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Abstract

This paper concerns how to apply compo-
sitional methods to vectors based on gram-
matical dependency relation vectors. We
demonstrate the potential of a novel ap-
proach which uses higher-order grammat-
ical dependency relations as features. We
apply the approach to adjective-noun com-
pounds with promising results in the pre-
diction of the vectors for (held-out) ob-
served phrases.

1 Introduction

Vector space models of semantics characterise the
meaning of a word in terms of distributional fea-
tures derived from word co-occurrences. The most
widely adopted basis for word co-occurrence is
proximity, i.e. that two words (or more generally
lexemes) are taken to co-occur when they occur
together within a certain sized window, or within
the same sentence, paragraph, or document. Lin
(1998), in contrast, took the syntactic relationship
between co-occurring words into account: the dis-
tributional features of a word are based on the
word’s grammatical dependents as found in a de-
pendency parsed corpus. For example, observing
that the word glass appears as the indirect object
of the verb fill, provides evidence that the word
glass has the distributional feature iobj:fill, where
iobj denotes the inverse indirect object grammati-
cal relation. The use of grammatical dependents as
word features has been exploited in the discovery
of tight semantic relations, such as synonymy and
hypernymy, where an evaluation against a gold
standard such as WordNet (Fellbaum, 1998) can
be made (Lin, 1998; Weeds and Weir, 2003; Cur-
ran, 2004).

Pado and Lapata (2007) took this further by
considering not just direct grammatical depen-
dents, but also including indirect dependents.
Thus, observing the sentence She filled her glass
slowly would provide evidence that the word glass
has the distributional feature iobj:advmod:slowly
where iobj:advmod captures the indirect depen-
dency relationship between glass and slowly in the
sentence.

Note that Pado and Lapata (2007) included
a basis mapping function that gave their frame-
work flexibility as to how to map paths such as
iobj:advmod:slowly onto the basis of the vector
space. Indeed, the instantiation of their framework
that they adopt in their experiments uses a ba-
sis mapping function that removes the dependency
path to leave just the word, so iobj:advmod:slowly
would be mapped to slowly.

In this paper, we are concerned with the prob-
lem of distributional semantic composition. We
show that the idea that the distributional seman-
tics of a word can be captured with higher-order
dependency relationships, provides the basis for
a simple approach to compositional distributional
semantics. While our approach is quite gen-
eral, dealing with arbitrarily high-order depen-
dency relationships, and the composition of ar-
bitrary phrases, in this paper we consider only
first and second order dependency relations, and
adjective-noun composition.

In Section 2, we illustrate our proposal by
showing how second order dependency relations
can play a role in computing the semantics of
adjective-noun composition. In Section 3 we de-
scribe a number of experiments that are intended
to evaluate the approach, with the results presented
in Section 4.

The basis for our evaluation follows Baroni and
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Zamparelli (2010) and Guevara (2010). Typically,
compositional distributional semantic models can
be used to generate an (inferred) distributional
vector for a phrase from the (observed) distribu-
tional vectors of the phrase’s constituents. One
of the motivations for doing this is that the ob-
served distributional vectors for most phrases tend
to be very sparse, a consequence of the frequency
with which typical phrases occur in even large cor-
pora. However, there are phrases that occur suffi-
ciently frequently that a reasonable characterisa-
tion of their meaning can be captured with their
observed distributional vector. Such phrases can
be exploited in order to assess the quality of a
model of composition. This is achieved by mea-
suring the distributional similarity of the observed
and inferred distributional vectors for these high
frequency phrases.

The contributions of this paper are as follows.
We propose a novel approach to phrasal composi-
tion which uses higher order grammatical depen-
dency relations as features. We demonstrate its
potential in the context of adjective-noun compo-
sition by comparing (held-out) observed and in-
ferred phrasal vectors. Further, we compare dif-
ferent vector operations, different feature associa-
tion scores and investigate the effect of weighting
features before or after composition.

2 Composition with Higher-order
Dependencies

Consider the problem of adjective-noun compo-
sition. For example, what is the meaning of the
phrase small child? How does it relate to the
meanings of the lexemes small and child? Figure 1
shows a dependency analysis for the sentence The
very small wet child cried loudly. Tables 1 and
2 show the grammatical dependencies (with other
open-class words) for the lexemes small and child
which would be extracted from it.

the/D very/R small/J wet/J child/N cry/V loudly/R

amod

amod

advmod

det

nsubj advmod

Figure 1: Example Dependency Tree

From Table 1 we see what kinds of (higher-
order) dependency paths appear in the distribu-
tional features of adjectives such as small. Simi-
larly, Table 2 indicates this for nouns such as child.

1st-order advmod:very/R

amod:child

2nd-order amod:amod:wet/J

amod:nsubj:cry/V

3rd-order amod:nsubj:advmod:loudly/R

Table 1: Grammatical Dependencies of small

1st-order amod:wet/J
amod:small/J

nsubj:cry/V

2nd-order amod:advmod:very/R

nsubj:advmod:loudly/R

Table 2: Grammatical Dependencies of child

It is clear that with a conventional grammatical
dependency-based approach where only first or-
der dependencies for small and child would be
considered, there will be very little overlap be-
tween the features of nouns and adjectives because
quite different grammatical relations are used in
the two types of vectors, and correspondingly lex-
emes with different parts of speech appear at the
end of these paths.

However, as our example illustrates, it is possi-
ble to align the 2nd-order feature space of adjec-
tives with the 1st-order feature space of nouns. In
this example, we have evidence that children cry
and that small things cry. Consequently, in order
to compose an adjective with a noun, we would
want to align 2nd-order features of the adjective
with 1st-order features of the noun; this gives us a
prediction of the first order features of the noun in
the context of the adjective1.

This idea extends in a straightforward way be-
yond adjective-noun composition. For example, it
is possible to align the 3rd order features of ad-
jectives with 2nd order features of nouns, which is
something that would be useful if one wanted to
compose verbs with their arguments. These argu-
ments will include adjective-noun compounds and
therefore adjective-noun compounds require 2nd-
order features which can be aligned with the first
order features of the verbs. This is, however, not

1Note that it would also be possible to align 2nd-order
features of the noun with 1st-order features of the adjective,
resulting in a prediction of the first order features of the ad-
jective in the context of the noun.
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something that we will pursue further in this paper.
We now clarify how features vectors are aligned

and then composed. Suppose that the lexemes w1

and w2 which we wish to compose are connected
by relation r. Let w1 be the head of the relation
and w2 be the dependent. In our example, w1 is
child, w2 is small and r is amod. We first pro-
duce a reduced vector for w2 which is designed
to lie in a comparable feature space as the vector
for w1. To do this we take the set of 2nd order
features of w2 which start with the relation r̄ and
reduce them to first order features (by removing
the r̄ at the start of the path). So in our example,
we create a reduced vector for small where fea-
tures amod:nsubj:x for some token x are reduced
to nsubj:x, features amod:amod:x for some token
x are reduced to the feature amod:x, and features
amod:nsubj:advmod:x for some token x are re-
duced to nsubj:advmod:x. Once the vector for w2

has been reduced, it can be composed with the vec-
tor for w1 using standard vector operations.

In Section 3 we describe experiments that ex-
plore the effectiveness of this approach to distri-
butional composition by measuring the similarity
of composed vectors with observed vectors for a
set of frequently occurring adjective-noun pairs
(details given below). We evaluate a number of
instantiations of our approach, and in particular,
there are three aspects of the model where alter-
native solutions are available: the choice of which
vector composition operation to use; the choice of
how to weight dependency features; and the ques-
tion as to whether feature weighting should take
place before or after composition.

Vector composition operation. We consider
each of the following seven alternatives: pointwise
addition (add), pointwise multiplication (mult),
pointwise geometric mean2 (gm), pointwise max-
imum (max), pointwise minimum (min), first ar-
gument (hd), second argument (dp). The latter
two operations simply return the first (respectively
second) of the input vectors.

Feature weighting. We consider three options.
Much work in this area has used positive pointwise
mutual information (PPMI) (Church and Hanks,
1989) to weight the features. However, PPMI is
known to over-emphasise low frequency events,
and as a result there has been a recent shift to-
wards using positive localised mutual information

2The geometric mean of x and y is
√

(x · y).

PPMI(x, y) =

{
I(x, y) if I(x, y) > 0

0 otherwise

where I(x, y) = log P (x,y)
P (x).P (y)

PLMI(x, y) =

{
L(x, y) if L(x, y) > 0

0 otherwise

where L(x, y) = P (x, y).log( P (x,y)
P (x).P (y)

PNPMI(x, y) =

{
N(x, y) if N(x, y) > 0

0 otherwise

where N(x, y) = 1
−log(P (y)

.log P (x,y)
P (x).P (y)

Table 3: Feature Association Scores

(PLMI) (Scheible et al., 2013) and positive nor-
malised point wise mutual information (PNPMI)
(Bouma, 2009). For definitions, see Table 3.

Timing of feature weighting. We consider two
alternatives: we can weight features before com-
position so that the composition operation is ap-
plied to weighted vectors, or we can compose vec-
tors prior to feature weighting, in which case the
composition operation is applied to unweighted
vectors, and feature weighting is applied in the
context of making a similarity calculation. In other
work, the former order is often implied. For exam-
ple, Boleda et al. (2013) state that they use “PMI
to weight the co-occurrence matrix”. However, if
we allow the second order, features which might
have a zero association score in the context of the
the individual lexemes, could be considered sig-
nificant in the context of the phrase.

3 Evaluation

Our experimental evaluation of the approach is
based on the assumption, which is commonly
made elsewhere, that where there is a reasonable
amount of corpus data available for a phrase, this
will generate a good estimate of the vector of the
phrase. It has been shown (Turney, 2012; Baroni
and Zamparelli, 2010) that such “observed” vec-
tors are indeed reasonable for adjective-noun and
noun-noun compounds. Hence, in order to evalu-
ate the compositional models under consideration
here, we compare observed phrasal vectors with
inferred phrasal vectors, where the comparison is
made using the cosine measure. We note that it is
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not possible to draw conclusions from the absolute
value of the cosine score since this would favour
models which always assign higher cosine scores.
Hence, we draw conclusions from the change in
cosine score with respect to a baseline within the
same model.

Methodology

For each noun and adjective which occur more
than a threshold number of times in a corpus, we
first extract conventional first order dependency
vectors. The features of these lexemes define the
semantic space, and feature probabilities (for use
in association scores) are calculated from this data.

Given a list of adjective-noun phrases, we ex-
tract first order vectors for the nouns and second
order vectors for the adjectives, which we refer to
as observed constituent vectors. We also extract
first order vectors for the nouns in the context of
the adjective, which we refer to as the observed
phrasal vector.

For each adjective-noun pair, we build bespoke
constituent vectors for the adjective and noun, in
which we remove all counts which arise from co-
occurrences with that specific adjective-noun pair.
It is these constituent vectors that are used as the
basis for inferring the vector for that particular
adjective-noun phrase.

Our rationale for this is as follows. Without this
modification, the observed constituent vectors will
contain co-occurrences which are due to the ob-
served adjective-noun vector co-occurrences. To
see why this is undesirable, suppose that one of the
adjective-noun phrases was small child. We take
the observed vector for small child to be what we
are calling the observed phrasal vector for child (in
the context of small). Suppose that when building
the observed phrasal vector, we observe the phrase
the small child cried. This will lead to a count for
the feature nsubj:cry in the observed phrasal vec-
tor for child.

But if we are not careful, this same phrase will
contribute to counts in the constituent vectors for
small and child, producing counts for the features
amod:nsubj:cry and nsubj:cry, in their respective
vectors. To see why these counts should not be in-
cluded when building the constituent vectors that
we compose to produce inferred vectors for the
adjective-noun phrase small child, consider the
case where all of the evidence for small things be-
ing things that can cry and children being things

that can crying comes from having observed the
phrase small children crying. Despite not having
learnt anything about the composition of small and
child in general, we would be able to infer the cry
feature for the phrase. An adequate model of com-
position should be able to infer this on the basis
that other small things have been seen to cry, and
that non-small children have been seen to cry.

Here, we compare the proposed approach,
based on higher order dependencies, with the
standard method of composing conventional first-
order dependency vectors. The vector operation,
hd provides a baseline for comparison which is
the same in both approaches. This baseline corre-
sponds to a composition model where the first or-
der dependencies of the phrase (i.e. the noun in the
context of the adjective) are taken to be the same
as the first order dependencies of the uncontextu-
alized noun. For example, if we have never seen
the phrase small child before, we would assume
that it means the same as the head word child.

We hypothesise that it is not possible to im-
prove on this baseline using traditional first-order
dependency relation vectors, since the vector for
the modifier does not contain features of the right
type, but that with the proposed approach, the in-
ferred vector for a phrase such as small child will
be closer than observed vector for child to the ob-
served vector for small child. We also ask the re-
lated question of whether our inferred vector for
small child is closer than the constituent vector for
small to the observed vector for small child. This
comparison is achieved through use of the vector
operation dp that ignores the vector for the head,
simply returning a first-order vector derived from
the dependent.

Experimental Settings

Our corpus is a mid-2011 dump of WikiPedia.
This has been part-of-speech tagged, lemmatised
and dependency parsed using the Malt Parser
(Nivre, 2004). All major grammatical dependency
relations involving open class parts of speech
(nsubj, dobj, iobj, conj, amod, advmod, nnmod)
have been extracted for all POS-tagged and lem-
matised nouns and adjectives occurring 100 or
more times. In past work with conventional de-
pendency relation vectors we found that using a
feature threshold of 100, weighting features with
PPMI and a cosine similarity score work well.

For experimental purposes, we have taken
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spanish british african japanese
modern classical female natural
digital military medical musical

scientific free black white
heavy common small large
strong short long good
similar previous future original
former subsequent next possible

Table 4: Adjectives considered

32 of the most frequently occurring adjectives
(see Table 4). These adjectives include ones
which would generally be considered intersective
(e.g., female), subsective (e.g,, long) and non-
subsective/intensional (e.g., former) (Pustejovsky,
2013) . For all of these adjectives there are at least
100 adjective-noun phrases which occur at least
100 times in the corpus. We randomly selected
50 of the phrases for each adjective. Note that
our proposed method does not require any hyper
parameters to be set during training, nor does it
require a certain number of phrases per adjective.
For the purpose of these experiments we have a list
of 1600 adjective-noun phrases, all of which occur
at least 100 times in WikiPedia.

4 Results and Discussion

Tables 5 and 6 summarise the average cosines for
the proposed higher-order dependency approach
and the conventional first-order dependency ap-
proach, respectively. In each case, we consider
each combination of vector operation, feature as-
sociation score, and composition timing (i.e. be-
fore, or after, vector weighting).

Table 7 shows the average improvement over
the baseline (hd), for each combination of exper-
imental variables, when considering the proposed
higher-order dependency approach. Note that this
is an average of paired differences (and not the dif-
ference of the averages in Table 6). For brevity, we
omit the results for PNPMI here, since there do not
appear to be substantial differences between using
PPMI and PNPMI. To indicate statistical signifi-
cance, we show estimated standard errors in the
means. All differences are statistically significant
(under a paired t-test) except those marked †.

From Table 5, we see that none of the com-
positional operations on conventional dependency
vectors are able to beat the baseline of selecting
the head vector (hd). This is independent of the

choice of association measure and the order in
which weighting and composition are carried out.

For the higher order dependency vectors (Tables
6 and 7), we note, in contrast, that some com-
positional operations produce large increases in
cosine score compared to the head vector alone
(hd). Table 7 examines the statistical significance
of these differences. We find that for the inter-
sective composition operations (mult, min, and
gm), performance is statistically superior to using
the head alone in all experimental conditions stud-
ied. By contrast, additive measures (add, max)
typically have no impact, or decrease performance
marginally relative to the head alone. An explana-
tion for these significant differences is that inter-
sective vector operations are able to encapsulate
the way that an adjective disambiguates and spe-
cialises the sense of the noun that it is modifying.

We also note that the alternative baseline, dp,
which estimates the features of a phrase to be the
aggregation of all things which are modified by
the adjective, performs significantly worse than
the standard baseline, hd, which estimates the fea-
tures of a phrase to be the features of the head
noun. This is consistent with the intuition that the
distributional vector for small child should more
similar to the vector for child than it is to the vec-
tor for the things that can be small.

Considering the different intersective opera-
tions, mult appears to be the best choice when
the feature association score is PPMI or PNPMI
and gm appears to be the best choice when the fea-
ture association score is PLMI.

Further, PLMI consistently gives all of the vec-
tor pairings higher cosine scores than PPMI. Since
PLMI assigns less weight to low frequency event
and more weight to high frequency events, this
suggests that all of the composition methods, in-
cluding the baseline (hd), do better at predicting
the high frequency co-occurrences. This is not sur-
prising as these will more likely have been seen
with the phrasal constituents in other contexts.

Our final observation, based on Table 6, is that
the best order in which to carry out weighting and
composition appears to depend on the choice of
feature association score. In general, it appears
better to weight the features and then compose
vectors. This is always true when using PNPMI
or PLMI. However, using PPMI, the highest per-
formance is achieved by composing the raw vec-
tors using multiplication and then weighing the
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weight:compose compose:weight
PPMI PNPMI PLMI PPMI PNPMI PLMI

x̄ s x̄ s x̄ s x̄ s x̄ s x̄ s

add 0.12 (0.06) 0.13 (0.05) 0.15 (0.16) 0.11 (0.05) 0.12 (0.06) 0.22 (0.20)
max 0.12 (0.06) 0.13 (0.05) 0.15 (0.16) 0.11 (0.05) 0.12 (0.06) 0.22 (0.20)
mult 0.06 (0.05) 0.06 (0.06) 0.06 (0.11) 0.07 (0.05) 0.07 (0.12) 0.07 (0.05)
min 0.05 (0.05) 0.06 (0.05) 0.04 (0.09) 0.05 (0.04) 0.05 (0.04) 0.04 (0.08)
gm 0.06 (0.05) 0.06 (0.05) 0.07 (0.11) 0.05 (0.04) 0.06 (0.04) 0.08 (0.11)
hd 0.13 (0.07) 0.15 (0.07) 0.28 (0.22) 0.13 (0.07) 0.15 (0.07) 0.28 (0.22)

Table 5: Means and Standard Deviations for Cosines Between Observed and Predicted Vectors for Con-
ventional First-Order Dependency Based Approach.

weight:compose compose:weight
PPMI PNPMI PLMI PPMI PNPMI PLMI

x̄ s x̄ s x̄ s x̄ s x̄ s x̄ s

add 0.14 (0.06) 0.16 (0.06) 0.29 (0.21) 0.10 (0.04) 0.12 (0.05) 0.29 (0.22)
max 0.10 (0.04) 0.11 (0.04) 0.27 (0.21) 0.10 (0.04) 0.11 (0.04) 0.26 (0.21)
mult 0.30 (0.12) 0.33 (0.12) 0.40 (0.29) 0.34 (0.10) 0.32 (0.10) 0.32 (0.27)
min 0.26 (0.11) 0.27 (0.11) 0.40 (0.24) 0.24 (0.10) 0.25 (0.10) 0.37 (0.23)
gm 0.27 (0.11) 0.29 (0.11) 0.46 (0.20) 0.26 (0.10) 0.27 (0.10) 0.44 (0.22)
dp 0.10 (0.05) 0.10 (0.05) 0.20 (0.20) 0.10 (0.05) 0.10 (0.05) 0.20 (0.20)
hd 0.13 (0.07) 0.15 (0.07) 0.28 (0.22) 0.13 (0.07) 0.15 (0.07) 0.28 (0.22)

Table 6: Means and Standard Deviations for Cosines Between Observed and Predicted Vectors for Pro-
posed Higher-Order Dependency Based Approach

remaining features. This can be explained by
considering the recall and precision of the com-
posed vector’s prediction of the observed vec-
tor. If we compose using gm before weighting
vectors, we increase the recall of the prediction,
but decrease precision. Whether we use PPMI,
PNPMI or PLMI, recall of features increases from
88.8% to 99.5% and precision drops from 5.5% to
4.8%. If we compose using mult before weight-
ing vectors, contrary to expectation, recall de-
creases and precision increases. Whether we use
PPMI, PNPMI or PLMI, recall of features de-
creases from 88.8% to 59.4% but precision in-
creases from 5.5% to 18.9%. Hence, multiplica-
tion of the raw vectors is causing a lot of potential
shared features to be “lost” when the weighting
is subsequently carried out (since multiplication
stretches out the value space). This leads to an
increase in cosines when PPMI is used for weight-
ing, and a decrease in cosines when PLMI is used.
Hence, it appears that the features being removed
by multiplying the raw vectors before weighting
must be low frequency co-occurrences, which are
not observed with the phrase.

5 Related Work

In this work, we bring together ideas from sev-
eral different strands of distributional semantics:
incorporating syntactic information into the distri-
butional representation of a lexeme; representing
phrasal meaning by creating distributional repre-
sentations through composition; and representing
word meaning in context by modifying the distri-
butional representation of a word.

The use of syntactic structure in distributional
representations is not new. Two of the earliest
proponents of distributional semantics, Lin (1998)
and Lee (1999) used features based on first order
dependency relations between words in their dis-
tributional representations. More recently, Pado
and Lapata (2007) propose a semantic space based
on dependency paths. This model outperformed
traditional word-based models which do not take
syntax into account in a synonymy relation detec-
tion task and a prevalent sense acquisition task.

The problem of representing phrasal meaning
has traditionally been tackled by taking vector rep-
resentations for words (Turney and Pantel, 2010)
and combining them using some function to pro-
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weight:compose compose:weight
PPMI PLMI PPMI PLMI

x̄ sx̄ x̄ sx̄ x̄ sx̄ x̄ sx̄

add 0.01 (0.001) †0.004 (0.003) -0.03 (0.001) †0.006 (0.004)
max -0.03 (0.001) -0.01 (0.003) -0.04 (0.001) -0.02 (0.003)
mult 0.16 (0.002) 0.11 (0.006) 0.21 (0.002) 0.03 (0.006)
min 0.13 (0.001) 0.11 (0.007) 0.10 (0.001) 0.09 (0.007)
gm 0.14 (0.001) 0.18 (0.005) 0.12 (0.001) 0.16 (0.005)
dp -0.03 (0.002) -0.09 (0.007) -0.04 (0.002) -0.09 (0.007)

Table 7: Means and Standard Errors for Increases in Cosine with respect to the hd Baseline for Proposed
Higher-Order Dependency Based Approach. All differences statistically significant (under a paired t-
test) except those marked †.

duce a data structure that represents the phrase
or sentence. Mitchell and Lapata (2008, 2010)
found that simple additive and multiplicative func-
tions applied to proximity-based vector represen-
tations were no less effective than more com-
plex functions when performance was assessed
against human similarity judgements of simple
paired phrases.

The simple functions evaluated by Mitchell and
Lapata (2008) are generally acknowledged to have
serious theoretical limitations in their treatment
of composition. How can a commutative func-
tion such as multiplication or addition provide dif-
ferent interpretations for different word orderings
such as window glass and glass window? The
majority of attempts to rectify this have offered
a more complex, non-commutative function —
such as weighted addition — or taken the view
that some or all words are no longer simple vec-
tors. For example, in the work of Baroni and
Zamparelli (2010) and Guevara (2010), an adjec-
tive is viewed as a modifying function and rep-
resented by a matrix. Coecke et al. (2011) and
Grefenstette et al. (2013) also incorporate the no-
tion of function application from formal seman-
tics. They derived function application from syn-
tactic structure, representing functions as tensors
and arguments as vectors. The MV-RNN model
of Socher et al. (2012) broadened the Baroni and
Zamparelli (2010) approach; all words, regardless
of part-of-speech, were modelled with both a vec-
tor and a matrix. This approach also shared fea-
tures with Coecke et al. (2011) in using syntax
to guide the order of phrasal composition. These
higher order structures are typically learnt or in-
duced using a supervised machine learning tech-
nique. For example, Baroni and Zamparelli (2010)

learnt their adjectival matrixes by performing re-
gression analysis over pairs of observed nouns and
adjective-noun phrases. As a consequence of the
computational expense of the machine learning
techniques involved, implementations of these ap-
proaches typically require a considerable amount
of dimensionality reduction.

A long-standing topic in distributional seman-
tics has been the modification of a canonical repre-
sentation of a lexeme’s meaning to reflect the con-
text in which it is found. Typically, a canonical
vector for a lexeme is estimated from all corpus
occurrences and the vector then modified to reflect
the instance context (Lund and Burgess, 1996;
Erk and Padó, 2008; Mitchell and Lapata, 2008;
Thater et al., 2009; Thater et al., 2010; Thater et
al., 2011; Van de Cruys et al., 2011; Erk, 2012).
As described in Mitchell and Lapata (2008, 2010),
lexeme vectors have typically been modified using
simple additive and multiplicative compositional
functions. Other approaches, however, share with
our proposal the use of syntax to drive modifica-
tion of the distributional representation (Erk and
Padó, 2008; Thater et al., 2009; Thater et al., 2010;
Thater et al., 2011). For example, in the SVS rep-
resentation of Erk and Padó (2008), a word was
represented by a set of vectors: one which en-
codes its lexical meaning in terms of distribution-
ally similar words3, and one which encodes the
selectional preferences of each grammatical rela-
tion it supports. A word’s meaning vector was up-
dated in the context of another word by combining
it with the appropriate selectional preferences vec-

3These are referred to as second-order vectors using
the terminology of Grefenstette (1994) and Schütze (1998).
However, this refers to a second-order affinity between the
words and is not related to the use of grammatical depen-
dency relations.
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tor of the contextualising word.
Turney (2012) offered a model of phrasal level

similarity which combines assessments of word-
level semantic relations. This work used two
different word-level distributional representations
to encapsulate two types of similarity. Distribu-
tional similarity calculated from proximity-based
features was used to estimate domain similarity
and distributional similarity calculated from syn-
tactic pattern based features is used to estimate
functional similarity. The similarity of a pair of
compound noun phrases was computed as a func-
tion of the similarities of the components. Cru-
cially different from other models of phrasal level
similarity, it does not attempt to derive modified
vectors for phrases or words in context.

6 Conclusions and Further Work

Vectors based on grammatical dependency rela-
tions are known to be useful in the discovery of
tight semantic relations, such as synonymy and
hypernymy, between lexemes (Lin, 1998; Weeds
and Weir, 2003; Curran, 2004). It would be use-
ful to be able to extend these methods to deter-
mine similarity between phrases (of potentially
different lengths). However, conventional ap-
proaches to composition, which have been ap-
plied to proximity-based vectors, cannot sensibly
be used on vectors that are based on grammatical
dependency relations.

In our approach, we consider the vector for a
phrase to be the vector for the head lexeme in
the context of the other phrasal constituents. Like
Pado and Lapata (2007), we extend the concept
of a grammatical dependency relation feature to
include dependency relation paths which incor-
porate higher-order dependencies between words.
We have shown how it is possible to align the de-
pendency path features for words of different syn-
tactic types, and thus produce composed vectors
which predict the features of one constituent in the
context of the other constituent.

In our experiments with AN compounds, we
have shown that these predicted vectors are closer
than the head constituent’s vector to the observed
phrasal vector. We have shown this is true even
when the observed phrase is in fact unobserved,
i.e. when its co-occurrences do not contribute to
the constituents’ vectors. Consistent with work us-
ing proximity-based vectors, we have found that
intersective operations perform substantially bet-

ter than additive operations. This can be under-
stood by viewing the intersective operations as en-
capsulating the way that adjectives can specialise
the meaning of the nouns that they modify.

We have investigated the interaction between
the vector operation used for composition, the fea-
ture association score and the timing of applying
feature weights. We have found that multiplication
works best if using PPMI to weight features, but
that geometric mean is better if using the increas-
ingly popular PLMI weighting measure. Whilst
applying an intersective composition operation be-
fore applying feature weighting does allow more
features to be retained in the predicted vector (it
is possible to achieve 99.5% recall), in general,
this does not correspond with an increase in co-
sine scores. In general, the corresponding drop in
precision (i.e., the over-prediction of unobserved
features) causes the cosine to decrease. The one
exception to this is using multiplication with the
PPMI feature weighting score. Here we actually
see a drop in recall, and an increase in precision
due to the nature of multiplication and PPMI.

One assumption that has been made throughout
the work, is that the observed phrasal vector pro-
vides a good estimate of the distributional repre-
sentation of the phrase and, consequently, the best
composition method is the one which returns the
most similar prediction. However, in general, we
notice that while the recall of the compositional
methods is good, the precision is very low. Lack of
precision may be due to the prevalence of plausi-
ble, but unobserved, co-occurrences of the phrase.
Consequently, this introduces uncertainty into the
conclusions which can be drawn from a study such
as this. Further work is required to develop effec-
tive intrinsic and extrinsic evaluations of models
of composition.

A further interesting area of study is whether
distributional models that include higher-order
grammatical dependencies can tell us more about
the lexical semantics of a word than the conven-
tional first-order models, for example by distin-
guishing semantic relations such as synonymy,
antonymy, hypernymy and co-hyponymy.
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