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Abstract

We investigate data driven natural lan-
guage generation under the constraints
that all words must come from a fixed vo-
cabulary and a specified word must ap-
pear in the generated sentence, motivated
by the possibility for automatic genera-
tion of language education exercises. We
present fast and accurate approximations
to the ideal rejection samplers for these
constraints and compare various sentence
level generative language models. Our
best systems produce output that is with
high frequency both novel and error free,
which we validate with human and auto-
matic evaluations.

1 Introduction

Freeform data driven Natural Language Genera-
tion (NLG) is a topic explored by academics and
artists alike, but motivating its empirical study is a
difficult task. While many language models used
in statistical NLP are generative and can easily
produce sample sentences by running their “gen-
erative mode”, if all that is required is a plausible
sentence one might as well pick a sentence at ran-
dom from any existing corpus.

NLG becomes useful when constraints exist
such that only certain sentences are valid. The
majority of NLG applies a semantic constraint of
“what to say”, producing sentences with commu-
nicative goals. Other work such as ours investi-
gates constraints in structure; producing sentences
of a certain form without concern for their specific
meaning.

We study two constraints concerning the words
that are allowed in a sentence. The first sets a

fixed vocabulary such that only sentences where
all words are in-vocab are allowed. The second
demands not only that all words are in-vocab,
but also requires the inclusion of a specific word
somewhere in the sentence.

These constraints are natural in the construction
of language education exercises, where students
have small known vocabularies and exercises that
reinforce the knowledge of arbitrary words are re-
quired. To provide an example, consider a Chi-
nese teacher composing a quiz that asks students
to translate sentences from English to Chinese.
The teacher cannot ask students to translate words
that have not been taught in class, and would like
ensure that each vocabulary word from the current
book chapter is included in at least one sentence.
Using a system such as ours, she could easily gen-
erate a number of usable sentences that contain a
given vocab word and select her favorite, repeat-
ing this process for each vocab word until the quiz
is complete.

The construction of such a system presents two
primary technical challenges. First, while highly
parameterized models trained on large corpora are
a good fit for data driven NLG, sparsity is still
an issue when constraints are introduced. Tradi-
tional smoothing techniques used for prediction
based tasks are inappropriate, however, as they lib-
erally assign probability to implausible text. We
investigate smoothing techniques better suited for
NLG that smooth more precisely, sharing proba-
bility only between words that have strong seman-
tic connections.

The second challenge arises from the fact that
both vocabulary and word inclusion constraints
are easily handled with a rejection sampler that re-
peatedly generates sentences until one that obeys
the constraints is produced. Unfortunately, for
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models with a sufficiently wide range of outputs
the computation wasted by rejection quickly be-
comes prohibitive, especially when the word in-
clusion constraint is applied. We define models
that sample directly from the possible outputs for
each constraint without rejection or backtracking,
and closely approximate the distribution of the
true rejection samplers.

We contrast several generative systems through
both human and automatic evaluation. Our best
system effectively captures the compositional na-
ture of our training data, producing error-free text
with nearly 80 percent accuracy without wasting
computation on backtracking or rejection. When
the word inclusion constraint is introduced, we
show clear empirical advantages over the simple
solution of searching a large corpus for an appro-
priate sentence.

2 Related Work

The majority of NLG focuses on the satisfaction
of a communicative goal, with examples such as
Belz (2008) which produces weather reports from
structured data or Mitchell et al. (2013) which gen-
erates descriptions of objects from images. Our
work is more similar to NLG work that concen-
trates on structural constraints such as generative
poetry (Greene et al., 2010) (Colton et al., 2012)
(Jiang and Zhou, 2008) or song lyrics (Wu et al.,
2013) (Ramakrishnan A et al., 2009), where spec-
ified meter or rhyme schemes are enforced. In
these papers soft semantic goals are sometimes
also introduced that seek responses to previous
lines of poetry or lyric.

Computational creativity is another subfield of
NLG that often does not fix an a priori meaning in
its output. Examples such as Özbal et al. (2013)
and Valitutti et al. (2013) use template filling tech-
niques guided by quantified notions of humor or
how catchy a phrase is.

Our motivation for generation of material for
language education exists in work such as Sumita
et al. (2005) and Mostow and Jang (2012), which
deal with automatic generation of classic fill in the
blank questions. Our work is naturally comple-
mentary to these efforts, as their methods require a
corpus of in-vocab text to serve as seed sentences.

3 Freeform Generation

For clarity in our discussion, we phrase the sen-
tence generation process in the following general

terms based around two classes of atomic units :
contexts and outcomes. In order to specify a gen-
eration system, we must define

1. the set C of contexts c
2. the set O of outcomes o
3. the “Imply” function I(c, o)→ List[c ∈ C]
4. M : derivation tree � sentence

where I(c, o) defines the further contexts implied
by the choice of outcome o for the context c. Be-
ginning with a unique root context, a derivation
tree is created by repeatedly choosing an outcome
o for a leaf context c and expanding c to the new
leaf contexts specified by I(c, o). M converts be-
tween derivation tree and sentence text form.

This is simply a convenient rephrasing of the
Context Free Grammar formalism, and as such
the systems we describe all have some equivalent
CFG interpretation. Indeed, to describe a tradi-
tional CFG, let C be the set of symbols, O be the
rules of the CFG, and I(c, o) return a list of the
symbols on the right hand side of the rule o. To de-
fine an n-gram model, a context is a list of words,
an outcome a single word, and I(c, o) can be pro-
cedurally defined to drop the first element of c and
append o.

To perform the sampling required for derivation
tree construction we must define P (o|c). Using
M, we begin by converting a large corpus of sen-
tence segmented text into a training set of deriva-
tion trees. Maximum likelihood estimation of
P (o|c) is then as simple as normalizing the counts
of the observed outcomes for each observed con-
text. However, in order to obtain contexts for
which the conditional independence assumption
of P (o|c) is appropriate, it is necessary to con-
dition on a large amount of information. This
leads to sparse estimates even on large amounts of
training data, a problem that can be addressed by
smoothing. We identify two complementary types
of smoothing, and illustrate them with the follow-
ing sentences.

The furry dog bit me.
The cute cat licked me.

An unsmoothed bigram model trained on this
data can only generate the two sentences verba-
tim. If, however, we know that the tokens “dog”
and “cat” are semantically similar, we can smooth
by assuming the words that follow “cat” are also
likely to follow “dog”. This is easily handled with
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traditional smoothing techniques that interpolate
between distributions estimated for both coarse,
P (w|w−1=[animal]), and fine, P (w|w−1=“dog”),
contexts. We refer to this as context smoothing.

However, we would also like to capture the in-
tuition that words which can be followed by “dog”
can also be followed by “cat”, which we will call
outcome smoothing. We extend our terminology
to describe a system that performs both types of
smoothing with the following

• the set C̄ of smooth contexts c̄
• the set Ō of smooth outcomes ō
• a smoothing function SC : C → C̄
• a smoothing function SO : O → Ō

dog [animal]

bit

[action]

4

21

3

5 76

2 Related Work

The application of structural constraints appears
in previous work in the form of generative po-
etry (Greene et al., 2010) or lyrics (Wu et al.,
2013), where specified meter or rhyme schemes
are enforced. Özbal et al. (2013) produces
freeform text by filling templates with respect to
abstract notions such as humor.

3 Freeform Generation

We first address the problem of freeform data
driven language generation directly. We do not
set a semantic goal but instead ask only that the
output be considered a valid sentence, seeking a
model that captures the variability of language.

For clarity in our discussion, we phrase the
generation process in the following general terms
based around two classes of atomic units : Con-
texts and Outcomes. In order to specify a genera-
tion system, we must define

1. the set C of contexts c
2. the set O of outcomes o
3. the “Imply” function I(c, o)→ List[c ∈ C]

where I(c, o) defines the further contexts implied
by the choice of outcome o for the context c. This
model can be made probabilistic by the definition
of P (o|c), where each outcome is sampled inde-
pendently given its context. We also require the
existence of a single unique root context, and refer
to the result of repeated sampling of outcomes for
contexts as a derivation tree. Finally, a mapping
from derivation tree to surface form is required to
produce actual text.

This is simply a convenient rephrasing of the
Context Free Grammar formalism, and as such
the systems we describe all have some equivalent
CFG interpretation. Indeed, to describe a tradi-
tional CFG, let C be the set of nonterminals, O be
the rules of the CFG, and I(c, o) returns a list of
the nonterminals on the right hand side of the rule
o and does not depend on c. P (o|c) would enforce
the choice of rules with appropriate lefthand sides.

The Context-Outcome terms can be more natu-
ral when describing other models where we do not
want to explicitly define the space of nonterminals.
A simple example is an n-gram model, for which
a context is an ordered list of words, an outcome
a single word, and I(c, o) can be procedurally de-
fined to produce a list containg a single context

made by dropping the first word of the previous
context and appending the outcome to the end.

This formulation is well suited to data driven
estimation from a corpus of derivation trees.
While our methods are easily extended to mul-
tiple derivations for each single sentence, in this
work we assume access to a single derivation for
each sentence in our data set. Maximum likeli-
hood estimation of P (o|c) is then as simple as nor-
malizing the counts of the observed outcomes for
each observed context. However, in order to ob-
tain contexts for which the conditional indepen-
dence assumption of P (o|c) is appropriate, it is
necessary to condition on a large amount of in-
formation. This leads to sparse estimates even on
large amounts of training data, a problem that can
be addressed by smoothing.

We identify two complementary types of
smoothing, and illustrate them with the following
sentences.

The furry dog bit me.
The cute cat licked me.

Assuming a simple bigram model where con-
text is the previous word and the outcome a sin-
gle word, an unsmoothed model trained on this
data can only generate the two sentences verba-
tim. Imagine we have some way of knowing that
the tokens “dog” and “cat” are similar and would
like to leverage this fact . In our bigram model,
this amounts to the claim that the words that follow
“cat” are perhaps also likely to follow “dog”. This
is easily handled with traditional smoothing tech-
niques, which interpolate between distributions
estimated for both coarse, P (w|w−1=[is-animal]),
and fine, P (w|w−1=“dog”), contexts. We refer to
this as context smoothing.

However, we would also like to capture the in-
tuition that words which can be followed by “dog”
can also be followed by “cat”, which we will call
outcome smoothing. We extend our terminology
to describe a system that performs both types of
smoothing with the following

• the set C̄ of smooth contexts c̄

• the set Ō of smooth outcomes ō

• a smoothing function SC : C → C̄
• a smoothing function SO : O → Ō

We describe the generative process with the fol-
lowing flowchart
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are enforced. Özbal et al. (2013) produces
freeform text by filling templates with respect to
abstract notions such as humor.

3 Freeform Generation

We first address the problem of freeform data
driven language generation directly. We do not
set a semantic goal but instead ask only that the
output be considered a valid sentence, seeking a
model that captures the variability of language.

For clarity in our discussion, we phrase the
generation process in the following general terms
based around two classes of atomic units : Con-
texts and Outcomes. In order to specify a genera-
tion system, we must define

1. the set C of contexts c
2. the set O of outcomes o
3. the “Imply” function I(c, o)→ List[c ∈ C]

where I(c, o) defines the further contexts implied
by the choice of outcome o for the context c. This
model can be made probabilistic by the definition
of P (o|c), where each outcome is sampled inde-
pendently given its context. We also require the
existence of a single unique root context, and refer
to the result of repeated sampling of outcomes for
contexts as a derivation tree. Finally, a mapping
from derivation tree to surface form is required to
produce actual text.

This is simply a convenient rephrasing of the
Context Free Grammar formalism, and as such
the systems we describe all have some equivalent
CFG interpretation. Indeed, to describe a tradi-
tional CFG, let C be the set of nonterminals, O be
the rules of the CFG, and I(c, o) returns a list of
the nonterminals on the right hand side of the rule
o and does not depend on c. P (o|c) would enforce
the choice of rules with appropriate lefthand sides.

The Context-Outcome terms can be more natu-
ral when describing other models where we do not
want to explicitly define the space of nonterminals.
A simple example is an n-gram model, for which
a context is an ordered list of words, an outcome
a single word, and I(c, o) can be procedurally de-
fined to produce a list containg a single context

made by dropping the first word of the previous
context and appending the outcome to the end.

This formulation is well suited to data driven
estimation from a corpus of derivation trees.
While our methods are easily extended to mul-
tiple derivations for each single sentence, in this
work we assume access to a single derivation for
each sentence in our data set. Maximum likeli-
hood estimation of P (o|c) is then as simple as nor-
malizing the counts of the observed outcomes for
each observed context. However, in order to ob-
tain contexts for which the conditional indepen-
dence assumption of P (o|c) is appropriate, it is
necessary to condition on a large amount of in-
formation. This leads to sparse estimates even on
large amounts of training data, a problem that can
be addressed by smoothing.

We identify two complementary types of
smoothing, and illustrate them with the following
sentences.

The furry dog bit me.
The cute cat licked me.

Assuming a simple bigram model where con-
text is the previous word and the outcome a sin-
gle word, an unsmoothed model trained on this
data can only generate the two sentences verba-
tim. Imagine we have some way of knowing that
the tokens “dog” and “cat” are similar and would
like to leverage this fact . In our bigram model,
this amounts to the claim that the words that follow
“cat” are perhaps also likely to follow “dog”. This
is easily handled with traditional smoothing tech-
niques, which interpolate between distributions
estimated for both coarse, P (w|w−1=[is-animal]),
and fine, P (w|w−1=“dog”), contexts. We refer to
this as context smoothing.

However, we would also like to capture the in-
tuition that words which can be followed by “dog”
can also be followed by “cat”, which we will call
outcome smoothing. We extend our terminology
to describe a system that performs both types of
smoothing with the following

• the set C̄ of smooth contexts c̄
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We describe the generative process with the fol-
lowing flowchart

2 Related Work

The application of structural constraints appears
in previous work in the form of generative po-
etry (Greene et al., 2010) or lyrics (Wu et al.,
2013), where specified meter or rhyme schemes
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Figure 1: A flow chart depicting the decisions
made when choosing an outcome for a context.
The large circles show the set of items associated
with each decision, and contain examples items
for a bigram model where SC and SO map words
(e.g. dog) to semantic classes (e.g. [animal]).

We describe the smoothed generative process
with the flowchart shown in Figure 1. In order to
choose an outcome for a given context, two deci-
sions must be made. First, we must decide which
context we will employ, the true context or the
smooth context, marked by edges 1 or 2 respec-
tively. Next, we choose to generate a true outcome
or a smooth outcome, and if we select the latter
we use edge 6 to choose a true outcome given the
smooth outcome. The decision between edges 1
and 2 can be sampled from a Bernoulli random

variable with parameter λc, with one variable es-
timated for each context c. The decision between
edges 5 and 3 and the one between 4 and 7 can also
be made with Bernoulli random variables, with pa-
rameter sets γc and γc̄ respectively.

This yields the full form of the unconstrained
probabilistic generative model as follows

P (o|c) = λcP1(o|c) + (1− λc)P2(o|SC(c))

P1(o|c) = γcP5(o|c)+
(1− γc)P7(o|ō)P3(ō|c) (1)

P2(o|c̄) = γc̄P6(o|c)+
(1− γc̄)P7(o|ō)P4(ō|c̄)

requiring estimation of the λ and γ variables as
well as the five multinomial distributions P3−7.
This can be done with a straightforward applica-
tion of EM.

4 Limiting Vocabulary

A primary concern in the generation of language
education exercises is the working vocabulary of
the students. If efficiency were not a concern, the
natural solution to the vocabulary constraint would
be rejection sampling: simply generate sentences
until one happens to obey the constraint. In this
section we show how to generate a sentence di-
rectly from this constrained set with a distribution
closely approximating that of the rejection sam-
pler.

4.1 Pruning
The first step is to prune the space of possible sen-
tences to those that obey the vocabulary constraint.
For the models we investigate there is a natural
predicate V (o) that is true if and only if an out-
come introduces a word that is out of vocab, and
so the vocabulary constraint is equivalent to the
requirement that V (o) is false for all possible out-
comes o. Considering transitions along edges in
Figure 1, the removal of all transitions along edges
5,6, and 7 that lead to outcomes where V (o) is true
satisfies this property.

Our remaining concern is that the generation
process does not reach a failure case. Again
considering transitions in Figure 1, failure occurs
when we require P (o|c) for some c and there is no
transition to c on edge 1 or SC(c) along edge 2.
We refer to such a context as invalid. Our goal,
which we refer to as consistency, is that for all
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valid contexts c, all outcomes o that can be reached
in Figure 1 satisfy the property that all members of
I(c, o) are valid contexts.

To see how we might end up in failure, consider
a trigram model on POS/word pairs for which SC
is the identity function and SO backs off to the
POS tag. Given a context c = (

(
t−2

w−2

)
,
(
t−1

w−1

)
) if

we generate along a path using edge 6 we will
choose a smooth outcome t0 that we have seen
following c in the data and then independenently
choose a w0 that has been observed with tag t0.
This implies a following context (

(
t−1

w−1

)
,
(
t0
w0

)
). If

we have estimated our model with observations
from data, there is no guarantee that this context
ever appeared, and if so there will be no available
transition along edges 1 or 2.

Let the list Ī(c, o) be the result of the mapped
application of SC to each element of I(c, o). In
order to define an efficient algorithm, we require
the following property D referring to the amount
of information needed to determine Ī(c, o). Sim-
ply put, D states if the smoothed context and out-
come are fixed, then the implied smooth contexts
are determined.

D {SC(c), SO(o)} → Ī(c, o)

To highlight the statement D makes, consider the
trigram POS/word model described above, but let
SC also map the POS/word pairs in the context
to their POS tags alone. D holds here because
given SC(c) = (t−2, t−1) and SO(o) = t0 from
the outcome, we are able to determine the implied
smooth context (t−1, t0). If context smoothing in-
stead produced SC(c) = (t−2), D would not hold.

If D holds then we can show consistency based
on the transitions in Figure 1 alone as any com-
plete path through Figure 1 defines both c̄ and ō.
By D we can determine Ī(c, o) for any path and
verify that all its members have possible transi-
tions along edge 2. If the verification passes for
all paths then the model is consistent.

Algorithm 1 produces a consistent model by
verifying each complete path in the manner just
described. One important feature is that it pre-
serves the invariant that if a context c can be
reached on edge 1, then SC(c) can be reached on
edge 2. This means that if the verification fails
then the complete path produces an invalid con-
text, even though we have only checked the mem-
bers of Ī(c, o) against path 2.

If a complete path produces an invalid con-
text, some transition along that path must be re-

Algorithm 1 Pruning Algorithm
Initialize with all observed transitions
for all out of vocab o do

remove ?→ o from edges 5,6, and 7
end for
repeat

for all paths in flow chart do
if ∃c̄ ∈ Ī(c, o) s.t. c̄ is invalid then

remove transition from edge 5,7,3 or 4
end if

end for
Run FIXUP

until edge 2 transitions did not change

moved. It is never optimal to remove transitions
from edges 1 or 2 as this unnecessarily removes
all downstream complete paths as well, and so for
invalid complete paths along 1-5 and 2-7 Algo-
rithm 1 removes the transitions along edges 5 and
7. The choice is not so simple for the complete
paths 1-3-6 and 2-4-6, as there are two remaining
choices. Fortunately, D implies that breaking the
connection on edge 3 or 4 is optimal as regardless
of which outcome is chosen on edge 6, Ī(c, o) will
still produce the same invalid c̄.

After removing transitions in this manner, some
transitions on edges 1-4 may no longer have any
outgoing transitions. The subroutine FIXUP re-
moves such transitions, checking edges 3 and 4
before 1 and 2. If FIXUP does not modify edge 2
then the model is consistent and Algorithm 1 ter-
minates.

4.2 Estimation

In order to replicate the behavior of the rejection
sampler, which uses the original probability model
P (o|c) from Equation 1, we must set the probabil-
ities PV (o|c) of the pruned model appropriately.
We note that for moderately sized vocabularies it
is feasible to recursively enumerate CV , the set of
all reachable contexts in the pruned model. In
further discussion we simplify the representation
of the model to a standard PCFG with CV as its
symbol set and its PCFG rules indexed by out-
comes. This also allows us to construct the reach-
ability graph for CV , with an edge from ci to cj
for each cj ∈ I(ci, o). Such an edge is given
weight P (o|c), the probability under the uncon-
strained model, and zero weight edges are not in-
cluded.

Our goal is to retain the form of the stan-
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dard incremental recursive sampling algorithm for
PCFGs. The correctness of this algorithm comes
from the fact that the probability of a rule R ex-
panding a symbolX is precisely the probability of
all trees rooted atX whose first rule isR. This im-
plies that the correct sampling distribution is sim-
ply the distribution over rules itself. When con-
straints that disallow certain trees are introduced,
the probability of all trees whose first rule is R
only includes the mass from valid trees, and the
correct sampling distribution is the renormaliza-
tion of these values.

Let the goodness of a contextG(c) be the proba-
bility that a full subtree generated from c using the
unconstrained model obeys the vocabulary con-
straint. Knowledge of G(c) for all c ∈ CV al-
lows the calculation of probabilities for the pruned
model with

PV (o|c) ∝ P (o|c)
∏

c′∈I(c,o)
G(c′) (2)

While G(c) can be defined recursively as

G(c) =
∑
o∈O

P (o|c)
∏

c′∈I(c,o)
G(c′) (3)

its calculation requires that the reachability graph
be acyclic. We approximate an acyclic graph by
listing all edges in order of decreasing weight and
introducing edges as long as they do not create cy-
cles. This can be done efficiently with a binary
search over the edges by weight. Note that this ap-
proximate graph is used only in recursive estima-
tion of G(c), and the true graph can still be used
in Equation 2.

5 Generating Up

In this section we show how to efficiently gener-
ate sentences that contain an arbitrary word w∗ in
addition to the vocabulary constraint. We assume
the ability to easily find Cw∗ , a subset of CV whose
use guarantees that the resulting sentence contains
w∗. Our goal is once again to efficiently emulate
the rejection sampler, which generates a derivation
tree T and accepts if and only if it contains at least
one member of Cw∗ .

Let Tw∗ be the set of derivation trees that would
be accepted by the rejection sampler. We present
a three stage generative model and its associated
probability distribution Pw∗(τ) over items τ for
which there is a functional mapping into Tw∗ .

In addition to the probabilities PV (o|c) from the
previous section, we require an estimate of E(c),
the expected number of times each context c ap-
pears in a single tree. This can be computed effi-
ciently using the mean matrix, described in Miller
and Osullivan (1992). This |CV | × |CV | matri x M
has its entries defined as

M(i, j) =
∑
o∈O

P (o|ci)#(cj , ci, o) (4)

where the operator # returns the number of times
context cj appears I(ci, o). Defining a 1 × |CV |
start state vector z0 that is zero everywhere and 1
in the entry corresponding to the root context gives

E(z) =
∞∑
i=0

z0M
i

which can be iteratively computed with sparse ma-
trix multiplication. Note that the ith term in the
sum corresponds to expected counts at depth i in
the derivation tree. With definitions of context and
outcome for which very deep derivations are im-
probable, it is reasonable to approximate this sum
by truncation.

Our generation model operates in three phases.

1. Chose a start context c0 ∈ Cw∗

2. Generate a spine S of contexts and outcomes
connecting c0 to the root context

3. Fill in the full derivation tree T below all re-
maining unexpanded contexts

In the first phase, c0 is sampled from the multi-
nomial

P1(c0) =
E(c0)∑

c∈Cw∗
E(c)

(5)

The second step produces a spine S, which is
formally an ordered list of triples. Each element
of S records a context ci, an outcome oi, and the
index k in I(ci, oi) of the child along which the
spine progresses. The members of S are sampled
independantly given the previously sampled con-
text, starting from c0 and terminating when the
root context is reached. Intuitively this is equiv-
alent to generating the path from the root to c0 in
a bottom up fashion.

We define the probability Pσ of a triple
(ci, oi, k) given a previously sampled context cj
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as

Pσ({ci, oi, k}|cj) ∝{
E(ci)PV (oi|ci) I(ci, oi)[k] = cj

0 otherwise
(6)

Let S = (c1, o1, k1) . . . (cn, on, kn) be the re-
sults of this recursive sampling algorithm, where
cn is the root context, and c1 is the parent context
of c0. The total probability of a spine S is then

P2(S|c0) =
|S|∏
i=1

E(ci)PV (oi|ci)
Zi−1

(7)

Zi−1 =
∑

(c,o)∈Ici−1

E(c)PV (o|c)#(ci−1, c, o)

(8)

where Ic−1 is the set of all (c, o) for which
Pσ(c, o, k|ci−1) is non-zero for some k. A key
observation is that Zi−1 = E(ci−1), which can-
cels nearly all of the expected counts from the full
product. Along with the fact that the expected
count of the root context is one, the formula sim-
plifies to

P2(S|c0) =

|S|∏
i=1

PV (oi|ci)

E(c0)
(9)

The third step generates a final tree T by fill-
ing in subtrees below unexpanded contexts on the
spine S using the original generation algorithm,
yielding results with probability

P3(T |S) =
∏

(c,o)∈T/S
PV (o|c) (10)

where the set T/S includes all contexts that are
not ancestors of c0, as their outcomes are already
specified in S.

We validate this algorithm by considering its
distrubution over complete derivation trees T ∈
Tw∗ . The algorithm generates τ = (T, S, c0) and
has a simple functional mapping into Tw∗ by ex-
tracting the first member of τ .

Combining the probabilities of our three steps

gives

Pw∗(τ) =
E(c0)∑

c∈Cw∗
E(c)

|S|∏
i=1

PV (oi|ci)

E(c0)

∏
(c,o)∈T/S

PV (o|c)

Pw∗(τ) =
PV (T )∑

c∈Cw∗
E(c)

=
1
ρ
PV (T ) (11)

where ρ is a constant and

PV (T ) =
∏

(c,o)∈T
PV (o|c)

is the probability of T under the original model.
Note that several τ may map to the same T by
using different spines, and so

Pw∗(T ) =
η(T )
ρ

PV (T ) (12)

where η(T ) is the number of possible spines, or
equivalently the number of contexts c ∈ Cw∗ in T .

Recall that our goal is to efficiently emulate the
output of a rejection sampler. An ideal system Pw∗

would produce the complete set of derivation trees
accepted by the rejection sampler using PV , with
probabilities of each derivation tree T satisfying

Pw∗(T ) ∝ PV (T ) (13)

Consider the implications of the following as-
sumption

A each T ∈ Tw∗ contains exactly one c ∈ Cw∗

A ensures that η(T ) = 1 for all T , unifying Equa-
tions 12 and 13. A does not generally hold in prac-
tice, but its clear exposition allows us to design
models for which it holds most of the time, lead-
ing to a tight approximation.

The most important consideration of this type is
to limit redundancy in Cw∗ . For illustration con-
sider a dependency grammar model with parent
annotation where a context is the current word and
its parent word. When specifying Cw∗ for a partic-
ular w∗, we might choose all contexts in which w∗

appears as either the current or parent word, but
a better choice that more closely satisfies A is to
choose contexts where w∗ appears as the current
word only.
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END

END

Freeform Generation from a Fixed Vocabulary

Abstract

We investigate data driven natural lan-
guage generation under the constraint that
all words must come from a fixed arbi-
trary vocabulary. This constraint is then
extended such that a user specified word
must also appear in the sentence. We
present fast approximations to the ideal re-
jection samplers and increase variability in
generated text through controlled smooth-
ing.
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Data driven Natural Language Generation
(NLG) is a fascinating topic explored by aca-
demics and artists alike, but motivating its empiri-
cal study is a difficult task. While many language
models used in statistical NLP are generative and
can easily produce sample sentences from distri-
butions estimated from data, if all that is required
is a plausible sentence one might as well pick one
at random from any existing corpus.

NLG is useful when constraints are applied such
that only certain plausible sentences are valid. The
majority of NLG applies the semantic constraint of
“what to say”, producing sentences with commu-
nicative goals. Other work such as ours investi-
gates constraints in structure; producing sentences
of a certain form without concern for their mean-
ing.

We motivate two specific constraints concern-
ing the words that are allowed in a sentence. The
first sets a fixed vocabulary such that only sen-
tences where all words are in-vocab are allowed.
The second demands not only that all words are
in-vocab, but specifies the inclusion of a single ar-
bitrary word somewhere in the sentence. These
contraints are most natural in the case of language
education, where students have small known vo-
cabularies and exercises that reinforce the knowl-
edge of arbitrary words are required. This use
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Figure 2: The generation system SPINEDEP draws on dependency tree syntax where we use the term
node to refer to a POS/word pair. Contexts consist of a node, its parent node, and grandparent POS tag,
as shown in squares. Outcomes, shown in squares with rounded right sides, are full lists of dependents
or the END symbol. The shaded rectangles contain the results of I(c, o) from the indicated (c, o) pair.

6 Experiments

We train our models on sentences drawn from the
Simple English Wikipedia1. We obtained these
sentences from a data dump which we liberally fil-
tered to remove items such as lists and sentences
longer than 15 words or shorter then 3 words. We
parsed this data with the recently updated Stanford
Parser (Socher et al., 2013) to Penn Treebank con-
stituent form, and removed any sentence that did
not parse to a top level S containing at least one
NP and one VP child. Even with such strong fil-
ters, we retained over 140K sentences for use as
training data, and provide this exact set of parse
trees for use in future work.2

Inspired by the application in language educa-
tion, for our vocabulary list we use the English Vo-
cabulary Profile (Capel, 2012), which predicts stu-
dent vocabulary at different stages of learning En-
glish as a second language. We take the most ba-
sic American English vocabulary (the A1 list), and
retrieve all inflections for each word using Sim-
pleNLG (Gatt and Reiter, 2009), yielding a vocab-
ulary of 1226 simple words and punctuation.

To mitigate noise in the data, we discard any
pair of context and outcome that appears only once
in the training data, and estimate the parameters of
the unconstrained model using EM.

6.1 Model Comparison

We experimented with many generation models
before converging on SPINEDEP, described in
Figure 2, which we use in these experiments.

1http://simple.wikipedia.org
2data url anon for review

Corr(%) % uniq

SPINEDEP unsmoothed 87.6 5.0
SPINEDEP WordNet 78.3 32.5

SPINEDEP word2vec 5000 72.6 52.9
SPINEDEP word2vec 500 65.3 60.2

KneserNey-5 64.0 25.8
DMV 33.7 71.2

Figure 3: System comparison based on human
judged correctness and the percentage of unique
sentences in a sample of 100K.

SPINEDEP uses dependency grammar elements,
with parent and grandparent information in the
contexts to capture such distinctions as that be-
tween main and clausal verbs. Its outcomes are
full configurations of dependents, capturing co-
ordinations such as subject-object pairings. This
specificity greatly increases the size of the model
and in turn reduces the speed of the true rejection
sampler, which fails over 90% of the time to pro-
duce an in-vocab sentence.

We found that large amounts of smoothing
quickly diminishes the amount of error free out-
put, and so we smooth very cautiously, map-
ping words in the contexts and outcomes to
fine semantic classes. We compare the use
of human annotated hypernyms from Word-
net (Miller, 1995) with automatic word clusters
from word2vec (Mikolov et al., 2013), based on
vector space word embeddings, evaluating both
500 and 5000 clusters for the latter.

We compare these models against several base-
line alternatives, shown in Figure 3. To determine
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correctness, used Amazon Mechanical Turk, ask-
ing the question: “Is this sentence plausible?”. We
further clarified this question in the instructions
with alternative definitions of plausibility as well
as both positive and negative examples. Every sen-
tence was rated by five reviewers and its correct-
ness was determined by majority vote, with a .496
Fleiss kappa agreement. To avoid spammers, we
limited our hits to Turkers with an over 95% ap-
proval rating.

Traditional language modeling techniques such
as such as the Dependency Model with Va-
lence (Klein and Manning, 2004) and 5-gram
Kneser Ney (Chen and Goodman, 1996) perform
poorly, which is unsurprising as they are designed
for tasks in recognition rather than generation. For
n-gram models, accuracy can be greatly increased
by decreasing the amount of smoothing, but it be-
comes difficult to find long n-grams that are com-
pletely in-vocab and results become redundant,
parroting the few completely in-vocab sentences
from the training data. The DMV is more flex-
ible, but makes assumptions of conditional inde-
pendence that are far too strong. As a result it
is unable to avoid red flags such as sentences not
ending in punctuation or strange subject-object co-
ordinations. Without smoothing, SPINEDEP suf-
fers from a similar problem as unsmoothed n-gram
models; high accuracy but quickly vanishing pro-
ductivity.

All of the smoothed SPINEDEP systems show
clear advantages over their competitors. The
tradeoff between correctness and generative ca-
pacity is also clear, and our results suggest that the
number of clusters created from the word2vec em-
beddings can be used to trace this curve. As for the
ideal position in this tradeoff, we leave such deci-
sions which are particular to specific application to
future work, arbitrarily using SPINEDEP WordNet
for our following experiments.

6.2 Fixed Vocabulary

To show the tightness of the approximation pre-
sented in Section 4.2, we evaluate three settings
for the probabilities of the pruned model. The first
is a weak baseline that sets all distributions to uni-
form. For the second, we simply renormalize the
true model’s probabilities, which is equivalent to
setting G(c) = 1 for all c in Equation 2. Finally,
we use our proposed method to estimate G(c).

We show in Figure 4 that our estimation method

Corr(%) -LLR

True RS 79.3 –

Uniform 47.3 96.2
G(c) = 1 77.0 25.0

G(c) estimated 78.3 1.0

Figure 4: A comparison of our system against both
a weak and a strong baseline based on correctness
and the negative log of the likelihood ratio mea-
suring closeness to the true rejection sampler.

more closely approximates the distribution of the
rejection sampler by drawing 500K samples from
each model and comparing them with 500K sam-
ples from the rejection sampler itself. We quantify
this comparison with the likelihood ratio statistic,
evaluating the null hypothesis that the two sam-
ples were drawn from the same distribution. Not
only does our method more closely emulate that of
the rejection sampler, be we see welcome evidence
that closeness to the true distribution is correlated
with correctness.

6.3 Word Inclusion

To explore the word inclusion constraint, for each
word in our vocabulary list we sample 1000 sen-
tences that are constrained to include that word
using both unsmoothed and WordNet smoothed
SPINEDEP. We compare these results to the “Cor-
pus” model that simply searches the training data
and uniformly samples from the existing sentences
that satisfy the constraints. This corpus search ap-
proach is quite a strong baseline, as it is trivial to
implement and we assume perfect correctness for
its results.

This experiment is especially relevant to our
motivation of language education. The natural
question when proposing any NLG approach is
whether or not the ability to automatically produce
sentences outweighs the requirement of a post-
process to ensure goal-appropriate output. This
is a challenging task in the context of language
education, as most applications such as exam or
homework creation require only a handful of sen-
tences. In order for an NLG solution to be appro-
priate, the constraints must be so strong that a cor-
pus search based method will frequently produce
too few options to be useful. The word inclusion
constraint highlights the strengths of our method
as it is not only highly plausible in a language ed-

131



# < 10 # > 100 Corr(%)

Corpus 987 26 100
Unsmooth 957 56 89.0

Smooth 544 586 79.0

Figure 5: Using systems that implement the word
inclusion constraint, this table shows the number
of words for which the amount of unique sentences
out of 1000 samples was less than 10 or greater
than 100, along with the correctness of each sys-
tem.

ucation setting but difficult to satisfy by chance in
large corpora.

Figure 5 shows that the corpus search approach
fails to find more than ten sentences that obey the
word inclusion constraints for most target words.
Moreover, it is arguably the case that unsmoothed
SPINEDEP is even worse due to its inferior cor-
rectness. With the addition of smoothing, how-
ever, we see a drastic shift in the number of words
for which a large number of sentences can be pro-
duced. For the majority of the vocabulary words
this model generates over 100 sentences that obey
both constraints, of which approximately 80% are
valid English sentences.

7 Conclusion

In this work we address two novel NLG con-
straints, fixed vocabulary and fixed vocabulary
with word inclusion, that are motivated by lan-
guage education scenarios. We showed that un-
der these constraints a highly parameterized model
based on dependency tree syntax can produce a
wide range of accurate sentences, outperforming
the strong baselines of popular generative lan-
guage models. We developed a pruning and es-
timation algorithm for the fixed vocabulary con-
straint and showed that it not only closely approx-
imates the true rejection sampler but also that the
tightness of approximation is correlated with hu-
man judgments of correctness. We showed that
under the word inclusion constraint, precise se-
mantic smoothing produces a system whose abili-
ties exceed the simple but powerful alternative of
looking up sentences in large corpora.

SPINEDEP works surprisingly well given the
widely held stigma that freeform NLG produces
either memorized sentences or gibberish. Still, we
expect that better models exist, especially in terms

of definition of smoothing operators. We have pre-
sented our algorithms in the flexible terms of con-
text and outcome, and clearly stated the properties
that are required for the full use of our methodol-
ogy. We have also implemented our code in these
general terms3, which performs EM based param-
eter estimation as well as efficient generation un-
der the constraints discussed above. All systems
used in this work with the exception of 5-gram in-
terpolated Kneser-Ney were implemented in this
way, are included with the code, and can be used
as templates.

We recognize several avenues for continued
work on this topic. The use of form-based con-
straints such as word inclusion has clear applica-
tion in language education, but many other con-
straints are also desirable. The clearest is perhaps
the ability to constrain results based on a “vocab-
ulary” of syntactic patterns such as “Not only ...
but also ...”. Another extension would be to incor-
porate the rough communicative goal of response
to a previous sentence as in Wu et al. (2013) and
attempt to produce in-vocab dialogs such as are
ubiquitous in language education textbooks.

Another possible direction is in the improve-
ment of the context-outcome framework itself.
While we have assumed a data set of one deriva-
tion tree per sentence, our current methods eas-
ily extend to sets of weighted derivations for each
sentence. This suggests the use of techinques that
have proved effective in grammar estimation that
reason over large numbers of possible derivations
such as Bayesian tree substitution grammars or un-
supervised symbol refinement.
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