
Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, pages 43–48,
Baltimore, Maryland, 26-27 July 2014. c©2014 Association for Computational Linguistics

RACAI GEC – A hybrid approach to Grammatical Error Correction

Tiberiu Boroș

Calea 13 Septembrie, 13

Bucharest

RACAI

tibi@racai.ro

Stefan Daniel Dumitrescu

Calea 13 Septembrie,13

Bucharest

RACAI

sdumitrescu@racai.ro

Adrian Zafiu

Str. Targul din Vale, 1

Pitesti

UPIT - FECC

adrian.zafiu@comin.ro

Dan Tufiș

Calea 13 Septembrie, 13

Bucharest

RACAI

tufis@racai.ro

Verginica Mititelu Barbu

Calea 13 Septembrie, 13

Bucharest

RACAI

vergi@racai.ro

Paul Ionuț Văduva

Calea 13 Septembrie, 13

Bucharest

RACAI

ionut@racai.ro

Abstract

This paper describes RACAI’s (Research

Institute for Artificial Intelligence) hy-

brid grammatical error correction system.

This system was validated during the par-

ticipation into the CONLL’14 Shared

Task on Grammatical Error Correction.

We offer an analysis of the types of er-

rors detected and corrected by our sys-

tem, we present the necessary steps to re-

produce our experiment and also the re-

sults we obtained.

1 Introduction

Grammatical error correction (GEC) is a com-

plex task mainly because of the natural depend-

encies between the words of a sentence both at

the lexical and the semantic levels, leave it aside

the morphologic and syntactic levels, an intrinsic

and complex attribute specific to the human lan-

guage. Grammatical error detection and correc-

tion received a significant level of interest from

various research groups both from the academic

and commercial environments. A testament to

the importance of this task is the long history of

challenges (e.g. Microsoft Speller Challenge and

CONLL Shared Task) (Hwee et al., 2014) that

had the primary objective of proving a common

testing ground (i.e. resources, tools and gold

standards) in order to assess the performance of

various methods and tools for GEC, when ap-

plied to identical input data.

In the task of GEC, one can easily distinguish

two separate tasks: grammatical error detection

and grammatical error correction. Typically,

there are three types of approaches: statistical,

rule-based and hybrid. The difficulty of detecting

and correcting an error depends on its class.

(a) Statistical approaches rely on building

statistical models (using surface forms or

syntactic labels) that are used for detecting

and correcting local errors. The typical

statistical approach is to model how likely

the occurrence of an event is, given a his-

tory of preceding events. Thus, statistical

approaches easily adaptable to any lan-

guage (requiring only training data in the

form of raw or syntactically labeled text)

are very good guessers when it comes to

detecting and correcting collocations, idi-

oms, typos and small grammatical inad-

vertences such as the local gender and

case agreements. The main impediments

of such systems are two-fold: (1) they are

resource consuming techniques

(memory/storage) and they are highly de-

pendent on data – large and domain

adapted datasets are required in order to

avoid the data-scarceness specific issue

and currently they rely only on a limited

horizon of events; (2) they usually lack

semantic information and favoring high-

occurring events is not always the best

way of detecting and correcting grammat-

ical errors.

(b) Rule-based approaches embed linguistic

knowledge in the form of machine parsa-

ble rules that are used to detect errors and

43

describe via transformations how various

error types should be corrected. The

drawbacks to rule-based system are (1) the

extensive effort required to build the rule-

set, (2) regardless of the size of the rule-

set, given the variability of the human lan-

guage it is virtually impossible to capture

all possible errors and (3) the large num-

ber of exceptions to rules.

(c) Hybrid systems that combine both rule-

based and statistical approaches are plau-

sible to overcome the weaknesses of the

two methodologies if the mixture of the

two components is done properly. Detec-

tion of errors can be achieved statistically

and rule-based, the task of the hybrid ap-

proach being to resolve any conflicts that

arise between the outputs of the two ap-

proaches.

However, even the most advanced systems are

only able to distinguish between a limited num-

ber of error types and the task of correcting an

error is even more difficult. Along the typical set

of errors that are handled by typical correction

systems (punctuation, capitalization, spelling,

typos, verb tense, missing verb, etc.), CONLL’s

GEC task introduces some hard cases which re-

quire a level of semantic analysis: local redun-

dancy, unclear meaning, parallelism, etc.

2 External tools and resources

One step in the preparation phase was the

analysis of the types of errors. The training set

was automatically processed with our Bermuda

tool (Boroș et al., 2013): it underwent sentence

splitting, tokenization, part of speech tagging,

lemmatization and also chunking. Comparing the

original and the corrected sentences, we could

rank the types of mistakes.

The most frequent ones, i.e. occurring more

than 1000 times, are presented in the following

table:

Type of error Occurrences Percent

use of articles and de-

terminers

6647 14.98

wrong collocations or

idioms

5300 11.94

local redundancies 4668 10.52

noun number 3770 8.49

tenses 3200 7.21

punctuation and orthog-

raphy

3054 6.88

use of prepositions 2412 5.43

word form 2160 4.87

subject-verb agreement 1527 3.44

Verb form 1444 3.25

Link word/phrases 1349 3.04

Table 1. The most frequent types of mistakes

in the training data

There are also some less frequent errors: pro-

noun form, noun possessive form, word order of

adjectives and adverbs, etc. Some of these can be

solved by means of rules, others by accessing

lexical resources and others are extremely diffi-

cult to deal with.

As far as the test data are concerned, the error

distribution according to their types is the fol-

lowing:

Type of error Occurrences

in official-

2014.0.m2

Occurrences

in official-

2014.1.m2

use of articles and

determiners 332 437

wrong collocations

or idioms 339 462

local redundancies 94 194

noun number 214 222

tenses 133 146

punctuation and

orthography 227 474

use of prepositions 95 152

word form 76 104

subject-verb

agreement 107 148

Verb form 132 88

Link word/phrases 93 78

Table 2. The most frequent types of mistakes

in the test data

Roughly, the same types of mistakes are more

frequent in the test set, just like as in the training

set.

For collocations and idioms, as well as for cor-

rect prepositions use, we consider that only lexi-

cal resources can be of help. They can take the

form of a corpus or lists of words that subcatego-

rize for prepositional phrases obligatorily headed

by a certain preposition (see section 3.2). We

adopted the former solution: we used Google 1T

n-grams corpus (see section 2.2) from which the

selectional restrictions can be learned quite suc-

cessfully. However, dealing with collocations is

difficult, as correction does not involve only syn-

tax, but also semantics. Changing a word in a

sentence usually implies changing the meaning

of the sentence as a whole. Nevertheless, a solu-

tion can be found: as mistakes in collocations

involve the use of a related word (synonyms), a

44

resource such as the WordNet can be of help.

When the word used in the sentence and the one

occurring in the corpus can be found in the same

synset (or even in synsets in direct relation), the

correction could be made. Otherwise, it is risky

to try. In any scenario, this remains as future

work for us.

2.1 RACAI NLP Tools

We have used our in-house Bermuda software

suite (Boroș et al., 2013), (Boroș and

Dumitrescu, 2013) to perform text pre-

processing. As the tool is well documented in the

cited papers above, we summarize its main func-

tionalities concerning the task at hand and the

algorithms behind them.

Tokenization. A basic necessary prepro-

cessing step that needs to be applied from the

beginning as most tools work on a certain to-

kenization format. Bermuda uses a custom-built,

language dependent tokenizer. Based on regular

expressions, it detects and splits words such as

[haven’t] into [have] and [n’t]; [boy’s] into [boy]

and [’s], while leaving abbreviations like [dr.] or

[N.Y.] as a single token.

Part-of-speech (POS) tagger. Tagging is es-

sential to determine each word’s part of speech

and thus its role in the sentence. Each word is

tagged with a morpho-syntactic descriptor, called

MSD. The English language has around 100

MSDs defined, while more inflected languages,

like Romanian – a Latin-derived language, uses

over 600. An MSD completely characterizes the

word morphologically and syntactically
1
. For

example, ‘Np’ refers to a proper noun while

‘Ncns’ refers to a common (c) noun (N) that has

a neuter (n) gender and is in singular form (ex:

zoo, zone). Our tagger is based on a neural net-

work, introduced in (Boroș et al., 2013). Overall,

the Bermuda POS Tagger obtains very high ac-

curacy rates (>98%) even on the more difficult,

highly inflected languages.

Lemmatization. The Bermuda Lemmatizer is

based on the MIRA algorithm (Margin Infused

Relaxed Algorithm) (Crammer and Singer,

2003). We treat lemmatization as a tagging task,

in which each individual letter of the surface

word is tagged as either remaining unchanged,

being removed or transformed to another letter.

The lemmatizer was trained and tested on an

English lexicon containing a number of around

120K surface-lemma-MSD entries.

1
 Full description of MSDs can be found at :

http://nl.ijs.si/ME/V4/msd/html/msd-en.html

2.2 Google 1T corpus

A good performing language model is a very im-

portant resource for the current task, as it allows

discriminating between similar phrases by com-

paring their perplexities.

Although we had several corpora available to

extract surface-based language models from, we

preferred to use a significantly larger model than

we could create: Google 1T n-gram corpus

(Brants and Franz, 2006). This 4 billion n-gram

corpus should provide high-quality perplexity

estimations. However, loading 4*10^9 n-grams

without any compression scheme would require,

even by today’s standards, a large amount of

memory. For example, using SRILM (Stolcke,

2002) which uses 33 bytes per n-gram, would

require a total of ~116GB of RAM. The article

by Adam Pauls and Dan Klein (2011) describes

an ingenious way to create a data structure that

reduces the amount of RAM needed to load the

1T corpus. However, the system they propose is

written in Java, a language that is object-

oriented, and which, for any object, introduces an

additional overhead. Furthermore, they do not

implement any smoothing method for the 1T

corpus, defaulting to the +1 “stupid smoothing”

as they themselves named it, relying on the fact

that smoothing is less relevant with a very large

corpus. For these reasons, coupled with the dif-

ficulty to understand and modify other persons’

code, we wrote our language model software.

We based our implementation around Pauls and

Klein’s sorted array idea, with a few modifica-

tions. Firstly, we encoded the unigrams in a sim-

ple HashMap instead of a value-rank array. Sec-

ondly, we wrote a multi-step n-gram reader and

loader. Thirdly, we implemented the Jelinek-

Mercer smoothing method instead of the simple

+1 smoothing. Using deleted interpolation we

computed the lambda parameters for the JM

smoothing; we further built a stand-alone server

that would load the smoothed n-gram probabili-

ties and could be queried over TCP-IP either for

an n-gram (max 5-gram – direct probability) or

for an entire sentence (compute its perplexity).

The entire software was written in C++ to avoid

Java’s overhead problems. Overall, the simpli-

fied ranked array encoding allowed us to obtain

very fast response times (under a millisecond per

query) with a moderate memory usage: the entire

1T corpus was loaded in around 60GB of RAM,

well below our development server memory lim-

it.

45

We are aware of the limitations of this corpus:

as data was collected from the web, mistakes will

occur in it.

We also need a language model that can esti-

mate the probability of parts of speech. By learn-

ing a model from the parts of speech we can

learn to discriminate between words different

forms. Grantedly, a part of speech language

model can promote a grammatically “more” cor-

rect but semantically inferior sentence over a

semantically sound one, due to assigning a high-

er probability to a more common part of speech

sequence in the sentence. Our experiments show

that, generally, a part of speech language model

helps text quality overall.

Our initial idea for this POS language model

was to use the same 1T corpus that we could an-

notate using our tagging tools. However, given

the limited context, performance would have

been acceptable at the 5-gram level, decreasing

to the point of simply picking the most common

part of speech for the unigrams, as no context

exists for them. As such, we used the following

available monolingual resources for English: the

News CRAWL corpus (2007-2012 editions),

Europarl, UN French-English Corpus, the News

Commentary, our own cleaned English Wikipe-

dia dump. The total size of the raw text was

around 20GB. We joined and annotated the files

and extracted all the 1-5 grams, using the same

format as the 1T corpus. We then used another

instance of the language model software to load

this POS LM and await the main system perplex-

ity estimation requests. Overall, the part of

speech language model turned out to be rather

small (a hard-disk footprint of only 315MB of

binary part of speech LM compared to the 57GB

of surface model compressed data). This is nor-

mal, as the entire part of speech MSD vocabulary

for English is around 100 tags, compared to the

more than 13 million surface forms (unigrams) in

the 1T corpus.

3 RACAI’s Hybrid Grammatical Error

Correction System

3.1 An overview of the system

In many cases, statistical methods are preferable

over rule-based systems since they only rely on

large available raw corpora instead of hand-

crafted rules that are difficult to design and are

limited by the effort invested by human experts

in their endeavor.

However, a purely statistical method is not

always able to validate rarely used expressions

and always favors frequency over fine grained

compositions.

As a rule of thumb, hybrid systems are always

a good choice in tasks where the complexity ex-

ceeds the capacity of converting knowledge into

formal rules and large scale training data is

available for developing statistical models.

Our GEC system has three cascaded phases

divided between two modules: (a) in the first

phase, a statistical surface based and a POS LM

are used to solve orthographic errors inside the

input sentences, thus enhancing the quality of the

NLP processing for the second stage; (b) a rule-

based system is used to detect typical grammati-

cal errors, which are labeled and then (c) correct-

ed using a statistical method to validate between

automatically generated candidates.

3.2 The statistical component

Typos are a distinctive class of errors found in

texts written by both native and non-native Eng-

lish speakers which do not violate any explicit

(local agreement related) grammatical con-

straints. Most POS tagging systems handle pre-

viously unseen words through suffix analysis and

are able (using the local context) to assign a tag

which is conformant with the tags of the sur-

rounding words. Such errors cannot be detected

by applying rules, since it is impossible to have

lexicons that cover the entire possible vocabulary

of a language.

The typical approach is to generate spelling al-

ternatives for words that are outside the vocabu-

lary and to use a LM to determine the most likely

correct word form. However, when relying on

simple distance functions such as the unmodified

Levenstein it is extremely difficult to differenti-

ate between spelling alternatives even with the

help of contextual information. There are multi-

ple causes for this type of errors, starting from

the lack of language knowledge (typically non-

native speakers rely on phonetic similarity when

spelling words) to speed (usually results in miss-

ing letters) or keyboard related (multiple keys

touched at once). The distance function we used

for scoring alternatives uses a weighted Leven-

stein algorithm, which was tuned on the TREC

dataset.

3.3 The rule based error detection and cor-

rection

As previously mentioned, not all grammatical

errors are automatically detectable by pure statis-

tical methods. In our experiments we noticed

frequent cases where the LM does not provide

46

sufficient support to distinguish between true

grammatical errors and simply unusual but

grammatically correct expressions.

For the present shared task we concentrated on

a subset of potential errors. Our rules aimed the

correction of the verb tense especially in time

clauses, the use of the short infinitive after

modals, the position of frequency adverbs in a

sentence, subject-verb agreement, word order in

interrogative sentences, punctuation accompany-

ing certain lexical elements, the use of articles, of

correlatives, etc.

For the sake of an easier understanding of our

rule-based component of the GEC system, we

will start by introducing some technical details

about how the rule interpreter works, emphasiz-

ing on the structure of the configuration file, the

input modality and the general pointers on writ-

ing rules. In our approach we treat error detec-

tion and error correction separately, in a two-

stage system. The configuration file contains a

set of language dependent rules, each rule being

uniquely identified by the label and its body.

The role of using labels is two-fold: (1) they pro-

vide guidance and assistance to the user in navi-

gating through the structure of the configuration

file (when editing or creating new rules); (2) they

play a crucial role in the error correction process

and serve as common denominators for different

classes of errors.

Our rule description system is inspired after

the time-independent logic function (combina-

tional logic) paradigm, which stipulates that a

fixed input size logical function, described

through a stochastic list of input/output depend-

ence sequence, through a process of logical min-

imization, this function can be implemented as

an array of “AND” gates, followed by an array of

“OR” gates. Thus, in our configuration file, each

rule is described by a set of string pairs (i0 r0, i1

r1… in rn) which act as “AND” gates – we refer

to this as a sub-instance of a rule. At this point, a

sub-instance is activated only if all constraints

are met. The “OR” gate array is simulated by

adding rules with the same label. This way, if

any sub-instance is active then the rule is consid-

ered active and we proceed to the errror correc-

tion step.

Every pair (ik rk) is a single Boolean input of a

sub-instance. A rule is checked against every

token inside an utterance, from left to right. rk is

a regular expression which, depending on the

value of ik, is applied to the word’s surface form

(s), the word’s lemma (l) or the word’s MSD

(m). ik can also select if the regular expression

should be applied to a neighboring token. To ex-

emplify, we have extracted two sections from our

configuration file: (a) the modal infinitive com-

mon error for non-native English speakers (also

found in the development set of CONLL) (lines 1

to 7) and (b) the possible missing comma case

(line 8):

1) modal_infinitive: s must s+1 to s-1 ^!a

2) modal_infinitive: s could s+1 to

3) modal_infinitive: s can s+1 to

4) modal_infinitive: s might s+1 to

5) modal_infinitive: s may s+1 to

6) modal_infinitive: s would s+1 to

7) modal_infinitive: s should s+1 to

8) pmc: s which m-1 ^((?!COMMA).)*$

Table 3: a sample of error detection rules

The “modal_infinitive” rule is complex and it

is described using 7 sub-instances, which share

an identical label. Line 1 of the configuration

excerpt contains three pairs as opposed to the

other sub-instances. This does not contradict the

combinational logic paradigm, since we can con-

sider this rule as having a fixed input size of

three and, as a result of logic minimization, the

third parameter for 6 of the seven instances falls

into the “DON’T CARE” special input class. The

first ikrk pair (“s must”) is used to check if the

surface form (“s”) of the current word is “must”.

The second pair (“s+1 to”) checks if the word

form of the next token is “to”. The third pair

(“s-1 ^!a”) verifies that the collocation “a must

to” does not accidentally trigger this rule. This

rule will detect the error in “I must to go...”, but

will licence a sequence like “This book is a must

to read...”.

The error detection rules that we designed for

the CONLL shared task are created, as an exter-

nal resource for the program, on the basis of the

mistakes observed in the training set and can be

updated/extended any time .

In the error correction phase, for every error

type we encompass, we provide the necessary

transformations (at token level) through which

the initial word sequence that generated this error

should be corrected. The configuration file of

this module is straightforward: rule-labels are

marked as strings at the beginning of a new line;

for each label, we provide a set of transformation

rules, that are contained in the following tab-

indented lines; once a new line does not start

with a TAB character, it should either be empty

or contain the label for a different error type. the

correction phase, multiple sentence candidates

are automatically generated (based on the trans-

formation rules) and they are checked against the

47

language model to see which one yields the low-

est perplexity. That is, once an error is found, its

correction way tends to be applied provided that

the language model offers another solution.

As an example, suppose that the rule for de-

tecting a possible missing comma (pmc in Table

3, line 8) was fired. The corresponding correc-

tion rule is described as below:

pmc:

$w-1 , $w

$w-1 $w

The "pmc" rule is activated if the word

"which" is not preceded by a comma. Since it is

not always the case that the wordform "which"

should be preceded by this punctuation mark, in

our error correction system step we generate two

candidates: (a) one in which we insert a comma

before "which" and (b) one in which we keep the

word sequence untouched.

4 Results and Conclusions

The RACAI hybrid GEC system obtained a pre-

cision of 31.31%, a recall of 14.23% and an F0.5

score of 25.25% on the test set provided by the

CONLL shared task on Grammatical Error Cor-

rection.

We presented our system and the resources we

used in the development process. All the data

and tools required to run a similar experiment are

available online and we are currently working on

developing a self-contained GEC system that

will be made publicly available.

Future development plans include the en-

hancement of the lexicons we use for English

and the extension of this system for Romanian.

Furthermore, we plan to include an extended

method for solving collocations errors based on

the synsets of Princeton WordNet (PWN) (Fell-

baum, 1989).

References

Andreas Stolcke. 2002. SRILM: An extensible lan-

guage modeling toolkit. In Proceedings of Inter-

speech

Boroş, T., Radu, I., & Tufiş, D. (2013). Large tagset

labeling with Feed Forward Neural Networks. Case

study on Romanian Language. In Proceedings of

ACL

Boroş, T., & Dumitrescu, S. D. (2013). Improving the

RACAI Neural Network MSD Tagger. In Engi-

neering Applications of Neural Networks (pp. 42-

51). Springer Berlin Heidelberg

Crammer, K., & Singer, Y. (2003). Ultraconservative

online algorithms for multiclass problems. The

Journal of Machine Learning Research, 3, 951-991.

Fellbaum, Ch. (1998, ed.) WordNet: An Electronic

Lexical Database. Cambridge, MA: MIT Press

 Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian

Hadiwinoto, Raymond Hendy Susanto, and Chris-

topher Bryant (2014). The CoNLL-2014 Shared

Task on Grammatical Error Correction. Proceed-

ings of the Eighteenth Conference on Computa-

tional Natural Language Learning: Shared Task

(CoNLL-2014 Shared Task). Baltimore, Maryland,

USA.

Thorsten Brants and Alex Franz. 2006. Google

Web1T 5-gram corpus, version 1. In Linguistic Da-

ta Consortium, Philadelphia, Catalog Number

LDC2006T13

Pauls, Adam, and Dan Klein. "Faster and smaller n-

gram language models." Proceedings of the 49th

Annual Meeting of the Association for Computa-

tional Linguistics: Human Language Technologies-

Volume 1. Association for Computational Linguis-

tics, 2011.

48

