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Abstract

Cross-lingual learning has become a popu-
lar approach to facilitate the development
of resources and tools for low-density lan-
guages. Its underlying idea is to make
use of existing tools and annotations in
resource-rich languages to create similar
tools and resources for resource-poor lan-
guages. Typically, this is achieved by either
projecting annotations across parallel cor-
pora, or by transferring models from one or
more source languages to a target language.
In this paper, we explore a third strategy
by using machine translation to create syn-
thetic training data from the original source-
side annotations. Specifically, we apply
this technique to dependency parsing, us-
ing a cross-lingually unified treebank for
adequate evaluation. Our approach draws
on annotation projection but avoids the use
of noisy source-side annotation of an unre-
lated parallel corpus and instead relies on
manual treebank annotation in combination
with statistical machine translation, which
makes it possible to train fully lexicalized
parsers. We show that this approach signif-
icantly outperforms delexicalized transfer
parsing.

1 Introduction

The lack of resources and tools is a serious problem
for the majority of the world’s languages (Bender,
2013). Many applications require robust tools and
the development of language-specific resources is
expensive and time consuming. Furthermore, many
tasks such as data-driven syntactic parsing require
strong supervision to achieve reasonable results
for real-world applications, since the performance
of fully unsupervised methods lags behind by a
large margin in comparison with the state of the

art. Cross-lingual learning has been proposed as
one possible solution to quickly create initial tools
for languages that lack the appropriate resources
(Ganchev and Das, 2013). By and large, there
are two main strategies that have been proposed
in the literature: annotation projection and model
transfer.

1.1 Previous Cross-Lingual Approaches

Annotation projection relies on the mapping of lin-
guistic annotation across languages using paral-
lel corpora and automatic alignment as basic re-
sources (Yarowsky et al., 2001; Hwa et al., 2005;
Täckström et al., 2013a). Tools that exist for the
source language are used to annotate the source
side of the corpus and projection heuristics are then
applied to map the annotation through word align-
ment onto the corresponding target language text.
Target language tools can then be trained on the
projected annotation assuming that the mapping is
sufficiently correct. Less frequent, but also possi-
ble, is the scenario where the source side of the cor-
pus contains manual annotation (Agić et al., 2012).
This addresses the problem created by projecting
noisy annotations, but it presupposes parallel cor-
pora with manual annotation, which are rarely avail-
able, and expensive and time-consuming to pro-
duce.

Model transfer instead relies on universal fea-
tures and model parameters that can be transferred
from one language to another. Abstracting away
from all language-specific parameters makes it pos-
sible to train, e.g., delexicalized parsers that ignore
lexical information. This approach has been used
with success for a variety of languages, drawing
from a harmonized POS tagset (Petrov et al., 2012)
that is used as the main source of information. One
advantage compared to annotation projection is
that no parallel data is required. In addition, train-
ing can be performed on gold standard annotation.
However, model transfer assumes a common fea-
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ture representation across languages (McDonald et
al., 2013), which can be a strong bottleneck. Sev-
eral extensions have been proposed to make the
approach more robust. First of all, multiple source
languages can be involved to increase the statistical
basis for learning (McDonald et al., 2011; Naseem
et al., 2012), a strategy that can also be used in
the case of annotation projection. Cross-lingual
word clusters can be created to obtain additional
universal features (Täckström et al., 2012). Tech-
niques for target language adaptation can be used
to improve model transfer with multiple sources
(Täckström et al., 2013b).

1.2 The Translation Approach

In this paper, we propose a third strategy, based
on automatically translating training data to a new
language in order to create annotated resources di-
rectly from the original source. Recent advances
in statistical machine translation (SMT) combined
with the ever-growing availability of parallel cor-
pora are now making this a realistic alternative. The
relation to annotation projection is obvious as both
involve parallel data with one side being annotated.
However, the use of direct translation brings two
important advantages. First of all, using SMT, we
do not accumulate errors from two sources: the tool
– e.g., tagger or parser – used to annotate the source
language of a bilingual corpus and the noise com-
ing from alignment and projection. Instead, we use
the gold standard annotation of the source language
which can safely be assumed to be of much higher
quality than any automatic annotation obtained by
using a tool trained on that data. Moreover, using
SMT may help in bypassing domain shift problems,
which are common when applying tools trained
(and evaluated) on one resource to text from an-
other domain. Secondly, we can assume that SMT
will produce output that is much closer to the input
than manual translations in parallel texts usually
are. Even if this may seem like a short-coming
in general, in the case of annotation projection it
should rather be an advantage, because it makes it
more straightforward and less error-prone to trans-
fer annotation from source to target. Furthermore,
the alignment between words and phrases is inher-
ently provided as an output of all common SMT
models. Hence, no additional procedures have to be
performed on top of the translated corpus. Recent
research (Zhao et al., 2009; Durrett et al., 2012)
has attempted to address synthetic data creation

for syntactic parsing via bilingual lexica. We seek
to build on this work by utilizing more advanced
translation techniques.

Further in the paper, we first describe the tools
and resources used in our experiments (§2). We
elaborate on our approach to translating treebanks
(§3) and projecting syntactic annotations (§4) for a
new language. Finally, we provide empirical evalu-
ation of the suggested approach (§5) and observe
a substantial increase in parsing accuracy over the
delexicalized parsing baselines.

2 Resources and Tools

In our experiments, we rely on standard resources
and tools for both dependency parsing and ma-
chine translation without any special enhancements.
Since we are primarily trying to provide a proof
of concept for the use of SMT-derived synthetic
training data in dependency parsing, we believe it
is more important to facilitate reproducibility than
to tweak system components to obtain maximum
accuracy.

We use the Universal Dependency Treebank v1
(McDonald et al., 2013) for annotation projection,
parser training and evaluation. It is a collection
of data sets with consistent syntactic annotation
for six languages: English, French, German, Ko-
rean, Spanish, and Swedish.1 The annotation is
based on Stanford Typed Dependencies for English
(De Marneffe et al., 2006) but has been adapted
and harmonized to allow adequate annotation of
typologically different languages. This is the first
collection of data sets that allows reliable evalua-
tion of labeled dependency parsing accuracy across
multiple languages (McDonald et al., 2013). We
use the dedicated training and test sets from the
treebank distribution in all our experiments. As ar-
gued in (McDonald et al., 2013), most cross-lingual
dependency parsing experiments up to theirs relied
on heterogeneous treebanks such as the CoNLL
datasets for syntactic dependency parsing (Buch-
holz and Marsi, 2006; Nivre et al., 2007a), mak-
ing it difficult to address challenges like consistent
cross-lingual analysis for downstream applications
and reliable cross-lingual evaluation of syntactic
parsers. More specifically, none of the previous
research could report full labeled parsing accura-
cies, but rather just unlabeled structural accuracies
across different attachment schemes. Following
the line of McDonald et al. (2013) regarding the

1https://code.google.com/p/uni-dep-tb/
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emphasized importance of homogenous data and
the assignment of labels, we only report labeled
attachment scores (LAS) in all our experiments.
As it is likely the first reliable cross-lingual pars-
ing evaluation, we also choose their results as the
baseline reference point for comparison with our
experiments.

For dependency parsing, we use MaltParser
(Nivre et al., 2006a)2 due to its efficiency in both
training and parsing, and we facilitate MaltOpti-
mizer (Ballesteros and Nivre, 2012)3 to bypass the
tedious task of manual feature selection. Malt-
Parser is a transition-based dependency parser
that has been evaluated on a number of different
languages with competitive results (Nivre et al.,
2006b; Nivre et al., 2007b; Hall et al., 2007) and it
is widely used for benchmarking and application
development. Although more accurate dependency
parsers exist for the task of monolingual supervised
parsing, it is not clear that these differences carry
over to the cross-lingual scenario, where baselines
are lower and more complex models are more likely
to overfit. The use of a transition-based parser also
facilitates comparison with delexicalized transfer
parsing, where transition-based parsers are domi-
nant so far (McDonald et al., 2011; McDonald et
al., 2013). We leave the exploration of additional
parsing approaches for future research.

For machine translation, we select the popular
Moses toolbox (Koehn et al., 2007) and the phrase-
based translation paradigm as our basic frame-
work. Phrase-based SMT has the advantage of
being straightforward and efficient in training and
decoding, while maintaining robustness and relia-
bility for many language pairs. More details about
the setup and the translation procedures are given
in Section 3 below. The most essential ingredient
for translation performance is the parallel corpus
used for training the translation models. For our
experiments we use the freely available and widely
used Europarl corpus v7 (Koehn, 2005).4 It is com-
monly used for training SMT models and includes
parallel data for all languages represented in the
Universal Treebank except Korean, which we will,
therefore, leave out in our experiments. For tuning
we apply the newstest 2012 data provided by the an-
nual workshop on statistical machine translation.5

For language modeling, we use a combination of
2http://www.maltparser.org/
3http://nil.fdi.ucm.es/maltoptimizer/
4http://www.statmt.org/europarl/
5http://www.statmt.org/wmt14

DE EN ES FR SV

DE 94 M 94 M 96 M 81 M
EN 2.0 M 103 M 105 M 89 M
ES 1.9 M 2.0 M 104 M 89 M
FR 1.9 M 2.0 M 2.0 M 91 M
SV 1.8 M 1.9 M 1.8 M 1.9 M

mono 22.9 M 17.1 M 6.3 M 6.3 M 2.3 M

Table 1: Parallel data and monolingual data used
for training the SMT models. Lower-left triangle
= number of sentence pairs; upper-right triangle
= number of tokens (source and target language
together); bottom row = number of sentences in
monolingual corpora.

Europarl and News data provided from the same
source. The statistics of the corpora are given in
Table 1.

3 Translating Treebanks

The main contribution of this paper is the empirical
study of automatic treebank translation for parser
transfer. We compare three different translation
approaches in order to investigate the influence of
several parameters. All of them are based on auto-
matic word alignment and subsequent extraction of
translation equivalents as common in phrase-based
SMT. In particular, word alignment is performed us-
ing GIZA++ (Och and Ney, 2003) and IBM model
4 as the final model for creating the Viterbi word
alignments for all parallel corpora used in our ex-
periments. For the extraction of translation tables,
we use the Moses toolkit with its standard settings
to extract phrase tables with a maximum of seven
tokens per phrase from a symmetrized word align-
ment. Symmetrization is done using the grow-diag-
final-and heuristics (Koehn et al., 2003). We tune
phrase-based SMT models using minimum error
rate training (Och, 2003) and the development data
for each language pair. The language model is a
standard 5-gram model estimated from the mono-
lingual data using modified Kneser-Ney smoothing
without pruning (applying KenLM tools (Heafield
et al., 2013)).

Our first translation approach is based on a very
simple word-by-word translation model. For this,
we select the most reliable translations of single
words from the phrase translation tables extracted
from the parallel corpora as described above. We
restrict the model to tokens with alphabetic char-
acters only using pre-defined Unicode character
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sets. The selection of translation alternatives is
based on the Dice coefficient, which combines the
two essential conditional translation probabilities
given in the phrase table. The Dice coefficient is in
fact the harmonic mean of these two probabilities
and has successfully been used for the extraction of
translation equivalents before (Smadja et al., 1996):

Dice(s, t) =
2 p(s, t)

p(s) + p(t)
= 2

(
1

p(s|t) +
1

p(t|s)

)−1

Other association measures would be possible as
well but Smadja et al. (1996) argue that the Dice
coefficient is more robust with respect to low fre-
quency events than other common metrics such as
pointwise mutual information, which can be a seri-
ous issue with the unsmoothed probability estima-
tions in standard phrase tables. Our first translation
model then applies the final one-to-one correspon-
dences to monotonically translate treebanks word
by word. We refer to it as the LOOKUP approach.
Note that any bilingual dictionary could have been
used to perform the same procedure.

The second translation approach (WORD-BASED

MT) is slightly more elaborate but still restricts
the translation model to one-to-one word mappings.
For this, we extract all single word translation pairs
from the phrase tables and apply the standard beam-
search decoder implemented in Moses to translate
the original treebanks to all target languages. The
motivation for this model is to investigate the im-
pact of reordering and language models while still
keeping the projection of annotated data as simple
as possible. Note that the language model may
influence not only the word order but also the lex-
ical choice as we now allow multiple translation
options in our phrase table.

The final model implements translation based
on the entire phrase table using the standard ap-
proach to PHRASE-BASED SMT. We basically run
the Moses decoder with default settings and the pa-
rameters and models trained on our parallel corpora.
Note that it is important for the annotation trans-
fer to keep track of the alignment between phrases
and words of the input and output sentences. The
Moses decoder provides both, phrase segmentation
and word alignment (if the latter is coded into the
phrase tables). This will be important as we will
see in the annotation projection discussed below.

ORIGINAL
DE EN ES FR SV

14.0 0.00 7.90 13.3 4.20

WORD-BASED MT
DE EN ES FR SV

DE – 49.1 62.6 52.8 60.4
EN 43.3 – 27.6 34.8 0.00
ES 54.9 25.1 – 12.3 18.3
FR 68.2 39.6 32.8 – 57.8
SV 34.1 5.20 21.6 33.7 –

PHRASE-BASED MT
DE EN ES FR SV

DE – 51.5 57.3 58.8 46.8
EN 49.3 – 50.3 61.7 14.6
ES 65.9 66.7 – 62.8 49.0
FR 58.0 53.7 44.7 – 38.2
SV 43.9 43.6 49.6 57.1 –

Table 2: Non-projectivity in synthetic treebanks.

4 Transferring Annotation

The next step in preparing synthetic training data is
to project the annotation from the original treebank
to the target language. Given the properties of a
dependency tree, where every word has exactly one
syntactic head and dependency label, the annota-
tion transfer is trivial for the two initial translation
models. All annotation can simply be copied us-
ing the dictionary LOOKUP in which we enforce
a monotonic one-to-one word mapping between
source and target language.

In the second approach, we only have to keep
track of reordering, which is reported by the de-
coder when translating with our model. Note that
the mapping is strictly one-to-one (bijective) as
phrase-based SMT does not allow deletions or in-
sertions at any point. This also ensures that we
will always maintain a tree structure even though
reordering may have a strong impact on projectiv-
ity (see Table 2). An illustration of this type of
annotation transfer is shown in the left image of
Figure 1.

The third model, full PHRASE-BASED SMT, re-
quires the most attention when transferring anno-
tation across languages. Here we have to rely on
the alignment information and projection heuris-
tics similar to the ones presented in related work
(Hwa et al., 2005). In their work, Hwa et al. (2005)
define a direct projection algorithm that transfers
automatic annotation to a target language via word
alignment. The algorithm defines a number of
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CONJ NOUN PRON VERB ADP NOUN .
Que Dieu lui vienne en aide !

That God help him come in !
CONJ NOUN NOUN PRON VERB ADP .

expl

nsubj

iobj

root

adpmod adpobj

p

expl

nsubj adpobj

iobj

root

adpmod
p

CONJ NOUN PRON VERB ADP NOUN .
Que Dieu lui vienne en aide !

God DUMMY help DUMMY DUMMY him !
NOUN CONJ VERB ADP NOUN PRON .

expl

nsubj

iobj

root

adpmod adpobj

p

nsubj

expl

root

adpmod
adpobj

iobj
p

CONJ NOUN PRON VERB ADP NOUN .
Que Dieu lui vienne en aide !

God help him !
NOUN VERB PRON .

expl

nsubj

iobj

root

adpmod adpobj

p

nsubj

root

iobj

p

Figure 1: Transferring annotation from French to an English translation with a WORD-BASED translation
model (left) and with a PHRASE-BASED translation model (middle and right). Annotation projection using
the Direct Projection Algorithm by Hwa et al. (2005) (middle) and our approach (right).

heuristics to handle unaligned, one-to-many, many-
to-one and many-to-many alignments. As a side ef-
fect, this approach produces several dummy-nodes
in the target language to ensure a complete pro-
jection of the source language tree (see Hwa et al.
(2005) for more details).

In our approach, we try to make use of the addi-
tional information provided by the SMT decoder to
avoid dummy-nodes and relations that may nega-
tively influence the induced target language parser.
Compared to the annotation projection approach
of Hwa et al. (2005), the situation in our PHRASE-
BASED SMT setting is slightly different. Here, we
have two types of alignments that can be considered
when relating source and target language items: (i)
the alignment between phrases (pairs of consec-
utive n-grams) and (ii) the phrase-internal word
alignment on which phrase extraction is based. The
primary information used for annotation transfer
is still the latter which has the same properties as
described by Hwa et al. (2005) (except that we have
truly many-to-many alignments in our data which
were not available in their experiments).

Note that words may be unaligned in phrase-
based SMT as the phrase extraction algorithm used
in Moses includes unaligned adjacent tokens. How-
ever, for these unaligned words, we know to which
phrase they belong and can also identify the corre-
sponding phrase in the other language using phrase
alignment information. This makes it possible to
avoid the creation of dummy-nodes altogether and
instead to link unaligned words to existing nodes
based on the given phrase segmentation.

Similarly, we define heuristics for handling one-
to-many, many-to-one and many-to-many align-

ments that avoid the creation of dummy-nodes. The
main procedure is illustrated in Figure 2.

The key feature of this projection algorithm is
that ambiguous alignments are handled by attach-
ing words to the nodes that are highest up in the
dependency tree (the procedure find highest() re-
turns the node with minimum distance to the root
of the tree). This ensures that we avoid cycles
and isolated cliques in the graph. Furthermore,
unaligned words are attached to the head of the
target phrase they belong to, which seems to be the
most appropriate place without further knowledge.
The procedures in trg phrase() and in src phrase()
make use of the phrase segmentation used in the
translation process.

One complication is the search for the corre-
sponding target head word in cases where the
source language head is not aligned or aligned to
multiple target language words. Figure 3 shows
the head alignment procedure that we define in our
projection algorithm. Procedure find aligned() re-
turns the rightmost word of all words aligned to the
given source language word s. Other heuristics or
linguistically motivated rules based on POS tags
and general language properties would be possible
here as well. If s is not aligned, we move up in
the dependency tree until we hit ROOT or find an
aligned word. If we are at the root position we
return ROOT as this does not require further map-
pings. The effect of this algorithm is illustrated by
the right-hand side image in Figure 1.

5 Parsing Across Languages

In this section, we present the results of two ex-
perimental batches. First, we establish the base-
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Input: source tree S, target sentence T ,
word alignment A, phrase segmentation P
Output: syntactic heads head[],
word attributes attr[]

1 treeSize = max distance to root(S) ;
2 attr = [] ;
3 head = [] ;
4 for t ∈ T do
5 if is unaligned trg(t,A) then
6 for t’ ∈ in trg phrase(t,P) do
7 [sx,..,sy] = aligned to(t’) ;
8 ŝ = find highest([sx,..,sy],S) ;
9 t̂ = find aligned(ŝ,S,T,A) ;

10 attr[t] = DUMMY ;
11 head[t] = t̂ ;
12 end
13 else
14 [sx,..,sy] = aligned to(t) ;
15 s = find highest([sx,..,sy],S) ;
16 attr[t] = attr(s) ;
17 ŝ = head of(s,S) ;
18 t̂ = find aligned(ŝ,S,T,A) ;
19 if t̂ == t then
20 [sx,..,sy] = in src phrase(s,P) ;
21 s* = find highest([sx,..,sy],S) ;
22 ŝ = head of(s*,S) ;
23 t̂ = find aligned(ŝ,S,T,A) ;
24 head[t] = t̂ ;
25 end
26 end
27 end

Figure 2: Annotation projection algorithm.

lines by comparing monolingual supervised pars-
ing to delexicalized transfer parsing following the
approach of McDonald et al. (2013). Second, we
present the results obtained with parsers trained
on target language treebanks produced using ma-
chine translation and annotation projection. Here,
we also look at delexicalized models trained on
translated treebanks to show the effect of machine
translation without additional lexical features.

5.1 Baseline Results

First we present the baseline parsing scores. The
baselines we explore are: (i) the monolingual base-
line, i.e., training and testing using the same lan-
guage data from the Universal Dependency Tree-
bank and (ii) the delexicalized baseline, i.e., apply-
ing delexicalized parsers across languages.

For the monolingual baseline, MaltParser mod-
els are trained on the original treebanks with uni-
versal POS labels and lexical features but leaving
out other language-specific features if they exist in
the original treebanks. The delexicalized parsers
are trained on universal POS labels only for each
language and are then applied to all other languages

Input: node s, source tree S with root ROOT,
target sentence T , word alignment A
Output: node t*

1 if s == ROOT then
2 return ROOT ;
3 end
4 while is unaligned src(s,A) do
5 s = head of(s,S) ;
6 if s == ROOT then
7 return ROOT ;
8 end
9 end

10 p = 0 ;
11 t* = undef ;
12 for t’ ∈ aligned(s,A) do
13 if position(t’,T) > p then
14 t* = t’ ;
15 p = position(t’,T) ;
16 end
17 end
18 return t* ;

Figure 3: Procedure find aligned().

without modification. For all models, features and
options are optimized using MaltOptimizer. The
accuracy is given in Table 3 as a set of labeled at-
tachment scores (LAS). We include punctuation
in our evaluation. Ignoring punctuation generally
leads to slightly higher scores as we have noted in
our experiments but we do not report those num-
bers here. Note also that the columns represent the
target languages (used for testing), while the rows
denote the source languages (used in training), as
in McDonald et al. (2013).

From the table, we can see that the baseline
scores are compatible with the ones in the orig-
inal experiments presented by (McDonald et al.,
2013), included in Table 3 for reference. The dif-
ferences are due to parser selection, as they use a
transition-based parser with beam search and per-
ceptron learning along the lines of Zhang and Nivre
(2011) whereas we rely on greedy transition-based
parsing with linear support vector machines. In the
following, we will compare results to our baseline
as we have a comparable setup in those experi-
ments. However, most improvements shown below
also apply in comparison with (McDonald et al.,
2013).

5.2 Translated Treebanks

Now we turn to the experiments on translated tree-
banks. We consider two setups. First, we look at
the effect of translation when training delexical-
ized parsers. In this way, we can perform a direct
comparison to the baseline performance presented
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MONOLINGUAL
DE EN ES FR SV

72.13 87.50 78.54 77.51 81.28

DELEXICALIZED
DE EN ES FR SV

DE 62.71 43.20 46.09 46.09 50.64
EN 46.62 77.66 55.65 56.46 57.68
ES 44.03 46.73 68.21 57.91 53.82
FR 43.91 46.75 59.65 67.51 52.01
SV 50.69 49.13 53.62 51.97 70.22

MCDONALD ET AL. (2013)
DE EN ES FR SV

DE 64.84 47.09 48.14 49.59 53.57
EN 48.11 78.54 56.86 58.20 57.04
ES 45.52 47.87 70.29 63.65 53.09
FR 45.96 47.41 62.56 73.37 52.25
SV 52.19 49.71 54.72 54.96 70.90

Table 3: Baselines – labeled attachment score
(LAS) for monolingual and delexicalized transfer
parsing. Delexicalized transfer parsing results of
McDonald et al. (2013) included for reference.

above. The second setup then considers fully lexi-
calized models trained on translated treebanks. The
main advantage of the translation approach is the
availability of lexical information and this final
setup represents the real power of this approach.
In it, we compare lexicalized parsers trained on
translated treebanks with their delexicalized coun-
terparts and avoid a direct comparison with the
delexicalized baselines as they involve different
types of features.

5.3 Delexicalized Parsers

Table 4 presents the scores obtained by training
delexicalized parsing models on synthetic data cre-
ated by our translation approaches presented earlier.
Feature models and training options are the same
as for the delexicalized source language models
when training and testing on the target language
data. Note that we exclude the simple dictionary
LOOKUP approach here, because this approach
leads to identical models as the basic delexicalized
models. This is because words are translated one-
to-one without any reordering which leads to ex-
actly the same annotation sequences as the source
language treebank after projecting POS labels and
dependency relations.

From the table, we can see that all but one model
improve the scores obtained by delexicalized base-
line models. The improvements are quite substan-
tial up to +6.38 LAS. The boost in performance

WORD-BASED MT
DE EN ES FR SV

DE – 48.12 (4.92) 50.84 (4.75) 52.92 (6.83) 55.52 (4.88)

EN 49.53 (2.91) – 57.41 (1.76) 58.53 (2.07) 57.82 (0.14)

ES 45.48 (1.45) 48.46 (1.73) – 58.29 (0.38) 55.25 (1.43)

FR 46.59 (2.68) 47.88 (1.13) 59.72 (0.07) – 52.31 (0.30)

SV 52.16 (1.47) 49.14 (0.01) 56.50 (2.88) 56.71 (4.74) –

PHRASE-BASED MT
DE EN ES FR SV

DE – 45.43 (2.23) 47.26 (1.17) 49.14 (3.05) 53.37 (2.73)

EN 49.16 (2.54) – 57.12 (1.47) 58.23 (1.77) 58.23 (0.55)

ES 46.75 (2.72) 46.82 (0.09) – 58.22 (0.31) 54.14 (0.32)

FR 48.02 (4.11) 49.06 (2.31) 60.23 (0.58) – 55.24 (3.23)

SV 50.96 (0.27) 46.12−3.01 55.95 (2.33) 54.71 (2.74) –

Table 4: Translated treebanks: labeled attachment
score (LAS) for delexicalized parsers trained on
synthetic data created by translation. Numbers in
superscript show the absolute improvement over
our delexicalized baselines.

is especially striking for the simpleWORD-BASED

translation model considering that the only differ-
ence to the baseline model is word order. The
impact of the more complex PHRASE-BASED trans-
lation model is, however, difficult to judge. In
14 out of 20 models it actually leads to a drop in
LAS when applying phrase-based translation in-
stead of single-word translation. This is somewhat
surprising but is probably related to the additional
ambiguity in annotation projection introduced by
many-to-many alignments. The largest drop can be
seen for Swedish translated to English, which even
falls behind the baseline performance when using
the PHRASE-BASED translation model.

5.4 Lexicalized Parsers
The final experiment is concerned with lexical
parsers trained on translated treebanks. The main
objective here is to test the robustness of fully lexi-
calized models trained on noisy synthetic data cre-
ated by simple automatic translation engines. Ta-
ble 5 lists the scores obtained by our models when
trained on treebanks translated with our three ap-
proaches (dictionary LOOKUP, WORD-BASED MT
and full PHRASE-BASED translation). Again, we
use the same feature model and training options as
for the source language model when training mod-
els for the target languages. This time, of course,
this refers to the features used by the lexicalized
baseline models.

The capacity of the parsing models increases due
to the lexical information which is now included.
In order to see the effect of lexicalization, we com-
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DET DET NOUN VERB ADP NOUN CONJ ADP DET NOUN ADJ .
Tous ses produits sont de qualité et d’ une fraicheur exemplaires .

All his products are high- quality and a cold mullet copies .
DET DET NOUN VERB NOUN ADP CONJ DET NOUN NOUN ADJ .

det
poss nsubj

root

adpmod adpobj

cc
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det

adpobj
amod

p

det
poss nsubj

root

adpobj
adpmod

cc

det
adpobj

adpobj

amod

p

Figure 4: Problematic annotation projection with ambiguous word alignment.

pare the performance now with the corresponding
delexicalized models. Note that the LOOKUP ap-
proach relates to the delexicalized baseline models
without any translation.

As we can see, all models outperform their cor-
responding delexicalized version (with one excep-
tion), which demonstrates the ability of the training
procedure to pick up valuable lexical information
from the noisy translations. Again, we can see
substantial absolute improvements of up to +7.31
LAS showing the effectiveness of the translation
approach. Note that this also means that we outper-
form the delexicalized baselines in all cases by a
large margin, even if we should not directly com-
pare these models as they draw on different fea-
ture sets. Once again, we can also see that the
very simple methods are quite successful. Even the
very basic LOOKUP approach leads to significant
improvements with one minor exception. Surpris-
ingly, no gain can be seen with the PHRASE-BASED

translation approach. The translation quality is cer-
tainly better when manually inspecting the data.
However, the increased complexity of annotation
projection seems to pull down the parsers induced
on that kind of data. A question for future work
is whether the performance of those models can
be improved by better projection algorithms and
heuristics that lead to cleaner annotations of other-
wise better translations of the original treebanks.

One possible reason for this disappointing re-
sult could be the unreliable mapping of POS labels
across many-to-many alignments. Figure 4 illus-
trates a typical case of link ambiguity that leads to
erroneous projections. For example, the mapping
of the label ADP onto the English word quality is
due to the left-to-right procedure applied in our pro-
jection algorithm and the mapping of the NOUN
label to the English adjective cold is due to the
link to fraicheur. How much these errors effect our
parsing models trained on the projected treebanks
is difficult to estimate and further investigations are
required to pinpoint these issues and to find ways
of addressing problems that may occur in various
contexts.

Nevertheless, the overall results are very positive.
The experiments clearly show the potentials of the
translation approach. Note that this paper presents
the first attempt to study the effect of translation on
cross-lingual parser induction. Further optimiza-
tion of the translation process and the connected
annotation projection procedures should lead to
further improvements over our basic models.

6 Conclusions and Future Work

In this paper, we have addressed the problem of
cross-lingual parser induction by using statistical
machine translation to create synthetic training data.
Our SMT approach avoids the noisy source-side
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LOOKUP
DE EN ES FR SV

DE – 48.63 (5.43) 52.66 (6.57) 52.06 (5.97) 58.78 (8.14)

EN 48.59 (1.97) – 57.79 (2.14) 57.80 (1.34) 62.21 (4.53)

ES 47.36 (3.33) 49.13 (2.40) – 62.24 (4.33) 57.50 (3.68)

FR 47.57 (3.66) 54.06 (7.31) 66.31 (6.66) – 57.73 (5.72)

SV 51.88 (1.19) 48.84 (0.29) 54.74 (1.12) 52.95 (0.98) –

WORD-BASED MT
DE EN ES FR SV

DE – 51.86 (3.74) 55.90 (5.06) 57.77 (4.85) 61.65 (6.13)

EN 53.80 (4.27) – 60.76 (3.35) 63.32 (4.79) 62.93 (5.11)

ES 49.94 (4.46) 49.93 (1.47) – 65.60 (7.31) 59.22 (3.97)

FR 52.07 (5.48) 54.44 (6.56) 65.63 (5.91) – 57.67 (5.36)

SV 53.18 (1.02) 50.91 (1.77) 60.82 (4.32) 59.14 (2.43) –

PHRASE-BASED MT
DE EN ES FR SV

DE – 50.89 (5.46) 52.54 (5.28) 54.99 (5.85) 59.46 (6.09)

EN 53.71 (4.55) – 60.70 (3.58) 62.89 (4.66) 64.01 (5.78)

ES 49.59 (2.84) 48.35 (1.53) – 64.88 (6.66) 58.99 (4.85)

FR 51.83 (3.81) 53.81 (4.75) 65.55 (5.32) – 59.01 (3.77)

SV 53.22 (2.26) 49.06 (2.94) 58.41 (2.46) 58.04 (3.33) –

Table 5: Translated treebanks: labeled attachment score (LAS) for lexicalized parsers trained on synthetic
data. Numbers in superscript show the absolute improvements over the delexicalized models based on the
same translation strategy.

annotations of traditional annotation projection and
makes it possible to train fully lexicalized target lan-
guage models that significantly outperform delexi-
calized transfer parsers. We have also demonstrated
that translation leads to better delexicalized models
that can directly be compared with each other as
they are based on the same feature space.

We have compared three SMT methods for syn-
thesizing training data: LOOKUP-based translation,
WORD-BASED translation and full PHRASE-BASED

translation. Our experiments show that even noisy
data sets and simple translation strategies can be
used to achieve positive results. For all three ap-
proaches, we have recorded substantial improve-
ments over the state of the art in labeled cross-
lingual parsing (McDonald et al., 2013). According
to our results, simple word-by-word translations
are often sufficient to create reasonable translations
to train lexicalized parsers on. More elaborated
phrase-based models together with advanced anno-
tation projection strategies do not necessarily lead
to any improvements.

As future work, we want to improve our model
by (i) studying the impact of other SMT properties
and improve the quality of treebank translation,
(ii) implementing more sophisticated methods for

annotation projection and (iii) using n-best lists
provided by SMT models to introduce additional
synthetic data using a single resource. We also aim
at (iv) applying our approach to transfer parsing
for closely related languages (see Agić et al. (2012)
and Zeman and Resnik (2008) for related work),
(v) testing it in a multi-source transfer scenario
(McDonald et al., 2011) and, finally, (vi) comparing
different dependency parsing paradigms within our
experimental framework.

Multi-source approaches are especially appeal-
ing using the translation approach. However, initial
experiments (which we omit in this presentation)
revealed that simple concatenation is not sufficient
to obtain results that improve upon the single-best
translated treebanks. A careful selection of appro-
priate training examples and their weights given
to the training procedure seems to be essential to
benefit from different sources.
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