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Abstract

We present a Bayesian formulation for
weakly-supervised learning of a Combina-
tory Categorial Grammar (CCG) supertag-
ger with an HMM. We assume supervi-
sion in the form of a tag dictionary, and
our prior encourages the use of cross-
linguistically common category structures
as well as transitions between tags that
can combine locally according to CCG’s
combinators. Our prior is theoretically ap-
pealing since it is motivated by language-
independent, universal properties of the
CCG formalism. Empirically, we show
that it yields substantial improvements
over previous work that used similar bi-
ases to initialize an EM-based learner. Ad-
ditional gains are obtained by further shap-
ing the prior with corpus-specific informa-
tion that is extracted automatically from
raw text and a tag dictionary.

1 Introduction

Unsupervised part-of-speech (POS) induction is a
classic problem in NLP. Many proposed solutions
are based on Hidden Markov models (HMMs), with
various improvements obtainable through: induc-
tive bias in the form of tag dictionaries (Kupiec,
1992; Merialdo, 1994), sparsity constraints (Lee
et al., 2010), careful initialization of parameters
(Goldberg et al., 2008), feature based represen-
tations (Berg-Kirkpatrick et al., 2010; Smith and
Eisner, 2005), and priors on model parameters
(Johnson, 2007; Goldwater and Griffiths, 2007;
Blunsom and Cohn, 2011, inter alia).

When tag dictionaries are available, a situa-
tion we will call type-supervision, POS induc-
tion from unlabeled corpora can be relatively suc-
cessful; however, as the number of possible tags
increases, performance drops (Ravi and Knight,

2009). In such cases, there are a large number
of possible labels for each token, so picking the
right one simply by chance is unlikely; the pa-
rameter space tends to be large; and devising good
initial parameters is difficult. Therefore, it is un-
surprising that the unsupervised (or even weakly-
supervised) learning of a Combinatory Categorial
Grammar (CCG) supertagger, which labels each
word with one of a large (possibly unbounded)
number of structured categories called supertags,
is a considerable challenge.

Despite the apparent complexity of the task, su-
pertag sequences have regularities due to univer-
sal properties of the CCG formalism (§2) that can
be used to reduce the complexity of the problem;
previous work showed promising results by using
these regularities to initialize an HMM that is then
refined with EM (Baldridge, 2008). Here, we ex-
ploit CCG’s category structure to motivate a novel
prior over HMM parameters for use in Bayesian
learning (§3). This prior encourages (i) cross-
linguistically common tag types, (ii) tag bigrams
that can combine using CCG’s combinators, and
(iii) sparse transition distributions. We also go be-
yond the use of these universals to show how ad-
ditional, corpus-specific information can be auto-
matically extracted from a combination of the tag
dictionary and raw data, and how that information
can be combined with the universal knowledge for
integration into the model to improve the prior.

We use a blocked sampling algorithm to sam-
ple supertag sequences for the sentences in the
training data, proportional to their posterior prob-
ability (§4). We experimentally verify that
our Bayesian formulation is effective and sub-
stantially outperforms the state-of-the-art base-
line initialization/EM strategy in several languages
(§5). We also evaluate using tag dictionaries that
are unpruned and have only partial word coverage,
finding even greater improvements in these more
realistic scenarios.
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2 CCG and Supertagging

CCG (Steedman, 2000; Steedman and Baldridge,
2011) is a grammar formalism in which each lex-
ical token is associated with a structured category,
often referred to as a supertag. CCG categories are
defined by the following recursive definition:

C → {S, N, NP, PP, ...}
C → {C/C,C\C}

A CCG category can either be an atomic cate-
gory indicating a particular type of basic gram-
matical phrase (S for a sentence, N for a noun,
NP for a noun phrase, etc), or a complex category
formed from the combination of two categories
by one of two slash operators. In CCG, complex
categories indicate a grammatical relationship be-
tween the two operands. For example, the cate-
gory (S\NP)/NP might describe a transitive verb,
looking first to its right (indicated by /) for an ob-
ject, then to its left (\) for a subject, to produce a
sentence. Further, atomic categories may be aug-
mented with features, such as Sdcl, to restrict the
set of atoms with which they may unify. The task
of assigning a category to each word in a text is
called supertagging (Bangalore and Joshi, 1999).

Because they are recursively defined, there is
an infinite number of potential CCG categories
(though in practice it is limited by the number
of actual grammatical contexts). As a result, the
number of supertags appearing in a corpus far ex-
ceeds the number of POS tags (see Table 1). Since
supertags specify the grammatical context of a to-
ken, and high frequency words appear in many
contexts, CCG grammars tend to have very high
lexical ambiguity, with frequent word types asso-
ciating with a large number of categories. This
ambiguity has made type-supervised supertagger
learning very difficult because the typical ap-
proaches to initializing parameters for EM become
much less effective.

Grammar-informed supertagger learning.
Baldridge (2008) was successful in extending the
standard type-supervised tagger learning to the
task of CCG supertagging by setting the initial
parameters for EM training of an HMM using
two intrinsic properties of the CCG formalism:
the tendency for adjacent tags to combine, and
the tendency to use less complex tags. These
properties are explained in detail in the original
work, but we restate the ideas briefly throughout
this paper for completeness.

X/Y Y ⇒ X (>)
Y X\Y ⇒ X (<)
X/Y Y/Z ⇒ X/Z (>B)
Y \Z X\Y ⇒ X\Z (<B)
Y/Z X\Y ⇒ X/Z (<B×)

Figure 1: Combination rules used by CCGBank.

S

NP

NP/N N

S\NP

(S\NP)/NP

NP

NP/N N
The man walks a dog

Figure 2: CCG parse for “The man walks a dog.”

Tag combinability. A CCG parse of a sentence is
derived by recursively combining the categories of
sub-phrases. Category combination is performed
using only a small set of generic rules (see Fig-
ure 1). In the tree in Figure 2, we can see that
a and dog can combine via Forward Application
(>), with NP/N and N combining to produce NP.

The associativity engendered by CCG’s compo-
sition rules means that most adjacent lexical cate-
gories may be combined. In the Figure 2 tree, we
can see that instead of combining (walks·(a·dog)),
we could have combined ((walks·a)·dog) since
(S\NP)/NP and NP/N can combine using >B.

3 Model

In this section we define the generative process
we use to model a corpus of sentences. We begin
by generating the model parameters: for each
supertag type t in the tag set T , the transition
probabilities to the next state (πt) and the emis-
sion probabilities (φt) are generated by draws
from Dirichlet distributions parameterized with
per-tag mean distributions (π0

t and φ0
t , respec-

tively) and concentration parameters (απ and
αφ). By setting απ close to zero, we can encode
our prior expectation that transition distributions
should be relatively peaked (i.e., that each tag
type should be followed by relatively few tag
types). The prior means, discussed below, encode
both linguistic intuitions about expected tag-tag
transition behavior and automatically-extracted
corpus information. Given these parameters, we
next generate the sentences of the corpus. This
process is summarized as follows:
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Parameters:

φt ∼ Dirichlet(αφ, φ0
t) ∀t ∈ T

πt ∼ Dirichlet(απ, π0
t ) ∀t ∈ T

Sentence:

y1 ∼ Categorical(π〈S〉)

for i ∈ {1, 2, . . .}, until yi = 〈E〉
xi | yi ∼ Categorical(φyi)
yi+1 | yi ∼ Categorical(πyi)

This model can be understood as a Bayesian
HMM (Goldwater and Griffiths, 2007). We next
discuss how the prior distributions are constructed
to build in additional inductive bias.

3.1 Transition Prior Means (π0
t )

We use the prior mean for each tag’s transition dis-
tribution to build in two kinds of bias. First, we
want to favor linguistically probable tags. Second,
we want to favor transitions that result in a tag
pair that combines according to CCG’s combina-
tors. For simplicity, we will define π0

t as a mixture
of two components, the first, Pπ(u) is an (uncon-
ditional) distribution over category types u that fa-
vors cross-linguistically probable categories. The
second component, Pπ(u | t), conditions on the
previous tag type, t, and assigns higher probabil-
ity to pairs of tags that can be combined. That is,
the probability of transitioning from t to u in the
Dirichlet mean distribution is given by1

π0
t (u) = λ · Pπ(u) + (1− λ) · Pπ(u | t).

We discuss the two mixture components in turn.

3.1.1 Unigram Category Generator (Pπ(u))
In this section, we define a CCG category gener-
ator that generates cross-linguistically likely cat-
egory types. Baldridge’s approach estimated the
likelihood of a category using the inverse number
of sub-categories: PCPLX(u) ∝ 1/complexity(u).
We propose an improvement, PG, expressed as a
probabilistic grammar:2

C → a pterm ·patom(a)
C → A/A pterm ·pfw ·pmod ·PG(A)
C → A/B, A 6=B pterm ·pfw ·pmod ·PG(A) ·PG(B)
C → A\A pterm ·pfw ·pmod ·PG(A)

C → A\B, A 6=B pterm ·pfw ·pmod ·PG(A) ·PG(B)
1Following Baldridge (2008), we fix λ = 0.5 for our ex-

periments.
2For readability, we use the notation p = (1− p).

where A,B,C are categories and a is an atomic
category (and terminal): a ∈ {S, N, NP, ...}.3

We have designed this grammar to capture sev-
eral important CCG characteristics. In particular
we encode four main ideas, each captured through
a different parameter of the grammar and dis-
cussed in greater detail below:

1. Simpler categories are more likely: e.g. N/N is
a priori more likely than (N/N)/(N/N).

2. Some atoms are more likely than others: e.g.
NP is more likely than S, much more than NPnb.

3. Modifiers are more likely: e.g. (S\NP)/(S\NP)
is more likely than (S\NP)/(NP\NP).

4. Operators occur with different frequencies.

The first idea subsumes the complexity measure
used by Baldridge, but accomplishes the goal nat-
urally by letting the probabilities decrease as the
category grows. The rate of decay is governed
by the pterm parameter: the marginal probability
of generating a terminal (atomic) category in each
expansion. A higher pterm means a stronger em-
phasis on simplicity. The probability distribution
over categories is guaranteed to be proper so long
as pterm >

1
2 since the probability of the depth of a

tree will decrease geometrically (Chi, 1999).
The second idea is a natural extension of the

complexity concept and is particularly relevant
when features are used. The original complex-
ity measure treated all atoms uniformly, but e.g.
we would expect NPexpl/N to be less likely than
NP/N since it contains the more specialized, and
thus rarer, atom NPexpl. We define the distribution
patom(a) as the prior over atomic categories.

Due to our weak, type-only supervision, we
have to estimate patom from just the tag dictionary
and raw corpus, without frequency data. Our goal
is to estimate the number of each atom in the su-
pertags that should appear on the raw corpus to-
kens. Since we don’t know what the correct su-
pertags are, we first estimate counts of supertags,
from which we can extract estimated atom counts.
Our strategy is to uniformly distribute each raw
corpus token’s counts over all of its possible su-
pertags, as specified in the tag dictionary. Word
types not appearing in the tag dictionary are ig-

3While very similar to standard probabilistic context-free
grammars seen in NLP work, this grammar is not context-free
because modifier categories must have matching operands.
However, this is not a problem for our approach since the
grammar is unambiguous, defines a proper probability distri-
bution, and is only used for modeling the relative likelihoods
of categories (not parsing categories).
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nored for the purposes of these estimates. Assum-
ing that C(w) is the number of times that word
type w is seen in the raw corpus, atoms(a, t) is the
number of times atom a appears in t, TD(w) is the
set of tags associated with w, and TD(t) is the set
of word types associated with t:

Csupertag(t) =
∑

w∈TD(t)(C(w)+δ)/|TD(w)|
Catom(a) =

∑
t∈T atoms(a, t) · Csupertag(t)

patom(a) ∝ Catom(a) + δ

Adding δ smooths the estimates.
Using the raw corpus and tag dictionary data to

set patom allows us to move beyond Baldridge’s
work in another direction: it provides us with a
natural way to combine CCG’s universal assump-
tions with corpus-specific data.

The third and fourth ideas pertain only to com-
plex categories. If the category is complex, then
we consider two additional parameters. The pa-
rameter pfw is the marginal probability that the
complex category’s operator specifies a forward
argument. The parameter pmod gives the amount
of marginal probability mass that is allocated for
modifier categories. Note that it is not necessary
for pmod to be greater than 1

2 to achieve the de-
sired result of making modifier categories more
likely than non-modifier categories: the number
of potential modifiers make up only a tiny fraction
of the space of possible categories, so allocating
more than that mass as pmod will result in a cate-
gory grammar that gives disproportionate weight
to modifiers, increasing the likelihood of any par-
ticular modifier from what it would otherwise be.

3.1.2 Bigram Category Generator (Pπ(u | t))
While the above processes encode important prop-
erties of the distribution over categories, the in-
ternal structure of categories is not the full story:
cross-linguistically, the categories of adjacent to-
kens are much more likely to be combinable via
some CCG rule. This is the second component of
our mixture model.

Baldridge derives this bias by allocating the ma-
jority of the transition probability mass from each
tag t to tags that can follow t according to some
combination rule. Let κ(t,u) be an indicator of
whether t connects to u; for σ ∈ [0, 1]:4

Pκ(u | t) =
{
σ · uniform(u) if κ(t,u)
(1− σ) · uniform(u) otherwise

4Again, following Baldridge (2008), we fix σ = 0.95 for
our experiments.

There are a few additional considerations that
must be made in defining κ, however. In assum-
ing the special tags 〈S〉 and 〈E〉 for the start and
end of the sentence, respectively, we can define
κ(〈S〉,u) = 1 when u seeks no left-side argu-
ments (since there are no tags to the left with
which to combine) and κ(t, 〈E〉) = 1 when t seeks
no right-side arguments. So κ(〈S〉, NP/N) = 1, but
κ(〈S〉, S\NP) = 0. If atoms have features asso-
ciated, then the atoms are allowed to unify if the
features match, or if at least one of them does
not have a feature. So κ(NPnb, S\NP) = 1, but
κ(NPnb, S\NPconj) = 0. In defining κ, it is also im-
portant to ignore possible arguments on the wrong
side of the combination since they can be con-
sumed without affecting the connection between
the two. To achieve this for κ(t,u), it is assumed
that it is possible to consume all preceding argu-
ments of t and all following arguments of u. So
κ(NP, (S\NP)/NP) = 1. This helps to ensure the
associativity discussed earlier. Finally, the atom
NP is allowed to unify with N if N is the argument.
So κ(N, S\NP) = 1, but κ(NP/N, NP) = 0. This is
due to the fact that CCGBank assumes that N can
be rewritten as NP.

Type-supervised initialization. As above, we
want to improve upon Baldridge’s ideas by en-
coding not just universal CCG knowledge, but
also automatically-induced corpus-specific infor-
mation where possible. To that end, we can de-
fine a conditional distribution Ptr(u | t) based on
statistics from the raw corpus and tag dictionary.
We use the same approach as we did above for set-
ting patom (and the definition of φ0

t below): we esti-
mate by evenly distributing raw corpus counts over
the tag dictionary entries. Assume that C(w1, w2)
is the (δ-smoothed) count of times word type w1

was directly followed byw2 in the raw corpus, and
ignoring any words not found in the tag dictionary:

C(t,u) = δ+
∑

w1∈TD(t), w2∈TD(u)

C(w1, w2)
|TD(w1)| · |TD(w2)|

Ptr(u | t) = C(t,u)/
∑

u′ C(t,u′)

Then the alternative definition of the compatibility
distribution is as follows:

P tr
κ (u | t) =

{
σ · Ptr(u | t) if κ(t,u)
(1–σ) · Ptr(u | t) otherwise
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Our experiments compare performance when
π0
t is set using Pπ(u)=PCPLX (experiment 3) ver-

sus our category grammar PG (4–6), and using
Pπ(u | t) = Pκ as the compatibility distribution
(3–4) versus P tr

κ (5–6).

3.2 Emission Prior Means (φ0
t)

For each supertag type t, φ0
t is the mean distri-

bution over words it emits. While Baldridge’s
approach used a uniform emission initialization,
treating all words as equally likely, we can,
again, induce token-level corpus-specific informa-
tion:5 To set φ0

t , we use a variant and simplifica-
tion of the procedure introduced by Garrette and
Baldridge (2012) that takes advantage of our prior
over categories PG.

Assuming that C(w) is the count of word type
w in the raw corpus, TD(w) is the set of supertags
associated with word type w in the tag dictionary,
and TD(t) is the set of known word types associ-
ated with supertag t, the count of word/tag pairs
for known words (words appearing in the tag dic-
tionary) is estimated by uniformly distributing a
word’s (δ-smoothed) raw counts over its tag dic-
tionary entries:

Cknown(t, w) =

{
C(w)+δ
|TD(w)| if t ∈ TD(w)

0 otherwise

For unknown words, we first use the idea of tag
“openness” to estimate the likelihood of a partic-
ular tag t applying to an unknown word: if a tag
applies to many word types, it is likely to apply to
some new word type.

P (unk | t) ∝ |known words w s.t. t ∈ TD(w)|
Then, we apply Bayes’ rule to get P (t | unk), and
use that to estimate word/tag counts for unknown
words:

P (t | unk) ∝ P (unk | t) · PG(t)

Cunk(t, w) = C(w) · P (t | unk)

Thus, with the estimated counts for all words:

Pem(w | t) =
Cknown(t, w) + Cunk(t, w)∑
w′ Cknown(t, w′) + Cunk(t, w′)

We perform experiments comparing perfor-
mance when φ0

t is uniform (3–5) and when
φ0
t(w) = Pem(w | t) (6).

5Again, without gold tag frequencies.

4 Posterior Inference

We wish to find the most likely supertag of each
word, given the model we just described and a cor-
pus of training data. Since there is exact inference
with these models is intractable, we resort to Gibbs
sampling to find an approximate solution. At a
high level, we alternate between resampling model
parameters (φt, πt) given the current tag sequence
and resampling tag sequences given the current
model parameters and observed word sequences.
It is possible to sample a new tagging from the
posterior distribution over tag sequences for a sen-
tence, given the sentence and the HMM parameters
using the forward-filter backward-sample (FFBS)
algorithm (Carter and Kohn, 1996). To effi-
ciently sample new HMM parameters, we exploit
Dirichlet-multinomial conjugacy. By repeating
these alternating steps and accumulating the num-
ber of times each supertag is used in each position,
we obtain an approximation of the required poste-
rior quantities.

Our inference procedure takes as input the tran-
sition prior means π0

t , the emission prior means
φ0
t , and concentration parameters απ and αφ,

along with the raw corpus and tag dictionary. The
set of supertags associated with a word w will be
known as TD(w). We will refer to the set of word
types included in the tag dictionary as “known”
words and others as “unknown” words. For sim-
plicity, we will assume that TD(w), for any un-
known word w, is the full set of CCG categories.
During sampling, we always restrict the possible
tag choices for a word w to the categories found in
TD(w). We refer to the sequence of word tokens
as x and tags as y.

We initialize the sampler by setting πt = π0
t

and φt = φ0
t and then sampling tagging sequences

using FFBS.
To sample a tagging for a sentence x, the strat-

egy is to inductively compute, for each token xi
starting with i = 0 and going “forward”, the prob-
ability of generating x0, x1, . . . , xi via any tag se-
quence that ends with yi = u:

p(yi = u | x0:i) =

φu(xi) ·
∑
t∈T

πt(u) · p(yi−1 = t | x0:i−1)

We then pass through the sequence again, this time
“backward” starting at i = |x| − 1 and sampling

yi | yi+1 ∼ p(yi = t | x0:i) · πt(yi+1).
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num. raw TD TD ambiguity dev test
Corpus tags tokens tokens entries type token tokens tokens

English
CCGBank POS 50

158k 735k
45k 3.75 13.11 — —

CCGBank 1,171 65k 56.98 296.18 128k 127k
Chinese CTB-CCG 829 99k 439k 60k 96.58 323.37 59k 85k
Italian CCG-TUT 955 6k 27k 9k 178.88 426.13 5k 5k

Table 1: Statistics for the various corpora used. CCGBank is English, CCG-CTB is Chinese, and TUT
is Italian. The number of tags includes only those tags found in the tag dictionary (TD). Ambiguity rates
are the average number of entries in the unpruned tag dictionary for each word in the raw corpus. English
POS statistics are shown only for comparison; only CCG experiments were run.

The block-sampling approach of choosing new
tags for a sentence all at once is particularly ben-
eficial given the sequential nature of the model of
the HMM. In an HMM, a token’s adjacent tags tend
to hold onto its current tag due to the relation-
ships between the three. Resampling all tags at
once allows for more drastic changes at each it-
eration, providing better opportunities for mixing
during inference. The FFBS approach has the ad-
ditional advantage that, by resampling the distri-
butions only once per iteration, we are able to re-
sample all sentences in parallel. This is not strictly
true of all HMM problems with FFBS, but because
our data is divided by sentence, and each sentence
has a known start and end tag, the tags chosen dur-
ing the sampling of one sentence cannot affect the
sampling of another sentence in the same iteration.

Once we have sampled tags for the entire cor-
pus, we resample π and φ. The newly-sampled
tags y are used to compute C(w, t), the count of
tokens with word type w and tag t, and C(t,u),
the number of times tag t is directly followed by
tag u. We then sample, for each t ∈ T where T is
the full set of valid CCG categories:

πt ∼ Dir
(〈απ · π0

t (u) + C(t,u)〉u∈T
)

φt ∼ Dir
(〈αφ · φ0

t(w) + C(w, t)〉w∈V
)

It is important to note that this method of re-
sampling allows the draws to incorporate both the
data, in the form of counts, and the prior mean,
which includes all of our carefully-constructed bi-
ases derived from both the intrinsic, universal CCG

properties as well as the information we induced
from the raw corpus and tag dictionary.

With the distributions resampled, we can con-
tinue the procedure by resampling tags as above,
and then resampling distributions again, until a
maximum number of iterations is reached.

5 Experiments6

To evaluate our approach, we used CCGBank
(Hockenmaier and Steedman, 2007), which is
a transformation of the English Penn Treebank
(Marcus et al., 1993); the CTB-CCG (Tse and
Curran, 2010) transformation of the Penn Chinese
Treebank (Xue et al., 2005); and the CCG-TUT
corpus (Bos et al., 2009), built from the TUT cor-
pus of Italian text (Bosco et al., 2000). Statistics
on the size and ambiguity of these datasets are
shown in Table 1.

For CCGBank, sections 00–15 were used for
extracting the tag dictionary, 16–18 for the raw
corpus, 19–21 for development data, and 22–24
for test data. For TUT, the first 150 sentences of
each of the CIVIL LAW and NEWSPAPER sections
were used for raw data, the next sentences 150–
249 of each was used for development, and the
sentences 250–349 were used for test; the remain-
ing data, 457 sentences from CIVIL LAW and 548
from NEWSPAPER, plus the much smaller 132-
sentence JRC ACQUIS data, was used for the tag
dictionary. For CTB-CCG, sections 00–11 were
used for the tag dictionary, 20–24 for raw, 25–27
for dev, and 28–31 for test.

Because we are interested in showing the rel-
ative gains that our ideas provide over Baldridge
(2008), we reimplemented the initialization pro-
cedure from that paper, allowing us to evaluate
all approaches consistently. For each dataset, we
ran a series of experiments in which we made fur-
ther changes from the original work. We first ran
a baseline experiment with uniform transition and
emission initialization of EM (indicated as “1.” in
Table 2) followed by our reimplementation of the
initialization procedure by Baldridge (2). We then

6All code and experimental scripts are available
at http://www.github.com/dhgarrette/
2014-ccg-supertagging
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Corpus English Chinese Italian
TD cutoff 0.1 0.01 0.001 no 0.1 0.01 0.001 no 0.1 0.01 0.001 no

1. uniform EM 77 62 47 38 64 39 30 26 51 32 30 30
2. init (Baldridge) EM 78 67 55 41 66 43 33 28 54 36 33 32
3. init Bayes 74 68 56 42 65 56 47 37 52 46 40 40
4. PG Bayes 74 70 59 42 64 57 47 36 52 40 39 40
5. PG, P tr

κ Bayes 75 72 61 50 66 58 49 44 52 44 41 43
6. PG, P tr

κ , Pem Bayes 80 80 73 51 69 62 56 49 53 47 45 46

Table 2: Experimental results: test-set per-token supertag accuracies. “TD cutoff” indicates the level of
tag dictionary pruning; see text. (1) is uniform EM initialization. (2) is a reimplementation of (Baldridge,
2008). (3) is Bayesian formulation using only the ideas from Baldridge: PCPLX, Pκ, and uniform emis-
sions. (4–6) are our enhancements to the prior: using our category grammar in PG instead of PCPLX, using
P tr
κ instead of Pκ, and using Pem instead of uniform.

experimented with the Bayesian formulation, first
using the same information used by Baldridge, and
then adding our enhancements: using our category
grammar in PG, using P tr

κ as the transition com-
patability distribution, and using Pem as φ0

t(w).

For each dataset, we ran experiments using four
different levels of tag dictionary pruning. Prun-
ing is the process of artificially removing noise
from the tag dictionary by using token-level anno-
tation counts to discard low-probability tags; for
each word, for cutoff x, any tag with probability
less than x is excluded. Tag dictionary pruning
is a standard procedure in type-supervised train-
ing, but because it requires information that does
not truly conform to the type-supervised scenario,
we felt that it was critical to demonstrate the per-
formance of our approach under situations of less
pruning, including no artificial pruning at all.

We emphasize that unlike in most previous
work, we use incomplete tag dictionaries. Most
previous work makes the unrealistic assumption
that the tag dictionary contains an entry for ev-
ery word that appears in either the training or test-
ing data. This is a poor approximation of a real
tagging system, which will never have complete
lexical knowledge about the test data. Even work
that only assumes complete knowledge of the tag-
ging possibilities for the lexical items in the train-
ing corpus is problematic (Baldridge, 2008; Ravi
et al., 2010). This still makes learning unrealisti-
cally easy since it dramatically reduces the ambi-
guity of words that would have been unseen, and,
in the case of CCG, introduces additional tags that
would not have otherwise been known. To ensure
that our experiments are more realistic, we draw
our tag dictionary entries from data that is totally

disjoint from both the raw and test corpora. Dur-
ing learning, any unknown words (words not ap-
pearing in the tag dictionary) are unconstrained so
that they may take any tag, and are, thus, maxi-
mally ambiguous.

We only performed minimal parameter tuning,
choosing instead to stay consistent with Baldridge
(2008) and simply pick reasonable-seeming val-
ues for any additional parameters. Any tuning that
was performed was done with simple hill-climbing
on the development data of English CCGBank.
All parameters were held consistent across exper-
iments, including across languages. For EM, we
used 50 iterations; for FFBS we used 100 burn-
in iterations and 200 sampling iterations.7 For
all experiments, we used σ = 0.95 for P (tr)

κ and
λ = 0.5 for π0

t to be consistent with previous
work, απ = 3000, αφ = 7000, pterm = 0.6,
pfw = 0.5, pmod = 0.8, and δ = 1000 for patom.
Test data was run only once, for the final figures.

The final results reported were achieved by us-
ing the following training sequence: initialize pa-
rameters according to the scenario, train an HMM

using EM or FFBS starting with that set of parame-
ters, tag the raw corpus with the trained HMM, add-
0.1 smooth counts from the now-tagged raw cor-
pus, and train a maximum entropy Markov model
(MEMM) from this “auto-supervised” data.8

Results are shown in Table 2. Most notably, the
contributions described in this paper improve re-
sults in nearly every experimental scenario. We
can see immediate, often sizable, gains in most

7Final counts are averaged across the sampling iterations.
8Auto-supervised training of an MEMM increases accu-

racy by 1–3% on average (Garrette and Baldridge, 2013). We
use the OpenNLP MEMM implementation with its standard
set of features: http://opennlp.apache.org
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cases simply by using the Bayesian formulation.
Further gains are seen from adding each of the
other various contributions of this paper. Perhaps
most interestingly, the gains are only minimal with
maximum pruning, but the gains increase as the
pruning becomes less aggressive — as the scenar-
ios become more realistic. This indicates that our
improvements make the overall procedure more
robust.

Error Analysis Like POS-taggers, the learned
supertagger frequently confuses nouns (N) and
their modifiers (N/N), but the most frequent er-
ror made by the English (6) experiment was
(((S\NP)\(S\NP))/N) instead of (NPnb/N). How-
ever, these are both determiner types, indicating an
interesting problem for the supertagger: it often
predicts an object type-raised determiner instead
of the vanilla NP/N, but in many contexts, both cat-
egories are equally valid. (In fact, for parsers that
use type-raising as a rule, this distinction in lexical
categories does not exist.)

6 Related Work

Ravi et al. (2010) also improved upon the work by
Baldridge (2008) by using integer linear program-
ming to find a minimal model of supertag transi-
tions, thereby generating a better starting point for
EM than the grammatical constraints alone could
provide. This approach is complementary to the
work presented here, and because we have shown
that our work yields gains under tag dictionaries
of various levels of cleanliness, it is probable that
employing minimization to set the base distribu-
tion for sampling could lead to still higher gains.

On the Bayesian side, Van Gael et al. (2009)
used a non-parametric, infinite HMM for truly un-
supervised POS-tagger learning (Van Gael et al.,
2008; Beal et al., 2001). While their model is not
restricted to the standard set of POS tags, and may
learn a more fine-grained set of labels, the induced
labels are arbitrary and not grounded in any gram-
matical formalism.

Bisk and Hockenmaier (2013) developed an ap-
proach to CCG grammar induction that does not
use a tag dictionary. Like ours, their procedure
learns from general properties of the CCG formal-
ism. However, while our work is intended to pro-
duce categories that match those used in a partic-
ular training corpus, however complex they might
be, their work produces categories in a simplified
form of CCG in which N and S are the only atoms

and no atoms have features. Additionally, they as-
sume that their training corpus is annotated with
POS tags, whereas we assume truly raw text.

Finally, we find the task of weakly-supervised
supertagger learning to be particularly relevant
given the recent surge in popularity of CCG.
An array of NLP applications have begun using
CCG, including semantic parsing (Zettlemoyer and
Collins, 2005) and machine translation (Weese et
al., 2012). As CCG finds more applications, and
as these applications move to lower-resource do-
mains and languages, there will be increased need
for the ability to learn without full supervision.

7 Conclusion and Future Work

Standard strategies for type-supervised HMM es-
timation are less effective as the number of cat-
egories increases. In contrast to POS tag sets,
CCG supertags, while quite numerous, have struc-
tural clues that can simplify the learning prob-
lem. Baldridge (2008) used this formalism-
specific structure to inform an initialization pro-
cedure for EM. In this work, we have shown that
CCG structure can instead be used to motivate an
effective prior distribution over the parameters of
an HMM supertagging model, allowing our work
to outperform Baldridge’s previously state-of-the-
art approach, and to do so in a principled manner
that lends itself better to future extensions such as
incorporation in more complex models.

This work also improves on Baldridge’s simple
“complexity” measure, developing instead a prob-
abilistic category grammar over supertags that al-
lows our prior to capture a wider variety of inter-
esting and useful properties of the CCG formalism.

Finally, we were able to achieve further gains
by augmenting the universal CCG knowledge with
corpus-specific information that could be automat-
ically extracted from the weak supervision that is
available: the raw corpus and the tag dictionary.
This allows us to combine the cross-linguistic
properties of the CCG formalism with corpus- or
language-specific information in the data into a
single, unified Bayesian prior.

Our model uses a relatively large number of pa-
rameters, e.g., pterm, pfw, pmod, patom, in the prior.
Here, we fixed each to a single value (i.e., a “fully
Bayesian” approach). Future work might explore
sensitivity to these choices, or empirical Bayesian
or maximum a posteriori inference for their values
(Johnson and Goldwater, 2009).
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In this work, as in most type-supervised work,
the tag dictionary was automatically extracted
from an existing tagged corpus. However, a tag
dictionary could instead be automatically induced
via multi-lingual transfer (Das and Petrov, 2011)
or generalized from human-provided information
(Garrette and Baldridge, 2013; Garrette et al.,
2013). Again, since the approach presented here
has been shown to be somewhat robust to tag dic-
tionary noise, it is likely that the model would
perform well even when using an automatically-
induced tag dictionary.
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