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Abstract

In response to Kobele et al. (2012), we
evaluate four ways of linking the process-
ing difficulty of sentences to the behav-
ior of the top-down parser for Minimal-
ist grammars developed in Stabler (2012).
We investigate the predictions these four
metrics make for a number of relative
clause constructions, and we conclude that
at this point, none of them capture the full
range of attested patterns.

1 Introduction

Minimalist grammars (MGs; (Stabler, 1997)) are
a mildly context-sensitive formalism inspired by
Minimalist syntax (Chomsky, 1995), the domi-
nant theory in generative syntax. MGs allow us to
evaluate syntactic proposals with respect to com-
putational and cognitive criteria such as genera-
tive capacity (Harkema, 2001; Michaelis, 2001) or
the memory structures they require (Kobele et al.,
2007; Graf, 2012).

A new kind of top-down parser for MGs has re-
cently been presented by Stabler (2011b; 2012).
Stabler’s parser is noteworthy because it uses
derivation trees as a data structure in order to
reduce MG parsing to a special case of parsing
context-free grammars (CFGs). This raises the
question, though, whether derivation trees are a
psychologically plausible data structure, and if so,
to which extent the Stabler parser makes it possi-
ble to test the psycholinguistic predictions of com-
peting syntactic analyses.

In order to address this question, a linking hy-
pothesis is needed that connects the behavior of
the parser to a processing difficulty metric. Ko-
bele et al. (2012) — henceforth KGH — propose
that the difficulty of sentence s correlates with
the maximum number of parse steps the parser
has to keep a parse item in memory while pro-
cessing s. This metric is called maximum tenure

(Max). Max is appealing because of its simplicity
and sensitivity to differences in linguistic analysis,
which makes it easy to determine the psycholin-
guistic predictions of a specific syntactic analyses.

In this paper, we show that Max does not make
the right predictions for I) relative clauses embed-
ded in a sentential complement and II) subjects
gaps versus object gaps in relative clauses. We
present a number of simple alternative measures
that handle these phenomena correctly, but we also
show that these metrics fail in other cases (all re-
sults are summarized in Tab. 1 on page 8). We con-
clude that the prospect of a simple direct link be-
tween syntactic analysis and processing difficulty
is tempting but not sufficiently developed at this
point.

The paper starts with a quick introduction to
MGs (Sec. 2.1) and how they are parsed (Sec. 2.2).
Section 3 then introduces three alternatives to
Max. Max is then shown to fare worse than those
three with respect to well-known contrasts involv-
ing relative clauses (Sec. 4). Section 5 briefly
looks at three other constructions that pose prob-
lems for the alternative metrics.

2 Preliminaries

2.1 Minimalist Grammars

MGs (Stabler, 1997; Stabler, 2011a) are a highly
lexicalized formalism in which structures are built
via the operations Merge and Move. Intuitively,
Merge enforces local dependencies via subcatego-
rization, whereas Move establishes long-distance
filler-gap dependencies.

Every lexical item comes with a non-empty list
of unchecked features, and each feature has either
positive or negative polarity and is checked by ei-
ther Merge or Move. Suppose that I) s is a tree
whose head has a positive Merge feature F+ as its
first unchecked feature, and II) t is a tree whose
head has a matching negative Merge feature F−
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as its first unchecked feature. Then Merge checks
F+ and F− and combines s and t into the tree
l(s, t) or l(t, s), where l is a label projected by the
head of s and s is linearized to the left of t iff s
consists of exactly one node. Move, on the other
hand, applies to a single tree s whose head h has
a positive Move feature f+ as its first unchecked
feature. Suppose that t is a subtree of s whose
head has the matching negative Move feature f−

as its first unchecked feature. Then Move checks
f+ and f− and returns the tree l(t, s′), where l is
a label projected by h and s′ is obtained by remov-
ing t from s. Crucially, Move may apply to s iff
there is exactly one subtree like t. This restriction
is known as the Shortest Move Constraint (SMC).

For example, the sentence John left involves (at
least) the following steps under a simplified Mini-
malist analysis (Adger, 2003):

Merge(John :: D− nom−, left :: D+ V−)
= [VP left :: V− John :: nom− ] (1)

Merge(ε :: V+ nom+ T−, (1))
= [TP ε :: nom+ T−[VP left

John :: nom−] ] (2)

Move((2)) = [TP John [T’ ε :: T−

[VP left ] ] ] (3)

This derivation can be represented more succinctly
as the derivation tree in Fig 1, where all leaves are
labeled by lexical items while unary and binary
branching nodes are labeled Move and Merge, re-
spectively.

Even though MGs (with the SMC) are weakly
equivalent to MCFGs (Michaelis, 2001) and thus
mildly context-sensitive in the sense of Joshi
(1985), their derivation tree languages can be gen-
erated by CFGs (modulo relabeling of interior
nodes). As we will see next, this makes it pos-
sible to treat MG parsing as a special case of CFG
parsing.

2.2 Parsing Minimalist Grammars
Thanks to the SMC, the mapping from deriva-
tion trees to phrase structure trees is determin-
istic. Consequently, MG parsing reduces to as-
signing context-free derivation trees to input sen-
tences, rather than the more complex phrase struc-
ture trees. The major difference from CFGs is

that the linear order of nodes in an MG deriva-
tion tree does not necessarily match the linear or-
der of words in the input sentence — for instance
because a moving phrase remains in its base posi-
tion in the derivation tree. But as long as one can
tell for every MG operation how its output is lin-
earized, these discrepancies in linear order can be
taken care of in the inference rules of the parser.
Stabler (2011b; 2012) shows how exactly this is
done for a parser that constructs derivation trees
in a top-down fashion. Intuitively, MG top-down
parsing is CFG top-down parsing with a slightly
different algorithm for traversing/expanding the
tree.

Instead of presenting the parser’s full set of in-
ference rules, we adopt KGH’s index notation to
indicate how the parser constructs a given deriva-
tion. For instance, if a derivation contains the node
5Merge38, this means that the parser makes a pre-
diction at step 5 that Merge occurs at this posi-
tion in the derivation and keeps this prediction in
memory until step 38, at which point the parser
replaces it by suitable predictions for the argu-
ments for Merge, i.e. the daughters of the Merge
node. Similarly, 22the :: N+ D−28 denotes that
the parser conjectures this lexical item at step 22
and finally gets to scan it in the input string at step
28.

In principle the parser could simply predict a
complete derivation and then scan the input string
to see if the two match. In order to obtain an in-
cremental parser, however, scanning steps have to
take place as soon as possible. The MG parser im-
plements this as follows: predictions are put into a
priority queue, and the prediction with the highest
priority is worked on first. The priority of the pre-
dictions corresponds to the linear order that holds
between the constituents that are obtained from
them. For example, if the parser replaces a predic-
tion for a Merge node yielding l(s, t) by predic-
tions ps and pt that eventually derive s and t, then
ps has higher priority than pt iff s is predicted to
precede t. Since Move only takes one argument s,
replacing a Move prediction by the prediction of
s trivially involves no such priority management.
However, if movement is to a position to the left
of s (as is standard for MGs), none of the lexical
items contained within s can be scanned until the
entire subtree moving out of s has been predicted
and scanned.

If a prediction does not have the highest prior-
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Figure 1: Minimalist phrase structure tree (left) and MG derivation tree (right) for John left

ity, it remains in the queue for a few steps before it
is expanded into other predictions or discharged
by scanning a word from the input string. The
number of steps a prediction stays in the queue
is called its tenure. With KGH’s index notation,
the tenure of each node is the difference between
its indices. Given a parse, its maximum tenure
Max is the smallest n such that the parser stored
no prediction in its queue for more than n steps.
KGH demonstrate that Max can be used to gauge
how hard it is for humans to process certain struc-
tures. This amounts to equating processing dif-
ficulty with memory retention requirements. But
as we show in the remainder of this paper, Max
faces problems with relative clause constructions
that were not considered by KGH.

3 Alternative Metrics

3.1 Three New Metrics

In an attempt to home in on the shortcomings of
Max, we contrast it with a number of alternative
metrics. Since the main advantage of Max is its
simplicity, which makes it possible to quickly de-
termine the processing predictions of a given syn-
tactic analysis, the metrics we consider are also
kept as simple as possible.

MaxLex the maximum tenure of all leaves in the
derivation

Box the maximum number of nodes with tenure
strictly greater than 2

BoxLex the maximum number of leaves with
tenure strictly greater than 2

MaxLex is simply the restriction of Max to leaf
nodes. Box and BoxLex provide a measure of how
many items have to be stored in memory during
the parse and hence incur some non-trivial amount
of tenure. The threshold is set to 2 rather than 1 to
exclude lexical items that are right siblings of an-
other lexical item. In such a case, a single predic-
tion is immediately followed by two consecutive

scan steps, which could just as well be thought
of as one scan step spanning two words. Nodes
with tenure over 2 are highlighted by a box in our
derivation trees, hence the name for these two met-
rics.

All four measures are also divided into two sub-
types depending on whether unpronounced leaves
(e.g. the empty T-head in Fig. 1) are taken into ac-
count — this is inspired by the exclusion of un-
pronounced material in the TAG-parser of Ram-
bow and Joshi (1995). When reporting the val-
ues for the metrics, we thus give slashed values of
the form m/n, where m is the value with unpro-
nounced leaves and n the value without them.

3.2 Methodological Remarks

The following sections investigate the predictions
of our difficulty metrics with respect to the em-
bedding of sentential complements versus relative
clauses, subject gaps versus object gaps in relative
clauses, left embedding, and verb clusters. In or-
der for this comparison to be meaningful, we have
to make the same methodological assumptions as
KGH.

First, the difficulty metric only has to account
for overall sentence difficulty, it does not neces-
sarily correlate with difficulty at a specific word.
More importantly, though, all reported processing
difficulties are assumed to be due to memory load.
This is a very strong assumption. A plethora of
alternative accounts are available in the literature.
The contrast between subject gaps and object gaps
alone has been explained by information-theoretic
notions such as surprisal (Hale, 2003; Levy, 2013),
the active filler strategy (Frazier and D’Arcais,
1989), or theta role assignment (Pritchett, 1992),
to name but a few (see Lin (2006) and Wu (2009)
for extensive surveys).

Even those accounts that attribute processing
difficulty to memory requirements make ancillary
assumptions that are not reflected by the simple
memory model entertained here. Gibson’s Depen-
dency Locality Theory (1998), for instance, cru-
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cially relies on discourse reference as a means for
determining how much of a memory burden is in-
curred by each word.

We take no stance as to whether these accounts
are correct. Our primary interest is the feasibility
of a memory-based evaluation metric for Stabler’s
top-down parser. Memory is more likely to play
a role in the constructions we look at in the next
two sections than in, say, attachment ambiguities
or local syntactic coherence effects (Tabor et al.,
2004). It may well turn out that memory is not
involved at all, but for the purpose of comparing
several memory-based metrics, they are the safest
starting point.

4 Relative Clauses

4.1 Empirical Generalizations
Two major properties of relative clauses are firmly
established in the literature (see Gibson (1998) and
references therein).

• SC/RC < RC/SC
A sentential complement containing a rela-
tive clause is easier to process than a relative
clause containing a sentential complement.

• SubjRC < ObjRC
A relative clause containing a subject gap is
easier to parse than a relative clause contain-
ing an object gap.

These generalizations were obtained via self-
paced reading experiments and ERP studies with
minimal pairs such as (1) and (2), respectively.

(1) a. The fact [SC that the employeei [RC
who the manager hired ti] stole office
supplies] worried the executive.

b. The executivei [RC who the fact [SC
that the employee stole offices sup-
plies] worried ti] hired the manager.

(2) a. The reporteri [RC who ti attacked the
senator] admitted the error.

b. The reporteri [RC who the senator at-
tacked ti] admitted the error.

4.2 SC/RC and RC/SC
We first consider the contrast between relative
clauses embedded inside a sentential complement
(SC/RC) and relative clauses containing a sen-
tential complement (SC/RC). Figures 2 and 3 on

pages 5 and 6 show the augmented derivations for
(1a) and (1b), respectively. For the sake of read-
ability, we omit all features in our derivation trees
and instead use standard X′ labels to indicate pro-
jection and dashed branches for movement.

Like KGH, we adopt a promotion analysis of
relative clauses (Vergnaud, 1974; Kayne, 1994).
That is to say, the head noun is selected by an
empty determiner to form a DP, which starts out
as an argument of the embedded verb and under-
goes movement into the specifier of the relative
clause (which is treated as an NP). The entire rel-
ative clause is then selected by the determiner that
would usually select the head noun under the tra-
ditional, head-external analysis (Montague, 1970;
Chomsky, 1977).1

In both derivations the maximum tenure obtains
at two points in the matrix clause: I) the unpro-
nounced T-head, and II) the Merge step that intro-
duces the remainder of the VP. The parser must
first build the entire subject before it can proceed
scanning or expanding material to its right. Con-
sequently, the tenure of these nodes increases with
the size of the subject, and since both the SC/RC
pattern and the RC/SC pattern necessarily involve
large subjects, maximum tenure for both types of
sentences is predicted to be relatively high. The
parser shows a slightly lower Max value for SC/
RC than for RC/SC — 32/32 versus 33/33.

Although this shows that strictly speaking Max
is not incompatible with the generalization that
SC/RC is easier to process than RC/SC, the differ-
ence is so small that even the presence of one more
word in the SC/RC sentence could tip the balance
towards RC/SC, which seems rather unlikely.

The contrast emerges more clearly with the
other measures. MaxLex yields the values 32/9
versus 33/17, so it fares better than Max only
if one ignores unpronounced leaves. This is ex-
pected since one of the nodes incurring the highest
tenure value is the unpronounced T-head. The Box
values are 14/11 and 5/3, and those of BoxLex
are 12/9 and 3/1.

The box values fare better in this case because
they are sensitive to the number of dependencies
that cannot be discharged immediately. The way
the MG parser traverses the tree, a sentential com-

1The promotion analysis was chosen to maintain consis-
tency with KGH. But our observations hold for every anal-
ysis that involves some movement dependency between the
gap and the specifier of the relative clause. This includes the
more common head-external analyses mentioned above.

31



0CP1

1TP3

3T′4
4VP5

5V′ 37

37DP39

39executive41
39the40

37worried38

5DP6

6NP8

8CP10

10TP12

12T′13

13VP14

14V′ 33

33office supplies35
33stole34

14DP15

15NP17

17N′18

18TP19

19T′20

20VP21

21V′23

23DP24

24employee26
24D25

23hired 31

21DP22

22manager 29
22the 28

20T 30

18who 27

15the16

13T 32

10that11

8fact9

6the7

4T 36

1C2

Figure 2: Sentential complement with embedded relative clause; Max = 32/32, MaxLex = 32/9, Box
= 9/6, BoxLex = 7/4

plement in the subject position of a relative clause
cannot be fully processed until the movement de-
pendency within the relative clause has been taken
care of. So even though the sentential complement
is explored first, all its predicted elements must be
kept in memory. A relative clause within the sub-
ject of a sentential complement, on the other hand,
poses less of a challenge because the movement of
its containing subject is so short that it only delays
the processing of the T-head and V′.

4.3 Subject Gaps and Object Gaps
A stronger argument against Max is furnished by
the preference for subject gaps over object gaps:
maximum tenure is always the same for both con-
structions. Consider the derivations in Fig. 4 and 5
on pages 7 and 8. They have the same Max value
because the maximum tenure once again obtains
at the T-head of the matrix clause and the Merge
node that expands the matrix VP. The tenure of
these nodes is determined by the size of the sub-
ject, which contains the relative clause. But since

the size of the subject is not affected by whether it
is the subject or the object that is extracted from
the relative clause, maximum tenure will never
vary between these two constructions.

Once again the alternative metrics fare bet-
ter than Max. MaxLex evaluates to 19/7 and
19/9. As before the tenure on the T-head causes
MaxLex to behave like Max unless unpronounced
words are ignored. If one does so, however, the
maximum tenure value occurs on the relative pro-
noun who instead. Since who is the head of the
relative clause, it is introduced early on during
the structure building process, but it cannot be
scanned until the parser reaches the element that
moves into its specifier. Objects are more deeply
embedded than subjects, and consequently it takes
the parser less time to reach the subject than the
object. As a result, who has greater tenure if the
relative clause contains an object gap instead of a
subject gap.

Box and BoxLex also predict the attested con-
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Figure 3: Relative clause containing a sentential complement; Max = 33/33, MaxLex = 33/17, Box
= 14/11, BoxLex = 12/9

trast. Box produces the values 5/3 and 7/5,
whereas BoxLex returns 3/1 and 6/4. Since sub-
jects are introduced at a higher position than ob-
jects, movement of the subject causes fewer nodes
to be delayed in their processing — the VP has not
been fully expanded yet, so the nodes contained by
it do not need to be stored in memory because the
parser hasn’t even predicted them at this point.

5 Further Observations

5.1 Verb Clusters in Dutch and German

KGH show that Max correctly predicts the at-
tested difficulty differences between German and
Dutch verb clusters (Bach et al., 1986). Ger-
man verb clusters instantiate nested dependen-
cies of the form DP1 DP2 · · · DPn Vn · · · V2

V1. Dutch verb clusters, on the other hand, show
crossing dependencies: DP1 DP2 · · · DPn V1 V2

· · · Vn. Even though the latter not context-free
and hence computationally more complex than
the former, they are actually easier to process.
Since KGH’s account relies on the tenure of (pro-

nounced) leaves, it also carries over to MaxLex.2

Box and BoxLex, however, do not make this
prediction. In both Dutch and German every Vi

has to be kept in memory before it can be scanned,
so that a sentence with n verbs will have n boxes.
According to Box and BoxLex, there should be no
processing difference between German and Dutch.
This can be partially fixed by summing the tenure
of all boxed nodes so that overall memory load is
at least partially taken into account, yielding the
measures SumBox and SumBoxLex. But even
those still make the wrong prediction for n < 4,
that is to say, they establish the desired difference
only after a point where both cluster types are al-
ready very hard to process.

2Strictly speaking KGH build their argument on the tenure
of T, which MaxLex must ignore for the constructions inves-
tigated in this paper. However, tenure can be measured at V1

instead, in which case Dutch clusters with three or more verbs
have lower MaxLex values than the corresponding German
clusters. Clusters consisting of only two verbs have the same
MaxLex value in both languages. An anonymous reviewer
points out that this is exactly the pattern found by Bach et al.
(1986).

33



0CP1

1TP3

3T′4
4VP5

5V′ 24

24DP26

26error28
26the27

24admitted25

5DP6

6NP8

8N′9
9TP10

10T′11

11VP12

12V′ 18

18DP20

20senator22
20the21

18attacked19

12r13

13reporter15
13D14

11T 17

9who 16

6the7

4T 23

1C2

Figure 4: Relative clause with subject gap; Max = 19/19, MaxLex = 19/7, Box = 5/3, BoxLex = 3/1

5.2 Left Embedding
KGH note that if processing difficulty is deter-
mined by Max, then left embedding constructions
such as English possessor nesting should lead to
a sharp increase in parsing difficulty similar to
center-embedding, which is not the case (Resnik,
1992).

(3) [[[Mike [’s uncle]] [’s cousin]] [’s room-
mate]] went to the store.

Box makes a similar prediction, whereas MaxLex
and BoxLex do not (cf. Tab. 1 on page 1). Keep
in mind that a left embedding construction c in-
creases the tenure of the right sibling of c with
every level of embedding. As long as c is not
a lexical item, it will be ignored by MaxLex
and BoxLex. Therefore possessor-embedding is
predicted to be unproblematic, whereas a right-
adjunction structure as in [VP [VP [VP left ] quickly
] yesterday ] should increase the processing load.
While we are not aware of any studies on this
topic, such a split strikes us as highly unnatural.

5.3 Head-Final Relative Clauses
Preliminary work of ours suggests that almost
none of the metrics covered in this paper work
for languages where relative clauses precede their
head nouns, such as Chinese, Japanese, and Ko-
rean. There is overwhelming evidence that these
languages still show a preference for subject gaps
over object gaps (Lin, 2006; Wu, 2009; Kwon

et al., 2013). The syntactic structure of relative
clauses in these languages is up to debate; but as-
suming that they involve rightward movement of
the head noun into a specifier of the relative clause
followed by remnant leftward movement of the TP
into another specifier, most metrics derive a pref-
erence for object gaps (see the last two rows in
Tab. 1). Only Box shows a small advantage for
subject gaps.

6 Discussion and Future Work

Several metrics were compared in this paper that
measure processing difficulty in terms of very dif-
ferent parameters: I) how long an item stays in
memory (Max, MaxLex), II) how many items
must be stored in memory (Box, BoxLex), and
III) for what kind of material these criteria matter
(±lexical, ±pronounced).

A quick glance at Tab. 1 reveals that no clear
winner emerges. Box and BoxLex fail to cap-
ture the differences between Dutch and German
verb clusters, whereas Max struggles with relative
clause constructions and left embedding. MaxLex
captures all these fact if only pronounced elements
are taken into account, but makes the dubious
prediction that right adjunction of a single word
should be harder than left embedding or right ad-
junction of an adjunct that consists of at least two
words. In addition, MaxLex fails to derive a sub-
ject gap preference for head-final relative clauses.

34



0CP1

1TP3

3T′4
4VP5

5V′ 24

24DP26

26error27
26the27

24admitted25

5DP6

6NP8

8N′9
9TP10

10T′11

11VP12

12V′14

14DP15

15reporter17
15D16

14attacked 22

12DP13

13senator 20
13the 19

11T 21

9who 18

6the7

4T 23

1C2

Figure 5: Relative clause with object gap; Max = 19/19, MaxLex = 19/9, Box = 7/5, BoxLex = 6/4

Phenomenon Max MaxLex Box BoxLex SumBox SumBoxLex
SC/RC 32/32 32/9 9/6 7/4 142/81 91/30
RC/SC 33/33 33/17 14/11 12/9 219/149 186/116

subject gap RC 19/19 19/7 5/3 3/1 57/32 32/7
object gap RC 19/19 19/9 7/5 6/4 78/49 59/30

1 possessor 7/7 7/2 2/1 1/0 14/7 7/0
2 possessors 11/11 11/2 3/2 1/0 27/16 11/0
3 possessors 15/15 15/2 4/3 1/0 46/31 15/0

1 right adjunct 7/7 7/3 3/2 2/1 17/10 10/3
2 right adjuncts 12/12 12/8 5/4 4/3 42/30 30/18
3 right adjuncts 15/15 15/12 7/6 6/5 58/43 43/28

crossing < nesting yes yes no no partially partially
head-final subj RC 20/20 20/11 5/4 4/3 66/39 46/19
head-final obj RC 20/20 20/10 6/4 3/1 63/38 35/10

Table 1: Overview of evaluation metrics

It is very likely that a more complicated met-
ric could account for all these facts. But the ap-
peal of Max and the alternatives investigated here
is their simplicity. A simple metric is easier to
study from a formal perspective. In an ideal world,
the metric would turn out to correlate with a basic
tree-geometric property of derivations so that the
processing predictions of syntactic analyses can
be determined at a glance without simulations or
large-scale corpus work.

Two routes seems promising at this point. In
order to rule out that the problem isn’t with the
metrics but rather the MG parser itself, the metrics
should be tested with other parsing models. Those
need not even be based on MGs, since the metrics
measure aspects of memory management, which
is an integral part of every parser.

Alternatively, we may look into how the metrics

are applied. An anonymous reviewer points out
that Max derives the preference for subject gaps
if derivations that tie for Max are then compared
with respect to the second-highest tenure value,
which is 7/7 for subject gaps and 10/9 for object
gaps. While this still leaves us with cases like left
embedding where Max predicts a higher process-
ing load than expected, it eliminates the problem
of Max incorrectly equating two structures.
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vati. 2007. An automata-theoretic approach to min-
imalism. In James Rogers and Stephan Kepser, edi-
tors, Model Theoretic Syntax at 10, pages 71–80.

Gregory M. Kobele, Sabrina Gerth, and John T. Hale.
2012. Memory resource allocation in top-down
minimalist parsing. In Proceedings of Formal
Grammar 2012.

Nayoung Kwon, Robert Kluender, Marta Kutas, and
Maria Polinsky. 2013. Subject/object processing
asymmetries in korean relative clauses: Evidence
from ERP data. Language, 89:537–585.

Roger Levy. 2013. Memory and surprisal in human
sentence comprehension. In Roger P. G. van Gom-
pel, editor, Sentence Processing, pages 78–114. Psy-
chology Press, Hove.

Chien-Jer Charles Lin. 2006. Grammar and Parsing:
A Typological Investigation of Relative-Clause Pro-
cessing. Ph.D. thesis, University of Arizona.

Jens Michaelis. 2001. Transforming linear context-
free rewriting systems into minimalist grammars.
Lecture Notes in Artificial Intelligence, 2099:228–
244.

Richard Montague. 1970. English as a formal lan-
guage. In Bruno Visentini and et al., editors, Lin-
guaggi nella Societ e nella Tecnica, pages 189–224.
Edizioni di Comunit, Milan.

Bradley L. Pritchett. 1992. Grammatical Competence
and Parsing Performance. University of Chicago
Press, Chicago.

Owen Rambow and Aravind Joshi. 1995. A process-
ing model for free word order languages. Technical
Report IRCS-95-13, University of Pennsylvania.

Philip Resnik. 1992. Left-corner parsing and psycho-
logical plausibility. In Proceedings of COLING-92,
pages 191–197.

Edward P. Stabler. 1997. Derivational minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68–95. Springer, Berlin.

Edward P. Stabler. 2011a. Computational perspec-
tives on minimalism. In Cedric Boeckx, editor,
Oxford Handbook of Linguistic Minimalism, pages
617–643. Oxford University Press, Oxford.

Edward P. Stabler. 2011b. Top-down recognizers for
MCFGs and MGs. In Proceedings of the 2011 Work-
shop on Cognitive Modeling and Computational
Linguistics. to appear.

Edward P. Stabler. 2012. Bayesian, minimalist, incre-
mental syntactic analysis. Topics in Cognitive Sci-
ence, 5:611–633.

Whitney Tabor, Bruno Galantucci, and Daniel Richard-
son. 2004. Effects of merely local syntactic coher-
ence on sentence processing. Journal of Memory
and Language, 50:355–370.

Jean-Roger Vergnaud. 1974. French Relative Clauses.
Ph.D. thesis, MIT.

Fuyun Wu. 2009. Factors Affecting Relative Clause
Processing in Mandarin. Ph.D. thesis, University of
Southern California.

36


