
Proceedings of the Eighteenth Conference on Computational Language Learning, pages 78–86,
Baltimore, Maryland USA, June 26-27 2014. c©2014 Association for Computational Linguistics

Lexicon Infused Phrase Embeddings for Named Entity Resolution

Alexandre Passos, Vineet Kumar, Andrew McCallum
School of Computer Science

University of Massachusetts, Amherst
{apassos,vineet,mccallum}@cs.umass.edu

Abstract
Most state-of-the-art approaches for
named-entity recognition (NER) use semi
supervised information in the form of
word clusters and lexicons. Recently
neural network-based language models
have been explored, as they as a byprod-
uct generate highly informative vector
representations for words, known as word
embeddings. In this paper we present
two contributions: a new form of learn-
ing word embeddings that can leverage
information from relevant lexicons to
improve the representations, and the first
system to use neural word embeddings
to achieve state-of-the-art results on
named-entity recognition in both CoNLL
and Ontonotes NER. Our system achieves
an F1 score of 90.90 on the test set for
CoNLL 2003—significantly better than
any previous system trained on public
data, and matching a system employing
massive private industrial query-log data.

1 Introduction

In many natural language processing tasks, such
as named-entity recognition or coreference reso-
lution, syntax alone is not enough to build a high
performance system; some external source of in-
formation is required. In most state-of-the-art
systems for named-entity recognition (NER) this
knowledge comes in two forms: domain-specific
lexicons (lists of word types related to the de-
sired named entity types) and word representa-
tions (either clusterings or vectorial representa-
tions of word types which capture some of their
syntactic and semantic behavior and allow gener-
alizing to unseen word types).

Current state-of-the-art named entity recogni-
tion systems use Brown clusters as the form of
word representation (Ratinov and Roth, 2009;
Turian et al., 2010; Miller et al., 2004; Brown et
al., 1992), or other cluster-based representations
computed from private data (Lin and Wu, 2009).
While very attractive due to their simplicity, gen-
erality, and hierarchical structure, Brown clusters
are limited because the computational complex-
ity of fitting a model scales quadratically with the
number of words in the corpus, or the number of
“base clusters” in some efficient implementations,
making it infeasible to train it on large corpora or
with millions of word types.

Although some attempts have been made to
train named-entity recognition systems with other
forms of word representations, most notably those
obtained from training neural language models
(Turian et al., 2010; Collobert and Weston, 2008),
these systems have historically underperformed
simple applications of Brown clusters. A disad-
vantage of neural language models is that, while
they are inherently more scalable than Brown clus-
ters, training large neural networks is still often
expensive; for example, Turian et al (2010) re-
port that some models took multiple days or weeks
to produce acceptable representations. Moreover,
language embeddings learned from neural net-
works tend to behave in a “nonlinear” fashion, as
they are trained to encourage a many-layered neu-
ral network to assign high probability to the data.
These neural networks can detect nonlinear rela-
tionships between the embeddings, which is not
possible in a log-linear model such as a condi-
tional random field, and therefore limiting how
much information from the embeddings can be ac-
tually leveraged.

Recently Mikolov et al (Mikolov et al., 2013a;

78

Mikolov et al., 2013b) proposed two simple log-
linear language models, the CBOW model and the
Skip-Gram model, that are simplifications of neu-
ral language models, and which can be very effi-
ciently trained on large amounts of data. For ex-
ample it is possible to train a Skip-gram model
over more than a billion tokens with a single ma-
chine in less than half a day. These embeddings
can also be trained on phrases instead of individual
word types, allowing for fine granularity of mean-
ing.

In this paper we make the following contribu-
tions. (1) We show how to extend the Skip-Gram
language model by injecting supervisory train-
ing signal from a collection of curated lexicons—
effectively encouraging training to learn similar
embeddings for phrases which occur in the same
lexicons. (2) We demonstrate that this method
outperforms a simple application of the Skip-
Gram model on the semantic similarity task on
which it was originally tested. (3) We show that
a linear-chain CRF is able to successfully use
these log-linearly-trained embeddings better than
the other neural-network-trained embeddings. (4)
We show that lexicon-infused embeddings let us
easily build a new highest-performing named en-
tity recognition system on CoNLL 2003 data
(Tjong Kim Sang and De Meulder, 2003) which
is trained using only publicly available data. (5)
We also present results on the relatively under-
studied Ontonotes NER task (Weischedel et al.,
2011), where we show that our embeddings out-
perform Brown clusters.

2 Background and Related Work

2.1 Language models and word embeddings

A statistical language model is a way to assign
probabilities to all possible documents in a given
language. Most such models can be classified
in one of two categories: they can directly as-
sign probabilities to sequences of word types, such
as is done in n-gram models, or they can oper-
ate in a lower-dimensional latent space, to which
word types are mapped. While most state-of-
the-art language models are n-gram models, the
representations used in models of the latter cate-
gory, henceforth referred to as “embeddings,” have
been found to be useful in many NLP applications
which don’t actually need a language model. The
underlying intuition is that when language models
compress the information about the word types in

a latent space they capture much of the common-
alities and differences between word types. Hence
features extracted from these models then can gen-
eralize better than features derived from the word
types themselves.

One simple language model that discovers use-
ful embeddings is known as Brown clustering
(Brown et al., 1992). A Brown clustering is a
class-based bigram model in which (1) the prob-
ability of a document is the product of the proba-
bilities of its bigrams, (2) the probability of each
bigram is the product of the probability of a bi-
gram model over latent classes and the probability
of each class generating the actual word types in
the bigram, and (3) each word type has non-zero
probability only on a single class. Given a one-to-
one assignment of word types to classes, then, and
a corpus of text, it is easy to estimate these proba-
bilities with maximum likelihood by counting the
frequencies of the different class bigrams and the
frequencies of word tokens of each type in the cor-
pus. The Brown clustering algorithm works by
starting with an initial assignment of word types
to classes (which is usually either one unique class
per type or a small number of seed classes corre-
sponding to the most frequent types in the corpus),
and then iteratively selecting the pair of classes to
merge that would lead to the highest post-merge
log-likelihood, doing so until all classes have been
merged. This process produces a hierarchical clus-
tering of the word types in the corpus, and these
clusterings have been found useful in many appli-
cations (Ratinov and Roth, 2009; Koo et al., 2008;
Miller et al., 2004). There are other similar models
of distributional clustering of English words which
can be similarly effective (Pereira et al., 1993).

One limitation of Brown clusters is their com-
putational complexity, as training takes O(kV 2 +
N)x time to train, where k is the number of base
clusters, V size of vocabulary, and N number of
tokens. This is infeasible for large corpora with
millions of word types.

Another family of language models that pro-
duces embeddings is the neural language mod-
els. Neural language models generally work by
mapping each word type to a vector in a low-
dimensional vector space and assigning probabil-
ities to n-grams by processing their embeddings
in a neural network. Many different neural lan-
guage models have been proposed (Bengio et al.,
2003; Morin and Bengio, 2005; Bengio, 2008;

79

Mnih and Hinton, 2008; Collobert and Weston,
2008; Mikolov et al., 2010). While they can cap-
ture the semantics of word types, and often gen-
eralize better than n-gram models in terms of per-
plexity, applying them to NLP tasks has generally
been less successful than Brown clusters (Turian
et al., 2010).

Finally, there are algorithms for computing
word embeddings which do not use language mod-
els at all. A popular example is the CCA family of
word embeddings (Dhillon et al., 2012; Dhillon et
al., 2011), which work by choosing embeddings
for a word type that capture the correlations be-
tween the embeddings of word types which occur
before and after this type.

2.2 The Skip-gram Model

A main limitation of neural language models is
that they often have many parameters and slow
training times. To mitigate this, Mikolov et
al. (2013a; 2013b) recently proposed a family
of log-linear language models inspired by neu-
ral language models but designed for efficiency.
These models operate on the assumption that, even
though they are trained as language models, users
will only look at their embeddings, and hence all
they need is to produce good embeddings, and not
high-accuracy language models.

The most successful of these models is
the skip-gram model, which computes the
probability of each n-gram as the product of
the conditional probabilities of each context
word in the n-gram conditioned on its central
word. For example, the probability for the n-
gram “the cat ate my homework” is represented as
P (the|ate)P (cat|ate)P (my|ate)P (homework|ate).

To compute these conditional probabilities the
model assigns an embedding to each word type
and defines a binary tree of logistic regression
classifiers with each word type as a leaf. Each
classifier takes a word embedding as input and
produces a probability for a binary decision cor-
responding to a branch in the tree. Each leaf in the
tree has a unique path from the root, which can be
interpreted as a set of (classifier,label) pairs. The
skip-gram model then computes a probability of a
context word given a target word as the product of
the probabilities, given the target word’s embed-
dings, of all decisions on a path from the root to
the leaf corresponding to the context word. Figure
1 shows such a tree structured model.

...

...A An San Diego New York City

...

...

Figure 1: A binary Huffman tree. Circles repre-
sent binary classifiers. Rectangles represent to-
kens, which can be multi-word.

The likelihood of the data, then, given a set N
of n-grams, with mn being n-gram n’s middle-
word, cn each context word, wcn

i the parameters
of the i-th classifier in the path from the root to
cn in the tree, lcn

i its label (either 1 or −1), ef the
embedding of word type f , and σ is the logistic
sigmoid function, is∏

n∈N

∏
cn∈n

∏
i

σ(lcn
i w

cn
i

T emn). (1)

Given a tree, then, choosing embeddings emn

and classifier parameters wcn
i to maximize equa-

tion (1) is a non-convex optimization problem
which can be solved with stochastic gradient de-
scent.

The binary tree used in the model is com-
monly estimated by computing a Huffman coding
tree (Huffman, 1952) of the word types and their
frequencies. We experimented with other tree esti-
mation schemes but found no perceptible improve-
ment in the quality of the embeddings.

It is possible to extend these embeddings to
model phrases as well as tokens. To do so,
Mikolov et al (2013b) use a phrase-building cri-
terion based on the pointwise mutual information
of bigrams. They perform multiple passes over
a corpus to estimate trigrams and higher-order
phrases. We instead consider candidate trigrams
for all pairs of bigrams which have a high PMI
and share a token.

2.3 Named Entity Recognition

Named Entity Recognition (NER) is the task of
finding all instances of explicitly named entities
and their types in a given document. While

80

detecting named entities is superficially simple,
since most sequences of capitalized words are
named entities (excluding headlines, sentence be-
ginnings, and a few other exceptions), finding all
entities is non trivial, and determining the correct
named entity type can sometimes be surprisingly
hard. Performing the task well often requires ex-
ternal knowledge of some form.

In this paper we evaluate our system on two
labeled datasets for NER: CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003) and Ontonotes
(Weischedel et al., 2011). The CoNLL dataset
has approximately 320k tokens, divided into 220k
tokens for training, 55k tokens for development,
and 50k tokens for testing. While the training and
development sets are quite similar, the test set is
substantially different, and performance on it de-
pends strongly on how much external knowledge
the systems have. The CoNLL dataset has four
entity types: PERSON, LOCATION, ORGANIZA-
TION, AND MISCELLANEOUS. The Ontonotes
dataset is substantially larger: it has 1.6M tokens
total, with 1.4M for training, 100K for develop-
ment, and 130k for testing. It also has eighteen
entity types, a much larger set than the CoNLL
dataset, including works of art, dates, cardinal
numbers, languages, and events.

The performance of NER systems is commonly
measured in terms of precision, recall, and F1 on
the sets of entities in the ground truth and returned
by the system.

2.3.1 Baseline System
In this section we describe in detail the baseline
NER system we use. It is inspired by the system
described in Ratinov and Roth (2009).

Because NER annotations are commonly not
nested (for example, in the text “the US Army”,
“US Army” is treated as a single entity, instead
of the location “US” and the organization “US
Army”) it is possible to treat NER as a sequence
labeling problem, where each token in the sen-
tence receives a label which depends on which en-
tity type it belongs to and its position in the en-
tity. Following Ratinov and Roth (2009) we use
the BILOU encoding, where each token can either
BEGIN an entity, be INSIDE an entity, be the LAST

token in an entity, be OUTSIDE an entity, or be the
single UNIQUE token in an entity.

Our baseline architecture is a stacked linear-
chain CRF (Lafferty et al., 2001) system: we train
two CRFs, where the second CRF can condition

on the predictions made by the first CRF as well as
features of the data. Both CRFs, following Zhang
and Johnson (2003), have roughly similar features.

While local features capture a lot of the clues
used in text to highlight named entities, they can-
not necessarily disambiguate entity types or detect
named entities in special positions, such as the first
tokens in a sentence. To solve these problems most
NER systems incorporate some form of external
knowledge. In our baseline system we use lexi-
cons of months, days, person names, companies,
job titles, places, events, organizations, books,
films, and some minor others. These lexicons were
gathered from US Census data, Wikipedia cate-
gory pages, and Wikipedia redirects (and will be
made publicly available upon publication).

Following Ratinov and Roth (2009), we also
compare the performance of our system with a
system using features based on the Brown clusters
of the word types in a document. Since, as seen
in section 2.1, Brown clusters are hierarchical, we
use features corresponding to prefixes of the path
from the root to the leaf for each word type.

More specifically, the feature templates of the
baseline system are as follows. First for each token
we compute:
• its word type;
• word type, after excluding digits and lower-

casing it;
• its capitalization pattern;
• whether it is punctuation;
• 4-character prefixes and suffixes;
• character n-grams from length 2 to 5;
• whether it is in a wikipedia-extracted lexicon

of person names (first, last, and honorifics),
dates (months, years), place names (country,
US state, city, place suffixes, general location
words), organizations, and man-made things;
• whether it is a demonym.

For each token’s label we have feature templates
considering all token’s features, all neighboring
token’s features (up to distance 2), and bags of
words of features of tokens in a window of size
8 around each token. We also add a feature mark-
ing whether a token is the first occurrence of its
word type in a document.

When using Brown clusters we add as token
features all prefixes of lengths 4, 6, 10, and 20,
of its brown cluster.

For the second-layer model we use all these fea-
tures, as well as the label predicted for each token

81

Figure 2: Chain CRF model for a NER system
with three tokens. Filled rectangles represent fac-
tors. Circles at top represent labels, circles at bot-
tom represent binary token based features. Filled
circles indicate the phrase embeddings for each to-
ken.

by the first-layer model.

As seen in the Experiments Section, our base-
line system is competitive with state-of-the-art
systems which use similar forms of information.

We train this system with stochastic gradient as-
cent, using the AdaGrad RDA algorithm (Duchi et
al., 2011), with both `1 and `2 regularization, au-
tomatically tuned for each experimental setting by
measuring performance on the development set.

2.4 NER with Phrase Embeddings

In this section we describe how to extend our base-
line NER system to use word embeddings as fea-
tures.

First we group the tokens into phrases, assign-
ing to each token a single phrase greedily. We
prefer shorter phrases over longer ones, sinceour
embeddings are often more reliable for the shorter
phrases, and since the longer phrases in our dic-
tionary are mostly extracted from Wikipedia page
titles, which are not always semantically meaning-
ful when seen in free text. We then add factors
connecting each token’s label with the embedding
for its phrase.

Figure 2 shows how phrase embeddings are
plugged into a chain-CRF based NER system.
Following Turian (2010), we scale the embed-
ding vector by a real number, which is a hyper-
parameter tuned on the development data. Con-
necting tokens to phrase embeddings of their
neighboring tokens did not improve performance
for phrase embeddings, but it was mildly benefi-
cial for token embeddings.

3 Lexicon-infused Skip-gram Models

The Skip-gram model as defined in Section 2.2 is
fundamentally trained in unsupervised fashion us-
ing simply words and their n-gram contexts. In-
jecting some NER-specific supervision into the
embeddings can make them more relevant to the
NER task.

Lexicons are a simple yet powerful way to pro-
vide task-specific supervisory information to the
model without the burden of labeling additional
data. However, while lexicons have proven use-
ful in various NLP tasks, a small amount of noise
in a lexicon can severely impair the its usefulness
as a feature in log-linear models. For example,
even legitimate data, such as the Chinese last name
“He” occurring in a lexicon of person last names,
can cause the lexicon feature to fire spuriously
for many training tokens that are labeled PERSON,
and then this lexicon feature may be given low or
even negative weight.

We propose to address both these problems by
employing lexicons as part of the word embedding
training. The skip-gram model can be trained to
predict not only neighboring words but also lexi-
con membership of the central word (or phrase).
The resulting embedding training will thus be
somewhat supervised by tending to bring together
the vectors of words sharing a lexicon member-
ship. Furthermore, this type of training can effec-
tively “clean” the influence of noisy lexicons be-
cause even if “He” appears in the PERSON lexicon,
it will have a sufficiently different context distribu-
tion than labeled named person entities (e.g. a lack
of preceding honorifics, etc) that the presence of
this noise in the lexicon will not be as problematic
as it was previously.

Furthermore, while Skip-gram models can be
trained on billions of tokens to learn word em-
beddings for over a million word types in a sin-
gle day, this might not be enough data to cap-
ture reliable embeddings of all relevant named en-
tity phrases. Certain sets of word types, such as
names of famous scientists, can occur infrequently
enough that the Skip-gram model will not have
enough contextual examples to learn embeddings
that highlight their relevant similarities.

In this section we describe how to extend the
Skip-gram model to incorporate auxiliary infor-
mation from lexicons, or lists of related words, en-
couraging the model to assign similar embeddings
to word types in similar lexicons.

82

New YorkThe ofstate is often referred

...

...

...

...

stateThe ... New York

US-STATE

WIKI-LOCATION

BUSINESS

Figure 3: A Semi supervised Skip-gram Model.
“New York” predicts the word “state”. With
lexicon-infusion, “New York” also predicts its lex-
icon classes: US-State, Wiki-location

.

In the basic Skip-gram model, as seen in Sec-
tion 2.2, the likelihood is, for each n-gram, a prod-
uct of the probability of the embedding associated
with the middle word conditioned on each context
word. We can inject supervision in this model by
also predicting, given the embedding of the mid-
dle word, whether it is a member of each lexicon.
Figure 3 shows an example, where the word “New
York” predicts “state”, and also its lexicon classes:
Business, US-State and Wiki-Location.

Hence, with subscript s iterating over each lex-
icon (or set of related words), and lmn

s being a la-
bel for whether each word is in the set, and ws

indicating the parameters of its classifier, the full
likelihood of the model is

(2)

∏
n ∈N

(∏
cn∈n

∏
i

σ(lcn
i w

cn
i

T emn)

)
(∏

s

σ(lmn
s wT

s emn)

)
.

This is a simple modification to equation (1) that
also predicts the lexicon memberships. Note that
the parameters ws of the auxiliary per-lexicon
classifiers are also learned. The lexicons are not
inserted in the binary tree with the words; instead,
each lexicon gets its own binary classifier.

Algorithm 1 Generating the training examples for
lexicon-infused embeddings

1: for all n-gram n with middle word mn do
2: for all Context-word cn do
3: for all Classifier, label pair (wcn

i ,lcn
i)

in the tree do
4: Add training example
emn , w

cn
i , lcn

5: end for
6: end for
7: for all Lexicon s, with label lmn

s do
8: Add training example emn , ws, l

mn
s

9: end for
10: end for

In practice, a very small fraction of words are
present in a lexicon-class and this creates skewed
training data, with overwhelmingly many negative
examples. We address this issue by aggressively
sub-sampling negative training data for each lex-
icon class. We do so by randomly selecting only
1% of the possible negative lexicons for each to-
ken.

A Skip-gram model has V binary classifiers. A
lexicon-infused Skip-gram model predicts an ad-
ditional K classes, and thus has V + K binary
classifiers. If number of classes K is large, we can
induce a tree over the classes, similarly to what is
done over words in the vocabulary. In our trained
models, however, we have one million words in
the vocabulary and twenty-two lexicons, so this is
not necessary.

4 Experiments

Our phrase embeddings are learned on the combi-
nation of English Wikipedia and the RCV1 Cor-
pus (Lewis et al., 2004). Wikipedia contains 8M
articles, and RCV1 contains 946K. To get candi-
date phrases we first select bigrams which have
a pointwise mutual information score larger than
1000. We discard bigrams with stopwords from a
manually selected list. If two bigrams share a to-
ken we add its corresponding trigram to our phrase
list. We further add page titles from the English
Wikipedia to the list of candidate phrases, as well
as all word types. We get a total of about 10M
phrases. We restrict the vocabulary to the most fre-
quent 1M phrases. All our reported experiments
are on 50-dimensional embeddings. Longer em-
beddings, while performing better on the semantic
similarity task, as seen in Mikolov et al (2013a;

83

Model Accuracy
Skip-Gram 29.89
Lex-0.05 30.37
Lex-0.01 30.72

Table 1: Accuracy for Semantic-Syntactic task,
when restricted to Top 30K words. Lex-0.01 refers
to a model trained with lexicons, where 0.01% of
negative examples were used for training.

2013b), did not perform as well on NER.
To train phrase embeddings, we use a con-

text of length 21. We use lexicons derived from
Wikipedia categories and data from the US Cen-
sus, totaling K = 22 lexicon classes. We use a
randomly selected 0.01% of negative training ex-
amples for lexicons.

We perform two sets of experiments. First, we
validate our lexicon-infused phrase embeddings
on a semantic similarity task, similar to Mikolov et
al (Mikolov et al., 2013a). Then we evaluate their
utility on two named-entity recognition tasks.

For the NER Experiments, we use the base-
line system as described in Section 2.3.1. NER
systems marked as “Skip-gram” consider phrase
embeddings; “LexEmb” consider lexicon-infused
embeddings; “Brown” use Brown clusters, and
“Gaz” use our lexicons as features.

4.1 Syntactic and Semantic Similarity

Mikolov et al. (2013a) introduce a test set to mea-
sure syntactic and semantic regularities for words.
This set contains 8869 semantic and 10675 syn-
tactic questions. Each question consists of four
words, such as big, biggest, small, smallest. It
asks questions of the form “What is the word that
is similar to small in the same sense as biggest is
similar to big”. To test this, we compute the vec-
tor X = vector(“biggest”) − vector(“big”) +
vector(“small”). Next, we search for the word
closest to X in terms of cosine distance (exclud-
ing “biggest”, “small”, and “big”). This question
is considered correctly answered only if the clos-
est word found is “smallest”. As in Mikolov et
al (Mikolov et al., 2013a), we only search over
words which are among the 30K most frequent
words in the vocabulary.

Table 1 depicts the accuracy on Semantic Syn-
tactic Task for models trained with 50 dimensions.
We find that lexicon-infused embeddings perform
better than Skip-gram. Further, lex-0.01 performs

System Dev Test
Baseline 92.22 87.93
Baseline + Brown 93.39 90.05
Baseline + Skip-gram 93.68 89.68
Baseline + LexEmb 93.81 89.56
Baseline + Gaz 93.69 89.27
Baseline + Gaz + Brown 93.88 90.67
Baseline + Gaz + Skip-gram 94.23 90.33
Baseline + Gaz + LexEmb 94.46 90.90
Ando and Zhang (2005) 93.15 89.31
Suzuki and Isozaki (2008) 94.48 89.92
Ratinov and Roth (2009) 93.50 90.57
Lin and Wu (2009) - 90.90

Table 2: Final NER F1 scores for the CoNLL 2003
shared task. On the top are the systems presented
in this paper, and on the bottom we have base-
line systems. The best results within each area are
highlighted in bold. Lin and Wu 2009 use massive
private industrial query-log data in training.

the best, and we use this model for further NER
experiments. There was no perceptible difference
in computation cost from learning lexicon-infused
embeddings versus learning standard Skip-gram
embeddings.

4.2 CoNLL 2003 NER

We applied our models on CoNLL 2003 NER data
set. All hyperparameters were tuned by training
on training set, and evaluating on the development
set. Then the best hyperparameter values were
trained on the combination of training and devel-
opment data and applied on the test set, to obtain
the final results.

Table 2 shows the phrase F1 scores of all sys-
tems we implemented, as well as state-of-the-
art results from the literature. Note that us-
ing traditional unsupervised Skip-gram embed-
dings is worse than Brown clusters. In contrast,
our lexicon-infused phrase embeddings Lex-0.01
achieves 90.90—a state-of-the-art F1 score for the
test set. This result matches the highest F1 previ-
ously reported, in Lin and Wu (2009), but is the
first system to do so without using massive private
data. Our result is signficantly better than the pre-
vious best using public data.

4.3 Ontonotes 5.0 NER

Similarly to the CoNLL NER setup, we tuned the
hyperparameters on the development set. We use

84

System Dev Test
Baseline 79.04 79.85
Baseline + Brown 79.95 81.38
Baseline + Skip-gram 80.59 81.91
Baseline + LexEmbd 80.65 81.82
Baseline + Gaz 79.85 81.31
Baseline + Gaz + Brown 80.53 82.05
Baseline + Gaz + Skip-gram 80.70 82.30
Baseline + Gaz + LexEmb 80.81 82.24

Table 3: Final NER F1 scores for Ontonotes 5.0
dataset. The results in bold face are the best on
each evaluation set.

the same list of lexicons as for CoNLL NER.
Table 3 summarize our results. We found that

both Skip-gram and Lexicon infused embeddings
give better results than using Brown Clusters as
features. However, in this case Skip-gram embed-
dings give marginally better results. (So as not to
jeopardize our ability to fairly do further research
on this task, we did not analyze the test set errors
that may explain this.) These are, to the best of our
knowledge, the first published performance num-
bers on the Ontonotes NER task.

5 Conclusions

We have shown how to inject external supervision
to a Skip-gram model to learn better phrase em-
beddings. We demonstrate the quality of phrase
embeddings on three tasks: Syntactic-semantic
similarity, CoNLL 2003 NER, and Ontonotes 5.0
NER. In the process, we provide a new public
state-of-the-art NER system for the widely con-
tested CoNLL 2003 shared task.

We demonstrate how we can plug phrase em-
beddings into an existing log-linear CRF System.

This work demonstrates that it is possible to
learn high-quality phrase embeddings and fine-
tune them with external supervision from billions
of tokens within one day computation time. We
further demonstrate that learning embeddings is
important and key to improve NLP Tasks such as
NER.

In future, we want to explore employing embed-
dings to other NLP tasks such as dependency pars-
ing and coreference resolution. We also want to
explore improving embeddings using error gradi-
ents from NER.

References
Rie Kubota Ando and Tong Zhang. 2005. A high-

performance semi-supervised learning method for
text chunking. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguis-
tics, pages 1–9. Association for Computational Lin-
guistics.

Yoshua Bengio, Rejean Ducharme, and Pascal Vincent.
2003. A neural probabilistic language model. Jour-
nal of Machine Learning Research, 3:1137–1155.

Yoshua Bengio. 2008. Neural net language models.
Scholarpedia, 3(1):3881.

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics, 18(4):467–479.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning, pages 160–167. ACM.

Paramveer Dhillon, Dean P Foster, and Lyle H Ungar.
2011. Multi-view learning of word embeddings via
cca. In Advances in Neural Information Processing
Systems, pages 199–207.

Paramveer Dhillon, Jordan Rodu, Dean Foster, and
Lyle Ungar. 2012. Two step cca: A new spec-
tral method for estimating vector models of words.
arXiv preprint arXiv:1206.6403.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research, 999999:2121–2159.

David A Huffman. 1952. A method for the construc-
tion of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. The Journal of Ma-
chine Learning Research, 5:361–397.

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering
for discriminative learning. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 2-Volume 2, pages 1030–1038. Association for
Computational Linguistics.

85

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH, pages 1045–1048.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. arXiv preprint arXiv:1310.4546.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name tagging with word clusters and discrim-
inative training. In HLT-NAACL, volume 4, pages
337–342. Citeseer.

Andriy Mnih and Geoffrey E Hinton. 2008. A scal-
able hierarchical distributed language model. In
Advances in neural information processing systems,
pages 1081–1088.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
Proceedings of the international workshop on artifi-
cial intelligence and statistics, pages 246–252.

Fernando Pereira, Naftali Tishby, and Lillian Lee.
1993. Distributional clustering of english words. In
Proceedings of the 31st annual meeting on Associa-
tion for Computational Linguistics, pages 183–190.
Association for Computational Linguistics.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning, pages 147–
155. Association for Computational Linguistics.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-
word scale unlabeled data. In ACL, pages 665–673.
Citeseer.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 384–394. Association for
Computational Linguistics.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2011. OntoNotes Release 4.0. Lin-
guistic Data Consortium.

Tong Zhang and David Johnson. 2003. A robust
risk minimization based named entity recognition
system. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003-
Volume 4, pages 204–207. Association for Compu-
tational Linguistics.

86

