nested cross-validation but used a
model trained on all available data, which there-
fore over-fits on the training data. Cross-validation
results using the stacking approach are thus very
optimistic.

2https://code.google.com/p/stop-words/

3.2 Classifiers

We use bidirectional long short-term memory
recurrent neural networks (BLSTM-RNNs) as
implemented in the RNNLib package (Graves,
2008). Recurrent neural networks are a connec-
tionist model containing a self-connected hidden
layer. The recurrent connection provides informa-
tion of previous inputs, hence, the network can
benefit from past contextual information. Long
short-term memory is an advanced RNN archi-
tecture that allows context information over long
periods of time. Finally, BLSTM-RNNs com-
bine bidirectional recurrent neural networks and
the long short-term memory architecture allowing
forward and backward context information. Us-
ing such context modelling classifier we can avoid
the use of context-based features that have been
shown to lead to only slight improvements in QE
accuracy (González-Rubio et al., 2013).

As a secondary binary model we train a CRF.
Our choice of implementation is Pocket CRF3

which, while currently unmaintained, implements
continuous valued features. We use a history of
size 2 for all features and perform 10-fold cross-
validation, training on 9 folds each time.

3.3 Experimental Setup

The free parameters of the BLSTM-RNNs are op-
timized by 10-fold cross-validation on the train-
ing set. Each cross-validation experiment con-
sider eight folds for training, one held-out fold
for development, and a final held-out fold for test-
ing. We estimate the neural network with the eight
training folds using the prediction performance in
the validation fold as stopping criterion. The re-
sult of each complete cross-validation experiment
is the average of the results for the predictions of
the ten held-out test folds. Additionally, to avoid
noise due to the random initialization of the net-
work, we repeat each cross-validation experiment
ten times and average the results. Once the opti-
mal values of the free parameters are established,
we estimate a new BLSTM-RNN using the full
training corpus and we use it as the final model
to predict the class labels of the test words.

Since our objective is to detect words that need
to be edited, we use the weighted averaged F1

score over the different class labels that denote an
error as our main performance metric (wF1err).
We also report the weighted averaged F1 scores

3http://pocket-crf-1.sourceforge.net/

326



Binary Level1 MultiClass

Method Features wF1err wF1all wF1err wF1all wF1err wF1all

BLSTM-RNNs LM+WPP+CN+WL 35.9 63.0 23.7 59.4 10.7 55.5
+POS 38.51 62.7 26.71 59.5 12.71 55.5
+Stacking — — 82.92 93.9 64.72 88.0

CRF LM+WPP+CN+WL+POS 39.52 62.4 0 — — — —

Table 2: Cross-validation results for the different setups tested for Task 2. Our two submissions are
marked as (1) and (2) respectively.

over all the classes (wF1all).

3.4 Results

Table 2 presents the wF1err and wF1all scores
for different sets of features. Our initial experi-
ment includes language model (LM), word poste-
rior probability (WPP), confusion network (CN),
and word lexicon (WL) features for a total of 11
features. We extend this basic feature set with the
indicator features based on POS tags for a total of
163 features. We further extend the feature vectors
by adding the stacking feature in a total of 164 fea-
tures.

Analyzing the results we observe that prediction
accuracy is quite low. Our hypothesis is that this is
due to the skewed class distribution. Even for the
binary classification scenario (the most balanced
of the three conditions), OK labels account for two
thirds of the samples. This effect worsens with in-
creasing number of error classes and the resulting
sparsity of observations. As a result, the system
tends to classify all samples as OK which leads to
the low F1 scores presented in Table 2.

We can observe that the use of POS tags indica-
tor features clearly improved the prediction accu-
racy of the systems in the three conditions. This
setup is our primary submission for the three con-
ditions of task 2.

In addition, we observe that the use of the stack-
ing feature provides a considerable improvement
in prediction accuracy for Level1 and MultiClass.
As discussed above the cross-validation results for
the stacking features are very optimistic. Test pre-
dictions using this setup are our contrastive sub-
mission for Level1 and MultiClass conditions.

Results achieved on the official test set can be
found in Table 3. Much in line with our cross-
validation results the stacking-features prove help-
ful, albeit by a much lower margin. For the bi-
nary task the RNN model strongly outperforms the
CRF.

Setup Binary Level1 MultiClass

BLSTM-RNN 48.7 37.2 17.1
+ Stacking — 38.5 23.1

CRF 42.6 — —

Table 3: Test results for Task 2. Numbers are
weighted averaged F1 scores (%) for all but the
OK class.

4 Conclusion

This paper describes the approaches and system
setups of FBK, UPV and UEdin in the WMT14
Quality Estimation shared-task. In the sentence-
level QE tasks 1.2 (predicting post-edition effort)
and 1.3 (predicting post-editing time, in ms) we
explored different features and predicted with a
supervised tree-based ensemble learning method.
We were able to improve our results by explor-
ing features based on the word-level predictions
made by the system developed for Task 2. Our best
system for Task 1.2 ranked first among all partici-
pants.

In the word-level QE task (Task 2), we explored
different sets of features using a BLSTM-RNN as
our classification model. Cross-validation results
show that POS indicator features, despite sparse,
were able to improve the results of the baseline
features. Also, the use of the stacking feature pro-
vided a big leap in prediction accuracy. With this
model, we ranked first in the Binary and Level1
settings of Task 2 in the evaluation campaign.
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Abstract

We describe the DCU-MIXED and DCU-
SVR submissions to the WMT-14 Quality
Estimation task 1.1, predicting sentence-
level perceived post-editing effort. Fea-
ture design focuses on target-side features
as we hypothesise that the source side has
little effect on the quality of human trans-
lations, which are included in task 1.1
of this year’s WMT Quality Estimation
shared task. We experiment with features
of the QuEst framework, features of our
past work, and three novel feature sets.
Despite these efforts, our two systems per-
form poorly in the competition. Follow up
experiments indicate that the poor perfor-
mance is due to improperly optimised pa-
rameters.

1 Introduction

Translation quality estimation tries to predict the
quality of a translation given the source and target
text but no reference translations. Different from
previous years (Callison-Burch et al., 2012; Bo-
jar et al., 2013), the WMT 2014 Quality Estima-
tion shared task is MT system-independent, i. e. no
glass-box features are available and translations in
the training and test sets are produced by different
MT systems and also by human translators.

This paper describes the CNGL@DCU team
submission to task 1.1 of the WMT 2014 Quality
Estimation shared task.1 The task is to predict the
perceived post-editing effort given a source sen-
tence and its raw translation. Due to the inclusion
of human translation in the task, we focus our ef-
forts on target-side features as we expect that the
quality of a translation produced by a human trans-
lator is much less affected by features of the source

1A CNGL system based on referential translation ma-
chines is submitted separately (Biçici and Way, 2014).

than by extrinsic factors such as time pressure and
familiarity with the domain.

To build our quality estimation system, we use
and extend the QuEst framework for translation
quality estimation2 (Shah et al., 2013; Specia
et al., 2013). QuEst provides modules for fea-
ture extraction and machine learning. We modify
both the feature extraction framework and the ma-
chine learning components to add functionality to
QuEst.

The novel features we add to our systems are
(a) a language model on a combination of stop
words and POS tags, (b) inverse glass-box fea-
tures for translating the translation, and (c) ran-
dom indexing (Sahlgren, 2005) for measuring the
semantic similarity of source and target side across
languages. Furthermore, we integrated (d) source-
side pseudo-reference features (Soricut and Echi-
habi, 2010) and (e) error grammar features (Wag-
ner, 2012), which were used first in MT quality
estimation by (Rubino et al., 2012; Rubino et al.,
2013).

The remaining sections are organised as fol-
lows. Section 2 gives details on the features we
use. Section 3 describes how we set up our ex-
periments. Results are presented in Section 4 and
conclusions are drawn in Section 5 together with
pointers to future work.

2 Features

This section describes the features we extract from
source and target sentences in order to train predic-
tion models and to make predictions in addition to
the baseline features provided for the task.

We focus on the target side as we assume that
the quality of the source side has little predictive
power for human translations, which are included
in task 1.1.

2http://www.quest.dcs.shef.ac.uk/
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2.1 QuEst Black-Box Features and Baseline
Features

We use the QuEst framework to extract 47 ba-
sic black-box features from both source and tar-
get side, such as the ratio of the number of to-
kens, punctuation statistics, number if mismatched
brackets and quotes, language model perplexity,
n-gram frequency quartile statistics (n = 1, 2, 3),
and coarse-grained POS frequency ratios. 17 of
the 47 features are identical to the baseline fea-
tures from the shared task website, i. e. 30 fea-
tures are new. To train the language models and
to extract frequency information, we use the News
Commentary corpus (Bojar et al., 2013).

2.2 POS and Stop Word Language Model
Features

For all languages, we extract probability and per-
plexity features from language models trained on
POS tagged corpora. POS tagging is performed
using the IMS Tree Tagger (Schmid, 1994).

We also experiment with language models built
from a combination of stop words3 and POS tags.
Starting with a tokenised corpus, and its POS-
tagged counterpart, we create a new representation
of the corpus by replacing POS tags for stop words
with the literal stop word that occurred in the orig-
inal corpus, leaving non-stop word tags intact.4

The intuition behind the approach is that the com-
bined POS and stop word model should encode
the distributional tendencies of the most common
words in the language.

The log-probability and the perplexity of the
target side are used as features. The development
of these features was motivated by manual exam-
ination of the common error types in the train-
ing data. We noted that stop word errors (omis-
sion, mistranslation, mis-translation of idiom), are
prevalent in all language pairs, indicating that fea-
tures which focus on stop word usage could be
useful for predicting the quality of machine trans-
lation. We implement POS and stop word lan-
guage models inside the QuEst framework.

2.3 Source-Side Pseudo-Reference Features

We extract source-side pseudo-reference features
(Albrecht and Hwa, 2008; Soricut and Echihabi,

3We use the stop word lists from Apache Lucene (McCan-
dless et al., 2010).

4The News Commentary corpus from WMT13 was used
to build these models, same as for the black-box features
(Section 2.1).

2010; Rubino et al., 2012), for English to German
quality prediction using a highly-tuned German to
English translation system (Li et al., 2014) work-
ing in the reverse direction. The MT system trans-
lates the German target side, the quality of which
is to be predicted, back into English, and we ex-
tract pseudo-reference features on the source side:

• BLEU score (Papineni et al., 2002) be-
tween back-translation and original source
sentence, and

• TER score (Snover et al., 2006).

For the 5th English to German test set item, for
example, the translation

(1) Und belasse sie dort eine Woche.

is translated back to English as

(2) and leave it there for a week .

and compared to the original source sentence

(3) Leave for a week.

producing a BLEU score of 0.077 using the
Python interface to the cdec toolkit (Chahuneau et
al., 2012).

2.4 Inverse Glass-Box Features for
Translating the Translation

In the absence of direct glass-box features, we ob-
tain glass-box features from translating the raw
translation back to the source language using the
same MT system that we use for the source-side
pseudo-reference features. We extract features
from the following components of the Moses de-
coder: distortion model, language model, lexi-
cal reordering, lexical translation probability, op-
erational sequence model (Durrani et al., 2013),
phrase translation probability, and the decoder
score.

The intuition for this set of features is that back-
translating an incorrect translation will give low
system-internal scores, e. g. a low phrase transla-
tion score, and produce poor output with low lan-
guage model scores (garbage in, garbage out).

We are not aware of any previous work using
inverse glass-box features of translating the target
side to another language for quality estimation.
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2.5 Semantic Similarity Using Random
Indexing

These features try to measure the semantic sim-
ilarity of source and target side of a translation
unit for quality estimation using random index-
ing (Sahlgren, 2005). We experiment with adding
the similarity score of the source and target ran-
dom vectors.

For each source and target pair in the English-
Spanish portion of the Europarl corpus (Koehn,
2005), we initialize a sparse random vector. We
then create token vectors for each source and tar-
get token by summing the vectors for all of the
segments where the token occurs. To extract the
similarity feature for new source and target pairs,
we map them into the vector space by taking the
centroid of the token vectors for the source side
and the target side, and computing their cosine
similarity.

2.6 Error Grammar Parsing
We obtain features from monolingual parsing with
three grammars:

1. the vanilla grammar shipped with the Blipp
parser (Charniak, 2000; Charniak and John-
son, 2005) induced from the Penn-Treebank
(Marcus et al., 1994),

2. an error grammar induced from Penn-Tree-
bank trees distorted according to an error
model (Foster, 2007), and

3. a grammar induced from the union of the
above two treebanks.

Features include the log-ratios between the prob-
ability of the best parse obtained with each gram-
mar and structural differences measured with Par-
seval (Black et al., 1991) and leaf-ancestor (Samp-
son and Babarczy, 2003) metrics. These features
have been shown to be useful for judging the
grammaticality of sentences (Wagner et al., 2009;
Wagner, 2012) and have been used in MT quality
estimation before (Rubino et al., 2012; Rubino et
al., 2013).

3 Experimental Setup

This section describes how we set up our experi-
ments.

3.1 Cross-Validation
Decisions about parameters are made in 10-fold
cross-validation on the training data provided for

the task. As the datasets for task 1.1 include
three to four translations for each source segment,
we group segments by their source side and split
the data for cross-validation between segments to
ensure that a source segment does not occur in
both training and test data for any of the cross-
validation runs.

We implement these modifications to cross-
validation and randomisation in the QuEst frame-
work.

3.2 Training

We use the QuEst framework to train our models.
Support vector regression (SVR) meta-parameters
are optimised using QuEst’s default settings, ex-
ploring RBF kernels with two possible values for
each of the three meta-parameters C, γ and ε.5

The two final models are trained on the
full training set with the meta-parameters that
achieved the best average cross-validation score.

3.3 Classifier Combination

We experiment with combining logistic regression
(LR) and support vector regression (SVR) by first
choosing the instances where LR classification is
confident and using the LR class label (1, 2, or
3) as predicted perceived post-editing effort, and
falling back to SVR for all other instances.

We employ several heuristics to decide whether
to use the output of LR or SVR. As the LR classi-
fier learns a decision function for each of the three
classes, we can exploit the scores of the classes to
measure the confidence of the LR classifier about
its decision. If the LR classifier is confident, we
use its prediction directly, otherwise we use the
SVR prediction.

For the cases where one of the three decision
functions for the LR classifier is positive, we select
the prediction directly, falling back to SVR when
the classifier is not confident about any of the three
classes. We implement the LR+SVR classifier
combination inside the QuEst framework.

4 Results

Table 1 shows cross-validation results for the 17
baseline features, the combination of all features
and target-side features only. We do not show
combinations of individual feature sets and base-
line features that do not improve over the base-

5We only discovered this limitation of the default config-
uration after the system submission, see Sections 4 and 5.
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Features Classifier RMSE MAE
Basel.17 LR+SVR 0.75 0.62
ALL LR+SVR 0.74 0.59
ALL LR> 0.5+SVR 0.75 0.58
Target LR+SVR 0.75 0.59
ALL LR> 0.5+SVR-r 0.78 0.55

Table 1: Cross-validation results for English to
German. LR > 0.5 indicates that we require the
LR decision function to be > 0.5. SVR-r rounds
the output to the nearest natural number.

line. Several experiments, including those with the
semantic similarity feature sets, are thus omitted.
Furthermore, we only exemplify one language pair
(English to German), as the other language pairs
show similar patterns. The feature set target con-
tains the subset of the QuEst black-box features
(Section 2.1) which only examine the target side.

Our best results for English to German in the
cross-validation experiments are achieved by com-
bining a logistic regression (LR) classifier with
support vector regression (SVR). Furthermore,
performance on the cross-validation is slightly im-
proved for the mean absolute error (MAE) by
rounding SVR scores to the nearest integer. For
the root-mean-square error (RMSE), rounding has
the opposite effect.

Performing a more fine-grained grid search for
the meta-parameters C, γ and ε after system sub-
mission, we were able to match the scores for
the baseline features published on the shared task
website.

4.1 Parameters for the Final Models

The final two models for system submission are
trained on the full data set. We submit our best sys-
tem according to MAE in cross-validation com-
bining LR, SVR and rounding with all features
(ALL) as DCU-MIXED. For our second submis-
sion, we choose SVR on its own (system DCU-
SVR). For English-Spanish, we only submit DCU-
SVR.

5 Conclusions and Future Work

We identified improperly optimised parameters of
the SVR component as the cause, or at least as a
contributing factor, for the placement of our sys-
tems below the official baseline system. Other po-
tential factors may be an error in our experimen-
tal setup or over-fitting. Therefore, we plan to re-

peat the experiments with a more fine-grained grid
search for optimal parameters and/or will try an-
other machine learning toolkit.

Unfortunately, due to the above problems with
our system so far, we cannot draw conclusions
about the effectiveness of our novel feature sets.

A substantial gain is achieved on the MAE met-
ric with the rounding method, indicating that the
majority of prediction errors are below 0.5.6 Fu-
ture work should account for this effect. Two ideas
are: (a) round all predictions before evaluation
and (b) use more fine-grained gold values, e. g. the
(weighted) average over multiple annotations as in
the WMT 2012 quality estimation task (Callison-
Burch et al., 2012).

For the error grammar method, the next step
will be to adjust the error model to errors found in
translations. It may be possible to do this without a
time-consuming analysis of errors: Wagner (2012)
suggests to use parallel data of authentic errors and
corrections to build the error grammar, first pars-
ing the corrections and then guiding the error cre-
ation procedure with the edit operations inverse to
the corrections. Post-editing corpora can play this
role and have recently become available (Potet et
al., 2012).

Furthermore, future work should explore the
inverse glass-box feature idea with arbitrary tar-
get languages for the MT system. (There is no
requirement that the glass-box system translates
back to the original source language).

Finally, we would like to integrate referential
translation machines (Biçici, 2013; Biçici and
Way, 2014) into our system as they performed well
in the WMT quality estimation tasks this and last
year.
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Ergun Biçici. 2013. Referential translation machines
for quality estimation. In Proceedings of the Eighth
Workshop on Statistical Machine Translation, pages
343–351, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Ezra Black, Steve Abney, Dan Flickinger, Claudia
Gdaniec, Robert Grishman, Philip Harrison, Donald
Hindle, Robert Ingria, Fred Jelinek, Judith Klavans,
Mark Liberman, Mitchell Marcus, Salim Roukos,
Beatrice Santorini, and Tomek Strzalkowski. 1991.
A procedure for quantitatively comparing the syn-
tactic coverage of English grammars. In E. Black,
editor, Proceedings of the HLT Workshop on Speech
and Natural Language, pages 306–311, Morristown,
NJ, USA. Association for Computational Linguis-
tics.
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Abstract

This paper describes our Word-level QE
system for WMT 2014 shared task on
Spanish - English pair. Compared to
WMT 2013, this year’s task is different
due to the lack of SMT setting information
and additional resources. We report
how we overcome this challenge to retain
most of the important features which
performed well last year in our system.
Novel features related to the availability of
multiple systems output (new point of this
year) are also proposed and experimented
along with baseline set. The system
is optimized by several ways: tuning
the classification threshold, combining
with WMT 2013 data, and refining
using Feature Selection strategy on our
development set, before dealing with the
test set for submission.

1 Introduction

1.1 Overview of task 2 in WMT14
This year WMT calls for methods which predict
the MT output quality at run-time, on both levels:
sentence (Task 1) and word (Task 2). Towards
a SMT system-independent and widely-applied
estimation, MT outputs are collected from
multiple translation means (machine and human),
therefore all SMT specific settings (and the
associated features that could have been extracted
from it) become unavailable. This initiative puts
more challenges on participants, yet motivates
number of SMT-unconventional approaches and
inspires the endeavors aiming at an “Evaluation
For All”.
We focus our effort on Task 2 (Word-level QE),
where, unlike in WMT2013, participants are
requested to generate prediction labels for words
in three variants:

• Binary: words are judged as Good (no
translation error), or Bad (need for editing).

• Level 1: the Good class is kept intact,
whereas Bad one is further divided into
subcategories: Accuracy issue (the word does
not accurately reflect the source text) and
Fluency issue (the word does not relate to the
form or content of the target text).

• Multi-class: more detailed judgement, where
the translation errors are further decomposed
into 16 labels based on MQM1 metric.

1.2 Related work
WMT 2013 witnessed several attempts dealing
with this evaluation type in its first launch. Han
et al. (2013); Luong et al. (2013) employed the
Conditional Random Fields (CRF) (Lafferty et al.,
2001) model as their Machine Learning method
to address the problem as a sequence labeling
task. Meanwhile, Bicici (2013) extended the
global learning model by dynamic training with
adaptive weight updates in the perceptron training
algorithm. As far as prediction indicators are
concerned, Bicici (2013) proposed seven word
feature types and found among them the “common
cover links” (the links that point from the leaf
node containing this word to other leaf nodes
in the same subtree of the syntactic tree) the
most outstanding. Han et al. (2013) focused
only on various n-gram combinations of target
words. Inheriting most of previously-recognized
features, Luong et al. (2013) integrated a number
of new indicators relying on graph topology,
pseudo reference, syntactic behavior (constituent
label, distance to the semantic tree root) and
polysemy characteristic. Optimization endeavors
were also made to enhance the baseline, including
classification threshold tuning, feature selection
and boosting technique (Luong et al., 2013).

1http://www.qt21.eu/launchpad/content/training
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1.3 Paper outline

The rest of our paper is structured as follows:
in the next section, we describe 2014 provided
data for Task 2, and the additional data used
to train the system. Section 3 lists the entire
feature set, involving WMT 2013 set as well as
a new feature proposed for this year. Baseline
system experiments and methods for optimizing it
are furthered discussed in Section 4 and Section
5 respectively. Section 6 selects the most
outstanding system for submission. The last
section summarizes the approach and opens new
outlook.

2 Data and Supporting Resources

For English - Spanish language pair in Task 2,
the organizers released two bilingual data sets:
the training and the test ones. The training
set contains 1.957 MT outputs, in which each
token is annotated with one appropriate label.
In the binary variant, the words are classified
into “OK” (no translation error) or “BAD” (edit
operators needed) label. Meanwhile, in the level
1 variant, they belong to “OK”, “Accuracy”
or “Fluency” (two latter ones are divided from
“BAD” label of the first subtask). In the last
variant, multi-class, beside “Accuracy” and
“Fluency” we have further 15 labels based on
MQM metric: Terminology, Mistranslation,
Omission, Addition, Untranslated, Style/register,
Capitalization, Spelling, Punctuation,
Typography, Morphology (word form),
Part of speech, Agreement, Word order,
Function words, Tense/aspect/mood, Grammar
and Unintelligible. The test set consists of 382
sentences where all the labels accompanying
words are hidden. For optimizing parameters of
the classifier, we extract last 200 sentences from
the training set to form a development (dev) set.
Besides, the Spanish - English corpus provided in
WMT 2013 (total of 1087 tuples) is also exploited
to enrich our WMT 2014 system. Unfortunately,
2013 data can only help us in the binary variant,
due to the discrepancy in training labels. Some
statistics about each set can be found in Table 1.

In addition, additional (MT-independent)
resources are used for the feature extraction,
including:

• Spanish and English Word Language Models
(LM)

• Spanish and English POS Language Models

• Spanish - English 2013 MT system

On the contrary, no specific MT setting is provided
(e.g. the code to re-run Moses system like
WMT 2013), leading to the unavailability of some
crucial resources, such as the N-best list and
alignment information. Coping with this, we
firstly thought of using the Moses “Constrained
Decoding” option as a method to tie our (already
available) decoder’s output to the given target
translations (this feature is supported by the
latest version of Moses (Koehn et al., 2007) in
2013). Our hope was that, by doing so, both
N-best list and alignment information would be
generated during decoding. But the decoder
failed to output all translations (only 1/4 was
obtained) when the number of allowed unknown
words (-max-unknowns) was set as 0. Switching
to non zero value for this option did not help
either since, even if more outputs were generated,
alignment information was biased in that case
due to additional/missing words in the obtained
MT output. Ultimately, we decided to employ
GIZA++ toolkit (Och and Ney, 2003) to obtain
at least the alignment information (and associated
features) between source text and target MT
output. However, no N-best list were extracted
nor available as in last year system. Nevertheless,
we tried to extract some features equivalent to
last year N-best features (details can be found in
Section 3.2).

3 Feature Extraction

In this section, we briefly list out all the
features used in WMT 2013 (Luong et al.,
2013) that were kept for this year, followed
by some proposed features taking advantage of
the provided resources and multiple translation
system outputs (for a same source sentence).

3.1 WMT13 features
• Source word features: all the source words

that align to the target one, represented in
BIO2 format.

• Source alignment context features: the
combinations of the target word and one
word before (left source context) or after
(right source context) the source word
aligned to it.

2http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/

336



Statistics WMT2014 WMT2013
train dev test train dev test

#segments 1757 200 382 753 50 284
#words 40975 6436 9613 18435 1306 7827

%G (OK) : %B (BAD) 67 : 33 58 : 42 - 70 : 30 77 : 23 75 : 25

Table 1: Statistics of corpora used in LIG’s system. We use the notion name+year to indicate the dataset.
For instance, train14 stands for the training set of WMT14

• Target alignment context features: the
combinations of the source word and each
word in the window ±2 (two before, two
after) of the target word.

• Backoff Behaviour: a score assigned to the
word according to how many times the target
Language Model has to back-off in order to
assign a probability to the word sequence, as
described in (Raybaud et al., 2011).

• Part-Of-Speech (POS) features (using
TreeTagger3 toolkit): The target word’s POS;
the source POS (POS of all source words
aligned to it); bigram and trigram sequences
between its POS and the POS of previous
and following words.

• Binary lexical features that indicate whether
the word is a: stop word (based on the stop
word list for target language), punctuation
symbol, proper name or numerical.

• Language Model (LM) features: the “longest
target n-gram length” and “longest source
n-gram length”(length of the longest
sequence created by the current target
(source aligned) word and its previous ones
in the target (source) LM). For example,
with the target word wi: if the sequence
wi−2wi−1wi appears in the target LM but
the sequence wi−3wi−2wi−1wi does not, the
n-gram value for wi will be 3.

• The word’s constituent label and its depth in
the tree (or the distance between it and the
tree root) obtained from the constituent tree
as an output of the Berkeley parser (Petrov
and Klein, 2007) (trained over a Spanish
treebank: AnCora4).

• Occurrence in Google Translate hypothesis:
we check whether this target word appears in

3http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
4http://clic.ub.edu/corpus/en/ancora

the sentence generated by Google Translate
engine for the same source.

• Polysemy Count: the number of senses of
each word given its POS can be a reliable
indicator for judging if it is the translation
of a particular source word. Here, we
investigate the polysemy characteristic in
both target word and its aligned source word.
For source word (English), the number
of senses can be counted by applying a
Perl extension named Lingua::WordNet5,
which provides functions for manipulating
the WordNet database. For target word
(Spanish), we employ BabelNet6 - a
multilingual semantic network that works
similarly to WordNet but covers more
European languages, including Spanish.

3.2 WMT14 additional features
• POS’s LM based features: we exploit

the Spanish and English LMs of POS
tag (provided as additional resources for
this year’s QE tasks) for calculating the
maximum length of the sequences created
by the current target token’s POS and those
of previous ones. The same score for POS
of aligned source word(s) is also computed.
Besides, the back-off score for word’s POS
tag is also taken into consideration. Actually,
these feature types are listed in Section
3.1 for target word, and we proposed the
similar ones for POS tags. In summary, three
POS LM’s new features are built, including:
“longest target n-gram length”, “longest
source n-gram length” and back-off score for
POS tag.

• Word Occurrence in multiple translations:
one novel point in this year’s shared task
is that the targets come from multiple MT

5http://search.cpan.org/dist/Lingua-Wordnet/Wordnet.pm
6http://babelnet.org
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outputs (from systems or from humans) for
the same source sentences. Obviously, one
would have a “natural” intuition that: the
occurrence of a word in all (or almost)
systems implies a higher likelihood of being
a correct translation. Relying on this
observation, we add a new binary-value
feature, telling whether the current token
can be found in more than N% (in our
experiments, we choose N = 50) out
of all translations generated for the same
source sentence. Here, in order to make
the judgments more accurate, we propose
several additional references besides those
provided in the corpora, coming from: (1)
Google Translate system, (2) The baseline
SMT engine provided for WMT2013 English
- Spanish QE task. These two MT outputs
are added to the already available MT outputs
of a given source sentence, before calculating
the (above described) binary feature.

4 Baseline Experiments and
Optimization Strategies

4.1 Machine Learning Method

Motivated by the idea of addressing Word
Confidence Estimation (WCE) problem as
a sequence labeling process, we employ the
Conditional Random Fields (CRFs) for our
model training, with WAPITI toolkit (Lavergne
et al., 2010). Let X = (x1, x2, . . . , xN ) be the
random variable over data sequence to be labeled,
Y = (y1, y2, . . . , yN ) be the output sequence
obtained after the labeling task. Basically, CRF
computes the probability of the output sequence
Y given the input sequence X by:

pθ(Y |X) =
1

Zθ(X)
exp

{
K∑
k=1

θkFk(X,Y )

}
(1)

where Fk(X,Y ) =
∑T

t=1 fk(yt−1, yt, xt);
{fk} (k = 1,K) is a set of feature functions;
{θk} (k = 1,K) are the associated parameter
values; and Zθ(x) is the normalization function.
In the training phase, we set the maximum
number of iterations, the stop window size,
and stop epsilon value at 200; 6 and 0.00005
respectively.

System Label Pr(%) Rc(%) F(%)
BL(bin) OK 66.67 81.92 73.51

Bad 60.69 41.92 49.58
BL(L1) OK 63.86 82.83 72.12

Accuracy 22.14 14.89 17.80
Fluency 50.40 27.98 35.98

BL(mult) OK 63.32 87.56 73.49
Fluency 14.44 10.10 11.88

Mistranslation 9.95 5.69 7.24
Terminology 3.62 3.89 3.75
Unintelligible 52.97 16.56 25.23

Agreement 5.93 11.76 7.88
Untranslated 5.65 7.76 6.53
Punctuation 56.97 25.82 35.53

BL+WMT OK 68.62 82.69 75.01
13(bin) Bad 64.38 45.73 53.47

Table 2: Average Pr, Rc and F for labels
of all-feature binary and multi-class systems,
obtained on our WMT 2014 dev set (200
sentences). In BL(multi), classes with zero value
for Pr or Rc will not be reported

4.2 Experimental Classifiers
We experiment with the following classifiers:

• BL(bin): all features (WMT14+WMT13)
trained on train14 only, using binary labels
(“OK” and “BAD”)

• BL(L1): all features trained on train14 only,
using level 1 labels (“OK”, “Accuracy”, and
“Fluency”)

• BL(mult): all features trained on train14
only, using 16 labels

• BL+WMT13(bin): all features trained on
train14 + {train+dev+test}13, using binary
labels.

System quality in Precision (Pr), Recall (Rc) and
F score (F) are shown in Table 2. It can be
observed that promising results are found in binary
variant where both BL(bin) and BL+WMT(bin)
are able to reach at least 50% F score in detecting
errors (BAD class), meanwhile the performances
in “OK” class go far beyond (73.51% and 75.01%
respectively). Interestingly, the combination
with WMT13 data boosts the baseline prediction
capability in both labels: BL+WMT13(bin)
outperforms BL(bin) in 1.10% ( 3.89%) for OK
(BAD) label. Nevertheless, level 1 and multi-class
systems maintain only good score for “OK” class.
In addition, BL(mult) seems suffer seriously
from its class imbalance, as well as the lack of
training data for each, resulting in the inability
of prediction for several among them (not all are
reported in Table 2 ).

338



4.3 Decision threshold tuning for binary task
In binary systems BL(bin) and
BL+WMT13(bin), we run the classification
task multiple times, corresponding to a decision
threshold increase from 0.300 to 0.975 (step
= 0.025). The values of Precision (Pr), Recall
(Rc) and F-score (F) for OK and BAD label are
tracked along this threshold variation, allowing
us to select the optimal threshold that yields the
highest Favg = F (OK)+F (BAD)

2 . Figure 1 shows
that BL(bin) reaches the best performance at the
threshold value of 0.95, meanwhile the one for
BL+WMT13(bin) is 0.75. The latter threshold
(0.75) has been used for the primary system
submitted.

Figure 1: Decision threshold tuning on BL(bin)
and BL+WMT2013(bin)

4.4 Feature Selection
In order to improve the preliminary scores
of all-feature systems, we conduct a feature
selection which is based on the hypothesis
that some features may convey “noise” rather
than “information” and might be the obstacles
weakening the other ones. In order to prevent
this drawback, we propose a method to filter the
best features based on the “Sequential Backward
Selection” algorithm7. We start from the full set of
N features, and in each step sequentially remove
the most useless one. To do that, all subsets of
(N-1) features are considered and the subset that
leads to the best performance gives us the weakest
feature (not involved in the considered set). This
procedure is also called “leave one out” in the
literature. Obviously, the discarded feature is not
considered in the following steps. We iterate the

7http://research.cs.tamu.edu/prism/lectures/pr/pr l11.pdf

process until there is only one remaining feature in
the set, and use the following score for comparing
systems: Favg(all) = Favg(OK)+Favg(BAD)

2 ,
where Favg(OK) and Favg(BAD) are the
averaged F scores for OK and BAD label,
respectively, when threshold varies from 0.300 to
0.975. This strategy enables us to sort the features
in descending order of importance, as displayed
in Table 3. Figure 2 shows the evolution of
the performance as more and more features are
removed. The feature selection is done from the
BL+WMT2013(bin) system.

We observe in Table 3 four valuable features
which appear in top 10 in both WMT13
and WMT14 systems: Source POS, Occur in
Google Translate, Left source context and Right
target context. Among our proposed features,
“Occurrence in multiple systems” is the most
outstanding one with rank 3, “longest target POS
gram length” plays an average role with rank 12,
whereas “longest source POS gram length” is
much less beneficial with the last position in the
list. Figure 2 reveals that the optimal subset of
features is the top 18 in Table 3, after discarding 6
weakest ones. This set will be used to train again
the classifiers in all subtasks and compare to the
baseline ones.

Figure 2: The evolution of the performance
as more and more features are removed (from
BL+WMT2013(bin) system)

5 Submissions

After finishing the optimization process and
comparing systems, we select two most
out-standing ones (of each subtask) for the
submission of this year’s shared task. They are
the following:

• Binary variant: BL+WMT13(bin) and
FS(bin) (feature selection from the same
corresponding system)

• Level 1 variant: BL(L1) and FS(L1) (feature
selection from the same corresponding
system)
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Rank WMT2014 WMT2013
1 Target POS Source POS
2 Longest target gram length Occur in Google Translate
3 Occurrence in multiple systems Nodes
4 Target word Target POS
5 Occur in Google Translate WPP any
6 Source POS Left source context
7 Numeric Right target context
8 Polysemy count (target) Numeric
9 Left source context Polysemy count(target)
10 Right Target context Punctuation
11 Constituent label Stop word
12 Longest target POS gram length Right source context
13 Punctuation Target word
14 Stop word Distance to root
15 Number of occurrences Backoff behaviour
16 Left target context Constituent label
17 Backoff behaviour Proper name
18 Polysemy count (source) Number of occurrences
19 Source Word Min
20 Proper Name Max
21 Distance to root Left target context
22 Longest source gram length Polysemy count (source)
23 Right source context Longest target gram length
24 Longest source POS gram length Longest source gram length
25 Source Word

Table 3: The rank of each feature (in term of usefulness) in WMT2014 and WMT2013 systems. The
bold ones perform well in both cases. Note that feature sets are not exactly the same for 2013 and 2014
(see explanations in section 3).

• Multi-class variant: BL(mult) and
FS(mult) (feature selection from the
same corresponding system)

The official results can be seen in Table 4. This
year, in order to appreciate the translation error
detection capability of WCE systems, the official
evaluation metric used for systems ranking is the
average F score for all but the “OK” class. For
the non-binary variant, this average is weighted
by the frequency of the class in the test data.
Nevertheless, we find the F scores for “OK” class
are also informative, since they reflect how good
our systems are in identifying correct translations.
Therefore, both scores are reported in Table 4.

6 Conclusion and perspectives

We presented our preparation for this year’s shared
task on QE at word level, for the English - Spanish
language pair. The lack of some information
on MT system internals was a challenge. We
made efforts to maintain most of well-performing

System F(“OK”) (%) Average F(%)
FS(bin) (primary) 74.0961 0.444735
FS(L1) 73.9856 0.317814
FS(mult) 76.6645 0.204953
BL+WMT2013(bin) 74.6503 0.441074
BL(L1) 74.0045 0.317894
BL(mult) 76.6645 0.204953

Table 4: The F scores for “OK” class and the
average F scores for the remaining classes (official
WMT14 metric) , obtained on test set.

2013 features, especially the source side ones,
and propose some novel features based on this
year’s corpus specificities, as well as combine
them with those of last year. Generally, our
results are not able to beat those in WMT13 for
the same language pair, yet still promising under
these constraints. As future work, we are thinking
of using more efficiently the existing references
(coming from provided translations and other
reliable systems) to obtain stronger indicators, as
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well as examine other ML methods besides CRF.
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Abstract

This paper presents the use of consensus
among Machine Translation (MT) systems
for the WMT14 Quality Estimation shared
task. Consensus is explored here by com-
paring the MT system output against sev-
eral alternative machine translations using
standard evaluation metrics. Figures ex-
tracted from such metrics are used as fea-
tures to complement baseline prediction
models. The hypothesis is that knowing
whether the translation of interest is simi-
lar or dissimilar to translations from multi-
ple different MT systems can provide use-
ful information regarding the quality of
such a translation.

1 Introduction

While Machine Translation (MT) evaluation met-
rics can rely on the similarity of the MT system
output to reference (human) translations as a proxy
to quality assessment, this is not possible for MT
systems in use, translating unseen texts. Quality
Estimation (QE) metrics are used in such settings
as a way of predicting translation quality. While
reference translations are not available for QE,
previous work has explored the so called pseudo-
references (Soricut and Echihabi, 2010; Soricut et
al., 2012; Soricut and Narsale, 2012; Shah et al.,
2013). Pseudo-references are alternative transla-
tions produced by MT systems different from the
system that we intend to predict quality for (Al-
brecht and Hwa, 2008). These can be used to pro-
vide additional features to train QE models. Such
features are normally figures resulting from au-
tomatic metrics (such as BLEU, Papineni et al.
(2002)) computed between pseudo-references and
the output of the given MT system.

Soricut and Echihabi (2010) explore pseudo-
references for document-level QE prediction to

rank outputs from an MT system. The pseudo-
references-based features are BLEU scores ex-
tracted by comparing the output of the MT sys-
tem under investigation and the output of an off-
the-shelf MT system, for both the target and the
source texts. The statistical MT system training
data is also used as pseudo-references to compute
training data-based features. The use of pseudo-
references has been shown to outperform strong
baseline results. Soricut and Narsale (2012) pro-
pose a method that uses sentence-level prediction
models for document-level QE. They also use a
pseudo-references-based feature (based in BLEU)
and claim that this feature is one of the most pow-
erful in the framework.

For QE at sentence-level, Soricut et al. (2012)
use BLEU based on pseudo-references combined
with other features to build the best QE system of
the WMT12 QE shared task.1 Shah et al. (2013)
use pseudo-references in the same way to ex-
tract a BLEU feature for sentence-level prediction.
Feature analysis on a number of datasets showed
that this feature contributed the most across all
datasets.

Louis and Nenkova (2013) apply pseudo-
references for summary evaluation. They use six
systems classified as “best systems”, “mediocre
systems” or “worst systems” to make the compar-
ison, with ROUGE (Lin and Och, 2004) as quality
score. They also experiment with a combination of
the “best systems” and the “worst systems”. The
use of only “best systems” led to the best results.
Examples of “bad summaries” are said not to be
very useful because a summary close to the worst
systems outputs can mean that either it is bad or
it is too different from the best systems outputs in
terms of content. Albrecht and Hwa (2008) use
pseudo-references to improve MT evaluation by
combining them with a single human reference.
They show that the use of pseudo-references im-

1http://www.statmt.org/wmt12/
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proves the correlation with human judgements.

Soricut and Echihabi (2010) claim that pseudo-
references should be produced by systems as dif-
ferent as possible from the MT system of interest.
This ensures that the similarities found among the
systems’ translations are not related to the similar-
ities of the systems themselves. Therefore, the as-
sumption that a translation from system X shares
some characteristics with a translation from sys-
tem Y is not a mere coincidence. Another way to
make the most of pseudo-references is to use an
MT system known as generally better (or worse)
than the MT system of interest. In that case, the
comparison will lead to whether the MT system of
interest is similar to a good (or bad) MT system.

However, in most scenarios it is difficult to rely
on the average translation quality of a given sys-
tem as an absolute indicator of its quality. This
is particularly true for sentence-level QE, where
the quality of a given system can vary signifi-
cantly across sentences. Finding translations from
MT systems that are considerably different can
also be a challenge. In this paper we exploit
pseudo-references in a different way: measuring
the consensus among different MT systems in the
translations they produce. As sources of pseudo-
references, we use translations given in a multi-
translation dataset or those produced by the par-
ticipants in the WMT translation task for the same
data. While some MT systems can be similar
to each other, for some language pairs, such as
English-Spanish, a wide range of MT systems
with different average qualities are available. Our
hypothesis is that by using translations from sev-
eral MT systems we can find consensual infor-
mation (even if some of the systems are similar
to the one of interest). The use of more than one
MT system is expected to smooth out the effect
of “coincidences” in the similarities between sys-
tems’ translations.

This paper describes the use of consensual
information for the WMT14 QE shared task
(USHEFF-consensus system), simulating a sce-
nario where we do not know the quality of the
pseudo-references, nor the characteristics of any
MT systems (the system of interest or the systems
which generated the pseudo-references). We par-
ticipated in all variants of Task 1, sentence-level
QE, for both for scoring and ranking. Section 2
explains how we extracted consensual information
for all tasks. Section 3 shows our official results

compared to the baselines provided. Section 4
presents some conclusions.

2 Consensual information extraction

The consensual information is exploited in two
different ways in Task 1. Task 1.1 used“perceived”
post-editing effort labels as quality scores for scor-
ing and ranking in four languages pairs. These la-
bels vary within [1-3], where:

• 1 = perfect translation

• 2 = near miss translation (sentences with 2-3
errors that are easy to fix)

• 3 = very low quality sentence.

The training and test sets for each language
pair in Task 1.1 contain 3-4 translations of the
same source sentences. The language pairs are
German-English (DE-EN) with 150 source sen-
tences for test and 350 source sentences for train-
ing, English-German (EN-DE) with 150 source
sentences for test and 350 source sentences
for training, English-Spanish (EN-ES) with 150
source sentences for test and 954 source sentences
for training, and Spanish-English (ES-EN) with
150 source sentences for test and 350 source sen-
tences for training. The translations for each lan-
guage pair include a human translation and trans-
lations produced by a statistical MT (SMT) sys-
tem, a rule-based MT (RBMT) system, and a hy-
brid system (for the EN-DE and EN-ES language
pairs only).

By inspecting the source side of the training set,
we noticed that the translations were ordered per
systems, since the source file had sentences re-
peated in batches. For example, the EN-ES lan-
guage pair had 954 English sentences and 3,816
Spanish sentences. In the source file, the English
sentences were repeated in batches of 954 sen-
tences. Based on that, we assumed that in the tar-
get file each set of 954 translations in sequence
corresponded to a given MT system (or human).

For each system (human translation is consid-
ered as a system, since we do not know the or-
der of the translations), we calculate the consen-
sual information considering the other 2-3 systems
available as pseudo-references.

The quality scores for Task 1.2 and Task 1.3
were computed as HTER (Human Translation Er-
ror Rate (Snover et al., 2006)) and post-editing
time, respectively, for both scoring and ranking.
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The datasets were a mixture of test sets from the
WMT13 and WMT12 translation shared tasks for
the EN-ES language pair only. In this case, the
consensual information was extracted by using
systems submitted to the WMT translation shared
tasks of both years. Therefore, for each source
sentence in the WMT12/13 data, all translations
produced by the participating MT systems of that
year were used as pseudo-references. The uedin
system outputs for both WMT13 and WMT12
were not considered, since the datasets in Tasks
1.2 and 1.3 were created from translations gener-
ated by this system.2

The Asyia Toolkit3 (Giménez and Màrquez,
2010) was used to extract the automatic metrics
considered as features. BLEU, TER (Snover et
al., 2006), METEOR (Banerjee and Lavie, 2005)
and ROUGE (Lin and Och, 2004) are used in
all task variants. For Tasks 1.2 and 1.3 we also
use metrics based on syntactic similarities from
shallow and dependency parser information (met-
rics SPOc(*) and DPmHWCM c1, respectively, in
Asyia). BLEU is a precision-oriented metric that
compares n-grams (n=1-4 in our case) from refer-
ence documents against n-grams of the MT out-
put, measuring how close the output of a system
is to one or more references. TER (Translation
Error Rate) measures the minimum number of ed-
its required to transform the MT output into the
closest reference document. METEOR (Metric
for Evaluation of Translation with Explicit OR-
dering) scores MT outputs by aligning them with
given references. This alignment can be done by
exact, stem, synonym and paraphrases matching
(here, exact matching was used). ROUGE is a
recall-oriented metric that measures similarity be-
tween sentences by considering the longest com-
mon n-gram statistics between a translation sen-
tence and the corresponding reference sentence.
SPOc(*) measures the lexical overlap according to
the chunk types of the syntactic realisation. The
‘*’ means that an average of all chunk types is
computed. DPmHWCM c1 is based on the match-
ing of head-word chains. We considered the match
of grammatical categories of only one head-word.

These consensual features are combined with
the 17 QuEst baseline features provided by the
shared task organisers.

2WMT14 QE shared task organisers, personal communi-
cation, March 2014.

3http://asiya.lsi.upc.edu/

3 Experiments and Results

The results reported herein are the official shared
task results, that is, they were computed using the
true scores of the test set made available by the
organisers after our submission.

For training the QE models, we used Sup-
port Vector Machines (SVM) regression algorithm
with a radial basis function (RBF) kernel with
the hyperparameters optimised via grid search.
The scikit-learn algorithm available in the QuEst
Framework4 (Specia et al., 2013) was used for
that.

We compared the results obtained against using
only the QuEst baseline (BL) features, which is
the same system used as the official baseline for
the shared task. For the scoring variant we also
compare our results against a baseline that ”pre-
dicts“ the average of the true scores of the train-
ing set as scores for each sentence of the test set
(Mean – each sentence has the same predicted
score).

For all language pairs in Task 1.1, Table 1 shows
the average results for the scoring variant using
MAE (Mean Absolute Error) as evaluation met-
ric, while Table 2 shows the results for the ranking
variant using DeltaAvg.

The results for scoring improved over the base-
lines with the use of consensual information for
language pairs DE-EN and EN-ES. For EN-DE
and ES-EN the consensual features achieved simi-
lar results to BL. The best result for consensual in-
formation features was achieved with EN-ES (0.03
of MAE difference from BL).

For the ranking variant, the consensual informa-
tion improved the results for all language pairs.
The largest improvement from consensual-based
features was achieved for ES-EN, with a differ-
ence of 0.11 from the baseline. It is worth men-
tioning that for ES-EN our system achieved the
best ranking result in Task 1.1.

Since the results varied for different languages
pairs, we further inspected them for each language
pair. First, we looked at the true scores distribution
and realised that the first batch of translations for
each language pair was probably the human refer-
ence since the percentage of 1s – the best quality
score – was much higher for this system (see Fig-
ure 1 for EN-DE as an example). By using this
human translation as a reference for the other MT
systems, we computed BLEU for each sentence

4http://www.quest.dcs.shef.ac.uk/
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DE-EN EN-DE EN-ES ES-EN
Mean 0.67 0.68 0.46 0.58
BL 0.65 0.64 0.52 0.57
BL+Consensus 0.63 0.64 0.49 0.57

Table 1: Scoring results for Task 1.1 in terms of MAE

DE-EN EN-DE EN-ES ES-EN
BL 0.21 0.23 0.14 0.12
BL+Consensus 0.28 0.26 0.21 0.23

Table 2: Ranking results for Task 1.1 in terms of DeltaAvg

and averaged these values. The results are shown
in Table 3.

For DE-EN, EN-DE and EN-ES, the various
systems appeared to be less dissimilar in terms
of BLEU, when compared to ES-EN. For ES-EN,
the difference between the two MT systems was
higher than for other language pairs (0.12 for the
test set and 0.11 for the training set). Moreover,
for DE-EN, EN-DE and EN-ES, the difference be-
tween the averaged BLEU score of the training set
and the average BLEU score of the test set is very
small (smaller than 0.01). For ES-EN, however,
the difference between the scores for the training
and test sets was also higher (0.04 for System1 and
0.03 for System2). This can be one reason why the
consensual features did not show improvements
for this language pair. Since the systems are con-
siderably different and also there is a considerable
difference between training and test sets, the data
can be too noisy to be used as pseudo-references.

For EN-DE, the reasons for the bad perfor-
mance of consensual features are not clear. This
language pair showed the worst average quality
scores for all systems. Reasons for this can include
characteristics of German language, such as com-
pound words which are not well treated in MT, and
complex grammar. One hypothesis is that these
low BLEU scores (as Table 3 shows) introduce
noise instead of useful information for QE. An-
other difference that appeared only in EN-DE was
the distributions of the scores across the different
systems. As Figure 1 shows, System1 has a dis-
tribution considerably different from the other two
systems. For the other language pairs, the distribu-
tions across different systems were more uniform.
This difference can be another factor influencing
the results for this language pair.

Table 4 shows the results for scoring (MAE) and
Table 5 shows the results for ranking (DeltaAvg)

for Tasks 1.2 and 1.3.

Task 1.2 Task 1.3
Mean 16.93 23.34
BL 15.23 21.49
BL+Consensus 13.61 21.48

Table 4: Scoring results of Tasks 1.2 and 1.3 in
terms of MAE

Task 1.2 Task 1.3
BL 5.08 14.71
BL+Consensus 7.93 14.98

Table 5: Ranking results of Tasks 1.2 and 1.3 in
terms of DeltaAvg

For Tasks 1.2 and 1.3 the use of consensual
information only slightly improved the baseline
results for scoring. For the ranking variant,
BL+Consensus achieved better results, but only
significantly so for Task 1.2. Therefore, consen-
sual information seems useful to rank sentences
according to predicted HTER, its contribution to
predicting actual HTER is not noticeable. For
post-editing time as quality labels, the improve-
ment achieved with the use of consensual infor-
mation was marginal.

4 Conclusions

The use of consensual information of MT systems
can be useful to improve state-of-the-art results for
QE. For some scenarios, it is possible to acquire
several translations for a given source segment,
but with no additional information on the qual-
ity or type of MT systems used to produce them.
Therefore, these translations could not be used as
pseudo-references in the same way as in (Soricut
and Echihabi, 2010).

345



DE-EN EN-DE EN-ES ES-EN
Sys1 Sys2 Sys1 Sys2 Sys3 Sys1 Sys2 Sys3 Sys1 Sys2

Average BLEU
(test) 0.31 0.25 0.20 0.19 0.21 0.36 0.29 0.32 0.44 0.32
Average BLEU
(training) 0.31 0.26 0.21 0.18 0.22 0.35 0.29 0.31 0.40 0.29

Table 3: Average BLEU of systems in Task 1.1

Figure 1: Distribution of true quality scores for the EN-DE language pair

The use of several references with the hypoth-
esis that they share consensual information has
been shown useful in some settings, particularly
in Task 1.1. In others, the results were inconclu-
sive. In particular, the approach does not seem ap-
propriate for scenarios where the MT systems are
considerably different (as shown in Table 3). In
those cases, better ways to exploit consensual in-
formation need to be investigated further.
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Abstract

This paper describes LIMSI participation
to the WMT’14 Shared Task on Qual-
ity Estimation; we took part to the word-
level quality estimation task for English
to Spanish translations. Our system re-
lies on a random forest classifier, an en-
semble method that has been shown to
be very competitive for this kind of task,
when only a few dense and continuous fea-
tures are used. Notably, only 16 features
are used in our experiments. These fea-
tures describe, on the one hand, the qual-
ity of the association between the source
sentence and each target word and, on the
other hand, the fluency of the hypothe-
sis. Since the evaluation criterion is the
f1 measure, a specific tuning strategy is
proposed to select the optimal values for
the hyper-parameters. Overall, our system
achieves a 0.67 f1 score on a randomly ex-
tracted test set.

1 Introduction

This paper describes LIMSI submission to the
WMT’14 Shared Task on Quality Estimation. We
participated in the word-level quality estimation
task (Task 2) for the English to Spanish direction.
This task consists in predicting, for each word in
a translation hypothesis, whether this word should
be post-edited or should rather be kept unchanged.

Predicting translation quality at the word level
raises several interesting challenges. First, this is
a (relatively) new task and the best way to for-
mulate and evaluate it has still to be established.
Second, as most works on quality estimation have
only considered prediction at the sentence level, it
is not clear yet which features are really effective
to predict quality at the word and a set of base-
line features has still to be found. Finally, sev-
eral characteristic of the task (the limited number

of training examples, the unbalanced classes, etc.)
makes the use of ‘traditional’ machine learning al-
gorithms difficult. This papers describes how we
addressed this different issues for our participation
to the WMT’14 Shared Task.

The rest of this paper is organized as follows.
Section 2 gives an overview of the shared task data
that will justify some of the design decisions we
made. Section 3 describes the different features
we have considered and Section 4, the learning
methods used to estimate the classifiers parame-
ters. Finally the results of our models are pre-
sented and analyzed in Section 5.

2 World-Level Quality Estimation

WMT’14 shared task on quality estimation num-
ber 2 consists in predicting, for each word of a
translation hypothesis, whether this word should
be post-edited (denoted by the BAD label) or
should be kept unchanged (denoted by the OK la-
bel). The shared task organizers provide a bilin-
gual dataset from English to Spanish1 made of
translations produced by three different MT sys-
tems and by one human translator; these transla-
tions have then been annotated with word-level la-
bels by professional translators. No additional in-
formation about the systems used, the derivation
of the translation (such as the lattices or the align-
ment between the source and the best translation
hypothesis) or the tokenization applied to identify
words is provided.

The distributions of the two labels for the dif-
ferent systems is displayed in Table 1. As it
could be expected, the class are, overall, unbal-
anced and the systems are of very different qual-
ity: the proportion of BAD and OK labels highly
depends on the system used to produce the transla-
tion hypotheses. However, as our preliminary ex-
periments have shown, the number of examples is

1We did not consider the other language pairs.
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too small to train a different confidence estimation
system for each system.

The distribution of the number of BAD labels
per sentence is very skewed: on average, one word
out of three (precisely 35.04%) in a sentence is la-
beled as BAD but the median of the distribution of
the ratio of word labeled BAD in a sentence is 20%
and its standard deviation is pretty high (34.75%).
Several sentences have all their words labeled as
either OK or BAD, which is quite surprising as the
sentences of the corpus for Task 2 have been se-
lected because there were ‘near miss translations’
that is to say translations that should have con-
tained no more that 2 or 3 errors.

Another interesting finding is that the propor-
tion of word to post-edit is the same across the
different parts-of-speech (see Table 2).2

Table 1: Number of examples and distribution of
labels for the different systems on the training set

System #sent. #words % OK % BAD

1 791 19,456 75.48 24.52
2 621 14,620 59.11 40.89
3 454 11,012 59.76 40.24
4 90 2,296 36.85 63.15

Total 1,956 47,384 64.90 35.10

Table 2: Distribution of labels according to the
POS on the training set

POS % in train % BAD

NOUN 23.81 35.02
ADP 15.06 35.48
DET 14.90 32.88

VERB 14.64 41.26
PUNCT 10.92 27.26

ADJ 6.61 35.68
CONJ 5.04 30.77
PRON 4.58 43.15
ADV 4.39 36.56

As the classes are unbalanced, prediction per-
formance will be evaluated in terms of precision,
recall and f1 score computed on the BAD label.
More precisely, if the number of true positive (i.e.

2We used FreeLing (http:nlp.lsi.upc.edu/
freeling/) to predict the POS tags of the translation
hypotheses and, for the sake of clarity, mapped the 71 tags
used by FreeLing to the 11 universal POS tags of Petrov et
al. (2012).

BAD word predicted as BAD), false positive (OK

word predicted as BAD) and false negative (BAD

word predicted as OK) are denoted tpBAD, fpBAD

and fnBAD, respectively, the quality of a confidence
estimation system is evaluated by the three follow-
ing metrics:

pBAD =
tpBAD

tpBAD + fpBAD

(1)

rBAD =
tpBAD

tpBAD + fnBAD
(2)

f1 =
2 · pBAD · rBAD

pBAD + rBAD
(3)

3 Features

In our experiments, we used 16 features to de-
scribe a given target word ti in a translation hy-
pothesis t = (tj)

m
j=1. To avoid sparsity issues we

decided not to include any lexicalized information
such as the word or the previous word identities.
As the translation hypotheses were generated by
different MT systems, no white-box features (such
as word alignment or model scores) are consid-
ered. Our features can be organized in two broad
categories:

Association Features These features measure
the quality of the ‘association’ between the source
sentence and a target word: they characterize the
probability for a target word to appear in a transla-
tion of the source sentence. Two kinds of associa-
tion features can be distinguished.

The first one is derived from the lexicalized
probabilities p(t|s) that estimate the probability
that a source word s is translated by the target
word tj . These probabilities are aggregated using
an arithmetic mean:

p(tj |s) =
1
n

n∑
i=1

p(tj |si) (4)

where s = (si)
n
i=1 is the source sentence (with an

extra NULL token). We assume that p(tj |si) = 0 if
the words tj and si have never been aligned in the
train set and also consider the geometric mean of
the lexicalized probabilities, their maximum value
(i.e. maxs∈s p(tj |s)) as well as a binary feature
that fires when the target word tj is not in the lex-
icalized probabilities table.

The second kind of association features relies
on pseudo-references, that is to say, translations
of the source sentence produced by an indepen-
dent MT system. Many works have considered
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pseudo-references to design new MT metrics (Al-
brecht and Hwa, 2007; Albrecht and Hwa, 2008)
or for confidence estimation (Soricut and Echi-
habi, 2010; Soricut and Narsale, 2012) but, to the
best of our knowledge, this is the first time that
they are used to predict confidence at the word
level.

Pseudo-references are used to define 3 binary
features which fire if the target word is in the
pseudo-reference, in a 2-gram shared between the
pseudo-reference and the translation hypothesis or
in a common 3-gram, respectively. The lattices
representing the search space considered to gen-
erate these pseudo-references also allow us to es-
timate the posterior probability of a target word
that quantifies the probability that it is part of the
system output (Gispert et al., 2013). Posteriors ag-
gregate two pieces of information for each word in
the final hypothesis: first, all the paths in the lat-
tice (i.e. the number of translation hypotheses in
the search space) where the word appears in are
considered; second, the decoder scores of these
paths are accumulated in order to derive a confi-
dence measure at the word level. In our experi-
ments, we considered pseudo-references and lat-
tices produced by the n-gram based system de-
veloped by our team for last year WMT evalu-
ation campaign (Allauzen et al., 2013), that has
achieved very good performance.

Fluency Features These features measure the
‘fluency’ of the target sentence and are based on
different language models: a ‘traditional’ 4-gram
language model estimated on WMT monolingual
and bilingual data (the language model used by
our system to generate the pseudo-references); a
continuous-space 10-gram language model esti-
mated with SOUL (Le et al., 2011) (also used by
our MT system) and a 4-gram language model
based on Part-of-Speech sequences. The latter
model was estimated on the Spanish side of the
bilingual data provided in the translation shared
task in 2013. These data were POS-tagged with
FreeLing (Padró and Stanilovsky, 2012).

All these language models have been used to de-
fine two different features :

• the probability of the word of interest p(tj |h)
where h = tj−1, ..., tj−n+1 is the history
made of the n− 1 previous words or POS

• the ratio between the probability of
the sentence and the ‘best’ probabil-

ity that can be achieved if the target
word is replaced by any other word (i.e.
maxv∈V p(t1, ..., tj−1, v, tj+1, ..., tm) where
the max runs over all the words of the
vocabulary).

There is also a feature that describes the back-off
behavior of the conventional language model: its
value is the size of the largest n-gram of the trans-
lation hypothesis that can be estimated by the lan-
guage model without relying on back-off probabil-
ities.

Finally, there is a feature describing, for each
word that appears more than once in the train set,
the probability that this word is labeled BAD. This
probability is simply estimated by the ratio be-
tween the number of times this word is labeled
BAD and the number of occurrences of this word.

It must be noted that most of the features we
consider rely on models that are part of a ‘clas-
sic’ MT system. However their use for predicting
translation quality at the word-level is not straight-
forward, as they need to be applied to sentences
with a given unknown tokenization. Matching the
tokenization used to estimate the model to the one
used for collecting the annotations is a tedious and
error-prone process and some of the prediction er-
rors most probably result from mismatches in tok-
enization.

4 Learning Methods

4.1 Classifiers

Predicting whether a word in a translation hypoth-
esis should be post-edited or not can naturally be
framed as a binary classification task. Based on
our experiments in previous campaigns (Singh et
al., 2013; Zhuang et al., 2012), we considered ran-
dom forest in all our experiments.3

Random forest (Breiman, 2001) is an ensem-
ble method that learns many classification trees
and predicts an aggregation of their result (for in-
stance by majority voting). In contrast with stan-
dard decision trees, in which each node is split
using the best split among all features, in a ran-
dom forest the split is chosen randomly. In spite
of this simple and counter-intuitive learning strat-
egy, random forests have proven to be very good
‘out-of-the-box’ learners. Random forests have
achieved very good performance in many similar

3we have used the implementation provided by
scikit-learn (Pedregosa et al., 2011).
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tasks (Chapelle and Chang, 2011), in which only
a few dense and continuous features are available,
possibly because of their ability to take into ac-
count complex interactions between features and
to automatically partition the continuous features
value into a discrete set of intervals that achieves
the best classification performance.

As a baseline, we consider logistic regres-
sion (Hastie et al., 2003), a simple linear model
where the parameters are estimated by maximiz-
ing the likelihood of the training set.

These two classifiers do not produce only a class
decision but yield an instance probability that rep-
resents the degree to which an instance is a mem-
ber of a class. As detailed in the next section,
thresholding this probability will allow us to di-
rectly optimize the f1 score used to evaluate pre-
diction performance.

4.2 Optimizing the f1 Score

As explained in Section 2, quality prediction will
be evaluated in terms of f1 score. The learn-
ing methods we consider can not, as most learn-
ing method, directly optimize the f1 measure dur-
ing training, since this metric does not decompose
over the examples. It is however possible to take
advantage of the fact that they actually estimate a
probability to find the largest f1 score on the train-
ing set.

Indeed these probabilities are used with a
threshold (usually 0.5) to produce a discrete (bi-
nary) decision: if the probability is above the
threshold, the classifier produces a positive out-
put, and otherwise, a negative one. Each thresh-
old value produces a different trade-off between
true positives and false positives and consequently
between recall and precision: as the the threshold
becomes lower and lower, more and more exam-
ple are assigned to the positive class and recall in-
crease at the expense of precision.

Based on these observations, we propose the
following three-step method to optimize the f1
score on the training set:

1. the classifier is first trained using the ‘stan-
dard’ learning procedure that optimizes either
the 0/1 loss (for random forest) or the likeli-
hood (for the logistic regression);

2. all the possible trade-offs between recall
and precision are enumerated by varying
the threshold; exploiting the monotonicity of

thresholded classifications,4 this enumeration
can be efficiently done in O (n · log n) and
results in at most n threshold values, where n
is the size of the training set (Fawcett, 2003);

3. all the f1 scores achieved for the different
thresholds found in the previous step are eval-
uated; there are strong theoretical guaran-
tees that the optimal f1 score that can be
achieved on the training set is one of these
values (Boyd and Vandenberghe, 2004).

Figure 1 shows how f1 score varies with the deci-
sion threshold and allows to assess the difference
between the optimal value of the threshold and its
default value (0.5).

Figure 1: Evolution of the f1 score with respect to
the threshold used to transform probabilities into
binary decisions

5 Experiments

The features and learning strategies described in
the two previous sections were evaluated on the
English to Spanish datasets. As no official devel-
opment set was provided by the shared task orga-
nizers, we randomly sampled 200 sentences from
the training set and use them as a test set through-
out the rest of this article. Preliminary experiments
show that the choice of this test has a very low im-
pact on the classification performance. The dif-
ferent hyper-parameters of the training algorithm

4Any instance that is classified positive with respect to a
given threshold will be classified positive for all lower thresh-
olds as well.
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Table 3: Prediction performance for the two learn-
ing strategies considered

Classifier thres. rBAD pBAD f1

Random forest 0.43 0.64 0.69 0.67
Logistic regression 0.27 0.51 0.72 0.59

were chosen by maximizing classification perfor-
mance (as evaluated by the f1 score) estimated on
150 sentences of the training set kept apart as a
validation set.

Results for the different learning algorithms
considered are presented in Table 3. Random for-
est clearly outperforms a simple logistic regres-
sion, which shows the importance of using non-
linear decision functions, a conclusion at pair with
our previous results (Zhuang et al., 2012; Singh et
al., 2013).

The overall performance, with a f1 measure of
0.67, is pretty low and in our opinion, not good
enough to consider using such a quality estimation
system in a computer-assisted post-edition con-
text. However, as shown in Table 4, the prediction
performance highly depends on the POS category
of the words: it is quite good for ‘plain’ words
(like verb and nouns) but much worse for other
categories.

There are two possible explanations for this
observation: predicting the correctness of some
morpho-syntaxic categories may be intrinsically
harder (e.g. for punctuation the choice of which
can be highly controversial) or depend on infor-
mation that is not currently available to our sys-
tem. In particular, we do not consider any in-
formation about the structure of the sentence and
about the labels of the context, which may explain
why our system does not perform well in predict-
ing the labels of determiners and conjunctions. In
both cases, this result brings us to moderate our
previous conclusions: as a wrong punctuation sign
has not the same impact on translation quality as a
wrong verb, our system might, regardless of its f1
score, be able to provide useful information about
the quality of a translation. This also suggests that
we should look for a more ‘task-oriented’ metric.

Finally, Figure 2 displays the importance of the
different features used in our system. Random
forests deliver a quantification of the importance
of a feature with respect to the predictability of the
target variable. This quantification is derived from

Table 4: Prediction performance for each POS tag

System f1

VERB 0.73
PRON 0.72
ADJ 0.70

NOUN 0.69
ADV 0.69

overall 0.67
DET 0.62
ADP 0.61
CONJ 0.57

PUNCT 0.56

the position of a feature in a decision tree: fea-
tures used in the top nodes of the trees, which con-
tribute to the final prediction decision of a larger
fraction of the input samples, play a more impor-
tant role than features used near the leaves of the
tree. It appears that, as for our previous experi-
ments (Wisniewski et al., 2013), the most relevant
feature for predicting translation quality is the fea-
ture derived from the SOUL language model, even
if other fluency features seem to also play an im-
portant role. Surprisingly enough, features related
to the pseudo-reference do not seem to be useful.
Further experiments are needed to explain the rea-
sons of this observation.

6 Conclusion

In this paper we described the system submitted
for Task 2 of WMT’14 Shared Task on Quality
Estimation. Our system relies on a binary clas-
sifier and consider only a few dense and contin-
uous features. While the overall performance is
pretty low, a fine-grained analysis of the errors of
our system shows that it can predict the quality of
plain words pretty accurately which indicates that
a more ‘task-oriented’ evaluation may be needed.
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Abstract
This paper describes Parmesan, our sub-
mission to the 2014 Workshop on Sta-
tistical Machine Translation (WMT) met-
rics task for evaluation English-to-Czech
translation. We show that the Czech Me-
teor Paraphrase tables are so noisy that
they actually can harm the performance of
the metric. However, they can be very
useful after extensive filtering in targeted
paraphrasing of Czech reference sentences
prior to the evaluation. Parmesan first per-
forms targeted paraphrasing of reference
sentences, then it computes the Meteor
score using only the exact match on these
new reference sentences. It shows sig-
nificantly higher correlation with human
judgment than Meteor on the WMT12 and
WMT13 data.

1 Introduction

The metric for automatic evaluation of machine
translation (MT) Meteor1 (Denkowski and Lavie,
2011) has shown high correlation with human
judgment since its appearance. It outperforms tra-
ditional metrics like BLEU (Papineni et al., 2002)
or NIST (Doddington, 2002) as it explicitly ad-
dresses their weaknesses – it takes into account re-
call, distinguishes between functional and content
words, allows language-specific tuning of param-
eters and many others.

Another important advantage of Meteor is that
it supports not only exact word matches between
a hypothesis and its corresponding reference sen-
tence, but also matches on the level of stems, syn-
onyms and paraphrases. The Meteor Paraphrase
tables (Denkowski and Lavie, 2010) were created
automatically using the pivot method (Bannard
and Callison-Burch, 2005) for six languages.

1We use the the version 1.4., which was recently outdated
as the new version 1.5. was released for WMT14

The basic setting of Meteor for evaluation
of Czech sentences offers two levels of matches
- exact and paraphrase. In this paper, we show the
impact of the quality of paraphrases on the perfor-
mance of Meteor. We demonstrate that the Czech
Meteor Paraphrase tables are full of noise and their
addition to the metric worsens its correlation with
human judgment. However, they can be very use-
ful (after extensive filtering) in creating new refer-
ence sentences by targeted paraphrasing.

Parmesan2 starts with a simple greedy algo-
rithm for substitution of synonymous words from
a hypothesis in its corresponding reference sen-
tence. Further, we apply Depfix (Rosa et al., 2012)
to fix grammar errors that might arise by the sub-
stitutions.

Our method is independent of the evaluation
metric used. In this paper, we use Meteor for
its consistently high correlation with human judg-
ment and we attempt to tune it further by mod-
ifying its paraphrase tables. We show that re-
ducing the size of the Meteor Paraphrase tables
is very beneficial. On the WMT12 and WMT13
data, the Meteor scores computed using only the
exact match on our new references significantly
outperform Meteor with both exact and paraphrase
match on original references. However, this result
was not confirmed by this year’s data.

We perform our experiments on English-to-
Czech translations, but the method is largely lan-
guage independent.

2 Related Work

Our paraphrasing work is inspired by Kauchak and
Barzilay (2006). They are trying to improve the
accuracy of MT evaluation of Chinese-to-English
translation by targeted paraphrasing, i.e. making
a reference closer in wording to a hypothesis (MT
output) while keeping its meaning and correctness.

2PARaphrasing for MEteor SANs paraphrases
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Having a hypothesis H = h1, ..., hn and
its corresponding reference translation R =
r1, ..., rm, they select a set of candidates C =
{〈ri, hj〉|ri ∈ R \ H,hj ∈ H \ R}.
C is reduced to pairs of words appearing
in the same WordNet (Miller, 1995) synset only.
For every pair 〈ri, hj〉 ∈ C, hj is eval-
uated in the context r1, ..., ri−1,�, ri+1, ..., rm
and if confirmed, the new reference sentence
r1, ..., ri−1, hj , ri+1, ..., rm is created. This way,
several reference sentences might be created, all
with a single changed word with respect to the
original one.

In Barančı́ková et al. (2014), we experiment
with several methods of paraphrasing of Czech
sentences and filtering the Czech Meteor tables.
We show that the amount of noise in the multi-
word paraphrases is very high and no automatic
filtering method we used outperforms omitting
them completely. We present an error analysis
based method of filtering paraphrases consisting
of pairs of single words, which is used in subsec-
tion 3.1. From several methods of paraphrasing,
we achieved the best results a with simple greedy
method, which is presented in section 4.

3 Data

We perform our experiments on data sets from
the English-to-Czech translation task of WMT12
(Callison-Burch et al., 2012), WMT13 (Bojar et
al., 2013) and WMT14 (Bojar et al., 2014). The
data sets contain 13/143/10 files with Czech out-
puts of MT systems. In addition, each data set con-
tains one file with corresponding reference sen-
tences and one with original English source sen-
tences. We perform morphological analysis and
tagging of the hypotheses and the reference sen-
tences using Morče (Spoustová et al., 2007).

The human judgment of hypotheses is available
as a relative ranking of performance of five sys-
tems for a sentence. We calculated the score for
every system by the “> others” method (Bojar et
al., 2011), which was the WMT12 official sys-
tem score. It is computed as wins

wins+loses . We refer
to this interpretation of human judgment as silver
standard to distinguish it from the official system
scores, which were computed differently each year
(here referred to as gold standard).

3We use only 12 of them because two of them (FDA.2878
and online-G) have no human judgments.

WMT12 WMT13 WMT14
WordNet 0.26 0.22 0.24
filtered Meteor 1.53 1.29 1.39
together 1.59 1.34 1.44

Table 1: Average number of one-word paraphrases
per sentence found in WordNet, filtered Meteor ta-
bles and their union over all systems.

3.1 Sources of Paraphrases
We use two available sources of Czech para-
phrases – the Czech WordNet 1.9 PDT (Pala and
Smrž, 2004) and the Meteor Paraphrase Tables
(Denkowski and Lavie, 2010).

The Czech WordNet 1.9 PDT contains para-
phrases of high quality, however, their amount is
insufficient for our purposes. It contains 13k pairs
of synonymous lemmas and only one paraphrase
per four sentences on average is found in the data
(see Table 1). For that reason, we employ the
Czech Meteor Paraphrase tables, too. They are
quite the opposite of Czech WordNet – they are
large in size, but contain a lot of noise.

We attempt to reduce the noise in the Czech Me-
teor Paraphrase tables in the following way. We
keep only pairs consisting of single words since
we were not successful in reducing the noise ef-
fectively for the multi-word paraphrases (?).

Using Morče, we first perform morphological
analysis of all one-word pairs and replace the word
forms with their lemmas. We keep only pairs of
different lemmas. Further, we dispose of pairs of
words that differ in their parts of speech (POS)
or contain an unknown word (typically a foreign
word).

In this way we have reduced 684k paraphrases
in the original Czech Meteor Paraphrase tables
to only 32k pairs of lemmas. We refer to this table
as filtered Meteor.

4 Creating New References

We create new references similarly to Kauchak
and Barzilay (2006). Let HL, RL be sets of lem-
mas from a hypothesis and a corresponding refer-
ence sentence, respectively. Then we select candi-
dates for paraphrasing in the following way: CL =
{(r, h)|r ∈ RL r HL, h ∈ HL r RL, rPOS =
hPOS}, where rPOS and hPOS denote the part
of speech of the respective lemma.

Further, we restrict the setCL to pairs appearing
in our paraphrase tables only. If a word has several
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Source The location alone is classic.

Hypothesis
Samotné mı́sto je klasické .
Actual placeneut is classicneut .
The place alone is classic.

Reference
Už poloha je klasická .
Already positionfem is classicfem .
The position itself is classic.

Before Depfix
Už mı́sto je klasická .
Already placeneut is classicfem .
*The place itself is classic.

New reference
Už mı́sto je klasické .
Already placeneut is classicneut .
The place itself is classic.

Figure 1: Example of the targeted paraphrasing. The hypothesis is grammatically correct and has very
similar meaning as the reference sentence. The new reference is closer in wording to the hypothesis,
but the agreement between the noun and the adjective is broken. Depfix resolves the error and the final
reference is correct. Number of overlapping unigrams increased from 2 to 4.

metric reference WMT12 WMT13

BLEU
original 0.751 0.835

new 0.834 0.891

METEOR
original 0.833 0.817

new 0.927 0.891

1 - TER
original 0.274 0.760

new 0.283 0.781

Table 2: Pearson’s correlation of different metrics
with the silver standard.

paraphrases in CL, we give preference to those
found in WordNet or even better in both WordNet
and filtered Meteor.

We proceed word by word from the beginning
of the reference sentence to its end. If a lemma
of a word appears as the first member of a pair
in restricted CL, it is replaced by the word form
from hypothesis that has its lemma as the second
element of that pair, i.e., by the paraphrase from
the hypothesis. Otherwise, the original word the
reference sentence is kept.

When integrating paraphrases to the reference
sentence, it may happen that the sentence becomes
ungrammatical, e.g., due to a broken agreement
(see Figure 1). Therefore, we apply Depfix (Rosa
et al., 2012) – a system for automatic correction
of grammatical errors that appear often in English-
to-Czech MT outputs.

Depfix analyses the input sentences using
a range of natural language processing tools. It
fixes errors using a set of linguistically-motivated

rules and a statistical component it contains.

5 Choosing a metric

Our next step is choosing a metric that correlates
well with human judgment. We experiment with
three common metrics – BLEU, Meteor and TER.
Based on the results (see Table 2), we decided to
employ Meteor in WMT14 as our metric because
it shows consistently highest correlations.

6 Meteor settings

Based on the positive impact of filtering Meteor
Paraphrase Tables for targeted lexical paraphras-
ing of reference sentences (see the column Ba-
sic in Table 4), we experiment with the filtering
them yet again, but this time as an inner part of the
Meteor evaluation metric (i.e. for the paraphrase
match).

We experiment with seven different settings that
are presented in Table 3. All of them are cre-
ated by reducing the original Meteor Paraphrase
tables, except for the setting referred to as Word-
Net in the table. In this case, the paraphrase table
is generated from one-word paraphrases in Czech
WordNet to all their possible word forms found
in CzEng (Bojar et al., 2012).

Prior paraphrasing reference sentences and us-
ing Meteor with the No paraphr. setting for
computing scores constitutes Parmesan – our sub-
mission to the WMT14 for evaluation English-
to-Czech translation. In the tables with results,
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setting size description of the paraphrase table
Basic 684k The original Meteor Paraphrase Tables

One-word 181k Basic without multi-word pairs
Same POS 122k One-word + only same part-of-speech pairs

Diff. Lemma 71k Same POS + only forms of different lemma
Same Lemma 51k Same POS + only forms of same lemma

No paraphr. 0 No paraphrase tables, i.e., exact match only
WordNet 202k Paraphrase tables generated from Czech WordNet

Table 3: Different paraphrase tables for Meteor and their size (number of paraphrase pairs).

WMT12
reference Basic One-word Same POS Same Lemma Diff. Lemma No paraphr. WordNet
Original 0.833 0.836 0.840 0.838 0.863 0.861 0.863
Before Depfix 0.905 0.908 0.911 0.911 0.931 0.931 0.931
New 0.927 0.930 0.931 0.932 0.950 0.951 0.951

WMT13
references Basic One-word Same POS Same Lemma Diff. Lemma No paraphr. WordNet
Original 0.817 0.820 0.823 0.821 0.850 0.848 0.850
Before Depfix 0.865 0.867 0.869 0.868 0.895 0.895 0.894
New 0.891 0.892 0.893 0.892 0.915 0.915 0.915

Table 4: Pearson’s correlation of Meteor and the silver standard.

Parmesan scores are highlighted by the box and
the best scores are in bold.

7 Results

7.1 WMT12 and WMT13

The results of our experiments are presented in Ta-
ble 44 as Pearson’s correlation coefficient of the
Meteor scores and the human judgment. The re-
sults in both tables are very consistent. There is
a clear positive impact of the prior paraphrasing
of the reference sentences and of applying Depfix.
The results also show that independently of a ref-
erence sentence used, reducing the Meteor para-
phrase tables in evaluation is always beneficial.

We use a freely available implementation5

of Meng et al. (1992) to determine whether the
difference in correlation coefficients is statistically
significant. The tests show that Parmesan per-
forms better than original Meteor with 99% cer-
tainty on the data from WMT12 and WMT13.

Diff. Lemma and WordNet settings give the
best results on the original reference sentences.
That is because they are basically a limited version

4The results of WMT13 using the gold standard are in
Table 5.

5http://www.cnts.ua.ac.be/∼vincent/scripts/rtest.py

of the paraphrase tables we use for creating our
new references, which contain both all different
lemmas of the same part of speech from Meteor
Paraphrase tables and all lemmas from the Word-
Net.

The main reason of the worse performance
of the metric when employing the Meteor Para-
phrase tables is the noise. It is especially apparent
for multi-word paraphrases (Barančı́ková et al.,
2014); however, there are problems among one-
word paraphrases as well. Significant amount of
them are pairs of different word forms of a single
lemma, which may award even completely non-
grammatical sentences. This is reflected in the low
correlation of the Same Lemma setting.

Even worse is the fact that the metric may award
even parts of the hypothesis left untranslated, as
the original Meteor Paraphrase tables contain En-
glish words and their Czech translations as para-
phrases. There are for example pairs: pšenice -
wheat6, vůdce - leader, vařit - cook, poloostrov
- peninsula. For these reasons, the differences
among the systems are more blurred and the met-
ric performs worse than without using the para-
phrases.

6In all examples the Czech word is the correct translation
of the English side.
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WMT13
references Basic One-word Same POS Same Lemma Diff. Lemma No paraphr. WordNet
Original 0.856 0.859 0.862 0.860 0.885 0.883 0.884
Before Depfix 0.894 0.896 0.898 0.897 0.918 0.917 0.917
New 0.918 0.918 0.919 0.919 0.933 0.933 0.933

Table 5: Pearson’s correlation of Meteor and the gold standard – Expected Wins (Bojar et al., 2013). The
results corresponds very well with the silver standard in Table 4.

frequency Basic No paraphr.
WMT12 0.75 0.837 0.869
WMT13 0.61 0.818 0.852

Table 6: The frequency column shows average
number of substitution per sentence using the orig-
inal Meteor Paraphrase tables only. The rest shows
Pearson’s correlation with the silver standard us-
ing these paraphrases.

We also experimented with paraphrasing using
the original Meteor Paraphrase tables for a com-
parison. We used the same pipeline as it is de-
scribed in Section 4, but used only original one-
word paraphrases from the Meteor Paraphrase ta-
bles. Even though the paraphrase tables are much
larger than our filtered Meteor tables, the amount
of substituted words is much smaller (see Table 6)
due to not being lemmatized. The Basic setting
in Table 6 corresponds well with the setting One-
word in Table 4 on original reference sentences.
The results for No paraphr. setting in Table 6 out-
performs all correlations with original references
but cannot compete with our new reference sen-
tences created by the filtered Meteor and Word-
Net.

7.2 WMT14

The WMT14 data did not follow similar patterns
as data from two previous years. The results are
presented in Table 7 (the silver standard) and in
Table 8 (the gold standard).

While reducing the Meteor tables during the
evaluation is still beneficial, this is not entirely
valid about the prior paraphrasing of reference
sentences. The baseline correlation of Meteor
is rather high and paraphrasing sometimes helps
and sometimes harms the performance of the met-
ric. Nevertheless, the differences in correlation be-
tween the original references and the new ones are
very small (0.012 at most).

In contrast to WMT12 and WMT13, the first

phase of paraphrasing before applying Depfix
causes a drop in correlation. On the other hand,
applying Depfix is again always beneficial.

With both standards, the best result is achieved
on the original reference with the No paraphr.
and the WordNet setting. Parmesan outperforms
Meteor by a marginal difference (0.005) on the sil-
ver standard, whereas using the gold standard, Me-
teor is better by exactly the same margin. How-
ever, the correlation of the two standards is 0.997.

There is a distinctive difference between the
data from previous years and this one. In the
WMT14, the English source data for translating
to Czech are sentences originally English or pro-
fessionally translated from Czech to English. In
the previous years, on the other hand, the source
data were equally composed from all competing
languages, i.e., only fifth/sixth of data is originally
English.

One more language involved in the transla-
tion seems as a possible ground for the benefi-
cial effect of prior paraphrasing of reference sen-
tences. Therefore, we experiment with limiting
the WMT12 and WMT13 data to only sentences
that are originally Czech or English. However,
Parmesan on this limited translations again signifi-
cantly outperforms Meteor and the results (see Ta-
ble 9) follow similar patterns as on the whole data
sets.

8 Conclusion and Future Work

We have demonstrated a negative effect of noise
in the Czech Meteor Paraphrase tables to the per-
formance of Meteor. We have shown that large-
scale reduction of the paraphrase tables can be
very beneficial for targeted paraphrasing of ref-
erence sentences. The Meteor scores computed
without the Czech Meteor Paraphrase tables on
these new reference sentences correlates signifi-
cantly better with the human judgment than orig-
inal Meteor on the WMT12 and WMT13 data.
However, the WMT14 data has not confirmed
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WMT14
reference Basic One-word Same POS Same Lemma Diff. Lemma No paraphr. WordNet
Original 0.963 0.967 0.965 0.968 0.970 0.973 0.973
Before Depfix 0.957 0.958 0.959 0.959 0.965 0.965 0.965
New 0.968 0.965 0.969 0.969 0.968 0.968 0.968

Table 7: Pearson’s correlation of Meteor and the silver standard.

WMT14
reference Basic One-word Same POS Same Lemma Diff. Lemma No paraphr. WordNet
Original 0.967 0.968 0.969 0.972 0.972 0.974 0.974
Before Depfix 0.958 0.959 0.959 0.960 0.963 0.963 0.963
New 0.966 0.966 0.966 0.967 0.962 0.962 0.962

Table 8: Pearson’s correlation of Meteor and the gold standard – TrueSkill (Bojar et al., 2014). Note that
as opposed to official WMT14 results, the version 1.4 of Meteor is still used in this table.

WMT12
reference Basic One-word Same POS Same Lemma Diff. Lemma No paraphr. WordNet
Original 0.781 0.779 0.782 0.772 0.807 0.798 0.801
Before Depfix 0.872 0.872 0.874 0.874 0.898 0.899 0.899
New 0.897 0.897 0.897 0.897 0.923 0.923 0.923

WMT13
reference Basic One-word Same POS Same Lemma Diff. Lemma No paraphr. WordNet
Original 0.805 0.810 0.813 0.813 0.842 0.840 0.844
Before Depfix 0.843 0.846 0.849 0.848 0.879 0.877 0.877
New 0.874 0.877 0.878 0.877 0.877 0.902 0.902

Table 9: Pearson’s correlation of Meteor and the silver standard on sentences originally Czech or English
only. In this case, the interpretation of human judgment was computed only on those sentences as well.

this result and the improvement was very small.
Furthermore, Parmesan performs even worse than
Meteor on the gold standard.

In the future, we plan to thoroughly examine the
reason for the different performance on WMT14
data. We also intend to make more sophisticated
paraphrases including word order changes and
other transformation that cannot be expressed by
simple substitution of two words. We are also con-
sidering extending Parmesan to more languages.
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Abstract

BLEU is the de facto standard machine
translation (MT) evaluation metric. How-
ever, because BLEU computes a geo-
metric mean of n-gram precisions, it of-
ten correlates poorly with human judg-
ment on the sentence-level. There-
fore, several smoothing techniques have
been proposed. This paper systemati-
cally compares 7 smoothing techniques
for sentence-level BLEU. Three of them
are first proposed in this paper, and they
correlate better with human judgments on
the sentence-level than other smoothing
techniques. Moreover, we also compare
the performance of using the 7 smoothing
techniques in statistical machine transla-
tion tuning.

1 Introduction

Since its invention, BLEU (Papineni et al., 2002)
has been the most widely used metric for both
machine translation (MT) evaluation and tuning.
Many other metrics correlate better with human
judgments of translation quality than BLEU, as
shown in recent WMT Evaluation Task reports
(Callison-Burch et al., 2011; Callison-Burch et al.,
2012). However, BLEU remains the de facto stan-
dard evaluation and tuning metric. This is proba-
bly due to the following facts:

1. BLEU is language independent (except for
word segmentation decisions).

2. BLEU can be computed quickly. This is im-
portant when choosing a tuning metric.

3. BLEU seems to be the best tuning metric
from a quality point of view - i.e., models
trained using BLEU obtain the highest scores
from humans and even from other metrics
(Cer et al., 2010).

One of the main criticisms of BLEU is that it
has a poor correlation with human judgments on
the sentence-level. Because it computes a geomet-
ric mean of n-gram precisions, if a higher order
n-gram precision (eg. n = 4) of a sentence is
0, then the BLEU score of the entire sentence is
0, no matter how many 1-grams or 2-grams are
matched. Therefore, several smoothing techniques
for sentence-level BLEU have been proposed (Lin
and Och, 2004; Gao and He, 2013).

In this paper, we systematically compare 7
smoothing techniques for sentence-level BLEU.
Three of them are first proposed in this paper, and
they correlate better with human judgments on the
sentence-level than other smoothing techniques on
the WMT metrics task. Moreover, we compare
the performance of using the 7 smoothing tech-
niques in statistical machine translation tuning on
NIST Chinese-to-English and Arabic-to-English
tasks. We show that when tuning optimizes the
expected sum of these sentence-level metrics (as
advocated by Cherry and Foster (2012) and Gao
and He (2013) among others), all of these metrics
perform similarly in terms of their ability to pro-
duce strong BLEU scores on a held-out test set.

2 BLEU and smoothing

2.1 BLEU

Suppose we have a translation T and its reference
R, BLEU is computed with precision P (N,T, R)
and brevity penalty BP(T,R):

BLEU(N,T, R) = P (N,T, R)× BP(T,R) (1)

where P (N,T, R) is the geometric mean of n-
gram precisions:

P (N,T, R) =

(
N∏

n=1

pn

) 1
N

(2)
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and where:
pn =

mn

ln
(3)

mn is the number of matched n-grams between
translation T and its reference R, and ln is the total
number of n-grams in the translation T . BLEU’s
brevity penalty punishes the score if the translation
length len(T ) is shorter than the reference length
len(R), using this equation:

BP(T,R) = min
(
1.0, exp

(
1− len(R)

len(T )

))
(4)

2.2 Smoothing techniques
The original BLEU was designed for the
document-level; as such, it required no smooth-
ing, as some sentence would have at least one 4-
gram match. We now describe 7 smoothing tech-
niques that work better for sentence-level evalua-
tion. Suppose we consider matching n-grams for
n = 1 . . . N (typically, N = 4). Let mn be the
original match count, and m′

n be the modified n-
gram match count.

Smoothing 1: if the number of matched n-
grams is 0, we use a small positive value ǫ to re-
place the 0 for n ranging from 1 to N . The number
ǫ is set empirically.

m′
n = ǫ, if mn = 0. (5)

Smoothing 2: this smoothing technique was
proposed in (Lin and Och, 2004). It adds 1 to the
matched n-gram count and the total n-gram count
for n ranging from 2 to N .

m′
n = mn + 1, for n in 2 . . . N, (6)

l′n = ln + 1, for n in 2 . . . N. (7)

Smoothing 3: this smoothing technique is im-
plemented in the NIST official BLEU toolkit
mteval-v13a.pl.1 The algorithm is given below. It
assigns a geometric sequence starting from 1/2 to
the n-grams with 0 matches.

1. invcnt = 1
2. for n in 1 to N

3. if mn = 0
4. invcnt = invcnt× 2
5. m′

n = 1/invcnt
6. endif
7. endfor

1available at http://www.itl.nist.gov/iad/mig/tests/mt/2009/

Smoothing 4: this smoothing technique is novel
to this paper. We modify Smoothing 3 to address
the concern that shorter translations may have in-
flated precision values due to having smaller de-
nominators; therefore, we give them proportion-
ally smaller smoothed counts. Instead of scaling
invcnt with a fixed value of 2, we replace line 4 in
Smoothing 3’s algorithm with Equation 8 below.

invcnt = invcnt× K

ln(len(T ))
(8)

It assigns larger values to invcnt for shorter sen-
tences, resulting in a smaller smoothed count. K
is set empirically.

Smoothing 5: this smoothing technique is also
novel to this paper. It is inspired by the intuition
that matched counts for similar values of n should
be similar. To a calculate the n-gram matched
count, it averages the n − 1, n and n + 1 –gram
matched counts. We define m′

0 = m1 + 1, and
calculate m′

n for n > 0 as follows:

m′
n =

m′
n−1 + mn + mn+1

3
(9)

Smoothing 6: this smoothing technique was
proposed in (Gao and He, 2013). It interpolates
the maximum likelihood estimate of the precision
pn with a prior estimate p0

n. The prior is estimated
by assuming that the ratio between pn and pn−1

will be the same as that between pn−1 and pn−2.
Formally, the precisions of lower order n-grams,
i.e., p1 and p2, are not smoothed, while the pre-
cisions of higher order n-grams, i.e. n > 2, are
smoothed as follows:

pn =
mn + αp0

n

ln + α
(10)

where α is set empirically, and p0
n is computed as

p0
n = pn−1 × pn−1

pn−2
(11)

Smoothing 7: this novel smoothing technique
combines smoothing 4 and smoothing 5. That is,
we first compute a smoothed count for those 0
matched n-gram counts using Smoothing 4, and
then take the average of three counts to set the fi-
nal matched n-gram count as in Equation 9.

3 Experiments

We carried out two series of experiments. The
7 smoothing techniques were first compared in
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set year lang. #system #seg. pair
dev 2008 xx-en 43 7,804
test1 2012 xx-en 49 34,909
test2 2013 xx-en 94 281,666
test3 2012 en-xx 54 47,875
test4 2013 en-xx 95 220,808

Table 1: Statistics of the WMT dev and test sets.

the metric task as evaluation metrics, then they
were compared as metrics for tuning SMT systems
to maximize the sum of expected sentence-level
BLEU scores.

3.1 Evaluation task
We first compare the correlations with human
judgment for the 7 smoothing techniques on WMT
data; the development set (dev) is the WMT 2008
all-to-English data; the test sets are the WMT 2012
and WMT 2013 all-to-English, and English-to-all
submissions. The languages “all” (“xx” in Ta-
ble 1) include French, Spanish, German, Czech
and Russian. Table 1 summarizes the dev/test set
statistics.

Following WMT 2013’s metric task (Macháček
and Bojar, 2013), for the segment level, we use
Kendall’s rank correlation coefficient τ to measure
the correlation with human judgment:

τ =
#concordant-pairs−#discordant-pairs
#concordant-pairs + #discordant-pairs

(12)
We extract all pairwise comparisons where one
system’s translation of a particular segment was
judged to be better than the other system’s trans-
lation, i.e., we removed all tied human judg-
ments for a particular segment. If two transla-
tions for a particular segment are assigned the
same BLEU score, then the #concordant-pairs
and #discordant-pairs both get a half count. In
this way, we can keep the number of total pairs
consistent for all different smoothing techniques.

For the system-level, we used Spearman’s rank
correlation coefficient ρ and Pearson’s correla-
tion coefficient γ to measure the correlation of
the metric with human judgments of translation.
If we compute document-level BLEU as usual,
all 7 smoothing techniques actually get the same
result, as document-level BLEU does not need
smoothing. We therefore compute the document-
level BLEU as the weighted average of sentence-
level BLEU, with the weights being the reference

Into-English
smooth seg τ sys γ sys ρ

crp – 0.720 0.887
0 0.165 0.759 0.887
1 0.224 0.760 0.887
2 0.226 0.757 0.887
3 0.224 0.760 0.887
4 0.228 0.763 0.887
5 0.234 0.765 0.887
6 0.230 0.754 0.887
7 0.236 0.766 0.887

Table 2: Correlations with human judgment on
WMT data for Into-English task. Results are av-
eraged on 4 test sets. “crp” is the origianl IBM
corpus-level BLEU.

lengths:

BLEUd =
∑D

i=1 len(Ri)BLEUi∑D
i=1 len(Ri)

(13)

where BLEUi is the BLEU score of sentence i,
and D is the size of the document in sentences.

We first set the free parameters of each smooth-
ing method by grid search to optimize the
sentence-level score on the dev set. We set ǫ to 0.1
for Smoothing 1; K = 5 for Smoothing 4; α = 5
for Smoothing 6.

Tables 2 and 3 report our results on the met-
rics task. We compared the 7 smoothing tech-
niques described in Section 2.2 to a baseline with
no smoothing (Smoothing 0). All scores match n-
grams n = 1 to 4. Smoothing 3 is implemented
in the standard official NIST evaluation toolkit
(mteval-v13a.pl). Results are averaged across the
4 test sets.

All smoothing techniques improved sentence-
level correlations (τ ) over no smoothing. Smooth-
ing method 7 got the best sentence-level results on
both the Into-English and Out-of-English tasks.

On the system-level, our weighted average of
sentence-level BLEU scores (see Equation 13)
achieved a better correlation with human judge-
ment than the original IBM corpus-level BLEU.
However, the choice of which smoothing tech-
nique is used in the average did not make a very
big difference; in particular, the system-level rank
correlation ρ did not change for 13 out of 14 cases.
These methods help when comparing one hypoth-
esis to another, but taken as a part of a larger aver-
age, all seven methods assign relatively low scores
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Out-of-English
smooth seg τ sys γ sys ρ

crp – 0.712 0.744
0 0.119 0.715 0.744
1 0.178 0.722 0.748
2 0.180 0.725 0.744
3 0.178 0.724 0.744
4 0.181 0.727 0.744
5 0.184 0.731 0.744
6 0.182 0.725 0.744
7 0.187 0.734 0.744

Table 3: Correlations with human judgment on
WMT data for Out-of-English task. Results are
averaged on 4 test sets. “crp” is the origianl IBM
corpus-level BLEU.

to the cases that require smoothing, resulting in
similar system-level rankings.

3.2 Tuning task
In this section, we explore the various BLEU
smoothing methods in the context of SMT param-
eter tuning, which is used to set the decoder’s
linear model weights w. In particular, we use
a tuning method that maximizes the sum of ex-
pected sentence-level BLEU scores, which has
been shown to be a simple and effective method
for tuning with large feature sets by both Cherry
and Foster (2012) and Gao and He (2013), but
which requires a smoothed sentence-level BLEU
approximation. For a source sentence fi, the prob-
ability of the kth translation hypothesis ek

i is its ex-
ponentiated and normalized model score:

Pw(ek
i |fi) =

exp(scorew(ek
i , fi))∑

k′ exp(scorew(ek′
i , fi))

where k′ ranges over all hypotheses in a K-best
list.2 We then use stochastic gradient descent
(SGD) to minimize:

λ||w||2 −
∑

i

[
len(Ri)× EPw

(
BLEU(ek

i , fi)
)]

Note that we scale the expectation by reference
length to place more emphasis on longer sen-
tences. We set the regularization parameter λ,
which determines the trade-off between a high ex-
pected BLEU and a small norm, to λ = 10.

Following Cherry and Foster (2012), we tune
with a MERT-like batch architecture: fixing a set

2We use K = 100 in our experiments.

corpus # segs # en tok
Chinese-English

train 10.1M 283M
tune 1,506 161K
MT06 1,664 189K
MT08 1,357 164K

Arabic-English
train 1,512K 47.8M
tune 1,664 202K
MT08 1,360 205K
MT09 1,313 187K

Table 4: Statistics of the NIST Chinese-English
and Arabic-English data.

of K-best lists, optimizing, and then re-decoding
the entire dev set to K-best and aggregating with
previous lists to create a better K-best approxima-
tion. We repeat this outer loop 15 times.

We carried out experiments in two different set-
tings, both involving data from NIST Open MT
2012.3 The first setting is based on data from the
Chinese-to-English constrained track, comprising
about 283 million English running words. The
second setting uses NIST 2012 Arabic-to-English
data, but excludes the UN data. There are about
47.8 million English running words in these train-
ing data. The dev set (tune) for the Chinese-to-
English task was taken from the NIST 2005 eval-
uation set, augmented with some web-genre mate-
rial reserved from other NIST corpora. We test on
the evaluation sets from NIST 2006 and 2008. For
the Arabic-to-English task, we use the evaluation
sets from NIST 2006, 2008, and 2009 as our dev
set and two test sets, respectively. Table 4 summa-
rizes the training, dev and test sets.

Experiments were carried out with an in-house,
state-of-the-art phrase-based system. Each corpus
was word-aligned using IBM2, HMM, and IBM4
models, and the phrase table was the union of
phrase pairs extracted from these separate align-
ments, with a length limit of 7. The translation
model (TM) was smoothed in both directions with
Kneser-Ney smoothing (Chen et al., 2011). We
use the hierarchical lexicalized reordering model
(RM) (Galley and Manning, 2008), with a dis-
tortion limit of 7. Other features include lexi-
cal weighting in both directions, word count, a
distance-based RM, a 4-gram LM trained on the
target side of the parallel data, and a 6-gram En-

3http://www.nist.gov/itl/iad/mig/openmt12.cfm
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Tune std MT06 std MT08 std
0 27.6 0.1 35.6 0.1 29.0 0.2
1 27.6 0.0 35.7 0.1 29.1 0.1
2 27.5 0.1 35.8 0.1 29.1 0.1
3 27.6 0.1 35.8 0.1 29.1 0.1
4 27.6 0.1 35.7 0.2 29.1 0.2
5 27.6 0.1 35.5 0.1 28.9 0.2
6 27.5 0.1 35.7 0.1 29.0 0.2
7 27.6 0.1 35.6 0.1 29.0 0.1

Table 5: Chinese-to-English Results for the small
feature set tuning task. Results are averaged across
5 replications; std is the standard deviation.

glish Gigaword LM.
We also conducted a set of experiments with a

much larger feature set. This system used only
GIZA++ for word alignment, increased the distor-
tion limit from 7 to 9, and is trained on a high-
quality subset of the parallel corpora used ear-
lier. Most importantly, it includes the full set of
sparse phrase-pair features used by both Hopkins
and May (2011) and Cherry and Foster (2012),
which results in nearly 7,000 features.

Our evaluation metric is the original IBM
BLEU, which performs case-insensitive matching
of n-grams up to n = 4. We perform random
replications of parameter tuning, as suggested by
Clark et al. (2011). Each replication uses a differ-
ent random seed to determine the order in which
SGD visits tuning sentences. We test for signifi-
cance using the MultEval tool,4 which uses a strat-
ified approximate randomization test to account
for multiple replications. We report results aver-
aged across replications as well as standard devia-
tions, which indicate optimizer stability.

Results for the small feature set are shown in
Tables 5 and 6. All 7 smoothing techniques, as
well as the no smoothing baseline, all yield very
similar results on both Chinese and Arabic tasks.
We did not find any two results to be significantly
different. This is somewhat surprising, as other
groups have suggested that choosing an appropri-
ate BLEU approximation is very important. In-
stead, our experiments indicate that the selected
BLEU smoothing method is not very important.

The large-feature experiments were only con-
ducted with the most promising methods accord-
ing to correlation with human judgments:

4available at https://github.com/jhclark/multeval

Tune std MT08 std MT09 std
0 46.9 0.1 46.5 0.1 49.1 0.1
1 46.9 0.0 46.4 0.1 49.1 0.1
2 46.9 0.0 46.4 0.1 49.0 0.1
3 47.0 0.0 46.5 0.1 49.2 0.1
4 47.0 0.0 46.5 0.1 49.2 0.1
5 46.9 0.0 46.4 0.1 49.1 0.1
6 47.0 0.0 46.4 0.1 49.1 0.1
7 47.0 0.0 46.4 0.1 49.0 0.1

Table 6: Arabic-to-English Results for the small
feature set tuning task. Results are averaged across
5 replications; std is the standard deviation.

Tune std MT06 std MT08 std
mira 29.9 0.1 38.0 0.1 31.0 0.1

0 29.5 0.1 37.9 0.1 31.4 0.3
2 29.6 0.3 38.0 0.2 31.1 0.2
4 29.9 0.2 38.1 0.1 31.2 0.2
6 29.7 0.1 37.9 0.2 31.0 0.2
7 29.7 0.2 38.0 0.2 31.2 0.1

Table 7: Chinese-to-English Results for the large
feature set tuning task. Results are averaged
across 5 replications; std is the standard deviation.
Significant improvements over the no-smoothing
baseline (p ≤ 0.05) are marked in bold.

0: No smoothing (baseline)
2: Add 1 smoothing (Lin and Och, 2004)
4: Length-scaled pseudo-counts (this paper)
6: Interpolation with a precision prior (Gao and

He, 2013)
7: Combining Smoothing 4 with the match in-

terpolation of Smoothing 5 (this paper)

The results of the large feature set experiments are
shown in Table 7 for Chinese-to-English and Ta-
ble 8 for Arabic-to-English. For a sanity check, we
compared these results to tuning with our very sta-
ble Batch k-best MIRA implementation (Cherry
and Foster, 2012), listed as mira, which shows that
all of our expected BLEU tuners are behaving rea-
sonably, if not better than expected.

Comparing the various smoothing methods in
the large feature scenario, we are able to see signif-
icant improvements over the no-smoothing base-
line. Notably, Method 7 achieves a significant
improvement over the no-smoothing baseline in 3
out of 4 scenarios, more than any other method.
Unfortunately, in the Chinese-English MT08 sce-
nario, the no-smoothing baseline significantly out-
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Tune std MT08 std MT09 std
mira 47.9 0.1 47.3 0.0 49.3 0.1

0 48.1 0.1 47.2 0.1 49.5 0.1
2 48.0 0.1 47.4 0.1 49.7 0.1
4 48.1 0.2 47.4 0.1 49.6 0.1
6 48.2 0.0 47.3 0.1 49.7 0.1
7 48.1 0.1 47.3 0.1 49.7 0.1

Table 8: Arabic-to-English Results for the large
feature set tuning task. Results are averaged
across 5 replications; std is the standard deviation.
Significant improvements over the no-smoothing
baseline (p ≤ 0.05) are marked in bold.

performs all smoothed BLEU methods, making it
difficult to draw any conclusions at all from these
experiments. We had hoped to see at least a clear
improvement in the tuning set, and one does see
a nice progression as smoothing improves in the
Chinese-to-English scenario, but no correspond-
ing pattern emerges for Arabic-to-English.

4 Conclusions

In this paper, we compared seven smoothing
techniques for sentence-level BLEU. Three of
them are newly proposed in this paper. The
new smoothing techniques got better sentence-
level correlations with human judgment than other
smoothing techniques. On the other hand, when
we compare the techniques in the context of tun-
ing, using a method that requires sentence-level
BLEU approximations, they all have similar per-
formance.
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Abstract 

In this paper we present VERTa, a lin-

guistically-motivated metric that com-

bines linguistic features at different lev-

els. We provide the linguistic motivation 

on which the metric is based, as well as 

describe the different modules in VERTa 

and how they are combined. Finally, we 

describe the two versions of VERTa, 

VERTa-EQ and VERTa-W, sent to 

WMT14 and report results obtained in 

the experiments conducted with the 

WMT12 and WMT13 data into English. 

1 Introduction 

In the Machine Translation (MT) process, the 

evaluation of MT systems plays a key role both 

in their development and improvement. From the 

MT metrics that have been developed during the 

last decades, BLEU (Papineni et al., 2002) is one 

of the most well-known and widely used, since it 

is fast and easy to use. Nonetheless, researchers 

such as (Callison-Burch et al., 2006) and (Lavie 

and Dekowski, 2009) have claimed its weak-

nesses regarding translation quality and its ten-

dency to favour statistically-based MT systems. 

As a consequence, other more complex metrics 

that use linguistic information have been devel-

oped. Some use linguistic information at lexical 

level, such as METEOR (Denkowski and Lavie, 

2011); others rely on syntactic information, ei-

ther using constituent (Liu and Hildea, 2005) or 

dependency analysis (Owczarzack et al., 2007a 

and 2007b; He et al., 2010); others use more 

complex information such as semantic roles 

(Giménez and Márquez, 2007 and 2008a; Lo et 

al., 2012). All these metrics focus on partial as-

pects of language; however, other researchers 

have tried to combine information at different 

linguistic levels in order to follow a more holistic 

approach. Some of these metrics follow a ma-

chine-learning approach (Leusch and Ney, 2009; 

Albrecht and Hwa, 2007a and 2007b), others 

combine a wide variety of metrics in a simple 

and straightforward way (Giménez, 2008b; 

Giménez and Márquez, 2010; Specia and Gimé-

nez, 2010). However, very little research has 

been performed on the impact of the linguistic 

features used and how to combine this informa-

tion from a linguistic point of view. Hence, our 

proposal is a linguistically-based metric, VERTa 

(Comelles et al., 2012), which uses a wide vari-

ety of linguistic features at different levels, and 

aims at combining them in order to provide a 

wider and more accurate coverage than those 

metrics working at a specific linguistic level. In 

this paper we provide a description of the lin-

guistic information used in VERTa, the different 

modules that form VERTa and how they are 

combined according to the language evaluated 

and the type of evaluation performed. Moreover, 

the two versions of VERTa participating in 

WMT14, VERTa-EQ and VERTa-W are de-

scribed. Finally, for the sake of comparison, we 

use the data available in WMT12 and WMT13 to 

compare both versions to the metrics participat-

ing in those shared tasks. 

2 Linguistic Motivation 

Before developing VERTa, we analysed those 

linguistic phenomena that an MT metric should 

cover. From this analysis, we decided to organise 

the information into the following groups: 

 Lexical information. The use of lexical 

semantics plays a key role when compar-

ing a hypothesis and reference segment, 

since it allows for identifying relations of 

synonymy, hypernymy and hyponymy. 

 Morphological information. This type of 

information is crucial when dealing with 

languages with a rich inflectional mor-

phology, such as Spanish, French or Cata-
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lan because it helps in covering phenom-

ena related to tense, mood, gender, num-

ber, aspect or case. In addition, morphol-

ogy in combination with syntax (morpho-

syntax) is also important to identify 

agreement (i.e. subject-verb agreement). 

This type of information should be taken 

into account when evaluating the fluency 

of a segment. 

 Syntactic information. This type of in-

formation covers syntactic structure, syn-

tactic relations and word order.  

 Semantic information. Named Entities 

(NEs), sentence polarity and time expres-

sions are included here. 

All this information described above should be 

taken into account when developing a metric that 

aims at covering linguistic phenomena at differ-

ent levels and evaluate both adequacy and flu-

ency. 

3 Metric Description 

In order to cover the above linguistic features, 

VERTa is organised into different modules: 

Lexical similarity module, Morphological simi-

larity module, Dependency similarity module and 

Semantic similarity module. Likewise, an Ngram 

similarity module has also been added in order to 

account for similarity between chunks in the hy-

pothesis and reference segments. Each metric 

works first individually and the final score is the 

Fmean of the weighted combination of the Preci-

sion and Recall of each metric in order to get the 

results which best correlate with human assess-

ment. This way, the different modules can be 

weighted depending on their importance regard-

ing the type of evaluation (fluency or adequacy) 

and language evaluated. In addition, the modular 

design of this metric makes it suitable for all lan-

guages. Even those languages that do not have a 

wide range of NLP tools available could be 

evaluated, since each module can be used iso-

lated or in combination. 

All metrics use a weighted precision and recall 

over the number of matches of the particular 

element of each level (words, dependency triples, 

ngrams, etc) as shown below. 

 

)(
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hnmatchW
P D

 

R
W nmatch

D
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Where r is the reference, h is the hypothesis 

and ∇ is a function that given a segment will 

return the elements of each level (e.g. words at 

lexical level and triples at dependency level). D 

is the set of different functions to project the 

level element into the features associated to each 

level, such as word-form, lemma or partial-

lemma at lexical level. nmatch () is a function 

that returns the number of matches according to 

the feature ∂ (i.e. the number of lexical matches 

at the lexical level or the number of dependency 

triples that match at the dependency level). Fi-

nally, W is the set of weights ]0 1] associated to 

each of the different features in a particular level 

in order to combine the different kinds of 

matches considered in that level.  

All modules forming VERTa and the linguis-

tic features used are described in detail in the 

following subsections. 

3.1 Lexical module 

Inspired by METEOR, the lexical module 

matches lexical items in the hypothesis segment 

to those in the reference segment taking into ac-

count several linguistic features. However, while 

METEOR uses word-form, synonymy, stemming 

and paraphrasing, VERTa relies on word-form, 

synonymy
1
, lemma, partial lemma

2
, hypernyms 

and hyponyms. In addition, a set of weights is 

assigned to each type of match depending on 

their importance as regards semantics (see Table 

1). 

 W

  

Match Examples 

HYP REF 

1 1 Word-form east east 

2 1 Synonym believed considered 

3 1 Hypernym barrel keg 

4 1 Hyponym keg barrel 

5 .8 Lemma is_BE are_BE 

6 .6 Part-lemma danger dangerous 

Table 1. Lexical matches and examples. 

3.2 Morphological similarity module 

The morphological similarity module is based on 

the matches established in the lexical module 

(except for the partial-lemma match) in combina-

tion with Part-of-Speech (PoS) tags from the an-

notated corpus
3
. The aim of this module is to 

                                                 
1
 Information on synonyms, lemmas, hypernyms and 

hyponyms is obtained from WordNet 3.0. 
2
 Lemmas that share the first four letters. 

3
 The corpus has been PoS tagged using the Stanford 

Parser (de Marneffe et al. 2006). 
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compensate the broader coverage of the lexical 

module, preventing matches such as invites and 

invite, which although similar in terms of mean-

ing, do not coincide as for their morphological 

information. Therefore, this module turns more 

appropriate to assess the fluency of a segment 

rather than its adequacy. In addition, this module 

will be particularly useful when evaluating lan-

guages with a richer inflectional morphology (i.e. 

Romance languages). 

In line with the lexical similarity metric, the 

morphological similarity metric establishes 

matches between items in the hypothesis and the 

reference sentence and a set of weights (W) is 

applied. However, instead of comparing single 

lexical items as in the previous module, in this 

module we compare pairs of features in the order 

established in Table 2. 

 

W Match Examples 

HYP REF 

1 (Word-

form, PoS) 

(he, PRP) (he, PRP) 

1 (Synonym, 

PoS) 

(VIEW, 

NNS) 

(OPINON, 

NNS) 

1 (Hypern., 

PoS) 

(PUBLICA-

TION, NN) 

(MAGA-

ZINE, NN) 

1 (Hypon., 

PoS) 

(MAGA-

ZINE, NN) 

(PUBLI-

CATION, 

NN) 

.8 (LEMMA, 

PoS) 

can_(CAN, 

MD) 

Could_(C

AN, MD) 

Table 2. Morphological module matches. 

3.3 Dependency similarity module 

The dependency similarity metric helps in cap-

turing similarities between semantically compa-

rable expressions that show a different syntactic 

structure (see Example 1), as well as changes in 

word order (see Example 2). 

Example 1: 

HYP: ...the interior minister... 

REF: ...the minister of interior... 

In example 1 both hypothesis and reference 

chunks convey the same meaning but their syn-

tactic constructions are different. 

Example 2: 

HYP: After a meeting Monday night with the 

head of Egyptian intelligence chief Omar 

Suleiman Haniya said.... 

REF: Haniya said, after a meeting on Monday 

evening with the head of Egyptian Intelligence 

General Omar Suleiman... 

In example 2, the adjunct realised by the PP 

After a meeting Monday night with the head of 

Egyptian intelligence chief Omar Suleiman oc-

cupies different positions in the hypothesis and 

reference strings. In the hypothesis it is located at 

the beginning of the sentence, preceding the sub-

ject Haniya, whereas in the reference, it is placed 

after the verb. By means of dependencies, we can 

state that although located differently inside the 

sentence, both subject and adjunct depend on the 

verb. 
This module works at sentence level and fol-

lows the approach used by (Owczarzack et al., 
2007a and 2007b) and (He et al., 2010) with 
some linguistic additions in order to adapt it to 
our metric combination. Similar to the morpho-
logical module, the dependency similarity metric 
also relies first on those matches established at 
lexical level − word-form, synonymy, hy-
pernymy, hyponymy and lemma − in order to 
capture lexical variation across dependencies and 
avoid relying only on surface word-form. Then, 
by means of flat triples with the form La-
bel(Head, Mod) obtained from the parser

4
, four 

different types of dependency matches have been 
designed (see Table 3) and weights have been 
assigned to each type of match. 
 

W Match Type Match Descr. 

1 Complete Label1=Label2 

Head1=Head2 

Mod1=Mod2 

1 Partial_no_label Label1≠Label2 

Head1=Head2 

Mod1=Mod2 

.9 Partial_no_mod Label1=Label2 

Head1=Head2 

Mod1≠Mod2 

.7 Partial_no_head Label1=Label2 

Head1≠Head2 

Mod1=Mod2 

Table 3. Dependency matches. 

 

In addition, dependency categories also re-

ceive a different weight depending on how in-

formative they are: dep, det and _
5
 which receive 

0.5, whereas the rest of categories are assigned 

the maximum weight (1). 

Finally, a set of language-dependent rules has 

been added with two goals: 1) capturing similari-

ties between different syntactic structures con-

                                                 
4
 Both hypothesis and reference strings are annotated 

with dependency relations by means of the Stanford 

parser (de Marneffe et al. 2006). 
5
 _ stands for no_dep_label 
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veying the same meaning; and 2) restricting cer-

tain dependency relations (i.e. subject word order 

when translating from Arabic to English).  

3.4 Ngram similarity module 

The ngram similarity metric matches chunks in 

the hypothesis and reference segments and relies 

on the matches set by the lexical similarity met-

ric, which allows us to work not only with word-

forms but also with synonyms, lemmas, partial-

lemmas, hypernyms and hyponyms as shown in 

Example 3, where the chunks [the situation in 

the area] and [the situation in the region] do 

match, even though area and region do not share 

the same word-form but a relation of synonymy. 

Example 3: 

HYP: … the situation in the area… 

REF: … the situation in the region… 

3.5 Semantics similarity module 

As confirmed by the lexical module, semantics 

plays an important role in the evaluation of ade-

quacy. This has also been claimed by (Lo and 

Wu, 2010) who report that their metric based on 

semantic roles outperforms other well-known 

metrics when adequacy is assessed. With this 

aim in mind the semantic similarity module uses 

other semantic features at sentence level: NEs, 

time expressions and polarity. 

Regarding NEs, we use Named-Entity recog-

nition (NER) and Named-Entity linking (NEL). 

Following previous NE-based metrics (Reeder et 

al., 2011 and Giménez, 2008) the NER metric
6
 

aims at capturing similarities between NEs in the 

hypothesis and reference segments. On the other 

hand NEL
7
 focuses only on those NEs that ap-

pear on Wikipedia, which allows for linking NEs 

regardless of their external form. Thus, EU and 

European Union will be captured as the same 

NE, since both of them are considered as the 

same organisation in Wikipedia. 

As regards time expressions, the TIMEX met-

ric matches temporal expressions in the hypothe-

sis and reference segments regardless of their 

form. The tool used is the Stanford Temporal 

Tagger (Chang and Manning, 2012) which rec-

ognizes not only points in time but also duration. 

By means of this metric, different syntactic struc-

tures conveying the same time expression can be 

                                                 
6
 In order to identify NEs we use the Supersense Tag-

ger (Ciaramita and Altun, 2006). 
7
 The NEL module uses a graph-based NEL tool 

(Hachey, Radford and Curran, 2010) which links NEs 

in a text with those in Wikipedia pages. 

matched, such as on February 3
rd

 and on the 

third of February. 

Finally, it has been reported that negation 

might pose a problem to SMT systems (Wetzel 

and Bond, 2012). In order to answer such need, a 

module that checks the polarity of the sentence 

has been added using the dictionary strategy de-

scribed (Atserias et al., 2012):  

 Adding 0.5 for each weak positive word. 

 Adding 1.0 for each strong positive word. 

 Subtracting 0.5 for each weak negative 

word. 

 Subtracting 1.0 for each strong negative 

word. 

For each query term score, the value is propa-

gated to the query term positions by reducing its 

strength in a factor of 1/n, where n is the distance 

between the query term and the polar term. 

According to the experiments performed, this 

module shows a low correlation with human 

judgements on adequacy, since only partial as-

pects of translation are considered, whereas hu-

man judges assess whole segments. However, 

regardless of how well/bad the module correlates 

with human judgements, it proves useful to 

check partial aspects of the segments translated, 

such as the correct translation of NEs or the cor-

rect translation of negation. 

3.6 Metrics combination 

The modular design of VERTa allows for pro-

viding different weights to each module depend-

ing on the type of evaluation and the language 

evaluated. Thus following linguistic criteria 

when evaluating adequacy, those modules which 

must play a key role are the lexical and depend-

ency module, since they are more related to se-

mantics; whereas, when evaluating fluency those 

related to morphology, morphosyntax and con-

stituent word order will be the most important. 

Moreover, metrics can also be combined depend-

ing on the type of language evaluated. If a lan-

guage with a rich inflectional morphology is as-

sessed, the morphology module should be given 

a higher weight; whereas if the language evalu-

ated does not show such a rich inflectional mor-

phology, the weight of the morphology module 

should be lower. 

4 Experiments and results 

Experiments were carried out on WMT data, 

specifically on WMT12 and WMT13 data, all 

languages into English. Languages “all” include 

French, German, Spanish and Czech for WMT12 
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and French, German, Spanish, Czech and Rus-

sian for WMT13. Both segment and system level 

evaluations were performed. Evaluation sets pro-

vided by WMT organizers were used to calculate 

both segment and system level correlations. 

Since VERTa has been mainly designed to as-

sess either adequacy or fluency separately, our 

goal for WMT14 was to find the best combina-

tion in order to evaluate whole translation qual-

ity. Firstly we decided to explore the influence of 

each module separately. To this aim, all modules 

described above, except for the semantics one 

were used and tested separately. Secondly, all 

modules were assigned the same weight and 

tested in combination (VERTa-EQ). The reason 

why the semantics module was disregarded is 

that it does not usually correlate well with human 

judgements, as stated above. Each module was 

set as follows: 

 Lexical module. As described above, ex-

cept for the use of hypernyms/hyponyms 

matches that were disregarded. 

 Morphological module. As described 

above, except for the lemma-PoS match 

and the hypernyms/hyponyms-PoS match. 

 Dependency module. As described above. 

 Ngram module. As described above, using 

a 2-gram length. 

 

Finally, we used the module combination 

aimed at evaluating adequacy, which is mainly 

based on the dependency and lexical modules, 

but with a stronger influence of the ngram mod-

ule in order to control word order (VERTa-W). 

Weights were manually assigned, based on re-

sults obtained in previous experiments conducted 

for adequacy and fluency (Comelles et al., 2012), 

as follows: 

 Lexical module:  0.41 

 Morphological module: 0 

 Dependency module: 0.40 

 Ngram module: 0.19 

 

Experiments aimed at evaluating the influence 

of each module (see Table 4 and Table 5) show 

that the dependency module, in the case of 

WMT12 data, and the lexical module in the case 

of WMT13 data, are the most effective ones. 

However, the influence of the ngram module and 

the morphological module varies depending on 

the source language. The fact that the depend-

ency module correlates better with human 

judgements than others might be due to its flexi-

bility to capture different syntactic constructions 

that convey the same meaning. In addition, the 

good performance of the lexical module is due to 

the use of lexical semantic relations. On the other 

hand, in general the morphological module 

shows a better performance than the ngram one, 

which might be due to the type of source lan-

guages and the possible translation mistakes. All 

source languages are highly-inflected languages 

and this might cause problems when translating 

into English, since its inflectional morphology is 

not as rich as theirs. As for the low performance 

of the ngram module in the cs-en (especially, in 

WMT12 data), it might be due to the fact that 

Czech word order is unrestricted, whereas Eng-

lish shows a stricter word order and this might 

cause translation issues. A longer ngram distance 

might have been more appropriate to control 

word order in this case. 

 

Module fr-en de-en es-en cs-en 

Lexical .16 .20 .18 .14 

Morph. .17 .19 .18 .12 

Depend. .18 .24 .20 .17 

Ngram .16 .17 .15 .08 

Table 4. Segment-level Kendall’s tau correla-

tion per module with WMT12 data. 

 

Module fr-

en 

de-

en 

es-

en 

cs-

en 

ru-

en 

Lexical .239 .254 .294 .227 .220 

Morph. .236 .243 .295 .214 .191 

Depend. .232 .247 .275 .220 .199 

Ngram .237 .245 .283 .213 .189 

Table 5. Segment-level Kendall’s tau correla-

tion per module with WMT13 data. 

 

Finally, two versions of VERTa were com-

pared: the unweighted combination (VERTa-EQ) 

and the weighted one (VERTa-W). These two 

versions were also compared to some of the best 

performing metrics in WMT12 (see Table 6 and 

Table 7) and WMT13 (see Table 8 and Table 9): 

Spede07-pP, METEOR, SEMPOR and AMBER 

(Callison-Burch et al., 2012); SIMPBLEU-

RECALL, METEOR and DEPREF-ALIGN
8
).  

As regards WMT12 data at segment level, the 

unweighted version achieves similar results to 

those obtained by the best performing metrics. 

On the other hand, VERTa-W’s results are 

slightly worse, especially for fr-en and es-en 

pairs, which is due to the fact that the morpho-

logical module has been disregarded in this ver-

                                                 
8
 http://www.statmt.org/wmt13/papers.html 
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sion. Regarding system level correlation, neither 

VERTa-EQ nor VERTa-W achieves a high cor-

relation with human judgements. 

 

Metric fr-en de-en es-en cs-en 

Spede07-pP .26 .28 .26 .21 

METEOR .25 .27 .24 .21 

VERTa-EQ .26 .28 .26 .20 

VERTa-W .24 .28 .25 .20 

Table 6. Segment-level Kendall’s tau correla-

tion WMT12. 

 

Metric fr-en de-en es-en cs-en 

SEMPOR .80 .92 .94 .94 

AMBER .85 .79 .97 .83 

VERTa-EQ .83 .71 .89 .66 

VERTa-W .79 .73 .91 .66 

Table 7. System-level Spearman’s rho correla-

tion WMT12. 

 

As for segment level WMT13 results (see Ta-

ble 8), although both VERTa-EQ and VERTa-

W’s performance is worse than that of the two 

best-performing metrics, both versions achieve a 

third and fourth position for all language pairs, 

except for fr-en. As regards system level correla-

tions (see Table 9), both versions of VERTa 

show the best performance for de-en and ru-en 

pairs, as well as for the average score. 

5 Conclusions and Future Work 

In this paper we have presented VERTa, a lin-

guistically-based MT metric. VERTa allows for 

modular combination depending on the language 

and type of evaluation conducted. Although 

VERTa has been designed to evaluate adequacy 

and fluency separately, in order to evaluate 

whole MT quality, a couple of versions have 

been used: VERTa-EQ, an unweighted version 

that uses all modules, and VERTa-W a weighted 

version that uses the lexical, dependency and 

ngram modules. 

Experiments have shown that the modules that 

best correlate with human judgements are the 

dependency and lexical modules. In addition, 

both VERTa-EQ and VERTa-W have been com-

pared to the best performing metrics in WMT12 

and WMT13 shared tasks. VERTa-EQ has 

proved to be in line with results obtained by 

Spede07-pP and METEOR in WMT12 at seg-

ment level, while in WMT13, both VERTa and 

VERTa-W occupy the third and fourth position 

after METEOR and DEPREF-ALIGN as regards 

segment level and the first position at system 

level.  

In the future, we plan to continue working on 

the improvement of VERTa and use automatic 

tuning of module’s weight in order to achieve the 

final version that best correlates with human 

judgements on ranking. Likewise, we would like 

to explore the use of VERTa to evaluate other 

languages but English and how NLP tool errors 

may influence the performance of the metric. 
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Metric fr-en de-en es-en cs-en ru-en Average 

SIMPBLEU-RECALL .303 .318 .388 .260 .234 .301 

METEOR .264 .293 .324 .265 .239 .277 

VERTa-EQ .252 .280 .318 .239 .215 .261 

VERTa-W .253 .278 .314 .238 .222 .261 

DEPREF-ALIGN .257 .267 .312 .228 .200 .253 

Table 8. Segment-level Kendall’s tau correlation WMT13. 

 

Metric fr-en de-en es-en cs-en ru-en Average 

METEOR .984 .961 .979 .964 .789 .935 

DEPREF-ALIGN .995 .966 .965 .964 .768 .931 

VERTa-EQ .989 .970 .972 .936 .814 .936 

VERTa-W .989 .980 .972 .945 .868 .951 

Table 9. System-level Spearman’s rho correlation WMT13.
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Abstract
This paper describes Meteor Universal, re-
leased for the 2014 ACL Workshop on
Statistical Machine Translation. Meteor
Universal brings language specific evalu-
ation to previously unsupported target lan-
guages by (1) automatically extracting lin-
guistic resources (paraphrase tables and
function word lists) from the bitext used to
train MT systems and (2) using a univer-
sal parameter set learned from pooling hu-
man judgments of translation quality from
several language directions. Meteor Uni-
versal is shown to significantly outperform
baseline BLEU on two new languages,
Russian (WMT13) and Hindi (WMT14).

1 Introduction

Recent WMT evaluations have seen a variety of
metrics employ language specific resources to
replicate human translation rankings far better
than simple baselines (Callison-Burch et al., 2011;
Callison-Burch et al., 2012; Macháček and Bojar,
2013; Snover et al., 2009; Denkowski and Lavie,
2011; Dahlmeier et al., 2011; Chen et al., 2012;
Wang and Manning, 2012, inter alia). While the
wealth of linguistic resources for the WMT lan-
guages allows the development of sophisticated
metrics, most of the world’s 7,000+ languages lack
the prerequisites for building advanced metrics.
Researchers working on low resource languages
are usually limited to baseline BLEU (Papineni et
al., 2002) for evaluating translation quality.

Meteor Universal brings language specific eval-
uation to any target language by combining lin-
guistic resources automatically learned from MT
system training data with a universal metric pa-
rameter set that generalizes across languages.

Given only the bitext used to build a standard
phrase-based translation system, Meteor Universal
learns a paraphrase table and function word list,
two of the most consistently beneficial language
specific resources employed in versions of Me-
teor. Whereas previous versions of Meteor require
human ranking judgments in the target language
to learn parameters, Meteor Universal uses a sin-
gle parameter set learned from pooling judgments
from several languages. This universal parameter
set captures general preferences shown by human
evaluators across languages. We show this ap-
proach to significantly outperform baseline BLEU
for two new languages, Russian and Hindi. The
following sections review Meteor’s scoring func-
tion (§2), describe the automatic extraction of lan-
guage specific resources (§3), discuss training of
the universal parameter set (§4), report experimen-
tal results (§5), describe released software (§6),
and conclude (§7).

2 Meteor Scoring

Meteor evaluates translation hypotheses by align-
ing them to reference translations and calculating
sentence-level similarity scores. For a hypothesis-
reference pair, the space of possible alignments is
constructed by exhaustively identifying all possi-
ble matches between the sentences according to
the following matchers:
Exact: Match words if their surface forms are
identical.
Stem: Stem words using a language appropriate
Snowball Stemmer (Porter, 2001) and match if the
stems are identical.
Synonym: Match words if they share member-
ship in any synonym set according to the WordNet
database (Miller and Fellbaum, 2007).
Paraphrase: Match phrases if they are listed as
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paraphrases in a language appropriate paraphrase
table (described in §3.2).

All matches are generalized to phrase matches
with a span in each sentence. Any word occur-
ring within the span is considered covered by the
match. The final alignment is then resolved as the
largest subset of all matches meeting the following
criteria in order of importance:

1. Require each word in each sentence to be
covered by zero or one matches.

2. Maximize the number of covered words
across both sentences.

3. Minimize the number of chunks, where a
chunk is defined as a series of matches that
is contiguous and identically ordered in both
sentences.

4. Minimize the sum of absolute distances be-
tween match start indices in the two sen-
tences. (Break ties by preferring to align
phrases that occur at similar positions in both
sentences.)

Alignment resolution is conducted as a beam
search using a heuristic based on the above cri-
teria.

The Meteor score for an aligned sentence pair is
calculated as follows. Content and function words
are identified in the hypothesis (hc, hf ) and ref-
erence (rc, rf ) according to a function word list
(described in §3.1). For each of the matchers
(mi), count the number of content and function
words covered by matches of this type in the hy-
pothesis (mi(hc), mi(hf )) and reference (mi(rc),
mi(rf )). Calculate weighted precision and re-
call using matcher weights (wi...wn) and content-
function word weight (δ):

P =
∑

iwi · (δ ·mi(hc) + (1− δ) ·mi(hf ))
δ · |hc|+ (1− δ) · |hf |

R =
∑

iwi · (δ ·mi(rc) + (1− δ) ·mi(rf ))
δ · |rc|+ (1− δ) · |rf |

The parameterized harmonic mean of P and R
(van Rijsbergen, 1979) is then calculated:

Fmean =
P ·R

α · P + (1− α) ·R
To account for gaps and differences in word order,
a fragmentation penalty is calculated using the to-
tal number of matched words (m, averaged over

hypothesis and reference) and number of chunks
(ch):

Pen = γ ·
(
ch

m

)β
The Meteor score is then calculated:

Score = (1− Pen) · Fmean
The parametersα, β, γ, δ, andwi...wn are tuned

to maximize correlation with human judgments.

3 Language Specific Resources

Meteor uses language specific resources to dra-
matically improve evaluation accuracy. While
some resources such as WordNet and the Snowball
stemmers are limited to one or a few languages,
other resources can be learned from data for any
language. Meteor Universal uses the same bitext
used to build statistical translation systems to learn
function words and paraphrases. Used in con-
junction with the universal parameter set, these re-
sources bring language specific evaluation to new
target languages.

3.1 Function Word Lists
The function word list is used to discriminate be-
tween content and function words in the target lan-
guage. Meteor Universal counts words in the tar-
get side of the training bitext and considers any
word with relative frequency above 10−3 to be a
function word. This list is used only during the
scoring stage of evaluation, where the tunable δ
parameter controls the relative weight of content
versus function words. When tuned to match hu-
man judgments, this parameter usually reflects a
greater importance for content words.

3.2 Paraphrase Tables
Paraphrase tables allow many-to-many matches
that can encapsulate any local language phenom-
ena, including morphology, synonymy, and true
paraphrasing. Identifying these matches allows
far more sophisticated evaluation than is possible
with simple surface form matches. In Meteor Uni-
versal, paraphrases act as the catch-all for non-
exact matches. Paraphrases are automatically ex-
tracted from the training bitext using the transla-
tion pivot approach (Bannard and Callison-Burch,
2005). First, a standard phrase table is learned
from the bitext (Koehn et al., 2003). Paraphrase
extraction then proceeds as follows. For each tar-
get language phrase (e1) in the table, find each
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source phrase f that e1 translates. Each alternate
phrase (e2 6= e1) that translates f is considered
a paraphrase with probability P (f |e1) · P (e2|f).
The total probability of e2 being a paraphrase of
e1 is the sum over all possible pivot phrases f :

P (e2|e1) =
∑
f

P (f |e1) · P (e2|f)

To improve paraphrase precision, we apply
several language independent pruning techniques.
The following are applied to each paraphrase in-
stance (e1, f , e2):

• Discard instances with very low probability
(P (f |e1) · P (e2|f) < 0.001).

• Discard instances where e1, f , or e2 contain
punctuation characters.

• Discard instances where e1, f , or e2 con-
tain only function words (relative frequency
above 10−3 in the bitext).

The following are applied to each final paraphrase
(e1, e2) after summing over all instances:

• Discard paraphrases with very low probabil-
ity (P (e2|e1) < 0.01).

• Discard paraphrases where e2 is a sub-phrase
of e1.

This constitutes the full Meteor paraphrasing
pipeline that has been used to build tables for
fully supported languages (Denkowski and Lavie,
2011). Paraphrases for new languages have the
added advantage of being extracted from the same
bitext that MT systems use for phrase extraction,
resulting in ideal paraphrase coverage for evalu-
ated systems.

4 Universal Parameter Set

Traditionally, building a version of Meteor for a
new target language has required a set of human-
scored machine translations, most frequently in
the form of WMT rankings. The general lack of
availability of these judgments has severely lim-
ited the number of languages for which Meteor
versions could be trained. Meteor Universal ad-
dresses this problem with the introduction of a
”universal” parameter set that captures general hu-
man preferences that apply to all languages for

Direction Judgments
cs-en 11,021
de-en 11,934
es-en 9,796
fr-en 11,594
en-cs 18,805
en-de 14,553
en-es 11,834
en-fr 11,562
Total 101,099

Table 1: Binary ranking judgments per language
direction used to learn parameters for Meteor Uni-
versal

which judgment data does exist. We learn this pa-
rameter set by pooling over 100,000 binary rank-
ing judgments from WMT12 (Callison-Burch et
al., 2012) that cover 8 language directions (de-
tails in Table 1). Data for each language is scored
using the same resources (function word list and
paraphrase table only) and scoring parameters are
tuned to maximize agreement (Kendall’s τ ) over
all judgments from all languages, leading to a sin-
gle parameter set. The universal parameter set en-
codes the following general human preferences:

• Prefer recall over precision.

• Prefer word choice over word order.

• Prefer correct translations of content words
over function words.

• Prefer exact matches over paraphrase
matches, while still giving significant credit
to paraphrases.

Table 2 compares the universal parameters to those
learned for specific languages in previous versions
of Meteor. Notably, the universal parameter set is
more balanced, showing a normalizing effect from
generalizing across several language directions.

5 Experiments

We evaluate the Universal version of Meteor
against full language dedicated versions of Meteor
and baseline BLEU on the WMT13 rankings. Re-
sults for English, Czech, German, Spanish, and
French are biased in favor of Meteor Universal
since rankings for these target languages are in-
cluded in the training data while Russian consti-
tutes a true held out test. We also report the re-
sults of the WMT14 Hindi evaluation task. Shown
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Language α β γ δ wexact wstem wsyn wpar
English 0.85 0.20 0.60 0.75 1.00 0.60 0.80 0.60
Czech 0.95 0.20 0.60 0.80 1.00 – – 0.40
German 0.95 1.00 0.55 0.55 1.00 0.80 – 0.20
Spanish 0.65 1.30 0.50 0.80 1.00 0.80 – 0.60
French 0.90 1.40 0.60 0.65 1.00 0.20 – 0.40
Universal 0.70 1.40 0.30 0.70 1.00 – – 0.60

Table 2: Comparison of parameters for language specific and universal versions of Meteor.

WMT13 τ M-Full M-Universal BLEU
English 0.214 0.206 0.124
Czech 0.092 0.085 0.044
German 0.163 0.157 0.097
Spanish 0.106 0.101 0.068
French 0.150 0.137 0.099
Russian – 0.128 0.068

WMT14 τ M-Full M-Universal BLEU
Hindi – 0.264 0.227

Table 3: Sentence-level correlation with human
rankings (Kendall’s τ ) for Meteor (language spe-
cific versions), Meteor Universal, and BLEU

in Table 3, Meteor Universal significantly out-
performs baseline BLEU in all cases while suf-
fering only slight degradation compared to ver-
sions of Meteor tuned for individual languages.
For Russian, correlation is nearly double that of
BLEU. This provides substantial evidence that
Meteor Universal will further generalize, bringing
improved evaluation accuracy to new target lan-
guages currently limited to baseline language in-
dependent metrics.

For the WMT14 evaluation, we use the tradi-
tional language specific versions of Meteor for all
language directions except Hindi. This includes
Russian, for which additional language specific re-
sources (a Snowball word stemmer) help signifi-
cantly. For Hindi, we use the release version of
Meteor Universal to extract linguistic resources
from the constrained training bitext provided for
the shared translation task. These resources are
used with the universal parameter set to score all
system outputs for the English–Hindi direction.

6 Software

Meteor Universal is included in Meteor version
1.5 which is publicly released for WMT14.

Meteor 1.5 can be downloaded from the official
webpage1 and a full tutorial for Meteor Universal
is available online.2 Building a version of Meteor
for a new language requires a training bitext
(corpus.f, corpus.e) and a standard Moses format
phrase table (phrase-table.gz) (Koehn et al.,
2007). To extract linguistic resources for Meteor,
run the new language script:

$ python scripts/new_language.py out \
corpus.f corpus.e phrase-table.gz

To use the resulting files to score translations with
Meteor, use the new language option:

$ java -jar meteor-*.jar test ref -new \
out/meteor-files

Meteor 1.5, including Meteor Universal, is free
software released under the terms of the GNU
Lesser General Public License.

7 Conclusion

This paper describes Meteor Universal, a version
of the Meteor metric that brings language specific
evaluation to any target language using the same
resources used to build statistical translation sys-
tems. Held out tests show Meteor Universal to sig-
nificantly outperform baseline BLEU on WMT13
Russian and WMT14 Hindi. Meteor version 1.5 is
freely available open source software.
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Matouš Macháček and Ondřej Bojar. 2013. Results of
the WMT13 metrics shared task. In Proceedings of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 45–51, Sofia, Bulgaria, August. Asso-
ciation for Computational Linguistics.

George Miller and Christiane Fellbaum. 2007. Word-
Net. http://wordnet.princeton.edu/.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evalution of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA, July.

Martin Porter. 2001. Snowball: A language for stem-
ming algorithms. http://snowball.tartarus.org/texts/.

Matthew Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2009. Fluency, adequacy, or
HTER? Exploring different human judgments with
a tunable MT metric. In Proceedings of the Fourth
Workshop on Statistical Machine Translation, pages
259–268, Athens, Greece, March. Association for
Computational Linguistics.

C. J. van Rijsbergen, 1979. Information Retrieval,
chapter 7. Butterworths, London, UK, 2nd edition.

Mengqiu Wang and Christopher Manning. 2012.
Spede: Probabilistic edit distance metrics for mt
evaluation. In Proceedings of the Seventh Work-
shop on Statistical Machine Translation, pages 76–
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Abstract

As described in this paper, we pro-
pose a new automatic evaluation met-
ric for machine translation. Our met-
ric is based on chunking between the
reference and candidate translation.
Moreover, we apply a prize based on
sentence-length to the metric, dissim-
ilar from penalties in BLEU or NIST.
We designate this metric as Automatic
Evaluation of Machine Translation in
which the Prize is Applied to a Chunk-
based metric (APAC). Through meta-
evaluation experiments and compari-
son with several metrics, we confirmed
that our metric shows stable correla-
tion with human judgment.

1 Introduction

In the field of machine translation, various
automatic evaluation metrics have been pro-
posed. Among them, chunk-based metrics
such as METEOR(A. Lavie and A. Agarwal,
2007), ROUGE-L(Lin and Och, 2004), and
IMPACT(H. Echizen-ya and K. Araki, 2007)
are effective. In general, BLEU(K. Papineni et
al., 2002), NIST(NIST, 2002), and RIBES(H.
Isozaki et al., 2010) use a penalty for calcula-
tion of scores because the high score is often
given extremely when the candidate transla-
tion is short. Therefore, the penalty is effective
to obtain high correlation with human judg-
ment. On the other hand, almost all chunk-
based metrics use the F -measure based on a
precision by candidate translation and a re-
call by reference. Moreover, they assign a

penalty for the difference of chunk order be-
tween the candidate translation and the refer-
ence, not the penalty for the difference of sen-
tence length. Nevertheless, it is also impor-
tant for chunk-based metrics to examine the
sentence length. In chunk-based metrics, each
word’s weight depends on the sentence length.
For example, the weight of each word is 0.2
(=1/5) when the number of words in a sen-
tence is 5; it is 0.1 (=1/10) when the number
of words in a sentence is 10. Therefore, the
weight of the non-matched word in the short
sentence is large.

To resolve this problem, it is effective for
short sentences to give a prize based on the
sentence length in the chunk-based metrics.
Therefore, we propose a new metric using a
prize based on the sentence length. We des-
ignate this metric as Automatic Evaluation
of Machine Translation in which the Prize is
Applied to a Chunk-based metric (APAC). In
our metric, the weight of a non-matched word
becomes small for the short sentence by award-
ing of the prize. It is almost identical to that
for a long sentence by awarding of the prize.
Therefore, our metric does not depend heavily
on sentence length because the weight of non-
matched words is constantly small. We con-
firmed the effectiveness of APAC using meta-
evaluation experiments.

2 Score calculation in APAC

The APAC score is calculated in two phases.
In the first phase, the chunk sequence is
determined between a candidate translation
and the reference. The chunk sequence
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is determined using the Longest Common
Subsequence (LCS). Generally, several chunk
sequences are obtained using LCS. In that
case, APAC determines only one chunk se-
quence using the number of words in each
chunk and the position of each chunk.

For example, in between the candidate
translation “In this case, the system power
supply is accessory battery 86.” and “In this
case, the system power supply is the accessory
power supply battery 86.”, the chunk sequence
is “in this case, the system power supply is”,
“accessory” and “battery 86.”, and the chunk
sequence is ony one in these sentences. Only
one chunk sequence is determined using the
number of words in each chunk and the po-
sition of each chunk when several chunk se-
quences are obtained.

The second phase is calculation of the score
based on the determined chunk sequence. The
Ch score in Eq. (3) is calculated using the de-
termined chunk sequence. In Eq. (3), ch de-
notes each chunk and ch num represents the
number of chunks. Moreover, length(ch) is the
word number of each chunk. β is the weight
parameter for the length of each chunk. For
example, in between the candidate translation
“In this case, the system power supply is ac-
cessory battery 86.” and “In this case, the
system power supply is the accessory power
supply battery 86.”, ch num is 3 (“in this
case, the system power supply is”, “accessory”
and “battery 86.”). Therefore, Ch score is 91
(=92.0 + 12.0 + 32.0) when β is 2.0.

P =

{(∑RN−1
i=0

(
αi × Ch score

)
mβ

) 1
β

+0.5× Prize m

}
/2.0 (1)

R =

{(∑RN−1
i=0

(
αi × Ch score

)
nβ

) 1
β

+0.5× Prize n

}
/2.0 (2)

Ch score =
∑

ch∈ch num

length(ch)β (3)

Prize m =
1

log(m) + 1
(4)

Prize n =
1

log(n) + 1
(5)

APAC score =
(1 + γ2)RP

R + γ2P
(6)

The P and R in Eqs. (1) and (2) re-
spectively denote precision by candidate
translation and recall by reference. These
are calculated using the Ch score obtained
using Eq. (3). Therein, m and n respectively
represent the word numbers of the candidate
translation and the reference. Moreover,
the chunk sequence determination process is
repeated recursively to all common words.
The number of determination processes of
the chunk sequence is high when the word
order of the candidate translation differs
from that of the reference. The RN is the
number of determination processes of the
chunk sequence. Here, α is the parameter for
the chunk order. It is less than 1.0. The value
of the Ch score is small when the chunk order
between the candidate translation and refer-
ences differs because the value of length(ch)
in each chunk becomes small. For example,
in between the candidate translation “In this
case, the system power supply is accessory
battery 86.” and “In this case, the system
power supply is the accessory power sup-

ply battery 86.”,
(∑RN−1

i=0 (αi×Ch score)
mβ

) 1
β

is 0.773 (=
√

91
169=

√∑1−1

i=0
(0.10×91)

132.0 )

and
(∑RN−1

i=0 (αi×Ch score)
nβ

) 1
β

is 0.596

(=
√

91
256=

√∑1−1

i=0
(0.10×91)

162.0 ) when α and β
respectively stand for 0.1 and 2.0. The
value of RN is 1 because there is no more
matching words after the determined chunks
(“in this case, the system power supply is”,
“accessory” and “battery 86.”) are removed
from the candidate translation “In this case,
the system power supply is accessory battery
86.” and “In this case, the system power
supply is the accessory power supply battery
86.”.

Moreover, Prize m and Prize n in Eqs. (1)
and (2) are calculated respectively using Eqs.
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(4) and (5). Each is less than 1.0. For ex-
ample, in the candidate translation “In this
case, the system power supply is accessory
battery 86.” and “In this case, the system
power supply is the accessory power supply
battery 86.”, Prize m and Prize n respec-
tively stand for 0.473 (= 1

1.114+1= 1
log(13)+1) and

0.454 (= 1
1.204+1= 1

log(16)+1). These values be-
come large in the short sentences. They be-
come small in the long sentences. Therefore,
the weight of each non-matched word is small
in the short sentences. It is kept small in
the long sentences. Finally, the score is cal-
culated using Eq. (6). This equation shows
the f -measure based on P and R. In Eq. (6),
γ is determined as P/R(C. J. V. Rijsbergen,
1979). The APAC score is between 0.0 and
1.0. For example, in the candidate transla-
tion “In this case, the system power supply is
accessory battery 86.” and “In this case, the
system power supply is the accessory power
supply battery 86.”, P and R respectively
stand for 0.505 (=0.773+0.5×0.473

2.0 ) and 0.412
(=0.596+0.5×0.454

2.0 ). Therefore, APAC score is
0.445 (=0.521

1.171= (1+1.503)×0.412×0.505
0.412+1.503×0.505 ) and γ is

1.226 (=0.505
0.412)

3 Experiments

3.1 Experimental Procedure

Meta-evaluation experiments are performed
using WMT2012(C. Callison-Burch et al.,
2012) data and WMT2013(O. Bojar et al.,
2013) data, and NTCIR-7(A. Fujii et al., 2008)
data and NTCIR-9(A. Goto et al., 2011) data.
All sentences by NTCIR data are English
patent sentences obtained through Japanese-
to-English translation. The number of refer-
ences is 1. In NTICR-7 data, the average
value in the evaluation results of three hu-
man judgments is used as the scores of 1–
5 from the perspective of adequacy and flu-
ency. In NTCIR-9 data, the evaluation results
of one human judgment is used as the scores
of 1–5 from the view of adequacy and accep-
tance. For this meta-evaluation, we used only
English and Japanese candidate translations
because we can evaluate them in comparison
with other languages correctly.

We calculated the correlation between the
scores by automatic evaluation and the scores

by human judgments at the system level and
the segment level, respectively. Spearman’s
rank correlation coefficient is used at the sys-
tem level. The Kendall tau rank correlation
coefficient is used in the segment level.

Moreover, we used BLEU (ver. 13a),
NIST (ver. 13a), METEOR (ver. 1.4), and
APAC with no prize (APAC no p) as the
automatic evaluation metrics for comparison
with APAC as shown in Eqs. (4) and (5).

In APAC no p,
(∑RN−1

i=0 (αi×Ch score)
mβ

) 1
β

as P

and
(∑RN−1

i=0 (αi×Ch score)
mβ

) 1
β

as R are used re-

spectively in Eqs. (1) and (2).

3.2 Experimental Results

Tables 1 and 2 respectively present Spear-
man’s rank correlation coefficients of system-
level and Kendall tau rank correlation coef-
ficients of segment-level in WMT2012 data.
Tables 3 and 4 respectively show Spearman’s
rank correlation coefficients of the system-level
and Kendall tau rank correlation coefficients of
segment-level in WMT2013 data. Moreover,
Tables 5 and 6 respectively present Spear-
man’s rank correlation coefficients of system-
level and Kendall tau rank correlation coeffi-
cients of segment-level in NTCIR-7 data. Ta-
bles 7 and 8 respectively show Spearman’s
rank correlation coefficients of system-level
and Kendall tau rank correlation coefficients
of the segment level in NTCIR-9 data.

In APAC, 0.1 and 1.2 were used as the values
of parameters α and β by the preliminarily ex-
perimentally obtained results. In Tables 1–8,
“Rank” denotes the ranking based on “Avg.”
The value of “()” denotes the number of MT
systems in Tables 1, 3, 5, and 7. The value of
“()” represents the number of sentence pairs
in Tables 2, 4, 6, and 8. These values depend
on the data.

3.3 Discussion

The results presented in Tables 1–8 indicate
that APAC can obtain the most stable corre-
lation coefficients among some metrics. The
ranking of APAC is No. 1 through NTCIR
data in Tables 5–8. In WMT data of Ta-
bles 1–4, the ranking of APAC is the lowest
except for Table 3. However, the difference
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cs-en(6) de-en(16) es-en(12) fr-en(15) Avg. Rank
APAC 0.886 0.650 0.958 0.811 0.826 5
APAC no p 0.886 0.676 0.958 0.807 0.832 3
METEOR 0.943 0.841 0.979 0.818 0.895 1
BLEU 0.886 0.674 0.958 0.796 0.828 4
NIST 0.943 0.700 0.944 0.779 0.841 2

Table 1: Spearman’s rank correlation coefficient of system-level in WMT2012 data.

cs-en(11,155) de-en(12,042) es-en(9,880) fr-en(11,682) Avg. Rank
APAC 0.185 0.204 0.209 0.226 0.206 3
APAC no p 0.189 0.207 0.208 0.226 0.207 2
METEOR 0.223 0.279 0.248 0.243 0.248 1

Table 2: Kendall tau rank correlation coefficient of the segment level in WMT2012 data.

between the ranking of METEOR, which is
the highest, and that of APAC is not larger
in WMT data. The correlation coefficients of
APAC in NTCIR data of Tables 5–8 are higher
than those of METEOR. In Tables 5 and 6,
underlining in APAC signifies that the differ-
ences between correlation coefficients obtained
using APAC and METEOR are statistically
significant at the 5% significance level. In Ta-
ble 7, the correlation coefficients of METEOR,
BLEU, and NIST are extremely low. Only one
human judgment was used in NTCIR-9 data.
As a result, APAC is fundamentally effective
for various languages independent of the differ-
ences in the grammatical structures between
languages: these experimentally obtained re-
sults indicate that APAC is the most stable
metric.

Moreover, in APAC, the correlation coeffi-
cients of the segment level in NTCIR data were
increased using the prize of Eqs. (4) and (5).
In WMT data, the correlation coefficients are
almost identical using the prize. Therefore,
use of the prize was fundamentally effective
at the segment level. The evaluation quality
of segment level is generally very low in the
automatic evaluation metrics. Therefore, it is
extremely important to improve the correla-
tion coefficient of segment level. Application
of the prize is effective to improve the evalua-
tion quality of the segment level.

4 Conclusion

As described in this paper, we proposed a new
chunk-based automatic evaluation metric us-

ing the prize based on the sentence length.
The experimentally obtained results indicate
that APAC is the most stable metric.

We will improve APAC to obtain higher
correlation coefficients in future studies.
Particularly, we will strive to improve
the correlation coefficients at the segment
level. The APAC software will be re-
leased by http://www.lst.hokkai-s-u.ac.
jp/~echi/automatic_evaluation_mt.html.
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Adequacy(15) Fluency(15) Avg. Rank
APAC 0.872 0.805 0.839 1
APAC no p 0.872 0.805 0.839 1
METEOR 0.424 0.380 0.402 5
BLEU 0.582 0.586 0.584 3
NIST 0.578 0.568 0.573 4
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Adequacy (1,500) Fluency (1,500) Avg. Rank
APAC 0.494 0.489 0.491 1
APAC no p 0.482 0.476 0.479 2
METEOR 0.366 0.383 0.375 3

Table 6: Kendall tau rank correlation coefficient of the segment level in NTCIR-7 data.

Adequacy (19) Acceptance (14) Avg. Rank
APAC 0.182 0.298 0.240 1
APAC no p 0.182 0.298 0.240 1
METEOR -0.081 0.015 -0.033 4
BLEU -0.123 0.059 -0.032 3
NIST -0.344 -0.275 -0.309 5

Table 7: Spearman’s rank correlation coefficient of the system level in NTCIR-9 data.

Adequacy (5,700) Acceptance (5,700) Avg. Rank
APAC 0.250 0.261 0.256 1
APAC no p 0.242 0.250 0.246 2
METEOR 0.167 0.217 0.192 3

Table 8: Kendall tau rank correlation coefficient of segment-level in NTCIR-9 data.
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Abstract

This paper describes the LAYERED met-
ric which is used for the shared WMT’14
metrics task. Various metrics exist for MT
evaluation: BLEU (Papineni, 2002), ME-
TEOR (Alon Lavie, 2007), TER (Snover,
2006) etc., but are found inadequate in
quite a few language settings like, for ex-
ample, in case of free word order lan-
guages. In this paper, we propose an MT
evaluation scheme that is based on the
NLP layers: lexical, syntactic and seman-
tic. We contend that higher layer met-
rics are after all needed. Results are pre-
sented on the corpora of ACL-WMT, 2013
and 2014. We end with a metric which is
composed of weighted metrics at individ-
ual layers, which correlates very well with
human judgment.

1 Introduction

Evaluation is an integral component of machine
translation (MT). Human evaluation is difficult
and time consuming so there is a need for a metric
which can give the better evaluation in correlation
to human judgement. There are several existing
metrics such as: BLEU, METEOR etc. but these
only deal with the lexical layer combining bag of
words and n-gram based approach.

We present an analysis of BLEU and the higher
layer metrics on the ACL WMT 2013 corpora
with 3 language pairs: French-English, Spanish-
English and German-English. For syntactic layer,
we considered three metrics: Hamming score,
Kendall’s Tau distance score and the spearman
rank score. Syntactic layer metrics take care of
reordering within the words of the sentences so
these may play an important role when there is
a decision to be made between two MT output
sentences of two different systems when both the

sentences have same number of n-gram matches
wrt the reference sentence but there is a differ-
ence in the ordering of the sentence. We will dis-
cuss these metrics in detail in the following sec-
tions. The next NLP layer in consideration is the
semantic layer which deals with the meaning of
the sentences. For semantic layer, we considered
two metrics: Shallow semantic score and Deep se-
mantic score. On semantic layer, we considered
entailment based measures to get the score.

Ananthkrishnan et al. (2007) mentioned some
issues in automatic evaluation using BLEU. There
are some disadvantages of the existing metrics
also such as: BLEU does not take care of reorder-
ing of the words in the sentence. BLEU-like met-
rics can give same score by permuting word or-
der. These metrics can be unreliable at the level
of individual sentences because there can be small
number of n-grams involved. We would see in this
paper that the correlation of BLEU is lower com-
pared to the semantic layer metrics.

Section 2 presents the study of related work in
MT evaluation. Section 3 presents the importance
of each NLP layer in evaluation of MT output. It
discusses the metrics that each layer contributes to
the achievement of the final result. In section 4,
various experiments are presented with each met-
ric on the top 10 ranking systems of WMT 13
corpora which are ranked on the basis of the hu-
man ranking. Each metric is discussed with the
graphical representation so that it would become
clear to analyze the effect of each metric. In sec-
tion 5, spearman correlation of the metrics is cal-
culated with human judgement and comparisons
are shown. In section 6, we discuss the need of a
metric which should be a combination of the met-
rics presented in the above sections and present a
weighted metric which is the amalgamation of the
metrics at individual layers. Section 7 presents the
results of the proposed metric on WMT 14 data
and compares it with other existing metrics.

387



2 Related Work

Machine translation evaluation has always re-
mained as the most popular measure to judge the
quality of a system output compared to the refer-
ence translation. Papineni (2002) proposed BLEU
as an automatic MT evaluation metric which is
based on the n-gram matching of the reference
and candidate sentences. This is still considered
as the most reliable metric and used widely in
the MT community for the determination of the
translation quality. BLEU averages the precision
for unigram, bigram and up to 4-gram and ap-
plies a length penalty if the generated sentence
is shorter than the best matching (in length) ref-
erence translation. Alternative approaches have
been designed to address problems with BLEU.
Doddington and George (2003) proposed NIST
metric which is derived from the BLEU evalua-
tion criterion but differs in one fundamental as-
pect: instead of n-gram precision, the informa-
tion gain from each n-gram is taken into account.
TER (Snover, 2006) tries to improve the hypothe-
sis/reference matching process based on the edit-
distance and METEOR (Alon Lavie, 2007) con-
sidered linguistic evidence, mostly lexical similar-
ity, for more intelligent matching. Liu and Gildea
(2005), Owczarzak et al. (2007), and Zhang et al.
(2004) use syntactic overlap to calculate the sim-
ilarity between the hypothesis and the reference.
Padó and Galley (2009) proposed a metric that
evaluates MT output based on a rich set of textual
entailment features. There are different works that
have been done at various NLP layers. Giménez
tl al. (2010) provided various linguistic measures
for MT evaluation at different NLP layers. Ding
Liu and Daniel Gildea (2005) focussed the study
on the syntactic features that can be helpful while
evaluation.

3 Significance of NLP Layers in MT
Evaluation

In this section, we discuss the different NLP layers
and how these are important for evalution of MT
output. We discuss here the significance of three
NLP layers: Lexical, Syntactic and Semantic lay-
ers.

3.1 Lexical Layer
Lexical layer emphasizes on the comparison of the
words in its original form irrespective of any lexi-
cal corpora or any other resource. There are some

metrics in MT evaluation which considers only
these features. Most popular of them is BLEU,
this is based on the n-gram approach and consid-
ers the matching upto 4-grams in the reference and
the candidate translation. BLEU is designed to
approximate human judgement at a corpus level,
and performs badly if used to evaluate the quality
of individual sentences. Another important metric
at this layer is TER (Translation Edit Rate) which
measures the number of edits required to change
a system output into one of the references. For
our experiments, we would consider BLEU as the
baseline metric on lexical layer.

3.2 Syntactic Layer
Syntactic layer takes care of the syntax of the
sentence. It mainly focusses on the reordering
of the words within a sentence. Birch and Os-
borne (2011) has mentioned some metrics on this
layer: Hamming score and Kendall’s Tau Dis-
tance (KTD) score. We additionally calculated the
spearman rank score on this layer. Scores are cal-
culated first by giving ranking of words in the ref-
erence sentence and then putting the rank number
of the word in the candidate sentence. Now, we
have the relative ranking of the words of both the
sentences, so final score is calculated.

3.3 Semantic Layer
Semantic layer goes into the meaning of the sen-
tence, so we need to compare the dependency tree
of the sentences. At this layer, we used entailment
based metrics for the comparison of dependencies.
Padó and Galley (2009) illustrated the use of text
entailment based features for MT evaluation. We
introduced two metrics at this layer: first is Shal-
low semantic score, which is based on the depen-
dencies generated by a shallow parser and then
the dependency comparison is carried out. Sec-
ond is Deep semantic score, which goes more deep
into the semantic of the sentence. For shallow se-
mantic score, we used stanford dependency parser
(Marie-Catherine et al., 2006) while for deep se-
mantic score, we used UNL (Universal Network-
ing Language)1 dependency generator.

Semantic layer may play an important role
when there are different words in two sentences
but they are synonym of each other or are related
to each other in some manner. In this case, lexical
and syntactic layers can’t identify the similarity of

1http://www.undl.org/unlsys/unl/unl2005/UW.htm
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the sentences because there exist a need of some
semantic background knowledge which occurs at
the semantic layer. Another important role of se-
mantic layer is that there can be cases when there
is reordering of the phrases in the sentences, e.g.,
active-passive voice sentences. In these cases, de-
pendencies between the words remain intact and
this can be captured through dependency tree gen-
erated by the parser.

4 Experiments

We conducted the experiments on WMT 13 cor-
pora for French-English, Spanish-English and
German-English language pairs. We calculated
the score of each metric for the top 10 ranking
system (wmt, 2013) (as per human judgement) for
each language pair.
Note:
1. In the graphs, metric score is multiplied by 100
so that a better view can be captured.
2. In each graph, the scores of French-English (fr-
en), Spanish-English (es-en) and German-English
(de-en) language pairs are represented by red,
black and blue lines respectively.

4.1 BLEU Score

Figure 1: BLEU Score

We can see from the graph of fig. 1 that for de-
en and es-en language pair, BLEU is not able to
capture the phenomenon appropriately. In fact, it
is worse in de-en pair. Because the graph should
be of decreasing manner i.e., as the rank of the sys-
tem increases (system gets lower rank compared to
the previous one), the score should also decrease.

4.2 Syntactic Layer
Because the BLEU score was not able to capture
the idealistic curve in the last section so we consid-
ered the syntactic layer metrics. This layer is con-
sidered because it takes care of the reordering of
the words within the sentence pair. The idea here
is that if one candidate translation has lower re-
ordering of words w.r.t. reference translation then
it has higher chances of matching to the reference
sentence.

4.2.1 Hamming Score
The hamming distance measures the number of
disagreements between two permutations. First
we calculate the hamming distance and then cal-
culate the fraction of words placed in the same po-
sition in both sentences, finally we calculate the
hamming score by subtracting the fraction from 1.
It is formulated as follows:

dh(π, σ) = 1−
∑n

i=1 xi

n
, xi =

{
0; if π(i) = σ(i)
1; otherwise

where, n is the length of the permutation.
Hamming scores for all three language pairs

mentioned above are shown in fig. 2. As we can
see from the graph that initially its not good for the
top ranking systems but it follows the ideal curve
for the discrimination of lower ranking systems for
the language pairs fr-en and es-en.

Figure 2: Hamming Score

4.2.2 Kendall’s Tau Distance (KTD)
Kendall’s tau distance is the minimum number of
transpositions of two adjacent symbols necessary
to transform one permutation into another. It rep-
resents the percentage of pairs of elements which
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share the same order between two permutations. It
is defined as follows:

dk(π, σ) = 1−
√∑n

i=1

∑n
j=1 zij

Z

where, zij =

{
0; if π(i) < π(j) and σ(i) < σ(j)
1; otherwise

This can be used for measuring word order dif-
ferences as the relative ordering of words has been
taken into account. KTD scores are shown in fig.
3. It also follows the same phenomenon as the
hamming score for fr-en and es-en pair but for de-
en pair, it gives the worst results.

Figure 3: KTD Score

4.2.3 Spearman Score
Spearman rank correlation coefficient is basically
used for assessing how well the relationship be-
tween two variables can be described using a
monotonic function. Because we are using syntac-
tic layer metrics to keep track of the reordering be-
tween two sentences, so this can be used by rank-
ing the words of the first sentence (ranging from
1 to n, where n is the length of the sentence) and
then checking where the particular word (with in-
dex i) is present in the second sentence in terms of
ranking. Finally, we calculated the spearman score
as follows:

ρ = 1− 6
∑
d2

i

n(n2 − 1)

where, di = xi − yi is the difference between
the ranks of words of two sentences.

Spearman score lies between -1 to +1 so we
convert it to the range of 0 to +1 so that all the
metrics would lie in the same range.

4.3 Semantic Layer
We can see from the last two sections that there
were some loopholes on the metrics of both the
layers as can be seen in the graphical representa-
tions. So, there arises a need to go higher in the
hierarchy. The next one in the queue is semantic
layer which takes care of the meaning of the sen-
tences. At this layer, we considered two metrics.
Both metrics are based on the concept of text en-
tailment. First we should understand, what is it?

Text Entailment
According to wikipedia2, “Textual entailment
(TE) in natural language processing is a direc-
tional relation between text fragments. The rela-
tion holds whenever the truth of one text fragment
follows from another text. In the TE framework,
the entailing and entailed texts are termed text (t)
and hypothesis (h), respectively.”

First, the dependencies for both reference (R)
as well as candidate (C) translation are generated
using the parser that is used (will vary in both
the following metrics). Then, the entailment phe-
nomenon is applied from R to C i.e., dependencies
of C are searched in the dependency graph of R.
Matching number of dependencies are calculated,
then a score is obtained as follows:

ScoreR−C =
No. of matched dependencies of C in R

Total no. of dependencies of C
(1)

Similarly, another score is also obtained by ap-
plying the entailment phenomenon in the reversed
direction i.e. from C to R as follows:

ScoreC−R =
No. of matched dependencies of R in C

Total no. of dependencies of R
(2)

Final score is obtained by taking the average of
the above two scores as follows:

Scorefinal =
ScoreR−C + ScoreC−R

2
(3)

Now, we discuss how can we use this concept
in the metrics at semantic layer:

4.3.1 Shallow Semantic Score
This metric uses the stanford dependency parser
(Marie-Catherine et al., 2006) to generate the de-
pendencies. After getting the dependencies for
both reference (R) as well as candidate (C) trans-
lation, entailment phenomenon is applied and the
final score is obtained using eq. (3).

2http://wikipedia.org/
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Figure 4: Shallow Semantic Score
We can see from fig. 4 that for French-English

and Spanish-English pairs, the graph is very good
compared to the other metrics at the lower layers.
In fact, there is only one score in es-en pair that
a lower ranking system gets better score than the
higher ranking system.

4.3.2 Deep Semantic Score
This metric uses the UNL dependency graph gen-
erator for taking care of the semantic of the sen-
tence that shallow dependency generator is not
able to capture. Similar to the shallow seman-
tic score, after getting the dependencies from the
UNL, entailment score is calculated in both direc-
tions i.e. R→ C and C→ R.

Figure 5: Deep Semantic Score

Fig. 5 shows that deep semantic score curve
also follows the same path as shallow semantic
score. In fact, for Spanish-English pair, the path
is ideal i.e., the score is decreasing as the system
rank is increasing.

5 Correlation with Human Judgement

We calculated spearman rank correlation coeffi-
cient for the different scores calculated in the last
section. This score ranges from -1 to +1. Form ta-

Language Pair ρBLEU ρShallow ρDeep

French-English 0.95 0.96 0.92
Spanish-English 0.89 0.98 1.00
German-English 0.36 0.88 0.89

Table 1: Correlation with BLEU Score, Shallow
Semantic Score and Deep Semantic Score

ble 1, we can see that the correlation score is bet-
ter with semantic layer metrics compared to the
BLEU score (lower layer metrics). In compar-
ison to the WMT 13 results (wmt-result, 2013),
ρShallow score for French-English pair is interme-
diate between the highest and lowest correlation
system. ρDeep score for Spanish-English is high-
est among all the systems presented at WMT 13.
So, it arises a need to take into account the seman-
tic of the sentence while evaluating the MT output.

6 Hybrid Approach

We reached to a situation where we can’t ig-
nore the score of any layer’s metric because each
metric helps to capture some of the phenomenon
which other may not capture. So, we used a hy-
brid approach where the final score of our pro-
posed metric depends on the layered metrics. As
already said, we performed our experiments on
ACL-WMT 2013 corpora, but it provided only the
rank of the systems. Due to availability of ranking
of the systems, we used SVM-rank to learn the pa-
rameters.

Our final metric looks as follows:
Final-Score = a*BLEU + b*Hamming + c*KTD
+ d*Spearman + e*Shallow-Semantic-Score +
f*Deep-Semantic-Score

where, a,b,c,d,e,f are parameters

6.1 SVM-rank
SVM-rank learns the parameters from the training
data and builds a model which contains the learned
parameters. These parameters (model) can be used
for ranking of a new set of data.

Parameters
We made the training data of the French-English,
Spanish-English and German-English language
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Metric Pearson Correlation
fr-en de-en hi-en cs-en ru-en Average

LAYERED .973 .893 .976 .940 .843 .925
BLEU .952 .831 .956 .908 .774 .884

METEOR .975 .926 .457 .980 .792 .826
NIST .955 .810 .783 .983 .785 .863
TER .952 .774 .618 .977 .796 .823

Table 2: Correlation with different metrics in WMT 14 Results

pairs. Then we ran SVM-rank and obtained the
scores for the parameters.

So, our final proposed metric looks like:
Final-Score = 0.26*BLEU + 0.13*Hamming +
0.03*KTD + 0.04*Spearman + 0.28*Shallow-
Semantic-Score + 0.26* Deep-Semantic-Score

7 Performance in WMT 2014

Table 2 shows the performance of our metric on
WMT 2014 data (wmt-result, 2014). It performed
very well in almost all language pairs and it
gave the highest correlation with human in Hindi-
English language pair. On an average, our corre-
lation was 0.925 with human considering all the
language pairs. This way, we stood out on sec-
ond position considering the average score while
the first ranking system obtained the correlation
of 0.942. Its clear from table 2 that the proposed
metric gives the correlation better than the stan-
dard metrics in most of the cases. If we look at
the average score of the metrics in table 2 then we
can see that LAYERED obtains much higher score
than the other metrics.

8 Conclusion

Machine Translation Evaluation is an exciting
field that is attracting the researchers from the past
few years and the work in this field is enormous.
We started with the need of using higher layer
metrics while evaluating the MT output. We un-
derstand that it might be a little time consuming
but its efficient and correlation with human judge-
ment is better with semantic layer metric com-
pared to the lexical layer metric. Because, each
layer captures some linguistic phenomenon so we
can’t completely ignore the metrics at individual
layers. It gives rise to a hybrid approach which
gives the weightage for each metric for the calcu-
lation of final score. We can see from the results
of WMT 2014 that the correlation with LAYERED
metric is better than the standard existing metrics

in most of the language pairs.
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Abstract

This paper describes the UPC submissions
to the WMT14 Metrics Shared Task: UPC-
IPA and UPC-STOUT. These metrics
use a collection of evaluation measures in-
tegrated in ASIYA, a toolkit for machine
translation evaluation. In addition to some
standard metrics, the two submissions take
advantage of novel metrics that consider
linguistic structures, lexical relationships,
and semantics to compare both source and
reference translation against the candidate
translation. The new metrics are available
for several target languages other than En-
glish. In the the official WMT14 evalua-
tion, UPC-IPA and UPC-STOUT scored
above the average in 7 out of 9 language
pairs at the system level and 8 out of 9 at
the segment level.

1 Introduction

Evaluating Machine Translation (MT) quality is a
difficult task, in which even human experts may
fail to achieve a high degree of agreement when
assessing translations. Conducting manual evalu-
ations is impractical during the development cy-
cle of MT systems or for transation applications
addressed to general users, such as online transla-
tion portals. Automatic evaluation measures bring
valuable benefits in such situations. Compared to
manual evaluation, automatic measures are cheap,
more objective, and reusable across different test
sets and domains.

Nonetheless, automatic metrics are far from
perfection: when used in isolation, they tend to
stress specific aspects of the translation quality and
neglect others (particularly during tuning); they
are often unable to capture little system improve-
ments (enhancements in very specific aspects of
the translation process); and they may make un-
fair comparisons when they are not able to reflect

real differences among the quality of different MT
systems (Giménez, 2008).

ASIYA, the core of our approach, is an open-
source suite for automatic machine translation
evaluation and output analysis.1 It provides a rich
set of heterogeneous metrics and tools to evalu-
ate and analyse the quality of automatic transla-
tions. The ASIYA core toolkit was first released
in 2009 (Giménez and Màrquez, 2010a) and has
been continuously improved and extended since
then (Gonzàlez et al., 2012; Gonzàlez et al., 2013).

In this paper we first describe the most recent
enhancements to ASIYA: (i) linguistic-based met-
rics for French and German; (ii) an extended set
of source-based metrics for English, Spanish, Ger-
man, French, Russian, and Czech; and (iii) the in-
tegration of mechanisms to exploit the alignments
between sources and translations. These enhance-
ments are all available in ASIYA since version 3.0.
We have used them to prepare the UPC submis-
sions to the WMT14 Metrics Task: UPC-IPA and
UPC-STOUT, which serve the purpose of testing
their usefulness in a real comparative setting.

The rest of the paper is structured as follows.
Section 2 describes the new reference-based met-
rics developed, including syntactic parsers for lan-
guages other than English. Section 3 gives the
details of novel source-based metrics, developed
for almost all the language pairs in this challenge.
Section 4 explains our simple metrics combina-
tion strategy and analyses the results obtained with
both approaches, UPC-IPA and UPC-STOUT,
when applied to the WMT13 dataset. Finally, Sec-
tion 5 summarises our main contributions.

2 Reference-based Metrics

We recently added a new set of metrics to ASIYA,
which estimate the similarity between reference
(ref ) and candidate (cand) translations. The met-

1http://asiya.lsi.upc.edu
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rics rely either on structural linguistic informa-
tion (Section 2.1), on a semantic mapping (Sec-
tion 2.2), or on word n-grams (Section 2.3).

2.1 Parsing-based Metrics

Our initial set of parsing-based metrics is a follow-
up of the proposal by Giménez and Màrquez
(2010b): it leverages the structural information
provided by linguistic processors to compute sev-
eral similarity cues between two analyzed sen-
tences. ASIYA includes plenty of metrics that cap-
ture syntactic and semantic aspects of a transla-
tion. New metrics based on linguistic structural
information for French and German and upgraded
versions of the parsers for English and Spanish are
available since version 3.0.2

In the WMT14 evaluation, we opt for metrics
based on shallow parsing (SP), constituency pars-
ing (CP), and dependency parsing (DPm)3. Mea-
sures based on named entities (NE) and semantic
roles (SR) were used to analyse translations into
English as well. The nomenclature used below
follows the same patterns as in the ASIYA’s man-
ual (Gonzàlez and Giménez, 2014). The manual
describes every family of metrics in detail. Next,
we briefly depict the concrete metrics involved in
our submissions to the WMT14 Shared Task.

The set of SP metrics is available for English,
German, French, Spanish and Catalan. They
measure the lexical overlapping between parts-of-
speech elements in the candidate and reference
translations. For instance, SP-Op(VB) measures
the proportion of correctly translated verbs; and
the coarser SP-Op(*) averages the overlapping be-
tween the words for each part of speech. We also
use NIST (Doddington, 2002) to compute accu-
mulated scores over sequences of n = 1..5 parts
of speech (SP-pNIST).

Similarly, CP metrics analyse similarities be-
tween constituent parse trees associated to can-
didate and reference translations. For instance,
CP-STMi5 and CP-STM4 compute, respectively,
the proportion of (individual) length-5 and accu-
mulated up to length-4 matching sub-paths of the
syntactic tree (Liu and Gildea, 2005). CP-Oc(*)
computes the lexical overlap averaged over all the
phrase constituents. Constituent trees are obtained
using the parsers of Charniak and Johnson (2005),

2Equivalent resources were previously available for En-
glish, Catalan, and Spanish.

3ASIYA includes two dependency parsers; the m identifies
the metrics calculated using the MALT parser.

Bonsai v3.2 (Candito et al., 2010b), and Berke-
ley Parser (Petrov et al., 2006; Petrov and Klein,
2007) for English, French, and German, respec-
tively.

Measures based on dependency parsing (DPm)
— available for English and French thanks to
the MALT parser (Nivre et al., 2007)— capture
the similarities between dependency tree items
(i.e., heads and modifiers). The pre-trained mod-
els for French were obtained from the French
Treebank (Candito et al., 2010a) and used to
train the Bonsai parser, which in turn uses the
MALT parser. For instance, DPm-HWCM w-3 re-
trieves average accumulated proportion of match-
ing word-chains (Liu and Gildea, 2005) up
to length 3; and DPm-HWCMi c-3 computes
the proportion of matching category-chains of
length 3.

2.2 Explicit-Semantics Metric
Additionally, we borrowed a metric originally pro-
posed in the field of Information Retrieval: ex-
plicit semantic analysis (ESA) (Gabrilovich and
Markovitch, 2007). ESA is a similarity metric
that relies on a large corpus of general knowl-
edge to represent texts. Our knowledge corpora
are composed of ∼ 100K Wikipedia articles from
2010 for the following target languages: English,
French and German. In this case, ref and cand
translations are both mapped onto the Wikipedia
collection W . The similarities between each text
and every article a ∈ W are computed on the ba-
sis of the cosine measure in order to compose a
similarities vector that represents the text. That is:

~ref = {sim(ref, a) ∀a ∈W} , (1)
~cand = {sim(cand, a)∀a ∈W} . (2)

As the i-th elements in both ~ref and ~cand represent
the similarity of ref and cand sentences to a com-
mon article, the similarity between ref and cand
can be estimated by computing sim( ~ref, ~cand).

2.3 Language-Independent Resource-Free
Metric

We consider a simple characterisation based on
word n-grams. Texts are broken down into over-
lapping word sequences of length n, with 1-word
shifting. The similarity between cand and ref
is computed on the basis of the Jaccard coeffi-
cient (Jaccard, 1901). We used this metric for the
pairs English–Russian and Russian-English, con-
sidering n = 2 (NGRAM-jacTok2ngram). For the
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rest of the pairs we opt for the character-n-gram
metrics described in Section 3.1, but they showed
no positive results in the English–Russian pair dur-
ing our tuning experiments.

3 Source-based Metrics

We enhance our evaluation module by including
a set of new metrics that compare the source text
against the translations. The metrics can be di-
vided into two subsets: those that do not require
any external resources (Section 3.1) and those that
depend on a parallel corpus (Section 3.2).

3.1 Language-Independent Resource-Free
Metrics

We opted for two characterisations that allow for
the comparison of texts across languages without
external resources nor language-related knowl-
edge —as far as the languages use the same writ-
ing system.4

The first characterisation is character n-grams;
proposed by McNamee and Mayfield (2004) for
cross-language information retrieval between Eu-
ropean languages. Texts are broken down into
overlapping character sequences of length n, with
1-character shifting. We opt for case-folded bi-
grams (NGRAM-cosChar2ngrams), as they al-
lowed for the best performance across all the pairs
(except for From/To Russian pairs) during tuning.

The second characterisation (NGRAM-
jacCognates) is based on the concept of
cognateness; originally proposed for bitexts
alignment (Simard et al., 1992). A word is a
pseudo-cognate candidate if (i) it has only letters
and |w| ≥ 4, (ii) it contains at least one digit, or
(iii) it is a single punctuation mark. src and cand
sentences are then represented as word vectors,
containing only those words fulfilling one of the
previous conditions. In the case of (i) the word is
cut down to its leading four characters only.

In both cases (character n-grams and cognate-
ness) cand translations are compared against src
sentences on the basis of the cosine similarity
measure.

3.2 Parallel-Corpus Metrics

We consider two metrics that make use of parallel
corpora: length factor and alignment.

4Previous research showed that transliteration is a
good short-cut when dealing with different writing sys-
tems (Barrón-Cedeño et al., 2014).

Table 1: Length factor parameters as estimated on
the WMT13 parallel corpora.

pair µ σ pair µ σ

en–cs 0.972 0.245 cs–en 1.085 0.273
en–de 1.176 0.926 de–en 0.961 0.463
en–fr 1.158 0.411 fr–en 0.914 0.313
en–ru 1.157 0.678 ru–en 1.069 0.668

The length factor (LeM) is rooted in the fact that
the length of a text and its translation tend to pre-
serve a certain length correlation. For instance,
translations from English into Spanish or French
tend to be longer than their source. Similar mea-
sures were proposed during the statistical machine
translation early days, both considering character-
and word-level lengths (Gale and Church, 1993;
Brown et al., 1991). Pouliquen et al. (2003) de-
fines the length factor as:

%(d′) = e

−0.5

( |d′|
|dq |−µ
σ

)2

, (3)

where µ and σ represent the mean and standard
deviation of the character lengths between trans-
lations of texts from L into L′. This is a stochas-
tic normal distribution that results in higher values
as the length of the target text approaches the ex-
pected value given the source. Table 1 includes
the values for each language pair, as estimated on
the WMT13 parallel corpora. Note that this metric
was not applied to Hindi–English since this lan-
guage pair was not present in the WMT13 chal-
lenge.

The last of our newly-added measures relies
on the word alignments calculated between the
sentence pairs src–cand and src–ref. We trained
alignment models for each language pair using the
Berkeley Aligner5, and devised three variants of
an ALGN metric, which compute: (i) the propor-
tion of aligned words between src and cand (AL-
GNs); (ii) the proportion of aligned words between
cand and ref, calculated as the combination of the
alignments src–cand and src–ref (ALGNr); and
(iii) the ratio of shared alignments between src–
cand and src–ref (ALGNp).

4 Experimental Results

The tuning and selection of the different met-
rics to build UPC-IPA and UPC-STOUT was

5https://code.google.com/p/berkeleyaligner
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conducted considering the WMT13 Metrics Task
dataset (Macháček and Bojar, 2013), and the re-
sources distributed for the WMT13 Translation
Task (Bojar et al., 2013). Table 2 gives a
complete list of these metrics grouped by fami-
lies. First, we calculated the Pearson’s correla-
tion with the human judgements for all the met-
rics in the current version of the ASIYA repos-
itory, including standard MT evaluation metrics,
such as METEOR (Denkowski and Lavie, 2011),
GTM (Melamed et al., 2003), -TERp-A (Snover
et al., 2009) (a variant of TER tuned towards ade-
quacy), WER (Nießen et al., 2000) and PER (Till-
mann et al., 1997). We selected the best perform-
ing metrics (i.e., those resulting in high Pearson
coefficients) in each family across all the From/To
English translation language pairs, including the
newly developed measures —even if they per-
formed poorly compared to others (see This is how
the UPC-STOUT metrics sets for both from En-
glish and To English translation pairs were com-
posed6 (see Table 3).

Table 2: Metrics considered in the experiments
separated by families according to the type of
grammatical items they use.

1. -WER 17. DPm-HWCM r-1
2. -PER 18. DPm-Or(*)

3. -TERp-A 19. SR-Or(*)
4. METEOR-ex 20. SR-Or
5. METEOR-pa 21. SR-Orv(*)
6. GTM-3 22. SR-Orv

7. SP-Op(*) 23. NE-Oe(*)
8. SP-pNIST 24. NE-Oe(**)

9. CP-STMi-5 25. ESA

10. CP-STMi-2 26. NGRAM-jacTok2ngrams
11. CP-STMi-3 27. NGRAM-jacCognates
12. CP-STM-4 28. NGRAM-cosChar2ngrams

13. CP-Oc(*) 29. LeM

14. DPm-HWCM w-3 30. ALGNp
15. DPm-HWCM c-3 31. ALGNs
16. DPm-HWCMi c-3 32. ALGNr

Table 3: Metrics considered in each system.7

BAS: 1–6 SYN: 7–18
SEM: 19–25 SRC: 26–32

IPA: 1–9, 25–31 STOUT: 1–32

6Parser-based measures are not present in Czech nor Rus-
sian as target languages, ALGN is not available for French
pairs, and ESA is not applied to Russian as target.

The metric sets included in UPC-IPA are light
versions of the UPC-STOUT ones. They were
composed following different criteria, depending
on the translation direction. Parsing-based mea-
sures were already available in the previous ver-
sion of ASIYA when translating into English —
they are known to be robust across domains and
are usually good indicators of translation qual-
ity (Giménez and Màrquez, 2007). So, in order
to assess the gain achieved with these measures
with respect the new ones, UPC-IPA neglects the
measures based on structural information obtained
from parsers. In contrast, this distinction was not
suitable for the From English pairs since the num-
ber of resources and measures varies for each lan-
guage. Hence, in this latter case, UPC-IPA used
only the subset of measures from UPC-STOUT
that required no or little resources.

In summary, when English is the target lan-
guage, UPC-IPA uses the baseline evaluation
metrics along with the length factor, alignments-
based metrics, character n-grams, and ESA. In ad-
dition to the above metrics, UPC-STOUT uses
the linguistic-based metrics over parsing trees,
named entities, and semantic roles. When English
is the source language, UPC-IPA relies on the
basic collection of metrics and character n-grams
only. UPC-STOUT includes the alignment-based
metrics, length factor, ESA, and the syntactic
parsers applied to both German and French.

In all cases (metric sets and language pairs),
the translation quality score is computed as the
uniformly-averaged linear combination (ULC) of
all the individual metrics for each sentence in the
testset. Its calculation implies the normalization
of heterogeneous scores (some of them are neg-
ative or unbounded), into the range [0, 1]. As a
consequence, the scores of UPC-IPA and UPC-
STOUT constitute a natural way of ranking dif-
ferent translations, rather than an overall quality
estimation measure. We opt for this linear combi-
nation for simplicity. The discussion below sug-
gests that a more sophisticated method for weight
tuning (e.g., relying on machine learning methods)
would be required for each language pair, domain
and/or task since different metric families perform
notably different for each subtask.

We complete our experimentation by eval-
uating more configurations: BAS, a baseline

7These are the full sets of measures for each configura-
tion. However, each specific subset for From/To English can
vary slightly depending on the available resources.

397



Table 4: System-level Pearson correlation for automatic metrics over translations From/To English.
WMT13 en–fr en–de en–es en–cs en–ru fr–en de–en es–en cs–en ru–en

UPC-IPA 93.079 85.147 88.702 85.259 70.345 96.755 94.660 95.065 94.316 72.083
UPC-STOUT 94.274 90.193 73.314 84.743 70.544 96.916 96.208 96.704 96.666 74.050

BAS 92.502 84.251 90.051 86.584 67.655 95.777 96.506 95.98 96.539 71.536
SYN 95.68 87.297 96.965 n/a n/a 96.291 96.592 96.052 95.238 73.083
BAS+SYN 94.584 87.786 95.162 n/a n/a 96.684 97.057 96.101 96.402 72.800
SEM 89.735 83.647 35.694 95.067 n/a 95.629 96.601 98.021 96.595 76.158
BAS+SEM 92.254 87.005 47.321 89.107 n/a 96.337 97.534 97.568 97.371 74.804
SRC 14.465 -16.796 -22.466 -49.981 39.527 13.405 -51.371 71.64 -73.254 68.766
BAS+SRC 93.637 76.401 83.754 64.742 54.128 95.395 90.889 93.299 89.216 71.882

WMT13-Best 94.745 93.813 96.446 86.036 81.194 98.379 97.789 99.171 83.734 94.768
WMT13-Worst 78.787 -45.461 87.677 69.151 61.075 95.118 92.239 79.957 60.918 82.058

Table 5: Segment-level Kendall’s τ correlation for automatic metrics over translations From/To English.
WMT13 en–fr en–de en–es en–cs en–ru fr–en de–en es–en cs–en ru–en

UPC-IPA 18.625 14.901 17.057 7.805 15.132 22.832 25.769 26.907 21.207 19.904
UPC-STOUT 19.488 15.012 17.166 8.545 15.279 23.090 27.117 26.848 21.332 19.100

BAS 19.477 13.589 16.975 8.449 15.599 24.060 28.259 28.381 23.346 20.983
SYN 16.554 14.970 16.444 n/a n/a 22.365 24.289 23.889 20.232 17.679
BAS+SYN 19.112 16.016 18.122 n/a n/a 23.940 28.068 27.988 23.180 19.659
SEM 12.184 9.249 10.871 3.808 n/a 17.282 19.083 20.859 15.186 14.971
BAS+SEM 19.167 13.291 15.857 7.732 n/a 22.024 25.788 26.360 21.427 19.117
SRC 2.745 2.481 1.152 1.992 5.247 2.181 1.154 8.700 -4.023 16.267
BAS+SRC 18.32 13.017 15.698 7.666 13.619 22.292 24.948 26.780 17.603 20.707

WMT13-Best 21.897 19.459 20.699 11.283 18.899 26.836 29.565 24.271 21.665 25.584
WMT13-Worst 16.753 13.910 3.024 4.431 13.166 14.008 14.542 14.494 9.667 13.178

with standard and commonly used MT metrics;
SYN, the reference-based syntactic metrics; SEM,
the reference-based semantic metrics; SRC, the
source-based metrics; and the combination of
BAS with every other configuration: BAS+SYN,
BAS+SEM, and BAS+SRC. Their purpose is to
evaluate the contribution of the newly developed
sets of metrics with respect to the baseline. The
composition of the different configurations is sum-
marised in Tables 2 and 3.

Evaluation results are shown in Tables 4 and 5.
For each configuration and language pair, we show
the correlation coefficients obtained at the system-
and the segment-level, respectively. As customary
with the WMT13 dataset, Pearson correlation was
computed at the system-level, whereas Kendall’s
τ was used to estimate segment-level rank correla-
tions. Additionally to the two submitted and seven
extra configurations, we include the coefficients
obtained with the Best and Worst systems reported
in the official WMT13 evaluation for each lan-
guage pair.

Although the results of our two submitted sys-
tems are not radically different to each other,
UPC-STOUT consistently outperforms UPC-

IPA. The currently available version of ASIYA, in-
cluding the new metrics, allows for a performance
close to the top-performing evaluation measures in
last year’s challenge, even with our naı̈ve combi-
nation strategy.

It is worth noting that no configuration be-
haves the same way throughout the different lan-
guages. In some cases (e.g., with the SRC config-
uration), the bad performance can be explained by
the weaknesses of the necessary resources when
computing certain metrics. When analysed in de-
tail, the cause can be ascribed to different metric
families in each case. As a result, it is clear that
specific configurations are necessary for evaluat-
ing different languages and domains. We plan to
approach these issues as part of our future work.

When looking at the system-level figures, one
can observe that the SEM set allows for a con-
siderable improvement over the baseline system.
The further inclusion of the SYN set —when
available—, tends to increase the quality of the
estimations, mainly when English is the source
language. These properties impact on some of
the UPC-STOUT configurations. In contrast,
when looking at the segment-level scores, while
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Table 6: System-level Pearson correlation results
in the WMT14 Metrics shared task

en–fr en–de en–cs en–ru

UPC-IPA 93.7 13.0 96.8 92.2
UPC-STOUT 93.8 14.8 93.8 92.1
WMT14-Best 95.9 19.8 98.8 94.2
WMT14-Worst 88.8 1.1 93.8 90.3

fr–en de–en hi–en cs–en ru–en

UPC-IPA 96.6 89.4 91.5 82.4 80.0
UPC-STOUT 96.8 91.4 89.8 94.7 82.5
WMT14-Best 98.1 94.2 97.6 99.3 86.1
WMT14-Worst 94.5 76.0 41.1 74.1 -41.7

the SYN measures still tend to provide some gain
over the baseline, the SEM ones do not. Finally, it
merits some attention the good results achieved by
the baseline for translations into English. We may
remark here that our baseline included also the
best performing state-of-the-art metrics, including
all the variants of METEOR, that reported good
results in the WMT13 challenge.

Tables 6 and 7 show the official results obtained
by UPC-IPA and UPC-STOUT in WMT14.8

The best and worst figures for each language pair
are included for comparison —the worst perform-
ing submission at segment level is neglected as it
seems to be a dummy (Macháček and Bojar, 2014
to appear). Both UPC-IPA and UPC-STOUT
configurations resulted in different performances
depending on the language pair. UPC-STOUT
scored above the average for all the language pairs
except for en–cs at both system and segment level,
and en–ru at system level. Although the evaluation
results are not directly comparable to the WMT13
ones, one can note that the results were notably
better for pairs that involved Czech and Russian,
and worse for those that involved French and Ger-
man at system level. Analysing the impact of the
evaluation methods and building comparable re-
sults in order to address a study on configurations
for different languages is part of our future work.

5 Conclusions

This paper describes the UPC submission to the
WMT14 metrics for automatic machine transla-
tion evaluation task. The core of our evaluation
system is ASIYA, a toolkit for MT evaluation. Be-
sides the formerly available metrics in ASIYA, we
experimented with new metrics for machine trans-

8At the time of submitting this paper, the evaluation re-
sults for WMT14 Metrics Task were provisional.

Table 7: Segment-level Kendall’s τ correlation re-
sults in the WMT14 Metrics shared task

en–fr en–de en–cs en–ru

UPC-IPA 26.3 21.7 29.7 42.6
UPC-STOUT 27.8 22.4 28.1 42.5
WMT14-Best 29.7 25.8 34.4 44.0
WMT14-Worst 25.4 18.5 28.1 38.1

fr–en de–en hi–en cs–en ru–en

UPC-IPA 41.2 34.1 36.7 27.4 32.4
UPC-STOUT 40.3 34.5 35.1 27.5 32.4
WMT14-Best 43.3 38.1 43.8 32.8 36.4
WMT14-Worst 31.1 22.5 23.7 18.7 21.2

lation evaluation, with especial focus on transla-
tion from English into other languages.

As previous work on English as target language
has proven, syntactic and semantic analysis can
contribute positively to the evaluation of automatic
translations. For this reason, we integrated a set of
new metrics for different languages, aimed at eval-
uating a translation from different perspectives.
Among the novelties, (i) new shallow metrics, bor-
rowed from Information Retrieval, were included
to compare the candidate translation against both
the reference translation (monolingual compari-
son) and the source sentence (cross-language com-
parison), including explicit semantic analysis and
the lexical-based characterisations character n-
grams and pseudo-cognates; (ii) new parsers for
other languages than English were applied to com-
pare automatic and reference translation at the
syntactic level; (iii) an experimental metric based
on alignments; and (iv) a metric based on the cor-
relation of the translations’ expected lengths was
included as well. Our preliminary experiments
showed that the combination of these and standard
MT evaluation metrics allows for a performance
close to the best in last year’s competition for some
language pairs.

The new set of metrics is already available
in the current version of the toolkit ASIYA

v3.0 (Gonzàlez and Giménez, 2014). Our current
efforts are focused on the exploitation of more so-
phisticated methods to combine the contributions
of each metric, and the extension of the list of sup-
ported languages.
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Abstract

We present novel automatic metrics for
machine translation evaluation that use
discourse structure and convolution ker-
nels to compare the discourse tree of an
automatic translation with that of the hu-
man reference. We experiment with five
transformations and augmentations of a
base discourse tree representation based
on the rhetorical structure theory, and we
combine the kernel scores for each of them
into a single score. Finally, we add other
metrics from the ASIYA MT evaluation
toolkit, and we tune the weights of the
combination on actual human judgments.
Experiments on the WMT12 and WMT13
metrics shared task datasets show corre-
lation with human judgments that outper-
forms what the best systems that partici-
pated in these years achieved, both at the
segment and at the system level.

1 Introduction

The rapid development of statistical machine
translation (SMT) that we have seen in recent
years would not have been possible without au-
tomatic metrics for measuring SMT quality. In
particular, the development of BLEU (Papineni
et al., 2002) revolutionized the SMT field, al-
lowing not only to compare two systems in a
way that strongly correlates with human judg-
ments, but it also enabled the rise of discrimina-
tive log-linear models, which use optimizers such
as MERT (Och, 2003), and later MIRA (Watanabe
et al., 2007; Chiang et al., 2008) and PRO (Hop-
kins and May, 2011), to optimize BLEU, or an ap-
proximation thereof, directly. While over the years
other strong metrics such as TER (Snover et al.,
2006) and Meteor (Lavie and Denkowski, 2009)
have emerged, BLEU remains the de-facto stan-
dard, despite its simplicity.

Recently, there has been steady increase in
BLEU scores for well-resourced language pairs
such as Spanish-English and Arabic-English.
However, it was also observed that BLEU-like n-
gram matching metrics are unreliable for high-
quality translation output (Doddington, 2002;
Lavie and Agarwal, 2007). In fact, researchers al-
ready worry that BLEU will soon be unable to dis-
tinguish automatic from human translations.1 This
is a problem for most present-day metrics, which
cannot tell apart raw machine translation output
from a fully fluent professionally post-edited ver-
sion thereof (Denkowski and Lavie, 2012).

Another concern is that BLEU-like n-gram
matching metrics tend to favor phrase-based SMT
systems over rule-based systems and other SMT
paradigms. In particular, they are unable to cap-
ture the syntactic and semantic structure of sen-
tences, and are thus insensitive to improvement
in these aspects. Furthermore, it has been shown
that lexical similarity is both insufficient and not
strictly necessary for two sentences to convey
the same meaning (Culy and Riehemann, 2003;
Coughlin, 2003; Callison-Burch et al., 2006).

The above issues have motivated a large amount
of work dedicated to design better evaluation met-
rics. The Metrics task at the Workshop on Ma-
chine Translation (WMT) has been instrumental in
this quest. Below we present QCRI’s submission
to the Metrics task of WMT14, which consists of
the DiscoTK family of discourse-based metrics.

In particular, we experiment with five different
transformations and augmentations of a discourse
tree representation, and we combine the kernel
scores for each of them into a single score which
we call DISCOTKlight. Next, we add to the com-
bination other metrics from the ASIYA MT eval-
uation toolkit (Giménez and Màrquez, 2010), to
produce the DISCOTKparty metric.

1This would not mean that computers have achieved hu-
man proficiency; it would rather show BLEU’s inadequacy.
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Finally, we tune the relative weights of the met-
rics in the combination using human judgments
in a learning-to-rank framework. This proved
to be quite beneficial: the tuned version of the
DISCOTKparty metric was the best performing
metric in the WMT14 Metrics shared task.

The rest of the paper is organized as follows:
Section 2 introduces our basic discourse metrics
and the tree representations they are based on.
Section 3 describes our metric combinations. Sec-
tion 4 presents our experiments and results on
datasets from previous years. Finally, Section 5
concludes and suggests directions for future work.

2 Discourse-Based Metrics

In our recent work (Guzmán et al., 2014), we used
the information embedded in the discourse-trees
(DTs) to compare the output of an MT system to
a human reference. More specifically, we used
a state-of-the-art sentence-level discourse parser
(Joty et al., 2012) to generate discourse trees for
the sentences in accordance with the Rhetorical
Structure Theory (RST) of discourse (Mann and
Thompson, 1988). Then, we computed the simi-
larity between DTs of the human references and
the system translations using a convolution tree
kernel (Collins and Duffy, 2001), which efficiently
computes the number of common subtrees. Note
that this kernel was originally designed for syntac-
tic parsing, and the subtrees are subject to the con-
straint that their nodes are taken with all or none
of their children, i.e., if we take a direct descen-
dant of a given node, we must also take all siblings
of that descendant. This imposes some limitations
on the type of substructures that can be compared,
and motivates the enriched tree representations ex-
plained in subsections 2.1–2.4.

The motivation to compare discourse trees, is
that translations should preserve the coherence re-
lations. For example, consider the three discourse
trees (DTs) shown in Figure 1. Notice that the
Attribution relation in the reference translation is
also realized in the system translation in (b) but not
in (c), which makes (b) a better translation com-
pared to (c), according to our hypothesis.

In (Guzmán et al., 2014), we have shown that
discourse structure provides additional informa-
tion for MT evaluation, which is not captured by
existing metrics that use lexical, syntactic and se-
mantic information; thus, discourse should be con-
sidered when developing new rich metrics.

Here, we extend our previous work by devel-
oping metrics that are based on new representa-
tions of the DTs. In the remainder of this section,
we will focus on the individual DT representations
that we will experiment with; then, the following
section will describe the metric combinations and
tuning used to produce the DiscoTK metrics.

2.1 DR-LEX1

Figure 2a shows our first representation of the DT.
The lexical items, i.e., words, constitute the leaves
of the tree. The words in an Elementary Discourse
Unit (EDU) are grouped under a predefined tag
EDU, to which the nuclearity status of the EDU
is attached: nucleus vs. satellite. Coherence re-
lations, such as Attribution, Elaboration, and En-
ablement, between adjacent text spans constitute
the internal nodes of the tree. Like the EDUs, the
nuclearity statuses of the larger discourse units are
attached to the relation labels. Notice that with
this representation the tree kernel can easily be ex-
tended to find subtree matches at the word level,
i.e., by including an additional layer of dummy
leaves as was done in (Moschitti et al., 2007). We
applied the same solution in our representations.

2.2 DR-NOLEX

Our second representation DR-NOLEX (Figure 2b)
is a simple variation of DR-LEX1, where we ex-
clude the lexical items. This allows us to measure
the similarity between two translations in terms of
their discourse structures alone.

2.3 DR-LEX2

One limitation of DR-LEX1 and DR-NOLEX is that
they do not separate the structure, i.e., the skele-
ton, of the tree from its labels. Therefore, when
measuring the similarity between two DTs, they
do not allow the tree kernel to give partial credit
to subtrees that differ in labels but match in their
structures. DR-LEX2, a variation of DR-LEX1, ad-
dresses this limitation as shown in Figure 2c. It
uses predefined tags SPAN and EDU to build the
skeleton of the tree, and considers the nuclearity
and/or relation labels as properties (added as chil-
dren) of these tags. For example, a SPAN has two
properties, namely its nuclearity and its relation,
and an EDU has one property, namely its nucle-
arity. The words of an EDU are placed under the
predefined tag NGRAM.
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Elaboration
ROOT

SPANNucleus
Attribution

Satellite

Voices are coming from Germany , SPAN
Satellite

SPANNucleus

suggesting that ECB be the last resort creditor .

(a) A reference (human-written) translation.
Attribution

ROOT

SPANSatellite SPANNucleus

In Germany voices , the ECB should be the lender of last resort .

(b) A higher quality (system-generated) translation.

SPANROOT

In Germany the ECB should be for the creditors of last resort .

(c) A lower quality (system-generated) translation.

Figure 1: Three discourse trees for the translations of a source sentence: (a) the reference, (b) a higher
quality automatic translation, and (c) a lower quality automatic translation.

2.4 DR-LEX1.1 and DR-LEX2.1

Although both DR-LEX1 and DR-LEX2 allow the
tree kernel to find matches at the word level, the
words are compared in a bag-of-words fashion,
i.e., if the trees share a common word, the ker-
nel will find a match regardless of its position in
the tree. Therefore, a word that has occurred in
an EDU with status Nucleus in one tree could be
matched with the same word under a Satellite in
the other tree. In other words, the kernel based
on these representations is insensitive to the nu-
clearity status and the relation labels under which
the words are matched. DR-LEX1.1, an exten-
sion of DR-LEX1, and DR-LEX2.1, an extension
of DR-LEX2, are sensitive to these variations at
the lexical level. DR-LEX1.1 (Figure 2d) and DR-
LEX2.1 (Figure 2e) propagate the nuclearity sta-
tuses and/or the relation labels to the lexical items
by including three more subtrees at the EDU level.

3 Metric Combination and Tuning

In this section, we describe our Discourse Tree
Kernel (DiscoTK) metrics. We have two main
versions: DISCOTKlight, which combines the five
DR-based metrics, and DISCOTKparty, which fur-
ther adds the Asiya metrics.

3.1 DISCOTKlight

In the previous section, we have presented several
discourse tree representations that can be used to
compare the output of a machine translation sys-
tem to a human reference. Each representation
stresses a different aspect of the discourse tree.

In order to make our estimations more robust,
we propose DISCOTKlight, a metric that takes ad-
vantage of all the previous discourse representa-
tions by linearly interpolating their scores. Here
are the processing steps needed to compute this
metric:
(i) Parsing: We parsed each sentence in order to
produce discourse trees for the human references
and for the outputs of the systems.
(ii) Tree enrichment/simplification: For each
sentence-level discourse tree, we generated the
five different tree representations: DR-NOLEX,
DR-LEX1, DR-LEX1.1, DR-LEX2, DR-LEX2.1.
(iii) Estimation: We calculated the per-sentence
similarity scores between tree representations of
the system hypothesis and the human reference
using the extended convolution tree kernel as de-
scribed in the previous section. To compute the
system-level similarity scores, we calculated the
average sentence-level similarity; note that this en-
sures that our metric is “the same” at the system
and at the segment level.
(iv) Normalization: In order to make the scores of
the different representations comparable, we per-
formed a min–max normalization2 for each met-
ric and for each language pair.
(v) Combination: Finally, for each sentence, we
computed DISCOTKlight as the average of the
normalized similarity scores of the different repre-
sentations. For system-level experiments, we per-
formed linear interpolation of system-level scores.

2Where x′ = (x−min)/(max−min).
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(a) DT for DR-LEX1.

ELABORATION-NUCLEUS

EDU-NUCLEUS EDU-SATELLITE

(b) DT for DR-NOLEX.

SPAN

NUC REL EDU EDU

NUCLEUS ELABORATION NUC NGRAM NUC NGRAM

NUCLEUS to better .. titles SATELLITE published

(c) DT for DR-LEX2.

ELABORATION-NUCLEUS

EDU-NUCLEUS ..

LEX LEX:NUC LEX:REL LEX:NUC:REL

to better .. to:N better:N .. to:ELAB better:ELAB .. to:N:ELAB better:N:ELAB ..

(d) DT for DR-LEX1.1.
SPAN

NUC REL EDU EDU

NUCLEUS ELABORATION NUC LEX LEX:NUC LEX:REL LEX:NUC:REL NUC LEX LEX:NUC ..

NUCLEUS to better .. to:N better:N .. to:ELAB better:ELAB .. to:N:ELAB better:N:ELAB .. SATELLITE published published:S

(e) DT for DR-LEX2.1.

Figure 2: Five different representations of the discourse tree (DT) for the sentence “The new organisa-
tional structure will also allow us to enter the market with a joint offer of advertising products, to better
link the creation of content for all the titles published and, last but not least, to continue to streamline
significantly the business management of the company,” added Cermak. Note that to avoid visual clutter,
(b)–(e) show alternative representations only for the highlighted subtree in (a).

3.2 DISCOTKparty

One of the weaknesses of the above discourse-
based metrics is that they use unigram lexical
information, which does not capture reordering.
Thus, in order to make more informed and ro-
bust estimations, we extended DISCOTKlight with
the composing metrics of the ASIYA’s ULC met-
ric (Giménez and Màrquez, 2010), which is a uni-
form linear combination of twelve individual met-
rics and was the best-performing metric at the sys-
tem and at the segment levels at the WMT08 and
WMT09 metrics tasks.

In order to compute the individual metrics from
ULC, we used the ASIYA toolkit,3 but we de-
parted from ASIYA’s ULC by replacing TER
and Meteor with newer versions thereof that take
into account synonymy lookup and paraphras-
ing (‘TERp-A’ and ‘Meteor-pa’ in ASIYA’s ter-
minology). We then combined the five compo-
nents in DISCOTKlight and the twelve individ-
ual metrics from ULC; we call this combination
DISCOTKparty.

3http://nlp.lsi.upc.edu/asiya/

We combined the scores using linear interpola-
tion in two different ways:

(i) Uniform combination of min-max normalized
scores at the segment level. We obtained system-
level scores by computing the average over the
segment scores.

(ii) Trained interpolation at the sentence level.
We determined the interpolation weights for the
above-described combination of 5+12 = 17 met-
rics using a pairwise learning-to-rank framework
and classification with logistic regression, as we
had done in (Guzmán et al., 2014). We obtained
the final test-time sentence-level scores by pass-
ing the interpolated raw scores through a sigmoid
function. In contrast, for the final system-level
scores, we averaged the per-sentence interpolated
raw scores.

We also tried to learn the interpolation weights
at the system level, experimenting with both re-
gression and classification. However, the amount
of data available for this type of training was
small, and the learned weights did not perform sig-
nificantly better than the uniform combination.
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3.3 Post-processing

Discourse-based metrics, especially DR-NOLEX,
tend to produce many ties when there is not
enough information to do complete discourse
analysis. This contributes to lower τ scores for
DISCOTKlight. To alleviate this issue, we used a
simple tie-breaking strategy, in which ties between
segment scores for different systems are resolved
by using perturbations proportional to the global
system-level scores produced by the same metric,
i.e., x′seg

sys = xseg
sys + ε∗∑s x

s
sys. Here, ε is automati-

cally chosen to avoid collisions with scores not in-
volved in the tie. This post-processing is not part
of the metric; it is only applied to our segment-
level submission to the WMT’14 metrics task.

4 Experimental Evaluation

In this section, we present some of our experi-
ments to decide on the best DiscoTK metric vari-
ant and tuning set. For tuning, testing and compar-
ison, we worked with some of the datasets avail-
able from previous WMT metrics shared tasks,
i.e., 2011, 2012 and 2013. From previous ex-
periments (Guzmán et al., 2014), we know that
the tuned metrics perform very well on cross-
validation for the same-year dataset. We further
know that tuning can be performed by concatenat-
ing data from all the into-English language pairs,
which yields better results than training separately
by language pair. For the WMT14 metrics task,
we investigated in more depth whether the tuned
metrics generalize well to new datasets. Addition-
ally, we tested the effect of concatenating datasets
from different years.

Table 1 shows the main results of our experi-
ments with the DiscoTK metrics. We evaluated
the performance of the metrics on the WMT12
and WMT13 datasets both at the segment and the
system level, and we used WMT11 as an addi-
tional tuning dataset. We measured the perfor-
mance of the metrics in terms of correlation with
human judgements. At the segment level, we eval-
uated using Kendall’s Tau (τ ), recalculated follow-
ing the WMT14 official Kendall’s Tau implemen-
tation. At the system level, we used Spearman’s
rank correlation (ρ) and Pearson’s correlation co-
efficient (r). In all cases, we averaged the results
over all into-English language pairs. The symbol
‘∅’ represents the untuned versions of our metrics,
i.e., applying a uniform linear combination of the
individual metrics.

We trained the tuned versions of the DiscoTK
measures using different datasets (WMT11,
WMT12 and WMT13) in order to study across-
corpora generalization and the effect of training
dataset size. The symbol ‘+’ stands for concatena-
tion of datasets. We trained the tuned versions at
the segment level using Maximum Entropy clas-
sifiers for pairwise ranking (cf. Section 3). For
the sake of comparison, the first group of rows
contains the results of the best-performing met-
rics at the WMT12 and WMT13 metrics shared
tasks and the last group of rows contains the re-
sults of the ASIYA combination of metrics, i.e.,
DISCOTKparty without the discourse components.

Several conclusions can be drawn from Table 1.
First, DISCOTKparty is better than DISCOTKlight

in all settings, indicating that the discourse-based
metrics are very well complemented by the hetero-
geneous metric set from ASIYA. DISCOTKlight

achieves competitive scores at the system level
(which would put the metric among the best par-
ticipants in WMT12 and WMT13); however, as
expected, it is not robust enough at the segment
level. On the other hand, the tuned versions of
DISCOTKparty are very competitive and improve
over the already strong ASIYA in each configu-
ration both at the segment- and the system-level.
The improvements are small but consistent, show-
ing that using discourse increases the correlation
with human judgments.

Focusing on the results at the segment level, it
is clear that the tuned versions offer an advantage
over the simple uniform linear combinations. In-
terestingly, for the tuned variants, given a test set,
the results are consistent across tuning sets, ruling
out over-fitting; this shows that the generalization
is very good. This result aligns well with what
we observed in our previous studies (Guzmán et
al., 2014). Learning with more data (WMT11+12
or WMT12+13) does not seem to help much,
but it does not hurt performance either. Overall,
the τ correlation results obtained with the tuned
DISCOTKparty metric are much better than the
best results of any participant metrics at WMT12
and WMT13 (20.1% and 9.5% relative improve-
ment, respectively).

At the system level, we observe that tuning over
the DISCOTKlight metric is not helpful (results
are actually slightly lower), while tuning the more
complex DISCOTKparty metric yields slightly bet-
ter results.
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Segment Level System Level
WMT12 WMT13 WMT12 WMT13

Metric Tuning τ τ ρ r ρ r
SEMPOS na – – 0.902 0.922 – –

SPEDE07PP na 0.254 – – – – –
METEOR-WMT13 na – 0.264 – – 0.935 0.950

∅ 0.171 0.162 0.884 0.922 0.880 0.911
WMT11 0.207 0.201 0.860 0.872 0.890 0.909

DISCOTKlight WMT12 – 0.200 – – 0.889 0.910
WMT13 0.206 – 0.865 0.871 – –

WMT11+12 – 0.197 – – 0.890 0.910
WMT11+13 0.207 – 0.865 0.871 – –

∅ 0.257 0.231 0.907 0.915 0.941 0.928
WMT11 0.302 0.282 0.915 0.940 0.934 0.946

DISCOTKparty WMT12 – 0.284 – – 0.936 0.940
WMT13 0.305 – 0.912 0.935 – –

WMT11+12 – 0.289 – – 0.936 0.943
WMT11+13 0.304 – 0.912 0.934 – –

∅ 0.273 0.252 0.899 0.909 0.932 0.922
WMT11 0.301 0.279 0.913 0.935 0.934 0.944

ASIYA WMT12 – 0.277 – – 0.932 0.938
WMT13 0.303 – 0.908 0.932 – –

WMT11+12 – 0.277 – – 0.934 0.940
WMT11+13 0.303 – 0.908 0.933 – –

Table 1: Evaluation results on WMT12 and WMT13 datasets at segment and system level for the main
combined DiscoTK measures proposed in this paper.

The scores of our best metric are higher than
those of the best participants in WMT12 and
WMT13, according to Spearman’s ρ, which was
the official metric in those years. Overall, our met-
rics are comparable to the state-of-the-art at the
system level. The differences between Spearman’s
ρ and Pearson’s r coefficients are not dramatic,
with r values being always higher than ρ.

Given the above results, we submitted the fol-
lowing runs to the WMT14 Metrics shared task:
(i) DISCOTKparty tuned on the concatenation
of datasets WMT11+12+13, as our primary run;
(ii) Untuned DISCOTKparty, to verify that we are
not over-fitting the training set; and (iii) Untuned
DISCOTKlight, to see the performance of a metric
using discourse structures and word unigrams.

The results for the WMT14 Metrics shared task
have shown that our primary run, DISCOTKparty

tuned, was the best-performing metric both at the
segment- and at the system-level (Macháček and
Bojar, 2014). This metric yielded significantly
better results than its untuned counterpart, con-
firming the importance of weight tuning and the
absence of over-fitting during tuning. Finally, the
untuned DISCOTKlight achieved relatively com-
petitive, albeit slightly worse results for all lan-
guage pairs, except for Hindi-English, where sys-
tem translations resembled a “word salad”, and
were very hard to discourse-parse accurately.

5 Conclusion

We have presented experiments with novel auto-
matic metrics for machine translation evaluation
that take discourse structure into account. In par-
ticular, we used RST-style discourse parse trees,
which we compared using convolution kernels.
We further combined these kernels with metrics
from ASIYA, also tuning the weights. The re-
sulting DISCOTKparty tuned metric was the best-
performing at the segment- and system-level at the
WMT14 metrics task.

In an internal evaluation on the WMT12 and
WMT13 metrics datasets, this tuned combina-
tion showed correlation with human judgments
that outperforms the best systems that participated
in these shared tasks. The discourse-only met-
ric ranked near the top at the system-level for
WMT12 and WMT13; however, it is weak at the
segment-level since it is sensitive to parsing errors,
and most sentences have very little internal dis-
course structure.

In the future, we plan to work on an inte-
grated representation of syntactic, semantic and
discourse-based tree structures, which would al-
low us to design evaluation metrics based on more
fine-grained features, and would also allow us to
train such metrics using kernel methods. Further-
more, we want to make use of discourse parse in-
formation beyond the sentence level.
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Abstract

This paper describes a machine translation
metric submitted to the WMT14 Metrics
Task. It is a simple modification of the
standard BLEU metric using a monolin-
gual alignment of reference and test sen-
tences. The alignment is computed as
a minimum weighted maximum bipartite
matching of the translated and the refer-
ence sentence words with respect to the
relative edit distance of the word prefixes
and suffixes. The aligned words are in-
cluded in the n-gram precision compu-
tation with a penalty proportional to the
matching distance. The proposed tBLEU
metric is designed to be more tolerant to
errors in inflection, which usually does not
effect the understandability of a sentence,
and therefore be more suitable for measur-
ing quality of translation into morphologi-
cally richer languages.

1 Introduction

Automatic evaluation of machine translation (MT)
quality is an important part of the machine trans-
lation pipeline. The possibility to run an evalua-
tion algorithm many times while training a system
enables the system to be optimized with respect to
such a metric (e.g., by Minimum Error Rate Train-
ing (Och, 2003)). By achieving a high correlation
of the metric with human judgment, we expect the
system performance to be optimized also with re-
spect to the human perception of translation qual-
ity.

In this paper, we propose an MT metric called
tBLEU (tolerant BLEU) that is based on the stan-
dard BLEU (Papineni et al., 2002) and designed to
suit better when translation into morphologically
richer languages. We aim to have a simple lan-
guage independent metric that correlates with hu-
man judgment better than the standard BLEU.

Several metrics try to address this problem
as well and usually succeed to gain a higher
correlation with human judgment (e.g. ME-
TEOR (Denkowski and Lavie, 2011), TerrorCat
(Fishel et al., 2012)). However, they usually
use some language-dependent tools and resources
(METEOR uses stemmer and parahprasing tables,
TerrorCat uses lemmatization and needs training
data for each language pair) which prevent them
from being widely adopted.

In the next section, the previous work is briefly
summarized. Section 3 describes the metric in de-
tail. The experiments with the metric are described
in Section 4 and their results are summarized in
Section 5.

2 Previous Work

BLEU (Papineni et al., 2002) is an established and
the most widely used automatic metric for evalua-
tion of MT quality. It is computed as a harmonic
mean of the n-gram precisions multiplied by the
brevity penalty coefficient which ensures also high
recall. Formally:

BLEU = BP · exp

(
4∑

n=1

1
4

log pn

)
,

where BP is the brevity penaly defined as follows:

BP =
{

1 if c > r

e1−
r
c otherwise

,

c is the length of the test sentence (number of to-
kens), r is the length of the reference sentence, and
pn is the proportion of n-grams from the test sen-
tence found in the reference translations.

The original experiments with the English to
Chinese translation (Papineni et al., 2002) re-
ported very high correlation of BLEU with human
judgments. However, these scores were computed
using multiple reference translations (to capture
translation variability) but in practice, only one
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Reference:

Source:

Translation:
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Figure 1: An example of the unigram and bigram precision computation for translation from English to
Czech with the test sentence having minor inflection errors and an additional preposition. The first two
lines contain the source sentence in English and a correct reference translation in Czech. On the third
line, there is an incorrectly translated sentence with errors in inflection. Between the second and the
third line, the matching with respect to the affix distance is shown. The fourth line contains the corrected
test sentence with the words weights. The bottom part of the figure shows computation of the unigram
and bigram precisions. The first column contains the original translation n-grams, the second one the
corrected n-grams, the third one the n-gram weights and the last one indicates whether a matching n-
gram is contained in the reference sentence.

reference translation is usually available and there-
fore the BLEU scores are often underestimated.

The main disadvantage of BLEU is the fact that
it treats words as atomic units and does not allow
any partial matches. Therefore, words which are
inflectional variants of each other are treated as
completely different words although their mean-
ing is similar (e.g. work, works, worked, working).
Further, the n-gram precision for n> 1 penalizes
difference in word order between the reference and
the test sentences even though in languages with
free word order both sentences can be correct (Bo-
jar et al., 2010; Condon et al., 2009).

There are also other widely recognized MT
evaluation metrics: The NIST score (Dodding-
ton, 2002) is also an n-gram based metric, but
in addition it reflects how informative particular
n-grams are. A metric that achieves a very high
correlation with human judgment is METEOR
(Denkowski and Lavie, 2011). It creates a mono-
lingual alignment using language dependent tools
as stemmers and synonyms dictionaries and com-
putes weighted harmonic mean of precision and
recall based on the matching.

Some metrics are based on measuring the

edit distance between the reference and test sen-
tences. The Position-Independent Error Rate
(PER) (Leusch et al., 2003) is computed as
a length-normalized edit distance of sentences
treated as bags of words. The Translation Edit
Rate (TER) (Snover et al., 2006) is a number of
edit operation needed to change the test sentence
to the most similar reference sentence. In this
case, the allowed editing operations are insertions,
deletions and substitutions and also shifting words
within a sentence.

A different approach is used in TerrorCat
(Fishel et al., 2012). It uses frequencies of auto-
matically obtained translation error categories as
base for machine-learned pairwise comparison of
translation hypotheses.

In the Workshop of Machine Translation
(WMT) Metrics Task, several new MT metrics
compete annually (Macháček and Bojar, 2013). In
the comptetition, METEOR and TerrorCat scored
better that the other mentioned metrics.
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3 Metric Description

tBLEU is computed in in two steps. Similarly to
the METEOR score, we first make a monolingual
alignment between the reference and the test sen-
tences and then apply an algorithm similar to the
standard BLEU but with modified n-gram preci-
sions.

The monolingual alignment is computed as a
minimum weighted maximum bipartite matching
between words in a reference sentence and a trans-
lation sentence1 using the Munkres assignment al-
gorithm (Munkres, 1957).

We define a weight of an alignment link as the
affix distance of the test sentence word wt

i and the
reference sentence word wr

j : Let S be the longest
common substring of wt

i and wr
i . We can rewrite

the strings as a concatenation of a prefix, the com-
mon substring and a suffix:

wt = wt
i,pSw

t
i,s

wr = wr
j,pSw

r
j,s

Further, we define the affix distance as:

AD(wr, wt)= max
{

1,
L(wr

j,p,wt
i,p)+L(wr

s,j ,wt
s,i)

|S|
}

if |S| > 0 and AD(wr, wt) = 1 otherwise. L is the
Levensthein distance between two strings.

For example the affix distance of two Czech
words vzpomenou and zapomenout (different
forms of verbs remember and forget) is computed
in the following way: The longest common sub-
string is pomenou which has a length of 7. The
prefixes are vz and za and their edit distance is 2.
The suffixes are an empty string and t which with
the edit distance 1. The total edit distance of pre-
fixes and suffixes is 3. By dividing the total edit
distance by the length of the longest common sub-
string, we get the affix distance 3

7 ≈ 0.43.
We denote the resulting set of matching pairs

of words as M = {(wr
i, w

t
i)}mi=1 and for each test

sentence St = (wt
1, ..., w

t
m) we create a corrected

sentence Ŝt = (ŵt
1, ..., ŵ

t
m) such that

ŵt
i =
{
wr if ∃wt : (wr, wt)∈M & AD(wr, wt) ≤ ε
wt

i otherwise.

This means that the words from the test sen-
tence which were matched with the affix distance

1The matching is always one-to-one which means that
some words remain unmatched if the sentences have differ-
ent number of words.
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Figure 2: Dependence of the Pearson’s correlation
of tBLEU with the WMT13 human judgments on
the affix distance threshold for translations from
English and to English.

smaller than ε are “corrected” by substituting them
by the matching words from the reference sen-
tence. The threshold ε is a free parameter of the
metric. When the threshold is set to zero, no
corrections are made and therefore the metric is
equivalent to the standard BLEU.

The words in the corrected sentence are as-
signed the weights as follows:

v(ŵt
i) =

{
1−AD(ŵt

i , w
t
i) if ŵt

i 6= wt
i

1 otherwise.

In other words, the weights penalize the corrected
words proportionally to the affix distance from the
original words.

While computing the n-gram precision, two
matching n-grams (ŵt

1, . . . ŵ
t
n) and (wr

1, . . . w
r
n)

contribute to the n-gram precision with a score of

s(wt
1, . . . , w

t
n) =

n∑
i=1

v(ŵt
i) / n

instead of one as it is in the standard BLEU. The
rest of the BLEU score computation remains un-
changed. While using multiple reference transla-
tion, the matching is done for each of the refer-
ence sentence, and while computing the n-gram
precision, the reference sentences with the highest
weight is chosen. The computation of the n-gram
precision is illustrated in Figure 1.
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direction BLEU METEOR tBLEU
en-cs .781 .860 .787
en-de .835 .868 .850
en-es .875 .878 .884
en-fr .887 .906 .906
from English .844 .878 .857

Table 1: System level Pearson’s correlation with
the human judgment for systems translating from
English computed on the WMT13 dataset.

4 Evaluation

We evaluated the proposed metric on the dataset
used for the WMT13 Metrics Task (Macháček and
Bojar, 2013). The dataset consists of 135 systems’
outputs in 10 directions (5 into English 5 out of
English). Each system’s output and the reference
translation contain 3000 sentences. According to
the WMT14 guidelines, we report the the Pear-
son’s correlation coefficient instead of the Spear-
man’s coefficient that was used in the last years.

Twenty values of the affix distance threshold
were tested in order to estimate what is the most
suitable threshold setting. We report only the sys-
tem level correlation because the metric is de-
signed to compare only the whole system outputs.

5 Results

The tBLEU metric generally improves the cor-
relation with human judgment over the standard
BLEU metric for directions from English to lan-
guages with richer inflection.

Examining the various threshold values showed
that dependence between the affix distance thresh-
old and the correlation with the human judgment
varies for different language pairs (Figure 2). For
translation from English to morphologically richer
languages than English – Czech, German, Spanish
and French – using the tBLEU metric increased
the correlation over the standard BLEU. For Czech
the correlation quickly decreases for threshold val-
ues bigger than 0.1, whereas for the other lan-
guages it still grows. We hypothesize this because
the big morphological changes in Czech can en-
tirely change the meaning.

For translation to English, the correlation
slightly increases with the increasing threshold
value for translation from French and Spanish, but
decreases for Czech and German.

There are different optimal affix distance

direction BLEU METEOR tBLEU
cs-en .925 .985 .927
de-en .916 .962 .917
es-en .957 .968 .953
fr-en .940 .983 .933
to English .923 .974 .935

Table 2: System level Pearson’s correlation with
the human judgment for systems translating to En-
glish computed on the WMT13 dataset.

thresholds for different language pairs. However,
the threshold of 0.05 was used for our WMT14
submission because it had the best average cor-
relation on the WMT13 data set. Tables 1 and
2 show the results of the tBLEU for the particu-
lar language pairs for threshold 0.05. While com-
pared to the BLEU score, the correlation is slightly
higher for translation from English and approxi-
mately the same for translation to English.

The results on the WMT14 dataset did not show
any improvement over the BLEU metric. The rea-
son of the results will be further examined.

6 Conclusion and Future Work

We presented tBLEU, a language-independent MT
metric based on the standard BLEU metric. It in-
troduced the affix distance – relative edit distances
of prefixes and suffixes of two string after remov-
ing their longest common substring. Finding a
matching between translation and reference sen-
tences with respect to this matching allows a pe-
nalized substitution of words which has been most
likely wrongly inflected and therefore less penal-
izes errors in inflection.

This metric achieves a higher correlation with
the human judgment than the standard BLEU
score for translation to morphological richer lan-
guages without the necessity to employ any lan-
guage specific tools.

In future work, we would like to improve word
alignment between test and reference translations
by introducing word position and potentially other
features, and implement tBLEU in MERT to ex-
amine its impact on system tuning.
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Abstract

We present the UvA-ILLC submission of
the BEER metric to WMT 14 metrics task.
BEER is a sentence level metric that can
incorporate a large number of features
combined in a linear model. Novel con-
tributions are (1) efficient tuning of a large
number of features for maximizing corre-
lation with human system ranking, and (2)
novel features that give smoother sentence
level scores.

1 Introduction

The quality of sentence level (also called segment
level) evaluation metrics in machine translation is
often considered inferior to the quality of corpus
(or system) level metrics. Yet, a sentence level
metrics has important advantages as it:

1. provides an informative score to individual
translations

2. is assumed by MT tuning algorithms (Hop-
kins and May, 2011).

3. facilitates easier statistical testing using sign
test or t-test (Collins et al., 2005)

We think that the root cause for most of the diffi-
culty in creating a good sentence level metric is the
sparseness of the features often used. Consider the
n-gram counting metrics (BLEU (Papineni et al.,
2002)): counts of higher order n-grams are usu-
ally rather small, if not zero, when counted at the
individual sentence level. Metrics based on such
counts are brittle at the sentence level even when
they might be good at the corpus level. Ideally we
should have features of varying granularity that we
can optimize on the actual evaluation task: relative
ranking of system outputs.

Therefore, in this paper we explore two kinds of
less sparse features:

Character n-grams are features at the sub-word
level that provide evidence for translation ad-
equacy - for example whether the stem is cor-
rectly translated,

Abstract ordering patterns found in tree factor-
izations of permutations into Permutation
Trees (PETs) (Zhang and Gildea, 2007), in-
cluding non-lexical alignment patterns.

The BEER metric combines features of both kinds
(presented in Section 2).

With the growing number of adequacy and or-
dering features we need a model that facilitates ef-
ficient training. We would like to train for opti-
mal Kendall τ correlation with rankings by human
evaluators. The models in the literature tackle this
problem by

1. training for another similar objective – e.g.,
tuning for absolute adequacy and fluency
scores instead on rankings, or

2. training for rankings directly but with meta-
heuristic approaches like hill-climbing, or

3. training for pairwise rankings using learning-
to-rank techniques

Approach (1) has two disadvantages. One is the
inconsistency between the training and the testing
objectives. The other, is that absolute rankings are
not reliable enough because humans are better at
giving relative than absolute judgments (see WMT
manual evaluations (Callison-Burch et al., 2007)).

Approach (2) does not allow integrating a large
number of features which makes it less attractive.

Approach (3) allows integration of a large num-
ber of features whose weights could be determined
in an elegant machine learning framework. The
output of learning in this approach can be either a
function that ranks all hypotheses directly (global
ranking model) or a function that assigns a score
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to each hypothesis individually which can be used
for ranking (local ranking model) (Li, 2011). Lo-
cal ranking models are preferable because they
provide absolute distance between hypotheses like
most existing evaluation metrics.

In this paper we follow the learning-to-rank ap-
proach which produces a local ranking model in a
similar way to PRO MT systems tuning (Hopkins
and May, 2011).

2 Model

Our model is a fairly simple linear interpolation of
feature functions, which is easy to train and simple
to interpret. The model determines the similarity
of the hypothesis h to the reference translation r
by assigning a weight wi to each feature φi(h, r).
The linear scoring function is given by:

score(h, r) =
∑

i

wi × φi(h, r) = ~w · ~φ

2.1 Adequacy features
The features used are precision P , recall R and
F1-score F for different counts:

Pfunction, Rfunction, Ffunction on matched func-
tion words

Pcontent, Rcontent, Fcontent on matched content
words (all non-function words)

Pall, Rall, Fall on matched words of any type

Pchar n−gram, Rchar n−gram, Fchar n−gram

matching of the character n-grams

By differentiating function and non-function
words we might have a better estimate of which
words are more important and which are less. The
last, but as we will see later the most important,
adequacy feature is matching character n-grams,
originally proposed in (Yang et al., 2013). This
can reward some translations even if they did not
get the morphology completely right. Many met-
rics solve this problem by using stemmers, but us-
ing features based on character n-grams is more
robust since it does not depend on the quality
of the stemmer. For character level n-grams we
can afford higher-order n-grams with less risk of
sparse counts as on word n-grams. In our exper-
iments we used character n-grams for size up to
6 which makes the total number of all adequacy
features 27.

2.2 Ordering features

To evaluate word order we follow (Isozaki et al.,
2010; Birch and Osborne, 2010) in representing
reordering as a permutation and then measuring
the distance to the ideal monotone permutation.
Here we take one feature from previous work –
Kendall τ distance from the monotone permuta-
tion. This metrics on the permutation level has
been shown to have high correlation with human
judgment on language pairs with very different
word order.

Additionally, we add novel features with an
even less sparse view of word order by exploiting
hierarchical structure that exists in permutations
(Zhang and Gildea, 2007). The trees that represent
this structure are called PETs (PErmutation Trees
– see the next subsection). Metrics defined over
PETs usually have a better estimate of long dis-
tance reorderings (Stanojević and Sima’an, 2013).
Here we use simple versions of these metrics:

∆count the ratio between the number of different
permutation trees (PETs) (Zhang and Gildea,
2007) that could be built for the given per-
mutation over the number of trees that could
be built if permutation was completely mono-
tone (there is a perfect word order).

∆[ ] ratio of the number of monotone nodes in
a PET to the maximum possible number of
nodes – the lenght of the sentence n.

∆<> ratio of the number of inverted nodes to n

∆=4 ratio of the number of nodes with branching
factor 4 to n

∆>4 ratio of the number of nodes with branching
factor bigger than 4 to n

2.3 Why features based on PETs?

PETs are recursive factorizations of permutations
into their minimal units. We refer the reader to
(Zhang and Gildea, 2007) for formal treatment of
PETs and efficient algorithms for their construc-
tion. Here we present them informally to exploit
them for presenting novel ordering metrics.

A PET is a tree structure with the nodes deco-
rated with operators (like in ITG) that are them-
selves permutations that cannot be factorized any
further into contiguous sub-parts (called opera-
tors). As an example, see the PET in Figure 1a.
This PET has one 4-branching node, one inverted
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〈2, 4, 1, 3〉

2 〈2, 1〉
〈1, 2〉
5 6

4

1 3

(a) Complex PET

〈1, 2〉
〈2, 1〉
2 1

〈2, 1〉
4 3

(b) PET with inversions

〈2, 1〉
〈2, 1〉

〈2, 1〉
4 3

2

1

(c) Fully inverted PET

Figure 1: Examples of PETs

node and one monotone. The nodes are decorated
by operators that stand for a permutation of the
direct children of the node.

PETs have two important properties that make
them attractive for observing ordering: firstly, the
PET operators show the minimal units of ordering
that constitute the permutation itself, and secondly
the higher level operators capture hidden patterns
of ordering that cannot be observed without fac-
torization. Statistics over patterns of ordering us-
ing PETs are non-lexical and hence far less sparse
than word or character n-gram statistics.

In PETs, the minimal operators on the node
stand for ordering that cannot be broken down any
further. The binary monotone operator is the sim-
plest, binary inverted is the second in line, fol-
lowed by operators of length four like 〈2, 4, 1, 3〉
(Wu, 1997), and then operators longer than four.
The larger the branching factor under a PET node
(the length of the operator on that node) the more
complex the ordering. Hence, we devise possi-
ble branching feature functions over the operator
length for the nodes in PETs:

• factor 2 - with two features: ∆[ ] and ∆<>

(there are no nodes with factor 3 (Wu, 1997))

• factor 4 - feature ∆=4

• factor bigger than 4 - feature ∆>4

All of the mentioned PETs node features, except
∆[ ] and ∆count, signify the wrong word order but
of different magnitude. Ideally all nodes in a PET
would be binary monotone, but when that is not
the case we are able to quantify how far we are
from that ideal binary monotone PET.

In contrast with word n-grams used in other
metrics, counts over PET operators are far less
sparse on the sentence level and could be more
reliable. Consider permutations 2143 and 4321
and their corresponding PETs in Figure 1b and
1c. None of them has any exact n-gram matched

(we ignore unigrams now). But, it is clear that
2143 is somewhat better since it has at least some
words in more or less the right order. These “ab-
stract n-grams” pertaining to correct ordering of
full phrases could be counted using ∆[ ] which
would recognize that on top of the PET in 1b there
is the monotone node unlike the PET in 1c which
has no monotone nodes at all.

3 Tuning for human judgment

The task of correlation with human judgment on
the sentence level is usually posed in the following
way (Macháček and Bojar, 2013):

• Translate all source sentences using the avail-
able machine translation systems

• Let human evaluators rank them by quality
compared to the reference translation

• Each evaluation metric should do the same
task of ranking the hypothesis translations

• The metric with higher Kendall τ correlation
with human judgment is considered better

Let us take any pair of hypotheses that have the
same reference r where one is better (hgood) than
the other one (hbad) as judged by human evaluator.
In order for our metric to give the same ranking as
human judges do, it needs to give the higher score
to the hgood hypothesis. Given that our model is
linear we can derive:

score(hgood, r) > score(hbad, r)⇔
~w · ~φgood > ~w · ~φbad ⇔

~w · ~φgood − ~w · ~φbad > 0⇔
~w · (~φgood − ~φbad) > 0

~w · (~φbad − ~φgood) < 0

The most important part here are the last two
equations. Using them we formulate ranking prob-
lem as a problem of binary classification: the pos-
itive training instance would have feature values
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~φgood − ~φbad and the negative training instance
would have feature values ~φbad−~φgood. This trick
was used in PRO (Hopkins and May, 2011) but for
the different task:

• tuning the model of the SMT system

• objective function was an evaluation metric

Given this formulation of the training instances
we can train the classifier using pairs of hypothe-
ses. Note that even though it uses pairs of hypothe-
ses for training in the evaluation time it uses only
one hypothesis – it does not require the pair of hy-
potheses to compare them. The score of the classi-
fier is interpreted as confidence that the hypothesis
is a good translation. This differs from the major-
ity of earlier work which we explain in Section 6.

4 Experiments on WMT12 data

We conducted experiments for the metric which
in total has 33 features (27 for adequacy and 6
for word order). Some of the features in the
metric depend on external sources of informa-
tion. For function words we use listings that are
created for many languages and are distributed
with METEOR toolkit (Denkowski and Lavie,
2011). The permutations are extracted using ME-
TEOR aligner which does fuzzy matching using
resources such as WordNet, paraphrase tables and
stemmers. METEOR is not used for any scoring,
but only for aligning hypothesis and reference.

For training we used the data from WMT13 hu-
man evaluation of the systems (Macháček and Bo-
jar, 2013). Before evaluation, all data was low-
ercased and tokenized. After preprocessing, we
extract training examples for our binary classifier.
The number of non-tied human judgments per lan-
guage pair are shown in Table 1. Each human
judgment produces two training instances : one
positive and one negative. For learning we use
regression implementation in the Vowpal Wabbit
toolkit 1.

Tuned metric is tested on the human evaluated
data from WMT12 (Callison-Burch et al., 2012)
for correlation with the human judgment. As base-
line we used one of the best ranked metrics on the
sentence level evaluations from previous WMT
tasks – METEOR (Denkowski and Lavie, 2011).
The results are presented in the Table 2. The pre-
sented results are computed using definition of

1https://github.com/JohnLangford/
vowpal_wabbit

language pair #comparisons
cs-en 85469
de-en 128668
es-en 67832
fr-en 80741
ru-en 151422
en-cs 102842
en-de 77286
en-es 60464
en-fr 100783
en-ru 87323

Table 1: Number of human judgments in WMT13

language
pair

BEER
with

paraphrases

BEER
without

paraphrases
METEOR

en-cs 0.194 0.190 0.152
en-fr 0.257 0.250 0.262
en-de 0.228 0.217 0.180
en-es 0.227 0.235 0.201
cs-en 0.215 0.213 0.205
fr-en 0.270 0.254 0.249
de-en 0.290 0.271 0.273
es-en 0.267 0.249 0.247

Table 2: Kendall τ correleation on WMT12 data

Kendall τ from the WMT12 (Callison-Burch et
al., 2012) so the scores could be compared with
other metrics on the same dataset that were re-
ported in the proceedings of that year (Callison-
Burch et al., 2012).

The results show that BEER with and without
paraphrase support outperforms METEOR (and
almost all other metrics on WMT12 metrics task)
on the majority of language pairs. Paraphrase sup-
port matters mostly when the target language is
English, but even in language pairs where it does
not help significantly it can be useful.

5 WMT14 evaluation task results

In Table 4 and Table 3 you can see the results of
top 5 ranked metrics on the segment level evalua-
tion task of WMT14. In 5 out of 10 language pairs
BEER was ranked the first, on 4 the second best
and on one third best metric. The cases where it
failed to win the first place are:

• against DISCOTK-PARTY-TUNED on * - En-
glish except Hindi-English. DISCOTK-
PARTY-TUNED participated only in evalua-
tion of English which suggests that it uses
some language specific components which is
not the case with the current version of BEER

• against METEOR and AMBER on English-
Hindi. The reason for this is simply that we
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Direction en-fr en-de en-hi en-cs en-ru
BEER .295 .258 .250 .344 .440

METEOR .278 .233 .264 .318 .427
AMBER .261 .224 .286 .302 .397

BLEU-NRC .257 .193 .234 .297 .391
APAC .255 .201 .203 .292 .388

Table 3: Kendall τ correlations on the WMT14 hu-
man judgements when translating out of English.

Direction fr-en de-en hi-en cs-en ru-en
DISCOTK-PARTY-TUNED .433 .381 .434 .328 .364
BEER .417 .337 .438 .284 .337
REDCOMBSENT .406 .338 .417 .284 .343
REDCOMBSYSSENT .408 .338 .416 .282 .343
METEOR .406 .334 .420 .282 .337

Table 4: Kendall τ correlations on the WMT14
human judgements when translating into English.

did not have the data to tune our metric for
Hindi. Even by treating Hindi as English we
manage to get high in the rankings for this
language.

From metrics that participated in all language
pairs on the sentence level on average BEER has
the best correlation with the human judgment.

6 Related work

The main contribution of our metric is a linear
combination of features with far less sparse statis-
tics than earlier work. In particular, we employ
novel ordering features over PETs, a range of char-
acter n-gram features for adequancy, and direct
tuning for human ranking.

There are in the literature three main approaches
for tuning the machine translation metrics.

Approach 1 SPEDE (Wang and Manning, 2012),
metric of (Specia and Giménez, 2010),
ROSE-reg (Song and Cohn, 2011), ABS met-
ric of (Padó et al., 2009) and many oth-
ers train their regression models on the data
that has absolute scores for adequacy, fluency
or post-editing and then test on the ranking
problem. This is sometimes called pointwise
approach to learning-to-rank. In contrast our
metric is trained for ranking and tested on
ranking.

Approach 2 METEOR is tuned for the ranking
and tested on the ranking like our metric but
the tuning method is different. METEOR has
a non-linear model which is hard to tune with

gradient based methods so instead they tune
their parameters by hill-climbing (Lavie and
Agarwal, 2008). This not only reduces the
number of features that could be used but also
restricts the fine tuning of the existing small
number of parameters.

Approach 3 Some methods, like ours, allow
training of a large number of parameters for
ranking. Global ranking models that di-
rectly rank hypotheses are used in ROSE-
rank (Song and Cohn, 2011) and PAIR met-
ric of (Padó et al., 2009). Our work is more
similar to the training method for local rank-
ing models that give score directly (as it is
usually expected from an evaluation metric)
which was originally proposed in (Ye et al.,
2007) and later applied in (Duh, 2008) and
(Yang et al., 2013).

7 Conclusion and future plans

We have shown the advantages of combining
many simple features in a tunable linear model
of MT evaluation metric. Unlike majority of the
previous work we create a framework for training
large number of features on human rankings and at
the same time as a result of tuning produce a score
based metric which does not require two (or more)
hypotheses for comparison. The features that we
used are selected for reducing sparseness on the
sentence level. Together the smooth features and
the learning algorithm produce the metric that has
a very high correlation with human judgment.

For future research we plan to investigate some
more linguistically inspired features and also ex-
plore how this metric could be tuned for better tun-
ing of statistical machine translation systems.
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Abstract

Based on the last year’s DCU-CASIST
participation on WMT metrics task, we
further improve our model in the follow-
ing ways: 1) parameter tuning 2) support
languages other than English. We tuned
our system on all the data of WMT 2010,
2012 and 2013. The tuning results as well
as the WMT 2014 test results are reported.

1 Introduction

Automatic evaluation plays a more and more im-
portant role in the evolution of machine transla-
tion. There are roughly two categories can be seen:
namely lexical information based and structural
information based.

1) Lexical information based approaches,
among which, BLEU (?), Translation Error Rate
(TER) (?) and METEOR (?) are the most popular
ones and, with simplicity as their merits, cannot
adequately reflect the structural level similarity.

2) A lot of structural level based methods
have been exploited to overcome the weakness
of the lexical based methods, including Syntactic
Tree Model(STM)(?), a constituent tree based ap-
proach, and Head Word Chain Model(HWCM)(?),
a dependency tree based approach. Both of
the methods compute the similarity between the
sub-trees of the hypothesis and the reference.
Owczarzak et al (?; ?; ?) presented a method
using the Lexical-Functional Grammar (LFG) de-
pendency tree. MAXSIM (?) and the method pro-
posed by Zhu et al (?) also employed the syntac-
tic information in association with lexical infor-
mation. As we know that the hypothesis is poten-
tially noisy, and these errors are enlarged through
the parsing process. Thus the power of syntactic
information could be considerably weakened.

In this paper, based on our attempt on WMT
metrics task 2013 (?), we propose a metrics named

RED ( REference Dependency based automatic
evaluation method). Our metrics employs only the
reference dependency tree which contains both the
lexical and syntactic information, leaving the hy-
pothesis side unparsed to avoid error propagation.

2 Parameter Tuning

In RED, we use F -score as our final score.
F -score is calculated by Formula (1), where α is
a value between 0 and 1.

F -score =
precision · recall

α · precision+ (1− α) · recall
(1)

The dependency tree of the reference and the
string of the translation are used to calculate the
precision and recall. In order to calculate preci-
sion, the number of the dep-ngrams (the ngrams
obtained from dependency tree1) should be given,
but there is no dependency tree for the transla-
tion in our method. We know that the number
of dep-ngrams has an approximate linear relation-
ship with the length of the sentence, so we use the
length of the translation to replace the number of
the dep-ngrams in the translation dependency tree.
Recall can be calculated directly since we know
the number of the dep-ngrams in the reference.
The precision and recall are computed as follows.

precisionn =

∑
d∈Dn

p(d,hyp)

lenh

recalln =

∑
d∈Dn

p(d,hyp)

countn(ref)

Dn is the set of dep-ngrams with the length of n.
lenh is the length of the translation. countn(ref)

is the number of the dep-ngrams with the length
of n in the reference. p(d,hpy) is 0 if there is no
match and a positive number between 0 and 1 oth-
erwise(?).

1We define two types of dep-ngrams: 1) the head word
chain(?); 2) fix-floating(?))
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The final score of RED is achieved using For-
mula (2), in which a weighted sum of the dep-
ngrams’ F -score is calculated. wngram (0 ≤
wngram ≤ 1) is the weight of dep-ngram with the
length of n. F -scoren is the F -score for the dep-
ngrams with the length of n.

RED =
N∑

n=1

(wngram × F -scoren) (2)

Other parameters to be tuned includes:

• Stem and Synonym

Stem(?) and synonym (WordNet2) are intro-
duced with the following three steps. First,
we obtain the alignment with METEOR
Aligner (?) in which not only exact match
but also stem and synonym are considered.
We use stem, synonym and exact match as the
three match modules. Second, the alignment
is used to match for a dep-ngram. We think
the dep-ngram can match with the transla-
tion if the following conditions are satisfied.
1) Each of the words in the dep-ngram has
a matched word in the translation according
to the alignment; 2) The words in dep-ngram
and the matched words in translation appear
in the same order; 3) The matched words
in translation must be continuous if the dep-
ngram is a fixed-floating ngram. At last, the
match module score of a dep-ngram is cal-
culated according to Formula (3). Different
match modules have different effects, so we
give them different weights.

smod =
∑n

i=1wmi

n
, 0 ≤ wmi ≤ 1 (3)

mi is the match module (exact, stem or syn-
onym) of the ith word in a dep-ngram. wmi

is the match module weight of the ith word in
a dep-ngram. n is the number of words in a
dep-ngram.

• Paraphrase

When introducing paraphrase, we don’t con-
sider the dependency tree of the reference,
because paraphrases may not be contained in
the head word chain and fixed-floating struc-
tures. Therefore we first obtain the align-

2http://wordnet.princeton.edu/

ment with METEOR Aligner, only consid-
ering paraphrase; Then, the matched para-
phrases are extracted from the alignment and
defined as paraphrase-ngram. The score of
a paraphrase is 1 × wpar, where wpar is the
weight of paraphrase-ngram.

• Function word

We introduce a parameterwfun (0 ≤ wfun ≤
1) to distinguish function words and content
words. wfun is the weight of function words.
The function word score of a dep-ngram or
paraphrase-ngram is computed according to
Formula (4).

sfun =
Cfun × wfun + Ccon × (1− wfun)

Cfun + Ccon

(4)
Cfun is the number of function words in the
dep-ngram or paraphrase-ngram. Ccon is the
number of content words in the dep-ngram or
paraphrase-ngram.

REDp =
N∑

n=1

(wngram × F -scorepn) (5)

F -scorep =
precisionp · recallp

α · precisionp + (1− α) · recallp
(6)

precisionp and recallP in Formula (6) are cal-
culated as follows.

precisionp =
scoreparn + scoredepn

lenh

recallp =
scoreparn + scoredepn

countn(ref) + countn(par)

lenh is the length of the translation. countn(ref)

is the number of the dep-ngrams with the length
of n in the reference. countn(par) is the num-
ber of paraphrases with length of n in refer-
ence. scoreparn is the match score of paraphrase-
ngrams with the length of n. scoredepn is the
match score of dep-ngrams with the length of n.
scoreparn and scoredepn are calculated as follows.

scoreparn =
∑

par∈Pn

(1× wpar × sfum)

scoredepn =
∑

d∈Dn

(p(d,hyp) × smod × sfun)
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Metrics BLEU TER HWCM METEOR RED RED-sent RED-syssent

WMT 2010

cs-en 0.255 0.253 0.245 0.319 0.328 0.342 0.342
de-en 0.275 0.291 0.267 0.348 0.361 0.371 0.375
es-en 0.280 0.263 0.259 0.326 0.333 0.344 0.347
fr-en 0.220 0.211 0.244 0.275 0.283 0.329 0.328
ave 0.257 0.254 0.253 0.317 0.326 0.346 0.348

WMT 2012

cs-en 0.157 - 0.158 0.212 0.165 0.218 0.212
de-en 0.191 - 0.207 0.275 0.218 0.283 0.279
es-en 0.189 - 0.203 0.249 0.203 0.255 0.256
fr-en 0.210 - 0.204 0.251 0.221 0.250 0.253
ave 0.186 - 0.193 0.246 0.201 0.251 0.250

WMT 2013

cs-en 0.199 - 0.153 0.265 0.228 0.260 0.256
de-en 0.220 - 0.182 0.293 0.267 0.298 0.297
es-en 0.259 - 0.220 0.324 0.312 0.330 0.326
fr-en 0.224 - 0.194 0.264 0.257 0.267 0.266
ru-en 0.162 - 0.136 0.239 0.200 0.262 0.225
ave 0.212 - 0.177 0.277 0.252 0.283 0.274

WMT 2014

hi-en - - - 0.420 - 0.383 0.386
de-en - - - 0.334 - 0.336 0.338
cs-en - - - 0.282 - 0.283 0.283
fr-en - - - 0.406 - 0.403 0.404
ru-en - - - 0.337 - 0.328 0.329
ave - - - 0.355 - 0.347 0.348

Table 1: Sentence level correlations tuned on WMT 2010, 2012 and 2013; tested on WMT 2014. The
value in bold is the best result in each raw. ave stands for the average result of the language pairs on each
year. RED stands for our untuned system, RED-sent is G.sent.2, RED-syssent is G.sent.1

Pn is the set of paraphrase-ngrams with the
length of n. Dn is the set of dep-ngrams with the
length of n.

There are totally nine parameters in RED. We
tried two parameter tuning strategies: Genetic
search algorithm (?) and a Grid search over two
subsets of parameters. The results of Grid search
is more stable, therefore our final submission is
based upon Grid search. We separate the 9 pa-
rameters into two subsets. When searching Sub-
set 1, the parameters in Subset 2 are fixed, and
vice versa. Several iterations are executed to fin-
ish the parameter tuning process. For system
level coefficient score, we set two optimization
goals: G.sys.1) to maximize the sum of Spear-
man’s ρ rank correlation coefficient on system
level and Kendall’s τ correlation coefficient on
sentence level or G.sys.2) only the former; For
sentence level coefficient score, we also set two
optimization goals: G.sent.1) the same as G.sys.1,
G.sent.2) only the latter part of G.sys.1.

3 Experiments

In this section we report the experimental results
of RED on the tuning set, which is the combi-
nation of WMT2010, WMT2012 and WMT2013
data set, as well as the test results on the
WMT2014. Both the sentence level evaluation and
the system level evaluation are conducted to assess
the performance of our automatic metrics. At the
sentence level evaluation, Kendall’s rank correla-
tion coefficient τ is used. At the system level eval-
uation, the Spearman’s rank correlation coefficient
ρ is used.

3.1 Data
There are four language pairs in WMT2010 and
WMT2012 including German-English, Czech-
English, French-English and Spanish-English. For
WMT2013, except these 4 language pairs, there is
also Russian-English. As the test set, WMT 2014
has also five language pairs, but the organizer re-
moved Spanish-English and replace it with Hindi-
English. For into-English tasks, we parsed the En-
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Metrics BLEU TER HWCM METEOR RED RED-sys RED-syssent

WMT 2010

cs-en 0.840 0.783 0.881 0.839 0.839 0.937 0.881
de-en 0.881 0.892 0.905 0.927 0.933 0.95 0.948
es-en 0.868 0.903 0.824 0.952 0.969 0.965 0.969
fr-en 0.839 0.833 0.815 0.865 0.873 0.875 0.905
ave 0.857 0.852 0.856 0.895 0.903 0.931 0.925

WMT 2012

cs-en 0.886 0.886 0.943 0.657 1 1 1
de-en 0.671 0.624 0.762 0.885 0.759 0.935 0.956
es-en 0.874 0.916 0.937 0.951 0.951 0.965 0.958
fr-en 0.811 0.821 0.818 0.843 0.818 0.871 0.853
ave 0.810 0.811 0.865 0.834 0.882 0.942 0.941

WMT 2013

cs-en 0.936 0.800 0.818 0.964 0.964 0.982 0.972
de-en 0.895 0.833 0.816 0.961 0.951 0.958 0.978
es-en 0.888 0.825 0.755 0.979 0.930 0.979 0.965
fr-en 0.989 0.951 0.940 0.984 0.989 0.995 0.984
ru-en 0.670 0.581 0.360 0.789 0.725 0.847 0.821
ave 0.875 0.798 0.737 0.834 0.935 0.952 0.944

WMT 2014

hi-en 0.956 0.618 - 0.457 - 0.676 0.644
de-en 0.831 0.774 - 0.926 - 0.897 0.909
cs-en 0.908 0.977 - 0.980 - 0.989 0.993
fr-en 0.952 0.952 - 0.975 - 0.981 0.980
ru-en 0.774 0.796 - 0.792 - 0.803 0.797
ave 0.826 0.740 - 0.784 - 0.784 0.770

Table 2: System level correlations tuned on WMT 2010, 2012 and 2013, tested on 2014. The value in
bold is the best result in each raw. ave stands for the average result of the language pairs on each year.
RED stands for our untuned system, RED-sys is G.sys.2, RED-syssent is G.sys.1

Metrics BLEU TER METEOR RED RED-sent RED-syssent

WMT 2010
en-fr 0.33 0.31 0.369 0.338 0.390 0.369
en-de 0.15 0.08 0.166 0.141 0.214 0.185

WMT 2012
en-fr - - 0.26 0.171 0.273 0.266
en-de - - 0.180 0.129 0.200 0.196

WMT 2013
en-fr - - 0.236 0.220 0.237 0.239
en-de - - 0.203 0.185 0.215 0.219

WMT 2014
en-fr - - 0.278 - 0.297 0.293
en-de - - 0.233 - 0.236 0.229

Table 3: Sentence level correlations tuned on WMT 2010, 2012 and 2013, and tested on 2014. The
value in bold is the best result in each raw. RED stands for our untuned system, RED-sent is G.sent.2,
RED-syssent is G.sent.1

glish reference into constituent tree by Berkeley
parser and then converted the constituent tree into
dependency tree by Penn2Malt 3. We also con-
ducted English-to-French and English-to-German
experiments. The German and French dependency
parser we used is Mate-Tool 4.

3http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html
4https://code.google.com/p/mate-tools/

In the experiments, we compare the perfor-
mance of our metric with the widely used lexi-
cal based metrics BLEU, TER, METEOR and a
dependency based metrics HWCM. The results of
RED are provided with exactly the same external
resources like METEOR. The results of BLEU,
TER and METOER are obtained from official re-
port of WMT 2010, 2012, 2013 and 2014 (if they
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Metrics BLEU TER METEOR RED RED-sys RED-syssent

WMT 2010
en-fr 0.89 0.89 0.912 0.881 0.932 0.928
en-de 0.66 0.65 0.688 0.657 0.734 0.734

WMT 2012
en-fr 0.80 0.69 0.82 0.639 0.914 0.914
en-de 0.22 0.41 0.180 0.143 0.243 0.243

WMT 2013
en-fr 0.897 0.912 0.924 0.914 0.931 0.936
en-de 0.786 0.854 0.879 0.85 0.8 0.8

WMT 2014
en-fr 0.934 0.953 0.940 - 0.942 0.943
en-de 0.065 0.163 0.128 - 0.047 0.047

Table 4: System level correlations for English to Franch and German, tuned on WMT 2010, 2012 and
2013; tested on WMT 2014. The value in bold is the best result in each raw. RED stands for our untuned
system, RED-sys is G.sys.2, RED-syssent is G.sys.1

are available). The experiments of HWCM is per-
formed by us.

3.2 Sentence-level Evaluation
Kendall’s rank correlation coefficient τ is em-
ployed to evaluate the correlation of all the MT
evaluation metrics and human judgements at the
sentence level. A higher value of τ means a bet-
ter ranking similarity with the human judges. The
correlation scores of are shown in Table 1. Our
method performs best when maximum length of
dep-n-gram is set to 3, so we present only the
results when the maximum length of dep-n-gram
equals 3. From Table 1, we can see that: firstly, pa-
rameter tuning improve performance significantly
on all the three tuning sets; secondly, although
the best scores in the column RED-sent are much
more than RED-syssent, but the outperform is
very small, so by setting these two optimization
goals, RED can achieve comparable performance;
thirdly, without parameter tuning, RED does not
perform well on WMT 2012 and 2013, and even
with parameter tuning, RED does not outperform
METEOR as much as WMT 2010; lastly, on the
test set, RED does not outperform METEOR.

3.3 System-level Evaluation
We also evaluated the RED scores with the human
rankings at the system level to further investigate
the effectiveness of our metrics. The matching of
the words in RED is correlated with the position
of the words, so the traditional way of computing
system level score, like what BLEU does, is not
feasible for RED. Therefore, we resort to the way
of adding the sentence level scores together to ob-
tain the system level score. At system level evalu-
ation, we employ Spearman’s rank correlation co-

efficient ρ. The correlations and the average scores
are shown in Table 2.

From Table 2, we can see similar trends as in
Table 1 with the following difference: firstly, with-
out parameter tuning, RED perform comparably
with METEOR on all the three tuning sets; sec-
ondly, on test set, RED also perform comparably
with METEOR. thirdly, RED perform very bad on
Hindi-English, which is a newly introduced task
this year.

3.4 Evaluation of English to Other
Languages

We evaluate both sentence level and system level
score of RED on English to French and German.
The reason we only conduct these two languages
are that the dependency parsers are more reliable
in these two languages. The results are shown in
Table 3 and 4.

From Table 3 and 4 we can see that the tuned
version of RED still perform slightly better than
METEOR with the only exception of system level
en-de.

4 Conclusion

In this paper, based on the last year’s DCU-
CASICT submission, we further improved our
method, namely RED. The experiments are car-
ried out at both sentence-level and system-level
using to-English and from-English corpus. The
experiment results indicate that although RED
achieves better correlation than BLEU, HWCM,
TER and comparably performance with METEOR
at both sentence level and system level, the per-
formance is not stable on all language pairs, such
as the sentence level correlation score of Hindi to
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English and the system level score of English to
German. To further study the sudden diving of the
performance is our future work.
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Abstract

High-quality parallel data is crucial for a
range of multilingual applications, from
tuning and evaluating machine translation
systems to cross-lingual annotation pro-
jection. Unfortunately, automatically ob-
tained parallel data (which is available
in relative abundance) tends to be quite
noisy. To obtain high-quality parallel data,
we introduce a crowdsourcing paradigm
in which workers with only basic bilin-
gual proficiency identify translations from
an automatically extracted corpus of par-
allel microblog messages. For less than
$350, we obtained over 5000 parallel seg-
ments in five language pairs. Evaluated
against expert annotations, the quality of
the crowdsourced corpus is significantly
better than existing automatic methods:
it obtains an performance comparable to
expert annotations when used in MERT
tuning of a microblog MT system; and
training a parallel sentence classifier with
it leads also to improved results. The
crowdsourced corpora will be made avail-
able in http://www.cs.cmu.edu/
~lingwang/microtopia/.

1 Introduction

High-quality parallel data is essential for tun-
ing and evaluating statistical MT systems, and
it plays a role in a wide range of multilingual
NLP applications, such as word sense disambigua-
tion (Gale et al., 1992; Ng et al., 2003; Specia
et al., 2005), paraphrasing (Bannard and Callison-
burch, 2005; Ganitkevitch et al., 2012), annota-
tion projection (Das and Petrov, 2011), and other
language-specific applications (Schwarck et al.,

∗ A sample of the crowdsourced corpora and the inter-
faces used are available as supplementary material.

2010; Liu et al., 2011). While large amounts
of parallel data can be easily obtained by mining
the web (Resnik and Smith, 2003), comparable
corpora (Munteanu and Marcu, 2005), and even
social media sites (Ling et al., 2013), automati-
cally extracted parallel tends to be noisy, and, as a
result, “evaluation-quality” parallel corpora have
generally been produced at considerable expense
by targeted translation efforts (Bojar et al., 2013,
inter alia). Unfortunately, in some domains such
as microblogs, the only corpora that are available
are automatically extracted and noisy.

While phrase-based translation models can ef-
fectively learn translation rules from noisy parallel
data (Goutte et al., 2012), having a subset of high-
quality parallel segments is nevertheless crucial.
Firstly, the automatic parallel data extraction sys-
tem’s parameters can be tuned by optimizing on
the gold standard data. Secondly, even though the
parallel data used to train MT systems can contain
a considerable amount of noise, it is conventional
to use human annotated parallel data to tune and
evaluate the system. Finally, other NLP applica-
tions may not be as noise-robust as MT.

We introduce a new crowdsourcing protocol for
obtaining high-quality parallel data from noisy,
automatically extracted parallel data (§3), focus-
ing on the challenging case of identifying par-
allel data in microblog messages (Ling et al.,
2013). In contrast to previous attempts to use
crowdsourcing to obtain parallel data, in which
workers performed translation (Ambati and Vo-
gel, 2010; Zaidan and Callison-Burch, 2011; Post
et al., 2012; Ambati et al., 2012), our approach
only requires that they identify whether a candi-
date message contains a translation, and if so, what
the spans of the translated segments are. This is
a much simpler task than translation, and one that
can often be completed by workers with only a ba-
sic proficiency in the source and target languages.

For evaluation (§4), we use our protocol to build
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parallel datasets on a Chinese-English corpus orig-
inally extracted from Sina Weibo and for which we
have expert annotations. This lets us quantify the
effectiveness of our method under different task
variations. We also show that the crowdsourced
corpus performs as well as expert annotation (and
better than the automatically extracted corpus) for
tuning an MT system with MERT. We next apply
our method on a corpus of five language pairs (en-
ar, en-ja, en-ko, en-ru, en-zh) extracted from Twit-
ter (§5), for which we have no gold-standard data.
Using this data in a cross-validation setup, we train
and evaluate a maxent classifier for detecting par-
allel data (§6), and then we conclude (§7).

2 Related Work

Our work crosses crowdsourcing techniques and
automatic parallel data extraction from mi-
croblogs. In this section, we shall provide back-
ground information and analysis of the work per-
formed in these two fields.

2.1 Parallel Data Extraction from Microblogs

Many sources of parallel data exist on the
web. The most popular choice are parallel web
pages (Resnik and Smith, 2003), while other
work have looked at specific domains with large
amounts of data, such as Wikipedia (Smith et
al., 2010). Microblogs, such as Twitter and Sina
Weibo, represent a subdomain of the Web. Some
of its characteristics is the informal language used
and the short nature of the messages that are
posted. Due to its large size and growing pop-
ularity, work has been done on parallel data ex-
traction from this domain. Ling et al. (2013) at-
tempt to find naturally occurring parallel data from
Sina Weibo and Twitter. Some examples of what
is found are illustrated in Figure 1. The extrac-
tion process starts by finding the parallel segments
within the same message and the word alignments
between those segments that maximize a hand-
tuned model score.

Another method (Jehl et al., 2012) leverages
CLIR (Cross Lingual Information Retrieval) tech-
niques to find pairs of tweets that are translations.
The main challenge in this approach is the large
amount of pairs of tweets that must be considered,
which raises some scalability issues when process-
ing billions of tweets.

Our crowdsourcing method can be applied to
annotate data from any naturally occurring source.

In this paper, we will use the corpus developed
by Ling et al. (2013), since it is publicly available
and has parallel data for 6 languages from Twitter,
and for 10 languages from Sina Weibo.

2.2 Parallel Data using Crowdsourcing

Most of the work done in building parallel data
using crowdsourcing (Ambati and Vogel, 2010;
Zaidan and Callison-Burch, 2011; Post et al.,
2012; Ambati et al., 2012) relies on using crowd-
sourcing workers to translate. These methods
must address the fact that workers may produce
poor and sometimes incorrect translations. Thus,
in order to find good translations, subsequent
postediting and/or ranking is generally necessary.

In contrast, in our work, crowdsourcing is used
for data extraction rather than translation, a sub-
stantially simpler task than translation (in particu-
lar, translation of informal text) that requires less
expertise in the language pair (basic proficiency in
the two languages is generally sufficient to suc-
cessfully complete the task). Furthermore, assess-
ing whether a worker performed the task correctly
and combining the outputs of different workers is
simpler. The time spent per item is also reduced:
our annotation interface only requires the worker
to make a few clicks on the tweet to complete
each annotation, meaning that tasks are completed
faster and with less effort, allowing us to obtain
translations at lower cost. On the other hand,
the main drawback of our method is that it can
only obtain parallel data from translations that ex-
ist, which corresponds to the amount of posts that
have been translated and posted. This limits the
potential coverage of our method. Furthermore,
the resulting datasets may not be fully representa-
tive of the Twitter domain, since not all types of
content are translated and follow the same distri-
bution as the data in Twitter.

3 Proposed Crowdsourcing Protocol

As discussed above, automatically extracted par-
allel is often noisy. The sources of error range
from language detection errors, to errors determin-
ing if material is actually translation, and errors in
extracting the appropriate spans of the translated
material. Consider the fragment of the microblog
parallel corpus mined by Ling et al. (2013), which
is shown in Figure 1. In the Korean-English mes-
sage, the system may incorrectly added the un-
translated word Hahah in the English segment,
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and missed the translated word Weather. At a high
level, the task faced by annotators will be to iden-
tify and resolve such errors.

3.1 Overview

We separate the tasks of identifying the parallel
posts, which we shall denote by identification,
and of locating the parallel segments, which we
will call location. The justification for this is that
the majority of the tweets are not parallel, as re-
ported by Ling et al. (2013), and the location of
the parallel data is only applicable if the tweet
actually contains parallel data. This is also de-
sirable because the identification task is simpler
than the location task. Firstly, identifying whether
a tweet contains translations requires much less
proficiency in the respective languages than locat-
ing the parallel segments, since it only requires
the worker to understand parts of the message.
This means we can have more potential workers
capable of performing this task. Secondly, the
first task is a binary decision, and each annota-
tion can be completed with only one action, which
means that the average required time for this task
is much lower than the second task and the pay-
ment required for each hit will naturally be lower
as well. Finally, combining worker results for a
binary decision is simpler than combining transla-
tions, since the space of possible answers is sev-
eral orders of magnitude lower.

As crowdsourcing platform, we use Amazon’s
Mechanical Turk. In this platform, the requesters
can submit tasks, where one can define the num-
ber of workers n that will complete each task and
what is the payment p for each task submission,
henceforth denoted as job. In our work, we had to
consider the following components:

• Interface - To submit a task, an interface
must be provided, which workers will be us-
ing to complete the job.

• Worker Quality Prediction - After submit-
ting a job, the requester can accept and pay
the agreed fee or reject the task. It is cru-
cial to have a method to automatically pre-
dict whether workers have performed the job
properly, and reject them otherwise.

• Result Combination - It is common for mul-
tiple workers to complete the same task with
different results. Thus, a method must be im-

plemented to combine multiple responses for
correctly predicting the desired response.

We structured each of our tasks as a series of q
questions, which include a small number of refer-
ences r, for which we know the answers. Thus,
the amount of answers we obtain for each dollar is
given by q−r

np , where n is the number of workers
per task and p is the payment for each task. In or-
der to maximize this quotient, we can either reduce
the number of reference question r, the number of
workers per task n, or the payment p. However,
reducing r will also limit our capability of esti-
mating the quality of the worker results, since we
will have less data to make such prediction. For
the same reason, reducing n will limit our abil-
ity to combine results properly. As for the pay-
ment p, while there is no direct effect on our task,
it has been noted that workers will perform the
task faster for higher payments (Post et al., 2012).
In our work, we will propose methods to predict
quality and combine results that will minimize the
requirements for n and r, while maximizing the
quality of the final results.

3.2 Parallel Post Identification
In the identification task, for each question, we
will show a post, and solicit the worker to detect if
it contains translations in a given language pair.

Interface The interface for this task is straight-
forward. We present to the worker each tweet in-
dividually, together with a checkbox to be checked
in case the tweet contains parallel data. The navi-
gation between tweets is done by adding next and
previous buttons, allowing the user to go back and
review previous answers. Finally, the worker can
only submit the HIT after traversing all 25 ques-
tions. Unlike the work in crowdsourcing transla-
tion (Zaidan and Callison-Burch, 2011), where au-
tomatic translation systems are discouraged, since
it produces poor output, we allow its usage as long
as this leads to correct annotations. In fact, we add
a button to automatically translate the tweet into
English from the non-English language.

Worker Quality Prediction We accept the job
if it answers enough reference questions correctly.
We consider two different approaches to select ref-
erences. A random sampler that selects tweets
randomly and a balanced sampler that selects
the same number of positive and negative sam-
ples. As notation, we will denote as acceptor
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Figure 1: Parallel microblog posts in 5 language pairs. Shaded backgrounds mark the parallel segments
(annotated manually), non shaded parts do not have translations.

accept(rand, c, r) a setup where the worker’s job
is accepted if c out of r randomly sampled refer-
ences are correctly answered. Likewise, acceptor
accept(bal, c, r) denotes the same setup using bal-
anced reference questions.

Result Combination Given n jobs with answers
for a question that can be either positive or nega-
tive, we calculate the weighted ratio of positive an-
swers, given by

∑
i=1..n δp(i)w(i)∑

i=1..n w(i) , where δp is one if
answer i is positive and 0 otherwise, and w(i) is
the weight of the worker. w(i) is defined as the
ratio of correct answers from job i in the reference
set. If the weighted ratio is higher than 0.5, we la-
bel the tweet as positive and otherwise as negative.

3.3 Parallel Data Location

In the location task, we also present one tweet per
question, where the worker will be asked to iden-
tify the parallel segments. The worker can also
define that there are no translations in the tweet.

Interface The interface for this task presents the
user with one tweet at a time, and allows the user
to break the tweet into segments, by clicking be-
tween characters. Each segment can then be clas-
sified as English, the non-English language (Ex:
Mandarin), or non-parallel, which is the default
option. To understand the concept of non-parallel
segments, notice that when we are locating par-
allel data in tweets, we are essentially breaking
the tweet into the structure “Nleft Pleft Nmiddle

Pright Nright", where Pleft and Pright are the par-
allel segments and Nleft, Nmiddle and Nright are
textual segments that are non-parallel. These may
not exist, for instance, the Arabic tweet in Fig-
ure 1 (line 1) does not contain any non-parallel text
and does not require any non-parallel segments

to delineate the parallel data. The Korean tweet
(line 2), on the other hand, has an Nmiddle corre-
sponding to내가좋아하는파아란하늘ˆˆ* and an
Nright corresponding to Hahah and requires two
non-parallel segments to locate the parallel data.

Thus, if the worker does not commit any errors,
each question can be answered with at most four
clicks, when all five segments exist, and two op-
tion choices for identifying the parallel segments.
In the easiest case, when only the parallel seg-
ments exist, only one click and two option choices
are needed. If there are no translations, the button
no translations can be clicked.

For instance, to annotate the Korean tweet in
Figure 1, the worker must click immediately be-
fore내가, then before Weather and finally before
Hahah. Then on the drop-down box of the first
and and third segments, the worker must choose
Korean and English, respectively. The interface
after these operations is show in Figure 2.

Work Quality Prediction To score the worker’s
jobs, we use the scoring function devised in (Ling
et al., 2013), which measures the word overlap
between the reference parallel segments segments
and the predicted segments. However, setting the
score threshold to accept a job is a challenge, since
scores are bound to change for different language-
pairs and domains. Moreover, some tweets are
harder to annotate than others. Learning this
threshold automatically requires annotated data,
which we do not have for all language pairs and
domains. Thus, we propose a method to generate
thresholds specifically for each sample.

We consider a “smart but lazy" pseudo worker,
who will complete the same jobs automatically
and generate scores that the real worker’s jobs
must beat to be accepted. We say he is “smart",
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Figure 2: Location Interface (After the annotation is performed)

since he knows the reference annotation, and
“lazy" because he will only define a new non-
parallel segment if it is significant, otherwise it
will just be left in the parallel segments. By sig-
nificant, we will define whether it is at least 20%
larger (in number of characters) than the parallel
segments. For instance, in the Korean example in
Figure 1, Hahah would be left in the English par-
allel segment, while 내가좋아하는파아란하
늘 ˆˆ* would not be in the Korean segment. We
will accept a job if the average of the scores in the
reference set is higher or equal than the pseudo
worker’s scores. This acceptor shall be denoted as
accept(lazy, a), where a is the number of refer-
ences used.

Another option is to use the automatic system’s
output as a baseline that workers must improve to
be accepted. We will also test this option and call
this acceptor accept(auto, a).

Result Combination Unlike the identification
task, where the result is binary and combining
multiple decisions is straightforward, the range of
results from this task is larger and combining them
is a challenge. Thus, we score each job based on
the WER on the reference set and use annotations
of the highest scoring job.

4 Experiments

To obtain results on the effectiveness of the meth-
ods described in Section 3, we will first perform
experiments using pre-annotated data. We use the
annotated dataset with tweets in Mandarin-English
from Sina Weibo created in (Ling et al., 2013).
It consists of approximately 4000 tweets crawled
from Sina Weibo that were annotated on whether
they contained parallel data and the location of the
parallel segments. In our experiment, we sample
1000 tweets from this dataset, where 602 tweets
were parallel and 398 were not.1

We will not submit the same tasks using differ-
ent setups, since we would have to pay the cost of
the tasks multiple times. Furthermore, we know
the answers for all the questions in this controlled
experiment, the quality of a job can be evalu-
ated precisely by using all questions as references.
Thus, we will perform the task once, with a larger
number of workers and accepting and rejecting
jobs based on their real quality. Then, we will use
the resulting datasets and simulate the conditions
using different setups.

430



Acceptor avg(a) avg(r) d

accept(rand, 2, 2) 0.44 0.00 0.44
accept(rand, 3, 4) 0.44 0.00 0.44
accept(rand, 4, 4) 0.55 0.04 0.51
accept(bal, 2, 2) 0.69 0.09 0.60
accept(bal, 3, 4) 0.64 0.03 0.61
accept(bal, 4, 4) 0.76 0.15 0.61

Table 1: Agreement with the expert annotations
for different acceptors.

4.1 Identification Task

The 1000 tweets were distributed into 40 tasks
with 25 questions each (q = 25). Each task is
to be performed by 5 workers (n = 5) and upon
acceptance, a worker would be rewarded with 6
cents (p = 0.06). As we know the answers for
all the questions in this case, we will calculate the
Cohen’s Kappa between the responses of each job
and the expert annotator, and accept a job if it is
higher than 0.5. We decided to use Cohen’s kappa
to evaluate a job, rather than accuracy, since each
set of 25 questions does not contain the same num-
ber of positive and negative samples. For instance,
in a set of 20 negative samples, a worker would
achieve an accuracy of 80% if he simply answers
negatively to all questions, which is not an ade-
quate assessment of the job’s quality. On the other
hand, the Cohen’s Kappa balances the positive and
negative question in each task by using their prior
probabilities. In total, there were 566 jobs, where
200 where accepted and 366 were rejected.

Next, we pretended that we only have access to
4 references, which will be used for quality es-
timation and simulate the acceptances and rejec-
tions for each strategy. Table 1 shows the aver-
ages of the real Kappa values of accepted (col-
umn avg(a)) and rejected jobs (column avg(r))
using different acceptors. Our goal is to maximize
the number of acceptances with high Kappa val-
ues and minimize those that have low Kappa val-
ues. Thus, we define d as the difference between
avg(a) and avg(r). From the results, we observe
that using a balanced reference yields a much bet-
ter estimation of the jobs quality using our metric
d. Similar conclusions can be reached by compar-
ing accept(rand, 3, 4) with accept(bal, 3, 4) and
accept(rand, 4, 4) with accept(bal, 4, 4). Quality
predictors that use balanced reference sets achieve

1We wished to annotate a sample where the number of
parallel posts is high, so that we would have enough samples
to perform the location task.

Acceptor prec recall F1 acc κ

Automatic 0.87 0.69 0.77 0.75 0.51
All jobs 0.75 0.84 0.8 0.74 0.44

accept(rand, 2, 2) 0.85 0.92 0.88 0.86 0.69
accept(rand, 3, 4) 0.84 0.93 0.88 0.85 0.68
accept(rand, 4, 4) 0.91 0.95 0.93 0.92 0.82
accept(bal, 2, 2) 0.94 0.94 0.94 0.92 0.84
accept(bal, 3, 4) 0.93 0.95 0.94 0.93 0.85
accept(bal, 4, 4) 0.94 0.93 0.93 0.92 0.84

Table 2: Parallel post prediction scores using dif-
ferent acceptors.

approximately the same results for d. However,
the setup accept(bal, 3, 4) has a lower Kappas for
both avg(a) and avg(r), which means that it is
less likely to reject good jobs at the cost of accept-
ing more bad jobs. This is desirable from an ethi-
cal perspective, since workers are not responsible
for errors in our quality prediction. Furthermore,
rejecting good jobs has a negative impact on the
progress of the task, since good workers may be
discouraged to perform more tasks.

Results on the identification task, obtained for
n = 3, are shown in Table 2. Naturally, us-
ing a balanced reference set yields better results,
since these have a higher d value. We can also
see the importance of quality prediction, since not
performing quality estimation (row All jobs) will
yield worse results than the automatic system.

Next, we will compare results using different
numbers of workers. We fix the quality predic-
tion methodology to accept(bal, 3, 4) and results
are shown in Table 3. We observe that in gen-
eral, using more workers will generate better re-
sults, but score gains from adding another worker
becomes lower as n increases. One problem for
n = 2 is the fact that there are many cases where
two workers with the same weight chose a posi-
tive and a negative answer, in which case, no de-
cision can be made, and we simply choose false
by default. This explains the high recall and low
precision values. However, this problem seems to
occur much less with higher values of n.

4.2 Location Task

For the location task, we used the predicted par-
allel posts the identification task with the setup
accept(bal, 3, 4) and n = 5. We preferred to use
this rather than using the expert annotations, since
it would not contain false positives, which does not
simulate a real situation. Then, we used 500 out of
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# workers prec recall F1 acc κ

Automatic 0.87 0.69 0.77 0.75 0.51
1 0.86 0.85 0.85 0.82 0.64
2 0.85 0.95 0.90 0.87 0.72
3 0.93 0.95 0.94 0.93 0.85
4 0.94 0.96 0.95 0.94 0.87
5 0.96 0.96 0.96 0.95 0.90

Table 3: Identification scores for different n.

the 607 identified positive samples. This makes
20 tasks in total, with 25 questions (q = 25), and
each task would be run until 5 jobs are accepted
(n = 5). For this task, we set a payment of 30
cents (p = 0.3), since it is a more complex task.
Again, since we have the expert annotations for all
questions, we calculated the average WER on all
answers and rejected jobs scoring less than 0.62.

This task is mainly focused on the quality pre-
diction of the workers, as the result combination
is done by finding the job with the highest score
in the reference set. This means, for an arbitrary
large n, all quality estimation methods will pro-
duce the same result, since we will find the best
job on the references eventually. However, bet-
ter quality estimation will allow us to find the best
jobs with lower n, which makes the task less ex-
pensive. Table 4 shows results using different se-
tups. In these results, we set aside 4 questions to
be used as references. We can see that for low n
(1 or 2), if we simply accept all jobs, the quality
of the results will be lower than the automatic sys-
tem. For n = 4, this approach can achieve a WER
score of 0.06. However, if we use the automatic
system as a baseline that jobs must surpass, we can
achieve this WER score with only two jobs, which
reduces the cost of this task by half. Yet, this is
strongly dependent on the automatic system, as a
worse system will be easier to match for the work-
ers. On the other hand, using the smart but lazy
pseudo worker, where we degrade the reference
annotations slightly, we can see that we can obtain
the 0.06 WER score using only the first worker. At
n = 2, we can see that the WER improves to 0.05,
which is lost for n = 3. This is because the pre-
diction of the quality of the job using the workers
is not always precise.

4.3 Machine Translation Results

Finally, we will perform an extrinsic test to see
how the improvements obtained by using crowd-

2Determined empirically

Number of jobs 1 2 3 4 5
Automatic 0.16 0.16 0.16 0.16 0.16
All Jobs 0.23 0.21 0.07 0.06 0.06

accept(auto, 4) 0.09 0.06 0.06 0.06 0.06
accept(lazy, 4) 0.06 0.05 0.06 0.06 0.06

Table 4: Parallel data location scores for different
acceptors (rows) and different numbers of work-
ers. Each cell denotes the WER for that setup.

Auto (Pos) Crowd Expert Auto (All)
Size 483 479 483 908

EN-ZH 10.21 10.49 10.51 10.71
ZH-EN 7.59 7.87 7.82 8.02

Table 5: BLEU score comparison using different
corpora for MERT tuning. The Size row denotes
the number of sentences of each corpus, and the
EN-ZH and ZH-EN rows denote the BLEU scores
of the respective language pair and tuning dataset.

sourcing map to Machine Translations. We will
build an out of domain MT system using the FBIS
dataset (LDC2003E14), a corpus of 300K sen-
tence pairs from the news domain in the Chinese-
English pair using the Moses (Koehn et al., 2007)
pipeline. Due to the small size of our crowd-
sourced corpus, we will use it in the MERT tun-
ing (Och, 2003), and test its effects compared to
automatically extracted parallel data and the ex-
perts judgements. As the test set, we will use
1,500 sentence pairs from the Weibo gold standard
from Ling et al. (2013), that were not used in our
crowdsourcing experiment to prevent data over-
lap. For reordering, we use the MSD reordering
model (Axelrod et al., 2005) and as the language
model, we use a 5-gram model with Kneser-Ney
smoothing (Heafield, 2011). Finally, results are
presented with BLEU-4 (Papineni et al., 2002).

We build 3 tuning corpora, the automatically ex-
tracted corpus (denoted Auto), the crowdsourced
corpus (denoted Crowd) and the corpus annotated
by the expert (denoted Expert). This is done by
taking the 1000 tweets used in this experiment, se-
lect those that were identified as parallel accord-
ing to each criteria. For the automatic extraction,
the authors in (Ling et al., 2013) simply use all
tweets as parallel, which may influence the tun-
ing results. Thus, we test two versions of this cor-
pus, one where we take all samples as parallel (de-
noted Auto (All)), and one where we use the ex-
pert’s decision for the identification task only (de-
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Pair Parallel Avg(en) cost(I) cost(L) total
en-ar 1512 8.3 $35.7 $43.2 $76.2
en-zh 1302 8.7 $35.7 $37.2 $70.2
en-ja 1155 7.9 $35.7 $33.0 $68.7
en-ko 1008 7.1 $35.7 $28.8 $64.5
en-ru 798 6.3 $35.7 $22.8 $58.5

all 5775 – $178.5 $165.0 $343.5

Table 7: AMT costs for crowdsourced corpora
from Twitter.

noted Auto (Pos)). In the crowdsourcing case, we
use the accept(bal, 3, 4) setup, with n = 5, for the
identification task and the accept(lazy, 4) setup,
with n = 2, for the location task. From the re-
sulting parallel tweets, we also remove all tweets
that were used as reference in the accept(lazy, 4)
quality estimator, as this would give an unfair ad-
vantage to the crowdsourced corpora.

Results are shown in Table 5, where each cell
contains the average BLEU score in 5 MERT runs,
using a different tuning dataset. Surprisingly, us-
ing the whole set of automatically extracted cor-
pora actually achieves better results than using
carefully selected data that are parallel. We be-
lieve that is because many non-parallel segments
actually contain comparable information that can
be used to improve the weights during MERT tun-
ing. However, this does not mean that the qual-
ity of the automatically crawled corpus is better
than the crowdsourced and expert annotated cor-
pus. When using a similar number of parallel sen-
tences, we observe that using the crowdsourced
corpus yields better scores than the automatically
extracted corpora, comparable to experts annota-
tions. While results are not significantly better
than automatically extracted corpora, this suggests
that the crowdsourced corpora has a better overall
quality than automatically extracted corpora.

5 Five Language Twitter Parallel Corpus

Now that we have established the effectiveness of
our technique for extracting high-quality parallel
data in a scenario where we have gold standard
annotations, we apply it to creating parallel cor-
pora in five languages on Twitter, for which we
have no gold-standard parallel data: Arabic, Man-
darin, Japanese, Korean and Russian. Once again,
we use the extracted automatically Twitter cor-
pus from Ling et al. (2013) and deploy the task
in Mechanical Turk. We use the setup that ob-
tained the best results in Section 4. For the identi-

fication task, we used the accept(bal, 3, 4) setup,
with n = 5. The payment for each task was
0.06 dollars. Thus, for this task, each dollar spent
yields 70 annotated tweets. For the location task,
we used the accept(lazy, 4) setup, with n = 2
and each task was rewarded with 0.3 dollars. To
obtain the tweet sample, we filtered the corpora
in Ling et al. (2013) for tweets with alignment
scores higher than 0.1. Then, we uniformly ex-
tracted 2500 tweets for each language. To gener-
ate gold standard references, the authors manually
annotated 40 samples for each pair.

Table 7 contains information about the result-
ing corpora. The number of parallel sentences ex-
tracted from the 2500 tweets in each language pair
is shown in column Parallel and we can see that
this differs given the language pair. We can also
see in column Avg(en) that the average number of
English words is much smaller than what is seen
in more formal domains. Finally, Arabic parallel
data seems more predominant from our samples
followed by Mandarin, while Russian parallel data
seem scarcer.

6 Discriminative Parallel Data Detection

While the work in (Ling et al., 2013) used a linear
combination of three models, the alignment, lan-
guage and segment features, these weights were
determined manually. However, using the crowd-
sourced corpus (in Section 5), we will apply previ-
ously proposed methods that learn a classifier with
machine learning techniques as in related work
on finding parallel data (Resnik and Smith, 2003;
Munteanu and Marcu, 2005). In our work, we use
a max entropy classifier model, similar to that pre-
sented by Munteanu and Marcu (2005) to detect
parallel data in tweets. Our features are:

• Alignment feature - The baseline feature is
the alignment score from the work in (Ling et
al., 2013), and measures how well the paral-
lel segments align, which is derived from the
content-based matching methods for detect-
ing parallel data (Resnik and Smith, 2003).

• User features - An observation in (Ling et
al., 2013) is that a user that frequently posts
in parallel is likely to post more parallel mes-
sages. Based on this, we added the aver-
age alignment score from all messages of the
same user and the ratio of messages that are
predicted to be parallel as features.
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Weibo (en-zh) Twitter (en-zh) Twitter (en-ar) Twitter (en-ru) Twitter (en-ko) Twitter (en-ja)
Alignment 0.781 0.599 0.721 0.692 0.635 0.570
+User 0.814 0.598 0.721 0.705 0.650 0.566
+Length 0.839 0.603 0.725 0.706 0.650 0.569
+Repetition 0.849 0.652 0.763 0.729 0.655 0.579
+Language 0.849 0.668 0.782 0.737 0.747 0.584

Table 6: Classification Results using a 10-fold cross validation over different datasets. Each cell contains
the F-measure using a given dataset and an incremental set of features.

• Repetition features - There are many words
that are not translated, such as hashtags, at
mentions, numbers and named entities. So, if
we see these repeated twice in the same post,
it can be used as a strong cue that this was
the result of a translation. Hence, we define
features for each of these cases, that trigger if
either of these occur in multiples of two times
in the same post. Named Entities were iden-
tified using a naive approach by considering
words with capital letters.

• Length feature - It is known that the length
differences between parallel sentences can
be modelled by a normal distribution (Gale
and Church, 1991). Hence, we used parallel
data in the respective language to determine
(µ̃, σ̃2), which lets us calculate the likelihood
of two hypothesized segments being parallel.
Since we did not have annotated parallel data
for this domain, we used the top 2000 scoring
parallel sentences from the respective Twitter
dataset in (Ling et al., 2013).

• Language feature - It is common for non-
English words to be found in English seg-
ments, such as names of foreign celebri-
ties, numbers and hashtags. However, when
this happens to the majority of the words in
a segment that is supposed to be English,
it may indicated that there was an error in
the language detection. The same happens
with non-English segments. We used the
same naive approach to detect languages as
in (Ling et al., 2013), where we calculate the
ratio of number of words in the English seg-
ment and the total number of words from the
segment detected as English and the ratio of
the number of Foreign words and the total
number of words in the Foreign segment ,de-
tected by their unicode ranges. This was also
included in the work in (Ling et al., 2013).

Results using a 10 fold cross-validation are
shown in Table 6. In general, we can see that the
classifier performs worse in Twitter datasets com-
pared to the Weibo dataset. We believe that this is
because parallel sentences extracted from Twitter
are smaller, due to the 140 character limit, which
does not hold in Sina Weibo. Each parallel En-
glish segment from the Sina Weibo parallel data
contains 15.4 words on average. On other hand,
we see in Table 7 that this number is smaller in
the parallel data from Twitter. This means that the
aligner will have a much smaller range of words to
align when detecting parallel data, which makes it
more difficult to find parallel segments.

As for the features, we observe that by defin-
ing these simple features, we can get a signifi-
cant improvement over previous baselines. For
the User feature, we see that the improvements
in the Weibo dataset are much larger than in
the Twitter datasets. This is because the Twitter
dataset was crawled uniformly, whereas the Weibo
dataset was focused on users that post parallel
data frequently. Thus, in the Weibo dataset there
more posts that were posted by the same user,
which does not happen as frequently in the Twitter
dataset. As for the Length feature, we can see that
it yields a small but consistent improvement over
all datasets. Repetition based features also lead to
improvements across all datasets, and produces a
5% improvement in the English-Mandarin Twitter
dataset. Finally, language based features also add
another improvement over previous results.

7 Conclusions

We presented a crowdsourcing approach to extract
parallel data from tweets. As opposed to meth-
ods to crowdsource translations, our tasks do not
require workers to translate sentences, but to find
them in tweets. Our method is divided into two
tasks. First, we identify which tweets contain
translations, and we show that multiple worker’s
jobs can be combined to obtain results compara-
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ble to those of expert annotators. Secondly, tweets
that are found to contain translations are given
to other workers to locate the parallel segments,
where we can also obtain high quality results.
Then, we use our method to extract high quality
parallel data from Twitter in 5 language pairs. Fi-
nally, we improve the automatic identification of
tweets with translations by using a max entropy
classifier trained on the crowdsourced data.

We are currently extracting more data and the
crowdsourced parallel data from Twitter will made
be available to the public.
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Abstract
In previous work we showed that when us-
ing an SMT model trained on old-domain
data to translate text in a new-domain,
most errors are due to unseen source
words, unseen target translations, and in-
accurate translation model scores (Irvine
et al., 2013a). In this work, we target er-
rors due to inaccurate translation model
scores using new-domain comparable cor-
pora, which we mine from Wikipedia. We
assume that we have access to a large old-
domain parallel training corpus but only
enough new-domain parallel data to tune
model parameters and do evaluation. We
use the new-domain comparable corpora
to estimate additional feature scores over
the phrase pairs in our baseline models.
Augmenting models with the new features
improves the quality of machine transla-
tions in the medical and science domains
by up to 1.3 BLEU points over very strong
baselines trained on the 150 million word
Canadian Hansard dataset.

1 Introduction

Domain adaptation for machine translation is
known to be a challenging research problem that
has substantial real-world application. In this set-
ting, we have access to training data in some old-
domain of text but very little or no training data
in the domain of the text that we wish to translate.
For example, we may have a large corpus of par-
allel newswire training data but no training data in
the medical domain, resulting in low quality trans-
lations at test time due to the mismatch.

In Irvine et al. (2013a), we introduced a tax-
onomy for classifying machine translation errors

related to lexical choice. Our ‘S4’ taxonomy in-
cludes seen, sense, score, and search errors. Seen
errors result when a source language word or
phrase in the test set was not observed at all during
training. Sense errors occur when the source lan-
guage word or phrase was observed during train-
ing but not with the correct target language trans-
lation. If the source language word or phrase was
observed with its correct translation during train-
ing, but an incorrect alternative outweighs the cor-
rect translation, then a score error has occurred.
Search errors are due to pruning in beam search
decoding. We measured the impact of each error
type in a domain adaptation setting and concluded
that seen and sense errors are the most frequent but
that there is also room for improving errors due to
inaccurate translation model scores (Irvine et al.,
2013a). In this work, we target score errors, using
comparable corpora to reduce their frequency in a
domain adaptation setting.

We assume the setting where we have an old-
domain parallel training corpus but no new domain
training corpus.1 We do, however, have access
to a mixed-domain comparable corpus. We iden-
tify new-domain text within our comparable cor-
pus and use that data to estimate new translation
features on the translation models extracted from
old-domain training data. Specifically, we focus
on the French-English language pair because care-
fully curated datasets exist in several domains for
tuning and evaluation. Following our prior work,
we use the Canadian Hansard parliamentary pro-
ceedings as our old-domain and adapt models to
both the medical and the science domains (Irvine
et al., 2013a). At over 8 million sentence pairs,

1Some prior work has referred to old-domain and new-
domain corpora as out-of-domain and in-domain, respec-
tively.
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the Canadian Hansard dataset is one of the largest
publicly available parallel corpora and provides a
very strong baseline. We give details about each
dataset in Section 4.1.

We use comparable corpora to estimate sev-
eral signals of translation equivalence. In partic-
ular, we estimate the contextual, topic, and or-
thographic similarity of each phrase pair in our
baseline old-domain translation model. In Sec-
tion 3, we describe each feature in detail. Us-
ing just 5 thousand comparable new-domain doc-
ument pairs, which we mine from Wikipedia, and
five new phrase table features, we observe perfor-
mance gains of up to 1.3 BLEU points on the sci-
ence and medical translation tasks over very strong
baselines.

2 Related Work

Recent work on machine translation domain adap-
tation has focused on either the language model-
ing component or the translation modeling com-
ponent of an SMT model. Language modeling re-
search has explored methods for subselecting new-
domain data from a large monolingual target lan-
guage corpus for use as language model training
data (Lin et al., 1997; Klakow, 2000; Gao et al.,
2002; Moore and Lewis, 2010; Mansour et al.,
2011). Translation modeling research has typi-
cally assumed that either (1) two parallel datasets
are available, one in the old domain and one in the
new, or (2) a large, mixed-domain parallel training
corpus is available. In the first setting, the goal is
to effectively make use of both the old-domain and
the new-domain parallel training corpora (Civera
and Juan, 2007; Koehn and Schroeder, 2007; Fos-
ter and Kuhn, 2007; Foster et al., 2010; Haddow
and Koehn, 2012; Haddow, 2013). In the sec-
ond setting, it has been shown that, in some cases,
training a translation model on a subset of new-
domain parallel training data within a larger train-
ing corpus can be more effective than using the
complete dataset (Mansour et al., 2011; Axelrod
et al., 2011; Sennrich, 2012; Gascó et al., 2012).

For many language pairs and domains, no new-
domain parallel training data is available. Wu et
al. (2008) machine translate new-domain source
language monolingual corpora and use the syn-
thetic parallel corpus as additional training data.
Daumé and Jagarlamudi (2011), Zhang and Zong
(2013), and Irvine et al. (2013b) use new-domain
comparable corpora to mine translations for un-

seen words. That work follows a long line of re-
search on bilingual lexicon induction (e.g. Rapp
(1995), Schafer and Yarowsky (2002), Koehn and
Knight (2002), Haghighi et al. (2008), Irvine and
Callison-Burch (2013), Razmara et al. (2013)).
These efforts improve S4 seen, and, in some in-
stances, sense error types. To our knowledge,
no prior work has focused on fixing errors due
to inaccurate translation model scores in the set-
ting where no new-domain parallel training data is
available.

In Klementiev et al. (2012), we used compara-
ble corpora to estimate several features for a given
phrase pair that indicate translation equivalence,
including contextual, temporal, and topical simi-
larity. The definitions of phrasal and lexical con-
textual and topic similarity that we use here are
taken from our prior work, where we replaced
bilingually estimated phrase table features with
the new features and cited applications to low re-
source SMT. In this work we also focus on scoring
a phrase table using comparable corpora. How-
ever, here we work in a domain adaptation setting
and seek to augment, not replace, an existing set
of bilingually estimated phrase table features.

3 Phrase Table Scoring

We begin with a scored phrase table estimated us-
ing our old-domain parallel training corpus. The
phrase table contains about 201 million unique
source phrases up to length seven and about 479
million total phrase pairs. We use Wikipedia as a
source for comparable document pairs (details are
given in Section 4.1). We augment the bilingually
estimated features with the following: (1) lexical
and phrasal contextual similarity estimated over a
comparable corpus, (2) lexical and phrasal topi-
cal similarity estimated over a comparable corpus,
and (3) lexical orthographic similarity.

Contextual Similarity We estimate contextual
similarity2 by first computing a context vector for
each source and target word and phrase in our
phrase table using the source and target sides of
our comparable corpus, respectively. We begin by
collecting vectors of counts of words that appear
in the context of each source and target phrase, ps

and pt. We use a bag-of-words context consist-
ing of the two words to the left and two words to

2Similar to distributional similarity, which is typically de-
fined monolingually.
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the right of each occurrence of each phrase. Vari-
ous means of computing the component values of
context vectors from raw context frequency counts
have been proposed (e.g. Rapp (1999), Fung and
Yee (1998)). Following Fung and Yee (1998), we
compute the value of the k-th component of ps’s
contextual vector, Cps , as follows:

Cpsk
“ nps,k ˚ plogpn{nkq ` 1q

where nps,k and nk are the number of times the
k-th source word, sk, appears in the context of ps

and in the entire corpus, and n is the maximum
number of occurrences of any word in the data.
Intuitively, the more frequently sk appears with ps

and the less common it is in the corpus in general,
the higher its component value. The context vector
for ps, Cps , is M -dimensional, where M is the
size of the source language vocabulary. Similarly,
we computeN -dimensional context vectors for all
target language words and phrases, whereN is the
size of the target language vocabulary.

We identify the most probable translation t for
each of the M source language words, s, as the
target word with the highest ppt|sq under our word
aligned old-domain training corpus. Given this
dictionary of unigram translations, we then project
eachM -dimensional source language context vec-
tor into theN -dimensional target language context
vector space. To compare a given pair of source
and target context vectors, Cps and Cpt , respec-
tively, we compute their cosine similarity, or their
dot product divided by the product of their magni-
tudes:

simcontextualpps, ptq “
Cps ¨ Cpt

||Cps ||||Cpt ||

For a given phrase pair in our phrase table, we
estimate phrasal contextual similarity by directly
comparing the context vectors of the two phrases
themselves. Because context vectors for phrases,
which tend to be less frequent than words, can be
sparse, we also compute lexical contextual simi-
larity over phrase pairs. We define lexical con-
textual similarity as the average of the contextual
similarity between all word pairs within the phrase
pair.

Topic Similarity Phrases and their translations
are likely to appear in articles written about the
same topic in two languages. We estimate topic
similarity using the distribution of words and
phrases across Wikipedia pages, for which we

have interlingual French-English links. Specif-
ically, we compute topical vectors by counting
the number of occurrences of each word and
phrase across Wikipedia pages. That is, for each
source and target phrase, ps and pt, we collect M -
dimensional topic vectors, whereM is the number
of Wikipedia page pairs used (in our experiments,
M is typically 5, 000). We use Wikipedia’s inter-
lingual links to align the French and English topic
vectors and normalize each topic vector by the to-
tal count. As with contextual similarity, we com-
pare a pair of source and target topic vectors, Tps

and Tpt , respectively, using cosine similarity:

simtopicpps, ptq “
Tps ¨ Tpt

||Tps ||||Tpt ||

We estimate both phrasal and lexical topic simi-
larity for each phrase pair. As before, lexical topic
similarity is estimated by taking an average topic
similarity across all word pairs in a given phrase
pair.

Orthographic Similarity We make use of one
additional signal of translation equivalence: ortho-
graphic similarity. In this case, we do not refer-
ence comparable corpora but simply compute the
edit distance between a given pair of phrases. This
signal is often useful for identifying translations
of technical terms, which appear frequently in our
medical and science domain corpora. However,
because of word order variation, we do not mea-
sure edit distance on phrase pairs directly. For ex-
ample, French embryon humain translates as En-
glish human embryo; embryon translates as em-
bryo and humain translates as human. Although
both word pairs are cognates, the words appear
in opposite orders in the two phrases. Therefore,
directly measuring string edit distance across the
phrase pair would not effectively capture the relat-
edness of the words. Hence, we only measure lex-
ical orthographic similarity, not phrasal. We com-
pute lexical orthographic similarity by first com-
puting the edit distance between each word pair,
ws and wt, within a given phrase pair, normalized
by the lengths of the two words:

simorthpws, wtq “
edpws, wtq

|ws||wt|

2

We then compute the average normalized edit dis-
tance across all word pairs.

The above similarity metrics all allow for scores
of zero, which can be problematic for our log-
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Corpus Source Words Target Words
Training
Canadian Hansard 161.7 m 144.5 m
Tune-1 / Tune-2 / Test
Medical 53k / 43k / 35k 46k / 38k / 30k
Science 92k / 120k / 120k 75k / 101k / 101k
Language Modeling and Comparable Corpus Selection
Medical - 5.9 m
Science - 3.6 m

Table 1: Summary of the size of each corpus of text used
in this work in terms of the number of source and target word
tokens.

linear translation models. We describe our ex-
periments with different minimum score cutoffs in
Section 4.2.

4 Experimental Setup

4.1 Data
We assume that the following data is available in
our translation setting:

• Large old-domain parallel corpus for training

• Small new-domain parallel corpora for tun-
ing and testing

• Large new-domain English monolingual cor-
pus for language modeling and identifying
new-domain-like comparable corpora

• Large mixed-domain comparable corpus,
which includes some text from the new-
domain

These data conditions are typical for many real-
world uses of machine translation. A summary of
the size of each corpus is given in Table 1.

Our old-domain training data is taken from
the Canadian Hansard parliamentary proceedings
dataset, which consists of manual transcriptions
and translations of meetings of the Canadian par-
liament. The dataset is substantially larger than
the commonly used Europarl corpus, containing
over 8 million sentence pairs and about 150 mil-
lion word tokens of French and English.

For tuning and evaluation, we use new-domain
medical and science parallel datasets released by
Irvine et al. (2013a). The medical texts con-
sist of documents from the European Medical
Agency (EMEA), originally released by Tiede-
mann (2009). This data is primarily taken from
prescription drug label text. The science data is
made up of translated scientific abstracts from the

fields of physics, biology, and computer science.
For both the medical and science domains, we
use three held-out parallel datasets of about 40
and 100 thousand words,3 respectively, released
by Irvine et al. (2013a). We do tuning on dev1,
additional parameter selection on test2, and blind
testing on test1.

We use large new-domain monolingual English
corpora for language modeling and for selecting
new-domain-like comparable corpora from our
mixed domain comparable corpus. Specifically,
we use the English side of the medical and science
training datasets released by Irvine et al. (2013a).
We do not use the parallel French side of the train-
ing data at all; our data setting assumes that no
new-domain parallel data is available for training.

We use Wikipedia as a source of compara-
ble corpora. There are over half a million
pairs of inter-lingually linked French and English
Wikipedia documents.4 We assume that we have
enough monolingual new-domain data in one lan-
guage to rank Wikipedia pages according to how
new-domain-like they are. In particular, we use
our new-domain English language modeling data
to measure new-domain-likeness. We could have
targeted our learning even more by using our new-
domain French test sets to select comparable cor-
pora. Doing so may increase the similarity be-
tween our test data and comparable corpora. How-
ever, to avoid overfitting any particular test set, we
use our large English new-domain language mod-
eling corpus instead.

For each inter-lingually linked pair of French
and English Wikipedia documents, we compute
the percent of English phrases up to length four
that are observed in the English monolingual new-
domain corpus and rank document pairs by the ge-
ometric mean of the four overlap measures. More
sophisticated ways to identify new-domain-like
Wikipedia pages (e.g. (Moore and Lewis, 2010))
may yield additional performance gains, but, qual-
itatively, the ranked Wikipedia pages seem rea-
sonable for the purposes of generating a large set
of top-k new-domain document pairs. The top-10
ranked pages for each domain are listed in Table 2.
The top ranked science domain pages are primar-
ily related to concepts from the field of physics
but also include computer science and chemistry

3Or about 4 thousand lines each. The sentences in the
medical domain text are much shorter than those in the sci-
ence domain.

4As of January 2014.
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Science Medical
Diagnosis (artificial intelligence) Pregabalin

Absorption spectroscopy Cetuximab
Spectral line Fluconazole

Chemical kinetics Calcitonin
Mahalanobis distance Pregnancy category

Dynamic light scattering Trazodone
Amorphous solid Rivaroxaban

Magnetic hyperthermia Spironolactone
Photoelasticity Anakinra

Galaxy rotation curve Cladribine

Table 2: Top 10 Wikipedia articles ranked by their similar-
ity to large new-domain English monolingual corpora.

topics. The top ranked medical domain pages are
nearly all prescription drugs, which makes sense
given the content of the EMEA medical corpus.

4.2 Phrase-based Machine Translation

We word align our old-domain training corpus
using GIZA++ and use the Moses SMT toolkit
(Koehn et al., 2007) to extract a translation gram-
mar. In this work, we focus on phrase-based
SMT models, however our approach to using new-
domain comparable corpora to estimate translation
scores is theoretically applicable to any type of
translation grammar.

Our baseline models use a phrase limit of seven
and the standard phrase-based SMT feature set, in-
cluding forward and backward phrase and lexical
translation probabilities. Additionally, we use the
standard lexicalized reordering model. We exper-
iment with two 5-gram language models trained
using SRILM with Kneser-Ney smoothing on (1)
the English side of the Hansard training corpus,
and (2) the relevant new-domain monolingual En-
glish corpus. We experiment with using, first, only
the old-domain language model and, then, both the
old-domain and the new-domain language models.

Our first comparison system augments the stan-
dard feature set with the orthographic similarity
feature, which is not based on comparable cor-
pora. Our second comparison system uses both
the orthographic feature and the contextual and
topic similarity features estimated over a random
set of comparable document pairs. The third sys-
tem estimates contextual and topic similarity using
new-domain-like comparable corpora. We tune
our phrase table feature weights for each model
separately using batch MIRA (Cherry and Fos-
ter, 2012) and new-domain tuning data. Results
are averaged over three tuning runs, and we use
the implementation of approximate randomization

released by Clark et al. (2011) to measure the
statistical significance of each feature-augmented
model compared with the baseline model that uses
the same language model(s).

As noted in Section 3, the features that we
estimate from comparable corpora may be zero-
valued. We use our second tuning sets5 to tune
a minimum threshold parameter for our new fea-
tures. We measure performance in terms of BLEU
score on the second tuning set as we vary the new
feature threshold between 1e´07 and 0.5 for each
domain. A threshold of 0.01, for example, means
that we replace all feature with values less than
0.01 with 0.01. For both new-domains, perfor-
mance drops when we use thresholds lower than
0.01 and higher than 0.25. We use a minimum
threshold of 0.1 for all experiments presented be-
low for both domains.

5 Results

Table 3 presents a summary of our results on the
test set in each domain. Using only the old-domain
language model, our baselines yield BLEU scores
of 22.70 and 21.29 on the medical and science test
sets, respectively. When we add the orthographic
similarity feature, BLEU scores increase signifi-
cantly, by about 0.4 on the medical data and 0.6 on
science. Adding the contextual and topic features
estimated over a random selection of comparable
document pairs improves BLEU scores slightly in
both domains. Finally, using the most new-domain
like document pairs to estimate the contextual and
topic features yields a 1.3 BLEU score improve-
ment over the baseline in both domains. For both
domains, this result is a statistically significant im-
provement6 over each of the first three systems.

In both domains, the new-domain language
models contribute substantially to translation qual-
ity. Baseline BLEU scores increase by about
6 and 5 BLEU score points in the medical and
science domains, respectively, when we add the
new-domain language models. In the medical do-
main, neither the orthographic feature nor the or-
thographic feature in combination with contextual
and topic features estimated over random docu-
ment pairs results in a significant BLEU score
improvement. However, using the orthographic
feature and the contextual and topic features es-
timated over new-domain document pairs yields a

5test2 datasets released by Irvine et al. (2013a)
6p-value ă 0.01
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Language Model(s) System Medical Science

Old

Baseline 22.70 21.29
+ Orthographic Feature 23.09* (`0.4) 21.86* (`0.6)

+ Orthographic & Random CC Features 23.22* (`0.5) 21.88* (`0.6)
+ Orthographic & New-domain CC Features 23.98* (`1.3) 22.55* (`1.3)

Old+New

Baseline 28.82 26.18
+ Orthographic Feature 29.02 (`0.2) 26.40* (`0.2)

+ Orthographic & Random CC Features 28.86 (`0.0) 26.52* (`0.3)
+ Orthographic & New-domain CC Features 29.16* (`0.3) 26.50* (`0.3)

Table 3: Comparison between the performance of baseline old-domain translation models and domain-adapted models in
translating science and medical domain text. We experiment with two language models: old, trained on the English side of our
Hansard old-domain training corpus and new, trained on the English side of the parallel training data in each new domain. We
use comparable corpora of 5, 000 (1) random, and (2) the most new-domain-like document pairs to score phrase tables. All
results are averaged over three tuning runs, and we perform statistical significance testing comparing each system augmented
with additional features with the baseline system that uses the same language model(s). * indicates that the BLEU scores are
statistically significant with p ă 0.01.

small but significant improvement of 0.3 BLEU.
In the science domain, in contrast, all three aug-
mented models perform statistically significantly
better than the baseline. Contextual and topic fea-
tures yield only a slight improvement above the
model that uses only the orthographic feature, but
the difference is statistically significant. For the
science domain, when we use the new domain lan-
guage model, there is no difference between esti-
mating the contextual and topic features over ran-
dom comparable document pairs and those chosen
for their similarity with new-domain data.

Differences across domains may be due to the
fact that the medical domain corpora are much
more homogenous, containing the often boiler-
plate text of prescription drug labels, than the sci-
ence domain corpora. The science domain cor-
pora, in contrast, contain abstracts from several
different scientific fields; because that data is more
diverse, a randomly chosen mixed-domain set of
comparable corpora may still be relevant and use-
ful for adapting a translation model.

We experimented with varying the number of
comparable document pairs used for estimating
contextual and topic similarity but saw no sig-
nificant gains from using more than 5, 000 in ei-
ther domain. In fact, performance dropped in the
medical domain when we used more than a few
thousand document pairs. Our proposed approach
orders comparable document pairs by how new-
domain-like they are and augments models with
new features estimated over the top-k. As a result,
using more comparable document pairs means that
there is more data from which to estimate sig-
nals, but it also means that the data is less new-

domain like overall. Using a domain similarity
threshold to choose a subset of comparable doc-
ument pairs may prove useful in future work, as
the ideal amount of comparable data will depend
on the type and size of the initial mixed-domain
comparable corpus as well as the homogeneity of
the text domain of interest.

We also experimented with using a third lan-
guage model estimated over the English side of
our comparable corpora. However, we did not see
any significant improvements in translation qual-
ity when we used this language model in combina-
tion with the old and new domain language mod-
els.

6 Conclusion

In this work, we targeted SMT errors due
to translation model scores using new-domain
comparable corpora. Our old-domain French-
English baseline model was trained on the Cana-
dian Hansard parliamentary proceedings dataset,
which, at 8 million sentence pairs, is one of the
largest publicly available parallel datasets. Our
task was to adapt this baseline to the medical and
scientific text domains using comparable corpora.
We used new-domain parallel data only to tune
model parameters and do evaluation. We mined
Wikipedia for new-domain-like comparable docu-
ment pairs, over which we estimated several addi-
tional features scores: contextual, temporal, and
orthographic similarity. Augmenting the strong
baseline with our new feature set improved the
quality of machine translations in the medical and
science domains by up to 1.3 BLEU points.
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Abstract

Despite its potential to improve lexical
selection, most state-of-the-art machine
translation systems take only minimal con-
textual information into account. We cap-
ture context with a topic model over dis-
tributional profiles built from the context
words of each translation unit. Topic dis-
tributions are inferred for each transla-
tion unit and used to adapt the translation
model dynamically to a given test context
by measuring their similarity. We show
that combining information from both lo-
cal and global test contexts helps to im-
prove lexical selection and outperforms a
baseline system by up to 1.15 BLEU. We
test our topic-adapted model on a diverse
data set containing documents from three
different domains and achieve competitive
performance in comparison with two su-
pervised domain-adapted systems.

1 Introduction

The task of lexical selection plays an important
role in statistical machine translation (SMT). It
strongly depends on context and is particularly dif-
ficult when the domain of a test document is un-
known, for example when translating web doc-
uments from diverse sources. Selecting transla-
tions of words or phrases that preserve the sense
of the source words is closely related to the field
of word sense disambiguation (WSD), which has
been studied extensively in the past.

Most approaches to WSD model context at the
sentence level and do not take the wider context
of a word into account. Some of the ideas from
the field of WSD have been adapted for machine
translation (Carpuat and Wu, 2007b; Carpuat and
Wu, 2007a; Chan et al., 2007). For example,
Carpuat and Wu (2007a) extend word sense dis-
ambiguation to phrase sense disambiguation and

show improved performance due to the better fit
with multiple possible segmentations in a phrase-
based system. Carpuat (2009) test the “one sense
per discourse” hypothesis (Gale et al., 1992) for
MT and find that enforcing it as a constraint at the
document level could potentially improve transla-
tion quality. Our goal is to make correct lexical
choices in a given context without explicitly en-
forcing translation consistency.

More recent work in SMT uses latent repre-
sentations of the document context to dynam-
ically adapt the translation model with either
monolingual topic models (Eidelman et al., 2012;
Hewavitharana et al., 2013) or bilingual topic
models (Hasler et al., 2014), thereby allowing the
translation system to disambiguate source phrases
using document context. Eidelman et al. (2012)
also apply a topic model to each test sentence and
find that sentence context is sufficient for pick-
ing good translations, but they do not attempt to
combine sentence and document level informa-
tion. Sentence-level topic adaptation for SMT has
also been employed by Hasler et al. (2012). Other
approaches to topic adaptation for SMT include
Zhao and Xing (2007) and Tam et al. (2008), both
of which use adapted lexical weights.

In this paper, we present a topic model that
learns latent distributional representations of the
context of a phrase pair which can be applied to
both local and global contexts at test time. We
introduce similarity features that compare latent
representations of phrase pair types to test con-
texts to disambiguate senses for improved lexi-
cal selection. We also propose different strate-
gies for combining local and global topical context
and show that using clues from both levels of con-
texts is beneficial for translation model adaptation.
We evaluate our model on a dynamic adaptation
task where the domain of a test document is un-
known and hence the problem of lexical selection
is harder.
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2 Related work

Most work in the WSD literature has modelled
disambiguation using a limited window of con-
text around the word to disambiguate. Cai et al.
(2007), Boyd-graber and Blei (2007) and Li et al.
(2010) further tried to integrate the notion of la-
tent topics to address the sparsity problem of the
lexicalised features typically used in WSD classi-
fiers. The most closely related work in the area
of sense disambiguation is by Dinu and Lapata
(2010) who propose a disambiguation method for
solving lexical similarity and substitution tasks.
They measure word similarity in context by learn-
ing distributions over senses for each target word
in the form of lower-dimensional distributional
representations. Before computing word similar-
ities, they contextualise the global sense distribu-
tion of a word using the sense distribution of words
in the test context, thereby shifting the sense distri-
bution towards the test context. We adopt a simi-
lar distributional representation, but argue that our
representation does not need this disambiguation
step because at the level of phrase pairs the ambi-
guity is already much reduced.

Our model performs adaptation using similar-
ity features which is similar to the approach of
Costa-jussà and Banchs (2010) who learn a vec-
tor space model that captures the source context
of every training sentence. In Banchs and Costa-
jussà (2011), the vector space model is replaced
with representations inferred by Latent Seman-
tic Indexing. However, because their latent rep-
resentations are learned over training sentences,
they have to compare the current test sentence to
the latent vector of every training instance associ-
ated with a translation unit. The highest similar-
ity value is then used as a feature value. Instead,
our model learns latent distributional representa-
tions of phrase pairs that can be directly compared
to test contexts and are likely to be more robust.
Because context words of a phrase pair are tied to-
gether in the distributional representations, we can
use sparse priors to cluster context words associ-
ated with the same phrase pair into few topics.

Recently, Chen et al. (2013) have proposed a
vector space model for domain adaptation where
phrase pairs are assigned vectors that are defined
in terms of the training corpora. A similar vector
is built for an in-domain development set and the
similarity to the development set is used as a fea-
ture during translation. While their vector repre-
sentations are similar to our latent topic represen-

tations, their model has no notion of structure be-
yond corpus boundaries and is adapted towards a
single target domain (cross-domain). Instead, our
model learns the latent topical structure automati-
cally and the translation model is adapted dynam-
ically to each test instance.

We are not aware of prior work in the field of
MT that investigates combinations of local and
global context. In their recent work on neural lan-
guage models, Huang et al. (2012) combine the
scores of two neural networks modelling the word
embeddings of previous words in a sequence as
well as those of words from the surrounding doc-
ument by averaging over all word embeddings oc-
curring in the same document. The score of the
next word in a sequence is computed as the sum of
the scores of both networks, but they do not con-
sider alternative ways of combining contextual in-
formation.

3 Phrase pair topic model (PPT)

Our proposed model aims to capture the relation-
ship between phrase pairs and source words that
frequently occur in the local context of a phrase
pair, that is, context words occurring in the same
sentence. It therefore follows the distributional
hypothesis (Harris, 1954) which states that words
that occur in the same contexts tend to have sim-
ilar meanings. For a phrase pair, the idea is that
words that occur frequently in its context are in-
dicative of the sense that is captured by the target
phrase translating the source phrase.

We assume that all phrase pairs share a global
set of topics and during topic inference the distri-
bution over topics for each phrase pair is induced
from the latent topic of its context words in the
training data. In order to learn topic distributions
for each phrase pair, we represent phrase pairs as
documents containing all context words from the
source sentence context in the training data. These
distributional profiles of phrase pairs are the in-
put to the topic modelling algorithm which learns
topic clusters over context words.

Figure 1a shows a graphical representation of
the following generative process for training. For
each of P phrase pairs ppi in the collection

1. Draw a topic distribution from an asymmetric
Dirichlet prior, θp ∼ Dirichlet(α0, α . . . α).

2. For each position c in the distributional pro-
file of ppi, draw a topic from that distribution,
zp,c ∼Multinomial(θp).
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(a) Inference on phrase pair documents (training).

(b) Inference on local test contexts (test).

Figure 1: Graphical representation of the phrase
pair topic (PPT) model.

3. Conditioned on topic zp,c, choose a context
word wp,c ∼Multinomial(ψzp,c).

α and β are parameters of the Dirichlet distribu-
tions and φk denotes topic-dependent vocabularies
over context words. Test contexts are generated
similarly by drawing topic mixtures θl for each test
context1 as shown in Figure 1b, drawing topics z
for each context position and then drawing context
wordsw for each z. The asymmetric prior on topic
distributions (α0 for topic 0 and α for all other top-
ics) encodes the intuition that there are words oc-
curring in the context of many phrase pairs which

1A local test context is defined as all words in the test
sentence excluding stop words, while contexts of phrase pairs
in training do not include the words belonging to the source
phrase. The naming in the figure refers to local test contexts
L, but global test contexts will be defined similarly.

can be grouped under a topic with higher a priori
probability than the other topics. Figure 1a shows
the model for training inference on the distribu-
tional representations for each phrase pair, where
Cl−all denotes the number of context words in all
sentence contexts that the phrase pair was seen in
the training data, P denotes the number of phrase
pairs and K denotes the number of latent topics.
The model in Figure 1b has the same structure
but shows inference on test contexts, where Cl de-
notes the number of context words in the test sen-
tence context and L denotes the number of test in-
stances. θp and θl denote the topic distribution for
a phrase pair and a test context, respectively.

3.1 Inference for PPT model
We use collapsed variational Bayes (Teh et al.,
2006) to infer the parameters of the PPT model.
The posterior distribution over topics is computed
as shown below

P (zp,c = k|z−(p,c),wc, p, α, β) ∝
(Eq̂[n−(p,c)

.,k,wc
] + β)

(Eq̂[n−(p,c)
.,k,. ] +Wc · β)

· (Eq̂[n−(p,c)
d,k,. ] + α)

(1)

where zp,c denotes the topic at position c in
the distributional profile p, wc denotes all con-
text word tokens in the collection, Wc is the total
number of context words and Eq̂ is the expecta-
tion under the variational posterior. n

−(p,c)
.,k,wc

and

n
−(p,c)
p,k,. are counts of topics occurring with context

words and distributional profiles, respectively, and
n
−(p,c)
.,k,. is a topic occurrence count.
Before training the topic model, we remove stop

words from all documents. When inferring top-
ics for test contexts, we ignore unseen words be-
cause they do not contribute information for topic
inference. In order to speed up training inference,
we limit the documents in the collection to those
corresponding to phrase pairs that are needed to
translate the test set2. Inference was run for 50 it-
erations on the distributional profiles for training
and for 10 iterations on the test contexts. The out-
put of the training inference step is a model file
with all the necessary statistics to compute pos-
terior topic distributions (which are loaded before
running test inference), and the set of topic vectors
for all phrase pairs. The output of test inference is

2Reducing the training contexts by scaling or sampling
would be expected to speed up inference considerably.
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the set of induced topic vectors for all test con-
texts.

3.2 Modelling local and global context
At training time, our model has access to context
words only from the local contexts of each
phrase pair in their distributional profiles, that is,
other words in the same source sentence as the
phrase pair. This is useful for reducing noise and
constraining the semantic space that the model
considers for each phrase pair during training. At
test time, however, we are not limited to applying
the model only to the immediate surroundings of
a source phrase to disambiguate its meaning. We
can potentially take any size of test context into
account to disambiguate the possible senses of a
source phrase, but for simplicity we consider two
sizes of context here which we refer to as local
and global context.

Local context Words appearing in the sentence
around a test source phrase, excluding stop words.

Global context Words appearing in the document
around a test source phrase, excluding stop words.

4 Similarity features

We define similarity features that compare the
topic vector θp assigned to a phrase pair3 to the
topic vector assigned to a test context, The fea-
ture is defined for each source phrase and all its
possible translations in the phrase table, as shown
below

sim(ppi, test context) = cosine(θpi , θc),
∀ppi ∈ {ppi|s̄→ t̄i} (2)

Unlike Banchs and Costa-jussà (2011), we do
not learn topic vectors for every training sentence
which results in a topic vector per phrase pair to-
ken, but instead we learn topic vectors for each
phrase pair type. This is more efficient but also
more appealing from a modelling point of view, as
the topic distributions associated with phrase pairs
can be thought of as expected latent contexts. The
application of the similarity feature is visualised
in Figure 2. On the left, there are two applicable
phrase pairs for the source phrase noyau, noyau
→ kernel and noyau→ nucleus, with their distri-
butional representations (words belonging to the

3The mass of topic 0 is removed from the vectors and
the vectors are renormalised before computing similarity fea-
tures.

IT topic versus the scientific topic) and assigned
topic vectors θp. The local and global test contexts
are similarly represented by a document contain-
ing the context words and a resulting topic vector
θl or θg. The test context vector θc can be one of
θl and θg or a combination of both. In this ex-
ample, the distributional representation of noyau
→ kernel has a larger topical overlap with the test
context and will more likely be selected during de-
coding.

Figure 2: Similarity between topic vectors of two
applicable phrase pairs θp and the topic vectors θl

and θg from the local and global test context dur-
ing test time.

While this work focuses on exploring vec-
tor space similarity for adaptation, mostly for
computational ease, it may be possible to derive
probabilistic translation features from the PPT
model. This could be a useful addition to the
model and we leave this as an avenue for future
work.

Types of similarity features
We experiment with local and global phrase simi-
larity features, phrSim-local and phrSim-global, to
perform dynamic topic adaptation. These two sim-
ilarity features can be combined by adding them
both to the log-linear SMT model, in which case
each receive separate feature weights. Whenever
we use the + symbol in our results tables, the
additional features were combined with existing
features log-linearly. However, we also experi-
mented with an alternative combination of local
and global information where we combine the lo-
cal and global topic vectors for each test context
before computing similarity features.4 We were

4The combined topic vectors were renormalised before
computing their similarities with each candidate phrase pair.
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motivated by the observation that there are cases
where the local and global features have an op-
posite preference for one translation over another,
but the log-linear combination can only learn a
global preference for one of the features. Com-
bining the topic vectors allows us to potentially
encode a preference for one of the contexts that
depends on each test instance.

For similarity features derived from combined
topic vectors, ⊕ denotes the additive combination
of topic vectors,⊗ denotes the multiplicative com-
bination of topic vectors and ~ denotes a combina-
tion that favours the local context for longer sen-
tences and backs off incrementally to the global
context for shorter sentences.5 The intuition be-
hind this combination is that if there is already suf-
ficient evidence in the local context, the local topic
mixture may be more reliable than the global mix-
ture.

We also experiment with a combination of the
phrase pair similarity features derived from the
PPT model with a document similarity feature
from the pLDA model described in Hasler et al.
(2014). The motivation is that their model learns
topic mixtures for documents and uses phrases in-
stead of words to infer the topical context. There-
fore, it might provide additional information to our
similarity features.

5 Data and experimental setup

Our experiments were carried out on a mixed
French-English data set containing the TED cor-
pus (Cettolo et al., 2012), parts of the News Com-
mentary corpus (NC) and parts of the Common-
crawl corpus (CC) from the WMT13 shared task
(Bojar et al., 2013) as described in Table 1. To
ensure that the baseline model does not have an
implicit preference for any particular domain, we
selected subsets of the NC and CC corpora such
that the training data contains 2.7M English words
per domain. We were guided by two constraints
in chosing our data set in order to simulate an
environment where very diverse documents have
to be translated, which is a typical scenario for
web translation engines: 1) the data has docu-
ment boundaries and the content of each docu-
ment is assumed to be topically related, 2) there is
some degree of topical variation within each data
set. This setup allows us to evaluate our dynamic

5The interpolation weights between local and global topic
vectors were set proportional to sentence lengths between 1
and 30. The length of longer sentences was clipped to 30.

topic adaptation approach because the test docu-
ments are from different domains and also differ
within each domain, which makes lexical selec-
tion a much harder problem. The topic adaptation
approach does not make use of the domain labels
in training or test, because it infers topic mixtures
in an unsupervised way. However, we compare the
performance of our dynamic approach to domain
adaptation methods by providing them the domain
labels for each document in training and test.

In order to abstract away from adaptation ef-
fects that concern tuning of length penalties and
language models, we use a mixed tuning set con-
taining data from all three domains and train one
language model on the concatenation of the tar-
get sides of the training data. Word alignments
are trained on the concatenation of all training data
and fixed for all models. Table 2 shows the aver-
age length of a document for each domain. While
a CC document contains 29.1 sentences on aver-
age, documents from NC and TED are on average
more than twice as long. The length of a document
could have an influence on how reliable global
topic information is but also on how important it
is to have information from both local and global
test contexts.

Data Mixed CC NC TED
Train 354K (6450) 110K 103K 140K
Dev 2453 (39) 818 817 818
Test 5664 (112) 1892 1878 1894

Table 1: Number of sentence pairs and documents
(in brackets) in the data sets.

Data CC NC TED
Test documents 65 31 24
Avg sentences/doc 29.1 60.6 78.9

Table 2: Average number of sentences per docu-
ment in the test set (per domain).

5.1 Unadapted baseline system

Our baseline is a phrase-based French-English
system trained on the concatenation of all parallel
data. It was built with the Moses toolkit (Koehn
et al., 2007) using the 14 standard core features
including a 5-gram language model. Translation
quality is evaluated on a large test set, using the
average feature weights of three optimisation runs
with PRO (Hopkins and May, 2011). We use the
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noyau→ kernel noyau→ nucleus noyau→ core

Figure 3: Topic distributions for source phrase noyau and three of its translations (20 topics without topic
0). Colored bars correspond to topics IT, politics, science, economy with topic proportions ≥10%.

mteval-v13a.pl script to compute case-insensitive
BLEU scores.

5.2 Domain-adapted benchmark systems

As domain-aware benchmark systems, we use
the linear mixture model (DOMAIN1) of Sen-
nrich (2012) and the phrase table fill-up method
(DOMAIN2) of Bisazza et al. (2011) (both avail-
able in the Moses toolkit). For both systems,
the domain labels of the documents are used to
group documents of the same domain together. We
build adapted tables for each domain by treating
the remaining documents as out-of-domain data
and combining in-domain with out-of-domain ta-
bles. For development and test, the domain labels
are used to select the respective domain-adapted
model for decoding. Both systems have an advan-
tage over our model because of their knowledge
of domain boundaries in the data. This allows for
much more confident lexical choices than using an
unadapted system but is not possible without prior
knowledge about each document.

5.3 Implementation of similarity features

After all topic vectors have been computed, a fea-
ture generation step precomputes the similarity
features for all pairs of test contexts and applica-
ble phrase pairs for translating source phrases in
a test instance. The phrase table of the baseline
model is filtered for every test instance (a sentence
or document, depending on the context setting)
and each entry is augmented with features that ex-
press its semantic similarity to the test context. We
use a wrapper around the Moses decoder to reload
the phrase table for each test instance, which en-
ables us to run parameter optimisation (PRO) in
the usual way to get one set of tuned weights for
all test sentences. It would be conceivable to use

topic-specific weights instead of one set of global
weights, but this is not the focus of this work.

6 Qualitative evaluation of phrase pair
topic distributions

In order to verify that the topic model is learning
useful topic representations for phrase pairs, we
inspect the inferred topic distributions for three
phrase pairs where the translation of the same
source word differs depending on the topical
context: noyau → kernel, noyau → nucleus
and noyau → core. Figure 3 shows the topic
distributions for a PPT model with 20 topics
(with topic 0 removed) and highlights the most
prominent topics with labels describing their
content (politics, IT, science, economy)6. The
most peaked topic distribution was learned for
the phrase pair noyau → kernel which would be
expected to occur mostly in an IT context and
the topic with the largest probability mass is in
fact related to IT. The most prominent topic for
the phrase pair noyau → nucleus is the science
topic, though it seems to be occurring in with the
political topic as well. The phrase pair noyau
→ core was assigned the most ambiguous topic
distribution with peaks at the politics, economy
and IT topics. Note also that its topic distribution
overlaps with those of the other translations, for
example, like the phrase pair noyau → kernel,
it can occur in IT contexts. This shows that the
model captures the fact that even within a given
topic there can still be ambiguity about the correct
translation (both target phrases kernel and core
are plausible translations in an IT context).

6Topic labels were assigned by inspecting the most prob-
able context words for each topic according to the model.
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Ambiguity of phrase pair topic vectors
The examples in the previous section show that
the level of ambiguity differs between phrase pairs
that constitute translations of the same source
phrase. It is worth noting that introducing bilin-
gual information into topic modelling reduces the
sense ambiguity present in monolingual text by
preserving only the intersection of the senses of
source and target phrases. For example, the distri-
butional profiles of the source phrase noyau would
contain words that belong to the senses IT, poli-
tics, science and economy, while the words in the
context of the target phrase kernel can belong to
the senses IT and food (with source context words
such as grain, protéines, produire). Thus, the
monolingual representations would still contain a
relatively high level of ambiguity while the distri-
butional profile of the phrase pair noyau→ kernel
preserves only the IT sense.

7 Results and discussion

In this section we present experimental results
of our model with different context settings and
against different baselines. We used bootstrap re-
sampling (Koehn, 2004) to measure significance
on the mixed test set and marked all statistically
significant results compared to the respective base-
lines with asterisk (*: p ≤ 0.01).

7.1 Local context
In Table 3 we compare the results of the con-
catenation baseline and a model containing the
phrSim-local feature in addition to the baseline
features, for different numbers of latent topics. We
show results for the mixed test set containing doc-
uments from all three domains as well as the in-
dividual results on the documents from each do-
main. While all topic settings yield improvements
over the baseline, the largest improvement on the
mixed test set (+0.48 BLEU) is achieved with 50
topics. Topic adaptation is most effective on the
TED portion of the test set where the increase in
BLEU is 0.59.

7.2 Global context
Table 4 shows the results of the baseline plus the
phrSim-global feature that takes into account the
whole document context of a test sentence. While
the largest overall improvement on the mixed test
set is equal to the improvement of the local feature,
there are differences in performance for the indi-
vidual domains. For Commoncrawl documents,

Model Mixed CC NC TED
Baseline -26.86 19.61 29.42 31.88
10 topics *27.15 19.87 29.63 32.36
20 topics *27.19 19.92 29.76 32.31
50 topics *27.34 20.13 29.70 32.47

100 topics *27.26 20.02 29.75 32.40

>Baseline +0.48 +0.52 +0.34 +0.59

Table 3: BLEU scores of baseline system +
phrSim-local feature for different numbers of top-
ics.

the results vary slightly but the largest improve-
ment is still achieved with 50 topics and is al-
most the same for both. For News Commentary,
the scores with the local feature are consistently
higher than the scores with the global feature (0.20
and 0.22 BLEU higher for 20 and 50 topics). For
TED, the trend is opposite with the global feature
performing better than the local feature for all top-
ics (0.28 and 0.40 BLEU higher for 10 and 20 top-
ics). The best improvement over the baseline for
TED is 0.83 BLEU, which is higher than the im-
provement with the local feature.

Model Mixed CC NC TED
Baseline -26.86 19.61 29.42 31.88
10 topics *27.30 20.01 29.61 32.64
20 topics *27.34 20.07 29.56 32.71
50 topics *27.27 20.12 29.48 32.55

100 topics *27.24 19.95 29.66 32.52

>Baseline +0.48 +0.51 +0.24 +0.83

Table 4: BLEU scores of baseline system +
phrSim-global feature for different numbers of
topics.

7.3 Relation to properties of test documents

To make these results more interpretable, Ta-
ble 5 lists some of the properties of the test doc-
uments per domain. Of the three domains, CC

has the shortest documents on average and TED

the longest. To understand how this affects topic
inference, we measure topical drift as the aver-
age divergence (cosine distance) of the local topic
distributions for each test sentence to the global
topic distribution of their surrounding document.
There seems to be a correlation between docu-
ment length and topical drift, with CC documents
showing the least topical drift and TED documents
showing the most. This makes sense intuitively
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because the longer a document is, the more likely
it is that the content of a given sentence diverges
from the overall topical structure of the document.
While this can explain why for CC documents us-
ing local or global context results in similar perfor-
mance, it does not explain the better performance
of the local feature for NC documents. The last
row of Table 5 shows that sentences in the NC

documents are on average the longest and longer
sentences would be expected to yield more reli-
able topic estimates than shorter sentences. Thus,
we assume that local context yields better perfor-
mance for NC because on average the sentences
are long enough to yield reliable topic estimates.
When local context provides reliable information,
it may be more informative than global context be-
cause it can be more specific.

For TED, we see the largest topical drift per
document, which could lead us to believe that the
document topic mixtures do not reflect the topical
content of the sentences too well. But considering
that the sentences are on average shorter than for
the other two domains, it is more likely that the
local context in TED documents can be unreliable
when the sentences are too short. TED documents
contain transcribed speech and are probably less
dense in terms of information content than News
commentary documents. Therefore, the global
context may be more informative for TED which
could explain why relying on the global topic
mixtures yields better results.

Property CC NC TED
Per document
Avg number of sentences 29.1 60.6 78.9
Avg topical divergence 0.35 0.43 0.49
Avg sentence length 26.2 31.5 21.7

Table 5: Properties of test documents per domain.
Average topical divergence is defined as the aver-
age cosine distance of local to global topic distri-
butions in a document.

7.4 Combinations of local and global context

In Table 6 we compare a system that already con-
tains the global feature from a model with 50 top-
ics to the combinations of local and global simi-
larity features described in Section 4.

Of the four combinations, the additive combi-
nation of topic vectors (⊕) yields the largest im-
provement over the baseline with +0.63 BLEU on

Model Mixed CC NC TED
Baseline -26.86 19.61 29.42 31.88
+ global -27.27 20.12 29.48 32.55

+ local *27.43 20.18 29.65 32.79
⊕ local *27.49 20.30 29.66 32.76
⊗ local -27.34 20.24 29.61 32.50
~ local *27.45 20.22 29.51 32.79

⊕ >BL +0.63 +0.69 +0.24 +0.88

Table 6: BLEU scores of baseline and combina-
tions of phrase pair similarity features with local
and global context (significance compared to base-
line+global). All models were trained with 50 top-
ics.

the mixed test set and +0.88 BLEU on TED. The
improvements of the combined model are larger
than the improvements for each context on its own,
with the only exception being the NC portion of
the test set where the improvement is not larger
than using just the local context. A possible reason
is that when one feature is consistently better for
one of the domains (local context for NC), the log-
linear combination of both features (tuned on data
from all domains) would result in a weaker overall
model for that domain. However, if both features
encode similar information, as we assume to be the
case for CC documents, the presence of both fea-
tures would reinforce the preference of each and
result in equal or better performance. For the ad-
ditive combination, we expect a similar effect be-
cause adding together two topics vectors that have
peaks at different topics would make the resulting
topic vector less peaked than either of the original
vectors.

The additive topic vector combination is
slightly better than the log-linear feature combina-
tion, though the difference is small. Nevertheless,
it shows that combining topic vectors before com-
puting similarity features is a viable alternative
to log-linear combination, with the potential to
design more expressive combination functions.
The multiplicative combination performs slightly
worse than the additive combination, which
suggests that the information provided by the two
contexts is not always in agreement. In some
cases, the global context may be more reliable
while in other cases the local context may have
more accurate topic estimates and a voting ap-
proach does not take advantage of complementary
information. The combination of topic vectors
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Source: Le noyau contient de nombreux pilotes, afin de fonctionner chez la plupart des utilisateurs.
Reference: The precompiled kernel includes a lot of drivers, in order to work for most users.

Source: Il est prudent de consulter les pages de manuel ou les faq spécifiques à votre os.
Reference: It’s best to consult the man pages or faqs for your os.

Source: Nous fournissons nano (un petit éditeur), vim (vi amélioré), qemacs (clone de emacs), elvis, joe .
Reference: Nano (a lightweight editor), vim (vi improved), qemacs (emacs clone), elvis and joe.

Source: Elle a introduit des politiques [..] à coté des relations de gouvernement à gouvernement traditionnelles.
Reference: She has introduced policies [..] alongside traditional government-to-government relations.

Figure 4: Examples of test sentences and reference translations with the ambiguous source words and
their translations in bold.

depending on sentence length (~) performs well
for CC and TED but less well for NC where we
would expect that it helps to prefer the local
information. This indicates that the rather ad-
hoc way in which we encoded dependency on
the sentence length may need further refinement
to make better use of the local context information.

Model noyau→ os→
Baseline nucleus bones
global kernel* os*
local nucleus bones
global⊕local kernel* os*

Table 7: Translations of ambiguous source words
where global context yields the correct translation
(* denotes the correct translation).

Model elvis→ relations→
Baseline elvis* relations*
global the king relationship
local elvis* relations*
global⊕local the king relations*

Table 8: Translations of ambiguous source words
where local context yields the correct translation
(* denotes the correct translation).

7.5 Effect of contexts on translation

To give an intuition of how lexical selection is af-
fected by contextual information, Figure 4 shows
four test sentences with an ambiguous source word
and its translation in bold. The corresponding
translations with the baseline, the global and lo-
cal similarity features and the additive combina-
tion are shown in Table 7 for the first two examples
where the global context yields the correct transla-

tion (as indicated by *) and in Table 8 for the last
two examples where the local context yields the
correct translation.7 In Table 7, the additive com-
bination preserves the choice of the global model
and yields the correct translations, while in Table 8
only the second example is translated correctly by
the combined model. A possible explanation is
that the topical signal from the global context is
stronger and results in more discriminative simi-
larity values. In that case, the preference of the
global context would be likely to have a larger in-
fluence on the similarity values in the combined
model. A useful extension could be to try to de-
tect for a given test instance which context pro-
vides more reliable information (beyond encoding
sentence length) and boost the topic distribution
from that context in the combination.

7.6 Comparison with domain adaptation
Table 9 compares the additive model (⊕) to the
two domain-adapted systems that know the do-
main label of each document during training and
test. Our topic-adapted model yields overall com-
petitive performance with improvements of +0.37
and +0.25 BLEU on the mixed test set, respec-
tively. While it yields slightly lower performance
on the NC documents, it achieves equal perfor-
mance on TED documents and improves by up to
+0.94 BLEU on Commoncrawl documents. This
can be explained by the fact that Commoncrawl is
the most diverse of the three domains with docu-
ments crawled from all over web, thus we expect
topic adaptation to be most effective in compari-
son to domain adaptation in this scenario. Our dy-
namic approach allows us to adapt the similarity
features to each test sentence and test document
individually and is therefore more flexible than

7For these examples, the local model happens to yield the
same translations as the baseline model.
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Type of adaptation Model Mixed CC NC TED

Domain-adapted
DOMAIN1 -27.24 19.61 29.87 32.73
DOMAIN2 -27.12 19.36 29.78 32.71

Topic-adapted global ⊕ local *27.49 20.30 29.66 32.76

>DOMAIN1 +0.25 +0.69 -0.21 +0.03
>DOMAIN2 +0.37 +0.94 -0.12 +0.05

Table 9: BLEU scores of translation model using similarity features derived from PPT model (50 topics)
in comparison with two (supervised) domain-adapted systems.

Model Mixed CC NC TED
Baseline -26.86 19.61 29.42 31.88
+ docSim -27.22 20.11 29.63 32.40

+ phrSim-global ⊕ phrSim-local *27.58 20.34 29.71 32.96
+ phrSim-global ~ phrSim-local *27.60 20.35 29.70 33.03

global~local>BL +0.74 +0.74 +0.38 +1.15

Table 10: BLEU scores of baseline, baseline + document similarity feature and additional phrase pair
similarity features (significance compared to baseline+docSim). All models were trained with 50 topics.

cross-domain adaptation approaches while requir-
ing no information about the domain of a test in-
stance.

7.7 Combination with an additional
document similarity feature

To find out whether similarity features derived
from different types of topic models can provide
complementary information, we add the phrSim
features to a system that already includes a docu-
ment similarity feature (docSim) derived from the
pLDA model (Hasler et al., 2014) which learns
topic distributions at the document level and uses
phrases instead of words as the minimal units. The
results are shown in Table 10. Adding the two
best combinations of local and global context from
Table 6 yields the best results on TED documents
with an increase of 0.63 BLEU over the baseline +
docSim model and 1.15 BLEU over the baseline.
On the mixed test set, the improvement is 0.38
BLEU over the baseline + docSim model and 0.74
BLEU over the baseline. Thus, we show that com-
bining different scopes and granularities of sim-
ilarity features consistently improves translation
results and yields larger gains than using each of
the similarity features alone.

8 Conclusion

We have presented a new topic model for dynamic
adaptation of machine translation systems that
learns topic distributions for phrase pairs. These

latent topic representations can be compared to la-
tent representations of local or global test contexts
and integrated into the translation model via simi-
larity features.

Our experimental results show that it is ben-
eficial for adaptation to use contextual informa-
tion from both local and global contexts, with
BLEU improvements of up to 1.15 over the base-
line system on TED documents and 0.74 on a
large mixed test set with documents from three do-
mains. Among four different combinations of lo-
cal and global information, we found that the ad-
ditive combination of topic vectors performs best.
We conclude that information from both contexts
should be combined to correct potential topic de-
tection errors in either of the two contexts. We
also show that our dynamic adaptation approach
performs competitively in comparison with two
supervised domain-adapted systems and that the
largest improvement is achieved for the most di-
verse portion of the test set.

In future work, we would like to experiment
with more compact distributional profiles to speed
up inference and explore the possibilities of de-
riving probabilistic translation features from the
PPT model as an extension to the current model.
Another avenue for future work could be to com-
bine contextual information that captures different
types of information, for example, to distinguish
between semantic and syntactic aspects in the lo-
cal context.

454



Acknowledgements

This work was supported by funding from the
Scottish Informatics and Computer Science Al-
liance (Eva Hasler) and funding from the Eu-
ropean Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement 287658
(EU BRIDGE) and grant agreement 288769 (AC-
CEPT). Thanks to Annie Louis for helpful com-
ments on a draft of this paper and thanks to the
anonymous reviewers for their useful feedback.

References
Rafael E Banchs and Marta R Costa-jussà. 2011. A Se-
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Abstract

In this work, we tackle the problem of
language and translation models domain-
adaptation without explicit bilingual in-
domain training data. In such a scenario,
the only information about the domain
can be induced from the source-language
test corpus. We explore unsupervised
adaptation, where the source-language test
corpus is combined with the correspond-
ing hypotheses generated by the transla-
tion system to perform adaptation. We
compare unsupervised adaptation to su-
pervised and pseudo supervised adapta-
tion. Our results show that the choice of
the adaptation (target) set is crucial for
successful application of adaptation meth-
ods. Evaluation is conducted over the
German-to-English WMT newswire trans-
lation task. The experiments show that the
unsupervised adaptation method generates
the best translation quality as well as gen-
eralizes well to unseen test sets.

1 Introduction

Over the last few years, large amounts of statistical
machine translation (SMT) monolingual and bilin-
gual corpora were collected. Early years focused
on structured data translation such as newswire.
Nowadays, due to the relative success of SMT,
new domains of translation are being explored,
such as lecture and patent translation (Cettolo et
al., 2012; Goto et al., 2013).

The task of domain adaptation tackles the prob-
lem of utilizing existing resources mainly drawn
from one domain (e.g. parliamentary discussion)
to maximize the performance on the target (test)
domain (e.g. newswire).

To be able to perform adaptation, a target set
representing the test domain is used to manipu-
late the general-domain models. Previous work

on SMT adaptation focused on the scenario where
(small) bilingual in-domain or pseudo in-domain
training data are available. Furthermore, small at-
tention was given to the choice of the target set for
adaptation. In this work, we explore the problem
of adaptation where no explicit bilingual data from
the test domain is available for training, and the
only resource encapsulating information about the
domain is the source-language test corpus itself.

We explore how to utilize the source-language
test corpus for adapting the language model (LM)
and the translation model (TM). A combination
of source and automatically translated target of
the test set is compared to using the source side
only for TM adaptation. Furthermore, we com-
pare using the test set to using in-domain data and
a pseudo in-domain data (e.g. news-commentary
as opposed to newswire).

Experiments are done on the WMT 2013
German-to-English newswire translation task.
Our best adaptation method shows competitive re-
sults to the best submissions of the evaluation.

This paper is structured as follows. We review
related work in Section 2 and introduce the basic
adaptation methods in Section 3. The experimen-
tal setup is described in Section 4, results are dis-
cussed in Section 5 and we conclude in Section 6.

2 Related Work

A broad range of methods and techniques have
been suggested in the past for domain adaptation
for both SMT and automatic speech recognition
(ASR).

For ASR, (Bellegarda, 2004) gives an overview
of LM adaptation methods. He differentiates be-
tween two cases regarding the availability of in-
domain adaptation data: (i) the data is available
and can be directly used to manipulate a back-
ground (general domain) corpus, and (ii) the data
is not available or too small, and then it can be
gathered or automatically generated during the
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recognition process. (Bacchiani and Roark, 2003)
compare supervised against unsupervised (using
automatic transcriptions) in-domain data for LM
training for the task of ASR. They show that aug-
menting the supervised in-domain to the train-
ing of the LM performs better than the unsuper-
vised in-domain. In addition, they perform “self-
training”, where the test set is automatically tran-
scribed and added to the LM. When using a strong
baseline, no improvements in recognition quality
are achieved. We differ from their work by us-
ing the unsupervised test data to adapt a general-
domain bilingual corpus. We also performed ini-
tial experiments of “self-training” for language
modeling, where (artificial) perplexity improve-
ment was achieved but without an impact on the
machine translation (MT) quality.

(Zhao et al., 2004) tackle LM adaptation for
SMT. Similarly to our work, they use automati-
cally generated hypotheses to perform adaptation.
We extend their work by using the hypotheses
also for TM adaptation. (Hildebrand et al., 2005)
perform LM and TM adaptation based on infor-
mation retrieval methods. They use the source-
language test corpus to filter the bilingual data,
and then use the target side of the filtered bilingual
data to perform LM adaptation. We differ from
their work by using both the in-domain source-
language corpus and its corresponding automatic
translation for adaptation, which is shown in our
experiments to achieve superior results than when
using the source-side information only. (Foster
and Kuhn, 2007) perform LM and TM adaptation
using mixture modeling. In their setting, the mix-
ture weights are modified to express adaptation.
They compare cross-domain (in-domain available)
against dynamic adaptation. In the dynamic adap-
tation scenario, they utilize the source side of the
development set to adapt the mixture weights (LM
adaptation is possible as they only use parallel
training data, which enables filtering based on the
source side and then keeping the corresponding
target side of the data). For an in-domain test set,
the cross-domain setup performs better than the
dynamic adaptation method. (Ueffing et al., 2007)
use the test set translations as additional data to
train the TM. One important aspect in their work
is confidence measurement to remove noisy trans-
lation. In our approach, we use the automatic test
set translations to adapt the SMT models rather
than augmenting it as additional TM data. We also

compare different adaptation sets. Furthermore,
we do not use confidence measures to filter the au-
tomatic translations as they are only used to adapt
the general-domain system and are not augmented
to the TM.

In this work, we apply cross-entropy scoring for
adaptation as done by (Moore and Lewis, 2010).
Moore and Lewis (2010) apply adaptation by us-
ing an LM-based cross-entropy filtering for LM
training. Axelrod et al. (2011) generalized the
method for TM adaptation by interpolating the
source and target LMs. These two works focused
on a scenario where in-domain training data are
available for adaptation. In this work, we focus on
a scenario where in-domain training data is not la-
beled, and the main resource for adaptation is the
source-language test data.

In recent WMT evaluations, the method of
(Moore and Lewis, 2010) was utilized by several
translation systems (Koehn and Haddow, 2012;
Rubino et al., 2013). These systems use pseudo
in-domain corpus, i.e., news-commentary, as the
target domain (while the test domain is newswire).
The contribution of this work is two fold: we
show that the choice of the target set is crucial for
adaptation, in addition, we show that an unsuper-
vised target set performs best in terms of transla-
tion quality as well as generalization performance
to unseen test sets (in comparison to using pseudo
in-domain data or the references as target sets).

3 Cross-Entropy Adaptation

In this work, we use sample scoring for the pur-
pose of adaptation. We start by introducing the
scoring framework and then show how we utilize it
to perform filtering based adaptation and weighted
phrase extraction based adaptation.

LM cross-entropy scores can be used for both
monolingual data weighting for LM training as
done by (Moore and Lewis, 2010), or bilingual
weighting for TM training as done by (Axelrod et
al., 2011).

We differentiate between two types of data sets:
the adaptation set (target) representative of the
test-domain which we refer to also as in-domain
(IN), and the general-domain (GD) set which we
want to adapt.

The scores for each sentence in the general-
domain corpus are based on the cross-entropy dif-
ference of the IN and GD models. Denoting
HM (x) as the cross entropy of sentence x accord-
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ing to model M , then the cross entropy difference
DHM (x) can be written as:

DHM (x) = HMIN
(x)−HMGD

(x) (1)

The intuition behind eq. (1) is that we are inter-
ested in sentences as close as possible to the in-
domain, but also as far as possible from the gen-
eral corpus. Moore and Lewis (2010) show that
using eq. (1) for LM filtering performs better in
terms of perplexity than using in-domain cross-
entropy only (HMIN

(x)). For more details about
the reasoning behind eq. (1) we refer the reader to
(Moore and Lewis, 2010).

Axelrod et al. (2011) adapted eq. (1) for bilin-
gual data filtering for the purpose of TM training.
The bilingual LM cross entropy difference for a
sentence pair (fr, er) in the GD corpus is then de-
fined by:

DHLM (fr, er) = DHLMsrc(fr) +DHLMtrg(er)
(2)

For IBM Model 1 (M1), the cross-entropy
HM1(fr|er) is defined similarly to the LM cross-
entropy, and the resulting bilingual cross-entropy
difference will be of the form:

DHM1(fr, er) = DHM1(fr|er) +DHM1(er|fr)

The combined LM+M1 score is obtained by
summing the LM and M1 bilingual cross-entropy
difference scores:

dr = DHLM (fr, er) +DHM1(fr, er) (3)

3.1 Filtering
A common framework to perform sample filtering
is to score each sample according to a model, and
then assigning a threshold on the score which fil-
ters out unwanted samples. If the score we gener-
ate is related to the probability that the sample was
drawn from the same distribution as the in-domain
data, we are selecting the samples most relevant to
our domain. In this way we can achieve adaptation
of the general-domain data.

We use the LM cross-entropy difference from
eq. (1) for LM filtering and a combined LM+M1
score (eq. (3) for TM filtering. We sort the sen-
tences in the general-domain according to the
score and select the best 50%,25%,...,6.25% train-
ing instances. Our models are then trained on
the selected portions of the training data, and the
best performing portion (according to perplexity
for LM training and BLEU for TM training) on the
development set is chosen as the adapted corpus.

3.2 Weighted Phrase Extraction
The classical phrase model is trained using a “sim-
ple” maximum likelihood estimation, resulting in
phrase translation probabilities being defined by
relative frequency:

p(f̃ |ẽ) =
∑

r cr(f̃ , ẽ)∑
f̃ ′
∑

r cr(f̃ ′, ẽ)
(4)

Here, f̃ , ẽ are contiguous phrases, cr(f̃ , ẽ) de-
notes the count of (f̃ , ẽ) being a translation of each
other (usually according to word alignment and
heuristics) in sentence pair (fr, er). One method
to introduce weights to eq. (4) is by weighting
each sentence pair by a weight wr. Eq. (4) will
now have the extended form:

p(f̃ |ẽ) =
∑

r wr · cr(f̃ , ẽ)∑
f̃ ′
∑

r wr · cr(f̃ ′, ẽ)
(5)

It is easy to see that setting {wr = 1} will result
in eq. (4) (or any non-zero equal weights). Increas-
ing the weight wr of the corresponding sentence
pair will result in an increase of the probabilities
of the phrase pairs extracted. Thus, by increasing
the weight of in-domain sentence pairs, the prob-
ability of in-domain phrase translations could also
increase.

We utilize dr from eq. (3) using a combined
LM+M1 scores for our suggested weighted phrase
extraction. dr can be assigned negative values, and
lower dr indicates sentence pairs which are more
relevant to the in-domain. Therefore, we negate
the term dr to get the notion of higher is closer
to the in-domain, and use an exponent to ensure
positive values. The final weight is of the form:

wr = e−dr (6)

This term is proportional to perplexities, as the
exponent of entropy is perplexity by definition.

One could also use filtering for TM adaptation,
but, as shown in (Mansour and Ney, 2012), filter-
ing for TM could only reduce the size and weight-
ing performs better than filtering.

4 Experimental Setup

4.1 Training Data
The experiments are done on the recent German-
to-English WMT 2013 translation task 1. For

1The translation task resources of WMT 2013 are avail-
able under: http://www.statmt.org/wmt13/
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Corpus Sent De En
Training data

news-commentary 177K 4.8M 4.5M
europarl 1 888K 51.5M 51.9M
common-crawl 2 030K 47.8M 47.7M
total 4 095K 104.1M 104M

Test data
newstest08 2051 52446 49749
newstest09 2525 68512 65648
newstest10 2489 68232 62024
newstest11 3003 80181 74856
newstest12 3003 79912 73089
newstest13 3000 69066 64900

Table 1: German-English bilingual training and
test data statistics: the number of sentence pairs
(Sent), German (De) and English (En) words are
given.

German-English WMT 2013, the common-crawl
bilingual corpus was introduced, enabling more
impact for TM adaptation on the SMT system
quality. Monolingual English data exists with
more than 1 billion words, making LM adapta-
tion and size reduction a wanted feature. We use
newstest08 throughout newstest13 to evaluate the
SMT systems. The baseline systems are built
using all (unfiltered) available monolingual and
bilingual training data. The bilingual corpora and
the test data statistics are summarized in Table 1.

In Table 2, we summarize the size and LM per-
plexity of the different monolingual corpora for
the German-English task over the LM develop-
ment set newstest09 and test set newstest13. The
corpora are split into three parts, the English side
of the bilingual side (bi.en), the giga-fren joined
with undoc (giun) and the news-shuffle (ns) cor-
pus. To keep the perplexity results comparable,
we use the intersection vocabulary of the different
corpora as a reference vocabulary. From the table,
we notice that as expected, the in-domain corpus
news-shuffle generate the best perplexity values.

4.2 SMT System

The baseline system is built using the open-source
SMT toolkit Jane2, which provides state-of-the-art
phrase-based SMT system (Wuebker et al., 2012).
We use the standard set of models with phrase
translation probabilities for source-to-target and

2www.hltpr.rwth-aachen.de/jane

Corpus Tokens ppl
[M] dev test

bi.en 88 216.5 192.7
giun 775 229.0 198.9
ns 1 479 144.1 122.7

Table 2: German-English monolingual corpora
statistics: the number of tokens is given in millions
[M], ppl is the perplexity of the corresponding cor-
pus.

target-to-source directions, smoothing with lexi-
cal weights, a word and phrase penalty, distance-
based reordering, hierarchical reordering model
(Galley and Manning, 2008) and a 4-gram target
language model. The baseline system is compet-
itive and using adaptation we will show compa-
rable results to the best systems of WMT 2013.
The SMT system was tuned on the development
set newstest10 with minimum error rate training
(MERT) (Och, 2003) using the BLEU (Papineni
et al., 2002) error rate measure as the optimiza-
tion criterion. We test the performance of our sys-
tem on the newstest08...newstest13 sets using the
BLEU and translation edit rate (TER) (Snover et
al., 2006) measures. We use TER as an additional
measure to verify the consistency of our improve-
ments and avoid over-tuning. All results are based
on true-case evaluation. We perform bootstrap re-
sampling with bounds estimation as described by
(Koehn, 2004). We use the 90% and 95% (denoted
by † and ‡ correspondingly in the tables) confi-
dence thresholds to draw significance conclusions.

5 Results

To perform adaptation, an adaptation set repre-
senting the in-domain needs to be specified to be
plugged in eq. (1) as IN. The choice of the adap-
tation corpus is crucial for the successful appli-
cation of the cross-entropy based scoring, as the
closer the corpus is to our test domain, the bet-
ter adaptation we get. For the WMT task, the
choice of the adaptation corpus is not an easy
task. The genre of the test sets is newswire, while
the bilingual training data is composed of news-
commentary, parliamentary records (europarl) and
common-crawl noisy data. On the other hand, the
monolingual data includes large amounts of in-
domain newswire data (news-shuffle).

For LM training, the task of adaptation might
be unprofitable in terms of performance, as the
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Figure 1: Size (fraction of news-shuffle data)
against the resulting LM perplexity on dev and
test, using different filtering sets.

majority of the training is in-domain. Still, one
might hope that by using adaptation, a more com-
pact and comparable LM can be generated. An-
other point is that LM training is less demanding
than TM training, and a comparison of the results
of LM and TM adaptation might prove fruitful and
convey additional information.

Next, we start with LM adaptation experiments
where we mainly compare different adaptation
sets for filtering over the final translation quality.
A comparison to the full (unfiltered LM) is also
produced. For TM adaptation, we repeat the adap-
tation sets choice experiment and analyze the dif-
ference between the sets.

5.1 LM Adaptation

To evaluate our methods experimentally, we use
the German-English translation task to compare
different adaptation sets for filtering and then an-
alyze the full versus the filtered LM SMT system
results. We recall that newstest09 is used as a de-
velopment set and newstest13 as a test set in the
LM experiments.

The different adaptation sets for filtering that we
explore are: (i) unsupervised: an automatic trans-
lation of the test sets (newstest08...newstest13),
where the baseline system (without adaptation)
is used to generate the hypotheses which then
define the adaptation corpus for filtering (HYP),
(ii) supervised: the references of the test sets new-
stest08...newstest12 concatenated, newstest13 is
kept as a blind set, which will also help us deter-
mine if overfitting occurs (REF), and (iii) pseudo
supervised: a pseudo in-domain corpus, news-

Corpus Adapt Optimal ppl
set size dev test

ns

none 100% 144 123
NC 100% 144 123
REF 6.25% 111 161
HYP 50% 139 118

giun

none 100% 229 199
NC 50% 215 185
REF 6.25% 161 171
HYP 12.5% 187 159

Table 3: Optimal size portion and resulting per-
plexities, across adaptation sets (NC, REF and
HYP) and monolingual LM training corpora.

commentary, where the domain is similar to the
test set domain, but the style might differ (NC).
Next, we filter the news-shuffle (ns) and giga-
fren+undoc (giun) according to the three sug-
gested adaptations sets, where we plug each adap-
tation set in eq. (1) as IN and compare their per-
formance.

5.1.1 Perplexity Results

In Figure 1, we draw the size portion versus the
dev and test perplexities for the REF and HYP
adaptation sets over the news-shuffle corpus. REF
performs best for filtering the dev set, where an
optimum is achieved when using only 6.25% of
the news-shuffle data, with a perplexity of 111 in
comparison to 144 perplexity of the full LM. Mea-
suring perplexities over newstest08-12, REF based
filtering achieves 109 while the full LM achieves
140. The good performance on the seen sets
comes with the cost of severe overfitting, where
the test set perplexity using 6.25% of the data is
161, much higher than 123 generated by the full
LM. On the other hand, HYP achieves an optimum
for both sets when using 50% of the data. A sum-
mary of the best results across monolingual cor-
pora and adaptation sets is given in Table 3. Fil-
tering the giun monolingual corpus shows similar
results to ns filtering, where overfitting occurs on
the blind test set when using REF as the target do-
main. HYP-based adaptation achieves the best LM
perplexity on the blind test set. NC-based adapta-
tion retains the biggest amount of data, 50% for
the giun corpus and 100% (no filtering) for the ns
corpus. REF-based adaptation shows overfitting
on the seen dev set, and the worst results on the
blind test set when filtering the ns corpus.
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LM data Adapt. ppl newstest10 newstest11 newstest12 newstest13
set BLEU TER BLEU TER BLEU TER BLEU TER

bi.en+giun

none 162 23.2 59.6 21.2 61.0 21.8 60.9 24.6 57.2
NC 160 23.2 59.3 21.5 61.0 21.9 60.7 24.6 57.0
REF 158 23.7 59.2 21.9 60.5 22.2 60.5 24.5 57.3
HYP 151 23.6 59.2 21.5 60.9 22.2 60.4 25.1 56.7

+ns

none 111 24.5 59.1 22.1 61.3 23.3 60.1 25.9 56.7
NC 111 24.4 58.7 22.1 60.5 23.4 59.7 25.5 56.6
REF 143 25.7 57.8 23.0 59.9 24.2 59.4 24.1 57.8
HYP 109 25.0 58.2 22.1 60.6 23.5 59.6 25.9 56.3

Table 4: German-English LM filtering results using different adaptation sets. The LM perplexity over
the blind test set nestest13, as well as BLEU and TER percentages are presented.

5.1.2 Translation Results

Next, we measure whether the improvements of
the single adapted corpora carry over to the mix-
ture LM both in perplexity and translation quality.
The mixture LM is created by linear interpolation
(of bi.en, giun and ns) with perplexity minimiza-
tion on the dev set using the SRILM toolkit3. We
carry out two experiments, in the first we interpo-
late the English side of the bilingual data with a
giun LM, then we add the ns LM. This way we
measure whether the effects of adaptation carry
over to a stronger baseline.

The SMT systems built using the full and fil-
tered LMs are compared in Table 4. The table
includes the data used for LM training, the adap-
tation set used to filter the data, the perplexity
of the resulting LM on the test set (newstest13)
and the resulting SMT system quality over new-
stest10...newstest13.

Starting with the first block of experiments us-
ing LM data composed from the English side
of the bilingual corpora and the giun corpus
(bi.en+giun), the unfiltered LM performs worse,
both in terms of perplexity and translation qual-
ity. The NC based adaptation improves the results
slightly, with gains upto +0.3% BLEU on new-
stest11 and -0.3% TER on newstest10. The over-
fitting behavior of REF adapted LMs carries over
to the mixture LM, mainly on the translation qual-
ity. The REF adapted LM system translation re-
sults are better on the test sets used to perform the
adaptation, but worse on the blind test set (new-
stest13). The HYP system performs best in terms
of perplexity. REF is better than HYP over the
non-blind test sets, but HYP outperforms REF on

3http://www.speech.sri.com/projects/srilm/

newstest13 with an improvement of +0.6% BLEU

and -0.6% TER.
The second block of experiments where news-

shuffle (ns) is added to the mixture shows even
stronger overfitting for REF. The REF based adap-
tation is performing worse in terms of perplexity,
143 in comparison to 111 for the full LM. On the
blind set newstest13, REF is hindering the results
with a loss of -1.8% BLEU in comparison to the
full system, and a loss of -0.4% BLEU in compar-
ison to the corresponding system without ns. On
the non-blind sets, REF is performing best, show-
ing typical overfitting. Comparing the full LM
system to the HYP adapted LM, big improvements
are mainly observed on TER, with significance at
the 95% level for newstest10.

We conclude that using the references as adap-
tation set causes overfitting, using a pseudo in-
domain set as the news-commentary does not im-
prove the results, and the best choice is using the
automatic translations (HYP).

As already mentioned in Section 2, we experi-
mented with adding the automatic translations of
the test sets (HYP) to the LM. Doing so resulted
in 8 points perplexity reduction, but no impact on
the MT quality was observed. Therefore, we deem
these perplexity improvements by adding HYP as
artificial.

5.2 TM Adaptation

In the LM adaptation experiments, we found that
using the test sets automatic translation as the
adaptation set (HYP system) for filtering per-
formed best, in terms of LM quality (perplex-
ity) and translation quality, when compared to the
other suggested adaptation sets, especially on the
blind test set.
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LM TM newstest10 newstest11 newstest12 newstest13
BLEU TER BLEU TER BLEU TER BLEU TER

full full 24.5 59.1 22.1 61.3 23.3 60.1 25.9 56.7

HYP

full 25.0 58.2‡ 22.1 60.6 23.5 59.6 25.9 56.3
TM Filtering

REF-25% 25.1 57.9‡ 22.4 60.2‡ 24.0‡ 59.1‡ 25.5 56.7
HYP-50% 25.2 58.0‡ 22.2 60.5† 23.8† 59.4‡ 26.0 56.4

TM Weighting
ppl.NC 25.0 58.1‡ 22.5 60.2‡ 23.6 59.5† 26.1 56.2
ppl.TST 24.8 58.8 22.3 60.7 23.6 59.7 26.0 56.3
ppl.REF 24.8 58.2‡ 22.2 60.3† 23.7 59.5† 25.5 56.4
ppl.HYP 25.4‡ 57.8‡ 22.5 60.1‡ 23.9‡ 59.3‡ 26.4† 55.9‡

Table 5: German-English TM filtering and weighting results using different adaptation sets. The results
are given in BLEU and TER percentages. Significance is measured over the full system (first row).

For TM adaptation, we experiment with filter-
ing and weighting based adaptation. By using
weighting, we expect further improvements over
the baseline and better differentiation between the
competing adaptation sets.

To perform filtering, we concatenate all the
bilingual corpora in Table 1 and sort them accord-
ing to the combined LM+M1 cross-entropy score.
We then extract the top 50%,25%,... bilingual sen-
tence from the sorted corpus, generate the phrase
table for each setup and reoptimize the system us-
ing MERT on the development set.

Weighted phrase extraction is based on the same
LM+M1 combined cross entropy score as filter-
ing, but instead of discarding whole sentences we
weight them according to their relevance to the
adaptation set being used.

In this section, we compare the three adapta-
tion sets suggested for LM filtering for the TM
component. In addition, one might argue that for
the bilingual case, the source side of the test set
might be sufficient to perform adaptation, or even
it might perform better for TM adaptation as the
automatically generated translation might not be
as reliable. We perform an experiment using the
source side of the test sets as an adaptation set to
score the source side of the bilingual corpora (de-
noted TST in the experiments). To summarize, we
collect 4 corpora as adaptation sets to be used for
adapting the TM: (i) NC, HYP, and REF as defined
for LM but using both source and target (automat-
ically generated for HYP) sides, and (ii) TST using
only the source side of the test sets.

The results comparing the 4 suggested adapta-
tion sets for filtering and weighting are given in

Table 5. In this table, we use newstest10 as be-
fore for MERT optimization and display results for
newstest10...newstest13. Note that for TM filter-
ing and weighting we use the HYP adapted LM as
it achieves the best results in the previous section.

For filtering, the NC and TST adaptation sets
could not improve the dev results over the full sys-
tem therefore they are omitted. REF based adapta-
tion achieves the best dev results when using 25%
of the bilingual data while HYP based adaptation
uses 50% of the data. For TM filtering, only slight
overfitting is observed, where the REF system is
slightly better than HYP on the non blind sets and
is worse on the blind test set. We hypothesize that
no severe overfitting is observed for TM filtering
as we use a strong LM adapted with the HYP set,
therefore degradation is lessened.

Next, we focus on weighted phrase extraction
for adaptation using the various adaptation sets.
Comparing filtering to weighting, weighting im-
proves for the ppl.HYP based adaptation but a
slight loss is observed for the ppl.REF system ex-
cept on the blind test set. We conclude that due to
the usage of more data in the weighting scenario,
overfitting is lessened. Using the source side of the
test sets for weighting (ppl.TST) achieves good re-
sults, with improvements over the ppl.REF system
on newstest13.

The ppl.HYP system achieves the best results
among the weighted systems. Comparing the
full unadapted system with the LM+TM adapted
ppl.HYP system, we achieve significant BLEU im-
provements on most sets, TER improvements are
significant in all cases with 95% significance level.
The highest gains are on the development set with
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+0.9% BLEU and -1.3% TER improvements, on
the test sets, newstest12 improves with +0.6%
BLEU and -0.8% TER and newstest13 improves
with +0.5% BLEU and -0.8% TER. The ppl.HYP
system is comparable to the best single system
of WMT 2013 4 (26.4% BLEU vs 26.8% BLEU

for Edinburgh submission, RWTH submission is a
system combination). Note that we are not using
the LDC GigaWord corpus.

We conclude that using in-domain automatic
translations (HYP) for TM weighting performs
best, better than using source side only in-domain
(TST) and better than using the references (REF)
especially on the blind test set. TM adaptation
shows further improvements on top of LM adap-
tation and achieves significant gains.

6 Conclusion

In this work, we tackle the problem of adaptation
without labeled bilingual in-domain training data.
The only information about the test domain is en-
capsulated in the test sets themselves. We experi-
ment with unsupervised adaptation for SMT, using
automatic translations of the test sets, focusing on
adaptation for the LM and the TM components.
We use cross-entropy based scoring for the task
of adaptation, as this method proved successful in
previous work. We utilize filtering for LM adapta-
tion, while we compare filtering and weighting for
TM adaptation.

For LM adaptation, the setup we devise al-
ready contains a majority of in-domain data, still
we could report improvements over the unadapted
baseline. We compose three different adaptation
sets for filtering using automatic translation of the
test data (HYP), a pseudo in-domain set (NC) and
the references (REF) of the test sets (keeping one
blind test set). The NC based filtering is not able to
perform good selection, for news-shuffle the whole
corpus is retained and for giun 50% of the data is
retained. The perplexity results and the translation
quality are virtually unchanged in comparison to
the full system. Using REF as the target set causes
overfitting, where the results are better on the seen
test sets but worse on the blind test set. The best
performing target set in our experiments is the un-
supervised HYP adaptation set, achieving the best
perplexity as well as the best translation quality on
the blind test set. Therefore, we conclude that for

4http://matrix.statmt.org/matrix/
systems_list/1712

developing a successful SMT system that can gen-
eralize to new data the HYP based adaptation is
preferred.

Next, we perform TM adaptation, where we re-
peat the comparison between the different adapta-
tion sets for filtering as well as weighting. We also
compare to adaptation based only on the source
side of the test sets (TST). The LM adaptation
results hold for TM adaptation, where using the
automatic translations method shows the best re-
sults for the blind test set. Our experiments show
that using the source side only of the test set for
adaptation performs worse than the unsupervised
method, reminiscent to results reported in previous
work comparing supervised source side against
bilingual filtering (Axelrod et al., 2011). For filter-
ing, the REF system suffers from overfitting, while
when using weighting for adaptation, overfitting
is lessened. Comparing the unadapted baseline to
the adapted LM and TM system using the HYP
set, improvements of +1.0% BLEU and -1.3% TER

are reported on the development set while +0.5%
BLEU and -0.8% TER improvements are reported
on the blind test set.
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Abstract

Scalable discriminative training methods
are now broadly available for estimating
phrase-based, feature-rich translation mod-
els. However, the sparse feature sets typi-
cally appearing in research evaluations are
less attractive than standard dense features
such as language and translation model
probabilities: they often overfit, do not gen-
eralize, or require complex and slow fea-
ture extractors. This paper introduces ex-
tended features, which are more specific
than dense features yet more general than
lexicalized sparse features. Large-scale ex-
periments show that extended features yield
robust BLEU gains for both Arabic-English
(+1.05) and Chinese-English (+0.67) rel-
ative to a strong feature-rich baseline. We
also specialize the feature set to specific
data domains, identify an objective function
that is less prone to overfitting, and release
fast, scalable, and language-independent
tools for implementing the features.

1 Introduction

Scalable discriminative algorithm design for ma-
chine translation (MT) has lately been a booming
enterprise. There are now algorithms for every taste:
probabilistic and distribution-free, online and batch,
regularized and unregularized. Technical differ-
ences aside, the papers that apply these algorithms
to phrase-based translation often share a curious
empirical characteristic: the algorithms support ex-
tra features, but the features do not significantly
improve translation. For example, Hopkins and
May (2011) showed that PRO with some simple ad
hoc features only exceeds the baseline on one of
three language pairs. Gimpel and Smith (2012b)
observed a similar result for both PRO and their
ramp-loss algorithm. Cherry and Foster (2012)
found that, at least in the batch case, many algo-
rithms produce similar results, and features only

significantly increased quality for one of three lan-
guage pairs. Only recently did Cherry (2013) and
Green et al. (2013b) identify certain features that
consistently reduce error.
These empirical results suggest that feature de-

sign and model fitting, the subjects of this paper,
warrant a closer look. We introduce an effective
extended feature set for phrase-based MT and iden-
tify a loss function that is less prone to overfitting.
Extended features share three attractive characteris-
tics with the standard Moses dense features (Koehn
et al., 2007): ease of implementation, language in-
dependence, and independence from ancillary cor-
pora like treebanks. In our experiments, they do
not overfit and can be extracted efficiently during
decoding. Because all feature weights are tuned
on the development set, the new feature templates
are amenable to feature augmentation (Daumé III,
2007), a simple domain adaptation technique that
we show works surprisingly well for MT.

Extended features are designed according to a
principle rather than a rule: they should fire less
than standard dense features, which are general, but
more than so-called sparse features, which are very
specific—they are usually lexicalized—and thus
prone to overfitting. This principle is motivated
by analysis, which shows how expressive models
can be a mixed blessing in the translation setting.
It is obvious that features allow the model to fit
the tuning data more tightly. For example, sparse
lexicalized features could reduce tuning error by
learning that the references prefer U.S. over United
States, a minor lexical distinction. Reference choice
should matter more than in the dense case, an issue
that we quantify. We also show that frequency cut-
offs, which are a crude but common form of feature
selection, are unnecessary and even detrimental
when features follow this principle.

We report large-scale translation quality experi-
ments relative to both dense and feature-rich base-
lines. Our best feature set, which includes domain
adaptation features, yields an average +1.05 BLEU
improvement for Arabic-English and +0.67 for
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Chinese-English. In addition to the extended fea-
ture set, we show that an online variant of expected
error (Och, 2003) is significantly faster to compute,
less prone to overfitting, and nearly as effective as a
pairwise loss. We release all software—feature ex-
tractors, and fast word clustering and data selection
packages—used in our experiments.1

2 Phrase-based Models and Learning

The log-linear approach to phrase-based translation
(Och and Ney, 2004) directly models the predictive
translation distribution

p(e|f ;w) =
1

Z(f)
exp

[
w>φ(e, f)

]
(1)

where e is the target string, f is the source string,
w ∈ Rd is the vector of model parameters, φ(·) ∈
Rd is a feature map, and Z(f) is an appropriate
normalizing constant. Assume that there is also a
function ρ(e, f) ∈ Rd that produces a recombina-
tion map for the features. That is, each coordinate
in ρ represents the state of the corresponding co-
ordinate in φ. For example, suppose that φj is the
log probability produced by the n-gram language
model (LM). Then ρj would be the appropriate LM
history. Recall that recombination collapses deriva-
tions with equivalent recombination maps during
search and thus affects learning. This issue signifi-
cantly influences feature design.
To learn w, we follow the online procedure of

Green et al. (2013b), who calculate gradient steps
with AdaGrad (Duchi et al., 2011) and perform fea-
ture selection via L1 regularization in the FOBOS
(Duchi and Singer, 2009) framework. This proce-
dure accommodates any loss function for which a
subgradient can be computed. Green et al. (2013b)
used a PRO objective (Hopkins and May, 2011)
with a logistic (surrogate) loss function. However,
later results showed overfitting (Green et al., 2013a),
and we found that their online variant of PRO tends
to produce short translations like its batch counter-
part (Nakov et al., 2013). Moreover, PRO requires
sampling, making it slow to compute.
To address these shortcomings, we explore an

online variant of expected error (Och, 2003, Eq.7).
Let Et = {ei}ni=1 be a scored n-best list of trans-
lations at time step t for source input ft. Let G(e)
be a gold error metric that evaluates each candi-
date translation with respect to a set of one or more

1http://nlp.stanford.edu/software/phrasal

references. The smooth loss function is

`t(wt−1) = Ep(e|ft;wt−1)[G(e)]

=
1
Z

∑
e′∈Et

exp
(
w>φ(e′, f)

)
·G(e′)

(2)

with normalization constant Z =∑
e′∈Et

exp
(
w>φ(e′, f)

)
. The gradient gt

for coordinate j is:

gt = E[G(e)φj(e, ft)]−
E[G(e)]E[φj(e, ft)] (3)

To our knowledge, we are the first to experiment
with the online version of this loss.2 When G(e) is
sentence-level BLEU+1 (Lin and Och, 2004)—the
setting in our experiments—this loss is also known
as expected BLEU (Cherry and Foster, 2012). How-
ever, other metrics are possible.

3 Extended Phrase-based Features
We divide our feature templates into five categories,
which are well-known sources of error in phrase-
based translation. The features are defined over
derivations d = {ri}Di=1, which are ordered se-
quences of rules r from the translation model. De-
fine functions f(·) to be the source string of a rule
or derivation and e(·) to be the target string. Local
features can be extracted from individual rules and
do not declare any state in the recombination map,
thus for all local features i we have ρi = 0. Non-
local features are defined over partial derivations
and declare some state, either a real-valued param-
eter or an index indicating a categorical value like
an n-gram context.
For each language, the extended feature tem-

plates require unigram counts and a word-to-class
mapping ϕ : w 7→ c for word w ∈ V and class
c ∈ C. These can be extracted from any monolin-
gual data; our experiments simply use both sides of
the unaligned parallel training data.
The features are language-independent, but we

will use Arabic-English as a running example.

3.1 Lexical Choice
Lexical choice features make more specific distinc-
tions between target words than the dense transla-
tion model features (Koehn et al., 2003).

2Gao and He (2013) used stochastic gradient descent and
expected BLEU to learn phrase table feature weights, but not
the full translation model w.
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Lexicalized rule indicator (Liang et al., 2006a)
Some rules occur frequently enough that we can
learn rule-specific weights that augment the dense
translation model features. For example, our model
learns the following rule indicator features and
weights:

H. AJ.�

@⇒ reasons -0.022

H. AJ.�

@⇒ reasons for 0.002

H. AJ.�

@⇒ the reasons for 0.016

These translations are all correct depending on con-
text. When the plural noun H. AJ.�


@ ‘reasons’ appears

in a construct state (iDafa) the preposition for is
unrealized. Moreover, depending on the context,
the English translation might also require the deter-
miner the, which is also unrealized. The weights
reflect that H. AJ.�


@ ‘reasons’ often appears in con-

struct and boost insertion of necessary target terms.
To prevent overfitting, this template only fires an
indicator for rules that occur more than 50 times
in the parallel training data (this is different from
frequency filtering on the tuning data; see section
6.1). The feature is local.

Class-based rule indicator Word classes ab-
stract over lexical items. For each rule r, a pro-
totype that abstracts over many rules can be built
by concatenating {ϕ(w) : w ∈ f(r)} with
{ϕ(w) : w ∈ e(r)}. For example, suppose
that Arabic class 492 consists primarily of Arabic
present tense verbs and class 59 contains English
auxiliaries. Then the model might penalize a rule
prototype like 492>59_59, which drops the verb.
This template fires an indicator for each rule proto-
type and is local.

Target unigram class (Ammar et al., 2013) Tar-
get lexical items with similar syntactic and semantic
properties may have very different frequencies in
the training data. These frequencies will influence
the dense features. For example, in one of our En-
glish class mappings the following words map to
the same class:

word class freq.
surface-to-surface 0 269
air-to-air 0 98
ground-to-air 0 63

The classes capture common linguistic attributes of
these words, which is the motivation for a full class-
based LM. Learning unigram weights directly is
surprisingly effective and does not require building

another LM. This template fires a separate indicator
for each class {ϕ(w) : w ∈ e(r)} and is local.
3.2 Word Alignments
Word alignment features allow the model to recog-
nize fine-grained phrase-internal information that
is largely opaque in the dense model.

Lexicalized alignments (Liang et al., 2006a)
Consider the internal alignments of the rule:

sunday ,
ÐñK
 1

YgB@ 2
Alignment 1 〈ÐñK
 ’day’⇒ ,〉 is incorrect and align-
ment 2 is correct. The dense translation model
features might assign this rule high probability if
alignment 1 is a common alignment error. Lexical-
ized alignment features allow the model to compen-
sate for these events. This feature fires an indicator
for each alignment in a rule—including multiword
cliques—and is local.

Class-based alignments Like the class-based
rule indicator, this feature template replaces each
lexical itemwith its word class, resulting in an align-
ment prototype. This feature fires an indicator for
each alignment in a rule after mapping lexical items
to classes. It is local.

Source class deletion Phrase extraction algo-
rithms often use a “grow” symmetrization step (Och
and Ney, 2003) to add alignment points. Sometimes
this procedure can produce a rule that deletes im-
portant source content words. This feature template
allows the model to penalize these rules by firing
an indicator for the class of each unaligned source
word. The feature is local.

Punctuation ratio Languages use different types
and ratios of punctuation (Salton, 1958). For ex-
ample, quotation marks are not commonly used in
Arabic, but they are conventional in English. Fur-
thermore, spurious alignments often contain punc-
tuation. To control these two phenomena, this fea-
ture template returns the ratio of target punctuation
tokens to source punctuation tokens for each deriva-
tion. Since the denominator is constant, this feature
can be computed incrementally as a derivation is
constructed. It is local.

Function word ratio Words can also be spuri-
ously aligned to non-punctuation, non-digit func-
tion words such as determiners and particles. Fur-
thermore, linguistic differences may account for
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differences in function word occurrences. For ex-
ample, English has a broad array of modal verbs
and auxiliaries not found in Arabic. This feature
template takes the 25 most frequent words in each
language (according to the unigram counts), and
computes the ratio between target and source func-
tion words for each derivation. As before the de-
nominator is constant, so the feature can be com-
puted efficiently. It is local.

3.3 Phrase Boundaries
The LM and hierarchical reordering model are the
only dense features that cross phrase boundaries.

Target-class bigramboundary Wehave already
added target class unigrams. We find that both lexi-
calized and class-based bigrams cause overfitting,
therefore we restrict to bigrams that straddle phrase
boundaries. The feature template fires an indicator
for the concatenation of the word classes on either
side of each boundary. This feature is non-local
and its recombination state ρ is the word class at
the right edge of the partial derivation.

3.4 Derivation Quality
To satisfy strong features like the LM, or hard con-
straints like the distortion limit, the phrase-based
model can build derivations from poor translation
rules. For example, a derivation consisting mostly
of unigram rules may miss idiomatic usage that
larger rules can capture. All of these feature tem-
plates are local.

Source dimension (Hopkins and May, 2011) An
indicator feature for the source dimension of the
rule: |f(r)|.
Target dimension (Hopkins and May, 2011) An
indicator for the target dimension: |e(r)|.
Rule shape (Hopkins and May, 2011) The
conjunction of source and target dimension:
|f(r)|_|e(r)|.
3.5 Reordering
Lexicalized reordering models score the orientation
of a rule in an alignment grid. We use the same
baseline feature extractor as Moses, which has three
classes: monotone, swap, and discontinuous. We
also add the non-monotone class, which is a con-
junction of swap and discontinuous, for a total of
eight orientations.3

3Each class has “with-previous” and “with-next” special-
izations.

Algorithm (implementation) #threads Time

Brown (wcluster) 1 1023.39
Clark (cluster_neyessen) 1 890.11
Och (mkcls) 1 199.04

PredictiveFull (this paper) 8 3.27
Predictive (this paper) 8 2.42

Table 1: Wallclock time (min.sec) to generate a
mapping from a vocabulary of 63k English words
(3.7M tokens) to 512 classes. All experiments were
run on the same server, which had eight physical
cores. Our Java implementation is multi-threaded;
the C++ baselines are single-threaded.

Lexicalized rule orientation (Liang et al.,
2006a) For each rule, the template fires an indi-
cator for the concatenation of the orientation class,
each element in f(r), and each element in e(r). To
prevent overfitting, this template only fires for rules
that occur more than 50 times in the training data.
The feature is non-local and its recombination state
ρ is the rule orientation.

Class-based rule orientation For each rule, the
template fires an indicator for the concatenation
of the orientation class, each element in {ϕ(w) :
w ∈ f(r)}, and each element in {ϕ(w) : w ∈
e(r)}. The feature is non-local and its recombina-
tion state ρ is the rule orientation.

Signed linear distortion The dense feature set
includes a simple reordering cost model. Assume
that [r] returns the index of the leftmost source index
in f(d) and [[r]] returns the rightmost index. Then
the linear distortion is:

δ = [r1] +
D∑

i=2

|[[ri−1]] + 1− [ri]| (4)

This score does not distinguish between left and
right distortion. To correct this issue, this feature
template fires an indicator for each signed com-
ponent in the sum, for each positive and negative
component. The feature is non-local and its recom-
bination state ρ is the signed distortion.

3.6 Feature Dependencies
While unigram counts are trivial to compute, the
same is not necessarily true of the word-to-class
mapping ϕ. Standard algorithms run in O(n2),
where n = |V |. Table 1 shows an evaluation of
standard implementations of several popular algo-
rithms: Brown et al. (1992) implemented by Liang
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(2005); Clark (2003) without the morphological
prior, which increases training time dramatically;
and the implementation of Och (1999) that comes
with the GIZA++ word aligner. The latter has
been used recently for MT features (Ammar et al.,
2013; Cherry, 2013; Yu et al., 2013). In a broad
survey, Christodoulopoulos et al. (2010) found that
for several downstream tasks, most word clustering
algorithms—including Brown and Clark—result in
similar task accuracy. For our large-scale setting,
the primary issue is then the time to estimate ϕ.
For large corpora the existing implementations

may require days or weeks, making our feature set
less practical than the traditional dense MT features.
Consequently, we re-implemented the predictive
one-sided class model of Whittaker and Woodland
(2001) with the parallelized clustering algorithm of
Uszkoreit and Brants (2008) (Predictive), which
was originally developed for very large scale lan-
guage modeling. Our implementation uses multiple
threads on a single processor instead ofMapReduce.
We also added two extensions that are useful for
translation features. First, we map all digits to 0.
This reduces sparsity while retaining useful patterns
such as 0000 (e.g., years) and 0th (e.g., ordinals).
Second, we mapped all words occurring fewer than
τ times to an <unk> token. In our experiment,
these two changes reduce the vocabulary size by
71.1%. They also make the mapping ϕ more ro-
bust to unseen events during translation decoding.
For a conservative comparison to the other three
algorithms, we include results without these two
extensions (PredictiveFull).4

4 Domain Adaptation Features

Feature augmentation is a simple yet effective do-
main adaptation technique (Daumé III, 2007). Sup-
pose that the source data comes fromM domains.
Then for each original feature φi, we addM addi-
tional features, one for each domain. The original
feature φi can be interpreted as a prior over theM
domains (Finkel and Manning, 2009, fn.2).
Most of the extended features are defined over

rules, so the critical issue is how to identify in-
domain rules. The trick is to know which training
sentence pairs are in-domain. Then we can annotate
all rules extracted from these instances with domain

4For the baselines the training settings are the suggested
defaults: Brown, default; Clark, 10 iterations, frequency cutoff
τ = 5; Och, 10 iterations. Our implementation: PredictiveFull,
30 iterations, τ = 0; Predictive, 30 iterations, τ = 5.

labels. The in-domain rule sets need not be disjoint
since some rules might be useful across domains.

This paper explores the following approach: we
choose one of theM domains as the default. Next,
we collect some source sentences for each of the
M − 1 remaining domains. Using these examples
we then identify in-domain sentence pairs in the bi-
text via data selection, in our case the feature decay
algorithm (Biçici and Yuret, 2011). Finally, our rule
extractor adds domain labels to all rules extracted
from each selected sentence pair. Crucially, these
labels do not influence which rules are extracted
or how they are scored. The resulting phrase table
contains the same rules, but with a few additional
annotations.
Our method assumes domain labels for each

source input to be decoded. Our experiments utilize
gold, document-level labels, but accurate sentence-
level domain classifiers exist (Wang et al., 2012).

4.1 Augmentation of Extended Features
Irvine et al. (2013) showed that lexical selection is
the most quantifiable and perhaps most common
source of error in phrase-based domain adaptation.
Our development experiments seemed to confirm
this hypothesis as augmentation of the class-based
and non-lexical (e.g., Rule shape) features did not
reduce error. Therefore, we only augment the lex-
icalized features: rule indicators and orientations,
and word alignments.

4.2 Domain-Specific Feature Templates
In-domain Rule Indicator (Durrani et al., 2013)
An indicator for each rule that matches the input do-
main. This template fires a generic in-domain indi-
cator and a domain-specific indicator (e.g., the fea-
tures might be indomain and indomain-nw).
The feature is local.

Adjacent Rule Indicator Indicators for adjacent
in-domain rules. This template also fires both
generic and domain-specific features. The feature
is non-local and the state is a boolean indicating if
the last rule in a partial derivation is in-domain.

5 Experiments
We evaluate and analyze our feature set under a vari-
ety of large-scale experimental conditions including
multiple domains and references. To our knowl-
edge, the only language pairs with sufficient re-
search resources to support this protocol are Arabic-
English (Ar-En) and Chinese-English (Zh-En). The
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Bilingual Monolingual
#Seg. #Tok. #Tok.

Ar-En 6.6M 375M 990MZh-En 9.3M 538M

Table 2: Bilingual and monolingual training cor-
pora. The monolingual English data comes from
the AFP and Xinhua sections of English Gigaword
4 (LDC2009T13).

training corpora5 come from several Linguistic
Data Consortium (LDC) sources from 2012 and
earlier (Table 2). The test, development, and tuning
corpora6 come from the NIST OpenMT andMetric-
sMATR evaluations (Table 3). Extended features
benefit from more tuning data, so we concatenated
five NIST data sets to build one large tuning set.
Observe that all test data come from later epochs
than the tuning and development data.
From these data we built phrase-based MT sys-

tems with Phrasal (Green et al., 2014).7 We aligned
the parallel corpora with the Berkeley aligner
(Liang et al., 2006b) with standard settings and
symmetrized via the grow-diag heuristic. We cre-
ated separate English LMs for each language pair by
concatenating the monolingual Gigaword data with
the target-side of the respective bitexts. For each
corpus we estimated unfiltered 5-gram language
models with lmplz (Heafield et al., 2013).

For each condition we ran the learning algorithm
for 25 epochs8 and selected the model according
to the maximum uncased, corpus-level BLEU-4
(Papineni et al., 2002) score on the dev set.

5.1 Results
We evaluate the new feature set relative to two base-
lines. Dense is the same baseline as Green et al.

5We tokenized the English with Stanford CoreNLP ac-
cording to the Penn Treebank standard (Marcus et al., 1993),
the Arabic with the Stanford Arabic segmenter (Monroe et
al., 2014) according to the Penn Arabic Treebank standard
(Maamouri et al., 2008), and the Chinese with the Stanford
Chinese segmenter (Chang et al., 2008) according to the Penn
Chinese Treebank standard (Xue et al., 2005).

6Data sources: tune, MT023568; dev, MT04; dev-dom,
domain adaptation dev set is MT04 and all wb and bn data
from LDC2007E61; test1, MT09 (Ar-En) and MT12 (Zh-En);
test2, Progress0809 which was revealed in the OpenMT 2012
evaluation; test3, MetricsMATR08-10.

7System settings: distortion limit of 5, cube pruning beam
size of 1200, maximum phrase length of 7.

8Other learning settings: 16 threads, mini-batch size of 20;
L1 regularization strength λ = 0.001; learning rate η0 = 0.02;
initialization of LM to 0.5, word penalty to -1.0, and all other
dense features to 0.2; initialization of extended features to 0.0.

#Seg. #Ref. Domains
Ar-En Zh-En

tune 5,604 5,900 4 nw,wb,bn
dev 1,075 1,597 4 nw
dev-dom 2,203 2,317 1 nw,wb,bn
test1 1,313 820 4 nw,wb
test2 1,378 1,370 4 nw,wb
test3 628 613 1 nw,wb,bn

Table 3: Development, test, and tuning data. Do-
main abbreviations: broadcast news (bn), newswire
(nw), and web (wb).

(2013b); these dense features are included in all of
the models that follow. Sparse is their best feature-
rich model, which adds lexicalized rule indicators,
alignments, orientations, and source deletions with-
out bitext frequency filtering.
We do not perform a full ablation study. Both

the approximate search and the randomization of
the order of tuning instances make the contribu-
tions of each individual template differ from run to
run. Resource constraints prohibit multiple large-
scale runs for each incremental feature. Instead,
we divide the extended feature set into two parts,
and report large-scale results. Ext includes all ex-
tended features except for the the filtered lexicalized
feature templates. Ext+Filt adds those filtered
lexicalized templates: rule indicators and orienta-
tions, and word alignments (section 3).
Table 4 shows translation quality results. The

new feature set significantly exceeds the baseline
Dense model for both language pairs. An interest-
ing result is that the new extended features alone
match the strong Sparse baseline. The class-based
features, which are more general, should clearly
be preferred to the sparse features when decoding
out-of-domain data (so long as word mappings are
trained for that data). The increased runtime per
iteration comes not from feature extraction but from
larger inner products as the model size increases.
Next, we add the domain features from section

4.2. We marked in-domain sentence pairs by con-
catenating the tuning data with additional bn and
wb monolingual in-domain data from several LDC
sources.9 The FDA selection size was set to 20
times the number of in-domain examples for each
genre. Newswire was selected as the default domain
since most of the bitext comes from that domain.
The bottom rows of Tables 4a and 4b compare

9Catalog: LDC2007T24, LDC2008T08, LDC2008T18,
LDC2012T16, LDC2013T01, LDC2013T05, LDC2013T14.
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Model #features Epochs Min. / Epoch tune dev test1 test2 test3

Dense (D) 18 24 3 49.52 50.25 47.98 43.41 27.56
D+Sparse 48,597 24 8 56.51 52.98 49.55 45.40 29.02

D+Ext 62,931 16 11 57.83 54.33 49.66 45.66 29.15
D+Ext+Filt 94,606 17 14 59.13 55.35 50.02 46.24 29.59

D+Ext+Filt+Dom 123,353 22 18 59.97 29.20† 50.45 46.24 30.84
(a) Ar-En.

Model #features Epochs Min. / Epoch tune dev test1 test2 test3

Dense (D) 18 17 3 32.82 34.96 26.61 26.72 10.19
D+Sparse 55,024 17 8 38.91 36.68 27.86 28.41 10.98

D+Ext 67,936 16 13 40.96 37.19 28.27 28.40 10.72
D+Ext+Filt 100,275 17 14 41.38 37.36 28.68 28.90 11.24

D+Ext+Filt+Dom 126,014 17 14 41.70 17.20† 28.71 28.96 11.67

(b) Zh-En.

Table 4: Translation quality results (uncased BLEU-4%). Per-epoch times are in minutes (Min.). Statistical
significance relative to D+Sparse, the strongest baseline: bold (p < 0.001) and bold-italic (p < 0.05).
Significance is computed by the permutation test of Riezler and Maxwell (2005). †The dev score of
Ext+Filt+Dom is the dev-dom data set from Table 3, so it is not comparable with the other rows.

Ext+Filt+Dom to the baselines and other feature
sets. The gains relative to Sparse are statistically
significant for all six test sets.

A crucial result is that with domain features accu-
racy relative to Ext+Filt never decreases: a single
domain-adapted system is effective across domains.
Irvine et al. (2013) showed that when models from
multiple domains are interpolated, scoring errors
affecting lexical selection—the model could have
generated the correct target lexical item but did
not—increase significantly. We do not observe that
behavior, at least from the perspective of BLEU.
Table 5 separates out per-domain results. The

web data appears to be the hardest domain. That is
sensible given that broadcast news transcripts are
more similar to newswire, the default domain, than
web data. Moreover, inspection of the bitext sources
revealed very little web data, so our automatic data
selection is probably less effective. Accuracy on
newswire actually increases slightly.

6 Analysis
6.1 Learning
Loss Function In a now classic empirical com-
parison of batch tuning algorithms, Cherry and Fos-
ter (2012) showed that PRO and expected BLEU

Ar-En test1 test2 test3
nw wb nw wb bn nw wb

EF 59.78 39.55 51.69 38.80 30.39 37.59 20.58
EFD 60.21 40.38 51.76 38.77 31.63 38.18 22.37
Zh-En

EF 34.56 21.94 17.38 12.07 3.04 17.42 12.83
EFD 34.87 21.82 17.96 12.66 3.01 17.74 13.80

Table 5: Per-domain results (uncased BLEU-4 %).
Here bold simply indicates the maximum in each
column. Model abbreviations: EF is Ext+Filt and
EFD is Ext+Filt+Dom.

yielded similar translation quality results. In con-
trast, Table 6a shows significant differences be-
tween these loss functions. First, expected BLEU
can be computed faster since it is linear in the n-
best list size, whereas exact computation of the PRO
objective is O(n2) (thus sampling is often used). It
also converges faster. Second, PRO tends to select
larger models.10 Finally, PRO seems to overfit on
the tuning set, since there are no gains on test1.

Feature Selection A common yet crude method
of feature selection is frequency cutoffs on the

10PRO L1 regularization strength of λ = 0.01, above which
model size decreases but translation quality degrades.
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Loss #epochs Min./Epoch #feat. tune test1

EB 17 14 94,606 59.13 50.02
PRO 14 25 181,542 61.20 50.09

(a) PRO vs. expected BLEU (EB) for Ext+Filt.

Feature Selection #features tune test1

L1 94,606 59.13 50.02
Freq. cutoffs 23,617 56.84 49.79

(b) Feature selection for Ext+Filt.

Model #refs tune test1

Dense 4 49.52 47.98
Dense 1 49.34 47.78

Ext+Filt 4 59.13 50.02
Ext+Filt 1 55.39 48.88

(c) Single- vs. multiple-reference tuning.

Table 6: Ar-En learning comparisons.

tuning data. Only features that fire more than
some threshold are admitted into the feature set.
Table 6b shows that for our new feature set, L1

regularization—which simply requires setting a reg-
ularization strength parameter—is more effective
than frequency cutoffs.

References FewMT data sets supply multiple ref-
erences. Even when they do, those references are
but a sample from a larger pool of possible trans-
lations. This observation has motivated attempts
at generating lattices of translations for evaluation
(Dreyer and Marcu, 2012; Bojar et al., 2013). But
evaluation is only part of the problem. Table 6c
shows that the Dense model, which has only a
few features to describe the data, is little affected
by the elimination of references. In contrast, the
feature-rich model degrades significantly. This may
account for the underperformance of features in
single-reference settings like WMT (Durrani et al.,
2013; Green et al., 2013a). The next section ex-
plores the impact of references further.

6.2 Reference Variance
We took the Dense Ar-En output for the dev
data, which has four references, and computed the
sentence-level BLEU+1 with respect to each refer-
ence. Figure 1a shows a point for each of the 1,075
translations. The horizontal axis is the minimum
score with respect to any reference and the verti-
cal axis is the maximum (BLEU has a maximum
value of 1.0). Ideally, from the perspective of learn-

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

0

25

50

75

100

0 25 50 75 100
Minimum

M
ax

im
um

(a) Maximum vs. minimum BLEU+1 (%)

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
Maximum

A
ll

 R
ef

er
en

ce
s

(b) BLEU+1 (%) according to all four references vs.
maximum

Figure 1: Reference choice analysis for Ar-En
Dense output on the dev set.

ing, the scores should cluster around the diagonal:
the references should yield similar scores. This is
hardly the case. The mean difference isM = 18.1
BLEU, with a standard deviation SD = 11.5.
Figure 1b shows the same data set, but with the

maximum on the horizontal axis and the multiple-
reference score on the vertical axis. Assuming
a constant brevity penalty, the maximum lower-
bounds themultiple-reference score since BLEU ag-
gregates n-grams across references. The multiple-
reference score is an “easier” target since the model
has more opportunities to match n-grams.
Consider again the single-reference condition

and one of the pathological cases at the top of Fig-
ure 1a. Suppose that the low-scoring reference is
observed in the single-reference condition. The
more expressive feature-rich model has a greater
capacity to fit that reference when, under another
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reference, it would have matched the translation
exactly and incurred a low loss.
Nakov et al. (2012) suggested extensions to

BLEU+1 that were subsequently found to improve
accuracy in the single-reference condition (Gimpel
and Smith, 2012a). Repeating the min/max calcula-
tions with the most effective extensions (according
to Gimpel and Smith (2012a)) we observe lower
variance (M = 17.32, SD = 10.68). These exten-
sions are very simple, so a more sophisticated noise
model is a promising future direction.

7 Related Work

We review work on phrase-based discriminative fea-
ture sets that influence decoder search, and domain
adaptation with features.11

7.1 Feature Sets
Variants of some extended features are scattered
throughout previous work: unfiltered lexicalized
rule indicators and alignments (Liang et al., 2006a);
rule shape (Hopkins and May, 2011); rule orien-
tation (Liang et al., 2006b; Cherry, 2013); target
unigram class (Ammar et al., 2013). We found
that other prior features did not improve translation:
higher-order target lexical n-grams (Liang et al.,
2006a; Watanabe et al., 2007; Gimpel and Smith,
2012b), higher-order target class n-grams (Ammar
et al., 2013), target word insertion (Watanabe et al.,
2007; Chiang et al., 2009), and many other unpub-
lished ideas transmitted through received wisdom.

To our knowledge, Yu et al. (2013) were the first
to experiment with non-local (derivation) features
for phrase-based MT. They added discriminative
rule features conditioned on target context. This is
a good idea that we plan to explore. However, they
do not mention if their non-local features declare
recombination state. Our empirical experience is
that non-local features are less effective when they
do not influence recombination.
Liang et al. (2006a) proposed replacing lexical

items with supervised part-of-speech (POS) tags to
reduce sparsity. This is a natural idea that lay dor-
mant until recently. Ammar et al. (2013) incorpo-
rated unigram and bigram target class features. Yu
et al. (2013) used word classes as backoff features to
reduce overfitting. Wuebker et al. (2013) replaced
all lexical items in the bitext and monolingual data
with classes, and estimated the dense feature set.

11Space limitations preclude discussion of re-ranking fea-
tures.

Then they added these dense class-based features
to the baseline lexicalized system. Finally, Cherry
(2013) experimented with class-based hierarchical
reordering features. However, his features used a
bespoke representation rather than the simple full
rule string that we use.

7.2 Domain Adaptation with Features
Both Clark et al. (2012) and Wang et al. (2012) aug-
mented the baseline dense feature set with domain
labels. They each showed modest improvements
for several language pairs. However, neither incor-
porated a notion of a default prior domain.
Liu et al. (2012) investigated local adaption of

the log-linear scores by selecting comparable bitext
examples for a given source input. After selecting
a small local corpus, their algorithm then performs
several online update steps—starting from a glob-
ally tuned weight vector—prior to decoding the
input. The resulting model is effectively a locally
weighted, domain-adapted classifier.

Su et al. (2012) proposed domain adaptation
via monolingual source resources much as we use
in-domain monolingual corpora for data selection.
They labeled each bitext sentence with a topic using
a Hidden Topic Markov Model (HTMM) Gruber
et al. (2007). Source topic information was then
mixed into the translation model dense feature cal-
culations. This work follows Chiang et al. (2011),
who present a similar technique but using the same
gold NIST labels that we use. Hasler et al. (2012)
extended these ideas to a discriminative sparse fea-
ture set by augmenting both rule and unigram align-
ment features with HTMM topic information.

8 Conclusion
This paper makes four major contributions. First,
we introduced extended features for phrase-based
MT that exceeded both dense and feature-rich base-
lines. Second, we specialized the features to source
domains, further extending the gains. Third, we
showed that online expected BLEU is faster and
more stable than online PRO for extended fea-
tures. Finally, we released fast, scalable, language-
independent tools for implementing the feature set.
Our work should help practitioners quickly estab-
lish higher baselines on the way to more targeted
linguistic features. However, our analysis showed
that reference choice may restrain otherwise justifi-
able enthusiasm for feature-rich MT.
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Abstract

In phrase-based statistical machine trans-
lation systems, variation in grammatical
structures between source and target lan-
guages can cause large movements of
phrases. Modeling such movements is cru-
cial in achieving translations of long sen-
tences that appear natural in the target lan-
guage. We explore generative learning
approach to phrase reordering in Arabic
to English. Formulating the reordering
problem as a classification problem and
using naive Bayes with feature selection,
we achieve an improvement in the BLEU
score over a lexicalized reordering model.
The proposed model is compact, fast and
scalable to a large corpus.

1 Introduction

Currently, the dominant approach to machine
translation is statistical, starting from the math-
ematical formulations and algorithms for param-
eter estimation (Brown et al., 1988), further ex-
tended in (Brown et al., 1993). These early mod-
els, widely known as the IBM models, were word-
based. Recent extensions note that a better ap-
proach is to group collections of words, or phrases,
for translation together, resulting in a significant
focus these days on phrase-based statistical ma-
chine translation systems.

To deal with the alignment problem of one-
to-many word alignments in the IBM model
formulation, whereas phrase-based models may
have many-to-many translation relationships, IBM
models are trained in both directions, source to tar-
get and target to source, and their word alignments
are combined (Och and Ney, 2004).

While phrase-based systems are a significant
improvement over word-based approaches, a par-
ticular issue that emerges is long-range reorder-
ings at the phrase level (Galley and Manning,

2008). Analogous to speech recognition systems,
translation systems relied on language models to
produce more fluent translation. While early work
penalized phrase movements without considering
reorderings arising from vastly differing grammat-
ical structures across language pairs like Arabic-
English, many researchers considered lexical re-
ordering models that attempted to learn orienta-
tion based on content (Tillmann, 2004; Kumar
and Byrne, 2005; Koehn et al., 2005). These
approaches may suffer from the data sparseness
problem since many phrase pairs occur only once
(Nguyen et al., 2009).

As an alternative way of exploiting function ap-
proximation capabilities offered by machine learn-
ing methods, there is recent interest in formulating
a learning problem that aims to predict reorder-
ing from linguistic features that capture their con-
text. An example of this is the maximum entropy
method used by (Xiang et al., 2011; Nguyen et al.,
2009; Zens and Ney, 2006; Xiong et al., 2006).

In this work we apply a naive Bayes classifier,
combined with feature selection to address the re-
ordering problem. To the best of our knowledge,
this simple model of classification has not been
used in this context previously. We present em-
pirical results comparing our work and previously
proposed lexicalized reordering model. We show
that our model is scalable to large corpora.

The remainder of this paper is organized as fol-
lows. Section 2 discusses previous work in the
field and how that is related to our paper. Section 3
gives an overview of the baseline translation sys-
tem. Section 4 introduces the Bayesian reorder-
ing model and gives details of different inference
methods, while, Section 5 describes feature selec-
tion method. Section 6 presents the experiments
and reports the results evaluated as classification
and translation problems. Finally, we end the pa-
per with a summary of our conclusions and per-
spectives.
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Symbol Notation
f/e a source / target sentence (string)
f̄/ē a source / target phrase sequence
N the number of examples
K the number of classes
(f̄n, ēn) the n-th phrase pair in (̄f , ē)
on the orientation of (f̄n, ēn)
φ(f̄n, ēn) the feature vector of (f̄n, ēn)

Table 1: Notation used in this paper.

2 Related Work

The phrase reordering model is a crucial compo-
nent of any translation system, particularly be-
tween language pairs with different grammatical
structures (e.g. Arabic-English). Adding a lex-
icalized reordering model consistently improved
the translation quality for several language pairs
(Koehn et al., 2005). The model tries to predict the
orientation of a phrase pair with respect to the pre-
vious adjacent target words. Ideally, the reorder-
ing model would predict the right position in the
target sentence given a source phrase, which is dif-
ficult to achieve. Therefore, positions are grouped
into limited orientations or classes.The orientation
probability for a phrase pair is simply based on the
relative occurrences in the training corpus.

The lexicalized reordering model has been ex-
tended to tackle long-distance reorderings (Gal-
ley and Manning, 2008). This takes into account
the hierarchical structure of the sentence when
considering such an orientation. Certain exam-
ples are often used to motivate syntax-based sys-
tems were handled by this hierarchical model, and
this approach is shown to improve translation per-
formance for several translation tasks with small
computational cost.

Despite the fact that the lexicalized reordering
model is always biased towards the most frequent
orientation for such a phrase pair, it may suffer
from a data sparseness problem since many phrase
pairs occur only once. Moreover, the context of
a phrase might affect its orientation, which is not
considered as well.

Adopting the idea of predicting orientation
based on content, it has been proposed to represent
each phrase pair by linguistic features as reorder-
ing evidence, and then train a classifier for predic-
tion. The maximum entropy classifier is a popu-
lar choice among many researchers (Zens and Ney,
2006; Xiong et al., 2006; Nguyen et al., 2009; Xi-

ang et al., 2011). Max-margin structure classifiers
were also proposed (Ni et al., 2011). Recently,
Cherry (2013) proposed using sparse features op-
timize BLEU with the decoder instead of training
a classifier independently.

We distinguish our work from the previous ones
in the following. We propose a fast reordering
model using a naive Bayes classifier with feature
selection. In this study, we undertake a compari-
son between our work and lexicalized reordering
model.

3 Baseline System

In statistical machine translation, the most likely
translation ebest of an input sentence f can be
found by maximizing the probability p(e|f), as
follows:

ebest = arg max
e
p(e|f). (1)

A log-linear combination of different models
(features) is used for direct modeling of the poste-
rior probability p(e|f) (Papineni et al., 1998; Och
and Ney, 2002):

ebest = arg max
e

n∑
i=1

λihi(f , e) (2)

where the feature hi(f , e) is a score function
over sentence pairs. The translation model and the
language model are the main features in any sys-
tem although additional features h(.) can be inte-
grated easily (such as word penalty). State-of-the-
art systems usually have around ten features (i.e.
n = 10).

In phrase-based systems, the translation model
can capture the local meaning for each source
phrase. However, to capture the whole meaning
of a sentence, its translated phrases need to be in
the correct order. The language model, which en-
sures fluent translation, plays an important role in
reordering; however, it prefers sentences that are
grammatically correct without considering their
actual meaning. Besides that, it has a bias towards
short translations (Koehn, 2010). Therefore, de-
veloping a reordering model will improve the ac-
curacy particularly when translating between two
grammatically different languages.

3.1 Lexicalized Reordering Model

Phrase reordering modeling involves formulat-
ing phrase movements as a classification problem

478



where each phrase position considered as a class
(Tillmann, 2004). Some researchers classified
phrase movements into three categories (mono-
tone, swap, and discontinuous) but the classes can
be extended to any arbitrary number (Koehn and
Monz, 2005). In general, the distribution of phrase
orientation is:

p(ok|f̄n, ēn) =
1
Z
h(f̄n, ēn, ok) . (3)

This lexicalized reordering model is estimated
by relative frequency where each phrase pair
(f̄n, ēn) with such an orientation (ok) is counted
and then normalized to yield the probability as fol-
lows:

p(ok|f̄n, ēn) =
count(f̄n, ēn, ok)∑
o count(f̄n, ēn, o)

. (4)

The orientation class of a current phrase pair is
defined with respect to the previous target word
or phrase (i.e. word-based classes or phrase-based
classes). In the case of three categories (mono-
tone, swap, and discontinuous): monotone is the
previous source phrase (or word) that is previ-
ously adjacent to the current source phrase, swap
is the previous source phrase (or word) that is next-
adjacent to the current source phrase, and discon-
tinuous is not monotone or swap.

Galley and Manning (2008) extended the lex-
icalized reordering mode to tackle long-distance
phrase reorderings. Their hierarchical model en-
ables phrase movements that are more complex
than swaps between adjacent phrases.

4 Bayesian Reordering Model

Many feature-based reordering models have been
proposed to replace the lexicalized reordering
model. The reported results showed consistent im-
provement in terms of various translation metrics.

Naive Bayes method has been a popular clas-
sification model of choice in many natural lan-
guage processing problems (e.g. text classifica-
tion). Naive Bayes is a simple classifier that ig-
nores correlation between features, but has the ap-
peal of computational simplicity. It is a generative
probabilistic model based on Bayes’ theorem as
below:

p(ok|f̄n, ēn) =
p(f̄n, ēn|ok)p(ok)∑
o p(f̄n, ēn|o)p(o)

. (5)

The class prior can be estimated easily as a rel-
ative frequency (i.e. p(ok) = Nk

N ). The likeli-
hood distribution p(f̄n, ēn|ok) is defined based on

the type of data. The classifier will be naive if we
assume that feature variables are conditionally in-
dependent. The naive assumption simplifies our
distribution and hence reduces the parameters that
have to be estimated. In text processing, multi-
nomial is used as a class-conditional distribution
(Rogers and Girolami, 2011). The distribution is
defined as:

p(f̄n, ēn|q) = C
∏
m

qφm(f̄n,ēn)
m (6)

where C is a multinomial coefficient,

C =
(
∑

m φm(f̄n, ēn))!∏
m φm(f̄n, ēn)!

, (7)

and q are a set of parameters, each of which is a
probability. Estimating these parameters for each
class by maximum likelihood,

arg max
qk

Nk∏
n

p(f̄n, ēn|qk), (8)

will result in (Rogers and Girolami, 2011):

qkm =
∑Nk

n φm(f̄n, ēn)∑M
m′
∑Nk

n φm′(f̄n, ēn)
. (9)

MAP estimate It is clear that qkm might be
zero which means the probability of a new phrase
pair with nonzero feature φm(f̄n, ēn) is always
zero because of the product in (6). Putting a prior
over q is one smoothing technique. A conjugate
prior for the multinomial likelihood is the Dirich-
let distribution and the MAP estimate for qkm is
(Rogers and Girolami, 2011):

qkm =
α− 1 +

∑Nk
n φm(f̄n, ēn)

M(α− 1) +
∑M

m′
∑Nk

n φm′(f̄n, ēn)
(10)

where M is the feature vector’s length or the
feature dictionary size and α is a Dirichlet param-
eter with a value greater than one. The derivation
is in Appendix A.

Bayesian inference Instead of using a point es-
timate of q as shown previously in equation (10),
Bayesian inference is based on the whole param-
eter space in order to incorporate uncertainty into
our multinomial model. This requires a posterior
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probability distribution over q as follows:

p(f̄n, ēn|ok) =
∫
p(f̄n, ēn|qk)p(qk|αk) dqk

=C
Γ (
∑

m αkm)∏
m Γ(αkm)

∏
m Γ(αkm + φm(f̄n, ēn))

Γ
(∑

m αkm + φm(f̄n, ēn)
) .

(11)

Here αk are new hyperparameters of the pos-
terior derived by means of Bayes theorem as fol-
lows:

p(qk|αk) =
p(qk|α)

∏Nk
n p(f̄n, ēn|qk)∫

p(qk|α)
∏Nk
n p(f̄n, ēn|qk)dqk

.

(12)
The solution of (11) will result in:

αk = α +
Nk∑
n

Φ(f̄n, ēn). (13)

For completeness we give a summary of deriva-
tions of equations (11) and (13) in Appendix B,
more detailed discussions can be found in (Barber,
2012).

5 Feature Selection

In several high dimensional pattern classification
problems, there is increasing evidence that the
discriminant information may be in small sub-
spaces, motivating feature selection (Li and Niran-
jan, 2013). Having irrelevant or redundant fea-
tures could affect the classification performance
(Liu and Motoda, 1998). They might mislead the
learning algorithms or overfit them to the data and
thus have less accuracy.

The aim of feature selection is to find the op-
timal subset features which maximize the ability
of prediction, which is the main concern, or sim-
plify the learned results to be more understand-
able. There are many ways to measure the good-
ness of a feature or a subset of features; however
the criterion will be discussed is mutual informa-
tion.

5.1 Mutual Information
Information criteria are based on the concept of
entropy which is the amount of randomness. The
distribution of a fair coin, for example, is com-
pletely random so the entropy of the coin is very
high. The following equation calculates the en-
tropy of a variable X (MacKay, 2002):

H (X) = −
∑
x

p(x) log p(x). (14)

The mutual information of a feature X can be mea-
sured by calculating the difference between the
prior uncertainty of the class variable Y and the
posterior uncertainty after using the feature as fol-
lows (MacKay, 2002):

I(X;Y ) = H(Y )−H(Y |X) (15)

=
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

.

The advantage of mutual Information over other
criteria is the ability to detect nonlinear patterns.
The disadvantage is its bias towards higher ar-
bitrary features; however this problem can be
solved by normalizing the information as follows
(Estévez et al., 2009):

Inorm(X;Y ) =
I(X;Y )

min(H(X), H(Y ))
. (16)

6 Experiments

The corpus used in our experiments is MultiUN
which is a large-scale parallel corpus extracted
from the United Nations website1 (Eisele and
Chen, 2010). We have used Arabic and English
portion of MultiUN. Table 2 shows the general
statistics.

Statistics Arabic English
Sentence Pairs 9.7 M
Running Words 255.5 M 285.7 M

Word/Line 22 25
Vocabulary Size 677 K 410 K

Table 2: General statistics of Arabic-English Mul-
tiUN (M: million, K: thousand).

We simplify the problem by classifying phrase
movements into three categories (monotone,
swap, discontinuous). To train the reordering
models, we used GIZA++ to produce word align-
ments (Och and Ney, 2000). Then, we used the
extract tool that comes with the Moses 2 toolkit
(Koehn et al., 2007) in order to extract phrase pairs
along with their orientation classes.

Each extracted phrase pair is represented by lin-
guistic features as follows:

• Aligned source and target words in a phrase
pair. Each word alignment is a feature.

1http://www.ods.un.org/ods/
2Moses is an open source toolkit for statistical machine

translation (www.statmt.org/moses/).
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• Words within a window around the source
phrase to capture the context. We choose ad-
jacent words of the phrase boundary.

Most researchers build one reordering model
for the whole training set (Zens and Ney, 2006;
Xiong et al., 2006; Nguyen et al., 2009; Xiang
et al., 2011). Ni et al. (Ni et al., 2011) simpli-
fied the learning problem to have as many sub-
models as source phrases. Training data were di-
vided into small independent sets where samples
having the same source phrase are considered a
training set. In our experiments, we have chosen
the first method.

We compare lexicalized and Bayesian reorder-
ing models in two phases. In the classification
phase, we see the performance of the models as
a classification problem. In the translation phase,
we test the actual impact of these reordering mod-
els in a translation system.

6.1 Classification
We built naive Bayes classifier with both MAP es-
timate and Bayesian inference. We also used mu-
tual Information in order to select the most infor-
mative features for our classification task.

Table 3 reports the error rate of the reorder-
ing models compared to the lexicalized reorder-
ing model. All experiments reported here were
repeated three times to evaluate the uncertainties
in our results. The results shows that there is no
advantage to using Bayesian inference instead of
MAP estimate.

Classifier Error Rate
Lexicalized model 25.2%
Bayes-MAP estimate 19.53%
Bayes-Bayesian inference 20.13%

Table 3: Classification error rate of both lexical-
ized and Bayesian models.

The feature selection process reveals that many
features have low mutual information. Hence they
are not related to the classification task and can be
excluded from the model. Figure 1 shows the nor-
malized mutual information for all extracted fea-
tures.

A ranking threshold for selecting features based
on their mutual information is specified experi-
mentally. In Figure 2, we tried different thresh-
olds ranging from 0.001 to 0.05 and measure the
error rate after each reduction. Although there

is no much gain in terms of performance but the
Bayesian model maintains low error rate when the
proportion of selected features is low. The model
with almost half of the feature space is as good as
the one with full feature space.

Figure 1: Normalized mutual information for all
extracted features (ranked from lowest to highest).
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Figure 2: Classification error rate of the Baysien
model with different levels of feature reduction.

6.2 Translation

6.2.1 Experimental Design
We used the Moses toolkit (Koehn et al., 2007)
with its default settings. The language model
is a 5-gram with interpolation and Kneser-Ney
smoothing (Kneser and Ney, 1995). We tuned the
system by using MERT technique (Och, 2003).

We built four Arabic-English translation sys-
tems. Three systems differ in how their reordering
models were estimated and the fourth system is a
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baseline system without reordering model. In all
cases, orientation extraction is hierarchical-based
since it is the best approach while orientations are
monotone, swap and discontinuous. The model is
trained in Moses by specifying the configuration
string hier-msd-backward-fe.

As commonly used in statistical machine trans-
lation, we evaluated the translation performance
by BLEU score (Papineni et al., 2002). The test
sets are NIST MT06 and NIST MT08. Table 4
shows statistics of development and test sets. We
also computed statistical significance for the pro-
posed models using the paired bootstrap resam-
pling method (Koehn, 2004).

Evaluation Set Arabic English
Development sentences 696 696

words 19 K 21 K
NIST MT06 sentences 1797 7188

words 49 K 223 K
NIST MT08 sentences 813 3252

words 25 K 117 K

Table 4: Statistics of development and test sets.
The English side in NIST is larger because there
are four translations for each Arabic sentence.

6.2.2 Results
We first demonstrate in Table 5 a general com-
parison of the proposed model and the lexicalized
model in terms of disc size and average speed in a
translation system. The size of Bayesian model is
far smaller. The lexicalized model is slightly faster
than the Bayesian model because we have over-
head computational cost to extract features and
compute the orientation probabilities. However,
the disc size of our model is much smaller which
makes it more efficient practically for large-scale
tasks.

Model Size (MB) Speed (s/sent)
Lexicalized model 604 2.2
Bayesian model 18 2.6

Table 5: Disc size and average speed of the re-
ordering models in a translation system.

Table 6 shows the BLEU scores for the transla-
tion systems according to two test sets. The base-
line system has no reordering model. In the two
test sets, our Bayesian reordering model is better
than the lexicalized one with at least 95% statis-

tical significance. As we have seen in the clas-
sification section, Bayes classifier with Bayesian
inference has no advantage over MAP estimate.

Translation System MT06 MT08
Baseline 28.92 32.13
BL+ Lexicalized model 30.86 34.22
BL+ Bayes-MAP estimate 31.21* 34.72*
BL+ Bayes-Baysien inference 31.20 34.69

Table 6: BLEU scores for Arabic-English trans-
lation systems (*: better than the baseline with at
least 95% statistical significance).

7 Conclusion

In this paper, we have presented generative mod-
eling approach to phrase reordering in machine
translation. We have experimented with trans-
lation from Arabic to English and shown im-
provements over the lexicalized model of estimat-
ing probabilities as relative frequencies of phrase
movements. Our proposed Bayesian model with
feature selection is shown to be superior. The
training time of the model is as fast as the lexical-
ized model. Its storage requirement is many times
smaller which makes it more efficient practically
for large-scale tasks.

The feature selection process reveals that many
features have low mutual information. Hence they
are not related to the classification task and can be
excluded from the model. The model with almost
half of the feature space is as good as the one with
full feature space.

Previously proposed discriminative models
might achieve higher score than the reported re-
sults. However, our model is scalable to large-
scale systems since parameter estimation require
only one pass over the data with limited memory
(i.e. no iterative learning). This is a critical advan-
tage over discriminative models.

Our current work focuses on three issues. The
first is improving the translation speed of the pro-
posed model. The lexicalized model is slightly
faster. The second is using more informative fea-
tures. We plan to explore part-of-speech informa-
tion, which is more accurate in capturing content.
Finally, we will explore different feature selection
methods. In our experiments, feature reduction is
based on univariate ranking which is riskier than
multivariate ranking. This is because useless fea-
ture can be useful with others.
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A MAP Estimate Derivation

Multinomial distribution is defined as:

p(x|q) = C
∏
m

qxm
m (17)

where C is a multinomial coefficient,

C =
(
∑

m xm)!∏
m xm!

, (18)

and qm is an event probability (
∑

m qm = 1).

A maximum a posteriori probability (MAP) es-
timate requires a prior over q. Dirichlet distribu-
tion is a conjugate prior and is defined as:

p(q|α) =
Γ (
∑

m αm)∏
m Γ(αm)

∏
m

qαm−1
m (19)

where αm is is a parameter with a positive value.
Finding the MAP estimate for q given a data is

as follows:

q∗ = arg max
q

p(q|α,X)

= arg max
q

{p(q|α)p(X|q)}

= arg max
q

{
p(q|α)

∏
n

p(xn|q)

}

= arg max
q

{∏
m

qαm−1
m

∏
n,m

qxnm
m

}

= arg max
q

{∑
m

log qαm−1
m +

∑
n,m

log qxnm
m

}
.

(20)

Since our function is subject to constraints
(
∑

m qm = 1), we introduce Lagrange multiplier
as follows:

f(q) =
∑
m

log qαm−1
m +

∑
n,m

log qxnm
m −λ(

∑
m

qm−1).

(21)
Now we can find q∗ by taking the partial deriva-

tive with respect to one variable qm:

∂f(q)
∂qm

=
αm − 1 +

∑
n xnm

qm
− λ

qm =
αm − 1 +

∑
n xnm

λ
. (22)

Finally, we sum both sides over M to find λ :

λ
∑
m

qm =
∑
m

(
αm − 1 +

∑
n

xnm

)
λ =

∑
m

(αm − 1) +
∑
n,m

xnm. (23)

The solution can be simplified by choosing the
same value for each αm which will result in:

qm =
α− 1 +

∑
n xnm

M(α− 1) +
∑

n,m′ xnm′
. (24)

484



B Bayesian Inference Derivation

In Appendix A, the inference is based on a single
point estimate of q that has the highest posterior
probability. However, it can be based on the whole
parameter space to incorporate uncertainty. The
probability of a new data point marginalized over
the posterior as follows:

p(x|α,X) =
∫
p(x|q)p(q|α,X) dq, (25)

p(q|α,X) =
p(q|α)p(X|q)∫
p(q|α)p(X|q)dq

. (26)

Since Dirichlet and Multinomial distributions
are conjugate pairs, they form the same density as
the prior. Therefore the posterior is also Dirichlet.
Now we can expand the posterior expression and
re-arrange it to look like a Dirichlet as follows:

p(q|α,X) ∝ p(q|α)
∏
n

p(xn|q)

∝
∏
m

qαm−1
m

∏
n

∏
m

qxnm
m

∝
∏
m

q
(αm+

∑
n xnm)−1

m . (27)

The new hyperparameters of the posterior is:

α∗m = αm +
∑
n

xnm. (28)

Finally, we expand and re-arrange Dirichlet and
multinomial distributions inside the integral in
(25) as follows:

p(x|α,X) =∫
C
∏
m

qxm
m

Γ (
∑

m α
∗
m)∏

m Γ(α∗m)

∏
m

qα
∗
m−1

m dq

=C
Γ (
∑

m α
∗
m)∏

m Γ(α∗m)

∫ ∏
m

qα
∗
m+xm−1

m dq. (29)

Note that inside the integral looks a Dirichlet
without a normalizing constant. If we multiply
and divide by its normalizing constant (i.e. Beta
function), the integral is going to be one because
it is a density function, resulting in:

p(x|α,X) = C
Γ (
∑

m α
∗
m)∏

m Γ(α∗m)

B(α∗ + x)
∫

1
B(α∗ + x)

∏
m

qα
∗
m+xm−1

m dqc

=C
Γ (
∑

m α
∗
m)∏

m Γ(α∗m)
B(α∗ + x)

=C
Γ (
∑

m α
∗
m)∏

m Γ(α∗m)

∏
m Γ(α∗m + xm)

Γ (
∑

m (α∗m + xm))
. (30)
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Abstract

We present an effective technique to easily
augment GHKM-style syntax-based ma-
chine translation systems (Galley et al.,
2006) with phrase pairs that do not comply
with any syntactic well-formedness con-
straints. Non-syntactic phrase pairs are
distinguished from syntactic ones in or-
der to avoid harming effects. We apply
our technique in state-of-the-art string-to-
tree and tree-to-string setups. For tree-to-
string translation, we furthermore investi-
gate novel approaches for translating with
source-syntax GHKM rules in association
with input tree constraints and input tree
features.

1 Introduction

Syntax-based statistical machine translation sys-
tems utilize linguistic information that is obtained
by parsing the training data. In tree-to-string
translation, source-side syntactic tree annotation is
employed, while string-to-tree translation exploits
target-side syntax. The syntactic parse tree an-
notation constrains phrase extraction to syntacti-
cally well-formed phrase pairs: spans of syntactic
phrases must match constituents in the parse tree.
Standard phrase-based and hierarchical phrase-
based statistical machine translation systems, in
contrast, allow all phrase pairs that are consistent
with the word alignment (Koehn et al., 2003; Chi-
ang, 2005).

A restriction of the phrase inventory to syntac-
tically well-formed phrase pairs entails that possi-
bly valuable information from the training data re-
mains disregarded. While we would expect phrase
pairs that are not linguistically motivated to be less
reliable, discarding them altogether might be an
overly harsh decision. The quality of an inventory
of syntactic phrases depends heavily on the tree

annotation scheme and the quality of the syntac-
tic parses of the training data. Phrase pairs that
do not span constituents in the tree annotation ob-
tained from syntactic parses can provide reason-
able alternative segmentations or alternative trans-
lation options which prove to be valuable to the
decoder.

In this work, we augment the phrase invento-
ries of string-to-tree and tree-to-string translation
systems with phrase pairs that are not induced in
the syntax-based extraction. We extract continu-
ous phrases that are consistent with the word align-
ment, without enforcing any constraints with re-
spect to syntactic tree annotation. Non-syntactic
phrases are added as rules to the baseline syntactic
grammar with a fill-up technique. New rules are
only added if their right-hand side does not exist
yet. We extend the glue grammar with a special
glue rule to allow for application of non-syntactic
phrases during decoding. A feature in the log-
linear model combination serves to distinguish
non-syntactic phrases from syntactic ones. During
decoding, the decoder can draw on both syntactic
and non-syntactic phrase table entries and produce
derivations which resort to both types of phrases.
Such derivations yield hypotheses that make use of
the alternative segmentations and translation op-
tions provided through non-syntactic phrases. The
search space is more diverse, and in some cases
all hypotheses from purely syntax-based deriva-
tions score worse than a translation that applies
one or more non-syntactic phrases. We empiri-
cally demonstrate that this technique can lead to
substantial gains in translation quality.

Our syntactic translation models conform to the
GHKM syntax approach as proposed by Galley,
Hopkins, Knight, and Marcu (Galley et al.,
2004) with composed rules as in (Galley et al.,
2006) and (DeNeefe et al., 2007). State-of-the-
art GHKM string-to-tree systems have recently
shown very competitive performance in public
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evaluation campaigns (Nadejde et al., 2013; Bo-
jar et al., 2013). We apply the GHKM approach
not only in a string-to-tree setting as in previous
work, but employ it to build tree-to-string sys-
tems as well. We conduct tree-to-string translation
with text input and additionally adopt translation
with tree input and input tree constraints as sug-
gested for hierarchical translation by Hoang and
Koehn (2010). We also implement translation with
tree input and feature-driven soft tree matching.
The effect of augmenting the systems with non-
syntactic phrases is evaluated for all variants.

2 Outline

The remainder of the paper is structured as fol-
lows: We review some of the basics of syntax-
based translation in the next section (Section 3)
and sketch the characteristics of our GHKM
string-to-tree and tree-to-string translation frame-
works.

In Section 4, we describe our technique to
augment GHKM-style syntax-based systems with
phrase pairs that do not comply with any syntactic
well-formedness constraints.

Section 5 contains the empirical part of the pa-
per. We first describe our experimental setup (5.1),
followed by a presentation of the translation re-
sults (5.2). We also include a few translation ex-
amples (5.3) in order to illustrate the differences
between the syntax-based baseline systems and
the setups augmented with non-syntactic phrases.
The empirical part is concluded with a brief dis-
cussion (5.4).

In the final part of the paper (Section 6), we
give a survey of previous work that has dealt
with problems related to overly restrictive syntac-
tic grammars for statistical machine translation,
inadequate syntactic parses, and insufficient cov-
erage of syntactic phrase inventories. A broad
spectrum of diverse methods has been proposed in
the literature, many of which are quite dissimilar
from ours but nevertheless related. We conclude
the paper in Section 7.

3 Syntax-based Translation

In syntax-based translation, a probabilistic syn-
chronous context-free grammar (SCFG) is in-
duced from bilingual training corpora. The par-
allel training data is word-aligned and annotated
with syntactic parses on either target side (string-
to-tree), source side (tree-to-string), or both (tree-

to-tree). A syntactic phrase extraction procedure
extracts rules which are consistent with the word-
alignment and conform with certain syntactic va-
lidity constraints.

Extracted rules are of the form A,B→〈α,β ,∼ 〉.
The right-hand side of the rule 〈α,β 〉 is a bilingual
phrase pair that may contain non-terminal sym-
bols, i.e. α ∈ (VF ∪ NF)+ and β ∈ (VE ∪ NE)+,
where VF and VE denote the source and target
terminal vocabulary, and NF and NE denote the
source and target non-terminal vocabulary, respec-
tively. The non-terminals on the source side and
on the target side of rules are linked in a one-to-
one correspondence. The ∼ relation defines this
one-to-one correspondence. The left-hand side
of the rule is a pair of source and target non-
terminals, A ∈ NF and B ∈ NE .

Decoding is typically carried out with a parsing-
based algorithm, in our case a customized version
of CYK+ (Chappelier and Rajman, 1998). The
parsing algorithm is extended to handle transla-
tion candidates and to incorporate language model
scores via cube pruning (Chiang, 2007).

3.1 GHKM String-to-Tree Translation

In GHKM string-to-tree translation (Galley et al.,
2004; Galley et al., 2006; DeNeefe et al., 2007),
rules are extracted from training instances which
consist of a source sentence, a target sentence
along with its constituent parse tree, and a word
alignment matrix. This tuple is interpreted as a
directed graph (the alignment graph), with edges
pointing away from the root of the tree, and word
alignment links being edges as well. A set of
nodes (the frontier set) is determined that con-
tains only nodes with non-overlapping closure of
their spans.1 By computing frontier graph frag-
ments—fragments of the alignment graph such
that their root and all sinks are in the frontier set—
the GHKM extractor is able to induce a minimal
set of rules which explain the training instance.
The internal tree structure can be discarded to ob-
tain flat SCFG rules. Minimal rules can be assem-
bled to build larger composed rules.

Non-terminals on target sides of string-to-tree
rules are syntactified. The target non-terminal vo-
cabulary of the SCFG contains the set of labels
of the frontier nodes, which is in turn a subset

1The span of a node in the alignment graph is defined
as the set of source-side words that are reachable from this
node. The closure of a span is the smallest interval of source
sentence positions that covers the span.
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unfortunately , . . . , they also wanted political autonomy .

Figure 1: Word-aligned training sentence pair with target-side syntactic annotation.

of (or equal to) the set of constituent labels in
the parse tree. It furthermore contains an initial
non-terminal symbol Q. Source sides of the rules
are not decorated with syntactic annotation. The
source non-terminal vocabulary contains a single
generic non-terminal symbol X.

In addition to the extracted grammar, the trans-
lation system makes use of a special glue grammar
with an initial rule, glue rules, a final rule, and top
rules. The glue rules provide a fall back method
to just monotonically concatenate partial deriva-
tions during decoding. As we add tokens which
mark the sentence start (“<s>”) and the sentence
end (“</s>”), the rules in the glue grammar are of
the following form:

Initial rule:
X,Q→ 〈<s> X∼0,<s> Q∼0〉

Glue rules:
X,Q→ 〈X∼0X∼1,Q∼0B∼1〉

for all B ∈ NE

Final rule:
X,Q→ 〈X∼0 </s>,Q∼0 </s>〉

Top rules:
X,Q→ 〈<s> X∼0 </s>,<s> B∼0 </s>〉

for all B ∈ NE

3.2 GHKM Tree-to-String Translation
The described techniques for GHKM string-to-
tree translation can be adjusted for tree-to-string
translation in a straightforward manner. Rules are
extracted from training instances which consist of
a source sentence along with its constituent parse
tree, a target sentence, and a word alignment ma-
trix. We omit the details.

For GHKM tree-to-string translation, we inves-
tigate three decoding variants:

Tree-to-string translation with text input. The
decoder can construct any source-side syn-
tactic analysis that the grammar permits, very
similar to string-to-tree translation.

Tree-to-string translation with tree input and
input tree constraints. Syntactic annotation
over the input data is provided to the decoder.
The source-side syntactic non-terminals of a
tree-to-string translation rule need to match
the constituent span in the input sentence,
otherwise the rule cannot be applied. This
variant follows the method that was sug-
gested for hierarchical translation by Hoang
and Koehn (2010).

Tree-to-string translation with tree input and
input tree features. Syntactic annotation
over the input data is provided to the decoder.
No hard matching constraints are imposed,
but the decoder is informed about matches
and mismatches of the syntactic annotation in
the rules and in the input tree. It takes them
into account for the score computation.

4 Non-Syntactic Phrases for GHKM
Translation

The syntactic constraints in GHKM extraction can
unfortunately prevent useful phrase pairs from be-
ing included in the phrase inventory. Consider the
example in Figure 1: the highlighted phrase pair
〈also wanted,wollten auch〉 cannot be extracted
from this training instance for string-to-tree trans-
lation.
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In the standard phrase-based approach, in con-
trast, all continuous phrases that are consistent
with the word alignment are extracted (Och et al.,
1999; Och, 2002). The set of continuous bilingual
phrases BP( f J

1 ,e
I
1,A), given a training instance

comprising a source sentence f J
1 , a target sentence

eI
1, and a word alignment A⊆{1, ..., I}×{1, ...,J},

is defined as follows:

BP( f J
1 ,e

I
1,A) ={

〈 f j2
j1 ,e

i2
i1〉 : ∃(i, j) ∈ A : i1 ≤ i≤ i2∧ j1 ≤ j ≤ j2

∧∀(i, j) ∈ A : i1 ≤ i≤ i2↔ j1 ≤ j ≤ j2
}

Consistency for continuous phrases is based upon
merely two constraints in this definition: (1.) At
least one source and target position within the
phrase must be aligned, and (2.) words from inside
the source phrase may only be aligned to words
from inside the target phrase and vice versa. The
highlighted phrase pair from the example does not
violate these constraints.

In order to augment our GHKM syntax-based
systems with non-syntactic phrases, we obey the
following procedure:

• The set BP is extracted from all training in-
stances, and phrase translation probabilities
are computed separately from those in the
syntactic phrase inventory.
• Non-syntactic phrases are converted to rules

by providing a special left-hand side non-
terminal X.
• A phrase table fill-up method is applied to

enhance the syntactic phrase inventory with
entries from the non-syntactic phrase inven-
tory. Non-syntactic rules are only added to
the final grammar if no syntactic rule with
the same (source and target) right-hand side
is present. This method is inspired by pre-
vious work in domain adaptation (Bisazza et
al., 2011).
• The glue grammar is extended with a new

glue rule

X,Q→ 〈X∼0X∼1,Q∼0X∼1〉
that enables the system to make use of non-
syntactic rules in decoding.
• A binary feature is added to the log-linear

model (Och and Ney, 2002) to distinguish
non-syntactic rules from syntactic ones, and
to be able to assign a tuned weight to the non-
syntactic part of the grammar.

5 Empirical Evaluation

We evaluate the effect of augmenting GHKM
syntax-based translation systems—both string-to-
tree and tree-to-string—with non-syntactic phrase
pairs on the English→German language pair using
the standard newstest sets of the Workshop on Sta-
tistical Machine Translation (WMT) for testing.2

The experiments are conducted with the open-
source Moses implementations of GHKM rule ex-
traction (Williams and Koehn, 2012) and decoding
with CYK+ parsing and cube pruning (Hoang et al.,
2009).

5.1 Experimental Setup

We work with an English–German parallel train-
ing corpus of around 4.5 M sentence pairs (af-
ter corpus cleaning). The parallel data origi-
nates from three different sources which have
been eligible for the constrained track of the
ACL 2014 Ninth Workshop on Statistical Ma-
chine Translation shared translation task: Europarl
(Koehn, 2005), News Commentary, and the Com-
mon Crawl corpus as provided on the WMT web-
site. Word alignments are created by aligning the
data in both directions with MGIZA++ (Gao and
Vogel, 2008) and symmetrizing the two trained
alignments (Och and Ney, 2003; Koehn et al.,
2003). For string-to-tree translation, we parse the
German target side with BitPar (Schmid, 2004).3

For tree-to-string translation, we parse the English
source side of the parallel data with the English
Berkeley Parser (Petrov et al., 2006).

When extracting syntactic phrases, we impose
several restrictions for composed rules, in partic-
ular a maximum number of twenty tree nodes per
rule, a maximum depth of five, and a maximum
size of five. We discard rules with non-terminals
on their right-hand side if they are singletons in the
training data.

Only the 100 best translation options per dis-
tinct source side with respect to the weighted
phrase-level model scores are loaded by the de-
coder. The decoder is configured with a maximum
chart span of 25 and a rule limit of 100.

A standard set of models is used in the base-
lines, comprising phrase translation probabilities
and lexical translation probabilities in both direc-

2http://www.statmt.org/wmt14/
translation-task.html

3We remove grammatical case and function information
from the annotation obtained with BitPar.
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system dev newstest2013 newstest2014
BLEU TER BLEU TER BLEU TER

phrase-based 33.0 48.8 18.8 64.5 18.2 66.9
+ lexicalized reordering 34.2 48.1 19.2 64.5 18.3 67.1

string-to-string (syntax-directed extraction) 32.6 49.4 18.2 }
+0.5

65.4 }
−0.4

17.8 }
+0.5

68.0 }
−0.4

+ non-syntactic phrases 33.4 49.0 18.7 65.0 18.3 67.6

string-to-tree 33.6 48.7 19.5 }
+0.3

63.9 }
−0.3

18.6 }
+0.5

66.9 }
−0.7

+ non-syntactic phrases 34.3 48.0 19.8 63.6 19.1 66.2

tree-to-string 34.0 48.5 19.5 }
−0.2

63.8 }
+0.2

18.5 }
+0.2

67.0 }
−0.4

+ non-syntactic phrases 33.9 48.4 19.3 64.0 18.7 66.6

+ input tree constraints 33.7 48.4 19.3 }
+0.4

63.9 }
−0.3

18.3 }
+0.3

67.0 }
−0.5

+ non-syntactic phrases 34.2 48.2 19.7 63.6 18.7 66.5

+ input tree features 34.3 48.3 19.6 }
+0.3

63.7 }
−0.3

18.6 }
+0.2

67.0 }
−0.5

+ non-syntactic phrases 34.4 48.1 19.9 63.4 18.8 66.5

Table 1: English→German experimental results (truecase). BLEU scores are given in percentage.

tions, word and phrase penalty, an n-gram lan-
guage model, a rule rareness penalty, and the
monolingual PCFG probability of the tree frag-
ment from which the rule was extracted (Williams
et al., 2014). Phrase translation probabilities are
smoothed via Good-Turing smoothing.

The language model (LM) is a large inter-
polated 5-gram LM with modified Kneser-Ney
smoothing (Kneser and Ney, 1995; Chen and
Goodman, 1998). The target side of the parallel
corpus and the monolingual German News Crawl
corpora are employed as training data. We use
the SRILM toolkit (Stolcke, 2002) to train the LM
and rely on KenLM (Heafield, 2011) for language
model scoring during decoding.

Model weights are optimized to maximize
BLEU (Papineni et al., 2002) with batch MIRA
(Cherry and Foster, 2012) on 1000-best lists. We
selected 2000 sentences from the newstest2008-
2012 sets as a development set. The selected sen-
tences obtained high sentence-level BLEU scores
when being translated with a baseline phrase-
based system, and do each contain less than
30 words for more rapid tuning. newstest2013 and
newstest2014 are used as unseen test sets. Trans-
lation quality is measured in truecase with BLEU

and TER (Snover et al., 2006).4

We apply a phrase length limit of five when
extracting non-syntactic phrases for the fill-up of
syntactic phrase tables.

4TER scores are computed with tercom version 0.7.25
and parameters -N -s.

5.2 Translation Results

Table 1 comprises the results of our empirical eval-
uation of the translation quality achieved by the
different systems.

5.2.1 Phrase-based Baselines

We set up two phrase-based baselines for com-
parison. Their set of models is the same as for
the syntax-based baselines, with the exception of
the PCFG probability. One of the phrase-based
systems moreover utilizes a lexicalized reorder-
ing model (Galley and Manning, 2008). No non-
standard advanced features (like an operation se-
quence model or class-based LMs) are engrafted.
The maximum phrase length is five, search is car-
ried out with cube pruning at a k-best limit of
1000. A maximum number of 100 translation op-
tions per source side are taken into account.

5.2.2 String-to-String Contrastive System

A further contrastive experiment is done with a
string-to-string system. The extraction method
for this string-to-string system is GHKM syntax-
directed with syntactic target-side annotation from
BitPar, as in the string-to-tree setup. We actually
extract the same rules but strip off the syntactic la-
bels. The final grammar contains rules with a sin-
gle generic non-terminal instead of syntactic ones.
Note that a side effect of this is that the phrase
inventory of the string-to-string system contains
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a larger amount of hierarchical phrases5 than the
string-to-tree system, though the same rules are
extracted. The reason is that we discard single-
ton hierarchical rules when we normalize the fre-
quencies after extraction. Many rules that are sin-
gletons when the syntax decoration is taken into
account have in fact been seen multiple times if
syntactic labels are not distinguished, due to pool-
ing of counts.

The string-to-string system is on newstest2013
1.0 points BLEU worse than the phrase-based
system with lexicalized reordering and on news-
test2014 0.5 points BLEU. We gain 0.5 points
BLEU on both of the test sets if we augment the
string-to-string system with non-syntactic phrases
from the standard phrase-based extractor accord-
ing to our procedure from Section 4.

5.2.3 String-to-Tree System
The translation quality of the string-to-tree sys-
tem surpasses the translation quality of the bet-
ter phrase-based baseline slightly (by 0.3 points
BLEU on both test sets). The string-to-tree system
is clearly superior to the string-to-string system,
which verifies that syntactic non-terminals are in-
deed vital. We get a nice gain of 0.5 points BLEU

and 0.7 points TER on newstest2014 if we aug-
ment the string-to-tree system with non-syntactic
phrases. The phrase-based system is outperformed
by 0.8 points BLEU.

5.2.4 Tree-to-String Systems
The tree-to-string baseline with text input per-
forms at the level of the string-to-tree baseline, but
augmenting it with non-syntactic phrases yields
only a small improvement or even harms a little
(on newstest2013).

Decoding with tree input and input tree con-
straints causes a minor loss in translation qual-
ity. We however observed a decoding speed-up. If
we employ non-syntactic phrases to augment the
tree-to-string setup with input tree constraints, we
provide the new non-syntactic rules in the gram-
mar with a particular property: their left-hand side
non-terminal X can match any constituent span in
the input sentence. The decoder would not be
able to utilize non-syntactic phrases without this
relaxation. Syntactic phrases amount to an in-
crease of up to 0.4 points BLEU (newstest2013)

5We define hierarchical phrases as rules with non-
terminals on their right-hand side, in contrast to lexical
phrases which are continuous rules with right-hand sides that
contain terminal symbols only.

and 0.5 points TER (newstest2014) in the tree-
constrained setup.

Our best tree-to-string setup takes tree input, but
involves soft matching features instead of hard in-
put tree constraints. We incorporate two features,
one that fires for matches and another one that fires
for mismatches. The motivation for not relying on
just one feature which would penalize mismatches
is that the number of syntactic non-terminals in
the derivation can differ between hypotheses. Not
all constituent spans need to be matched (or mis-
matched) by non-terminals, some can be over-
laid through larger rules.6 Tree-to-string transla-
tion with input tree features benefits from being
augmented with non-syntactic phrases by 0.2 to
0.3 points BLEU. The resulting system is mini-
mally better than the best string-to-tree system on
newstest2013, and slightly worse than it on news-
test2014.

5.3 Translation Examples

We illustrate the differences between the syntax-
based baseline systems and the setups augmented
with non-syntactic phrases by means of two trans-
lation examples from newstest2014. Both exam-
ples are string-to-tree translations.

Figures 2 and 3 depict an example that cor-
responds well to the word-aligned training sen-
tence pair with target-side syntactic annotation
from Figure 1. Figure 2 shows the translation, seg-
mentation, and parse tree derived by the string-
to-tree baseline system as single-best output for
the preprocessed input sentence: “the lessees were
against this and also wanted longer terms .” The
reference translation is: “Die Pächter waren dage-
gen und wollten zudem längere Laufzeiten.” Fig-
ure 3 shows the translation, segmentation, and
parse tree derived by the string-to-tree system aug-
mented with non-syntactic phrases. There are
two word substitutions with respect to the ref-
erence in the latter translation, but they convey
the same meaning. The baseline translation fails
to convey the meaning, mostly because “terms”
is translated to the verb “gesehen”, which is a
wrong syntactic analysis in the given context. In-
terestingly, the segmentation applied by the two
systems is rather similar, apart from the interval
“also wanted” which cannot be translated en bloc
by the baseline. All rules in the baseline gram-

6Also remember that we discarded the internal tree struc-
ture to obtain flat SCFG rules.
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Reference: Die Pächter waren dagegen und wollten zudem längere Laufzeiten.

Figure 2: Translation and parse tree from the string-to-tree system.
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Reference: Die Pächter waren dagegen und wollten zudem längere Laufzeiten.

Figure 3: Translation and parse tree from the string-to-tree system augmented with non-syntactic phrases.

mar that contain “also wanted” as part of their
source side imply a larger source-side lexical con-
text that is not present in the given sentence. None
of those rules matches the input. The baseline
has to translate “also” and “wanted” separately
and fails to translate the verb to a plural form
German verb. The next rule in bottom-up order
is already involved in the incorrect choice of a
verb for “terms”. The string-to-tree system aug-
mented with non-syntactic phrases applies more
glue rules, but this is beneficial in the present
example, as it breaks apart the faulty syntactic
derivation.

Figures 4 and 5 depict a second example. Com-
pared to the baseline, filling up the phrase table
with non-syntactic phrases had the effect of disas-
sembling the originally nicely built syntactic tree
structure over the translation nearly completely.
Four non-syntactic phrases are applied, three of
them span over target-side punctuation marks. The
baseline translation is more literal and conveys
the meaning, but the system augmented with non-
syntactic phrases produces a more fluent output.
Its translation seems more natural and happens to
match the reference in this case.
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Reference: Vor allem die Art und Weise, wie die Mannschaft spielt, ist beeindruckend.

Figure 4: Translation and parse tree from the string-to-tree system.
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Figure 5: Translation and parse tree from the string-to-tree system augmented with non-syntactic phrases.

phrase table entries unfiltered dev newstest2013 newstest2014
hier. lexical hier. lexical hier. lexical hier. lexical

phrase-based – 184.9 M – 25.3 M – 29.0 M – 28.0 M

string-to-string 58.3 M 19.9 M 4.3 M 2.9 M 5.7 M 3.3 M 5.3 M 3.3 M
+ non-syntactic phrases 58.3 M 191.1 M 4.3. M 25.4 M 5.7 M 29.1 M 5.3 M 28.1 M

string-to-tree 39.7 M 21.2 M 4.9 M 3.4 M 5.7 M 3.8 M 5.5 M 3.7 M
+ non-syntactic phrases 39.7 M 192.4 M 4.9 M 25.8 M 5.7 M 29.6 M 5.5 M 28.6 M

tree-to-string 29.5 M 21.1 M 7.7 M 2.8 M 9.0 M 3.3 M 8.7 M 3.2 M
+ non-syntactic phrases 29.5 M 192.6 M 7.7 M 26.1 M 9.0 M 29.9 M 8.7 M 28.9 M

Table 2: Phrase inventory statistics for the different English→German translation systems. “hier.” de-
notes hierarchical phrases, i.e. rules with non-terminals on their right-hand side, “lexical” denotes con-
tinuous phrases.
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5.4 Discussion

A drawback of our method is that it increases
the size of the synchronous context-free gram-
mar massively. Most phrase pairs from standard
phrase-based extraction are actually not present in
the GHKM rule set, even with composed rules.
A large fraction of the extracted non-syntactic
phrases is such added to the phrase inventory
through phrase table fill-up. Table 2 shows the
phrase inventory statistics for the different sys-
tems.

Another question relates to the glue rule appli-
cations. The application of a non-syntactic rule
is always accompanied with a respective glue rule
application in our implementation. The string-
to-tree baseline utilizes glue rules on average 3.0
times in each single-best translation (measured
on newstest2014), the string-to-tree system aug-
mented with non-syntactic phrases utilizes glue
rules on average 7.0 times. We considered an im-
plementation that allows for embedding of non-
syntactic rules into hierarchical rules (other than
the glue rules) but did not see improvements with
it as yet. Furthermore, efficiency concerns become
more relevant in such an implementation.

6 Related Work

Issues with overly restrictive syntactic grammars
for statistical machine translation, inadequate syn-
tactic parses, and insufficient coverage have been
tackled from several different directions in the lit-
erature.

A proposed approach to attain better syntac-
tic phrase inventories is to restructure the syntac-
tic parse trees in a preprocessing step (Wang et
al., 2007; Wang et al., 2010; Burkett and Klein,
2012). This line of research aims at rearranging
parse trees in a way that makes them a better fit
for the requirements of the bilingual downstream
application. Conversely, Fossum et al. (2008) re-
tain the structure of the parse trees and modify the
word alignments.

Marcu et al. (2006) relax syntactic phrase ex-
traction constraints in their SPMT Model 2 to al-
low for phrases that do not match the span of one
single constituent in the parse tree. SPMT Model 2
rules are created from spans that are consistent
with the word alignment and covered by multiple
constituents such that the union of the constituents
matches the span. Pseudo non-syntactic non-
terminals are introduced for the left-hand sides of

SPMT Model 2 rules. Special additional rules al-
low for combination of those non-syntactic left-
hand side non-terminals with genuine syntactic
non-terminals on the right-hand sides of other
rules during decoding.

Another line of research took the hierarchical
phrase-based model (Chiang, 2005; Chiang, 2007)
as a starting point and extended it with syntactic
enhancements. In their SAMT system, Zollmann
and Venugopal (2006) labeled the non-terminals
of the hierarchical model with composite symbols
derived from the syntactic tree annotation. Similar
methods have been applied with CCG labels (Al-
maghout et al., 2012). Venugopal et al. (2009)
and Stein et al. (2010) keep the grammar of the
non-terminals of the hierarchical model unlabeled
and apply the syntactic information in a separate
model. Other authors added features which fire
for phrases complying with certain syntactic prop-
erties while retaining all phrase pairs of the hier-
archical model (Marton and Resnik, 2008; Vilar et
al., 2008).

In a tree-to-tree translation setting, Chiang
(2010) proposed techniques to soften the syntac-
tic constraints. A fuzzy approach with complex
non-terminal symbols as in SAMT is employed
to overcome the limitations during phrase extrac-
tion. In decoding, substitutions of non-terminals
are not restricted to matching ones. Any left-
hand side non-terminal can substitute any right-
hand side non-terminal. The decoder decides on
the best derivation based on the tuned weights of a
large number of binary features.

Joining phrase inventories that come from mul-
tiple origins is a common method in domain adap-
tation (Bertoldi and Federico, 2009; Niehues and
Waibel, 2012) but has also been applied in the
contexts of lightly-supervised training (Schwenk,
2008; Huck et al., 2011) and of forced alignment
training (Wuebker et al., 2010). For our purposes,
we apply a fill-up method in the manner of the one
that has been shown to perform well for domain
adaptation in earlier work (Bisazza et al., 2011).

Previous research that resembles our work most
has been presented by Liu et al. (2006) and by
Hanneman and Lavie (2009).

Liu et al. (2006) allow for application of non-
syntactic phrase pairs in their tree-to-string align-
ment template (TAT) system. The translation
probabilities for the non-syntactic phrases are ob-
tained from a standard phrase-based extraction
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pipeline. A non-syntactic phrase pair can how-
ever only be applied if its source side matches
a subtree in the parsed input sentence. Syn-
tactic and non-syntactic phrases are not distin-
guished, and overlap between the syntactic and
non-syntactic part of the phrase inventory is not
avoided. The decoder picks the entry with the
higher phrase translation probability, which means
that non-syntactic phrase table entries can super-
sede syntactic entries. The authors report im-
provements of 0.6 points BLEU on the 2005 NIST
Chinese→English task with four reference trans-
lations.

Hanneman and Lavie (2009) examine non-
syntactic phrases for tree-to-tree translation with
the Stat-XFER framework as developed at
Carnegie Mellon University (Lavie, 2008). They
combine syntactic and non-syntactic phrase in-
ventories and reestimate the probabilities for both
types of phrase pairs by adding up the observed
absolute frequencies. Two combination schemes
are evaluated: combination with all extractable
valid non-syntactic phrases (“direct combination”)
and combination with only those non-syntactic
phrases whose source sides are not equal to the
source side of any syntactic phrase (“syntax-
prioritized combination”). On a French→English
translation task, Hanneman and Lavie (2009) re-
port improvements of around 2.6 points BLEU by
adding non-syntactic phrases on top of their Stat-
XFER syntactic baselines. Their best setup how-
ever does not reach the performance of a stan-
dard phrase-based system, which is still 1.6 points
BLEU better.

Apart from the differences in the underly-
ing syntax-based translation technology (string-
to-tree/tree-to-string GHKM vs. TAT vs. Stat-
XFER), our work also constitutes a novel contri-
bution as compared to the previous approaches by
Liu et al. (2006) and Hanneman and Lavie (2009)
with respect to the following:

• The phrase inventory is augmented with non-
syntactic phrases by means of a fill-up tech-
nique. Overlap is prevented, whereas not
only new source sides, but also new target-
side translation options can be added.
• The probabilities of syntactic phrase pairs are

the same as in the syntax-based baseline, and
the probabilities of the non-syntactic phrase
pairs are the same as in a phrase-based sys-
tem. Counts of syntactic and non-syntactic

phrases are not summed up to obtain new es-
timates.
• Non-syntactic phrase pairs are distinguished

from syntactic ones with an additional fea-
ture.

7 Conclusions

String-to-tree and tree-to-string translation sys-
tems can easily be augmented with non-syntactic
phrases by means of phrase table fill-up, a special
non-terminal symbol for left-hand sides of non-
syntactic rules in the grammar, and an additional
glue rule. A binary feature enables the system to
distinguish non-syntactic phrases from syntactic
ones and—on the basis of the respective feature
weight—to favor syntactically motivated phrases
during decoding.

Our results on an English→German translation
task demonstrate the beneficial effect of augment-
ing GHKM translation systems with non-syntactic
phrase pairs. Empirical gains in translation qual-
ity are up to 0.5 points BLEU and 0.7 points TER

over the baseline on the recent test set of the shared
translation task of the ACL 2014 Ninth Workshop
on Statistical Machine Translation.

While GHKM-style syntactic translation has
typically been utilized in string-to-tree settings in
previous research, we have also adopted it to build
tree-to-string systems in this work. Source syn-
tax establishes interesting further directions for
GHKM systems. We investigated two of them: in-
put tree constraints and input tree features.

String-to-tree and tree-to-string GHKM sys-
tems perform roughly at the same level in terms
of translation quality. Our best string-to-tree
setup outperforms a phrase-based baseline by up
to 0.8 points BLEU and 0.9 points TER (on
newstest2014), our best tree-to-string setup out-
performs the phrase-based baseline by up to
0.7 points BLEU and 1.1 points TER (on news-
test2013).
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Abstract
As larger and more diverse parallel texts
become available, how can we lever-
age heterogeneous data to train robust
machine translation systems that achieve
good translation quality on various test
domains? This challenge has been ad-
dressed so far by repurposing techniques
developed for domain adaptation, such
as linear mixture models which combine
estimates learned on homogeneous sub-
domains. However, learning from large
heterogeneous corpora is quite different
from standard adaptation tasks with clear
domain distinctions. In this paper, we
show that linear mixture models can re-
liably improve translation quality in very
heterogeneous training conditions, even
if the mixtures do not use any domain
knowledge and attempt to learn generic
models rather than adapt them to the tar-
get domain. This surprising finding opens
new perspectives for using mixture mod-
els in machine translation beyond clear cut
domain adaptation tasks.

1 Introduction

While machine translation tasks used to be de-
fined by drawing training and test data from a sin-
gle well-defined domain, current systems have to
deal with increasingly heterogeneous data, both at
training and at test time. As larger and more di-
verse parallel texts become available, how can we
leverage heterogeneous data to train statistical ma-
chine translation (SMT) systems that achieve good
translation quality on various test domains?

So far, this challenge has been addressed by re-
purposing techniques developed for more clear-cut

domain adaptation scenarios, such as linear mix-
ture models (Koehn and Schroeder, 2007; Foster
and Kuhn, 2007; Sennrich, 2012b). Instead of es-
timating models on the whole training corpus at
once, linear mixture models are built as follows:
(1) partition the training corpus into homogeneous
domain-based component, (2) train one model per
component, (3) linearly mix models using weights
learned to adapt to the test domain, (4) replace re-
sulting model in translation system.

In this paper, we aim to gain a better under-
standing of the benefits of linear mixture models in
heterogeneous data conditions, by examining key
untested assumptions:

• Should mixture component capture domain
information? Previous work assumes that
training data should be organized into do-
mains. When manual domain distinctions are
not available, previous work uses clustering
approaches to approximate manual domain
distinctions (Sennrich, 2012a). However, it
is unclear whether it is necessary to use or
mimic domain distinctions in order to define
mixture components.

• Mixture models are usually assumed to im-
prove translation quality by giving more
weight to parts of the training corpus that are
more relevant to the test domain. Is this intu-
ition still valid in our more complex hetero-
geneous training conditions? If not, how do
mixture models affect translation probability
estimates?

In order to answer these questions, we propose
to study several variants of linear mixture mod-
els that reflect different modeling assumptions and
different levels of domain knowledge. We first
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consider two methods for setting mixture weights:
adaptation to the test domain via maximum like-
lihood, and uniform mixtures that make no as-
sumption about the domain of interest (Section 2).
Then, we will describe a wide range of tech-
niques that can be used to define mixture com-
ponents (Section 3). Again, these techniques re-
flect opposite modeling assumptions: manually
defined domains and automatic clusters attempt to
organize heterogeneous training sets into homo-
geneous groups that represent distinct domains,
while random samples capture no domain infor-
mation and simply provide different views of the
training set.

We present an empirical investigation of all the
variations outlined above using a strong system
trained on large and diverse training corpora, for
two language pairs and two distinct test domains.
Our results show that linear mixtures reliably and
robustly improve the quality of machine transla-
tion (Section 5). While they were originally de-
veloped for domain adaptation tasks, linear mix-
tures that have no domain knowledge can perform
as well as traditional mixtures meant to perform
domain adaptation. This suggests that improve-
ments do not stem from domain modeling per se,
but from better generic estimates from the hetero-
geneous training data. Further analysis shows that
the linear mixture estimates are very different from
estimates obtained using more explicit smoothing
schemes (Section 6).

2 Linear Mixtures for Translation
Models

Does domain knowledge yield better translation
quality when learning linear mixture weights for
the translation model of a phrase-based MT sys-
tem? We leave the study of linear mixtures for
language and reordering models for future work.

2.1 Maximum Likelihood Mixtures
In the standard domain adaptation scenario, the
linear mixture combines translation probabilities
learned on distinct sub-domains in the training
corpus. The conditional translation probability of
phrase t given s is defined as:

p(t|s) =
K∑
k=1

λkpk(t|s) (1)

where pk(t|s) is a conditional translation proba-
bility learned on subset k of the training corpus.

Note that for all phrase pairs (s, t) that are not ob-
served in component k of the training corpus, we
will have pk(t|s) = 0. As a result, the resulting
distributions are not normalized.

The weights λk are learned to adapt the transla-
tion model to a development set, which represents
the domain of interest. First, we extract all phrase
pairs from the development set, using the same
technique used to extract phrases from the training
set as part of standard phrase-based MT training.
This yields a joint distribution p̃(s, t), which can
be used to define a maximum likelihood objective:

λ̂ = argmaxλ
∑
s,t

p̃(s, t) log
K∑
k=1

λkpk(s|t). (2)

We use the Expectation Maximization algo-
rithm to solve this maximization problem.

2.2 Uniform Mixtures

We will consider uniform mixtures where all com-
ponents are weighted equally:

p(t|s) =
1
K

K∑
k=1

pk(t|s). (3)

In contrast with maximum likelihood mixtures,
uniform mixtures are not meant to adapt the trans-
lation model to a specific test domain. Instead,
they combine estimates learned on various subsets
of the data in the hope of obtaining a better es-
timate of the translation probability distributions
from the (possibly heterogeneous) training domain
as a whole.

2.3 Why Not Use Loglinear Mixtures?

In current machine translation systems, there are
two straightforward ways to combine estimates
from heterogneous training data: linear and loglin-
ear mixtures. We argue that linear mixtures are a
better model for combining domain-specific prob-
abilities, since they sum translation probabilities,
while loglinear mixtures multiply probabilities. In
a loglinear mixture, a translation candidate t for a
phrase s will only be scored highly if all compo-
nents agree that it is highly probable. In contrast,
in a linear mixture, t can be a top translation can-
didate overall even if it is not a preferred transla-
tion in some of the components. When the train-
ing data is very heterogeneous, linear mixtures are
therefore preferable.
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Previous work provides empirical evidence sup-
porting this. For instance, Foster et al. (2010)
found that linear mixtures outperform log linear
mixtures when adapting a French-English system
to the medical domain, as well as on a Chinese-
English NIST translation task.

2.4 Estimating Conditional Translation
Probabilities

Within each mixture component, we extract all
phrase-pairs, compute relative frequencies, and
use Kneser-Ney smoothing (Chen et al., 2011) to
produce the final estimate of conditional transla-
tion probabilities pk(t|s). Per-component proba-
bilities are then combined in Eq. 1 and 3. Simi-
larly, baseline translation probabilities are learned
using Kneser-Ney smoothed frequencies collected
on the entire training set.

3 Defining Mixture Components

We assume that the heterogeneous training corpus
can be split into basic elements that will be or-
ganized in various ways to define the K mixture
components. Basic components could be docu-
ments or sets of sentences defined along various
criteria. Sennrich (2012a) show that using iso-
lated sentences as basic elements might not pro-
vide sufficient information, as smoothing com-
ponent assignments using neighboring sentences
benefits translation quality. In our experiments,
basic elements are sets of parallel sentences which
share the same provenance, genre and dialect, as
we will see in Section 4.

We consider four very different ways of defin-
ing mixture components by grouping the basic
corpus elements: (1) manual partition of the train-
ing corpus into domains, (2) automatically learn-
ing homogeneous domains using text clustering
algorithms, (3) random partitioning, (4) sampling
with replacement.

3.1 Manually Defined Domains

Heterogeneous training data is usually grouped
into domains manually using provenance informa-
tion. In most previous work, such domain dis-
tinctions are very clear and easy to define. For
instance, Haddow (2013) uses European parlia-
ment proceedings to improve translation of text
in the movie subtitles and News Commentary do-
mains; Sennrich (2012a) aims to translate Alpine
Club reports using components trained on Euro-

pean parliament proceedings and movie subtitles.
Foster et al. (2010) work with a slightly differ-
ent setting when defining mixture components for
the NIST Chinese-English translation task: while
there is no single obvious “in-domain” component
in the NIST training set, homogeneous domains
can still be defined in a straightforward fashion
based on the provenance of the data (e.g., Hong
Kong Hansards vs. Hong Kong Law vs. News ar-
ticles from FBIS, etc.). We take a similar approach
in our experiments. However, we will see that
since our training data is very heterogeneous, we
take into account other dimensions beyond prove-
nance, such as genre and dialect information (Sec-
tion 4).

3.2 Induced Domains Using Automatic
Clustering Algorithms

We propose to use automatic text clustering tech-
niques to organize basic elements into homoge-
neous clusters that are seen as sub-domains. In our
experiments, we apply clustering algorithms to the
target (English) side of the corpus only.

Each corpus element is transformed into a
vector-space format by constructing a tf.idf vector
representation. After indexing, we filter out stop-
words as well as words occuring in a single doc-
ument. We then weight each word token by the
log of its frequency in the document, combined
with an inverse document frequency (Salton and
McGill, 1983) followed by a normalization to unit
length. The cosine similarity between each pair
of elements is obtained by simply computing the
scalar product, resulting in aN×N similarity ma-
trix, where N is the number of corpus elements.

For clustering, we used Ward’s hierarchical
clustering algorithm (Ward, 1963). We start with
one cluster per corpus element, i.e. N clusters.
From the similarity matrix, we identify the two
most similar clusters and merge them into a sin-
gle one, resulting in N −1 clusters. The similarity
matrix is updated using Ward’s method to form a
(N−1)×(N−1) similarity matrix. The process is
repeated on the new set of clusters, until we reach
the target number of clusters K.

3.3 Random Partitioning
We consider random partitions of the training cor-
pus. They are generated by using a random num-
ber generator to assign each basic element to one
of K clusters. Resulting components therefore do
not capture any domain information. Each com-
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Arabic-English Training Conditions
segs src en

train 8.5M 262M 207M
Test Domain 1: Webforum

segs src en
dev (tune) 4.1k 66k 72k
web1 (eval) 2.2k 35k 38k
web2 (eval) 2.4k 37k 40k

Test Domain 2: News
segs src en

dev (tune) 1664 54k 51k
news (eval) 813 32k 29k

Table 1: Statistics for Arabic-English data: Num-
ber of segments (segs), source tokens (src) and En-
glish tokens (en) for each corpus. For English dev
and test sets, word counts averaged across 2 refer-
ences.

ponent can potentially be as heterogeneous as the
full training set.

3.4 Random Sampling with Replacement

All previous techniques assume that the training
corpus should be partitioned into distinct clus-
ters. We now consider mixture components that
break this assumption, and simply represent sev-
eral, possibly overlapping, views of the training
corpus. They are defined by sampling basic corpus
elements uniformly with replacement. This ap-
proach simply requires defining a number of sam-
ples K and the size n of each sample. We set the
sample size n to the average size of the manual
clusters. We do not fix K in advance: in order to
provide a fair comparison with corpus partitioning
techniques where components achieve coverage of
the entire training set by definition, we keep gen-
erating samples until all basic elements have been
used, and use all resulting K components.

When using uniform linear mixtures, this ap-
proach is similar to bootstrap aggregating (bag-
ging) for regression (Breiman, 1996), where a
more stable model is learned by averaging K es-
timates obtained by sampling the training set uni-
formly and with replacement.

4 Experiment Settings

We evaluate our linear mixture models on two
different language pairs, Arabic-English and
Chinese-English, and two different test domains.

Chinese-English Training Conditions
segs src en

train 11M 234M 253M
Test Domain 1: Webforum

segs src en
dev (tune) 2.7k 61k 77k
web1 (eval) 1.4k 31k 38k
web2 (eval) 1.2k 29k 36k

Test Domain 2: News
segs src en

dev (tune) 1.7k 39k 24k
news (eval) 0.7k 19k 19k

Table 2: Statistics for Chinese-English data: Num-
ber of segments (segs), source tokens (src) and En-
glish tokens (en) for each corpus. For English dev
and test sets, word counts averaged across 4 refer-
ences.

4.1 Training Conditions

We use the large-scale heterogeneous training con-
ditions defined in the DARPA BOLT project. Data
statistics for both language pairs are given in Ta-
bles 1 and 2. Training corpora cover a wide variety
of sources, genres, dialects, domains, topics.

For instance, for the Arabic task, the training
corpus is originally bundled into 48 files repre-
senting different provenance and epochs. The
data spans 15 genres (defined based on data
provenance, they range from lexicon to newswire,
United Nations, and many variants of web data
such as webforum, weblog, newsgroup, etc.) and
4 automatically tagged dialects (Egyptian, Levan-
tine, Modern Standard Arabic, and untagged). The
distribution along each of these dimensions is very
unbalanced, and each corpus file often contains
text in more than one genre, epoch or dialect.

As a result, we divide the large training corpus
into basic elements, based on the available meta-
data. We define basic corpus elements as a subset
of sentences from the same provenance (i.e. cor-
pus file), dialect and genre. For Arabic, splitting
the original 48 files along these dimensions yields
82 basic elements. Similarly, the Chinese data was
split into a set of 101 basic elements, using genre,
dialects, as well as time span information to split
the original files. Figure 1 shows the wide range of
component sizes in the Arabic and Chinese collec-
tion. For Arabice, notice that several components
are very small, from 6 lines and 90 words to 5.3
million lines and 137M words.
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Figure 1: Sizes of the 82 Arabic-English (top)
and 101 Chinese-English (bottom) corpus compo-
nents.

4.2 Definition of Mixture Components
Manual partitions were created first by the system
developers, based on intuitions on the nature of the
test domain and manual inspection of the training
data. The main goal was to group data into com-
ponents that are large enough to reliably estimate
translation probabilities, but small enough to be
homogeneous. This resulted in Km = 10 clusters
for Arabic, and Km = 17 for Chinese.

Automatic partitions are created as described
in Section 3. Preliminary experiments with the
hierarchical agglomerative clustering algorithm
showed that the number of clusters used did not
have a big impact on translation quality,1 so we
will only present results that use the same num-
ber of clusters as in the manual partitions (10 for
Arabic and 17 for Chinese).

Results for random partitions are averaged
across experiments run with four random seeds.

4.3 Test Domains
We consider two test domains, as described in Ta-
bles 1 and 2: webforum and news.

The webforum test domain is defined by devel-
opment test sets made available through BOLT. It

1We tried K = {2, 4, . . . , 18, 20} for Arabic and K =
{12, 14, . . . , 20} for Chinese, plus all basic components.

contains very informal text drawn from online dis-
cussion of various topics. Taking these data sets
as the definition of the target domain, there is no
single obvious in-domain section of the training
corpus. For instance, for Arabic, the dev set sen-
tences are almost exclusively written in the Egyp-
tian dialect. Therefore, Egyptian webforum data
is presumably the closest to the test domain, but
Egyptian weblogs or mixed-dialect broadcast con-
versations could potentially be useful as well.

We also test the Arabic and Chinese systems on
the news domain. The goal of these experiments is
to evaluate the robustness of linear mixtures across
different test domains. We use publicly available
test sets from the NIST evaluation. The dev set
used to learn maximum likelihood mixtures and
tune the translation system is the NIST section of
the 2006 test set. We evaluate system performance
on the newswire section of the NIST 2008 test set.

4.4 Machine Translation System
We use an in-house implementation of a Phrase-
based Statistical Machine Translation system
(Koehn et al., 2007) to build strong baseline sys-
tems for both language pairs. Translation hypothe-
ses are scored according to the following features:
• 4 phrase-table scores: Kneser-Ney smoothed

phrasal translation probabilites and lexical
weights, in both translation directions (Chen
et al., 2011)2

• 6 hierarchical lexicalized reordering scores
(Galley and Manning, 2008)
• a word penalty, and a word-displacement dis-

tortion penalty
• a Good-Turing smoothed 4-gram language

model trained on the Gigaword corpus,
Kneser-Ney smoothed 5-gram models trained
on the English side of the training corpus, and
an additional 5-gram model trained on mono-
lingual webforum data.

Weights for these features are learned using a
batch version of the MIRA algorithm (Chiang,
2012). Phrase pairs are extracted from several
word alignments of the training set: HMM, IBM2,
and IBM4. Word alignments are kept constant
across all experiments.

We apply our linear mixture models to both
translation probability scores, in each direction.
The reordering and language models are not

2The Arabic-English system uses 6 additional binary fea-
tures which fire if a phrase-pair was generated by one of the
3 word alignment methods in each translation direction.
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Test domain Webforum
Arabic eval Forum1 Forum2
Linear mix 39.67 40.60
Loglinear mix 37.53 38.80
Chinese eval Forum1 Forum2
Linear mix 30.17 26.86
Loglinear mix 27.65 23.78

Table 3: Impact of mixture type on translation
quality as measured by BLEU.

adapted. Note that systems used to translate the
web1 and web2 test sets are always tuned on the
webforum tuning set, while systems used to trans-
late data in the news domain are tuned on a news
development set. The relevant tuning set is also
used for learning maximum likelkihood mixtures
when appropriate.

5 Findings: Impact on Translation
Quality

5.1 Linear vs. Loglinear Mixtures

Before focusing exclusively on linear mixtures,
we confirm that they outperform loglinear mix-
tures. This comparison was conducted on the web-
forum domain, using manually defined domains
as components. For linear mixtures, we trained
the weights using maximum likelihood. Loglin-
ear mixture weights are trained by MIRA. Table 3
shows that linear mixtures yield consistently and
significantly higher BLEU scores than loglinear
mixtures, which is consistent with existing results
(Foster et al., 2010, inter alia).

5.2 Impact of Mixture Components

We now focus on linear mixtures and measure the
impact on translation quality of the various com-
ponent types described in Section 3. In all cases,
mixtures weights are estimated by maximum like-
lihood. Results are summarized in Table 4 for both
Arabic and Chinese.

The main result is that all mixture models con-
sidered significantly improve on the “no mix”
baseline for both languages. Directly using the
101 basic elements for Chinese and the 82 basic
elements for Arabic significantly improves on the
baseline. Grouping the basic elements into coarser
clusters can further improve BLEU. For Arabic,
automatic partitioning (randomly or by clustering)
yields better BLEU scores than manual partition-

Test domain Webforum News
Arabic eval web1 web2 news
Cluster domains 40.11 40.60 57.95
Random partition 40.43 40.63 57.78
Random sample 39.94 40.36 57.85
Manual domains 39.67 40.60 57.63
Basic elements 39.83 40.63 57.57
No mix 38.64 39.21 56.59
Chinese eval web1 web2 news
Cluster domains 29.82 26.34 37.22
Random partition 29.50 26.21 36.83
Random sample 29.47 26.17 36.70
Manual domains 30.17 26.86 36.90
Basic elements 29.29 26.25 36.17
No mix 28.61 25.63 35.96

Table 4: Impact of mixture component definition
on BLEU score: there is no clear benefit to explic-
itly modeling domains.

ing, while the manual and cluster-based domains
yield the highest BLEU scores for Chinese.

5.3 Impact of Mixture Weights
Does domain knowledge yield better translation
quality when learning linear mixture weights? We
answer this question by comparing the transla-
tion quality obtained with maximum likelihood
vs. uniform mixtures. The maximum likelihood
weights are set once per domain, using the rele-
vant domain development set, while the uniform
mixture is the same across all test domains.

Table 5 shows that maximum likelihood
weights generally have a slight advantage over
uniform weights, especially in the Webforum do-
main. On ”basic elements” in Arabic, the gain is
a massive 5 BLEU points, which we attribute to
the fact that, as shown in Figure 1, there are many
more very small components in Arabic. Those get
a disproportionate influence in the uniform mix-
ture, hurting the overall performance. On the other
hand, the uniform mixture performs better in the
News domain. This might be explained by the fact
that the tune and test sets are more distant in News
than in Webforum, as suggested by the fact that the
tuning BLEU scores are not as good at predicing
test BLEU rankings in the news domain as in the
webforum domain.

Overall, the difference in performance between
the best linear mixture and the ”no mix” baseline
is 1.4 to 1.6 BLEU on Arabic, and 0.7 to 1.3 BLEU
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on Chinese. By comparison, the delta between the
two weight setting approaches (maximum likeli-
hood vs. uniform), depending on the partition-
ing technique, is below 0.4 BLEU for Arabic (ex-
cept for Basic elements, +3.6 BLEU) and below
0.57 BLEU for Chinese. It is therefore clear that
the gain from using linear mixtures is much larger
than the influence of the mixture weight setting,
except in the one specific case discussed above.

Taken together, these results show that lin-
ear mixtures can reliably and robustly improve
the quality of machine translation. But surpris-
ingly, linear mixtures that have no domain knowl-
edge (random partition + uniform weights) can
sometimes perform as well as traditional mixtures
meant to perform domain adaptation. This sug-
gests that improvements cannot be only explained
by improved domain modeling.

Test domain Webforum News
Arabic eval web1 web2 news
Cluster domains 40.11 40.60 57.95
w/ uniform mix 39.63 40.15 58.21
Random partition 40.43 40.63 57.78
w/ uniform mix 40.31 40.15 58.18
Random sample 39.94 40.36 58.06
w/ uniform mix 39.88 40.56 58.65
Manual domains 39.67 40.60 57.63
w/ uniform mix 39.93 40.18 58.00
Basic elements 39.83 40.63 57.57
w/ uniform mix 34.84 35.82 58.46
No mix 38.64 39.21 56.59
Chinese eval web1 web2 news
Cluster domains 29.82 26.34 37.22
w/ uniform mix 29.44 25.94 37.47
Random partition 29.50 26.21 36.83
w/ uniform mix 29.43 25.89 36.95
Random sample 29.47 26.17 36.70
w/ uniform mix 28.47 25.54 36.61
Manual domains 30.17 26.86 36.90
w/ uniform mix 29.25 26.36 36.95
Basic elements 29.29 26.25 36.17
w/ uniform mix 29.23 25.81 36.63
No mix 28.61 25.63 35.96

Table 5: Impact of linear mixture weights on trans-
lation quality as measured by BLEU: using do-
main knowledge when setting weights has an un-
reliable impact.

6 Findings: Impact on Translation
Probability Estimates

Thus far, all our experiments have measured the
impact of different types of linear mixtures on
overall translation quality. But what is the im-
pact of these various estimations methods on the
learned phrasal translation probability distribu-
tions themselves? More specifically, how do trans-
lation probabilities estimated using linear mixtures
differ from global “no mix” estimates? If linear
mixtures do not only capture domain knowledge
as suggested by Section 5, do they simply perform
a form of smoothing? If so, how does this im-
plicit smoothing compare to more explicit smooth-
ing schemes for translation probabilities?

6.1 How do linear mixtures affect translation
probabilities?

Let us compare translation probabilities estimated
directly on the entire corpus Pnomix(t|s), with lin-
ear mixtures pmix(t|s) =

∑K
k=1 λkpk(t|s). The

difference between pmix(t|s) and pnomix(t|s) is
hard to represent analytically in the general case,
but studying a few particular cases can help us gain
a better understanding.

First, we observe that linear mixtures scale
down the contribution of component-specific
source phrases. Assume that the phrase s oc-
curs only once in the training corpus, with trans-
lation t. By definition, there is a single mixture
component k such that pmix(t|s) = λk, which is
likely to be smaller than pnomix(t|s) = 1. In the
slightly more general case where s occurs more
than once, but always in the same component k,
then pmix(t|s) = λkpnomix(t|s), which has no im-
pact on the ranking of translation candidates for s,
but yields a smaller feature value for the decoder.

Second, let us consider the case of very fre-
quent “general language” phrases. They should
have roughly the same translation distributions in
all mixture components: If the pk(t|s) distribu-
tions are the same in each component, the λk val-
ues learned do not matter, they have no impact on
pmix(t|s) = pnomix(t|s).

In between these extremes, the impact of linear
mixtures depends on the frequency and ambiguity
of translation candidates t across mixture compo-
nents. For instance, let us assume that the mixture
components are somehow defined such that they
partition the translate candidates t of a phrase s
into separate clusters. In that case, for each t, there
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Figure 2: Comparing translation probability dis-
tributions with and without Kneser Ney smooth-
ing for Chinese phrase-tables: boxplots of Jensen-
Shannon divergences binned by source phrase fre-
quency. For instance, the box and whisker at x = 8
represent the distribution of the values of Jensen-
Shannon divergence between the unsmoothed and
smoothed translation probability distribution for
all Chinese phrases seen between 5 and 8 times
during phrase extraction.

is a k such that pk(t|s) = pnomix(t|s). The rank-
ing of translation candidates t for s according to
pmix(t|s) can be very different from pnomix(t|s),
as controlled by the λ values used.

6.2 Smoothing Effects

As a basis for comparison, let us analyze the
difference between unsmoothed relative frequen-
cies and smoothed translation probabilities using
a conventional smoothing scheme. We focus on
the Kneser-Ney smoothing scheme (Chen et al.,
2011), since it is used to smooth translation prob-
abilities in the ‘nomix” baseline as well as in all
mixture components.

For seen phrase pairs (with f(s, t) > 0), the
difference between Kneser-Ney estimates pkn(t|s)
and relative frequency estimates prf (t|s) can be
written as:

prf (t|s)− pkn(t|s) =
D

f(s)
− D ∗ n(s) ∗ pb(t)

f(s)
(4)

where D is a discount coefficient, f(s) is the raw
frequency for source phrase s, n(s) is the num-
ber of translation candidates for s in the phrase-
table, pb(t) is a back-off distribution proportional
to n(t). The first term is a discount that increases

when s is rare, while the second term adds some
probability mass back, based on the frequency and
degree of ambiguity of the target phrase t. There-
fore, Kneser-Ney smoothing has primarily a dis-
count effect, applied on rare source phrases. In ad-
dition, for more frequent and ambiguous phrases,
the relative frequency can be adjusted up or down
depending on how ambiguous s and t are.

Overall, there are some similarities between the
impact of Kneser-Ney smoothing and linear mix-
tures, since one can expect that the translation
distributions will diverge more from global rela-
tive frequencies for rare phrases than for frequent
phrases. However, the discounting / down-scaling
effects are controlled by very different parameters
in linear mixtures than in Kneser-New smoothing.
In order to better understand these differences in
practice, an empirical analysis is required.

6.3 Empirical Comparison

How do linear mixtures and smoothing affect
translation probabilities p(t|s) in practice? We
use the Jensen-Shannon divergence (Lin, 1991) to
quantify the distance between (a) various mixture
model estimates and (b) the global smoothed rela-
tive frequency estimates used in our baseline “no
mix” experiments. In addition, we also compare
the Kneser-Ney smoothed translation probabilities
with unsmoothed relative frequencies, in order to
highlight the difference between standard smooth-
ing techniques and linear mixture models.

Figures 2 and 3 show the distributions of di-
vergence values by source phrase frequencies for
Chinese-English phrase-tables. The divergence
from the global estimate is the largest for rare
phrases in all cases, as expected based on previous
Sections. However, the Figures also highlight the
different behavior of linear mixtures compared to
Kneser-Ney smoothing. The divergence values are
much higher overall for the linear mixtures than
for smoothing (note that the difference in range
on the y axis in Figure 2 vs. Figure 3). In addi-
tion, linear mixtures have a large impact on trans-
lation probabilities not only on the rarest source
phrases but also on relatively frequent phrases: in
Figure 3, the median Jensen-Shannon divergence
remains high for source phrases extracted up to
128 times from the training set3, while the median
value drops significantly as the frequency range in-

3Recall that we use multiple word alignment methods, so
extraction counts are summed across all alignment methods.
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Figure 3: Comparing translation probability distributions of mixtures vs. “nomix” on Chinese webforum
data, including EM weights (top row) and uniform weights (bottom row).

creases in Figure 2. In addition, uniform mixtures
have an even higher impact on frequent phrases
than mixtures based on EM weights.

Furthermore, the nature of mixture components
used has a visible impact on the divergence distri-
butions in Figure 3: random partitions yield lower
divergences for very frequent source phrases.

Overall, the linear mixtures result in very differ-
ent translation probability distributions than global
estimates, including smoothed estimates. This
suggests that standard smoothing techniques can
be improved when learning from heterogeneous
training data, and that mixture components are
beneficial even when they do not explicitly cap-
ture domain distinctions.

7 Related work

Most previous work on domain adaptation in ma-
chine translation presupposes a clear-cut distinc-
tion between in-domain and out-of-domain data
(Koehn and Schroeder, 2007; Foster and Kuhn,
2007; Duh et al., 2010; Bisazza et al., 2011; Had-
dow and Koehn, 2012; Sennrich, 2012b; Haddow
and Koehn, 2012; Clark et al., 2012, among many

others). We focused instead on a different less-
studied question: how can we leverage training
data drawn from a wide variety of sources, genres,
time periods, to translate a domain represented by
a small development set?

Many approaches focus on mapping the test do-
main to a single subset of the training data. In con-
trast, we show that the test domain can be flex-
ibly represented by a mixture of many compo-
nents. Yamamoto and Sumita (2007) cluster the
parallel data using bilingual representations, and
assign data to a single cluster at test time. Wang
et al. (2012) show how to detect a known domain
at test time in order to configure a generic transla-
tion system with domain-specific feature weights.
Others select a subset of training data that is rele-
vant to the test domain, using e.g., IR techniques
(Hildebrand et al., 2005) or language model cross-
entropy (Axelrod et al., 2011).

Closer to this work, Sennrich (2012a) proposes
a sentence-level clustering approach to automati-
cally recover domain distinctions in a heteoroge-
neous corpus obtained by concatenating data from
a small number of very distant domains. The tar-
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get domain was Alpine Club reports, while out
of domain data sets comprised European parlia-
ment proceedings and movie subtitles. We address
training conditions where the dimensions for or-
ganizing the training data are not as clear-cut, and
show that partitions that do not attempt to mimick
domain distinctions can improve translation qual-
ity. It would be interesting to see whether our con-
clusion holds in these more artificial training set-
tings, and whether sentence-level corpus organiza-
tion could help translation quality in our settings.

Finally, recent work shows that linear mixture
weights can be optimized for BLEU, either di-
rectly (Haddow, 2013), or by simulating discrim-
inative training (Foster et al., 2013). In this pa-
per, we limited our studies to maximum likelihood
and uniform mixtures, however, the various mix-
ture component definitions proposed here can also
be applied when maximizing BLEU.

8 Conclusion

We have presented an extensive study of lin-
ear mixtures for training translation models on
very heterogeneous data on Arabic-English and
Chinese-English translation tasks. In addition, we
evaluated the robustness of our models across two
distinct domains on the Arabic-English task.

Our results show that linear mixtures reliably
and robustly improve the quality of machine trans-
lation. Improvements on the mixture-free base-
line system range from 0.7 to 1.6 BLEU points
depending on the components and weights used.
While linear mixture translation models were orig-
inally proposed for domain adaptation tasks, we
showed that linear mixtures that have no domain
knowledge can perform as well or better than tra-
ditional mixtures meant to perform domain adap-
tation. This suggests that improvements with lin-
ear mixture models do not only stem from giving
more weight to sections of the training data that
are relevant to the test domain, as is assumed in
a standard domain adaptation task. Improvements
also come from averaging better generic estimates
from the heterogeneous training data. In other
words, in heterogeneous training settings, linear
mixture models improve translation quality even
though they do not perform domain adaptation.
Finally, we show that while linear mixtures can
be viewed as a smoothing technique, linear mix-
ture estimates do not diverge from global estimates
in the same way as Kneser-Ney smoothed transla-

tion probabilities. In particular, while smoothing
primarily has a large discounting effect for rare
source phrases, linear mixtures yield differences
in translation probabilities for phrases with a wider
range of frequencies.

These surprising results encourage us to rethink
the use of mixture models, and opens up new ways
of conceptualizing learning from heterogeneous
data beyond domain adaptation. In future work,
we will extend this study by varying the gran-
ularity of basic elements used to define mixture
components, including sentences and phrases, and
will explore how they compare with more general
smoothing techniques.
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