
Proceedings of the 2nd Workshop on Continuous Vector Space Models and their Compositionality (CVSC) @ EACL 2014, pages 21–30,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

A Systematic Study of Semantic Vector Space Model Parameters

Douwe Kiela
University of Cambridge

Computer Laboratory
douwe.kiela@cl.cam.ac.uk

Stephen Clark
University of Cambridge

Computer Laboratory
sc609@cam.ac.uk

Abstract

We present a systematic study of parame-
ters used in the construction of semantic
vector space models. Evaluation is car-
ried out on a variety of similarity tasks, in-
cluding a compositionality dataset, using
several source corpora. In addition to rec-
ommendations for optimal parameters, we
present some novel findings, including a
similarity metric that outperforms the al-
ternatives on all tasks considered.

1 Introduction

Vector space models (VSMs) represent the mean-
ings of lexical items as vectors in a “semantic
space”. The benefit of VSMs is that they can eas-
ily be manipulated using linear algebra, allowing
a degree of similarity between vectors to be com-
puted. They rely on the distributional hypothesis
(Harris, 1954): the idea that “words that occur in
similar contexts tend to have similar meanings”
(Turney and Pantel, 2010; Erk, 2012). The con-
struction of a suitable VSM for a particular task is
highly parameterised, and there appears to be little
consensus over which parameter settings to use.

This paper presents a systematic study of the
following parameters:

• vector size;
• window size;
• window-based or dependency-based context;
• feature granularity;
• similarity metric;
• weighting scheme;
• stopwords and high frequency cut-off.

A representative set of semantic similarity
datasets has been selected from the literature, in-
cluding a phrasal similarity dataset for evaluating
compositionality. The choice of source corpus is
likely to influence the quality of the VSM, and so

we use a selection of source corpora. Hence there
are two additional “superparameters”:

• dataset for evaluation;
• source corpus.

Previous studies have been limited to investigat-
ing only a small number of parameters, and us-
ing a limited set of source corpora and tasks for
evaluation (Curran and Moens, 2002a; Curran and
Moens, 2002b; Curran, 2004; Grefenstette, 1994;
Pado and Lapata, 2007; Sahlgren, 2006; Turney
and Pantel, 2010; Schulte im Walde et al., 2013).
Rohde et al. (2006) considered several weighting
schemes for a large variety of tasks, while Weeds
et al. (2004) did the same for similarity metrics.
Stone et al. (2008) investigated the effectiveness
of sub-spacing corpora, where a larger corpus is
queried in order to construct a smaller sub-spaced
corpus (Zelikovitz and Kogan, 2006). Blacoe and
Lapata (2012) compare several types of vector rep-
resentations for semantic composition tasks. The
most comprehensive existing studies of VSM pa-
rameters — encompassing window sizes, feature
granularity, stopwords and dimensionality reduc-
tion — are by Bullinaria and Levy (2007; 2012)
and Lapesa and Evert (2013).

Section 2 introduces the various parameters of
vector space model construction. We then attempt,
in Section 3, to answer some of the fundamen-
tal questions for building VSMs through a number
of experiments that consider each of the selected
parameters. In Section 4 we examine how these
findings relate to the recent development of dis-
tributional compositional semantics (Baroni et al.,
2013; Clark, 2014), where vectors for words are
combined into vectors for phrases.

2 Data and Parameters

Two datasets have dominated the literature with
respect to VSM parameters: WordSim353 (Finkel-
stein et al., 2002) and the TOEFL synonym dataset
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Dataset Pairings Words
RG 65 48
MC 30 39
W353 353 437
MEN 3000 751
TOEFL 80 400
M&L10 324 314

Table 1: Datasets for evaluation

(Landauer and Dumais, 1997). There is a risk
that semantic similarity studies have been overfit-
ting to their idiosyncracies, so in this study we
evaluate on a variety of datasets: in addition to
WordSim353 (W353) and TOEFL, we also use
the Rubenstein & Goodenough (RG) (1965) and
Miller & Charles (MC) (1991) data, as well as
a much larger set of similarity ratings: the MEN
dataset (Bruni et al., 2012). All these datasets con-
sist of human similarity ratings for word pairings,
except TOEFL, which consists of multiple choice
questions where the task is to select the correct
synonym for a target word. In Section 4 we ex-
amine our parameters in the context of distribu-
tional compositional semantics, using the evalua-
tion dataset from Mitchell and Lapata (2010). Ta-
ble 1 gives statistics for the number of words and
word pairings in each of the datasets.

As well as using a variety of datasets, we also
consider three different corpora from which to
build the vectors, varying in size and domain.
These include the BNC (Burnard, 2007) (106

word types, 108 tokens) and the larger ukWaC
(Baroni et al., 2009) (107 types, 109 tokens).
We also include a sub-spaced Wikipedia corpus
(Stone et al., 2008): for all words in the eval-
uation datasets, we build a subcorpus by query-
ing the top 10-ranked Wikipedia documents using
the words as search terms, resulting in a corpus
with 106 word types and 107 tokens. For examin-
ing the dependency-based contexts, we include the
Google Syntactic N-gram corpus (Goldberg and
Orwant, 2013), with 107 types and 1011 tokens.

2.1 Parameters

We selected the following set of parameters for in-
vestigation, all of which are fundamental to vector
space model construction1.

1Another obvious parameter would be dimensionality re-
duction, which we chose not to include because it does not
represent a fundamental aspect of VSM construction: di-
mensionality reduction relies on some original non-reduced
model, and directly depends on its quality.

Vector size Each component of a vector repre-
sents a context (or perhaps more accurately a “con-
textual element”, such as second word to the left
of the target word).2 The number of components
varies hugely in the literature, but a typical value
is in the low thousands. Here we consider vec-
tor sizes ranging from 50,000 to 500,000, to see
whether larger vectors lead to better performance.

Context There are two main approaches to mod-
elling context: window-based and dependency-
based. For window-based methods, contexts are
determined by word co-occurrences within a win-
dow of a given size, where the window simply
spans a number of words occurring around in-
stances of a target word. For dependency-based
methods, the contexts are determined by word
co-occurrences in a particular syntactic relation
with a target word (e.g. target word dog is the
subject of run, where run subj is the context).
We consider different window sizes and compare
window-based and dependency-based methods.

Feature granularity Context words, or “fea-
tures”, are often stemmed or lemmatised. We in-
vestigate the effect of stemming and lemmatisa-
tion, in particular to see whether the effect varies
with corpus size. We also consider more fine-
grained features in which each context word is
paired with a POS tag or a lexical category from
CCG (Steedman, 2000).

Similarity metric A variety of metrics can be
used to calculate the similarity between two vec-
tors. We consider the similarity metrics in Table 2.

Weighting Weighting schemes increase the im-
portance of contexts that are more indicative of the
meaning of the target word: the fact that cat co-
occurs with purr is much more informative than
its co-occurrence with the. Table 3 gives defini-
tions of the weighting schemes considered.

Stopwords, high frequency cut-off Function
words and stopwords are often considered too un-
informative to be suitable context words. Ignor-
ing them not only leads to a reduction in model
size and computational effort, but also to a more
informative distributional vector. Hence we fol-
lowed standard practice and did not use stopwords
as context words (using the stoplist in NLTK (Bird
et al., 2009)). The question we investigated is

2We will use the term “feature” or “context” or “context
word” to refer to contextual elements.

22



Measure Definition

Euclidean 1

1+
√∑n

i=1(ui−vi)2

Cityblock 1
1+

∑n
i=1 |ui−vi|

Chebyshev 1
1+maxi |ui−vi|

Cosine u·v
|u||v|

Correlation (u−µu)·(v−µv)
|u||v|

Dice 2
∑n

i=0min(ui,vi)∑n
i=0 ui+vi

Jaccard u·v∑n
i=0 ui+vi

Jaccard2
∑n

i=0min(ui,vi)∑n
i=0max(ui,vi)

Lin
∑n

i=0 ui+vi

|u|+|v|

Tanimoto u·v
|u|+|v|−u·v

Jensen-Shannon Div 1− 1
2 (D(u||u+v

2 )+D(v||u+v
2 ))√

2 log 2

α-skew 1− D(u||αv+(1−α)u)√
2 log 2

Table 2: Similarity measures between vectors v
and u, where vi is the ith component of v

whether removing more context words, based on
a frequency cut-off, can improve performance.

3 Experiments

The parameter space is too large to analyse ex-
haustively, and so we adopted a strategy for how
to navigate through it, selecting certain parame-
ters to investigate first, which then get fixed or
“clamped” in the remaining experiments. Unless
specified otherwise, vectors are generated with the
following restrictions and transformations on fea-
tures: stopwords are removed, numbers mapped
to ‘NUM’, and only strings consisting of alphanu-
meric characters are allowed. In all experiments,
the features consist of the frequency-ranked first n
words in the given source corpus.

Four of the five similarity datasets (RG, MC,
W353, MEN) contain continuous scales of sim-
ilarity ratings for word pairs; hence we follow
standard practice in using a Spearman correlation
coefficient ρs for evaluation. The fifth dataset
(TOEFL) is a set of multiple-choice questions,
for which an accuracy measure is appropriate.
Calculating an aggregate score over all datasets
is non-trivial, since taking the mean of correla-
tion scores leads to an under-estimation of per-
formance; hence for the aggregate score we use
the Fisher-transformed z-variable of the correla-

Scheme Definition

None wij = fij

TF-IDF wij = log(fij)× log( N
nj

)

TF-ICF wij = log(fij)× log(N
fj

)

Okapi BM25 wij =
fij

0.5+1.5× fj
fj
j

+fij

log
N−nj+0.5

fij+0.5

ATC wij =
(0.5+0.5× fij

maxf
) log( N

nj
)√∑N

i=1[(0.5+0.5× fij
maxf

) log( N
nj

)]2

LTU wij =
(log(fij)+1.0) log( N

nj
)

0.8+0.2×fj× j
fj

MI wij = log
P (tij |cj)

P (tij)P (cj)

PosMI max(0,MI)

T-Test wij =
P (tij |cj)−P (tij)P (cj)√

P (tij)P (cj)

χ2 see (Curran, 2004, p. 83)

Lin98a wij =
fij×f
fi×fj

Lin98b wij = −1× log
nj

N

Gref94 wij =
log fij+1

lognj+1

Table 3: Term weighting schemes. fij denotes the
target word frequency in a particular context, fi

the total target word frequency, fj the total context
frequency, N the total of all frequencies, nj the
number of non-zero contexts. P (tij |cj) is defined
as fij

fj
and P (tij) as fij

N .

tion datasets, and take the weighted average of
its inverse over the correlation datasets and the
TOEFL accuracy score (Silver and Dunlap, 1987).

3.1 Vector size

The first parameter we investigate is vector size,
measured by the number of features. Vectors are
constructed from the BNC using a window-based
method, with a window size of 5 (2 words either
side of the target word). We experiment with vec-
tor sizes up to 0.5M features, which is close to the
total number of context words present in the en-
tire BNC according to our preprocessing scheme.
Features are added according to frequency in the
BNC, with increasingly more rare features being
added. For weighting we consider both Positive
Mutual Information and T-Test, which have been
found to work best in previous research (Bullinaria
and Levy, 2012; Curran, 2004). Similarity is com-
puted using Cosine.
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Figure 1: Impact of vector size on performance
across different datasets

The results in Figure 1 show a clear trend: for
both weighting schemes, performance no longer
improves after around 50,000 features; in fact, for
T-test weighting, and some of the datasets, perfor-
mance initially declines with an increase in fea-
tures. Hence we conclude that continuing to add
more rare features is detrimental to performance,
and that 50,000 features or less will give good per-
formance. An added benefit of smaller vectors is
the reduction in computational cost.

3.2 Window size

Recent studies have found that the best window
size depends on the task at hand. For example,
Hill et al. (2013) found that smaller windows work
best for measuring similarity of concrete nouns,
whereas larger window sizes work better for ab-
stract nouns. Schulte im Walde et al. (2013) found
that a large window size worked best for a com-
positionality dataset of German noun-noun com-
pounds. Similar relations between window size
and performance have been found for similar ver-
sus related words, as well as for similar versus as-
sociated words (Turney and Pantel, 2010).

We experiment with window sizes of 3, 5, 7, 9
and a full sentence. (A window size of n implies
n−1

2 words either side of the target word.) We
use Positive Mutual Information weighting, Co-
sine similarity, and vectors of size 50,000 (based
on the results from Section 3.1). Figure 2 shows
the results for all the similarity datasets, with the
aggregated score at the bottom right.

Performance was evaluated on three corpora,
in order to answer three questions: Does win-
dow size affect performance? Does corpus size
interact with window size? Does corpus sub-

Figure 2: Impact of window size across three cor-
pora

spacing interact with window size? Figure 2
clearly shows the answer to all three questions is
“yes”. First, ukWaC consistently outperforms the
BNC, across all window sizes, indicating that a
larger source corpus leads to better performance.
Second, we see that the larger ukWaC performs
better with smaller window sizes compared to the
BNC, with the best ukWaC performance typically
being found with a window size of only 3. For
the BNC, it appears that a larger window is able to
offset the smaller size of corpus to some extent.

We also evaluated on a sub-spaced Wikipedia
source corpus similar to Stone et al. (2008), which
performs much better with larger window sizes
than the BNC or ukWaC. Our explanation for this
result is that sub-spacing, resulting from search-
ing for Wikipedia pages with the appropriate tar-
get terms, provides a focused, less noisy corpus in
which context words some distance from the target
word are still relevant to its meaning.

In summary, the highest score is typically
achieved with the largest source corpora and
smallest window size, with the exception of the
much smaller sub-spaced Wikipedia corpus.

3.3 Context

The notion of context plays a key role in VSMs.
Pado and Lapata (2007) present a comparison of
window-based versus dependency-based methods
and conclude that dependency-based contexts give
better results. We also compare window-based and
dependency-based models.

Dependency-parsed versions of the BNC and
ukWaC were used to construct syntactically-
informed vectors, with a single, labelled arc be-
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Figure 3: Window versus dependency contexts

tween the target word and context word.3 Since
this effectively provides a window size of 3, we
also use a window size of 3 for the window-based
method (which provided the best results in Sec-
tion 3.2 with the ukWaC corpus). As well as
the ukWaC and BNC source corpora, we use the
Google syntactic N-gram corpus (Goldberg and
Orwant, 2013), which is one of the largest cor-
pora to date, and which consists of syntactic n-
grams as opposed to window-based n-grams. We
use vectors of size 50,000 with Positive Mutual In-
formation weighting and Cosine similarity. Due
to its size and associated computational cost, we
used only 10,000 contexts for the vectors gener-
ated from the syntactic N-gram corpus. The re-
sults are shown in Figure 3.

In contrast to the idea that dependency-based
methods outperform window-based methods, we
find that the window-based models outperform
dependency-based models when they are con-
structed from the same corpus using the small
window size. However, Google’s syntactic N-
gram corpus does indeed outperform window-
based methods, even though smaller vectors were
used for the Google models (10,000 vs. 50,000
features). We observe large variations across
datasets, with window-based methods performing
particularly well on some, but not all. In partic-
ular, window-based methods clearly outperform
dependency-based methods on the RG dataset (for
the same source corpus), whereas the opposite
trend is observed for the TOEFL synonym dataset.
The summary is that the model built from the syn-
tactic N-grams is the overall winner, but when we

3The Clark and Curran (2007) parser was used to provide
the dependencies.

compare both methods on the same corpus, the
window-based method on a large corpus appears
to work best (given the small window size).

3.4 Feature granularity

Stemming and lemmatisation are standard tech-
niques in NLP and IR to reduce data sparsity.
However, with large enough corpora it may be
that the loss of information through generalisa-
tion hurts performance. In fact, it may be that in-
creased granularity – through the use of grammat-
ical tags – can lead to improved performance. We
test these hypotheses by comparing four types of
processed context words: lemmatised, stemmed,
POS-tagged, and tagged with CCG lexical cate-
gories (which can be thought of as fine-grained
POS tags (Clark and Curran, 2007)).4 The source
corpora are BNC and ukWaC, using a window-
based method with windows of size 5, Positive
Mutual Information weighting, vectors of size
50,000 and Cosine similarity. The results are re-
ported in Figure 4.

The ukWaC-generated vectors outperform the
BNC-generated ones on all but a single instance
for each of the granularities. Stemming yields
the best overall performance, and increasing the
granularity does not lead to better results. Even
with a very large corpus like ukWaC, stemming
yields signficantly better results than not reduc-
ing the feature granularity at all. Conversely, apart
from the results on the TOEFL synonym dataset,
increasing the feature granularity of contexts by
including POS tags or CCG categories does not
yield any improvement.

3.5 Similarity-weighting combination

There is contrasting evidence in the literature re-
garding which combination of similarity metric
and weighting scheme works best. Here we inves-
tigate this question using vectors of size 50,000,
no processing of the context features (i.e., “nor-
mal” feature granularity), and a window-based
method with a window size of 5. Aggregated
scores across the datasets are reported in Tables
4 and 5 for the BNC and ukWaC, respectively.

There are some clear messages to be taken from
these large tables of results. First, two weighting
schemes perform better than the others: Positive
Mutual Information (PosMI) and T-Test. On the
BNC, the former yields the best results. There are

4Using NLTK’s Porter stemmer and WordNet lemmatiser.
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Figure 4: Feature granularity: stemmed (S), lem-
matised (L), normal (N), POS-tagged (T) and
CCG-tagged (C)

RG MC W353 MEN TOEFL
P+COS 0.74 0.64 0.50 0.66 0.76
P+COR 0.74 0.65 0.58 0.71 0.83
T+COS 0.78 0.69 0.54 0.68 0.78
T+COR 0.78 0.71 0.54 0.68 0.78

Table 6: Similarity scores on individual datasets
for positive mutual information (P) and T-test
(T) weighting, with cosine (COS) and correlation
(COR) similarity

three similarity metrics that perform particularly
well: Cosine, Correlation and the Tanimoto coef-
ficient (the latter also being similar to Cosine; see
Table 2). The Correlation similarity metric has the
most consistent performance across the different
weighting schemes, and yields the highest score
for both corpora. The most consistent weighting
scheme across the two source corpora and similar-
ity metrics appears to be PosMI.

The highest combined aggregate score is that of
PosMI with the Correlation metric, in line with
the conclusion of Bullinaria and Levy (2012) that
PosMI is the best weighting scheme5. However,
for the large ukWaC corpus, T-Test achieves sim-
ilarly high aggregate scores, in line with the work
of Curran (2004). When we look at these two
weighting schemes in more detail, we see that T-
Test works best for the RG and MC datasets, while
PosMI works best for the others; see Table 6. Cor-
relation is the best similarity metric in all cases.

5In some cases, the combination of weighting scheme and
similarity metric results in a division by zero or leads to tak-
ing the logarithm of a negative number, in which cases we
report the aggregate scores as nan (not-a-number).

Figure 5: Finding the optimal “contiguous subvec-
tor” of size 10,000

3.6 Optimal subvector

Stopwords are typically removed from vectors and
not used as features. However, Bullinaria and
Levy (2012) find that removing stopwords has no
effect on performance. A possible explanation
is that, since they are using a weighting scheme,
the weights of stopwords are low enough that
they have effectively been removed anyhow. This
raises the question: are we removing stopwords
because they contribute little towards the meaning
of the target word, or are we removing them be-
cause they have high frequency?

The experiment used ukWaC, with a window-
based method and window size of 5, normal fea-
ture granularity, Cosine similarity and a sliding
vector of size 10,000. Having a sliding vector im-
plies that we throw away up to the first 40,000 con-
texts as we slide across to the 50,000 mark (replac-
ing the higher frequency contexts with lower fre-
quency ones). In effect, we are trying to find the
cut-off point where the 10,000-component “con-
tiguous subvector” of the target word vector is
optimal (where the features are ordered by fre-
quency). Results are given for PosMI, T-Test and
no weighting at all.

The results are shown in Figure 5. T-test outper-
forms PosMI at the higher frequency ranges (to the
left of the plots) but PosMI gives better results for
some of the datasets further to the right. For both
weighting schemes the performance decreases as
high frequency contexts are replaced with lower
frequency contexts.

A different picture emerges when no weight-
ing is used, however. Here the performance can
increase as high-frequency contexts are replaced
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British National Corpus
COS COR DIC JC1 JC2 TAN LIN EUC CIB CHS JSD ASK

none 0.49 0.50 0.34 0.35 0.27 0.22 0.30 0.09 0.11 0.08 0.45 0.36
tfidf 0.43 0.44 0.33 0.34 0.22 0.16 0.27 0.13 0.12 0.16 0.38 0.32
tficf 0.47 0.48 0.34 0.36 0.23 0.16 0.27 0.13 0.12 0.15 0.40 0.33
okapi 0.40 0.42 0.37 0.42 0.22 0.23 0.26 0.25 0.15 0.14 0.37 0.26
atc 0.40 0.43 0.25 0.24 0.16 0.34 0.30 0.10 0.13 0.08 0.33 0.23
ltu 0.44 0.45 0.35 0.36 0.22 0.23 0.26 0.22 0.13 0.21 0.37 0.27
mi 0.58 0.61 0.31 0.56 0.29 -0.07 0.45 0.15 0.10 0.09 0.16 -0.04
posmi 0.63 0.66 0.52 0.58 0.35 -0.08 0.45 0.15 0.11 0.06 0.54 0.46
ttest 0.63 0.62 0.11 0.34 0.08 0.63 0.17 0.18 0.14 0.11 nan nan
chisquared 0.50 0.50 0.46 0.42 0.42 0.42 nan 0.06 0.07 0.08 0.57 0.52
lin98b 0.47 0.52 0.35 0.40 0.21 -0.10 0.29 0.10 0.11 nan 0.38 0.29
gref94 0.46 0.49 0.35 0.37 0.23 0.06 0.28 0.12 0.11 0.09 0.41 0.30

Table 4: Aggregated scores for combinations of weighting schemes and similarity metrics using the BNC.
The similarity metrics are Cosine (COS), Correlation (COR), Dice (DIC), Jaccard (JC1), Jaccard2 (JC2),
Tanimoto (TAN), Lin (LIN), Euclidean (EUC), CityBlock (CIB), Chebyshev (CHS), Jensen-Shannon
Divergence (JSD) and α-skew (ASK)

ukWaC
COS COR DIC JC1 JC2 TAN LIN EUC CIB CHS JSD ASK

none 0.55 0.55 0.28 0.35 0.24 0.41 0.31 0.06 0.09 0.08 0.56 0.49
tfidf 0.45 0.47 0.26 0.30 0.20 0.28 0.22 0.14 0.12 0.16 0.37 0.27
tficf 0.45 0.49 0.27 0.33 0.20 0.29 0.24 0.13 0.11 0.09 0.37 0.28
okapi 0.37 0.42 0.33 0.37 0.18 0.27 0.26 0.26 0.17 0.12 0.34 0.20
atc 0.34 0.42 0.13 0.13 0.08 0.15 0.28 0.10 0.09 0.07 0.28 0.15
ltu 0.43 0.48 0.30 0.34 0.19 0.26 0.25 0.26 0.16 0.24 0.36 0.23
mi 0.51 0.53 0.18 0.51 0.16 0.28 0.37 0.18 0.10 0.09 0.12 nan
posmi 0.67 0.70 0.56 0.62 0.42 0.59 0.52 0.23 0.15 0.06 0.60 0.49
ttest 0.70 0.70 0.16 0.48 0.10 0.70 0.22 0.16 0.11 0.15 nan nan
chisquared 0.57 0.58 0.52 0.56 0.44 0.52 nan 0.08 0.06 0.10 0.63 0.60
lin98b 0.43 0.63 0.31 0.37 0.20 0.23 0.26 0.09 0.10 nan 0.34 0.24
gref94 0.48 0.54 0.27 0.33 0.20 0.17 0.23 0.13 0.11 0.09 0.38 0.25

Table 5: Aggregated scores for combinations of weighting schemes and similarity metrics using ukWaC

with lower-frequency ones, with optimal perfor-
mance comparable to when weighting is used.
There are some scenarios where it may be ad-
vantageous not to use weighting, for example in
an online setting where the total set of vectors is
not fixed; in situations where use of a dimension-
ality reduction technique does not directly allow
for weighting, such as random indexing (Sahlgren,
2006); as well as in settings where calculating
weights is too expensive. Where to stop the slid-
ing window varies with the datasets, however, and
so our conclusion is that the default scheme should
be weighting plus high frequency contexts.

4 Compositionality

In order to examine whether optimal parame-
ters carry over to vectors that are combined into
phrasal vectors using a composition operator, we
perform a subset of our experiments on the canoni-
cal compositionality dataset from Mitchell and La-
pata (2010), using vector addition and pointwise
multiplication (the best performing operators in

the original study).
We evaluate using two source corpora (the BNC

and ukWaC) and two window sizes (small, with
a window size of 3; and big, where the full sen-
tence is the window). In addition to the weight-
ing schemes from the previous experiment, we in-
clude Mitchell & Lapata’s own weighting scheme,
which (in our notation) is defined as wij = fij×N

fi×fj
.

While all weighting schemes and similarity met-
rics were tested, we report only the best perform-
ing ones: correlations below 0.5 were ommitted
for the sake of brevity. Table 7 shows the results.

We find that many of our findings continue to
hold. PosMI and T-Test are the best performing
weighting schemes, together with Mitchell & La-
pata’s own weighting scheme. We find that ad-
dition outperforms multiplication (contrary to the
original study) and that small window sizes work
best, except in the VO case. Performance across
corpora is comparable. The best performing simi-
larity metrics are Cosine and Correlation, with the
latter having a slight edge over the former.
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BNC - Small window
AN NN VO ALL

add-posmi-cosine 0.57 0.56 0.52 0.55
add-posmi-correlation 0.66 0.60 0.53 0.60
add-ttest-cosine 0.59 0.54 0.53 0.56
add-ttest-correlation 0.60 0.54 0.53 0.56
add-mila-correlation 0.64 0.38 0.51 0.51

ukWaC - Small window
AN NN VO ALL

add-posmi-correlation 0.64 0.59 0.56 0.59
add-ttest-cosine 0.61 0.55 0.53 0.56
add-ttest-correlation 0.61 0.55 0.53 0.56
add-mila-correlation 0.64 0.48 0.57 0.56
mult-mila-correlation 0.52 0.44 0.63 0.53

BNC - Large window
AN NN VO ALL

add-posmi-correlation 0.47 0.49 0.57 0.51
add-ttest-cosine 0.50 0.53 0.60 0.54
add-ttest-correlation 0.50 0.53 0.60 0.54
add-mila-correlation 0.51 0.49 0.61 0.54
mult-posmi-correlation 0.48 0.48 0.66 0.54
mult-mila-correlation 0.53 0.51 0.67 0.57

ukWaC - Large window
AN NN VO ALL

add-posmi-correlation 0.46 0.44 0.60 0.50
add-ttest-cosine 0.46 0.46 0.59 0.50
add-ttest-correlation 0.47 0.46 0.60 0.51
add-mila-correlation 0.47 0.46 0.64 0.52
mult-posmi-correlation 0.44 0.46 0.65 0.52
mult-mila-correlation 0.56 0.49 0.70 0.58

Table 7: Selected Spearman ρ scores on the
Mitchell & Lapata 2010 compositionality dataset

5 Conclusion

Our experiments were designed to investigate a
wide range of VSM parameters, using a variety
of evaluation tasks and several source corpora.
Across each of the experiments, results are com-
petitive with the state of the art. Some important
messages can be taken away from this study:

Experiment 1 Larger vectors do not always lead
to better performance. As vector size increases,
performance stabilises, and a vector size of around
50,000 appears to be optimal.

Experiment 2 The size of the window has a
clear impact on performance: a large corpus with
a small window size performs best, but high per-
formance can be achieved on a small subspaced
corpus, if the window size is large.

Experiment 3 The size of the source corpus
is more important than whether the model is
window- or dependency-based. Window-based
methods with a window size of 3 yield better re-
sults than dependency-based methods with a win-
dow of 3 (i.e. having a single arc). The Google
Syntactic N-gram corpus yields very good perfor-

mance, but it is unclear whether this is due to being
dependency-based or being very large.

Experiment 4 The granularity of the context
words has a relatively low impact on performance,
but stemming yields the best results.

Experiment 5 The optimal combination of
weighting scheme and similarity metric is Posi-
tive Mutual Information with a mean-adjusted ver-
sion of Cosine that we have called Correlation.
Another high-performing weighting scheme is T-
Test, which works better for smaller vector sizes.
The Correlation similarity metric consistently out-
performs Cosine, and we recommend its use.

Experiment 6 Use of a weighting scheme ob-
viates the need for removing high-frequency fea-
tures. Without weighting, many of the high-
frequency features should be removed. However,
if weighting is an option we recommend its use.

Compositionality The best parameters for
individual vectors generally carry over to a com-
positional similarity task where phrasal similarity
is evaluated by combining vectors into phrasal
vectors.

Furthermore, we observe that in general perfor-
mance increases as source corpus size increases,
so we recommend using a corpus such as ukWaC
over smaller corpora like the BNC. Likewise,
since the MEN dataset is the largest similarity
dataset available and mirrors our aggregate score
the best across the various experiments, we rec-
ommend evaluating on that similarity task if only
a single dataset is used for evaluation.

Obvious extensions include an analysis of the
performance of the various dimensionality reduc-
tion techniques, examining the importance of win-
dow size and feature granularity for dependency-
based methods, and further exploring the relation
between the size and frequency distribution of a
corpus together with the optimal characteristics
(such as the high-frequency cut-off point) of vec-
tors generated from that source.
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