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Abstract

Many successful approaches to semantic
parsing build on top of the syntactic anal-
ysis of text, and make use of distribu-
tional representations or statistical mod-
els to match parses to ontology-specific
queries. This paper presents a novel deep
learning architecture which provides a se-
mantic parsing system through the union
of two neural models of language se-
mantics. It allows for the generation of
ontology-specific queries from natural lan-
guage statements and questions without
the need for parsing, which makes it es-
pecially suitable to grammatically mal-
formed or syntactically atypical text, such
as tweets, as well as permitting the devel-
opment of semantic parsers for resource-
poor languages.

1 Introduction

The ubiquity of always-online computers in the
form of smartphones, tablets, and notebooks has
boosted the demand for effective question answer-
ing systems. This is exemplified by the grow-
ing popularity of products like Apple’s Siri or
Google’s Google Now services. In turn, this cre-
ates the need for increasingly sophisticated meth-
ods for semantic parsing. Recent work (Artzi and
Zettlemoyer, 2013; Kwiatkowski et al., 2013; Ma-
tuszek et al., 2012; Liang et al., 2011, inter alia)
has answered this call by progressively moving
away from strictly rule-based semantic parsing, to-
wards the use of distributed representations in con-
junction with traditional grammatically-motivated
re-write rules. This paper seeks to extend this line
of thinking to its logical conclusion, by provid-
ing the first (to our knowledge) entirely distributed
neural semantic generative parsing model. It does
so by adapting deep learning methods from related

work in sentiment analysis (Socher et al., 2012;
Hermann and Blunsom, 2013), document classifi-
cation (Yih et al., 2011; Lauly et al., 2014; Her-
mann and Blunsom, 2014a), frame-semantic pars-
ing (Hermann et al., 2014), and machine trans-
lation (Mikolov et al., 2010; Kalchbrenner and
Blunsom, 2013a), inter alia, combining two em-
pirically successful deep learning models to form
a new architecture for semantic parsing.

The structure of this short paper is as follows.
We first provide a brief overview of the back-
ground literature this model builds on in §2. In §3,
we begin by introducing two deep learning models
with different aims, namely the joint learning of
embeddings in parallel corpora, and the generation
of strings of a language conditioned on a latent
variable, respectively. We then discuss how both
models can be combined and jointly trained to
form a deep learning model supporting the gener-
ation of knowledgebase queries from natural lan-
guage questions. Finally, in §4 we conclude by
discussing planned experiments and the data re-
quirements to effectively train this model.

2 Background

Semantic parsing describes a task within the larger
field of natural language understanding. Within
computational linguistics, semantic parsing is typ-
ically understood to be the task of mapping nat-
ural language sentences to formal representations
of their underlying meaning. This semantic rep-
resentation varies significantly depending on the
task context. For instance, semantic parsing has
been applied to interpreting movement instruc-
tions (Artzi and Zettlemoyer, 2013) or robot con-
trol (Matuszek et al., 2012), where the underlying
representation would consist of actions.

Within the context of question answering—the
focus of this paper—semantic parsing typically
aims to map natural language to database queries
that would answer a given question. Kwiatkowski
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et al. (2013) approach this problem using a multi-
step model. First, they use a CCG-like parser
to convert natural language into an underspecified
logical form (ULF). Second, the ULF is converted
into a specified form (here a FreeBase query),
which can be used to lookup the answer to the
given natural language question.

3 Model Description

We describe a semantic-parsing model that learns
to derive quasi-logical database queries from nat-
ural language. The model follows the structure of
Kwiatkowski et al. (2013), but relies on a series of
neural networks and distributed representations in
lieu of the CCG and λ-Calculus based representa-
tions used in that paper.

The model described here borrows heavily from
two approaches in the deep learning literature.
First, a noise-contrastive neural network similar to
that of Hermann and Blunsom (2014a, 2014b) is
used to learn a joint latent representation for nat-
ural language and database queries (§3.1). Sec-
ond, we employ a structured conditional neural
language model in §3.2 to generate queries given
such latent representations. Below we provide the
necessary background on these two components,
before introducing the combined model and de-
scribing its learning setup.

3.1 Bilingual Compositional Sentence Models

The bilingual compositional sentence model
(BiCVM) of Hermann and Blunsom (2014a) pro-
vides a state-of-the-art method for learning se-
mantically informative distributed representations
for sentences of language pairs from parallel cor-
pora. Through the joint production of a shared la-
tent representation for semantically aligned sen-
tence pairs, it optimises sentence embeddings
so that the respective representations of dissim-
ilar cross-lingual sentence pairs will be weakly
aligned, while those of similar sentence pairs will
be strongly aligned. Both the ability to jointly
learn sentence embeddings, and to produce latent
shared representations, will be relevant to our se-
mantic parsing pipeline.

The BiCVM model shown in Fig. 1 assumes
vector composition functions g and h, which map
an ordered set of vectors (here, word embed-
dings from DA,DB) onto a single vector in Rn.
As stated above, for semantically equivalent sen-
tences a, b across languages LA,LB , the model

aims to minimise the distance between these com-
posed representations:

Ebi(a, b) = ‖g(a)− h(b)‖2

In order to avoid strong alignment between dis-
similar cross-lingual sentence pairs, this error
is combined with a noise-contrastive hinge loss,
where n ∈ LB is a randomly sampled sentence,
dissimilar to the parallel pair {a, b}, and m de-
notes some margin:

Ehl(a, b, n) = [m+ Ebi(a, b)− Ebi(a, n)]+ ,

where [x]+ = max(0, x). The resulting objective
function is as follows

J(θ) =
∑

(a,b)∈C

(
k∑
i=1

Ehl(a, b, ni) +
λ

2
‖θ‖2

)
,

with λ
2‖θ‖2 as the L2 regularization term and

θ={g, h,DA,DB} as the set of model variables.

...

L1 sentence embedding

L1 word embeddings

L2 sentence embedding

L2 word embeddings

contrastive estimation

g

h

Figure 1: Diagrammatic representation of a
BiCVM.

While Hermann and Blunsom (2014a) applied
this model only to parallel corpora of sentences,
it is important to note that the model is agnostic
concerning the inputs of functions g and h. In this
paper we will discuss how this model can be ap-
plied to non-sentential inputs.
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3.2 Conditional Neural Language Models
Neural language models (Bengio et al., 2006) pro-
vide a distributed alternative to n-gram language
models, permitting the joint learning of a pre-
diction function for the next word in a sequence
given the distributed representations of a subset
of the last n−1 words alongside the representa-
tions themselves. Recent work in dialogue act la-
belling (Kalchbrenner and Blunsom, 2013b) and
in machine translation (Kalchbrenner and Blun-
som, 2013a) has demonstrated that a particular
kind of neural language model based on recurrent
neural networks (Mikolov et al., 2010; Sutskever
et al., 2011) could be extended so that the next
word in a sequence is jointly generated by the
word history and the distributed representation for
a conditioning element, such as the dialogue class
of a previous sentence, or the vector representation
of a source sentence. In this section, we briefly de-
scribe a general formulation of conditional neural
language models, based on the log-bilinear mod-
els of Mnih and Hinton (2007) due to their relative
simplicity.

A log-bilinear language model is a neural net-
work modelling a probability distribution over the
next word in a sequence given the previous n−1,
i.e. p(wn|w1:n−1). Let |V | be the size of our vo-
cabulary, and R be a |V | × d vocabulary matrix
where the Rwi demnotes the row containing the
word embedding in Rd of a word wi, with d be-
ing a hyper-parameter indicating embedding size.
Let Ci be the context transform matrix in Rd×d

which modifies the representation of the ith word
in the word history. Let bwi be a scalar bias as-
sociated with a word wi, and bR be a bias vector
in Rd associated with the model. A log-bilinear
model expressed the probability of wn given a his-
tory of n−1 words as a function of the energy of
the network:

E(wn;w1:n−1) =

−
(
n−1∑
i=1

RTwi
Ci

)
Rwn − bTRRwn − bwn

From this, the probability distribution over the
next word is obtained:

p(wn|w1:n−1) =
e−E(wn;w1:n−1)∑
wn
e−E(wn;w1:n−1)

To reframe a log-bilinear language model as a
conditional language model (CNLM), illustrated

β

wnwn-1wn-2wn-3

Figure 2: Diagrammatic representation of a Con-
ditional Neural Language Model.

in Fig. 2, let us suppose that we wish to jointly
condition the next word on its history and some
variable β, for which an embedding rβ has been
obtained through a previous step, in order to com-
pute p(wn|w1:n−1, β). The simplest way to do this
additively, which allows us to treat the contribu-
tion of the embedding for β as similar to that of an
extra word in the history. We define a new energy
function:

E(wn;w1:n−1, β) =

−
((

n−1∑
i=1

RTwi
Ci

)
+ rTβCβ

)
Rwn− bTRRwn− bwn

to obtain the probability

p(wn|w1:n−1, β) =
e−E(wn;w1:n−1,β)∑
wn
e−E(wn;w1:n−1,β)

Log-bilinear language models and their condi-
tional variants alike are typically trained by max-
imising the log-probability of observed sequences.

3.3 A Combined Semantic Parsing Model
The models in §§3.1–3.2 can be combined to form
a model capable of jointly learning a shared la-
tent representation for question/query pairs using
a BiCVM, and using this latent representation to
learn a conditional log-bilinear CNLM. The full
model is shown in Fig. 3. Here, we explain the
final model architecture both for training and for
subsequent use as a generative model. The details
of the training procedure will be discussed in §3.4.

The combination is fairly straightforward, and
happens in two steps at training time. For the
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Figure 3: Diagrammatic representation of the full
model. First the mappings for obtaining latent
forms of questions and queries are jointly learned
through a BiCVM. The latent form for questions
then serves as conditioning element in a log-
bilinear CNLM.

first step, shown in the left hand side of Fig. 3,
a BiCVM is trained against a parallel corpora
of natural language question and knowledgebase
query pairs. Optionally, the embeddings for the
query symbol representations and question words
are initialised and/or fine-tuned during training,
as discussed in §3.4. For the natural language
side of the model, the composition function g can
be a simple additive model as in Hermann and
Blunsom (2014a), although the semantic informa-
tion required for the task proposed here would
probably benefit from a more complex composi-
tion function such as a convolution neural net-
work. Function h, which maps the knowledgebase
queries into the shared space could also rely on
convolution, although the structure of the database
queries might favour a setup relying primarily on
bi-gram composition.

Using function g and the original training data,
the training data for the second stage is created
by obtaining the latent representation for the ques-
tions of the original dataset. We thereby obtain
pairs of aligned latent question representations and
knowledgebase queries. This data allows us to
train a log-bilinear CNLM as shown on the right
side of Fig. 3.

Once trained, the models can be fully joined to
produce a generative neural network as shown in
Fig. 4. The network modelling g from the BiCVM

...

Question

Generated Query

g

Figure 4: Diagrammatic representation of the final
network. The question-compositional segment of
the BiCVM produces a latent representation, con-
ditioning a CNLM generating a query.

takes the distributed representations of question
words from unseen questions, and produces a la-
tent representation. The latent representation is
then passed to the log-bilinear CNLM, which con-
ditionally generates a knowledgebase query corre-
sponding to the question.

3.4 Learning Model Parameters

We propose training the model of §3.3 in a two
stage process, in line with the symbolic model of
Kwiatkowski et al. (2013).

First, a BiCVM is trained on a parallel corpus
C of question-query pairs 〈Q,R〉 ∈ C, using com-
position functions g for natural language questions
and h for database queries. While functions g and
hmay differ from those discussed in Hermann and
Blunsom (2014a), the basic noise-contrastive op-
timisation function remains the same. It is possi-
ble to initialise the model fully randomly, in which
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case the model parameters θ learned at this stage
include the two distributed representation lexica
for questions and queries, DQ and DR respec-
tively, as well as all parameters for g and h.

Alternatively, word embeddings inDQ could be
initialised with representations learned separately,
for instance with a neural language model or a
similar system (Mikolov et al., 2010; Turian et al.,
2010; Collobert et al., 2011, inter alia). Likewise,
the relation and object embeddings inDR could be
initialised with representations learned from dis-
tributed relation extraction schemas such as that
of Riedel et al. (2013).

Having learned representations for queries in
DR as well as function g, the second training phase
of the model uses a new parallel corpus consisting
of pairs 〈g(Q), R〉 ∈ C ′ to train the CNLM as pre-
sented in §3.3.

The two training steps can be applied iteratively,
and further, it is trivial to modify the learning
procedure to use composition function h as an-
other input for the CNLM training phrase in an
autoencoder-like setup.

4 Experimental Requirements and
Further Work

The particular training procedure for the model
described in this paper requires aligned ques-
tion/knowledgebase query pairs. There exist some
small corpora that could be used for this task
(Zelle and Mooney, 1996; Cai and Yates, 2013). In
order to scale training beyond these small corpora,
we hypothesise that larger amounts of (potentially
noisy) training data could be obtained using a
boot-strapping technique similar to Kwiatkowski
et al. (2013).

To evaluate this model, we will follow the ex-
perimental setup of Kwiatkowski et al. (2013).
With the provisio that the model can generate
freebase queries correctly, further work will seek
to determine whether this architecture can gener-
ate other structured formal language expressions,
such as lambda expressions for use in textual en-
tailement tasks.
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