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Abstract

While various approaches to domain adap-
tation exist, the majority of them requires
knowledge of the target domain, and ad-
ditional data, preferably labeled. For a
language like English, it is often feasible
to match most of those conditions, but in
low-resource languages, it presents a prob-
lem. We explore the situation when nei-
ther data nor other information about the
target domain is available. We use two
samples of Danish, a low-resource lan-
guage, from the consumer review domain
(film vs. company reviews) in a sentiment
analysis task. We observe dramatic perfor-
mance drops when moving from one do-
main to the other. We then introduce a
simple offline method that makes models
more robust towards unseen domains, and
observe relative improvements of more
than 50%.

1 Introduction

Sentiment analysis, the task of determining the
polarity of a text, is a valuable tool for gather-
ing information from the vast amount of opin-
ionated text produced today. It is actively used
in reputation management and consumer assess-
ment (Amigó et al., 2012; Amigó et al., 2013).
While supervised approaches achieve reasonable
performance (Mohammad et al., 2013), they are
typically highly domain-dependent. In fact, mov-
ing from one (source) domain to a different (tar-
get) domain will often lead to severe performance
drops (Blitzer et al., 2007; Daumé et al., 2010).
This is mainly due to the models overfitting the
source (training) data, both in terms of its la-
bel and word distribution. The task of overcom-
ing this tendency is known as domain adaptation
(DA) (Blitzer et al., 2007; Daumé et al., 2010).

There are three different approaches to DA: in
Supervised DA, labeled training data for the target
domain exists, in Unsupervised DA, data for the
target domain exists, but it is unlabeled. A third,
less investigated scenario is Blind DA: the target
domain is not known at all in advance. Super-
vised DA effectively counteracts domain-bias by
including labeled data from the target domain dur-
ing training, thus preventing overfitting to both the
label and the word distribution of the source. Un-
supervised methods usually rely either on external
data, in the form of gazetteers, dictionaries, or on
unlabeled data from the target domain. While they
do not prevent overfitting to the source domain’s
label distribution, the additional data acts as a reg-
ularizer by introducing a larger vocabulary.

However, both cases presuppose that we already
know the target domain and have data from it. In
many real-world settings, these conditions are not
met, especially when dealing with low-resource
languages. We thus need to regularize our models
independent of the possible target domains. Ef-
fectively, this means that we need to prevent our
models from memorizing the observed label distri-
bution, and from putting too much weight on fea-
tures that are predictive in the source domain, but
might not even be present in the target domain.

In this paper, we investigate sentiment analysis
for Danish, a low-resource language, and therefore
approach it as a Blind DA problem. We perform
experiments on two types of domains, namely re-
views for movies and companies. The challenge
lies in the fact that the label distribution (posi-
tive, negative, neutral) changes dramatically when
moving from one domain to the other, and many
highly predictive words in the company domain
(e.g., “reliable”) are unlikely to carry over to the
movie domain, and vice versa. To the best of our
knowledge, this is the first study to perform senti-
ment analysis for Danish, a low-resource language
where relevant resources like polarity dictionaries
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are hard to come by.
We present a simple offline-learning version in-

spired by previous work on corruptions (Søgaard,
2013), which also addresses the sparsity of avail-
able training data. Our method introduces a rela-
tive improvement on out-of-domain performance
by up to 54%.

2 Robust Learning

The main idea behind robust learning is to steer the
model away from overfitting the source domain.
Overfitting can occur either by

1. putting too much weight on certain features
(which might not be present in the target do-
main), or

2. over-using certain labels (since the label dis-
tribution on the target domain might differ).

One approach that has been proven to re-
duce overfitting is data corruption, also known as
dropout training (Søgaard and Johannsen, 2012;
Søgaard, 2013), which is a way of regularizing
the model by randomly leaving out features. In-
tuitively, this approach can be viewed as coercing
the learning algorithm to rely on more general, but
less consistent features. Rather than learning to
mainly trust the features that are highly predictive
for the given training data, the algorithm is encour-
aged to use the less predictive features, since the
highly predictive features might be deleted by the
corruption. Most prior work on dropout regular-
ization (Søgaard and Johannsen, 2012; Wang and
Manning, 2012; Søgaard, 2013) has used online
corruptions, i.e., the specific dropout function is
integrated into the learning objective and thus tied
to the specific learner. Here, we propose a simple
approximation, i.e., a wrapper function that cor-
rupts instances in an off-line fashion based on the
weights learned from a base model. The advan-
tage is that it can be used for any learning func-
tion, thereby abstracting away from the underlying
learner.

2.1 Our approach

Our off-line feature corruption algorithm works as
follows:

1. train an uncorrupted (base) model,

2. create k copies of the training data instances,

3. corrupt copies based on the feature weights of
the base model and an exponential function
(described below), and

4. train a new model on the corrupted training
data.

The advantages of this algorithm compared to
online corruption are

1. it is a wrapper method, so it becomes very
easy to move to a different learning algo-
rithm, and

2. corruption is done based on knowledge from
a full, uncorrupted model, which provides a
better picture of the overfitting.

This comes, however, at the cost of longer training
times, but in a low-resource language training time
is less of an issue.

Specifically, multiple copies of the training data
are used in the corrupted training stage. This re-
sults in each data point appearing in different, cor-
rupted versions, as visualized in Figure 1. The
copying process retains more of the information in
the training data, since it is unlikely that the same
feature is deleted in each copy. In our experiments,
we used k=5. Larger values of k resulted in longer
training times without improving performance.
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Figure 1: Example of an original feature vector
and its multiple corrupted copies.

We experiment with a random and a biased
corruption approach. The first approach (Søgaard
and Johannsen, 2012) does not utilize the feature
weight information from the base model, but ran-
domly deletes 10% of the features. We use this
approach to test whether an effect is merely the
result of deleting features.

The biased approach, on the other hand, tar-
gets the most predictive features in the base model
for deletion. We use a function that increases
the probability of deleting a feature exponentially
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Figure 2: The corruption function conditioning the
probability of deleting a feature in a positive in-
stance on its weight in the Scope baseline model.

with its model weight. That is, a highly predic-
tive feature (with a high weight in the model) will
be more likely to be deleted. A feature with a
low weight, on the other hand, has a much lower
chance of being deleted. Figure 2 visualizes the
exponential corruption function used. The func-
tion assigns the lowest weighted feature of the
model zero likelihood of deletion, and the highest
weighted feature a 0.9 likelihood of deletion. In
order to mainly corrupt the highly predictive fea-
tures, the exponential function is shifted to an area
with a steeper gradient. That is, instead of scal-
ing to the exponential function between 0 and 1, it
is scaled to the area between -3 and 2 (parameters
set experimentally on the development set). The
corruption probability pcor of deleting a feature f
given a category c is defined as

pcor(f |c) =
exp(

w(f |c)−wmin(c)

wmax(c)−wmin(c)
∗5−3)−exp(−3)

exp(2)−exp(−3) ∗ 0.9
(1)

with w(f |c) being the weight of f given the in-
stance category c in the model, and wmin(c) and
wmax(c) being the lowest and highest weights of
the model respectively for category c.

3 Experiments

Our experiments use Danish reviews from two do-
mains: movies and companies. The specifications
of the data sets are listed in Table 1 and Figure 3.
The two data sets differ considerably in data size
and label distribution.

DOMAIN SPLIT REVIEWS WORDS

Scope Train 8,718 749,952
Dev 1,198 107,351
Test 2,454 210,367
Total 12,370 1,067,670

Trustpilot Train 170,137 7,180,160
Dev 23,958 1,000,443
Test 48,252 2,040,956
Total 242,347 10,221,559

Table 1: Overview of data set and split sizes in
number of reviews and number of words.

3.1 Data preparation
The movie reviews are downloaded from a Dan-
ish movie website, www.scope.dk. They con-
tain reviews of 829 movies, each rated on a scale
from 1 to 6 stars. The company reviews are
downloaded from a Danish consumer review web-
site, www.trustpilot.dk. They consist of re-
views of 19k companies, each rated between 1 and
5 stars.

Similar to prior work on sentiment analy-
sis (Blitzer et al., 2007), the star ratings are binned
into the three standard categories; positive, neu-
tral, and negative. For the Scope data, a 6 star rat-
ing is considered positive, a 3 or 4 rating neutral,
and a 1 star rating negative. 2 and 5 star ratings are
excluded to retain more distinct categories. For the
Trustpilot data, 5 star reviews are categorized as
positive, 3 stars as neutral, and 1 star as negative.
Similar to Scope data, 2 and 4 stars are excluded.
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Figure 3: Label distribution in the two data sets.

Apart from the difference in size, the two data
sets also differ in the distribution of categories (see
Figure 3). This means that a majority label base-
line estimated from one would perform horribly on
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- N-gram presence for token lengths 1 to 4
- Skip-grams (n-gram with one middle word replaced by *) presence for token lengths 3 to 4
- Character n-gram presence for entire document string for token lengths 1 to 5
- Brown clusters (Brown et al., 1992; Liang, 2005) estimated on the source training data
- Number of words with only upper case characters
- Number of contiguous sequences of question marks, exclamation marks, or both
- Presence of question mark or exclamation mark in last word
- Number of words with characters repeated more than two times e.g. ’sooooo’
- Number of negated contexts using algorithm described in the text
- Most positive, most negative, or same amount of polar words according to a sentiment lexicon

Table 2: Feature set description.

the other domain. For instance, the majority base-
line on Scope (assigning neutral to all instances)
achieves a 5% accuracy on Trustpilot data. Sim-
ilarly, the Trustpilot majority baseline obtains an
accuracy of 27% on Scope data by always assign-
ing positive.

We choose not to balance the data sets, in keep-
ing with the blind DA setup. Knowing the target
label distribution can help greatly, but we can as-
sume no prior knowledge about that. In fact, the
difference in label distribution is one of the ma-
jor challenges when predicting on out-of-domain
data.

3.2 Features

The features we use (described in Table 2) are
inspired by the top performing system from the
SemEval-2013 task on Twitter sentiment analy-
sis (Mohammad et al., 2013).

One main difference is that Mohammad et al.
(2013) had several high-quality sentiment lexicons
at their disposal, shown to be effective. Working
with a low-resource language, we only have ac-
cess to a single lexicon created by an MA student
(containing 2248 positive and 4736 negative word
forms). Our lexicon features are therefore simpler,
i.e., based on whether words are considered pos-
itive or negative in the lexicon, as opposed to the
score-based features in Mohammad et al. (2013).

We adopted the simple negation scope reso-
lution algorithm directly from Mohammad et al.
(2013). Anything appearing in-between a negation
token1 and the first following punctuation mark is
considered a negated context. This works well for
English, but Danish has different sentence adver-
bial placement, so the negation may also appear

1We use the following negation markers: ikke, ingen, in-
tet, ingenting, aldrig, hverken. næppe.

after the negated constituent. This simple algo-
rithm is therefore less likely to be beneficial in a
Danish system. We plan to extend the system for
better negation handling in future work.

3.3 Corruption

The corruption happens at the feature-instance
level. When we refer to the deletion of a feature
in the following, it does not mean the deletion of
this feature throughout the training data, but the
deletion of a single instance in a feature vector (cf.
Figure 1).

Corrupting the Scope data deleted 9.24% of all
feature instances in the training data. Most fea-
tures are deleted from positive instances (16.7%
of all features) and least from the majority neutral
instances (6.5% of all features). Only 9.4% of the
minority class negative are deleted.

For Trustpilot, the corruption deleted 11.73%
of the feature instances. The pattern is the same
here, though more extreme. The majority positive
class has the fewest features removed (2.2%), the
minority class neutral has 22.8% of its features
deleted, and the negative class has an overwhelm-
ing 35.6% of its features deleted.

The fact that the corruption function does not
take the weight distribution of the individual la-
bels into account, and therefore corrupts the data
of some labels much more than others, does prove
to be a problem. We will get back to this in the
results section.

4 Results

Table 3 shows the results of the experiments. We
report both accuracy and the average f-score for
positive and negative instances (AF).

AF is the official SemEval-2013 metric (Nakov
et al., 2013). It offers a more detailed insight into
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In-domain Out-of-domain
System Dev set Test set Dev set Test set

Acc. AF Acc. AF Acc. AF Acc. AF
Scope baseline 84.2 75.6 82.4 72.1 35.5 43.3 36.0 44.3
Scope random corrupt 83.1 72.9 82.7 72.8 35.7 43.9 36.2 44.5
Scope biased corrupt 82.7 72.6 81.5 70.6 55.5 48.6 55.5 44.9
Trustpilot baseline 94.8 91.8 94.3 91.2 39.9 45.0 39.9 46.2
Trustpilot random corrupt 94.8 91.7 94.4 91.4 39.8 45.6 40.0 46.0
Trustpilot biased corrupt 93.7 89.0 93.4 89.5 43.6 45.7 43.4 44.7

Table 3: Evaluation on development and test sets measured in accuracy (Acc.) and the average f-score
for positive and negative instances (AF).

the model’s performance on the two “extreme”
classes, but it is highly skewed, since it ignores the
neutral label. As we have seen in our data, this
can make up the majority of the instances. Ac-
curacy has the advantage that it provides a clear
picture of how often the system makes a correct
prediction, but can be harder to interpret when the
data sets are highly skewed in favor of one class.

The results show that randomly corrupting the
data (cf. Søgaard and Johannsen (2012), Sec. 5)
does not have much influence on the model. Per-
formance on in- and out-of-domain data is similar
to the baseline system. This indicates that we can
not just delete any features to help domain adapta-
tion.

The biased corruption model, on the other hand,
makes informed choices about deleting features.
As expected, this leads to a drop on in-domain
data, since we are underfitting the model. Con-
sidering that the algorithm is targeting the most
important features for this particular domain, the
drop is relatively small, though. The percentage
of features deleted is roughly the same as the 10%
for the random system (see section 3.3).

With the exception of AF on Trustpilot test,
our biased corruption approach always increases
out-of-domain performance. The increase is es-
pecially notable when the model is trained on the
small domain, Scope. On both test and develop-
ment, the corruption approach increases accuracy
more than 50%. On the AF measure, the increase
is smaller, which indicates that most of the in-
crease stems from the neutral category. On the
test set, the f-score for positive labels increases
from 49.1% to 71.2%, neutral increases from
13.5% to 18.4%, but negative decreases from
39.4% to 27.5%. The fact that f-score decreases on
negative indicates that the corruption algorithm

is too aggressive for this category. We previously
saw that this was the category where 35% of the
features are deleted.

The lower degree of overfitting in the corrupted
model is also reflected in the overall label distri-
bution. For the Scope system, the training data
has a negative/neutral/positive distribution (in per-
centages) of 27/61/12. The baseline predictions
on the Trustpilot data has a very similar distribu-
tion of 30/63/7, while the corrupted system results
in a very different distribution of 52/35/13, which
is more similar to the Trustpilot gold distribution
of 85/5/10. The KL divergence between the base-
line system and the Trustpilot data is 1.26, while
for the corrupted system it is 0.46.

5 Related Work

There is a large body of prior work on sen-
timent analysis (Pang and Lee, 2008), ranging
from work on well-edited newswire data using
the MPQA corpus (Wilson et al., 2005), to Ama-
zon reviews (Blitzer et al., 2007), blogs (Kessler
et al., 2010) and user-generated content such as
tweets (Mohammad et al., 2013). All of these
studies worked with English, while this study – to
the best of our knowledge – is the first to present
results for Danish.

As far as we are aware of, the only related work
on Danish is Hardt and Wulff (2012). In their ex-
ploratory paper, they investigate whether user pop-
ulations differ systematically in the way they ex-
press sentiment, finding that positive ratings are
far more common in U.S. reviews than in Danish
ones. However, their paper focuses on a quantita-
tive analysis and a single domain (movie reviews),
while we build an actual sentiment classification
system that performs well across domains.

Data corruption has been used for other NLP
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tasks (Søgaard and Johannsen, 2012; Søgaard,
2013). Our random removal setup is basi-
cally an offline version of the approach presented
in (Søgaard and Johannsen, 2012). Their online
algorithm removes a random subset of the features
in each iteration and was successfully applied to
cross-domain experiments on part-of-speech tag-
ging and document classification. Søgaard (2013)
presents a follow-up online approach that takes
the weights of the current model into considera-
tion, regularizing the most predictive features. Our
biased approach is inspired by this, but has the ad-
vantage that it abstracts away from the underlying
learner.

6 Discussion and Future Work

We investigate cross-domain sentiment analysis
for a low-resource language, Danish. We observe
that performance drops precipitously when train-
ing on one domain and evaluating on the other. We
presented a robust offline-learning approach that
deletes features proportionate to their predictive-
ness. Applied to blind domain adaptation, this cor-
ruption method prevents overfitting to the source
domain, and results in relative improvements of
more than 50%.

In the future, we plan to experiment with in-
tegrating the weight distribution of a label into
the corruption function in order to prevent over-
corrupting of certain labels.
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Enrique Amigó, Jorge Carrillo de Albornoz, Irina
Chugur, Adolfo Corujo, Julio Gonzalo, Tamara
Martı́n, Edgar Meij, Maarten de Rijke, and Dami-
ano Spina. 2013. Overview of RepLab 2013: Eval-
uating Online Reputation Monitoring Systems. In
CLEF.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and

blenders: Domain adaptation for sentiment classi-
fication. In ACL.

P.F. Brown, P.V. Desouza, R.L. Mercer, V.J. DellaPi-
etra, and J.C. Lai. 1992. Class-based n-gram mod-
els of natural language. Computational linguistics,
18(4):467–479.
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