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Abstract

We outline four ways in which uncertainty
might affect comprehension difficulty in
human sentence processing. These four
hypotheses motivate a self-paced reading
experiment, in which we used verb sub-
categorization distributions to manipulate
the uncertainty over the next step in the
syntactic derivation (single step entropy)
and the surprisal of the verb’s comple-
ment. We additionally estimate word-
by-word surprisal and total entropy over
parses of the sentence using a probabilistic
context-free grammar (PCFG). Surprisal
and total entropy, but not single step en-
tropy, were significant predictors of read-
ing times in different parts of the sen-
tence. This suggests that a complete model
of sentence processing should incorporate
both entropy and surprisal.

1 Introduction

Predictable linguistic elements are processed
faster than unpredictable ones. Specifically, pro-
cessing load on an element A in context C is lin-
early correlated with its surprisal, − log2 P (A|C)
(Smith and Levy, 2013). This suggests that read-
ers maintain expectations as to the upcoming ele-
ments: likely elements are accessed or constructed
in advance of being read. While there is substan-
tial amount of work on the effect of predictability
on processing difficulty, the role (if any) of the dis-
tribution over expectations is less well understood.

Surprisal predicts that the distribution over
competing predicted elements should not affect
reading times: if the conditional probability of a
word A is P (A|C), reading times on the word
will be proportional to − log2 P (A|C), regardless
of whether the remaining probability mass is dis-
tributed among two or a hundred options.

The entropy reduction hypothesis (Hale,
2003; Hale, 2006), on the other hand, accords
a central role to the distribution over predicted
parses. According to this hypothesis, an incom-
ing element is costly to process when it entails a
change from a state of high uncertainty (e.g., mul-
tiple equiprobable parses) to a state of low uncer-
tainty (e.g., one where a single parse is much more
likely than the others). Uncertainty is quantified
as the entropy of the distribution over complete
parses of the sentence; that is, if Ai is the set of
all possible parses of the sentence after word wi,
then the uncertainty following wi is given by

Hwi = −
∑
a∈Ai

P (a) log2 P (a) (1)

Processing load in this hypothesis is propor-
tional to the entropy reduction caused by wn:1

ER(wn) = max{Hwn−1 −Hwn , 0} (2)

A third hypothesis, which we term the com-
petition hypothesis, predicts that higher compe-
tition among potential outcomes should result in
increased processing load at the point at which
the competing parses are still valid (McRae et al.,
1998; Tabor and Tanenhaus, 1999). This contrasts
with the entropy reduction hypothesis, according
to which processing cost arises when competition
is resolved. Intuitively, the two hypotheses make
inversely correlated predictions: on average, there
will be less competition following words that re-
duce entropy. A recent study found that reading
times on wi correlated positively with entropy fol-
lowing wi, providing support for this hypothesis
(Roark et al., 2009).

The fourth hypothesis we consider, which we
term the commitment hypothesis, is derived from

1No processing load is predicted for words that increase
uncertainty.
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Figure 1: Example language. Output strings are indicated
inside the nodes, and transition probabilities are indicated on
the edges. For example, the probability of the sentence bf is
0.5× 0.75.

the event-related potential (ERP) literature on con-
textual constraint. Studies in this tradition have
compared the responses to a low-predictability
word across two types of context: high-constraint
contexts, in which there is a strong expectation for
a (different) word, and low-constraint ones, which
are not strongly predictive of any individual word.
There is increasing evidence for an ERP compo-
nent that responds to violations of a strong pre-
diction (Federmeier, 2007; Van Petten and Luka,
2012). This component can be interpreted as re-
flecting disproportional commitment to high prob-
ability predictions at the expense of lower proba-
bility ones, a more extreme version of the proposal
that low-probability parses are pruned in the pres-
ence of a high-probability parse (Jurafsky, 1996).
Surprisal is therefore expected to have a larger ef-
fect in high constraint contexts, in which entropy
was low before the word being read. Commitment
to a high probability prediction may also result in
increased processing load at the point at which the
commitment is made.

We illustrate these four hypotheses using the
simple language sketched in Figure 1. Consider
the predictions made by the four hypotheses for
the sentences ae and be. Surprisal predicts no dif-
ference in reading times between these sentences,
since the conditional probabilities of the words in
the two sentences are identical (0.5 and 0.25 re-
spectively).

The competition hypothesis predicts increased
reading times on the first word in ae compared to
be, because the entropy following a is higher than

the entropy following b (2 bits compared to 0.71).
Since all sentences in the language are two word
long, entropy goes down to 0 after the second word
in both sentences. This hypothesis therefore does
not predict a reading time difference on the second
word e.

Moving on to the entropy reduction hypothesis,
five of the six possible sentences in the language
have probability 0.5× 0.25, and the sixth one (bf )
has probability 0.5× 0.75. The full entropy of the
grammar is therefore 2.4 bits. The first word re-
duces entropy in both ae and be (to 2 and 0.71 bits
respectively), but entropy reduction is higher when
the first word is b. The entropy reduction hypoth-
esis therefore predicts longer reading times on the
first word in be than in ae. Conversely, since en-
tropy goes down to 0 in both cases, but from 2 bits
in ae compared to 0.71 bits in be, this hypothesis
predicts longer reading times on e in ae than in be.

Finally, the commitment hypothesis predicts
that after b the reader will become committed to
the prediction that the second word will be f . This
will lead to longer reading times on e in be than
in ae, despite the fact that its conditional proba-
bility is identical in both cases. If commitment to
a prediction entails additional work, this hypothe-
sis predicts longer reading times on the first word
when it is b.

This paper presents an reading time study that
aims to test these hypotheses. Empirical tests
of computational theories of sentence processing
have employed either reading time corpora (Dem-
berg and Keller, 2008) or controlled experimen-
tal materials (Yun et al., 2010). The current paper
adopts the latter approach, trading off a decrease
in lexical and syntactic heterogeneity for increased
control. This paper is divided into two parts. Sec-
tion 2 describes a reading time experiment, which
tested the predictions of the surprisal, competi-
tion and commitment hypotheses, as applied to the
entropy over the next single step in the syntactic
derivation.2 We then calculate the total entropy
(up to an unbounded number of derivation steps)
at each word using a PCFG; Section 3 describes
how this grammar was constructed, overviews the
predictions that it yielded in light of the four hy-
potheses, and evaluates these predictions on the re-
sults of the reading time experiment.

2We do not test the predictions of the entropy reduction
hypothesis in this part of the paper, since that theory explicitly
only applies to total rather than single-step entropy.
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2 Reading time experiment

2.1 Design
To keep syntactic structure constant while ma-
nipulating surprisal and entropy over the next
derivation step, we took advantage of the fact
that verbs vary in the probability distribution
of their syntactic complements (subcategorization
frames). Several studies have demonstrated that
readers are sensitive to subcategorization probabil-
ities (Trueswell et al., 1993; Garnsey et al., 1997).

The structure of the experimental materials is
shown in Table 1. In a 2x2x2 factorial design, we
crossed the surprisal of a sentential complement
(SC) given the verb, the entropy of the verb’s sub-
categorization distribution, and the presence or ab-
sence of the complementizer that. When the com-
plementizer is absent, the region the island is am-
biguous between a direct object and an embedded
subject.

Surprisal theory predicts an effect of SC sur-
prisal on the disambiguating region in ambiguous
sentences (sentences without that), as obtained in
previous studies (Garnsey et al., 1997), and an ef-
fect of SC surprisal on the complementizer that
in unambiguous sentences. Reading times should
not differ at the verb: in the minimal context we
used (the men), the surprisal of the verb should
be closely approximated by its lexical frequency,
which was matched across conditions.

The competition hypothesis predicts a positive
main effect of subcategorization frame entropy
(subcategorization frame entropy) at the verb:
higher uncertainty over the syntactic category of
the complement should result in slower reading
times.

The commitment hypothesis predicts that the
effect of surprisal in the disambiguating region
should be amplified when subcategorization frame
entropy is low, since the readers will have commit-
ted to the competing high probability frame. If the
commitment step in itself incurs a processing cost,
there should be a negative main effect of subcate-
gorization frame entropy at the verb.

This experimental design varies the entropy
over the single next derivation step: it assumes
that the parser only predicts the identity of the sub-
categorization frame, but not its internal structure.
Since the predictions of the entropy reduction hy-
pothesis crucially depend on predicting the inter-
nal structure as well, we defer the discussion of
that hypothesis until Section 3.

The men discovered (that) the island
mat. subj. verb that emb. subj.

had been invaded by the enemy.
emb. verb complex rest

Table 1: Structure of experimental materials (mat. = matrix,
emb. = embedded, subj. = subject).

2.2 Methods

2.2.1 Participants
128 participants were recruited through Amazon
Mechanical Turk and were paid $1.75 for their
participation.

2.2.2 Materials
32 verbs were selected from the Gahl et al. (2004)
subcategorization frequency database, in 4 con-
ditions: high vs. low SC surprisal and high vs.
low subcategorization frame entropy (see Table 2).
Verbs were matched across conditions for length
in characters and for frequency in SUBTLEX-US
corpus (Brysbaert and New, 2009). A sentence
was created for each verb, following the structure
in Table 1. Each sentence had two versions: one
with the complementizer that after the verb and
one without it. The matrix subjects were mini-
mally informative two-word NPs (e.g. the men).
Following the complementizer (or the verb, if the
complementizer was omitted) was a definite NP
(the island), which was always a plausible direct
object of the matrix verb.

The embedded verb complex region consisted
of three words: two auxiliary verbs (had been) or
an auxiliary verb and negation (would not), fol-
lowed by a past participle form (invaded). Each
of the function words appeared the same num-
ber of times in each condition. The embedded
verb complex was followed by three more words.
The nouns and verbs in the embedded clause were
matched for frequency and length across condi-
tions.

In addition to the target sentences, the exper-
iment contained 64 filler sentences, with various
complex syntactic structures.

2.2.3 Procedure
The sentences were presented word by word in a
self-paced moving window paradigm. The partic-
ipants were presented with a Y/N comprehension
question after each trial. The participants did not
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NP Inf PP SC SC s. SFE
forget 0.55 0.14 0.2 0.09 3.46 1.7
hear 0.72 0 0.17 0.11 3.22 1.12
claim 0.36 0.12 0 0.45 1.15 1.71
sense 0.61 0 0.02 0.34 1.55 1.18

Table 2: A example verb from each of the four conditions.
On the left, probabilities of complement types: noun phrase
(NP), infinitive (Inf), prepositional phrase (PP), sentential
complement (SC); on the right, SC surprisal and subcatego-
rization frame entropy.

receive feedback on their responses. The experi-
ment was conducted online using a Flash applica-
tion written by Harry Tily (now at Nuance Com-
munications).

2.2.4 Statistical analysis
Subjects were excluded if their answer accuracy
was lower than 75% (two subjects), or if their
mean reading time (RT) differed by more than
2.5 standard deviations from the overall mean RT
across subjects (two subjects). The results re-
ported in what follows are based on the remaining
124 subjects (97%).

We followed standard preprocessing procedure.
Individual words were excluded if their raw RT
was less than 100 ms or more than 2000 ms, or if
the log-transformed RT was more than 3 standard
deviations away from the participant’s mean. Log
RTs were length-corrected by taking the residuals
of a mixed-effects model (Bates et al., 2012) that
had log RT as the response variable, word length
as a fixed effect, and a by-subject intercept and
slope.

The length-corrected reading times were re-
gressed against the predictors of interest, sepa-
rately for each region. We used a maximal random
effect structure. All p values for fixed effects were
calculated using model comparison with a simpler
model with the same random effect structure that
did not contain that fixed effect.

2.3 Results

Reading times on the matrix subject (the men) or
matrix verb (discovered) did not vary significantly
across conditions.

The embedded subject the island was read faster
in unambiguous sentences (p < 0.001). Read-
ing times on this region were longer when SC sur-
prisal was high (p = 0.04). Models fitted to am-
biguous and unambiguous sentences separately re-
vealed that the simple effect of SC surprisal on the

embedded subject was significant for unambigu-
ous sentences (p = 0.02) but not for ambiguous
sentences (p = 0.46), though the interaction be-
tween SC surprisal and ambiguity did not reach
significance (p = 0.22).

The embedded verb complex (had been in-
vaded) was read faster in unambiguous than in am-
biguous sentences (p < 0.001). Reading times
in this region were longer overall in the high SC
surprisal condition (p = 0.03). As expected, this
effect interacted with the presence of that (p =
0.01): the simple effect of SC surprisal was not
significant in unambiguous sentences (p = 0.28),
but was highly significant in ambiguous ones (p =
0.007). We did not find an interaction between SC
surprisal and subcategorization frame entropy (of
the sort predicted by the commitment hypothesis).

Subcategorization frame entropy did not have a
significant effect in any of the regions of the sen-
tence. It was only strictly predicted to have an ef-
fect on the matrix verb: longer reading times ac-
cording to the competition hypothesis, and (possi-
bly) shorter reading times according to the com-
mitment hypothesis. The absence of an subcat-
egorization frame entropy effect provides weak
support for the predictions of surprisal theory, ac-
cording to which entropy should not affect reading
times.

3 Deriving predictions from a PCFG

3.1 Calculating entropy
As mentioned above, the entropy of the next
derivation step following the current word (which
we term single-step entropy) is calculated as fol-
lows. If ai is a nonterminal, Πi is the set of rules
rewriting ai, and pr is the application probability
of rule r, then the single-step entropy of ai is given
by

h(ai) = −
∑
r∈Πi

pr log2 pr (3)

discover

NP (14 bits)

SC (50 bits)

0.5

0.5

Figure 3: Entropy calculation example: the single step en-
tropy after discover is 1 bit; the overall entropy is 1 + 0.5 ×
14 + 0.5× 50 = 33 bits.
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Figure 2: Results of the self-paced reading experiment

The entropy of all derivations starting with ai

(which we term total entropy) is then given by the
following recurrence:

H(ai) = h(ai) +
∑
r∈Πi

pr

kr∑
j=1

H(ar,j) (4)

where ar,1, . . . , ar,kr are the nonterminals on
the right-hand side of r. This recurrence has
a closed form solution (Wetherell, 1980; Hale,
2006). The expectation matrix A is a square ma-
trix with N rows and columns, where N is the set
of nonterminals. Each element Aij indicates the
expected number of times nonterminal aj will oc-
cur when ai is rewritten using exactly one rule of
the grammar. If h = (h1, . . . , hN ) is the vector of
all single-step entropy values for the N nontermi-
nal types in the grammar, andH = (H1, . . . ,HN )
is the vector of all total entropy values, then the
closed form solution for the recurrence is given by

H = (I −A)−1h (5)

where I is the identity matrix. The entropy af-
ter the first n words of the sentence, Hwn , can be
calculated by applying Equation 5 to the grammar
formed by intersecting the original grammar with
the prefix w1, . . . , wn (i.e., considering only the
parses that are compatible with the words encoun-
tered so far) (Hale, 2006).

Two points are worth noting about these equa-
tions. First, Equation 5 shows that calculating the
entropy of a PCFG requires inverting the matrix

I − A, which is the size of the number of non-
terminal symbols in the grammar. This makes it
impractical to use a lexicalized grammar, as advo-
cated by Roark et al. (2009), since those grammars
have a very large number of nonterminal types.

Second, Equation 4 shows that the entropy of a
nonterminal is the sum of its single-step entropy
and a weighted average of entropy of the nonter-
minals it derives. In the context of subcategoriza-
tion decisions, the number of possible subcatego-
rization frames is small, and the single-step en-
tropy is on the order of magnitude of 1 or 2 bits.
The entropy of a typical complement, on the other
hand, is much higher (consider all of the possible
internal structures that an SC could have). This
means that the total entropy H after processing
the verb is dominated by the entropy of its po-
tential complements rather than the verb’s single-
step entropy h (see Figure 3 for an illustration). A
lookahead of a single word (as used in Roark et
al. (2009)) may therefore be only weakly related
to total entropy.

3.2 Constructing the grammar
We used a PCFG induced from the Penn Treebank
(Marcus et al., 1993). As mentioned above, the
grammar was mostly unlexicalized; however, in
order for the predictions to depend on the identity
of the verb, the grammar had to contain lexically
specific rules for each verb. We discuss these rules
at end of this section.

The Penn Treebank tag set is often expanded
by adding to each node’s tag an annotation of the
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node’s parent, e.g., marking an NP whose parent
is a VP as NP VP (Klein and Manning, 2003).
While systematic parent annotation would have in-
creased the size of the grammar dramatically, we
did take the following minimal steps to improve
parsing accuracy. First, the word that is tagged
in the Penn Treebank as a preposition (IN) when
it occurs as a subordinating conjunction. This re-
sulted in SCs being erroneously parsed as preposi-
tional phrases. To deal with this issue, we replaced
the generic IN with IN[that] whenever it referred
to that.

Second, the parser assigned high probability
parses to reduced relative clauses in implausible
contexts. We made sure that cases that should not
be reduced relative clauses were not parsed as such
by splitting the VP category into sub-categories
based on the leftmost child of the VP (since only
VP[VPN] should be able to be a reduced rela-
tive), and by splitting SBAR into SBAR[overt]
when the SBAR had an overt complementizer and
SBAR[none] when it did not.

Following standard practice, we removed gram-
matical role information and filler-gap annota-
tions, e.g., NP-SUBJ-2 was treated as NP. To re-
duce the number of rules in the grammar as much
as possible, we removed punctuation and the silent
element NONE (used to mark gaps, silent comple-
mentizers, etc.), rules that occurred less than 100
times (out of the total 1320490 nonterminal pro-
ductions), and rules that had a probability of less
than 0.01. These steps resulted in the removal of
13%, 14% and 10% rule tokens respectively. We
then applied horizontal Markovization (Klein and
Manning, 2003).

Finally, we added lexically specific rules to
capture the verbs’ subcategorization preferences,
based on the Gahl et al. (2004) subcategorization
database. The probability of frame fj following
verb vi was calculated as:

P (VP[VBD]→ vi fj) =
1
2
P (vi)P (fj |vi)∑

i P (vi)
(6)

In other words, half of the probability mass of
production rules deriving VP[VBD] (VP headed
by past tense verbs) was taken away from the un-
lexicalized rules and assigned to the verb-specific
rules. The same procedure was performed for
VP[VBN] (VP headed by a past participle, with
the exception of the verbs forgot and wrote, which

are not ambiguous between the past and past par-
ticiple forms. The total probability of all rules de-
riving VP as a specific verb (e.g., discovered) was
estimated as the corpus frequency of that verb di-
vided by the total corpus frequency of all 32 verbs
used in the experiment, yielding a normalized es-
timate of the relative frequency of that verb.

3.3 Surprisal, entropy and entropy reduction
profiles

Word-by-word surprisal, entropy and entropy re-
duction values for each item were derived from the
equations in Section 3.1 using the Cornell Con-
ditional Probability Calculator (provided by John
Hale). Figure 4 shows the predictions averaged by
the conditions of the factorial design. Surprisal on
the verb is always high because this is the only part
of the grammar that encodes lexical identity; sur-
prisal on the verb therefore conflates lexical and
syntactic surprisal. Surprisal values on all other
words are low, with the exception of the point
at which the reader gets the information that the
verb’s complement is an SC: the embedded verb
complex in ambiguous sentences, and the comple-
mentizer in unambiguous sentence.

The entropy profile is dominated by the fact that
SCs have much higher internal entropy than NPs.
As a consequence, entropy after the verb is higher
whenever an SC is a more likely subcategorization
frame. The entropy after high subcategorization
frame entropy verbs is higher than that after low
subcategorization frame entropy verbs, though the
difference is small in comparison to the effect of
SC surprisal. In ambiguous sentences, entropy re-
mains higher for low SC surprisal verbs through-
out the ambiguous region. Somewhat counterin-
tuitively, entropy increases when the parse is dis-
ambiguated in favor of an SC. This is again a
consequence of the higher internal entropy of a
SC: the entropy of the ambiguity between SC and
NP is dwarfed by the internal entropy of a SC.
The entropy profile for unambiguous sentences
is straightforward: it increases sharply when the
reader finds out that the complement is a SC, then
decreases gradually as more details are revealed
about the internal structure of the SC.

The reading time predictions made by the en-
tropy reduction hypothesis are therefore very dif-
ferent than those made by surprisal theory. On
the verb, the entropy reduction hypothesis predicts
that high SC surprisal verbs will be read more
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Figure 4: Parser-derived surprisal, entropy and entropy reduction estimates for the stimuli in our experiments, averaged within
each condition of the factorial design (first word of sentence and rest region excluded).

slowly than low SC surprisal verbs, whereas sur-
prisal predicts no difference. On the disambiguat-
ing region in ambiguous sentences, the entropy re-
duction hypothesis predicts no reading time dif-
ferences at all, since an increase in entropy is
not predicted to affect reading times. In fact, en-
tropy reduction on the word had is positive only in
unambiguous sentences, so the entropy reduction
hypothesis predicts a slowdown in unambiguous
compared to ambiguous sentences.

3.4 Evaluation on reading times
We tested whether reading times could be pre-
dicted by the word-by-word estimates derived
from the PCFG. Since total entropy, entropy re-
duction and surprisal values did not line up with
the factorial design, we used continuous regres-
sion instead, again using lme4 with a maximal ran-
dom effects structure. We only analyzed words
for which the predictions depended on the prop-
erties of the verb (as Figure 4 shows, this is only
the case for a minority of the words). As outcome
variables, we considered both reading times on the
word wi, and a spillover variable computed as the
sum of the reading times on wi and the next word
wi+1. The predictors were standardized (sepa-
rately for each word) to facilitate effect compar-

ison.

Parser-derived entropy reduction values varied
the most on the main verb. Since the word follow-
ing the verb differs between the ambiguous and
unambiguous conditions, we added a categorical
control variable for sentence ambiguity. In the
resulting model, lower entropy (or equivalently,
higher entropy reduction values), caused an in-
crease in reading times (no spillover: β̂ = 0.014,
p = 0.05; one word spillover: β̂ = 0.022, p =
0.04). Our design does not enable us to determine
whether the effect of entropy on the verb is due to
entropy reduction or simply entropy. The commit-
ment hypothesis is therefore equally supported by
this pattern as is the entropy reduction hypothesis.

The only other word on which entropy reduc-
tion values varied across verbs was the first word
the of the ambiguous region. Neither entropy re-
duction nor surprisal were significant predictors of
reading times on this word.

There was also some variation across verbs in
entropy (though not entropy reduction) on the sec-
ond word of the embedded subject (island) in am-
biguous sentences; however, entropy was not a
significant predictor of reading times on that word.
In general, entropy is much higher in the embed-
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ded subject region in unambiguous than ambigu-
ous sentences, since it is already known that the
complement is an SC, and the entropy of an SC
is higher. Yet as mentioned above, reading times
on the embedded subject were higher when it was
ambiguous (p < 0.001).

Finally, PCFG-based surprisal was a significant
predictor of reading times on the disambiguating
word in ambiguous sentences (no spillover: n.s.;
one word spillover: β̂ = 0.037, p = 0.02; two-
word spillover: β̂ = 0.058, p = 0.001). In con-
trast with simple SC surprisal (see Section 2.2.4),
PCFG-based surprisal was not a significant predic-
tor of reading times on the complementizer that in
unambiguous sentences.

4 Discussion

We presented four hypotheses as to the role of en-
tropy in syntactic processing, and evaluated them
on the results of a reading time study. We did not
find significant effects of subcategorization frame
entropy, which is the entropy over the next deriva-
tion step following the verb. Entropy over com-
plete derivations, on the other hand, was a signifi-
cant predictor of reading time on the verb. The ef-
fect went in the direction predicted by the entropy
reduction and commitment hypotheses, and oppo-
site to that predicted by the competition hypothe-
sis: reading times were higher when post-verb en-
tropy was lower.

Reading times on the embedded subject in am-
biguous sentences were increased compared to un-
ambiguous sentences. This can be seen as sup-
porting the competition hypothesis: the SC and
NP parses both need to be maintained, which in-
creases processing cost. Yet the parser predic-
tions showed that total entropy on the embedded
subject was higher in unambiguous than ambigu-
ous sentences, since the probability of the high-
entropy sentential complement is 1 in unambigu-
ous sentences. In this case, then, total entropy,
which entails searching enormous amounts of pre-
dicted structure, may not be the right measure, and
single-step (or n-step) entropy may be a better pre-
dictor.

In related work, Frank (2013) tested a version of
the entropy reduction hypothesis whereby entropy
reduction was not bounded by 0 (was allowed to
take negative values). A Simple Recurrent Net-
work was used to predict the next four words in
the sentence; the uncertainty following the current

word was estimated as the entropy of this quadri-
gram distribution. Higher (modified) entropy re-
duction resulted in increased reading times. These
results are not directly comparable to the present
results, however. Frank (2013) tested a theory that
takes into account both positive and negative en-
tropy changes. In addition, a four-word lookahead
may not capture the dramatic difference in internal
entropy between SCs and NPs, which is responsi-
ble for the differential reading times predicted on
the matrix. This caveat applies even more strongly
to the one-word lookahead in Roark et al. (2009).

In contrast with much previous work, we cal-
culated total entropy using a realistic PCFG ac-
quired from a Treebank corpus. In future work,
this method can be used to investigate the ef-
fect of entropy in a naturalistic reading time cor-
pus. It will be important to explore the extent to
which the reading time predictions derived from
the grammar are affected by representational de-
cisions (e.g., the parent annotations we used in
Section 3.2). This applies in particular to entropy,
which is sensitive to the distribution over syntactic
parses active at the word; surprisal depends only
the conditional probability assigned to the word
by the grammar, irrespective of the number and
distribution over the parses that predict the current
word, and is therefore somewhat less sensitive to
representational assumptions.

5 Conclusion

This paper described four hypotheses regarding
the role of uncertainty in sentence processing. A
reading time study replicated a known effect of
surprisal, and found a previously undocumented
effect of entropy. Entropy predicted reading times
only when it was calculated over complete deriva-
tions of the sentence, and not when it was calcu-
lated over the single next derivation step. Our re-
sults suggest that a full theory of sentence process-
ing would need to take both surprisal and uncer-
tainty into account.
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Kučera and Francis: A critical evaluation of cur-
rent word frequency norms and the introduction of
a new and improved word frequency measure for
American English. Behavior Research Methods,
41(4):977–990.

V. Demberg and F. Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

K. D. Federmeier. 2007. Thinking ahead: The role
and roots of prediction in language comprehension.
Psychophysiology, 44(4):491–505.

S. L. Frank. 2013. Uncertainty reduction as a measure
of cognitive load in sentence comprehension. Topics
in Cognitive Science, 5(3):475–494.

S. Gahl, D. Jurafsky, and D. Roland. 2004. Verb
subcategorization frequencies: American English
corpus data, methodological studies, and cross-
corpus comparisons. Behavior Research Methods,
36(3):432–443.

S. Garnsey, N. Pearlmutter, E. Myers, and M. Lotocky.
1997. The contributions of verb bias and plausi-
bility to the comprehension of temporarily ambigu-
ous sentences. Journal of Memory and Language,
37(1):58–93.

J. Hale. 2003. The information conveyed by words
in sentences. Journal of Psycholinguistic Research,
32(2):101–123.

J. Hale. 2006. Uncertainty about the rest of the sen-
tence. Cognitive Science, 30(4):643–672.

D. Jurafsky. 1996. A probabilistic model of lexical
and syntactic access and disambiguation. Cognitive
Science, 20(2):137–194.

D. Klein and C. D. Manning. 2003. Accurate un-
lexicalized parsing. In Proceedings of the 41st
Annual Meeting on Association for Computational
Linguistics-Volume 1, pages 423–430. Association
for Computational Linguistics.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

K. McRae, M. Spivey-Knowlton, and M. Tanenhaus.
1998. Modeling the influence of thematic fit (and
other constraints) in on-line sentence comprehen-
sion. Journal of Memory and Language, 38(3):283–
312.

B. Roark, A. Bachrach, C. Cardenas, and C. Pallier.
2009. Deriving lexical and syntactic expectation-
based measures for psycholinguistic modeling via
incremental top-down parsing. In Proceedings of
the 2009 Conference on Empirical Methods in Nat-
ural Language Processing: Volume 1-Volume 1,
pages 324–333. Association for Computational Lin-
guistics.

N. J. Smith and R. Levy. 2013. The effect of word
predictability on reading time is logarithmic. Cog-
nition, 128(3):302–319.

W. Tabor and M. K. Tanenhaus. 1999. Dynamical
models of sentence processing. Cognitive Science,
23(4):491–515.

J. Trueswell, M. Tanenhaus, and C. Kello. 1993. Verb-
specific constraints in sentence processing: Sep-
arating effects of lexical preference from garden-
paths. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 19(3):528–553.

C. Van Petten and B. Luka. 2012. Prediction during
language comprehension: Benefits, costs, and ERP
components. International Journal of Psychophysi-
ology, 83(2):176–190.

C. S. Wetherell. 1980. Probabilistic languages: A re-
view and some open questions. ACM Computing
Surveys (CSUR), 12(4):361–379.

J. Yun, J. Whitman, and J. Hale. 2010. Subject-object
asymmetries in Korean sentence comprehension. In
Proceedings of the 32nd Annual Meeting of the Cog-
nitive Science Society.

18


