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RACAI GEC – A hybrid approach to Grammatical Error Correction  
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Abstract 

This paper describes RACAI’s (Research 

Institute for Artificial Intelligence) hy-

brid grammatical error correction system. 

This system was validated during the par-

ticipation into the CONLL’14 Shared 

Task on Grammatical Error Correction. 

We offer an analysis of the types of er-

rors detected and corrected by our sys-

tem, we present the necessary steps to re-

produce our experiment and also the re-

sults we obtained. 

1 Introduction 

Grammatical error correction (GEC) is a com-

plex task mainly because of the natural depend-

encies between the words of a sentence both at 

the lexical and the semantic levels, leave it aside 

the morphologic and syntactic levels, an intrinsic 

and complex attribute specific to the human lan-

guage. Grammatical error detection and correc-

tion received a significant level of interest from 

various research groups both from the academic 

and commercial environments. A testament to 

the importance of this task is the long history of 

challenges (e.g. Microsoft Speller Challenge and 

CONLL Shared Task) (Hwee et al., 2014) that 

had the primary objective of proving a common 

testing ground (i.e. resources, tools and gold 

standards) in order to assess the performance of 

various methods and tools for GEC, when ap-

plied to identical input data. 

In the task of GEC, one can easily distinguish 

two separate tasks: grammatical error detection 

and grammatical error correction. Typically, 

there are three types of approaches: statistical, 

rule-based and hybrid. The difficulty of detecting 

and correcting an error depends on its class.  

(a) Statistical approaches rely on building 

statistical models (using surface forms or 

syntactic labels) that are used for detecting 

and correcting local errors. The typical 

statistical approach is to model how likely 

the occurrence of an event is, given a his-

tory of preceding events. Thus, statistical 

approaches easily adaptable to any lan-

guage (requiring only training data in the 

form of raw or syntactically labeled text) 

are very good guessers when it comes to 

detecting and correcting collocations, idi-

oms, typos and small grammatical inad-

vertences such as the local gender and 

case agreements. The main impediments 

of such systems are two-fold: (1) they are 

resource consuming techniques 

(memory/storage) and they are highly de-

pendent on data – large and domain 

adapted datasets are required in order to 

avoid the data-scarceness specific issue 

and currently they rely only on a limited 

horizon of events; (2) they usually lack 

semantic information and favoring high-

occurring events is not always the best 

way of detecting and correcting grammat-

ical errors. 

(b) Rule-based approaches embed linguistic 

knowledge in the form of machine parsa-

ble rules that are used to detect errors and 
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describe via transformations how various 

error types should be corrected. The 

drawbacks to rule-based system are (1) the 

extensive effort required to build the rule-

set, (2) regardless of the size of the rule-

set, given the variability of the human lan-

guage it is virtually impossible to capture 

all possible errors and (3) the large num-

ber of exceptions to rules. 

(c) Hybrid systems that combine both rule-

based and statistical approaches are plau-

sible to overcome the weaknesses of the 

two methodologies if the mixture of the 

two components is done properly. Detec-

tion of errors can be achieved statistically 

and rule-based, the task of the hybrid ap-

proach being to resolve any conflicts that 

arise between the outputs of the two ap-

proaches.  

However, even the most advanced systems are 

only able to distinguish between a limited num-

ber of error types and the task of correcting an 

error is even more difficult. Along the typical set 

of errors that are handled by typical correction 

systems (punctuation, capitalization, spelling, 

typos, verb tense, missing verb, etc.), CONLL’s 

GEC task introduces some hard cases which re-

quire a level of semantic analysis: local redun-

dancy, unclear meaning, parallelism, etc.  

2 External tools and resources  

One step in the preparation phase was the 

analysis of the types of errors. The training set 

was automatically processed with our Bermuda 

tool (Boroș et al., 2013): it underwent sentence 

splitting, tokenization, part of speech tagging, 

lemmatization and also chunking. Comparing the 

original and the corrected sentences, we could 

rank the types of mistakes.  

The most frequent ones, i.e. occurring more 

than 1000 times, are presented in the following 

table:  

 

Type of error Occurrences Percent 

use of articles and de-

terminers 

6647 14.98 

wrong collocations or 

idioms 

5300 11.94 

local redundancies 4668 10.52 

noun number 3770 8.49 

tenses 3200 7.21 

punctuation and orthog-

raphy 

3054 6.88 

use of prepositions 2412 5.43 

word form 2160 4.87 

subject-verb agreement 1527 3.44 

Verb form 1444 3.25 

Link word/phrases 1349 3.04 

Table 1. The most frequent types of mistakes 

in the training data 

There are also some less frequent errors: pro-

noun form, noun possessive form, word order of 

adjectives and adverbs, etc. Some of these can be 

solved by means of rules, others by accessing 

lexical resources and others are extremely diffi-

cult to deal with. 

As far as the test data are concerned, the error 

distribution according to their types is the fol-

lowing: 

Type of error Occurrences 

in official-

2014.0.m2 

Occurrences 

in official-

2014.1.m2 

use of articles and 

determiners 332 437 

wrong collocations 

or idioms 339 462 

local redundancies 94 194 

noun number 214 222 

tenses 133 146 

punctuation and 

orthography 227 474 

use of prepositions 95 152 

word form 76 104 

subject-verb 

agreement 107 148 

Verb form 132 88 

Link word/phrases 93 78 

Table 2. The most frequent types of mistakes 

in the test data 

Roughly, the same types of mistakes are more 

frequent in the test set, just like as in the training 

set. 

For collocations and idioms, as well as for cor-

rect prepositions use, we consider that only lexi-

cal resources can be of help. They can take the 

form of a corpus or lists of words that subcatego-

rize for prepositional phrases obligatorily headed 

by a certain preposition (see section 3.2). We 

adopted the former solution: we used Google 1T 

n-grams corpus (see section 2.2) from which the 

selectional restrictions can be learned quite suc-

cessfully. However, dealing with collocations is 

difficult, as correction does not involve only syn-

tax, but also semantics. Changing a word in a 

sentence usually implies changing the meaning 

of the sentence as a whole. Nevertheless, a solu-

tion can be found: as mistakes in collocations 

involve the use of a related word (synonyms), a 
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resource such as the WordNet can be of help. 

When the word used in the sentence and the one 

occurring in the corpus can be found in the same 

synset (or even in synsets in direct relation), the 

correction could be made. Otherwise, it is risky 

to try. In any scenario, this remains as future 

work for us. 

2.1 RACAI NLP Tools 

We have used our in-house Bermuda software 

suite (Boroș et al., 2013), (Boroș and 

Dumitrescu, 2013) to perform text pre-

processing. As the tool is well documented in the 

cited papers above, we summarize its main func-

tionalities concerning the task at hand and the 

algorithms behind them. 

Tokenization. A basic necessary prepro-

cessing step that needs to be applied from the 

beginning as most tools work on a certain to-

kenization format. Bermuda uses a custom-built, 

language dependent tokenizer. Based on regular 

expressions, it detects and splits words such as 

[haven’t] into [have] and [n’t]; [boy’s] into [boy] 

and [’s], while leaving abbreviations like [dr.] or 

[N.Y.] as a single token.  

Part-of-speech (POS) tagger. Tagging is es-

sential to determine each word’s part of speech 

and thus its role in the sentence. Each word is 

tagged with a morpho-syntactic descriptor, called 

MSD. The English language has around 100 

MSDs defined, while more inflected languages, 

like Romanian – a Latin-derived language, uses 

over 600. An MSD completely characterizes the 

word morphologically and syntactically
1
. For 

example, ‘Np’ refers to a proper noun while 

‘Ncns’ refers to a common (c) noun (N) that has 

a neuter (n) gender and is in singular form (ex: 

zoo, zone). Our tagger is based on a neural net-

work, introduced in (Boroș et al., 2013). Overall, 

the Bermuda POS Tagger obtains very high ac-

curacy rates (>98%) even on the more difficult, 

highly inflected languages. 

Lemmatization. The Bermuda Lemmatizer is 

based on the MIRA algorithm (Margin Infused 

Relaxed Algorithm) (Crammer and Singer, 

2003). We treat lemmatization as a tagging task, 

in which each individual letter of the surface 

word is tagged as either remaining unchanged, 

being removed or transformed to another letter. 

The lemmatizer was trained and tested on an 

English lexicon containing a number of around 

120K surface-lemma-MSD entries.  

                                                 
1
 Full description of MSDs can be found at : 

http://nl.ijs.si/ME/V4/msd/html/msd-en.html 

2.2 Google 1T corpus 

A good performing language model is a very im-

portant resource for the current task, as it allows 

discriminating between similar phrases by com-

paring their perplexities.  

Although we had several corpora available to 

extract surface-based language models from, we 

preferred to use a significantly larger model than 

we could create: Google 1T n-gram corpus 

(Brants and Franz, 2006). This 4 billion n-gram 

corpus should provide high-quality perplexity 

estimations. However, loading 4*10^9 n-grams 

without any compression scheme would require, 

even by today’s standards, a large amount of 

memory. For example, using SRILM (Stolcke, 

2002) which uses 33 bytes per n-gram, would 

require a total of ~116GB of RAM. The article 

by Adam Pauls and Dan Klein (2011) describes 

an ingenious way to create a data structure that 

reduces the amount of RAM needed to load the 

1T corpus. However, the system they propose is 

written in Java, a language that is object-

oriented, and which, for any object, introduces an 

additional overhead. Furthermore, they do not 

implement any smoothing method for the 1T 

corpus, defaulting to the +1 “stupid smoothing” 

as they themselves named it, relying on the fact 

that smoothing is less relevant with a very large 

corpus.  For these reasons, coupled with the dif-

ficulty to understand and modify other persons’ 

code, we wrote our language model software. 

We based our implementation around Pauls and 

Klein’s sorted array idea, with a few modifica-

tions. Firstly, we encoded the unigrams in a sim-

ple HashMap instead of a value-rank array. Sec-

ondly, we wrote a multi-step n-gram reader and 

loader. Thirdly, we implemented the Jelinek-

Mercer smoothing method instead of the simple 

+1 smoothing. Using deleted interpolation we 

computed the lambda parameters for the JM 

smoothing; we further built a stand-alone server 

that would load the smoothed n-gram probabili-

ties and could be queried over TCP-IP either for 

an n-gram (max 5-gram – direct probability) or 

for an entire sentence (compute its perplexity). 

The entire software was written in C++ to avoid 

Java’s overhead problems. Overall, the simpli-

fied ranked array encoding allowed us to obtain 

very fast response times (under a millisecond per 

query) with a moderate memory usage: the entire 

1T corpus was loaded in around 60GB of RAM, 

well below our development server memory lim-

it.   
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We are aware of the limitations of this corpus: 

as data was collected from the web, mistakes will 

occur in it. 

We also need a language model that can esti-

mate the probability of parts of speech. By learn-

ing a model from the parts of speech we can 

learn to discriminate between words different 

forms. Grantedly, a part of speech language 

model can promote a grammatically “more” cor-

rect but semantically inferior sentence over a 

semantically sound one, due to assigning a high-

er probability  to a more common part of speech 

sequence in the sentence.  Our experiments show 

that, generally, a part of speech language model 

helps text quality overall.  

Our initial idea for this POS language model 

was to use the same 1T corpus that we could an-

notate using our tagging tools. However, given 

the limited context, performance would have 

been acceptable at the 5-gram level, decreasing 

to the point of simply picking the most common 

part of speech for the unigrams, as no context 

exists for them. As such, we used the following 

available monolingual resources for English: the 

News CRAWL corpus (2007-2012 editions), 

Europarl, UN French-English Corpus, the News 

Commentary, our own cleaned English Wikipe-

dia dump. The total size of the raw text was 

around 20GB. We joined and annotated the files 

and extracted all the 1-5 grams, using the same 

format as the 1T corpus. We then used another 

instance of the language model software to load 

this POS LM and await the main system perplex-

ity estimation requests. Overall, the part of 

speech language model turned out to be rather 

small (a hard-disk footprint of only 315MB of 

binary part of speech LM compared to the 57GB 

of surface model compressed data). This is nor-

mal, as the entire part of speech MSD vocabulary 

for English is around 100 tags, compared to the 

more than 13 million surface forms (unigrams) in 

the 1T corpus.  

3 RACAI’s Hybrid Grammatical Error 

Correction System  

3.1 An overview of the system 

In many cases, statistical methods are preferable 

over rule-based systems since they only rely on 

large available raw corpora instead of hand-

crafted rules that are difficult to design and are 

limited by the effort invested by human experts 

in their endeavor.  

However, a purely statistical method is not 

always able to validate rarely used expressions 

and always favors frequency over fine grained 

compositions.  

As a rule of thumb, hybrid systems are always 

a good choice in tasks where the complexity ex-

ceeds the capacity of converting knowledge into 

formal rules and large scale training data is 

available for developing statistical models.  

Our GEC system has three cascaded phases 

divided between two modules: (a) in the first 

phase, a statistical surface based and a POS LM 

are used to solve orthographic errors inside the 

input sentences, thus enhancing the quality of the 

NLP processing for the second stage; (b) a rule-

based system is used to detect typical grammati-

cal errors, which are labeled and then (c) correct-

ed using a statistical method to validate between 

automatically generated candidates. 

3.2 The statistical component 

Typos are a distinctive class of errors found in 

texts written by both native and non-native Eng-

lish speakers which do not violate any explicit 

(local agreement related) grammatical con-

straints. Most POS tagging systems handle pre-

viously unseen words through suffix analysis and 

are able (using the local context) to assign a tag 

which is conformant with the tags of the sur-

rounding words. Such errors cannot be detected 

by applying rules, since it is impossible to have 

lexicons that cover the entire possible vocabulary 

of a language.   

The typical approach is to generate spelling al-

ternatives for words that are outside the vocabu-

lary and to use a LM to determine the most likely 

correct word form. However, when relying on 

simple distance functions such as the unmodified 

Levenstein it is extremely difficult to differenti-

ate between spelling alternatives even with the 

help of contextual information. There are multi-

ple causes for this type of errors, starting from 

the lack of language knowledge (typically non-

native speakers rely on phonetic similarity when 

spelling words) to speed (usually results in miss-

ing letters) or keyboard related (multiple keys 

touched at once). The distance function we used 

for scoring alternatives uses a weighted Leven-

stein algorithm, which was tuned on the TREC 

dataset. 

3.3 The rule based error detection and cor-

rection 

As previously mentioned, not all grammatical 

errors are automatically detectable by pure statis-

tical methods. In our experiments we noticed 

frequent cases where the LM does not provide 
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sufficient support to distinguish between true 

grammatical errors and simply unusual but 

grammatically correct expressions.    

For the present shared task we concentrated on 

a subset of potential errors. Our rules aimed the 

correction of the verb tense especially in time 

clauses, the use of the short infinitive after 

modals, the position of frequency adverbs in a 

sentence, subject-verb agreement, word order in 

interrogative sentences, punctuation accompany-

ing certain lexical elements, the use of articles, of 

correlatives, etc.              

For the sake of an easier understanding of our 

rule-based component of the GEC system, we 

will start by introducing some technical details 

about how the rule interpreter works, emphasiz-

ing on the structure of the configuration file, the 

input modality and the general pointers on writ-

ing rules. In our approach we treat error detec-

tion and error correction separately, in a two-

stage system. The configuration file contains a 

set of language dependent rules, each rule being 

uniquely identified by the label and its body.  

The role of using labels is two-fold: (1) they pro-

vide guidance and assistance to the user in navi-

gating through the structure of the configuration 

file (when editing or creating new rules); (2) they 

play a crucial role in the error correction process 

and serve as common denominators for different 

classes of errors. 

Our rule description system is inspired after 

the time-independent logic function (combina-

tional logic) paradigm, which stipulates that a 

fixed input size logical function, described 

through a stochastic list of input/output depend-

ence sequence, through a process of logical min-

imization, this function can be implemented as 

an array of “AND” gates, followed by an array of 

“OR” gates. Thus, in our configuration file, each 

rule is described by a set of string pairs (i0 r0, i1 

r1… in rn) which act as “AND” gates – we refer 

to this as a sub-instance of a rule. At this point, a 

sub-instance is activated only if all constraints 

are met. The “OR” gate array is simulated by 

adding rules with the same label. This way, if 

any sub-instance is active then the rule is consid-

ered active and we proceed to the errror correc-

tion step. 

Every pair (ik rk) is a single Boolean input of a 

sub-instance. A rule is checked against every 

token inside an utterance, from left to right. rk is 

a regular expression which, depending on the 

value of ik, is applied to the word’s surface form 

(s), the word’s lemma (l) or the word’s MSD 

(m). ik can also select if the regular expression 

should be applied to a neighboring token. To ex-

emplify, we have extracted two sections from our 

configuration file: (a) the modal infinitive com-

mon error for non-native English speakers (also 

found in the development set of CONLL) (lines 1 

to 7) and (b) the possible missing comma case 

(line 8): 
 

1) modal_infinitive: s must   s+1 to s-1 ^!a 

2) modal_infinitive: s could  s+1 to  

3) modal_infinitive: s can    s+1 to 

4) modal_infinitive: s might  s+1 to 

5) modal_infinitive: s may    s+1 to 

6) modal_infinitive: s would  s+1 to 

7) modal_infinitive: s should s+1 to 

8) pmc: s which m-1 ^((?!COMMA).)*$ 

Table 3: a sample of error detection rules 

 

The “modal_infinitive” rule is complex and it 

is described using 7 sub-instances, which share 

an identical label. Line 1 of the configuration 

excerpt contains three pairs as opposed to the 

other sub-instances. This does not contradict the 

combinational logic paradigm, since we can con-

sider this rule as having a fixed input size of 

three and, as a result of logic minimization, the 

third parameter for 6 of the seven instances falls 

into the “DON’T CARE” special input class. The 

first ikrk pair (“s must”) is used to check if the 

surface form (“s”) of the current word is “must”.  

The second pair (“s+1 to”) checks if the word 

form of the next token is “to”.  The third pair  

(“s-1 ^!a”) verifies that the collocation “a must 

to” does not accidentally trigger this rule. This 

rule will detect the error in “I must to go...”, but 

will licence a sequence like “This book is a must 

to read...”.  

The error detection rules that we designed for 

the CONLL shared task are created, as an exter-

nal resource for the program, on the basis of the 

mistakes observed in the training set and can be 

updated/extended any time .  

In the error correction phase, for every error 

type we encompass, we provide the necessary 

transformations (at token level) through which 

the initial word sequence that generated this error 

should be corrected. The configuration file of 

this module is straightforward: rule-labels are 

marked as strings at the beginning of a new line; 

for each label, we provide a set of transformation 

rules, that are contained in the following tab-

indented lines; once a new line does not start 

with a TAB character, it should either be empty 

or contain the label for a different error type. the 

correction phase, multiple sentence candidates 

are automatically generated (based on the trans-

formation rules) and they are checked against the 
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language model to see which one yields the low-

est perplexity. That is, once an error is found, its 

correction way tends to be applied provided that 

the language model offers another solution. 

As an example, suppose that the rule for de-

tecting a possible missing comma (pmc in Table 

3, line 8) was fired.  The corresponding correc-

tion rule is described as below: 

 
pmc:  

$w-1 , $w  

$w-1 $w  

 

The "pmc" rule is activated if the word 

"which" is not preceded by a comma. Since it is 

not always the case that the wordform "which" 

should be preceded by this punctuation mark, in 

our error correction system step we generate two 

candidates: (a) one in which we insert a comma 

before "which" and (b) one in which we keep the 

word sequence untouched. 

4 Results and Conclusions 

The RACAI hybrid GEC system obtained a pre-

cision of 31.31%, a recall of 14.23% and an F0.5 

score of 25.25% on the test set provided by the 

CONLL shared task on Grammatical Error Cor-

rection.  

We presented our system and the resources we 

used in the development process. All the data 

and tools required to run a similar experiment are 

available online and we are currently working on 

developing a self-contained GEC system that 

will be made publicly available.   

Future development plans include the en-

hancement of the lexicons we use for English 

and the extension of this system for Romanian. 

Furthermore, we plan to include an extended 

method for solving collocations errors based on 

the synsets of Princeton WordNet (PWN) (Fell-

baum, 1989). 

References 

Andreas Stolcke. 2002. SRILM: An extensible lan-

guage modeling toolkit. In Proceedings of Inter-

speech 

Boroş, T., Radu, I., & Tufiş, D. (2013). Large tagset 

labeling with Feed Forward Neural Networks. Case 

study on Romanian Language. In Proceedings of 

ACL 

Boroş, T., & Dumitrescu, S. D. (2013). Improving the 

RACAI Neural Network MSD Tagger. In Engi-

neering Applications of Neural Networks (pp. 42-

51). Springer Berlin Heidelberg 

Crammer, K., & Singer, Y. (2003). Ultraconservative 

online algorithms for multiclass problems. The 

Journal of Machine Learning Research, 3, 951-991. 

Fellbaum, Ch. (1998, ed.) WordNet: An Electronic 

Lexical Database. Cambridge, MA: MIT Press 

 Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian 

Hadiwinoto, Raymond Hendy Susanto, and Chris-

topher Bryant (2014). The CoNLL-2014 Shared 

Task on Grammatical Error Correction. Proceed-

ings of the Eighteenth Conference on Computa-

tional Natural Language Learning: Shared Task 

(CoNLL-2014 Shared Task). Baltimore, Maryland, 

USA. 

Thorsten Brants and Alex Franz. 2006. Google 

Web1T 5-gram corpus, version 1. In Linguistic Da-

ta Consortium, Philadelphia, Catalog Number 

LDC2006T13 

Pauls, Adam, and Dan Klein. "Faster and smaller n-

gram language models." Proceedings of the 49th 

Annual Meeting of the Association for Computa-

tional Linguistics: Human Language Technologies-

Volume 1. Association for Computational Linguis-

tics, 2011. 

 

 

 

48


