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Abstract

We propose a new approach to semantic
parsing that is not constrained by a fixed
formal ontology and purely logical infer-
ence. Instead, we use distributional se-
mantics to generate only the relevant part
of an on-the-fly ontology. Sentences and
the on-the-fly ontology are represented in
probabilistic logic. For inference, we
use probabilistic logic frameworks like
Markov Logic Networks (MLN) and Prob-
abilistic Soft Logic (PSL). This seman-
tic parsing approach is evaluated on two
tasks, Textual Entitlement (RTE) and Tex-
tual Similarity (STS), both accomplished
using inference in probabilistic logic. Ex-
periments show the potential of the ap-
proach.

1 Introduction

Semantic Parsing is probably best defined as the
task of representing the meaning of a natural lan-
guage sentence in some formal knowledge repre-
sentation language that supports automated infer-
ence. A semantic parser is best defined as having
three parts, a formal language, an ontology, and an
inference mechanism. Both the formal language
(e.g. first-order logic) and the ontology define the
formal knowledge representation. The formal lan-
guage uses predicate symbols from the ontology,
and the ontology provides them with meanings by
defining the relations between them.1. A formal
expression by itself without an ontology is insuf-
ficient for semantic interpretation; we call it un-
interpreted logical form. An uninterpreted logical
form is not enough as a knowledge representation

1For conciseness, here we use the term “ontology” to refer
to a set of predicates as well as a knowledge base (KB) of
axioms that defines a complex set of relationships between
them

because the predicate symbols do not have mean-
ing in themselves, they get this meaning from the
ontology. Inference is what takes a problem repre-
sented in the formal knowledge representation and
the ontology and performs the target task (e.g. tex-
tual entailment, question answering, etc.).

Prior work in standard semantic parsing uses a
pre-defined set of predicates in a fixed ontology.
However, it is difficult to construct formal ontolo-
gies of properties and relations that have broad
coverage, and very difficult to do semantic parsing
based on such an ontology. Consequently, current
semantic parsers are mostly restricted to fairly lim-
ited domains, such as querying a specific database
(Kwiatkowski et al., 2013; Berant et al., 2013).

We propose a semantic parser that is not re-
stricted to a predefined ontology. Instead, we
use distributional semantics to generate the needed
part of an on-the-fly ontology. Distributional se-
mantics is a statistical technique that represents
the meaning of words and phrases as distributions
over context words (Turney and Pantel, 2010; Lan-
dauer and Dumais, 1997). Distributional infor-
mation can be used to predict semantic relations
like synonymy and hyponymy between words and
phrases of interest (Lenci and Benotto, 2012;
Kotlerman et al., 2010). The collection of pre-
dicted semantic relations is the “on-the-fly ontol-
ogy” our semantic parser uses. A distributional
semantics is relatively easy to build from a large
corpus of raw text, and provides the wide cover-
age that formal ontologies lack.

The formal language we would like to use in the
semantic parser is first-order logic. However, dis-
tributional information is graded in nature, so the
on-the-fly ontology and its predicted semantic re-
lations are also graded. This means, that standard
first-order logic is insufficient because it is binary
by nature. Probabilistic logic solves this problem
because it accepts weighted first order logic for-
mulas. For example, in probabilistic logic, the
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synonymy relation between “man” and “guy” is
represented by: ∀x. man(x) ⇔ guy(x) | w1 and
the hyponymy relation between “car” and “vehi-
cle” is: ∀x. car(x) ⇒ vehicle(x) | w2 where w1

and w1 are some certainty measure estimated from
the distributional semantics.

For inference, we use probabilistic logic
frameworks like Markov Logic Networks
(MLN) (Richardson and Domingos, 2006) and
Probabilistic Soft Logic (PSL) (Kimmig et al.,
2012). They are Statistical Relational Learning
(SRL) techniques (Getoor and Taskar, 2007) that
combine logical and statistical knowledge in one
uniform framework, and provide a mechanism for
coherent probabilistic inference. We implemented
this semantic parser (Beltagy et al., 2013; Beltagy
et al., 2014) and used it to perform two tasks
that require deep semantic analysis, Recognizing
Textual Entailment (RTE), and Semantic Textual
Similarity (STS).

The rest of the paper is organized as follows:
section 2 presents background material, section
3 explains the three components of the semantic
parser, section 4 shows how this semantic parser
can be used for RTE and STS tasks, section 5
presents the evaluation and 6 concludes.

2 Background

2.1 Logical Semantics

Logic-based representations of meaning have a
long tradition (Montague, 1970; Kamp and Reyle,
1993). They handle many complex semantic phe-
nomena such as relational propositions, logical
operators, and quantifiers; however, they can not
handle “graded” aspects of meaning in language
because they are binary by nature. Also, the logi-
cal predicates and relations do not have semantics
by themselves without an accompanying ontology,
which we want to replace in our semantic parser
with distributional semantics.

To map a sentence to logical form, we use Boxer
(Bos, 2008), a tool for wide-coverage semantic
analysis that produces uninterpreted logical forms
using Discourse Representation Structures (Kamp
and Reyle, 1993). It builds on the C&C CCG
parser (Clark and Curran, 2004).

2.2 Distributional Semantics

Distributional models use statistics on contextual
data from large corpora to predict semantic sim-
ilarity of words and phrases (Turney and Pantel,

2010; Mitchell and Lapata, 2010), based on the
observation that semantically similar words occur
in similar contexts (Landauer and Dumais, 1997;
Lund and Burgess, 1996). So words can be rep-
resented as vectors in high dimensional spaces
generated from the contexts in which they occur.
Distributional models capture the graded nature
of meaning, but do not adequately capture log-
ical structure (Grefenstette, 2013). It is possi-
ble to compute vector representations for larger
phrases compositionally from their parts (Lan-
dauer and Dumais, 1997; Mitchell and Lapata,
2008; Mitchell and Lapata, 2010; Baroni and
Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011). Distributional similarity is usually a mix-
ture of semantic relations, but particular asymmet-
ric similarity measures can, to a certain extent,
predict hypernymy and lexical entailment distri-
butionally (Lenci and Benotto, 2012; Kotlerman
et al., 2010).

2.3 Markov Logic Network
Markov Logic Network (MLN) (Richardson and
Domingos, 2006) is a framework for probabilis-
tic logic that employ weighted formulas in first-
order logic to compactly encode complex undi-
rected probabilistic graphical models (i.e., Markov
networks). Weighting the rules is a way of soft-
ening them compared to hard logical constraints.
MLNs define a probability distribution over possi-
ble worlds, where a world’s probability increases
exponentially with the total weight of the logical
clauses that it satisfies. A variety of inference
methods for MLNs have been developed, however,
their computational complexity is a fundamental
issue.

2.4 Probabilistic Soft Logic
Probabilistic Soft Logic (PSL) is another recently
proposed framework for probabilistic logic (Kim-
mig et al., 2012). It uses logical representations to
compactly define large graphical models with con-
tinuous variables, and includes methods for per-
forming efficient probabilistic inference for the re-
sulting models. A key distinguishing feature of
PSL is that ground atoms have soft, continuous
truth values in the interval [0, 1] rather than bi-
nary truth values as used in MLNs and most other
probabilistic logics. Given a set of weighted in-
ference rules, and with the help of Lukasiewicz’s
relaxation of the logical operators, PSL builds a
graphical model defining a probability distribution
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over the continuous space of values of the random
variables in the model. Then, PSL’s MPE infer-
ence (Most Probable Explanation) finds the over-
all interpretation with the maximum probability
given a set of evidence. It turns out that this op-
timization problem is second-order cone program
(SOCP) (Kimmig et al., 2012) and can be solved
efficiently in polynomial time.

2.5 Recognizing Textual Entailment
Recognizing Textual Entailment (RTE) is the task
of determining whether one natural language text,
the premise, Entails, Contradicts, or not related
(Neutral) to another, the hypothesis.

2.6 Semantic Textual Similarity
Semantic Textual Similarity (STS) is the task of
judging the similarity of a pair of sentences on
a scale from 1 to 5 (Agirre et al., 2012). Gold
standard scores are averaged over multiple human
annotations and systems are evaluated using the
Pearson correlation between a system’s output and
gold standard scores.

3 Approach

A semantic parser is three components, a formal
language, an ontology, and an inference mecha-
nism. This section explains the details of these
components in our semantic parser. It also points
out the future work related to each part of the sys-
tem.

3.1 Formal Language: first-order logic
Natural sentences are mapped to logical form us-
ing Boxer (Bos, 2008), which maps the input
sentences into a lexically-based logical form, in
which the predicates are words in the sentence.
For example, the sentence “A man is driving a car”
in logical form is:
∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧

patient(y, z) ∧ car(z)
We call Boxer’s output alone an uninterpreted

logical form because predicates do not have mean-
ing by themselves. They still need to be connected
with an ontology.

Future work: While Boxer has wide coverage,
additional linguistic phenomena like generalized
quantifiers need to be handled.

3.2 Ontology: on-the-fly ontology
Distributional information is used to generate the
needed part of an on-the-fly ontology for the given

input sentences. It is encoded in the form of
weighted inference rules describing the seman-
tic relations connecting words and phrases in the
input sentences. For example, for sentences “A
man is driving a car”, and “A guy is driving a
vehicle”, we would like to generate rules like
∀x.man(x)⇔ guy(x) |w1 indicating that “man”
and “guy” are synonyms with some certainty w1,
and ∀x. car(x)⇒ vehicle(x) | w2 indicating that
“car” is a hyponym of “vehicle” with some cer-
tainty w2. Other semantic relations can also be
easily encoded as inference rules like antonyms
∀x. tall(x)⇔ ¬short(x) |w, contextonymy rela-
tion ∀x. hospital(x) ⇒ ∃y. doctor(y) | w. For
now, we generate inference rules only as syn-
onyms (Beltagy et al., 2013), but we are experi-
menting with more types of semantic relations.

In (Beltagy et al., 2013), we generate infer-
ence rules between all pairs of words and phrases.
Given two input sentences T and H , for all pairs
(a, b), where a and b are words or phrases of T
and H respectively, generate an inference rule:
a → b | w, where the rule’s weight w =
sim(−→a ,

−→
b ), and sim is the cosine of the angle

between vectors −→a and
−→
b . Note that this simi-

larity measure cannot yet distinguish relations like
synonymy and hypernymy. Phrases are defined in
terms of Boxer’s output to be more than one unary
atom sharing the same variable like “a little kid”
which in logic is little(k) ∧ kid(k), or two unary
atoms connected by a relation like “a man is driv-
ing” which in logic is man(m) ∧ agent(d, m) ∧
drive(d). We used vector addition (Mitchell and
Lapata, 2010) to calculate vectors for phrases.

Future Work: This can be extended in many
directions. We are currently experimenting with
asymmetric similarity functions to distinguish se-
mantic relations. We would also like to use longer
phrases and other compositionality techniques as
in (Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011). Also more inference rules can
be added from paraphrases collections like PPDB
(Ganitkevitch et al., 2013).

3.3 Inference: probabilistic logical inference

The last component is probabilistic logical infer-
ence. Given the logical form of the input sen-
tences, and the weighted inference rules, we use
them to build a probabilistic logic program whose
solution is the answer to the target task. A proba-
bilistic logic program consists of the evidence set
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E, the set of weighted first order logical expres-
sions (rule base RB), and a query Q. Inference is
the process of calculating Pr(Q|E,RB).

Probabilistic logic frameworks define a proba-
bility distribution over all possible worlds. The
number of constants in a world depends on the
number of the discourse entities in the Boxer out-
put, plus additional constants introduced to han-
dle quantification. Mostly, all constants are com-
bined with all literals, except for rudimentary type
checking.

4 Tasks

This section explains how we perform the RTE
and STS tasks using our semantic parser.

4.1 Task 1: RTE using MLNs

MLNs are the probabilistic logic framework we
use for the RTE task (we do not use PSL here as
it shares the problems of fuzzy logic with proba-
bilistic reasoning). The RTE’s classification prob-
lem for the relation between T and H , and given
the rule base RB generated as in 3.2, can be
split into two inference tasks. The first is find-
ing if T entails H , Pr(H|T, RB). The second
is finding if the negation of the text ¬T entails H ,
Pr(H|¬T, RB). In case Pr(H|T, RB) is high,
while Pr(H|¬T, RB) is low, this indicates En-
tails. In case it is the other way around, this indi-
cates Contradicts. If both values are close to each
other, this means T does not affect probability of
H and that is an indication of Neutral. We train a
classifier to map the two values to the final classi-
fication decision.

Future Work: One general problem with
MLNs is its computational overhead especially
for the type of inference problems we have. The
other problem is that MLNs, as with most other
probabilistic logics, make the Domain Closure
Assumption (Richardson and Domingos, 2006)
which means that quantifiers sometimes behave in
an undesired way.

4.2 Task 2: STS using PSL

PSL is the probabilistic logic we use for the STS
task since it has been shown to be an effective
approach to compute similarity between struc-
tured objects. PSL does not work “out of the
box” for STS, because Lukasiewicz’s equation for
the conjunction is very restrictive. We addressed
this problem (Beltagy et al., 2014) by replacing

SICK-RTE SICK-STS
dist 0.60 0.65
logic 0.71 0.68
logic+dist 0.73 0.70

Table 1: RTE accuracy and STS Correlation

Lukasiewicz’s equation for the conjunction with
an averaging equation, then change the optimiza-
tion problem and the grounding technique accord-
ingly.

For each STS pair of sentences S1, S2, we run
PSL twice, once where E = S1, Q = S2 and
another where E = S2, Q = S1, and output the
two scores. The final similarity score is produced
from a regressor trained to map the two PSL scores
to the overall similarity score.

Future Work: Use a weighted average where
different weights are learned for different parts of
the sentence.

5 Evaluation

The dataset used for evaluation is SICK:
Sentences Involving Compositional Knowledge
dataset, a task for SemEval 2014. The initial data
release for the competition consists of 5,000 pairs
of sentences which are annotated for both RTE and
STS. For this evaluation, we performed 10-fold
cross validation on this initial data.

Table 1 shows results comparing our full
approach (logic+dist) to two baselines, a
distributional-only baseline (dist) that uses vector
addition, and a probabilistic logic-only baseline
(logic) which is our semantic parser without distri-
butional inference rules. The integrated approach
(logic+dist) out-performs both baselines.

6 Conclusion

We presented an approach to semantic parsing that
has a wide-coverage for words and relations, and
does not require a fixed formal ontology. An
on-the-fly ontology of semantic relations between
predicates is derived from distributional informa-
tion and encoded in the form of soft inference rules
in probabilistic logic. We evaluated this approach
on two task, RTE and STS, using two probabilistic
logics, MLNs and PSL respectively. The semantic
parser can be extended in different direction, es-
pecially in predicting more complex semantic re-
lations, and enhancing the inference mechanisms.
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