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Introduction

Welcome to the 2nd Workshop on Continuous Vector Space Models and their Compositionality.

The first workshop on Continuous Vector Space Models and their Compositionality attempted to bridge
the communities working on various kinds of semantics models relying on continuous representations of
textual data.

This year, we continued in this direction and also expended our call for papers to work that
asks theoretical and conceptual questions too, such as: Should phrase representations and word
representations be of the same sort? Could different linguistic levels require different modelling
approaches? Should word representations be task-specific, or should they be general? And many others.

This year’s list of topics also included neural networks, distributional semantic models, language
modeling for automatic speech recognition, statistical machine translation and information retrieval,
the role of syntax in compositional models, the integration of distributional representations with other
models, and more.

In brief, we aimed to continue the ongoing effort to address some of these points, either by theoretical
reasoning, or through example via demonstrating interesting properties of new or existing distributional
models of semantics.

We received 7 submissions, of which we accepted 5 for the final proceedings after a rigorous reviewing
process. The workshop program also features the presentation of 3 invited speakers: Ivan Titov
(University of Amsterdam), Phil Blunsom (University of Oxford) and Geoffrey Zweig (Microsoft
Research).

We hope to gather formal semanticists, computational linguists, machine learning researchers and
computational neuroscientists to tackle the fascinating problems behind continuous vector space models.
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Abstract

In this paper, we introduce several vector
space manipulation methods that are ap-
plied to trained vector space models in a
post-hoc fashion, and present an applica-
tion of these techniques in semantic role
labeling for Finnish and English. Specifi-
cally, we show that the vectors can be cir-
cularly shifted to encode syntactic infor-
mation and subsequently averaged to pro-
duce representations of predicate senses
and arguments. Further, we show that it is
possible to effectively learn a linear trans-
formation between the vector representa-
tions of predicates and their arguments,
within the same vector space.

1 Introduction

Recently, there has been much progress in the de-
velopment of highly scalable methods for induc-
ing vector space representations of language. In
particular, the word2vec method (Mikolov et al.,
2013b) is capable of training on billions of tokens
in a matter of hours, producing high quality rep-
resentations. An exciting property exhibited by
the vector spaces induced using word2vec is that
they preserve a number of linguistic regularities,
lending themselves to simple algebraic operations
with the vectors (Mikolov et al., 2013c) and linear
mapping between different spaces (Mikolov et al.,
2013a). These can be seen as post-hoc operations
manipulating the vector space with the significant
advantage of not requiring a new task-specific rep-
resentation to be induced, as is customary.

In this paper, we will investigate several addi-
tional such methods. Firstly, we will show how
syntax information can be encoded by the circular
shift operation and demonstrate that such shifted
vectors can be averaged in a meaningful manner to
represent predicate arguments. And secondly, we

will show that linear transformations of the vec-
tor spaces can be successfully applied also within
a single vector space, to tasks such as transform-
ing the vector of a predicate into the vector of its
argument with a particular role.

To test the above-mentioned operations in an
extrinsic setting, we will develop these methods
within the context of the Semantic Role Label-
ing (SRL) task. Automatic Semantic Role Label-
ing is the process of identifying the semantic ar-
guments of predicates, and assigning them labels
describing their roles. A predicate and its argu-
ments form a predicate-argument structure, which
describes events such as who does what to whom,
when and where.

The SRL task is “semantic” in its nature and
therefore suitable for the application and testing
of vector space representations and methods for
their manipulation. However, rather than merely
adding features derived from vector spaces into
an existing system, we will approach the develop-
ment from a different angle and test whether these
representations of words and the similarities they
induce can be used for predicate argument role as-
signment and predicate sense disambiguation as
the primary source of information, with little ad-
ditional features.

In addition to the standard English CoNLL’09
dataset, we will apply the methods also to Finnish
SRL, testing the applicability of word2vec and the
overall methodology that we will develop in this
paper to this highly inflective language. With its
considerably larger and sparser surface form lex-
icon, Finnish poses interesting challenges of its
own, and only little attention has been dedicated
to the application of distributional semantics meth-
ods specifically to Finnish. This is also partly due
to the lack of sufficiently sized corpora, which we
address in this work by using a 1.5B token corpus
of Internet Finnish.

In order to be able to test the proposed meth-
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ods on SRL, we need to carry out not only role
labeling and predicate sense disambiguation, but
also argument detection. As a secondary theme,
we thus test whether dependency parse graphs in
the semantically motivated Stanford Dependen-
cies (SD) scheme can be used as-is to perform ar-
gument identification. We are especially interested
in this scheme as it is designed to capture seman-
tically contentful relations (de Marneffe and Man-
ning, 2008) and would thus appear to be the ideal
choice as the underlying syntactic representation
for SRL.

2 Data and Task Setting

Throughout the paper, we will use the exact same
task setting as in the CoNLL’09 Shared Task on
Syntactic and Semantic Dependencies in Multiple
Languages (Hajič et al., 2009). The input of the
SRL system are automatically generated syntactic
parses and the list of predicate tokens to be con-
sidered in each sentence. For each of the predi-
cates, the SRL system is expected to predict the
sense of the predicate, identify all tokens which
are its arguments, and for each argument, iden-
tify its role. As the primary measure of perfor-
mance, we will use the semantic F-score defined
in the CoNLL shared task. This F-score is cal-
culated from the precision and recall of argument
identification (calculated in the obvious manner)
and also incorporates the sense of the predicate via
an additional “dummy” argument. We use the of-
ficial implementation of the metric distributed on
the Shared Task site.1

We will report our results on two SRL datasets:
the Finnish PropBank (Haverinen et al., 2013a)
and the English SRL dataset from the CoNLL’09
Shared Task. The Finnish PropBank is built on
top of the Turku Dependency Treebank (TDT), a
205K token corpus of general Finnish (Haverinen
et al., 2013b) annotated using the SD scheme, in-
cluding manually annotated conjunct propagation
and other dependency relations from the non-basic
layer of the scheme. These extended SD analyzes
are thus not strictly trees, rather they are directed
labeled graphs (see Figure 1). The Finnish Prop-
Bank has 22 different argument roles of which 7
are numbered core roles and 15 are modifier roles.
The Finnish data has 164,530 training tokens with
27,603 occurrences of 2,826 unique predicate-

1http://ufal.mff.cuni.cz/conll2009-st/
scorer.html

He ate.01 lunch and then washed.01 dishes .

<nsubj:A0 dobj:A1> <advmod:AM-TMP dobj:A1>
cc>

conj>
<nsubj:A0

punct>

Figure 1: Extended Stanford Dependencies
scheme combined with PropBank annotation.

sense combinations. The English CoNLL data is
derived from the PropBank and NomBank corpora
(Palmer et al., 2005; Meyers et al., 2004) and it has
a total of 54 different argument roles. In addition
to the same 22 roles as Finnish, English also has
discontinuous variants for each role. The English
data has 958,024 training tokens with 178,988 oc-
currences of 15,880 unique predicate-sense com-
binations.

All Finnish results are reported on the test sub-
set of the Finnish PropBank, and have no previ-
ously published baseline to compare with. The
results we report for English are produced on the
official test section of the CoNLL’09 data and are
thus directly comparable to the official results re-
ported in the Shared Task.

In the test phase, we follow the Shared Task set-
ting whereby morphological and syntactic analy-
sis is predicted as well, i.e., no gold standard data
enters the system other than the tokenization and
the information of which tokens constitute predi-
cates. We produce the Finnish morphological and
syntactic analyses for the test set with the parsing
pipeline of Haverinen et al. (2013b), composed of
a morphological analyzer and tagger (Halácsy et
al., 2007; Pirinen, 2008; Lindén et al., 2009), de-
pendency parser (Bohnet, 2010) and a machine-
learning based component for predicting the ex-
tended SD dependencies (Nyblom et al., 2013).
While the English data is provided with automati-
cally produced dependency parses, we are specifi-
cally interested in the SD scheme and therefore we
re-parse the corpus with the Stanford parser2 tak-
ing a union of the base and collapsed dependency
outputs to match the Finnish data.

The vector space models used throughout this
paper are induced using the word2vec software
(skip-gram architecture with default parameters).
For Finnish, the model is trained on 1.5 billion to-
kens of Finnish Internet texts gathered from the
Common Crawl dataset.3 The data was sentence-

2Version 3.3.1, October 2013
3http://commoncrawl.org/
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split and tokenized using the OpenNLP4 toolchain
trained on TDT, and processed in the same man-
ner as the above-mentioned test set. This gives us
the opportunity to build two models, one for the
word forms and the other for the lemmas. Both
Finnish models have 300 dimensions. For En-
glish, the vector representation is induced on the
union of the English Wikipedia (1.7B tokens) and
the English Gigaword corpus (4B tokens), the to-
tal training data size thus being 5.7 billion tokens.5

Sentence splitting and tokenization was carried out
using the relevant modules from the BRAT pack-
age (Stenetorp et al., 2012).6 The English model
has 200 dimensions.

3 Method

In this section, we will describe the methods de-
veloped for argument identification, argument role
labeling and predicate sense disambiguation, the
three steps that must be implemented to obtain a
full SRL system.

3.1 Argument identification

In a semantically-oriented dependency scheme,
such as SD, it can be expected that a notable
proportion of arguments (in the SRL sense) are
directly attached to the predicate, and argument
identification can be reduced to assuming that —
with a limited number of systematic exceptions —
every argument is a dependent of the predicate.
The most frequent case where the assumption does
not hold in Finnish are the copula verbs, which are
not analyzed as heads in the SD scheme. For En-
glish, a common case are the auxiliaries, which
govern the main verb in the CoNLL data and are
thus marked as arguments for other higher-level
predicates as well. In the SD scheme, on the other
hand, the main verb governs the auxiliary taking
also its place in the syntactic tree. Since the fo-
cus of this paper lies in role assignment, we do
not go beyond developing a simple rule set to deal
with a limited number of such cases. In Section 6,
we will contrast this simple argument identifica-
tion method to that of the winning CoNLL’09 sys-
tem and we will show that while for Finnish the
above holds surprisingly well, the performance on
the English data is clearly sub-optimal.

4http://opennlp.apache.org/
5We are thankful to Sampo Pyysalo for providing us with

the English word2vec model.
6http://brat.nlplab.org

Finnish
eat + A1 AM-TMP
salted fish not until
eggs now
wheat bread again
nuts when
pickled cucumbers then
English
drive + A1 drive + AM-TMP
car immediately
truck morning
cars now
vehicle afternoon
tires finally

Table 1: Five most similar words for the given
average argument vectors. AM-TMP refers to the
temporal modifier role. Note that the average vec-
tors for Finnish modifier roles are estimated inde-
pendently from the predicates (see Section 3.4).

3.2 Role Classification

Our initial role classification algorithm is based on
calculating the vector representation of an “aver-
age argument” with a given role. For every predi-
cate x and every role r, we calculate the represen-
tation of the average argument with the role as

A(x, r) =
∑

(r,x,y) ŷ

count
, (1)

where ŷ refers to the L2 normalized version of y,
and count to the number of training pairs that are
summed over. We are thus averaging the normal-
ized vectors of all words y seen in the training data
as an argument of the predicate x with the role r.
To establish the role for some argument y during
testing, we can simply choose the role whose av-
erage argument vector has the maximal similarity
to y, i.e.

arg max
r
sim(A(x, r), y), (2)

where sim(a, b) is the standard cosine similarity.
To gain an intuitive insight into whether the av-

erage argument vectors behave as expected, we
show in Table 1 the top five most similar words
to the average argument vectors for several roles
and predicates. When evaluated with the data sets
described in Section 2, this initial method leads to
61.32% semantic F-score for Finnish and 65.05%
for English.
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3.3 Incorporating syntax
As we will demonstrate shortly, incorporating in-
formation about dependency relations can lead to
a substantial performance gain. To incorporate the
dependency relation information into the role clas-
sification method introduced above, we apply the
technique of circular shifting of vectors. This tech-
nique was previously used in the context of Ran-
dom Indexing (RI) to derive new vectors from ex-
isting ones in a deterministic fashion (Basile and
Caputo, 2012). In RI, the shift operation is how-
ever not used on the final vectors, but rather al-
ready during the induction of the vector represen-
tation.

Given a vector representation of an argument y,
we can encode the dependency relation of y and
its predicate by circularly shifting the vector of
y by an offset assigned separately to each possi-
ble dependency relation. The assignment is arbi-
trary, but such that no two relations are assigned
the same offset. We will denote this operation as
y�d, meaning the vector y circularly shifted to
the right by the offset assigned to the dependency
relation d. For instance, circularly shifting a vec-
tor a = (1, 2, 3, 4, 5) to the right by an offset of 2
results in a�2 = (4, 5, 1, 2, 3).

We can incorporate the dependency relations
when calculating the average vectors representing
arguments as follows:

A(x, r) =
∑

(r,d,x,y) ŷ�d
count

, (3)

where (r, d, x, y) iterates over all predicate-
argument pairs (x, y) where y has the dependency
relation d and role r. The role of an argument in
the test phase is established as before, by taking
the role which maximizes the similarity to the av-
erage vector:

arg max
r
sim(A(x, r), y�d) (4)

In the cases, where arguments are not direct de-
pendents of the predicate, we use zero as the shift
offset.

To motivate this approach and illustrate its im-
plications, consider the two sentences (1) The cat
chases the dog. (2) The dog chases the cat. In
the first sentence the dog is an object which cor-
responds to the theme role A1, whereas in the
second sentence it is a subject with the agent
role A0. The role labeling decision is, how-
ever, in both cases based on the similarity value

sim(A(chases, r), dog), predicting A1, which is
incorrect in the latter case. When we incorporate
the syntactic information by shifting the vector ac-
cording to its syntactic relation to the predicate,
we obtain two diverging similarity values because
dog � nsubj and dog � dobj are essentially two
different vectors. This leads to the correct predic-
tion in both cases.

Relative to the base method, incorporating
the syntax improves the semantic F-score from
61.32% to 66.23% for Finnish and from 65.05%
to 66.55% for English. For Finnish, the gain is
rather substantial, while for English we see only
a moderate but nevertheless positive effect. This
demonstrates that, indeed, the circular shifting op-
eration successfully encodes syntactic information
both into the average vectors A and the candidate
argument vectors y.

3.4 Core arguments vs. modifiers

In comparison to modifier roles, the assignment
of core (numbered) argument roles is consider-
ably more influenced by the predicate sense and
therefore must be learned separately, which we
also confirmed in initial experiments. The modi-
fier roles, on the other hand, are global in the sense
that they are not tied to any particular predicate.
This brings out an interesting question of whether
the modifier roles should be learned independently
of the predicate or not. We find that the best strat-
egy is to learn predicate-specific modifier vectors
in English and global modifier vectors in Finnish.

Another problem, particularly common in the
Finnish PropBank stems from the distinction be-
tween core roles and modifier roles. For instance,
for the predicate to move the argument meaning
the destination of the moving action has the core
role A2, while for a number of other predicates
which may optionally take a destination argument,
the directional modifier role AM-DIR would be
used. This leads to a situation where core argu-
ments receive a high score for a modifier role, and
modifier roles are over-predicted at the expense
of core argument roles. To account for this, we
introduce the following simple heuristics. If the
predicate lacks a core role r after prediction, iter-
ate through predicted modifier roles p1. . .pn and
change the prediction from pi to r if r has the max-
imum similarity among the core roles and the dif-
ference sim(pi, y) − sim(r, y) is smaller than a
threshold value optimized on a held-out develop-
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ment set distinct from the test set.
We observe a 2.05pp gain in Finnish when using

this method, whereas in English this feature is less
significant with an improvement of only 0.3pp.

3.5 Fall-back for unknown words

The above-mentioned techniques based purely on
vector representations with no additional features
fail if the vector space model lacks the argument
token which prevents the calculation of the nec-
essary similarities. To address this problem, we
build separately for each POS a “generic” repre-
sentation by averaging the vectors of all training
data tokens that have the POS and occurred only
once. These vectors, representing a typical rare
word of a given POS, are then used in place of
words missing from the vector space model.

Another solution taking advantage from the
vector space representation is used in cases where
a predicate is not seen in the training data and
therefore we have no information about its argu-
ment structure. We query for predicates closest
to the unseen predicate and take the average argu-
ment vectors from the most similar predicate that
was seen during the training.

Together, these two techniques result in a mod-
est gain of approximately 1pp for both languages.

3.6 Sense classification

One final step required in SRL is the disambigua-
tion of the sense of the predicate. Here we ap-
ply an approach very similar to that used for role
classification, whereby for every sense of every
predicate, we calculate an average vector repre-
senting that sense. This is done as follows: For
every predicate sense, we average the vector rep-
resentations of all dependents and governors7 of
all occurrences of that sense in the training data,
circularly shifted to encode their syntactic relation
to the predicate. To assign a sense to a predicate
during testing, we average the shifted vectors cor-
responding to its dependents and governors in the
sentence, and choose the sense whose average vec-
tor is the nearest. Using this approach, we obtain a
84.18% accuracy for Finnish and 92.68% for En-
glish, compared to 79.89% and 92.88% without
the syntax information. This corresponds to a sub-
stantial gain for Finnish but, surprisingly, a small
drop for English. For the rare predicates that are

7Recall we use the extended SD scheme where a word can
have several governors in various situations.

not seen in the training data, we have no informa-
tion about their sense inventory and therefore we
simply predict the sense “.01” which is the cor-
rect choice in 79.56% of the cases in Finnish and
86.64% in English.

4 Role Labeling with Linear
Transformations

As we discussed earlier, it was recently shown that
the word2vec spaces preserve a number of lin-
guistic regularities, and an accurate mapping be-
tween two word2vec-induced vector spaces can
be achieved using a simple linear transformation.
Mikolov et al. (2013a) have demonstrated that a
linear transformation trained on source-target lan-
guage word pairs obtained from Google Translate
can surprisingly accurately map word vectors from
one language to another, with obvious applications
to machine translation. It is also worth noting that
this is not universally true of all vector space rep-
resentation methods, as Mikolov et al. have shown
for example for Latent Semantic Analysis, which
exhibits this property to a considerably lesser ex-
tent. In addition to testing the applicability of the
word2vec method in general, we are specifically
interested whether these additional properties can
be exploited in the context of SRL. In particular,
we will test whether a similar linear vector space
transformation can be used to map the vectors of
the predicates onto those of their arguments.

More formally, for each role r, we will learn a
transformation matrix Wr such that for a vector
representation x of some predicate, Wrx will be
close to the vector representation of its arguments
with the role r. For instance, if x is the represen-
tation of the predicate (to) eat, we aim for WA1x
to be a vector similar to the vectors representing
edible items (role A1). The transformation can be
trained using the tuples (r, x, y) of predicate x and
its argument y with the role r gathered from the
training data, minimizing the error∑

(x,y)

‖Wrx− y‖2 (5)

over all training pairs (separately for each r). We
minimize the error using the standard stochastic
gradient descent method, whereby the transfor-
mation matrix is updated separately for each pair
(x, y) using the equation

Wr ←Wr − ε(Wrx− y)xT (6)
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where ε is the learning rate whose suitable value is
selected on the development set. The whole proce-
dure is repeated until convergence is reached, ran-
domly shuffling the training data after each round
of training.

Using the transformation, we can establish the
most likely role for the argument y of a predicate
x as

arg max
r
sim(Wrx, y) (7)

where sim is the cosine similarity function, i.e. in
the exact same manner as for the average argument
method described in the previous section, with the
difference that the vector for the average argument
is not calculated directly from the training data,
but rather obtained through the linear transforma-
tion of the predicate vector.

As an alternative approach, we can also learn
the reverse transformation RWr such that RWry
is close to x, i.e. the transformation of the argu-
ment y onto the predicate x. Note that hereRWr is
not the same asW T

r ; we train this reverse transfor-
mation separately using the same gradient descent
method. We then modify the method for finding
the most likely role for an argument by taking the
average of the forward and reverse transformation
similarities:

arg max
r

sim(Wrx, y) + sim(x,RWry)
2

(8)

Note that we make no assumptions about the
vector spaces where x and y are drawn from; they
may be different spaces and they do not need to be
matched in their dimensionality either, as there is
no requirement that W and RW be square matri-
ces. In practice, we find that the best strategy for
both Finnish and English is to represent both the
predicates and arguments using the space induced
from word forms, however, we have also tested on
Finnish representing the predicates using the space
induced from lemmas and the arguments using a
space induced from word forms, with only mini-
mally worse results. This shows that the transfor-
mation does not degrade substantially even when
mapping between two different spaces.

With this strategy, we reach an F-score of
62.71% in Finnish and 63.01% in English. These
results are on par with the scores obtained with
the average argument method, showing that a lin-
ear transformation is effective also in this kind of
problems.

To incorporate syntax information, we train
transformation matrices Wr,d and RWr,d for each

dependency relation d rather than relying on the
circular shift operation which cannot be captured
by linear transformations.8 As some combinations
of r and d may occur only in the test data, we use
the matrices Wr and RWr as a fall-back strategy.
In testing, we found that even if the (r, d) com-
bination is known from the training data, a small
improvement can be obtained by taking the aver-
age of the similarities with and without syntactic
information as the final similarity. Incorporating
these techniques into the basic linear transforma-
tion improves the semantic F-score from 62.71%
to 65.88% for Finnish and from 63.01% to 67.04%
for English. The improvement for both languages
is substantial.

5 Supervised classification approach

In the previous sections, we have studied an ap-
proach to SRL based purely on the vector space
representations with no additional features. We
have addressed the choice of the argument role by
simply assigning the role with the maximum sim-
ilarity to the argument. To test the gain that could
be obtained by employing a more advanced tech-
nique for aggregating the scores and incorporating
additional features, we train a linear multi-class
support vector machine to assign the role to every
detected argument. As features, we use the simi-
larity values for each possible role using the best
performing method for each language,9 the sense
of the predicate, and — separately for the predi-
cate and the argument — the token itself, its POS,
morphological tags, every dependency relation to
its governors, and every dependency relation to
its dependents. The similarities are encoded as
feature weights, while all other features are bi-
nary. We use the multi-class SVM implementa-
tion from the SVM-multiclass package (Joachims,
1999), setting the regularization parameter on the
development set using a grid search.

For both languages, we observe a notable gain
in performance, leading to the best scores so far.
In Finnish the improvement in F-score is from
66.23% to 73.83% and in English from 67.04%
to 70.38%. However, as we will further discuss in
Section 6, in Finnish the contribution of the simi-
larity features is modest.

8Note that this does not affect the overall computational
cost, as the total number of training examples remains un-
changed and the transformation matrices are small in size.

9Average vectors for Finnish and transformation for En-
glish (Table 2).
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Finnish English
Average vectors
full method 66.23 66.55
–modifier vs. core role 64.18 66.25
–syntax 61.32 65.05
Linear transformation
full method 65.88 67.04
–syntax 62.71 63.01
Supervised classification
full method 73.83 70.38
only similarity features 64.21 65.89
–similarity features 73.54 67.51
–lexical features 65.51 58.42

Table 2: Overview of main results and a feature
ablation study. Modifier vs. core role refers to the
algorithm presented in Section 3.4. In the super-
vised classification part, -lexical features refers to
the removal of features based on word forms, pred-
icate sense and role similarities.

6 Results and discussion

All results discussed throughout Sections 3 to 5
are summarized in Table 2, which also serves as
a coarse feature ablation study. Overall, we see
that the average vector and linear transformation
methods perform roughly on par, with the aver-
age vector method being slightly better for Finnish
and slightly worse for English. Both vector space-
based methods gain notably from syntax informa-
tion, confirming that the manner in which this in-
formation is incorporated is indeed meaningful.

Adding the SVM classifier on top of these two
methods results in a substantial further raise in per-
formance, demonstrating that to be competitive on
SRL, it is necessary to explicitly model also ad-
ditional information besides the semantic similar-
ity between the predicate and the argument. This
is particularly pronounced for Finnish where the
present SVM method does not gain substantially
from the similarity-based features, while English
clearly benefits. To shed some light on this differ-
ence, we show in Table 3 the oracle accuracy of
role labeling for top-1 through top-10 roles as or-
dered by their similarity scores. The performance
on English is clearly superior to that on Finnish.
An important factor may be the fact that — in
terms of token count — the CoNLL’09 English
training size is nearly six times that of the Finnish
PropBank and the English vector space model was
induced on a nearly four times larger text corpus.

Finnish English
n Recall n Recall
1 58.23 1 67.39
2 68.29 2 82.82
3 74.30 3 88.49
4 78.71 4 91.58
5 82.21 5 93.20
6 84.74 6 94.29
7 87.04 7 94.91
8 88.98 8 95.31
9 90.76 9 95.65

10 92.05 10 95.86

Table 3: A study of how many times (%) the cor-
rect role is among the top n most similar roles
when the arguments are known in advance. Left:
Similarities taken from the average vector method
on Finnish. Right: Similarities from the linear
transformation method on English.

Finnish English
Average vectors 66.23 / 89.89 66.55 / 79.57
Linear transf. 65.88 / 89.92 67.04 / 80.85
Supervised 73.83 / 89.29 70.38 / 78.71

Table 4: Overall results separately for all main
methods (labeled/unlabeled semantic F-score).

Returning to our original question of whether
the SD scheme can be used as-is for argument
identification, we show in Table 4 the unlabeled
F-scores for the main methods. These scores re-
flect the performance of the argument identifica-
tion step in isolation. While Finnish approaches
90% which is comparable to the best systems in
the CoNLL’09 task, English lags behind by over
10pp. To test to what extent the results would be
affected if a more accurate argument identification
system was applied, we used the output of the win-
ning (for English) CoNLL’09 Shared Task system
(Zhao et al., 2009a) as the argument identifica-
tion component, while predicting the roles with
the methods introduced so far. The results are
summarized in Table 5, where we see a substan-
tial gain for all the methods presented in this pa-
per, achieving an F-score of 82.33%, only 3.82pp
lower than best CoNLL’09 system. These results
give a mixed signal as to whether the extended SD
scheme is usable nearly as-is for argument identi-
fication (Finnish) or not (English). Despite our ef-
forts, we were unable to pinpoint the cause for this
difference, beyond the fact that the Finnish Prop-
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Semantic F-score
CoNLL’09 best 86.15 / 91.97
Average vectors 73.12 / 91.97
Linear transformation 74.41 / 91.97
Supervised classif. 82.33 / 91.97

Table 5: Performance of suggested methods with
argument identification from the top-performing
CoNLL’09 system (labeled/unlabeled F-score).

Bank was originally developed specifically on top
of the SD scheme, while the English PropBank
and NomBank corpora were not.

7 Related work

While different methods have been studied to
build task specific vector space representations,
post-hoc methods to manipulate the vector spaces
without retraining are rare. Current SRL systems
utilize supervised machine learning approaches,
and typically a large set of features. For instance,
the winning system in the CoNLL’09 shared task
(SRL-only) introduces a heavy feature engineer-
ing system, which has about 1000 potential fea-
ture templates from which the system discovers
the best set to be used (Zhao et al., 2009b). Word
similarities are usually introduced to SRL as a
part of unsupervised or semi-supervised meth-
ods. For example, Titov and Klementiev (2012)
present an unsupervised clustering method ap-
plying word representation techniques, and De-
schacht and Moens (2009) used vector similarities
to automatically expand the small training set to
build semi-supervised SRL system. Additionally,
Turian et al. (2010) have shown that word repre-
sentations can be included among the features to
improve the performance of named entity recogni-
tion and chunking systems.

8 Conclusions

We set out to test two post-hoc vector space ma-
nipulation techniques in the context of semantic
role labeling. We found that the circular shift op-
eration can indeed be applied also to other vector
representations as a way to encode syntactic infor-
mation. Importantly, the circular shift is applied to
a pre-existing vector space representation, rather
than during its induction, and is therefore task-
independent. Further, we find that such shifted
vectors can be meaningfully averaged to represent
predicate senses and arguments.

We also extended the study of the linear trans-
formation between two vector spaces and show
that the same technique can be used also within
a single space, mapping the vectors of predicates
onto the vectors of their arguments. This map-
ping produces results that are performance-wise
on par with the average vectors method, demon-
strating a good generalization ability of the lin-
ear mapping and the underlying word2vec vector
space representation. Here it is worth noting that
— if we gloss over some obvious issues of am-
biguity — the mapping between two languages
demonstrated by Mikolov et al. is conceptually a
one-to-one mapping, at least in contrast to the one-
to-many nature of the mapping between predicates
and their arguments. These results hint at the pos-
sibility that a number of problems which can be re-
duced to the “predict a word given a word” pattern
may be addressable with this simple technique.

With respect to the application to SRL, we have
shown that it is possible to carry out SRL based
purely on the vector space manipulation meth-
ods introduced in this paper, outperforming sev-
eral entries in the CoNLL-09 Shared Task. How-
ever, it is perhaps not too surprising that much
more is needed to build a competitive SRL sys-
tem. Adding an SVM classifier with few relatively
simple features derived from the syntactic analy-
ses in addition to features based on vector similar-
ities, and especially adding a well-performing ar-
gument identification method, can result in a sys-
tem close to approaching state-of-the-art perfor-
mance, which is encouraging.

As future work, it will be interesting to study to
which extent SRL, and similar applications would
benefit from addressing the one-to-many nature of
the underlying problem. While for some predi-
cates the arguments likely form a cluster that can
be represented as a single average vector, for other
predicates, such as to see, it is not the case. Find-
ing methods which allow us to model this property
of the problem will constitute an interesting direc-
tion with broader applications beyond SRL.

Acknowledgements

This work has been supported by the Emil Aal-
tonen Foundation and Kone Foundation. Com-
putational resources were provided by CSC – IT
Center for Science. We would also like to thank
Sampo Pyysalo and Hans Moen for comments and
general discussion.

8



References
Pierpaolo Basile and Annalina Caputo. 2012. Encod-

ing syntactic dependencies using Random Indexing
and Wikipedia as a corpus. In Proceedings of the
3rd Italian Information Retrieval (IIR) Workshop,
volume 835, pages 144–154.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proceed-
ings of the 23rd International Conference on Com-
putational Linguistics, pages 89–97. Association for
Computational Linguistics.

Koen Deschacht and Marie-Francine Moens. 2009.
Semi-supervised semantic role labeling using the la-
tent words language model. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1-Volume 1, pages
21–29. Association for Computational Linguistics.
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Abstract

This paper concerns how to apply compo-
sitional methods to vectors based on gram-
matical dependency relation vectors. We
demonstrate the potential of a novel ap-
proach which uses higher-order grammat-
ical dependency relations as features. We
apply the approach to adjective-noun com-
pounds with promising results in the pre-
diction of the vectors for (held-out) ob-
served phrases.

1 Introduction

Vector space models of semantics characterise the
meaning of a word in terms of distributional fea-
tures derived from word co-occurrences. The most
widely adopted basis for word co-occurrence is
proximity, i.e. that two words (or more generally
lexemes) are taken to co-occur when they occur
together within a certain sized window, or within
the same sentence, paragraph, or document. Lin
(1998), in contrast, took the syntactic relationship
between co-occurring words into account: the dis-
tributional features of a word are based on the
word’s grammatical dependents as found in a de-
pendency parsed corpus. For example, observing
that the word glass appears as the indirect object
of the verb fill, provides evidence that the word
glass has the distributional feature iobj:fill, where
iobj denotes the inverse indirect object grammati-
cal relation. The use of grammatical dependents as
word features has been exploited in the discovery
of tight semantic relations, such as synonymy and
hypernymy, where an evaluation against a gold
standard such as WordNet (Fellbaum, 1998) can
be made (Lin, 1998; Weeds and Weir, 2003; Cur-
ran, 2004).

Pado and Lapata (2007) took this further by
considering not just direct grammatical depen-
dents, but also including indirect dependents.
Thus, observing the sentence She filled her glass
slowly would provide evidence that the word glass
has the distributional feature iobj:advmod:slowly
where iobj:advmod captures the indirect depen-
dency relationship between glass and slowly in the
sentence.

Note that Pado and Lapata (2007) included
a basis mapping function that gave their frame-
work flexibility as to how to map paths such as
iobj:advmod:slowly onto the basis of the vector
space. Indeed, the instantiation of their framework
that they adopt in their experiments uses a ba-
sis mapping function that removes the dependency
path to leave just the word, so iobj:advmod:slowly
would be mapped to slowly.

In this paper, we are concerned with the prob-
lem of distributional semantic composition. We
show that the idea that the distributional seman-
tics of a word can be captured with higher-order
dependency relationships, provides the basis for
a simple approach to compositional distributional
semantics. While our approach is quite gen-
eral, dealing with arbitrarily high-order depen-
dency relationships, and the composition of ar-
bitrary phrases, in this paper we consider only
first and second order dependency relations, and
adjective-noun composition.

In Section 2, we illustrate our proposal by
showing how second order dependency relations
can play a role in computing the semantics of
adjective-noun composition. In Section 3 we de-
scribe a number of experiments that are intended
to evaluate the approach, with the results presented
in Section 4.

The basis for our evaluation follows Baroni and
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Zamparelli (2010) and Guevara (2010). Typically,
compositional distributional semantic models can
be used to generate an (inferred) distributional
vector for a phrase from the (observed) distribu-
tional vectors of the phrase’s constituents. One
of the motivations for doing this is that the ob-
served distributional vectors for most phrases tend
to be very sparse, a consequence of the frequency
with which typical phrases occur in even large cor-
pora. However, there are phrases that occur suffi-
ciently frequently that a reasonable characterisa-
tion of their meaning can be captured with their
observed distributional vector. Such phrases can
be exploited in order to assess the quality of a
model of composition. This is achieved by mea-
suring the distributional similarity of the observed
and inferred distributional vectors for these high
frequency phrases.

The contributions of this paper are as follows.
We propose a novel approach to phrasal composi-
tion which uses higher order grammatical depen-
dency relations as features. We demonstrate its
potential in the context of adjective-noun compo-
sition by comparing (held-out) observed and in-
ferred phrasal vectors. Further, we compare dif-
ferent vector operations, different feature associa-
tion scores and investigate the effect of weighting
features before or after composition.

2 Composition with Higher-order
Dependencies

Consider the problem of adjective-noun compo-
sition. For example, what is the meaning of the
phrase small child? How does it relate to the
meanings of the lexemes small and child? Figure 1
shows a dependency analysis for the sentence The
very small wet child cried loudly. Tables 1 and
2 show the grammatical dependencies (with other
open-class words) for the lexemes small and child
which would be extracted from it.

the/D very/R small/J wet/J child/N cry/V loudly/R

amod

amod

advmod

det

nsubj advmod

Figure 1: Example Dependency Tree

From Table 1 we see what kinds of (higher-
order) dependency paths appear in the distribu-
tional features of adjectives such as small. Simi-
larly, Table 2 indicates this for nouns such as child.

1st-order advmod:very/R

amod:child

2nd-order amod:amod:wet/J

amod:nsubj:cry/V

3rd-order amod:nsubj:advmod:loudly/R

Table 1: Grammatical Dependencies of small

1st-order amod:wet/J
amod:small/J

nsubj:cry/V

2nd-order amod:advmod:very/R

nsubj:advmod:loudly/R

Table 2: Grammatical Dependencies of child

It is clear that with a conventional grammatical
dependency-based approach where only first or-
der dependencies for small and child would be
considered, there will be very little overlap be-
tween the features of nouns and adjectives because
quite different grammatical relations are used in
the two types of vectors, and correspondingly lex-
emes with different parts of speech appear at the
end of these paths.

However, as our example illustrates, it is possi-
ble to align the 2nd-order feature space of adjec-
tives with the 1st-order feature space of nouns. In
this example, we have evidence that children cry
and that small things cry. Consequently, in order
to compose an adjective with a noun, we would
want to align 2nd-order features of the adjective
with 1st-order features of the noun; this gives us a
prediction of the first order features of the noun in
the context of the adjective1.

This idea extends in a straightforward way be-
yond adjective-noun composition. For example, it
is possible to align the 3rd order features of ad-
jectives with 2nd order features of nouns, which is
something that would be useful if one wanted to
compose verbs with their arguments. These argu-
ments will include adjective-noun compounds and
therefore adjective-noun compounds require 2nd-
order features which can be aligned with the first
order features of the verbs. This is, however, not

1Note that it would also be possible to align 2nd-order
features of the noun with 1st-order features of the adjective,
resulting in a prediction of the first order features of the ad-
jective in the context of the noun.
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something that we will pursue further in this paper.
We now clarify how features vectors are aligned

and then composed. Suppose that the lexemes w1

and w2 which we wish to compose are connected
by relation r. Let w1 be the head of the relation
and w2 be the dependent. In our example, w1 is
child, w2 is small and r is amod. We first pro-
duce a reduced vector for w2 which is designed
to lie in a comparable feature space as the vector
for w1. To do this we take the set of 2nd order
features of w2 which start with the relation r̄ and
reduce them to first order features (by removing
the r̄ at the start of the path). So in our example,
we create a reduced vector for small where fea-
tures amod:nsubj:x for some token x are reduced
to nsubj:x, features amod:amod:x for some token
x are reduced to the feature amod:x, and features
amod:nsubj:advmod:x for some token x are re-
duced to nsubj:advmod:x. Once the vector for w2

has been reduced, it can be composed with the vec-
tor for w1 using standard vector operations.

In Section 3 we describe experiments that ex-
plore the effectiveness of this approach to distri-
butional composition by measuring the similarity
of composed vectors with observed vectors for a
set of frequently occurring adjective-noun pairs
(details given below). We evaluate a number of
instantiations of our approach, and in particular,
there are three aspects of the model where alter-
native solutions are available: the choice of which
vector composition operation to use; the choice of
how to weight dependency features; and the ques-
tion as to whether feature weighting should take
place before or after composition.

Vector composition operation. We consider
each of the following seven alternatives: pointwise
addition (add), pointwise multiplication (mult),
pointwise geometric mean2 (gm), pointwise max-
imum (max), pointwise minimum (min), first ar-
gument (hd), second argument (dp). The latter
two operations simply return the first (respectively
second) of the input vectors.

Feature weighting. We consider three options.
Much work in this area has used positive pointwise
mutual information (PPMI) (Church and Hanks,
1989) to weight the features. However, PPMI is
known to over-emphasise low frequency events,
and as a result there has been a recent shift to-
wards using positive localised mutual information

2The geometric mean of x and y is
√

(x · y).

PPMI(x, y) =

{
I(x, y) if I(x, y) > 0

0 otherwise

where I(x, y) = log P (x,y)
P (x).P (y)

PLMI(x, y) =

{
L(x, y) if L(x, y) > 0

0 otherwise

where L(x, y) = P (x, y).log( P (x,y)
P (x).P (y)

PNPMI(x, y) =

{
N(x, y) if N(x, y) > 0

0 otherwise

where N(x, y) = 1
−log(P (y)

.log P (x,y)
P (x).P (y)

Table 3: Feature Association Scores

(PLMI) (Scheible et al., 2013) and positive nor-
malised point wise mutual information (PNPMI)
(Bouma, 2009). For definitions, see Table 3.

Timing of feature weighting. We consider two
alternatives: we can weight features before com-
position so that the composition operation is ap-
plied to weighted vectors, or we can compose vec-
tors prior to feature weighting, in which case the
composition operation is applied to unweighted
vectors, and feature weighting is applied in the
context of making a similarity calculation. In other
work, the former order is often implied. For exam-
ple, Boleda et al. (2013) state that they use “PMI
to weight the co-occurrence matrix”. However, if
we allow the second order, features which might
have a zero association score in the context of the
the individual lexemes, could be considered sig-
nificant in the context of the phrase.

3 Evaluation

Our experimental evaluation of the approach is
based on the assumption, which is commonly
made elsewhere, that where there is a reasonable
amount of corpus data available for a phrase, this
will generate a good estimate of the vector of the
phrase. It has been shown (Turney, 2012; Baroni
and Zamparelli, 2010) that such “observed” vec-
tors are indeed reasonable for adjective-noun and
noun-noun compounds. Hence, in order to evalu-
ate the compositional models under consideration
here, we compare observed phrasal vectors with
inferred phrasal vectors, where the comparison is
made using the cosine measure. We note that it is

13



not possible to draw conclusions from the absolute
value of the cosine score since this would favour
models which always assign higher cosine scores.
Hence, we draw conclusions from the change in
cosine score with respect to a baseline within the
same model.

Methodology

For each noun and adjective which occur more
than a threshold number of times in a corpus, we
first extract conventional first order dependency
vectors. The features of these lexemes define the
semantic space, and feature probabilities (for use
in association scores) are calculated from this data.

Given a list of adjective-noun phrases, we ex-
tract first order vectors for the nouns and second
order vectors for the adjectives, which we refer to
as observed constituent vectors. We also extract
first order vectors for the nouns in the context of
the adjective, which we refer to as the observed
phrasal vector.

For each adjective-noun pair, we build bespoke
constituent vectors for the adjective and noun, in
which we remove all counts which arise from co-
occurrences with that specific adjective-noun pair.
It is these constituent vectors that are used as the
basis for inferring the vector for that particular
adjective-noun phrase.

Our rationale for this is as follows. Without this
modification, the observed constituent vectors will
contain co-occurrences which are due to the ob-
served adjective-noun vector co-occurrences. To
see why this is undesirable, suppose that one of the
adjective-noun phrases was small child. We take
the observed vector for small child to be what we
are calling the observed phrasal vector for child (in
the context of small). Suppose that when building
the observed phrasal vector, we observe the phrase
the small child cried. This will lead to a count for
the feature nsubj:cry in the observed phrasal vec-
tor for child.

But if we are not careful, this same phrase will
contribute to counts in the constituent vectors for
small and child, producing counts for the features
amod:nsubj:cry and nsubj:cry, in their respective
vectors. To see why these counts should not be in-
cluded when building the constituent vectors that
we compose to produce inferred vectors for the
adjective-noun phrase small child, consider the
case where all of the evidence for small things be-
ing things that can cry and children being things

that can crying comes from having observed the
phrase small children crying. Despite not having
learnt anything about the composition of small and
child in general, we would be able to infer the cry
feature for the phrase. An adequate model of com-
position should be able to infer this on the basis
that other small things have been seen to cry, and
that non-small children have been seen to cry.

Here, we compare the proposed approach,
based on higher order dependencies, with the
standard method of composing conventional first-
order dependency vectors. The vector operation,
hd provides a baseline for comparison which is
the same in both approaches. This baseline corre-
sponds to a composition model where the first or-
der dependencies of the phrase (i.e. the noun in the
context of the adjective) are taken to be the same
as the first order dependencies of the uncontextu-
alized noun. For example, if we have never seen
the phrase small child before, we would assume
that it means the same as the head word child.

We hypothesise that it is not possible to im-
prove on this baseline using traditional first-order
dependency relation vectors, since the vector for
the modifier does not contain features of the right
type, but that with the proposed approach, the in-
ferred vector for a phrase such as small child will
be closer than observed vector for child to the ob-
served vector for small child. We also ask the re-
lated question of whether our inferred vector for
small child is closer than the constituent vector for
small to the observed vector for small child. This
comparison is achieved through use of the vector
operation dp that ignores the vector for the head,
simply returning a first-order vector derived from
the dependent.

Experimental Settings

Our corpus is a mid-2011 dump of WikiPedia.
This has been part-of-speech tagged, lemmatised
and dependency parsed using the Malt Parser
(Nivre, 2004). All major grammatical dependency
relations involving open class parts of speech
(nsubj, dobj, iobj, conj, amod, advmod, nnmod)
have been extracted for all POS-tagged and lem-
matised nouns and adjectives occurring 100 or
more times. In past work with conventional de-
pendency relation vectors we found that using a
feature threshold of 100, weighting features with
PPMI and a cosine similarity score work well.

For experimental purposes, we have taken
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spanish british african japanese
modern classical female natural
digital military medical musical

scientific free black white
heavy common small large
strong short long good
similar previous future original
former subsequent next possible

Table 4: Adjectives considered

32 of the most frequently occurring adjectives
(see Table 4). These adjectives include ones
which would generally be considered intersective
(e.g., female), subsective (e.g,, long) and non-
subsective/intensional (e.g., former) (Pustejovsky,
2013) . For all of these adjectives there are at least
100 adjective-noun phrases which occur at least
100 times in the corpus. We randomly selected
50 of the phrases for each adjective. Note that
our proposed method does not require any hyper
parameters to be set during training, nor does it
require a certain number of phrases per adjective.
For the purpose of these experiments we have a list
of 1600 adjective-noun phrases, all of which occur
at least 100 times in WikiPedia.

4 Results and Discussion

Tables 5 and 6 summarise the average cosines for
the proposed higher-order dependency approach
and the conventional first-order dependency ap-
proach, respectively. In each case, we consider
each combination of vector operation, feature as-
sociation score, and composition timing (i.e. be-
fore, or after, vector weighting).

Table 7 shows the average improvement over
the baseline (hd), for each combination of exper-
imental variables, when considering the proposed
higher-order dependency approach. Note that this
is an average of paired differences (and not the dif-
ference of the averages in Table 6). For brevity, we
omit the results for PNPMI here, since there do not
appear to be substantial differences between using
PPMI and PNPMI. To indicate statistical signifi-
cance, we show estimated standard errors in the
means. All differences are statistically significant
(under a paired t-test) except those marked †.

From Table 5, we see that none of the com-
positional operations on conventional dependency
vectors are able to beat the baseline of selecting
the head vector (hd). This is independent of the

choice of association measure and the order in
which weighting and composition are carried out.

For the higher order dependency vectors (Tables
6 and 7), we note, in contrast, that some com-
positional operations produce large increases in
cosine score compared to the head vector alone
(hd). Table 7 examines the statistical significance
of these differences. We find that for the inter-
sective composition operations (mult, min, and
gm), performance is statistically superior to using
the head alone in all experimental conditions stud-
ied. By contrast, additive measures (add, max)
typically have no impact, or decrease performance
marginally relative to the head alone. An explana-
tion for these significant differences is that inter-
sective vector operations are able to encapsulate
the way that an adjective disambiguates and spe-
cialises the sense of the noun that it is modifying.

We also note that the alternative baseline, dp,
which estimates the features of a phrase to be the
aggregation of all things which are modified by
the adjective, performs significantly worse than
the standard baseline, hd, which estimates the fea-
tures of a phrase to be the features of the head
noun. This is consistent with the intuition that the
distributional vector for small child should more
similar to the vector for child than it is to the vec-
tor for the things that can be small.

Considering the different intersective opera-
tions, mult appears to be the best choice when
the feature association score is PPMI or PNPMI
and gm appears to be the best choice when the fea-
ture association score is PLMI.

Further, PLMI consistently gives all of the vec-
tor pairings higher cosine scores than PPMI. Since
PLMI assigns less weight to low frequency event
and more weight to high frequency events, this
suggests that all of the composition methods, in-
cluding the baseline (hd), do better at predicting
the high frequency co-occurrences. This is not sur-
prising as these will more likely have been seen
with the phrasal constituents in other contexts.

Our final observation, based on Table 6, is that
the best order in which to carry out weighting and
composition appears to depend on the choice of
feature association score. In general, it appears
better to weight the features and then compose
vectors. This is always true when using PNPMI
or PLMI. However, using PPMI, the highest per-
formance is achieved by composing the raw vec-
tors using multiplication and then weighing the
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weight:compose compose:weight
PPMI PNPMI PLMI PPMI PNPMI PLMI

x̄ s x̄ s x̄ s x̄ s x̄ s x̄ s

add 0.12 (0.06) 0.13 (0.05) 0.15 (0.16) 0.11 (0.05) 0.12 (0.06) 0.22 (0.20)
max 0.12 (0.06) 0.13 (0.05) 0.15 (0.16) 0.11 (0.05) 0.12 (0.06) 0.22 (0.20)
mult 0.06 (0.05) 0.06 (0.06) 0.06 (0.11) 0.07 (0.05) 0.07 (0.12) 0.07 (0.05)
min 0.05 (0.05) 0.06 (0.05) 0.04 (0.09) 0.05 (0.04) 0.05 (0.04) 0.04 (0.08)
gm 0.06 (0.05) 0.06 (0.05) 0.07 (0.11) 0.05 (0.04) 0.06 (0.04) 0.08 (0.11)
hd 0.13 (0.07) 0.15 (0.07) 0.28 (0.22) 0.13 (0.07) 0.15 (0.07) 0.28 (0.22)

Table 5: Means and Standard Deviations for Cosines Between Observed and Predicted Vectors for Con-
ventional First-Order Dependency Based Approach.

weight:compose compose:weight
PPMI PNPMI PLMI PPMI PNPMI PLMI

x̄ s x̄ s x̄ s x̄ s x̄ s x̄ s

add 0.14 (0.06) 0.16 (0.06) 0.29 (0.21) 0.10 (0.04) 0.12 (0.05) 0.29 (0.22)
max 0.10 (0.04) 0.11 (0.04) 0.27 (0.21) 0.10 (0.04) 0.11 (0.04) 0.26 (0.21)
mult 0.30 (0.12) 0.33 (0.12) 0.40 (0.29) 0.34 (0.10) 0.32 (0.10) 0.32 (0.27)
min 0.26 (0.11) 0.27 (0.11) 0.40 (0.24) 0.24 (0.10) 0.25 (0.10) 0.37 (0.23)
gm 0.27 (0.11) 0.29 (0.11) 0.46 (0.20) 0.26 (0.10) 0.27 (0.10) 0.44 (0.22)
dp 0.10 (0.05) 0.10 (0.05) 0.20 (0.20) 0.10 (0.05) 0.10 (0.05) 0.20 (0.20)
hd 0.13 (0.07) 0.15 (0.07) 0.28 (0.22) 0.13 (0.07) 0.15 (0.07) 0.28 (0.22)

Table 6: Means and Standard Deviations for Cosines Between Observed and Predicted Vectors for Pro-
posed Higher-Order Dependency Based Approach

remaining features. This can be explained by
considering the recall and precision of the com-
posed vector’s prediction of the observed vec-
tor. If we compose using gm before weighting
vectors, we increase the recall of the prediction,
but decrease precision. Whether we use PPMI,
PNPMI or PLMI, recall of features increases from
88.8% to 99.5% and precision drops from 5.5% to
4.8%. If we compose using mult before weight-
ing vectors, contrary to expectation, recall de-
creases and precision increases. Whether we use
PPMI, PNPMI or PLMI, recall of features de-
creases from 88.8% to 59.4% but precision in-
creases from 5.5% to 18.9%. Hence, multiplica-
tion of the raw vectors is causing a lot of potential
shared features to be “lost” when the weighting
is subsequently carried out (since multiplication
stretches out the value space). This leads to an
increase in cosines when PPMI is used for weight-
ing, and a decrease in cosines when PLMI is used.
Hence, it appears that the features being removed
by multiplying the raw vectors before weighting
must be low frequency co-occurrences, which are
not observed with the phrase.

5 Related Work

In this work, we bring together ideas from sev-
eral different strands of distributional semantics:
incorporating syntactic information into the distri-
butional representation of a lexeme; representing
phrasal meaning by creating distributional repre-
sentations through composition; and representing
word meaning in context by modifying the distri-
butional representation of a word.

The use of syntactic structure in distributional
representations is not new. Two of the earliest
proponents of distributional semantics, Lin (1998)
and Lee (1999) used features based on first order
dependency relations between words in their dis-
tributional representations. More recently, Pado
and Lapata (2007) propose a semantic space based
on dependency paths. This model outperformed
traditional word-based models which do not take
syntax into account in a synonymy relation detec-
tion task and a prevalent sense acquisition task.

The problem of representing phrasal meaning
has traditionally been tackled by taking vector rep-
resentations for words (Turney and Pantel, 2010)
and combining them using some function to pro-
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weight:compose compose:weight
PPMI PLMI PPMI PLMI

x̄ sx̄ x̄ sx̄ x̄ sx̄ x̄ sx̄

add 0.01 (0.001) †0.004 (0.003) -0.03 (0.001) †0.006 (0.004)
max -0.03 (0.001) -0.01 (0.003) -0.04 (0.001) -0.02 (0.003)
mult 0.16 (0.002) 0.11 (0.006) 0.21 (0.002) 0.03 (0.006)
min 0.13 (0.001) 0.11 (0.007) 0.10 (0.001) 0.09 (0.007)
gm 0.14 (0.001) 0.18 (0.005) 0.12 (0.001) 0.16 (0.005)
dp -0.03 (0.002) -0.09 (0.007) -0.04 (0.002) -0.09 (0.007)

Table 7: Means and Standard Errors for Increases in Cosine with respect to the hd Baseline for Proposed
Higher-Order Dependency Based Approach. All differences statistically significant (under a paired t-
test) except those marked †.

duce a data structure that represents the phrase
or sentence. Mitchell and Lapata (2008, 2010)
found that simple additive and multiplicative func-
tions applied to proximity-based vector represen-
tations were no less effective than more com-
plex functions when performance was assessed
against human similarity judgements of simple
paired phrases.

The simple functions evaluated by Mitchell and
Lapata (2008) are generally acknowledged to have
serious theoretical limitations in their treatment
of composition. How can a commutative func-
tion such as multiplication or addition provide dif-
ferent interpretations for different word orderings
such as window glass and glass window? The
majority of attempts to rectify this have offered
a more complex, non-commutative function —
such as weighted addition — or taken the view
that some or all words are no longer simple vec-
tors. For example, in the work of Baroni and
Zamparelli (2010) and Guevara (2010), an adjec-
tive is viewed as a modifying function and rep-
resented by a matrix. Coecke et al. (2011) and
Grefenstette et al. (2013) also incorporate the no-
tion of function application from formal seman-
tics. They derived function application from syn-
tactic structure, representing functions as tensors
and arguments as vectors. The MV-RNN model
of Socher et al. (2012) broadened the Baroni and
Zamparelli (2010) approach; all words, regardless
of part-of-speech, were modelled with both a vec-
tor and a matrix. This approach also shared fea-
tures with Coecke et al. (2011) in using syntax
to guide the order of phrasal composition. These
higher order structures are typically learnt or in-
duced using a supervised machine learning tech-
nique. For example, Baroni and Zamparelli (2010)

learnt their adjectival matrixes by performing re-
gression analysis over pairs of observed nouns and
adjective-noun phrases. As a consequence of the
computational expense of the machine learning
techniques involved, implementations of these ap-
proaches typically require a considerable amount
of dimensionality reduction.

A long-standing topic in distributional seman-
tics has been the modification of a canonical repre-
sentation of a lexeme’s meaning to reflect the con-
text in which it is found. Typically, a canonical
vector for a lexeme is estimated from all corpus
occurrences and the vector then modified to reflect
the instance context (Lund and Burgess, 1996;
Erk and Padó, 2008; Mitchell and Lapata, 2008;
Thater et al., 2009; Thater et al., 2010; Thater et
al., 2011; Van de Cruys et al., 2011; Erk, 2012).
As described in Mitchell and Lapata (2008, 2010),
lexeme vectors have typically been modified using
simple additive and multiplicative compositional
functions. Other approaches, however, share with
our proposal the use of syntax to drive modifica-
tion of the distributional representation (Erk and
Padó, 2008; Thater et al., 2009; Thater et al., 2010;
Thater et al., 2011). For example, in the SVS rep-
resentation of Erk and Padó (2008), a word was
represented by a set of vectors: one which en-
codes its lexical meaning in terms of distribution-
ally similar words3, and one which encodes the
selectional preferences of each grammatical rela-
tion it supports. A word’s meaning vector was up-
dated in the context of another word by combining
it with the appropriate selectional preferences vec-

3These are referred to as second-order vectors using
the terminology of Grefenstette (1994) and Schütze (1998).
However, this refers to a second-order affinity between the
words and is not related to the use of grammatical depen-
dency relations.
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tor of the contextualising word.
Turney (2012) offered a model of phrasal level

similarity which combines assessments of word-
level semantic relations. This work used two
different word-level distributional representations
to encapsulate two types of similarity. Distribu-
tional similarity calculated from proximity-based
features was used to estimate domain similarity
and distributional similarity calculated from syn-
tactic pattern based features is used to estimate
functional similarity. The similarity of a pair of
compound noun phrases was computed as a func-
tion of the similarities of the components. Cru-
cially different from other models of phrasal level
similarity, it does not attempt to derive modified
vectors for phrases or words in context.

6 Conclusions and Further Work

Vectors based on grammatical dependency rela-
tions are known to be useful in the discovery of
tight semantic relations, such as synonymy and
hypernymy, between lexemes (Lin, 1998; Weeds
and Weir, 2003; Curran, 2004). It would be use-
ful to be able to extend these methods to deter-
mine similarity between phrases (of potentially
different lengths). However, conventional ap-
proaches to composition, which have been ap-
plied to proximity-based vectors, cannot sensibly
be used on vectors that are based on grammatical
dependency relations.

In our approach, we consider the vector for a
phrase to be the vector for the head lexeme in
the context of the other phrasal constituents. Like
Pado and Lapata (2007), we extend the concept
of a grammatical dependency relation feature to
include dependency relation paths which incor-
porate higher-order dependencies between words.
We have shown how it is possible to align the de-
pendency path features for words of different syn-
tactic types, and thus produce composed vectors
which predict the features of one constituent in the
context of the other constituent.

In our experiments with AN compounds, we
have shown that these predicted vectors are closer
than the head constituent’s vector to the observed
phrasal vector. We have shown this is true even
when the observed phrase is in fact unobserved,
i.e. when its co-occurrences do not contribute to
the constituents’ vectors. Consistent with work us-
ing proximity-based vectors, we have found that
intersective operations perform substantially bet-

ter than additive operations. This can be under-
stood by viewing the intersective operations as en-
capsulating the way that adjectives can specialise
the meaning of the nouns that they modify.

We have investigated the interaction between
the vector operation used for composition, the fea-
ture association score and the timing of applying
feature weights. We have found that multiplication
works best if using PPMI to weight features, but
that geometric mean is better if using the increas-
ingly popular PLMI weighting measure. Whilst
applying an intersective composition operation be-
fore applying feature weighting does allow more
features to be retained in the predicted vector (it
is possible to achieve 99.5% recall), in general,
this does not correspond with an increase in co-
sine scores. In general, the corresponding drop in
precision (i.e., the over-prediction of unobserved
features) causes the cosine to decrease. The one
exception to this is using multiplication with the
PPMI feature weighting score. Here we actually
see a drop in recall, and an increase in precision
due to the nature of multiplication and PPMI.

One assumption that has been made throughout
the work, is that the observed phrasal vector pro-
vides a good estimate of the distributional repre-
sentation of the phrase and, consequently, the best
composition method is the one which returns the
most similar prediction. However, in general, we
notice that while the recall of the compositional
methods is good, the precision is very low. Lack of
precision may be due to the prevalence of plausi-
ble, but unobserved, co-occurrences of the phrase.
Consequently, this introduces uncertainty into the
conclusions which can be drawn from a study such
as this. Further work is required to develop effec-
tive intrinsic and extrinsic evaluations of models
of composition.

A further interesting area of study is whether
distributional models that include higher-order
grammatical dependencies can tell us more about
the lexical semantics of a word than the conven-
tional first-order models, for example by distin-
guishing semantic relations such as synonymy,
antonymy, hypernymy and co-hyponymy.
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Abstract

We present a systematic study of parame-
ters used in the construction of semantic
vector space models. Evaluation is car-
ried out on a variety of similarity tasks, in-
cluding a compositionality dataset, using
several source corpora. In addition to rec-
ommendations for optimal parameters, we
present some novel findings, including a
similarity metric that outperforms the al-
ternatives on all tasks considered.

1 Introduction

Vector space models (VSMs) represent the mean-
ings of lexical items as vectors in a “semantic
space”. The benefit of VSMs is that they can eas-
ily be manipulated using linear algebra, allowing
a degree of similarity between vectors to be com-
puted. They rely on the distributional hypothesis
(Harris, 1954): the idea that “words that occur in
similar contexts tend to have similar meanings”
(Turney and Pantel, 2010; Erk, 2012). The con-
struction of a suitable VSM for a particular task is
highly parameterised, and there appears to be little
consensus over which parameter settings to use.

This paper presents a systematic study of the
following parameters:

• vector size;
• window size;
• window-based or dependency-based context;
• feature granularity;
• similarity metric;
• weighting scheme;
• stopwords and high frequency cut-off.

A representative set of semantic similarity
datasets has been selected from the literature, in-
cluding a phrasal similarity dataset for evaluating
compositionality. The choice of source corpus is
likely to influence the quality of the VSM, and so

we use a selection of source corpora. Hence there
are two additional “superparameters”:

• dataset for evaluation;
• source corpus.

Previous studies have been limited to investigat-
ing only a small number of parameters, and us-
ing a limited set of source corpora and tasks for
evaluation (Curran and Moens, 2002a; Curran and
Moens, 2002b; Curran, 2004; Grefenstette, 1994;
Pado and Lapata, 2007; Sahlgren, 2006; Turney
and Pantel, 2010; Schulte im Walde et al., 2013).
Rohde et al. (2006) considered several weighting
schemes for a large variety of tasks, while Weeds
et al. (2004) did the same for similarity metrics.
Stone et al. (2008) investigated the effectiveness
of sub-spacing corpora, where a larger corpus is
queried in order to construct a smaller sub-spaced
corpus (Zelikovitz and Kogan, 2006). Blacoe and
Lapata (2012) compare several types of vector rep-
resentations for semantic composition tasks. The
most comprehensive existing studies of VSM pa-
rameters — encompassing window sizes, feature
granularity, stopwords and dimensionality reduc-
tion — are by Bullinaria and Levy (2007; 2012)
and Lapesa and Evert (2013).

Section 2 introduces the various parameters of
vector space model construction. We then attempt,
in Section 3, to answer some of the fundamen-
tal questions for building VSMs through a number
of experiments that consider each of the selected
parameters. In Section 4 we examine how these
findings relate to the recent development of dis-
tributional compositional semantics (Baroni et al.,
2013; Clark, 2014), where vectors for words are
combined into vectors for phrases.

2 Data and Parameters

Two datasets have dominated the literature with
respect to VSM parameters: WordSim353 (Finkel-
stein et al., 2002) and the TOEFL synonym dataset
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Dataset Pairings Words
RG 65 48
MC 30 39
W353 353 437
MEN 3000 751
TOEFL 80 400
M&L10 324 314

Table 1: Datasets for evaluation

(Landauer and Dumais, 1997). There is a risk
that semantic similarity studies have been overfit-
ting to their idiosyncracies, so in this study we
evaluate on a variety of datasets: in addition to
WordSim353 (W353) and TOEFL, we also use
the Rubenstein & Goodenough (RG) (1965) and
Miller & Charles (MC) (1991) data, as well as
a much larger set of similarity ratings: the MEN
dataset (Bruni et al., 2012). All these datasets con-
sist of human similarity ratings for word pairings,
except TOEFL, which consists of multiple choice
questions where the task is to select the correct
synonym for a target word. In Section 4 we ex-
amine our parameters in the context of distribu-
tional compositional semantics, using the evalua-
tion dataset from Mitchell and Lapata (2010). Ta-
ble 1 gives statistics for the number of words and
word pairings in each of the datasets.

As well as using a variety of datasets, we also
consider three different corpora from which to
build the vectors, varying in size and domain.
These include the BNC (Burnard, 2007) (106

word types, 108 tokens) and the larger ukWaC
(Baroni et al., 2009) (107 types, 109 tokens).
We also include a sub-spaced Wikipedia corpus
(Stone et al., 2008): for all words in the eval-
uation datasets, we build a subcorpus by query-
ing the top 10-ranked Wikipedia documents using
the words as search terms, resulting in a corpus
with 106 word types and 107 tokens. For examin-
ing the dependency-based contexts, we include the
Google Syntactic N-gram corpus (Goldberg and
Orwant, 2013), with 107 types and 1011 tokens.

2.1 Parameters

We selected the following set of parameters for in-
vestigation, all of which are fundamental to vector
space model construction1.

1Another obvious parameter would be dimensionality re-
duction, which we chose not to include because it does not
represent a fundamental aspect of VSM construction: di-
mensionality reduction relies on some original non-reduced
model, and directly depends on its quality.

Vector size Each component of a vector repre-
sents a context (or perhaps more accurately a “con-
textual element”, such as second word to the left
of the target word).2 The number of components
varies hugely in the literature, but a typical value
is in the low thousands. Here we consider vec-
tor sizes ranging from 50,000 to 500,000, to see
whether larger vectors lead to better performance.

Context There are two main approaches to mod-
elling context: window-based and dependency-
based. For window-based methods, contexts are
determined by word co-occurrences within a win-
dow of a given size, where the window simply
spans a number of words occurring around in-
stances of a target word. For dependency-based
methods, the contexts are determined by word
co-occurrences in a particular syntactic relation
with a target word (e.g. target word dog is the
subject of run, where run subj is the context).
We consider different window sizes and compare
window-based and dependency-based methods.

Feature granularity Context words, or “fea-
tures”, are often stemmed or lemmatised. We in-
vestigate the effect of stemming and lemmatisa-
tion, in particular to see whether the effect varies
with corpus size. We also consider more fine-
grained features in which each context word is
paired with a POS tag or a lexical category from
CCG (Steedman, 2000).

Similarity metric A variety of metrics can be
used to calculate the similarity between two vec-
tors. We consider the similarity metrics in Table 2.

Weighting Weighting schemes increase the im-
portance of contexts that are more indicative of the
meaning of the target word: the fact that cat co-
occurs with purr is much more informative than
its co-occurrence with the. Table 3 gives defini-
tions of the weighting schemes considered.

Stopwords, high frequency cut-off Function
words and stopwords are often considered too un-
informative to be suitable context words. Ignor-
ing them not only leads to a reduction in model
size and computational effort, but also to a more
informative distributional vector. Hence we fol-
lowed standard practice and did not use stopwords
as context words (using the stoplist in NLTK (Bird
et al., 2009)). The question we investigated is

2We will use the term “feature” or “context” or “context
word” to refer to contextual elements.
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Measure Definition

Euclidean 1

1+
√∑n

i=1(ui−vi)2

Cityblock 1
1+

∑n
i=1 |ui−vi|

Chebyshev 1
1+maxi |ui−vi|

Cosine u·v
|u||v|

Correlation (u−µu)·(v−µv)
|u||v|

Dice 2
∑n

i=0min(ui,vi)∑n
i=0 ui+vi

Jaccard u·v∑n
i=0 ui+vi

Jaccard2
∑n

i=0min(ui,vi)∑n
i=0max(ui,vi)

Lin
∑n

i=0 ui+vi

|u|+|v|

Tanimoto u·v
|u|+|v|−u·v

Jensen-Shannon Div 1− 1
2 (D(u||u+v

2 )+D(v||u+v
2 ))√

2 log 2

α-skew 1− D(u||αv+(1−α)u)√
2 log 2

Table 2: Similarity measures between vectors v
and u, where vi is the ith component of v

whether removing more context words, based on
a frequency cut-off, can improve performance.

3 Experiments

The parameter space is too large to analyse ex-
haustively, and so we adopted a strategy for how
to navigate through it, selecting certain parame-
ters to investigate first, which then get fixed or
“clamped” in the remaining experiments. Unless
specified otherwise, vectors are generated with the
following restrictions and transformations on fea-
tures: stopwords are removed, numbers mapped
to ‘NUM’, and only strings consisting of alphanu-
meric characters are allowed. In all experiments,
the features consist of the frequency-ranked first n
words in the given source corpus.

Four of the five similarity datasets (RG, MC,
W353, MEN) contain continuous scales of sim-
ilarity ratings for word pairs; hence we follow
standard practice in using a Spearman correlation
coefficient ρs for evaluation. The fifth dataset
(TOEFL) is a set of multiple-choice questions,
for which an accuracy measure is appropriate.
Calculating an aggregate score over all datasets
is non-trivial, since taking the mean of correla-
tion scores leads to an under-estimation of per-
formance; hence for the aggregate score we use
the Fisher-transformed z-variable of the correla-

Scheme Definition

None wij = fij

TF-IDF wij = log(fij)× log( N
nj

)

TF-ICF wij = log(fij)× log(N
fj

)

Okapi BM25 wij =
fij

0.5+1.5× fj
fj
j

+fij

log
N−nj+0.5

fij+0.5

ATC wij =
(0.5+0.5× fij

maxf
) log( N

nj
)√∑N

i=1[(0.5+0.5× fij
maxf

) log( N
nj

)]2

LTU wij =
(log(fij)+1.0) log( N

nj
)

0.8+0.2×fj× j
fj

MI wij = log
P (tij |cj)

P (tij)P (cj)

PosMI max(0,MI)

T-Test wij =
P (tij |cj)−P (tij)P (cj)√

P (tij)P (cj)

χ2 see (Curran, 2004, p. 83)

Lin98a wij =
fij×f
fi×fj

Lin98b wij = −1× log
nj

N

Gref94 wij =
log fij+1

lognj+1

Table 3: Term weighting schemes. fij denotes the
target word frequency in a particular context, fi

the total target word frequency, fj the total context
frequency, N the total of all frequencies, nj the
number of non-zero contexts. P (tij |cj) is defined
as fij

fj
and P (tij) as fij

N .

tion datasets, and take the weighted average of
its inverse over the correlation datasets and the
TOEFL accuracy score (Silver and Dunlap, 1987).

3.1 Vector size

The first parameter we investigate is vector size,
measured by the number of features. Vectors are
constructed from the BNC using a window-based
method, with a window size of 5 (2 words either
side of the target word). We experiment with vec-
tor sizes up to 0.5M features, which is close to the
total number of context words present in the en-
tire BNC according to our preprocessing scheme.
Features are added according to frequency in the
BNC, with increasingly more rare features being
added. For weighting we consider both Positive
Mutual Information and T-Test, which have been
found to work best in previous research (Bullinaria
and Levy, 2012; Curran, 2004). Similarity is com-
puted using Cosine.
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Figure 1: Impact of vector size on performance
across different datasets

The results in Figure 1 show a clear trend: for
both weighting schemes, performance no longer
improves after around 50,000 features; in fact, for
T-test weighting, and some of the datasets, perfor-
mance initially declines with an increase in fea-
tures. Hence we conclude that continuing to add
more rare features is detrimental to performance,
and that 50,000 features or less will give good per-
formance. An added benefit of smaller vectors is
the reduction in computational cost.

3.2 Window size

Recent studies have found that the best window
size depends on the task at hand. For example,
Hill et al. (2013) found that smaller windows work
best for measuring similarity of concrete nouns,
whereas larger window sizes work better for ab-
stract nouns. Schulte im Walde et al. (2013) found
that a large window size worked best for a com-
positionality dataset of German noun-noun com-
pounds. Similar relations between window size
and performance have been found for similar ver-
sus related words, as well as for similar versus as-
sociated words (Turney and Pantel, 2010).

We experiment with window sizes of 3, 5, 7, 9
and a full sentence. (A window size of n implies
n−1

2 words either side of the target word.) We
use Positive Mutual Information weighting, Co-
sine similarity, and vectors of size 50,000 (based
on the results from Section 3.1). Figure 2 shows
the results for all the similarity datasets, with the
aggregated score at the bottom right.

Performance was evaluated on three corpora,
in order to answer three questions: Does win-
dow size affect performance? Does corpus size
interact with window size? Does corpus sub-

Figure 2: Impact of window size across three cor-
pora

spacing interact with window size? Figure 2
clearly shows the answer to all three questions is
“yes”. First, ukWaC consistently outperforms the
BNC, across all window sizes, indicating that a
larger source corpus leads to better performance.
Second, we see that the larger ukWaC performs
better with smaller window sizes compared to the
BNC, with the best ukWaC performance typically
being found with a window size of only 3. For
the BNC, it appears that a larger window is able to
offset the smaller size of corpus to some extent.

We also evaluated on a sub-spaced Wikipedia
source corpus similar to Stone et al. (2008), which
performs much better with larger window sizes
than the BNC or ukWaC. Our explanation for this
result is that sub-spacing, resulting from search-
ing for Wikipedia pages with the appropriate tar-
get terms, provides a focused, less noisy corpus in
which context words some distance from the target
word are still relevant to its meaning.

In summary, the highest score is typically
achieved with the largest source corpora and
smallest window size, with the exception of the
much smaller sub-spaced Wikipedia corpus.

3.3 Context

The notion of context plays a key role in VSMs.
Pado and Lapata (2007) present a comparison of
window-based versus dependency-based methods
and conclude that dependency-based contexts give
better results. We also compare window-based and
dependency-based models.

Dependency-parsed versions of the BNC and
ukWaC were used to construct syntactically-
informed vectors, with a single, labelled arc be-
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Figure 3: Window versus dependency contexts

tween the target word and context word.3 Since
this effectively provides a window size of 3, we
also use a window size of 3 for the window-based
method (which provided the best results in Sec-
tion 3.2 with the ukWaC corpus). As well as
the ukWaC and BNC source corpora, we use the
Google syntactic N-gram corpus (Goldberg and
Orwant, 2013), which is one of the largest cor-
pora to date, and which consists of syntactic n-
grams as opposed to window-based n-grams. We
use vectors of size 50,000 with Positive Mutual In-
formation weighting and Cosine similarity. Due
to its size and associated computational cost, we
used only 10,000 contexts for the vectors gener-
ated from the syntactic N-gram corpus. The re-
sults are shown in Figure 3.

In contrast to the idea that dependency-based
methods outperform window-based methods, we
find that the window-based models outperform
dependency-based models when they are con-
structed from the same corpus using the small
window size. However, Google’s syntactic N-
gram corpus does indeed outperform window-
based methods, even though smaller vectors were
used for the Google models (10,000 vs. 50,000
features). We observe large variations across
datasets, with window-based methods performing
particularly well on some, but not all. In partic-
ular, window-based methods clearly outperform
dependency-based methods on the RG dataset (for
the same source corpus), whereas the opposite
trend is observed for the TOEFL synonym dataset.
The summary is that the model built from the syn-
tactic N-grams is the overall winner, but when we

3The Clark and Curran (2007) parser was used to provide
the dependencies.

compare both methods on the same corpus, the
window-based method on a large corpus appears
to work best (given the small window size).

3.4 Feature granularity

Stemming and lemmatisation are standard tech-
niques in NLP and IR to reduce data sparsity.
However, with large enough corpora it may be
that the loss of information through generalisa-
tion hurts performance. In fact, it may be that in-
creased granularity – through the use of grammat-
ical tags – can lead to improved performance. We
test these hypotheses by comparing four types of
processed context words: lemmatised, stemmed,
POS-tagged, and tagged with CCG lexical cate-
gories (which can be thought of as fine-grained
POS tags (Clark and Curran, 2007)).4 The source
corpora are BNC and ukWaC, using a window-
based method with windows of size 5, Positive
Mutual Information weighting, vectors of size
50,000 and Cosine similarity. The results are re-
ported in Figure 4.

The ukWaC-generated vectors outperform the
BNC-generated ones on all but a single instance
for each of the granularities. Stemming yields
the best overall performance, and increasing the
granularity does not lead to better results. Even
with a very large corpus like ukWaC, stemming
yields signficantly better results than not reduc-
ing the feature granularity at all. Conversely, apart
from the results on the TOEFL synonym dataset,
increasing the feature granularity of contexts by
including POS tags or CCG categories does not
yield any improvement.

3.5 Similarity-weighting combination

There is contrasting evidence in the literature re-
garding which combination of similarity metric
and weighting scheme works best. Here we inves-
tigate this question using vectors of size 50,000,
no processing of the context features (i.e., “nor-
mal” feature granularity), and a window-based
method with a window size of 5. Aggregated
scores across the datasets are reported in Tables
4 and 5 for the BNC and ukWaC, respectively.

There are some clear messages to be taken from
these large tables of results. First, two weighting
schemes perform better than the others: Positive
Mutual Information (PosMI) and T-Test. On the
BNC, the former yields the best results. There are

4Using NLTK’s Porter stemmer and WordNet lemmatiser.
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Figure 4: Feature granularity: stemmed (S), lem-
matised (L), normal (N), POS-tagged (T) and
CCG-tagged (C)

RG MC W353 MEN TOEFL
P+COS 0.74 0.64 0.50 0.66 0.76
P+COR 0.74 0.65 0.58 0.71 0.83
T+COS 0.78 0.69 0.54 0.68 0.78
T+COR 0.78 0.71 0.54 0.68 0.78

Table 6: Similarity scores on individual datasets
for positive mutual information (P) and T-test
(T) weighting, with cosine (COS) and correlation
(COR) similarity

three similarity metrics that perform particularly
well: Cosine, Correlation and the Tanimoto coef-
ficient (the latter also being similar to Cosine; see
Table 2). The Correlation similarity metric has the
most consistent performance across the different
weighting schemes, and yields the highest score
for both corpora. The most consistent weighting
scheme across the two source corpora and similar-
ity metrics appears to be PosMI.

The highest combined aggregate score is that of
PosMI with the Correlation metric, in line with
the conclusion of Bullinaria and Levy (2012) that
PosMI is the best weighting scheme5. However,
for the large ukWaC corpus, T-Test achieves sim-
ilarly high aggregate scores, in line with the work
of Curran (2004). When we look at these two
weighting schemes in more detail, we see that T-
Test works best for the RG and MC datasets, while
PosMI works best for the others; see Table 6. Cor-
relation is the best similarity metric in all cases.

5In some cases, the combination of weighting scheme and
similarity metric results in a division by zero or leads to tak-
ing the logarithm of a negative number, in which cases we
report the aggregate scores as nan (not-a-number).

Figure 5: Finding the optimal “contiguous subvec-
tor” of size 10,000

3.6 Optimal subvector

Stopwords are typically removed from vectors and
not used as features. However, Bullinaria and
Levy (2012) find that removing stopwords has no
effect on performance. A possible explanation
is that, since they are using a weighting scheme,
the weights of stopwords are low enough that
they have effectively been removed anyhow. This
raises the question: are we removing stopwords
because they contribute little towards the meaning
of the target word, or are we removing them be-
cause they have high frequency?

The experiment used ukWaC, with a window-
based method and window size of 5, normal fea-
ture granularity, Cosine similarity and a sliding
vector of size 10,000. Having a sliding vector im-
plies that we throw away up to the first 40,000 con-
texts as we slide across to the 50,000 mark (replac-
ing the higher frequency contexts with lower fre-
quency ones). In effect, we are trying to find the
cut-off point where the 10,000-component “con-
tiguous subvector” of the target word vector is
optimal (where the features are ordered by fre-
quency). Results are given for PosMI, T-Test and
no weighting at all.

The results are shown in Figure 5. T-test outper-
forms PosMI at the higher frequency ranges (to the
left of the plots) but PosMI gives better results for
some of the datasets further to the right. For both
weighting schemes the performance decreases as
high frequency contexts are replaced with lower
frequency contexts.

A different picture emerges when no weight-
ing is used, however. Here the performance can
increase as high-frequency contexts are replaced
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British National Corpus
COS COR DIC JC1 JC2 TAN LIN EUC CIB CHS JSD ASK

none 0.49 0.50 0.34 0.35 0.27 0.22 0.30 0.09 0.11 0.08 0.45 0.36
tfidf 0.43 0.44 0.33 0.34 0.22 0.16 0.27 0.13 0.12 0.16 0.38 0.32
tficf 0.47 0.48 0.34 0.36 0.23 0.16 0.27 0.13 0.12 0.15 0.40 0.33
okapi 0.40 0.42 0.37 0.42 0.22 0.23 0.26 0.25 0.15 0.14 0.37 0.26
atc 0.40 0.43 0.25 0.24 0.16 0.34 0.30 0.10 0.13 0.08 0.33 0.23
ltu 0.44 0.45 0.35 0.36 0.22 0.23 0.26 0.22 0.13 0.21 0.37 0.27
mi 0.58 0.61 0.31 0.56 0.29 -0.07 0.45 0.15 0.10 0.09 0.16 -0.04
posmi 0.63 0.66 0.52 0.58 0.35 -0.08 0.45 0.15 0.11 0.06 0.54 0.46
ttest 0.63 0.62 0.11 0.34 0.08 0.63 0.17 0.18 0.14 0.11 nan nan
chisquared 0.50 0.50 0.46 0.42 0.42 0.42 nan 0.06 0.07 0.08 0.57 0.52
lin98b 0.47 0.52 0.35 0.40 0.21 -0.10 0.29 0.10 0.11 nan 0.38 0.29
gref94 0.46 0.49 0.35 0.37 0.23 0.06 0.28 0.12 0.11 0.09 0.41 0.30

Table 4: Aggregated scores for combinations of weighting schemes and similarity metrics using the BNC.
The similarity metrics are Cosine (COS), Correlation (COR), Dice (DIC), Jaccard (JC1), Jaccard2 (JC2),
Tanimoto (TAN), Lin (LIN), Euclidean (EUC), CityBlock (CIB), Chebyshev (CHS), Jensen-Shannon
Divergence (JSD) and α-skew (ASK)

ukWaC
COS COR DIC JC1 JC2 TAN LIN EUC CIB CHS JSD ASK

none 0.55 0.55 0.28 0.35 0.24 0.41 0.31 0.06 0.09 0.08 0.56 0.49
tfidf 0.45 0.47 0.26 0.30 0.20 0.28 0.22 0.14 0.12 0.16 0.37 0.27
tficf 0.45 0.49 0.27 0.33 0.20 0.29 0.24 0.13 0.11 0.09 0.37 0.28
okapi 0.37 0.42 0.33 0.37 0.18 0.27 0.26 0.26 0.17 0.12 0.34 0.20
atc 0.34 0.42 0.13 0.13 0.08 0.15 0.28 0.10 0.09 0.07 0.28 0.15
ltu 0.43 0.48 0.30 0.34 0.19 0.26 0.25 0.26 0.16 0.24 0.36 0.23
mi 0.51 0.53 0.18 0.51 0.16 0.28 0.37 0.18 0.10 0.09 0.12 nan
posmi 0.67 0.70 0.56 0.62 0.42 0.59 0.52 0.23 0.15 0.06 0.60 0.49
ttest 0.70 0.70 0.16 0.48 0.10 0.70 0.22 0.16 0.11 0.15 nan nan
chisquared 0.57 0.58 0.52 0.56 0.44 0.52 nan 0.08 0.06 0.10 0.63 0.60
lin98b 0.43 0.63 0.31 0.37 0.20 0.23 0.26 0.09 0.10 nan 0.34 0.24
gref94 0.48 0.54 0.27 0.33 0.20 0.17 0.23 0.13 0.11 0.09 0.38 0.25

Table 5: Aggregated scores for combinations of weighting schemes and similarity metrics using ukWaC

with lower-frequency ones, with optimal perfor-
mance comparable to when weighting is used.
There are some scenarios where it may be ad-
vantageous not to use weighting, for example in
an online setting where the total set of vectors is
not fixed; in situations where use of a dimension-
ality reduction technique does not directly allow
for weighting, such as random indexing (Sahlgren,
2006); as well as in settings where calculating
weights is too expensive. Where to stop the slid-
ing window varies with the datasets, however, and
so our conclusion is that the default scheme should
be weighting plus high frequency contexts.

4 Compositionality

In order to examine whether optimal parame-
ters carry over to vectors that are combined into
phrasal vectors using a composition operator, we
perform a subset of our experiments on the canoni-
cal compositionality dataset from Mitchell and La-
pata (2010), using vector addition and pointwise
multiplication (the best performing operators in

the original study).
We evaluate using two source corpora (the BNC

and ukWaC) and two window sizes (small, with
a window size of 3; and big, where the full sen-
tence is the window). In addition to the weight-
ing schemes from the previous experiment, we in-
clude Mitchell & Lapata’s own weighting scheme,
which (in our notation) is defined as wij = fij×N

fi×fj
.

While all weighting schemes and similarity met-
rics were tested, we report only the best perform-
ing ones: correlations below 0.5 were ommitted
for the sake of brevity. Table 7 shows the results.

We find that many of our findings continue to
hold. PosMI and T-Test are the best performing
weighting schemes, together with Mitchell & La-
pata’s own weighting scheme. We find that ad-
dition outperforms multiplication (contrary to the
original study) and that small window sizes work
best, except in the VO case. Performance across
corpora is comparable. The best performing simi-
larity metrics are Cosine and Correlation, with the
latter having a slight edge over the former.
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BNC - Small window
AN NN VO ALL

add-posmi-cosine 0.57 0.56 0.52 0.55
add-posmi-correlation 0.66 0.60 0.53 0.60
add-ttest-cosine 0.59 0.54 0.53 0.56
add-ttest-correlation 0.60 0.54 0.53 0.56
add-mila-correlation 0.64 0.38 0.51 0.51

ukWaC - Small window
AN NN VO ALL

add-posmi-correlation 0.64 0.59 0.56 0.59
add-ttest-cosine 0.61 0.55 0.53 0.56
add-ttest-correlation 0.61 0.55 0.53 0.56
add-mila-correlation 0.64 0.48 0.57 0.56
mult-mila-correlation 0.52 0.44 0.63 0.53

BNC - Large window
AN NN VO ALL

add-posmi-correlation 0.47 0.49 0.57 0.51
add-ttest-cosine 0.50 0.53 0.60 0.54
add-ttest-correlation 0.50 0.53 0.60 0.54
add-mila-correlation 0.51 0.49 0.61 0.54
mult-posmi-correlation 0.48 0.48 0.66 0.54
mult-mila-correlation 0.53 0.51 0.67 0.57

ukWaC - Large window
AN NN VO ALL

add-posmi-correlation 0.46 0.44 0.60 0.50
add-ttest-cosine 0.46 0.46 0.59 0.50
add-ttest-correlation 0.47 0.46 0.60 0.51
add-mila-correlation 0.47 0.46 0.64 0.52
mult-posmi-correlation 0.44 0.46 0.65 0.52
mult-mila-correlation 0.56 0.49 0.70 0.58

Table 7: Selected Spearman ρ scores on the
Mitchell & Lapata 2010 compositionality dataset

5 Conclusion

Our experiments were designed to investigate a
wide range of VSM parameters, using a variety
of evaluation tasks and several source corpora.
Across each of the experiments, results are com-
petitive with the state of the art. Some important
messages can be taken away from this study:

Experiment 1 Larger vectors do not always lead
to better performance. As vector size increases,
performance stabilises, and a vector size of around
50,000 appears to be optimal.

Experiment 2 The size of the window has a
clear impact on performance: a large corpus with
a small window size performs best, but high per-
formance can be achieved on a small subspaced
corpus, if the window size is large.

Experiment 3 The size of the source corpus
is more important than whether the model is
window- or dependency-based. Window-based
methods with a window size of 3 yield better re-
sults than dependency-based methods with a win-
dow of 3 (i.e. having a single arc). The Google
Syntactic N-gram corpus yields very good perfor-

mance, but it is unclear whether this is due to being
dependency-based or being very large.

Experiment 4 The granularity of the context
words has a relatively low impact on performance,
but stemming yields the best results.

Experiment 5 The optimal combination of
weighting scheme and similarity metric is Posi-
tive Mutual Information with a mean-adjusted ver-
sion of Cosine that we have called Correlation.
Another high-performing weighting scheme is T-
Test, which works better for smaller vector sizes.
The Correlation similarity metric consistently out-
performs Cosine, and we recommend its use.

Experiment 6 Use of a weighting scheme ob-
viates the need for removing high-frequency fea-
tures. Without weighting, many of the high-
frequency features should be removed. However,
if weighting is an option we recommend its use.

Compositionality The best parameters for
individual vectors generally carry over to a com-
positional similarity task where phrasal similarity
is evaluated by combining vectors into phrasal
vectors.

Furthermore, we observe that in general perfor-
mance increases as source corpus size increases,
so we recommend using a corpus such as ukWaC
over smaller corpora like the BNC. Likewise,
since the MEN dataset is the largest similarity
dataset available and mirrors our aggregate score
the best across the various experiments, we rec-
ommend evaluating on that similarity task if only
a single dataset is used for evaluation.

Obvious extensions include an analysis of the
performance of the various dimensionality reduc-
tion techniques, examining the importance of win-
dow size and feature granularity for dependency-
based methods, and further exploring the relation
between the size and frequency distribution of a
corpus together with the optimal characteristics
(such as the high-frequency cut-off point) of vec-
tors generated from that source.
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Abstract
Automatic summarization can help users
extract the most important pieces of infor-
mation from the vast amount of text digi-
tized into electronic form everyday. Cen-
tral to automatic summarization is the no-
tion of similarity between sentences in
text. In this paper we propose the use of
continuous vector representations for se-
mantically aware representations of sen-
tences as a basis for measuring similar-
ity. We evaluate different compositions
for sentence representation on a standard
dataset using the ROUGE evaluation mea-
sures. Our experiments show that the eval-
uated methods improve the performance
of a state-of-the-art summarization frame-
work and strongly indicate the benefits
of continuous word vector representations
for automatic summarization.

1 Introduction

The goal of summarization is to capture the im-
portant information contained in large volumes of
text, and present it in a brief, representative, and
consistent summary. A well written summary can
significantly reduce the amount of work needed to
digest large amounts of text on a given topic. The
creation of summaries is currently a task best han-
dled by humans. However, with the explosion of
available textual data, it is no longer financially
possible, or feasible, to produce all types of sum-
maries by hand. This is especially true if the sub-
ject matter has a narrow base of interest, either due
to the number of potential readers or the duration
during which it is of general interest. A summary
describing the events of World War II might for
instance be justified to create manually, while a
summary of all reviews and comments regarding
a certain version of Windows might not. In such
cases, automatic summarization is a way forward.

In this paper we introduce a novel application
of continuous vector representations to the prob-
lem of multi-document summarization. We evalu-
ate different compositions for producing sentence
representations based on two different word em-
beddings on a standard dataset using the ROUGE
evaluation measures. Our experiments show that
the evaluated methods improve the performance of
a state-of-the-art summarization framework which
strongly indicate the benefits of continuous word
vector representations for this tasks.

2 Summarization

There are two major types of automatic summa-
rization techniques, extractive and abstractive. Ex-
tractive summarization systems create summaries
using representative sentences chosen from the in-
put while abstractive summarization creates new
sentences and is generally considered a more dif-
ficult problem.

Figure 1: Illustration of Extractive Multi-
Document Summarization.

For this paper we consider extractive multi-
document summarization, that is, sentences are
chosen for inclusion in a summary from a set of
documents D. Typically, extractive summariza-
tion techniques can be divided into two compo-
nents, the summarization framework and the sim-
ilarity measures used to compare sentences. Next
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we present the algorithm used for the framework
and in Sec. 2.2 we discuss a typical sentence sim-
ilarity measure, later to be used as a baseline.

2.1 Submodular Optimization
Lin and Bilmes (2011) formulated the problem of
extractive summarization as an optimization prob-
lem using monotone nondecreasing submodular
set functions. A submodular function F on the
set of sentences V satisfies the following property:
for any A ⊆ B ⊆ V \{v}, F (A+ {v})−F (A) ≥
F (B + {v})− F (B) where v ∈ V . This is called
the diminishing returns property and captures the
intuition that adding a sentence to a small set of
sentences (i.e., summary) makes a greater contri-
bution than adding a sentence to a larger set. The
aim is then to find a summary that maximizes di-
versity of the sentences and the coverage of the in-
put text. This objective function can be formulated
as follows:

F(S) = L(S) + λR(S)

where S is the summary, L(S) is the coverage of
the input text,R(S) is a diversity reward function.
The λ is a trade-off coefficient that allows us to
define the importance of coverage versus diversity
of the summary. In general, this kind of optimiza-
tion problem is NP-hard, however, if the objective
function is submodular there is a fast scalable al-
gorithm that returns an approximation with a guar-
antee. In the work of Lin and Bilmes (2011) a sim-
ple submodular function is chosen:

L(S) =
∑
i∈V

min{
∑
j∈S

Sim(i, j), α
∑
j∈V

Sim(i, j)}

(1)
The first argument measures similarity between
sentence i and the summary S, while the sec-
ond argument measures similarity between sen-
tence i and the rest of the input V . Sim(i, j) is
the similarity between sentence i and sentence j
and 0 ≤ α ≤ 1 is a threshold coefficient. The di-
versity reward functionR(S) can be found in (Lin
and Bilmes, 2011).

2.2 Traditional Similarity Measure
Central to most extractive summarization sys-
tems is the use of sentence similarity measures
(Sim(i, j) in Eq. 1). Lin and Bilmes measure
similarity between sentences by representing each
sentence using tf-idf (Salton and McGill, 1986)
vectors and measuring the cosine angle between

vectors. Each sentence is represented by a word
vector w = (w1, . . . , wN ) where N is the size of
the vocabulary. Weights wki correspond to the tf-
idf value of word k in the sentence i. The weights
Sim(i, j) used in the L function in Eq. 1 are found
using the following similarity measure.

Sim(i, j) =

∑
w∈i

tfw,i × tfw,j × idf2w√∑
w∈i

tf2w,i × idf2w
√ ∑

w∈j
tf2w,j × idf2w

(2)
where tfw,i and tfw,j are the number of occur-

rences of w in sentence i and j, and idfw is the
inverse document frequency (idf ) of w.

In order to have a high similarity between sen-
tences using the above measure, two sentences
must have an overlap of highly scored tf-idf words.
The overlap must be exact to count towards the
similarity, e.g, the terms The US President and
Barack Obama in different sentences will not add
towards the similarity of the sentences. To cap-
ture deeper similarity, in this paper we will inves-
tigate the use of continuous vector representations
for measuring similarity between sentences. In the
next sections we will describe the basics needed
for creating continuous vector representations and
methods used to create sentence representations
that can be used to measure sentence similarity.

3 Background on Deep Learning

Deep learning (Hinton et al., 2006; Bengio, 2009)
is a modern interpretation of artificial neural net-
works (ANN), with an emphasis on deep network
architectures. Deep learning can be used for chal-
lenging problems like image and speech recogni-
tion (Krizhevsky et al., 2012; Graves et al., 2013),
as well as language modeling (Mikolov et al.,
2010), and in all cases, able to achieve state-of-
the-art results.

Inspired by the brain, ANNs use a neuron-like
construction as their primary computational unit.
The behavior of a neuron is entirely controlled by
its input weights. Hence, the weights are where
the information learned by the neuron is stored.
More precisely the output of a neuron is computed
as the weighted sum of its inputs, and squeezed
into the interval [0, 1] using a sigmoid function:

yi = g(θT
i x) (3)

g(z) =
1

1 + e−z
(4)
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Figure 2: FFNN with four input neurons, one hid-
den layer, and 1 output neuron. This type of ar-
chitecture is appropriate for binary classification
of some data x ∈ R4, however depending on the
complexity of the input, the number and size of the
hidden layers should be scaled accordingly.

where θi are the weights associated with neuron i
and x is the input. Here the sigmoid function (g) is
chosen to be the logistic function, but it may also
be modeled using other sigmoid shaped functions,
e.g. the hyperbolic tangent function.

The neurons can be organized in many differ-
ent ways. In some architectures, loops are permit-
ted. These are referred to as recurrent neural net-
works. However, all networks considered here are
non-cyclic topologies. In the rest of this section
we discuss a few general architectures in more de-
tail, which will later be employed in the evaluated
models.

3.1 Feed Forward Neural Network
A feed forward neural network (FFNN) (Haykin,
2009) is a type of ANN where the neurons are
structured in layers, and only connections to sub-
sequent layers are allowed, see Fig 2. The algo-
rithm is similar to logistic regression using non-
linear terms. However, it does not rely on the
user to choose the non-linear terms needed to fit
the data, making it more adaptable to changing
datasets. The first layer in a FFNN is called the
input layer, the last layer is called the output layer,
and the interim layers are called hidden layers.
The hidden layers are optional but necessary to fit
complex patterns.

Training is achieved by minimizing the network
error (E). How E is defined differs between dif-
ferent network architectures, but is in general a
differentiable function of the produced output and

x1

x2

x3

x4

x′1

x′2

x′3

x′4

Coding
layer

Input
layer

Reconstruction
layer

Figure 3: The figure shows an auto-encoder that
compresses four dimensional data into a two di-
mensional code. This is achieved by using a bot-
tleneck layer, referred to as a coding layer.

the expected output. In order to minimize this
function the gradient ∂E

∂Θ first needs to be calcu-
lated, where Θ is a matrix of all parameters, or
weights, in the network. This is achieved using
backpropagation (Rumelhart et al., 1986). Sec-
ondly, these gradients are used to minimize E us-
ing e.g. gradient descent. The result of this pro-
cesses is a set of weights that enables the network
to do the desired input-output mapping, as defined
by the training data.

3.2 Auto-Encoder

An auto-encoder (AE) (Hinton and Salakhutdinov,
2006), see Fig. 3, is a type of FFNN with a topol-
ogy designed for dimensionality reduction. The
input and the output layers in an AE are identical,
and there is at least one hidden bottleneck layer
that is referred to as the coding layer. The net-
work is trained to reconstruct the input data, and
if it succeeds this implies that all information in
the data is necessarily contained in the compressed
representation of the coding layer.

A shallow AE, i.e. an AE with no extra hid-
den layers, will produce a similar code as princi-
pal component analysis. However, if more layers
are added, before and after the coding layer, non-
linear manifolds can be found. This enables the
network to compress complex data, with minimal
loss of information.

3.3 Recursive Neural Network

A recursive neural network (RvNN), see Fig. 4,
first presented by Socher et al. (2010), is a type of
feed forward neural network that can process data
through an arbitrary binary tree structure, e.g. a
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Figure 4: The recursive neural network architec-
ture makes it possible to handle variable length in-
put data. By using the same dimensionality for all
layers, arbitrary binary tree structures can be re-
cursively processed.

binary parse tree produced by linguistic parsing of
a sentence. This is achieved by enforcing weight
constraints across all nodes and restricting the out-
put of each node to have the same dimensionality
as its children.

The input data is placed in the leaf nodes of
the tree, and the structure of this tree is used to
guide the recursion up to the root node. A com-
pressed representation is calculated recursively at
each non-terminal node in the tree, using the same
weight matrix at each node. More precisely, the
following formulas can be used:

zp = θT
p [xl; xr] (5a)

yp = g(zp) (5b)

where yp is the computed parent state of neuron
p, and zp the induced field for the same neuron.
[xl; xr] is the concatenation of the state belonging
to the right and left sibling nodes. This process re-
sults in a fixed length representation for hierarchi-
cal data of arbitrary length. Training of the model
is done using backpropagation through structure,
introduced by Goller and Kuchler (1996).

4 Word Embeddings

Continuous distributed vector representation of
words, also referred to as word embeddings, was
first introduced by Bengio et al. (2003). A word
embedding is a continuous vector representation
that captures semantic and syntactic information
about a word. These representations can be used
to unveil dimensions of similarity between words,
e.g. singular or plural.

4.1 Collobert & Weston
Collobert and Weston (2008) introduce an efficient
method for computing word embeddings, in this
work referred to as CW vectors. This is achieved
firstly, by scoring a valid n-gram (x) and a cor-
rupted n-gram (x̄) (where the center word has been
randomly chosen), and secondly, by training the
network to distinguish between these two n-grams.
This is done by minimizing the hinge loss

max(0, 1− s(x) + s(x̄)) (6)

where s is the scoring function, i.e. the output of
a FFNN that maps between the word embeddings
of an n-gram to a real valued score. Both the pa-
rameters of the scoring function and the word em-
beddings are learned in parallel using backpropa-
gation.

4.2 Continuous Skip-gram
A second method for computing word embeddings
is the Continuous Skip-gram model, see Fig. 5, in-
troduced by Mikolov et al. (2013a). This model is
used in the implementation of their word embed-
dings tool Word2Vec. The model is trained to pre-
dict the context surrounding a given word. This is
accomplished by maximizing the objective func-
tion

1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (7)

where T is the number of words in the training
set, and c is the length of the training context.
The probability p(wt+j |wt) is approximated using
the hierarchical softmax introduced by Bengio et
al. (2002) and evaluated in a paper by Morin and
Bengio (2005).

5 Phrase Embeddings

Word embeddings have proven useful in many nat-
ural language processing (NLP) tasks. For sum-
marization, however, sentences need to be com-
pared. In this section we present two different
methods for deriving phrase embeddings, which
in Section 5.3 will be used to compute sentence to
sentence similarities.

5.1 Vector addition
The simplest way to represent a sentence is to
consider it as the sum of all words without re-
garding word orders. This was considered by
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Figure 5: The continuous Skip-gram model. Us-
ing the input word (wt) the model tries to predict
which words will be in its context (wt±c).

Mikolov et al. (2013b) for representing short
phrases. The model is expressed by the following
equation:

xp =
∑

xw∈{sentence}
xw (8)

where xp is a phrase embedding, and xw is a word
embedding. We use this method for computing
phrase embeddings as a baseline in our experi-
ments.

5.2 Unfolding Recursive Auto-encoder

The second model is more sophisticated, tak-
ing into account also the order of the words
and the grammar used. An unfolding recursive
auto-encoder (RAE) is used to derive the phrase
embedding on the basis of a binary parse tree.
The unfolding RAE was introduced by Socher et
al. (2011) and uses two RvNNs, one for encoding
the compressed representations, and one for de-
coding them to recover the original sentence, see
Figure 6. The network is subsequently trained by
minimizing the reconstruction error.

Forward propagation in the network is done by
recursively applying Eq. 5a and 5b for each triplet
in the tree in two phases. First, starting at the cen-
ter node (root of the tree) and recursively pulling
the data from the input. Second, again starting
at the center node, recursively pushing the data
towards the output. Backpropagation is done in
a similar manner using backpropagation through
structure (Goller and Kuchler, 1996).

x1

x2

x3

x′1

x′2

x′3

Root
layer

Input
layer

Output
layer

θe θd

Figure 6: The structure of an unfolding RAE, on
a three word phrase ([x1, x2, x3]). The weight ma-
trix θe is used to encode the compressed represen-
tations, while θd is used to decode the representa-
tions and reconstruct the sentence.

5.3 Measuring Similarity
Phrase embeddings provide semantically aware
representations for sentences. For summarization,
we need to measure the similarity between two
representations and will make use of the following
two vector similarity measures. The first similar-
ity measure is the cosine similarity, transformed to
the interval of [0, 1]

Sim(i, j) =
(

xT
i xj

‖xj‖‖xj‖ + 1
)

/2 (9)

where x denotes a phrase embedding The second
similarity is based on the complement of the Eu-
clidean distance and computed as:

Sim(i, j) = 1− 1
max
k,n

√‖ xk − xn ‖2

√
‖ xj − xi ‖2

(10)

6 Experiments

In order to evaluate phrase embeddings for sum-
marization we conduct several experiments and
compare different phrase embeddings with tf-idf
based vectors.

6.1 Experimental Settings
Seven different configuration were evaluated. The
first configuration provides us with a baseline and
is denoted Original for the Lin-Bilmes method
described in Sec. 2.1. The remaining configura-
tions comprise selected combinations of word em-
beddings, phrase embeddings, and similarity mea-
sures.
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The first group of configurations are based on
vector addition using both Word2Vec and CW vec-
tors. These vectors are subsequently compared us-
ing both cosine similarity and Euclidean distance.
The second group of configurations are built upon
recursive auto-encoders using CW vectors and are
also compared using cosine similarity as well as
Euclidean distance.

The methods are named according to:
VectorType EmbeddingMethodSimilarityMethod,
e.g. W2V_AddCos for Word2Vec vectors com-
bined using vector addition and compared using
cosine similarity.

To get an upper bound for each ROUGE score
an exhaustive search were performed, where each
possible pair of sentences were evaluated, and
maximized w.r.t the ROUGE score.

6.2 Dataset and Evaluation
The Opinosis dataset (Ganesan et al., 2010) con-
sists of short user reviews in 51 different top-
ics. Each of these topics contains between 50 and
575 sentences and are a collection of user reviews
made by different authors about a certain charac-
teristic of a hotel, car or a product (e.g. ”Loca-
tion of Holiday Inn, London” and ”Fonts, Ama-
zon Kindle”). The dataset is well suited for multi-
document summarization (each sentence is con-
sidered its own document), and includes between
4 and 5 gold-standard summaries (not sentences
chosen from the documents) created by human au-
thors for each topic.

Each summary is evaluated with ROUGE, that
works by counting word overlaps between gener-
ated summaries and gold standard summaries. Our
results include R-1, R-2, and R-SU4, which counts
matches in unigrams, bigrams, and skip-bigrams
respectively. The skip-bigrams allow four words
in between (Lin, 2004).

The measures reported are recall (R), precision
(P), and F-score (F), computed for each topic indi-
vidually and averaged. Recall measures what frac-
tion of a human created gold standard summary
that is captured, and precision measures what frac-
tion of the generated summary that is in the gold
standard. F-score is a standard way to combine
recall and precision, computed as F = 2 P∗R

P+R .

6.3 Implementation
All results were obtained by running an imple-
mentation of Lin-Bilmes submodular optimization
summarizer, as described in Sec. 2.1. Also, we

have chosen to fix the length of the summaries
to two sentences because the length of the gold-
standard summaries are typically around two sen-
tences. The CW vectors used were trained by
Turian et al. (2010)1, and the Word2Vec vectors
by Mikolov et al. (2013b)2. The unfolding RAE
used is based on the implementation by Socher
et al. (2011)3, and the parse trees for guiding
the recursion was generated using the Stanford
Parser (Klein and Manning, 2003)4.

6.4 Results
The results from the ROUGE evaluation are com-
piled in Table 1. We find for all measures (recall,
precision, and F-score), that the phrase embed-
dings outperform the original Lin-Bilmes. For re-
call, we find that CW_AddCos achieves the high-
est result, while for precision and F-score the
CW_AddEuc perform best. These results are con-
sistent for all versions of ROUGE scores reported
(1, 2 and SU4), providing a strong indication for
phrase embeddings in the context of automatic
summarization.

Unfolding RAE on CW vectors and vector ad-
dition on W2V vectors gave comparable results
w.r.t. each other, generally performing better than
original Linn-Bilmes but not performing as well as
vector addition of CW vectors.

The results denoted OPT in Table 1 describe
the upper bound score, where each row repre-
sents optimal recall and F-score respectively. The
best results are achieved for R-1 with a maxi-
mum recall of 57.86%. This is a consequence of
hand created gold standard summaries used in the
evaluation, that is, we cannot achieve full recall
or F-score when the sentences in the gold stan-
dard summaries are not taken from the underly-
ing documents and thus, they can never be fully
matched using extractive summarization. R-2 and
SU4 have lower maximum recall and F-score, with
22.9% and 29.5% respectively.

6.5 Discussion
The results of this paper show great potential for
employing word and phrase embeddings in sum-
marization. We believe that by using embeddings
we move towards more semantically aware sum-
marization systems. In the future, we anticipate

1http://metaoptimize.com/projects/wordreprs/
2https://code.google.com/p/word2vec/
3http://nlp.stanford.edu/ socherr/codeRAEVectorsNIPS2011.zip
4http://nlp.stanford.edu/software/lex-parser.shtml
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Table 1: ROUGE scores for summaries using dif-
ferent similarity measures. OPT constitutes the
optimal ROUGE scores on this dataset.

ROUGE-1

R P F

OPTR 57.86 21.96 30.28
OPTF 45.93 48.84 46.57

CW_RAECos 27.37 19.89 22.00
CW_RAEEuc 29.25 19.77 22.62
CW_AddCos 34.72 11.75 17.16
CW_AddEuc 29.12 22.75 24.88
W2V_AddCos 30.86 16.81 20.93
W2V_AddEuc 28.71 16.67 20.75

Original 25.82 19.58 20.57

ROUGE-2

R P F

OPTR 22.96 12.31 15.33
OPTF 20.42 19.94 19.49

CW_RAECos 4.68 3.18 3.58
CW_RAEEuc 4.82 3.24 3.67
CW_AddCos 5.89 1.81 2.71
CW_AddEuc 5.12 3.60 4.10
W2V_AddCos 5.71 3.08 3.82
W2V_AddEuc 3.86 1.95 2.54

Original 3.92 2.50 2.87

ROUGE-SU4

R P F

OPTR 29.50 13.53 17.70
OPTF 23.17 26.50 23.70

CW_RAECos 9.61 6.23 6.95
CW_RAEEuc 9.95 6.17 7.04
CW_AddCos 12.38 3.27 5.03
CW_AddEuc 10.54 7.59 8.35
W2V_AddCos 11.94 5.52 7.12
W2V_AddEuc 9.78 4.69 6.15

Original 9.15 6.74 6.73

improvements for the field of automatic summa-
rization as the quality of the word vectors im-
prove and we find enhanced ways of composing
and comparing the vectors.

It is interesting to compare the results of dif-
ferent composition techniques on the CW vec-
tors, where vector addition surprisingly outper-

forms the considerably more sophisticated unfold-
ing RAE. However, since the unfolding RAE uses
syntactic information, this may be a result of using
a dataset consisting of low quality text.

In the interest of comparing word embeddings,
results using vector addition and cosine similarity
were computed based on both CW and Word2Vec
vectors. Supported by the achieved results CW
vectors seems better suited for sentence similari-
ties in this setting.

An issue we encountered with using precom-
puted word embeddings was their limited vocab-
ulary, in particular missing uncommon (or com-
mon incorrect) spellings. This problem is par-
ticularly pronounced on the evaluated Opinosis
dataset, since the text is of low quality. Future
work is to train word embeddings on a dataset used
for summarization to better capture the specific se-
mantics and vocabulary.

The optimal R-1 scores are higher than R-2 and
SU4 (see Table 1) most likely because the score ig-
nores word order and considers each sentence as a
set of words. We come closest to the optimal score
for R-1, where we achieve 60% of maximal recall
and 49% of F-score. Future work is to investigate
why we achieve a much lower recall and F-score
for the other ROUGE scores.

Our results suggest that the phrase embeddings
capture the kind of information that is needed for
the summarization task. The embeddings are the
underpinnings of the decisions on which sentences
that are representative of the whole input text, and
which sentences that would be redundant when
combined in a summary. However, the fact that
we at most achieve 60% of maximal recall sug-
gests that the phrase embeddings are not complete
w.r.t summarization and might benefit from being
combined with other similarity measures that can
capture complementary information, for example
using multiple kernel learning.

7 Related Work

To the best of our knowledge, continuous vector
space models have not previously been used in
summarization tasks. Therefore, we split this sec-
tion in two, handling summarization and continu-
ous vector space models separately.

7.1 Continuous Vector Space Models

Continuous distributed vector representation of
words was first introduced by Bengio et al. (2003).
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They employ a FFNN, using a window of words
as input, and train the model to predict the next
word. This is computed using a big softmax layer
that calculate the probabilities for each word in the
vocabulary. This type of exhaustive estimation is
necessary in some NLP applications, but makes
the model heavy to train.

If the sole purpose of the model is to derive
word embeddings this can be exploited by using
a much lighter output layer. This was suggested
by Collobert and Weston (2008), which swapped
the heavy softmax against a hinge loss function.
The model works by scoring a set of consecutive
words, distorting one of the words, scoring the dis-
torted set, and finally training the network to give
the correct set a higher score.

Taking the lighter concept even further,
Mikolov et al. (2013a) introduced a model called
Continuous Skip-gram. This model is trained
to predict the context surrounding a given word
using a shallow neural network. The model is less
aware of the order of words, than the previously
mentioned models, but can be trained efficiently
on considerably larger datasets.

An early attempt at merging word represen-
tations into representations for phrases and sen-
tences is introduced by Socher et al. (2010). The
authors present a recursive neural network archi-
tecture (RvNN) that is able to jointly learn parsing
and phrase/sentence representation. Though not
able to achieve state-of-the-art results, the method
provides an interesting path forward. The model
uses one neural network to derive all merged rep-
resentations, applied recursively in a binary parse
tree. This makes the model fast and easy to train
but requires labeled data for training.

7.2 Summarization Techniques

Radev et al. (2004) pioneered the use of cluster
centroids in their work with the idea to group, in
the same cluster, those sentences which are highly
similar to each other, thus generating a number
of clusters. To measure the similarity between a
pair of sentences, the authors use the cosine simi-
larity measure where sentences are represented as
weighted vectors of tf-idf terms. Once sentences
are clustered, sentence selection is performed by
selecting a subset of sentences from each cluster.

In TextRank (2004), a document is represented
as a graph where each sentence is denoted by a
vertex and pairwise similarities between sentences

are represented by edges with a weight corre-
sponding to the similarity between the sentences.
The Google PageRank ranking algorithm is used
to estimate the importance of different sentences
and the most important sentences are chosen for
inclusion in the summary.

Bonzanini, Martinez, Roelleke (2013) pre-
sented an algorithm that starts with the set of
all sentences in the summary and then iteratively
chooses sentences that are unimportant and re-
moves them. The sentence removal algorithm ob-
tained good results on the Opinosis dataset, in par-
ticular w.r.t F-scores.

We have chosen to compare our work with that
of Lin and Bilmes (2011), described in Sec. 2.1.
Future work is to make an exhaustive comparison
using a larger set similarity measures and summa-
rization frameworks.

8 Conclusions

We investigated the effects of using phrase embed-
dings for summarization, and showed that these
can significantly improve the performance of the
state-of-the-art summarization method introduced
by Lin and Bilmes in (2011). Two implementa-
tions of word vectors and two different approaches
for composition where evaluated. All investi-
gated combinations improved the original Lin-
Bilmes approach (using tf-idf representations of
sentences) for at least two ROUGE scores, and top
results where found using vector addition on CW
vectors.

In order to further investigate the applicability
of continuous vector representations for summa-
rization, in future work we plan to try other sum-
marization methods. In particular we will use a
method based on multiple kernel learning were
phrase embeddings can be combined with other
similarity measures. Furthermore, we aim to use
a novel method for sentence representation similar
to the RAE using multiplicative connections con-
trolled by the local context in the sentence.

Acknowledgments

The authors would like to acknowledge the project
Towards a knowledge-based culturomics sup-
ported by a framework grant from the Swedish
Research Council (2012–2016; dnr 2012-5738),
and the project Data-driven secure business intel-
ligence grant IIS11-0089 from the Swedish Foun-
dation for Strategic Research (SSF).

38



References
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1215, Département d’informatique et recherche
opérationnelle, Université de Montréal.
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Abstract

This paper presents a series of experiments
in applying compositional distributional
semantic models to dialogue act classifica-
tion. In contrast to the widely used bag-of-
words approach, we build the meaning of
an utterance from its parts by composing
the distributional word vectors using vec-
tor addition and multiplication. We inves-
tigate the contribution of word sequence,
dialogue act sequence, and distributional
information to the performance, and com-
pare with the current state of the art ap-
proaches. Our experiment suggests that
that distributional information is useful for
dialogue act tagging but that simple mod-
els of compositionality fail to capture cru-
cial information from word and utterance
sequence; more advanced approaches (e.g.
sequence- or grammar-driven, such as cat-
egorical, word vector composition) are re-
quired.

1 Introduction

One of the fundamental tasks in automatic dia-
logue processing is dialogue act tagging: labelling
each utterance with a tag relating to its function
in the dialogue and effect on the emerging con-
text: greeting, query, statement etc (see e.g. (Core,
1998)). Although factors such as intonation also
play a role (see e.g. (Jurafsky et al., 1998)), one
of the most important sources of information in
this task is the semantic meaning of an utterance,
and this is reflected in the fact that people use
similar words when they perform similar utterance
acts. For example, utterances which state opinion
(tagged sv in the standard DAMSL schema, see
below) often include words such as “I think”, “I
believe”, “I guess” etc. Hence, a similarity-based
model of meaning — for instance, a distributional

semantic model — should provide benefits over
a purely word-based model for dialogue act tag-
ging. However, since utterances generally con-
sist of more than one word, one has to be able
to extend such similarity-based models from sin-
gle words to sentences and/or complete utterances.
Hence, we consider here the application of compo-
sitional distributional semantics for this task.

Here, we extend bag-of-word models com-
mon in previous approaches (Serafin et al., 2003)
with simple compositional distributional opera-
tions (Mitchell and Lapata, 2008) and examine the
improvements gained. These improvements sug-
gest that distributional information does improve
performance, but that more sophisticated compo-
sitional operations such as matrix multiplication
(Baroni and Zamparelli, 2010; Grefenstette and
Sadrzadeh, 2011) should provide further benefits.

The state of the art is a supervised method
based on Recurrent Convolutional Neural Net-
works (Kalchbrenner and Blunsom, 2013). This
method learns both the sentence model and the
discourse model from the same training corpus,
making it hard to understand how much of the
contribution comes from the inclusion of distribu-
tional word meaning, and how much from learn-
ing patterns specific to the corpus at hand. Here,
in contrast, we use an external unlabeled resource
to obtain a model of word meaning, composing
words to obtain representations for utterances, and
rely on training data only for discourse learning
for the tagging task itself.

We proceed as follows. First, we discuss related
work by introducing distributional semantics and
describe common approaches for dialogue act tag-
ging in Section 2. Section 3 proposes several mod-
els for utterance representation based on the bag of
words approach and word vector composition. We
describe the experiment and discuss the result in
Section 4. Finally, Section 5 concludes the work.
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2 Related work

Distributional semantics The aim of natural
language semantics is to provide logical represen-
tations of meaning for information in textual form.
Distributional semantics is based on the idea that
“You shall know a word by the company it keeps”
(Firth, 1957) – in other words, the meaning of a
word is related to the contexts it appears in. Fol-
lowing this idea, word meaning can be represented
as a vector where its dimensions correspond to the
usage contexts, usually other words observed to
co-occur, and the values are the co-occurrence fre-
quencies. Such a meaning representation is easy
to build from raw data and does not need rich an-
notation.

Methods based on this distributional hypothe-
sis have recently been applied to many tasks, but
mostly at the word level: for instance, word sense
disambiguation (Zhitomirsky-Geffet and Dagan,
2009) and lexical substitution (Thater et al., 2010).
They exploit the notion of similarity which corre-
lates with the angle between word vectors (Turney
et al., 2010). Compositional distributional seman-
tics goes beyond the word level and models the
meaning of phrases or sentences based on their
parts. Mitchell and Lapata (2008) perform com-
position of word vectors using vector addition and
multiplication operations. The limitation of this
approach is the operator associativity, which ig-
nores the argument order, and thus word order. As
a result, “John loves Mary” and “Mary loves John”
get assigned the same meaning.

To capture word order, various approaches
have been proposed. Grefenstette and Sadrzadeh
(2011) extend the compositional approach by us-
ing non-associative linear algebra operators as
proposed in the theoretical work of (Coecke et
al., 2010). Socher et al. (2012) present a recur-
sive technique to build compositional meaning of
phrases from their constituents, where the non-
linear composition operators are learned by Neural
Networks.

Dialogue act tagging There are many ways to
approach the task of dialogue act tagging (Stol-
cke et al., 2000). The most successful approaches
combine intra-utterance features, such as the (se-
quences of) words and intonational contours used,
together with inter-utterance features, such as the
sequence of utterance tags being used previously.
To capture both of these aspects, sequence models

such as Hidden Markov Models are widely used
(Stolcke et al., 2000; Surendran and Levow, 2006).
The sequence of words is an observable variable,
while the sequence of dialogue act tags is a hidden
variable.

However, some approaches have shown com-
petitive results without exploiting features of inter-
utterance context. Webb et al. (2005) concentrate
only on features found inside an utterance, identi-
fying ngrams that correlate strongly with particu-
lar utterance tags, and propose a statistical model
for prediction which produces close to the state of
the art results.

The current state of the art (Kalchbrenner and
Blunsom, 2013) uses Recurrent Convolutional
Neural Networks to achieve high accuracy. This
model includes information about word identity,
intra-utterance word sequence, and inter-utterance
tag sequence, by using a vector space model of
words with a compositional approach. The words
vectors are not based on distributional frequencies
in this case, however, but on randomly initialised
vectors, with the model trained on a specific cor-
pus. This raises several questions: what is the con-
tribution of word sequence and/or utterance (tag)
sequence; and might further gains be made by ex-
ploiting the distributional hypothesis?

As our baseline, we start with an approach
which uses only word information, and excludes
word sequence, tag sequence and word distribu-
tions. Serafin et al. (2003) use Latent Semantic
Analysis for dialogue act tagging: utterances are
represented using a bag-of-words representation
in a word-document matrix. The rows in the ma-
trix correspond to words, the columns correspond
to documents and each cell in the matrix contains
the number of times a word occurs in a document.
Singular Value Decomposition (SVD) is then ap-
plied to reduce the number of rows in the matrix,
with the number of components in the reduced
space set to 50. To predict the tag of an unseen
utterance, the utterance vector is mapped to the re-
duced space and the tag of the closest neighbor is
assigned to it (using cosine similarity as a similar-
ity measure). The reported accuracy on the Span-
ish Call Home corpus for predicting 37 different
utterance tags is 65.36%.

3 Utterance models

In this paper, we investigate the extent to which
distributional representations, word order infor-
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mation, and utterance order information can im-
prove this basic model, by choosing different ways
to represent an utterance in a vector space. We de-
sign three basic models. The first model is based
directly on the bag-of-words model which serves
as the baseline in our experiment, following (Ser-
afin et al., 2003); and extends this to investigate the
effect of word order information by moving from
word unigrams to bigrams. The second model
investigates distributional information, by calcu-
lating word vector representations from a general
corpus, and obtaining utterance representations by
composing the word vectors using simple opera-
tors. The third model extends this idea to inves-
tigate the role of utterance order information, by
including the information about the previous ut-
terance.

Bag of words The first model represents an ut-
terance as a vector where each component corre-
sponds to a word. The values of vector compo-
nents are the number of times the corresponding
words occured in the utterance. The model is sim-
ilar to (Serafin et al., 2003), but the matrix is trans-
posed. We refer to it as bag of unigrams in Table 1.

However, this bag of words approach does not
preserve any word order information. As it has
been said previously, for the dialogue act tagging
word order may be crucial. Consider these utter-
ances:

• John, are there cookies

• John, there are cookies

One of the utterances is a question (or request)
while the other is a statement. However, the bag
of words model will extract the same vector repre-
sentation for both.

To overcome this problem we also represent an
utterance as a bag of bigrams. When bigrams are
used in place of single words, the utterance rep-
resentation will differ. The question contains the
bigram “are there”, while the statement contains
the bigram “there are”.

Simple composition Our second model ex-
ploits the distributional hypothesis, by represent-
ing words not as atomic types (i.e. individual di-
mensions in the utterance matrix, as above), but
as vectors encoding their observed co-occurrence
distributions. We estimate these from a large cor-
pus of general written English (the Google Books
Ngrams corpus – see below).

However, this raises the question of how to
compose these word vectors into a single repre-
sentation for an utterance. Various approaches to
compositional vector space modelling have been
successfully applied to capture the meaning of a
phrase in a range of tasks (Mitchell and Lapata,
2008; Grefenstette and Sadrzadeh, 2011; Socher
et al., 2013). In this work, we follow (Mitchell and
Lapata, 2008) and apply vector addition and point-
wise multiplication to obtain the vector of an ut-
terance from the words it consists of. This has the
advantage of simplicity and domain-generality, re-
quiring no sentence grammar (problematic for the
non-canonical language in dialogue) or training on
a specific corpus to obtain the appropriate compo-
sitionality operators or associative model; but has
the disadvantage of losing word order information.
The corresponding models are referred as addition
and multiplication in Table 1 and Table 2.

Previous utterance A conversation is a se-
quence of utterances, and the tag of an utter-
ance often depends on the previous utterance
(e.g. answers tend to follow questions). Hid-
den Markov Models (Surendran and Levow, 2006;
Stolcke et al., 2000) are often used to cap-
ture these dependencies; Recurrent Convolutional
Neural Networks (Kalchbrenner and Blunsom,
2013) have been used to simultaneously capture
the intra-utterance sequence of words and the
inter-utterance sequence of dialog tags in a con-
versation.

In this model, we are interested specifically in
the effect of inter-utterance (tag) sequence. We
provide previous addition and previous multipli-
cation models as simple attempts to capture this
phenomenon: the vector of an utterance is the con-
catenation of its vector obtained in the correspond-
ing compositional model (addition or multiplica-
tion) and the vector of the previous utterance.

4 Predicting dialogue acts

4.1 The resources

This section describes the resources we use to
evaluate and compare the proposed models.

Switchboard corpus The Switchboard corpus
(Godfrey et al., 1992) is a corpus of telephone con-
versations on selected topics. It consists of about
2500 conversations by 500 speakers from the U.S.
The conversations in the corpus are labeled with
42 unique dialogue act tags and split to 1115 train

42



A o : Okay. /
A qw : {D So, }
B qyˆd: [ [I guess, +
A + : What kind of experience

[ do you, + do you ] have,
then with child care? /

B + : I think, ] + {F uh, }
I wonder if that worked. /

(a) A conversation with interrupted utterances.

A o : Okay.
A qw : So What kind of experience

do you do you have then
with child care?

B qyˆd: I guess I think uh I wonder
if that worked.

(b) A preprocessed conversation.

Figure 1: A example of interrupted utterances from Switchboard and their transformation.

and 19 test conversations (Jurafsky et al., 1997;
Stolcke et al., 2000).

In addition to the dialog act tags, utterances
interrupted by the other speaker (and thus split
into two or more parts) have their continuations
marked with a special tag “+”. Tag prediction of
one part of an interrupted utterance in isolation is
a difficult task even for a human; for example, it
would not be clear why the utterance “So,” should
be assigned the tag qw (wh-question) in Figure 1a
without the second part “What kind of experience
do you have [. . . ]”. Following (Webb et al., 2005)
we preprocess Switchboard by concatenating the
parts of an interrupted utterance together, giving
the result the tag of the first part and putting it in
its place in the conversation sequence. We also
remove commas and disfluency markers from the
raw text. Figure 1b illustrates the transformation
we do as preprocessing.

We split the utterances between training and
testing as suggested in (Stolcke et al., 2000).

Google Books Ngram Corpus The Google
Books Ngram Corpus (Lin et al., 2012) is a col-
lection of n-gram frequencies over books written
in 8 languages. The English part of the corpus is
based on more than 4.5 million books and contains
more than four thousand billion tokens. The re-
source provides frequencies of n-grams of length
1 to 5. For our experiments we use 5-grams from
the English part of the resource.

4.2 Word vector spaces
In distributional semantics, the meanings of words
are captured by a vector space model based on a
word co-occurrence matrix. Each row in the ma-
trix represents a target word, and each column rep-
resents a context word; each element in the matrix
is the number of times a target word co-occured
with a corresponding context word. The frequency
counts are typically normalized, or weighted us-
ing tf-idf or log-likelihood ratio to obtain better re-

sults, see (Mitchell and Lapata, 2008; Agirre et al.,
2009) for various approaches. It is also common
to apply dimensionality reduction to get higher
performance (Dinu and Lapata, 2010; Baroni and
Zamparelli, 2010).

As target words we select all the words in our
(Switchboard) training split. As context words
we choose the 3000 most frequent words in the
Google Ngram Corpus, excluding the 100 most
frequent. To obtain co-occurrence frequencies
from ngrams we sum up the frequency of a 5-gram
over the years, treat the word in the middle as a
target, and the other words as its contexts.

For normalization, we experiment with a vec-
tor space based on raw co-occurrences; a vector
space where frequencies are weighted using tf-idf;
and another one with the number of dimensions
reduced to 1000 using Non-negative Matrix Fac-
torization (NMF) (Hoyer, 2004).

We use the NMF and tf-idf implementations
provided by scikit-learn version 0.14 (Pe-
dregosa et al., 2011). For tf-idf, the term vectors
are L2 normalized. For NMF, NNDSVD initial-
ization (Boutsidis and Gallopoulos, 2008) is used,
and the tolerance value for stopping conditions is
set to 0.001. The co-occurrence matrix is line-
normalized, so the sum of the values in each row
is 1 before applying NMF.1

4.3 Evaluation
To evaluate these possible models we follow (Ser-
afin et al., 2003). Once we have applied a model
to extract features from utterances and build a vec-
tor space, the dimensionality of the vector space
is reduced using SVD to 50 dimensions. Then a
k-nearest neighbours (KNN) classifier is trained
and used for utterance tag prediction. In contrast
to (Serafin et al., 2003), we use Euclidean dis-
tance as a distance metric and choose the most

1The co-occurrence matrix and the information about the
software used in the experiment are available at

http://www.eecs.qmul.ac.uk/˜dm303/cvsc14.html
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Method Accuracy

(Kalchbrenner and Blunsom, 2013) 0.739
(Webb et al., 2005) 0.719
(Stolcke et al., 2000) 0.710
(Serafin et al., 2003) 0.654

Bag of unigrams 0.602
Bag of bigrams 0.621
Addition 0.639
Multiplication 0.572
Previous addition 0.569
Previous multiplication 0.497

Table 1: Comparison with previous work. Note
that (Serafin et al., 2003) do not use Switchboard
and therefore their results are not directly compa-
rable to others.

frequent label among the 5 closest neighbors.
The SVD and KNN classifier implementations in
scikit-learn are used.

Baseline In our experiments, the bag of uni-
grams model accuracy of 0.602 is lower than the
accuracy of 0.654 reported in (Serafin et al., 2003),
see Table 1. The lower performance may be due
to the differences between Switchboard and Call-
Home37 corpora, in particular the tag distribu-
tion.2 In CallHome37, 42.7% of utterances are la-
beled with the most frequent dialogue act, while
the figure in Switchboard is 31.5%; the more even
distribution in Switchboard is likely to make over-
all average accuracy levels lower.

Word order As Table 1 shows, the bag of bi-
grams model improves over unigrams. This con-
firms that word order provides important informa-
tion for predicting dialogue act tags.

Distributional models Performance of compo-
sitional distributional models depends both on
compositional operator and weighting. Table 2
demonstrates accuracy of the models. We instan-
tiate 3 vector spaces from Google Ngrams: one
space with raw co-occurrence frequencies, a tf-idf
weighted space and a reduced space using NMF.

Addition outperforms multiplication in our ex-
periments, although for other tasks multiplication
has been shown to perform better (Grefenstette
and Sadrzadeh, 2011; Mitchell and Lapata, 2008).
Lower multiplication performance here might be

2The CallHome37 corpus is not currently available to us.

Space

Model Raw tf-idf NMF

Addition without SVD 0.592
Addition 0.610 0.639 0.620
Multiplication 0.572 0.568 0.525
Previous addition 0.569
Previous multiplication 0.497

Table 2: Accuracy results for different composi-
tional models and vector spaces.

due to the fact that some utterances are rather long
(for example, more than 70 tokens), and the result-
ing vectors get many zero components.

Selection of the optimal weighting method
could be crucial for overall model performance.
The 3 weighting schemes we use give a broad va-
riety of results; more elaborate weighting and con-
text selection might give higher results.

Figure 2 illustrates dialog tag assignment us-
ing addition and the tf-idf weighted vector space.
As we do not use any inter-utterance features, the
first two statements, which consist only of the
word Okay, got assigned wrong tags. However,
the Wh-question in the conversation got classified
as a Yes-No-question, probably because what did
not influence the classification decision strongly
enough and could have been classified correctly
using only intra-utterance features. Also, the ex-
ample shows how important grammatical features
are: the verb think appears in many different con-
text, and its presence does not indicate a certain
type of an utterance.

In addition, we observed that SVD improves
classification accuracy. The accuracy of KNN
classification without prior dimensionality reduc-
tion drops from 0.610 to 0.592 for vector addition
on the raw vector space.

Utterance sequence To solve the issue of utter-
ances that can be tagged correctly only by consid-
ering inter-utterance features, we included previ-
ous utterance. However, in our experiment, such
inclusion by vector concatenation does not im-
prove tagging accuracy (Table 2). The reason for
this could be that after concatenation the dimen-
sionality of the space doubles, and SVD can not
handle it properly. We evaluated only dimension-
ally reduced spaces because of the memory limit.
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B ** (b) : Okay.
A bˆm (b) : Okay.
B qw (qy): Well what do you think about the idea of uh kids having to do public

service work for a year?
B qy (sd): Do you think it’s a <breathing>
A sv (sv): Well I I think it’s a pretty good idea.
A sv (sd): I think they should either do that or or afford some time to the military

or or helping elderly people.
B aa (aa): Yes
B aa (b) : yes
B % (%) : def
A sv (sv): I I you know I think that we have a bunch of elderly folks in the country

that could use some help

Figure 2: The beginning of the conversation 2151 from the test split of Switchboard. In brackets the
tags predicted using vector addition as a composition method on the tf-idf space are given. We mark
fo o fw " by bc as **.

Summary Our accuracy is lower compared to
other work. Webb et al. (2005)’s method, based
only on intra-utterance lexical features, but incor-
porating longer ngram sequences and feature se-
lection, yields accuracy of 0.719. Advanced treat-
ment of both utterance and discourse level features
yields accuracy of 0.739 (Kalchbrenner and Blun-
som, 2013). However, our experiments allow us to
evaluate the contribution of various kinds of infor-
mation: vector spaces based on word bigrams and
on co-occurrence distributions both outperformed
the bag of words approach; but incorporation of
previous utterance information did not.

5 Conclusions and future work

In this work we evaluated the contribution of
word and utterance sequence, and of distributional
information using simple compositional vector
space models, for dialogue act tagging. Our exper-
iments show that information about intra-utterance
word order (ngrams), and information about word
co-occurence distributions, outperforms the bag of
words models, although not competitive with the
state of the art given the simplistic compositional
approach used here. Information about utterance
tag sequence, on the other hand, did not.

The usage of an external, large scale resource
(here, the Google Ngram Corpus) to model word
senses improves the tagging accuracy in compari-
son to the bag of word model, suggesting that the
dialogue act tag of an utterance depends on its se-
mantics.

However, the improvements in performance of
the bag of bigrams model in comparison to bag of
unigrams, and the much higher results of Webb et
al. (2005)’s intra-utterance approach, suggest that

the sequence of words inside an utterance is cru-
cial for the dialogue act tagging task. This sug-
gests that our simplistic approaches to vector com-
position (addition and multiplication) are likely
to be insufficient: more advanced, sequence- or
grammar-driven composition, such as categorical
composition (Coecke et al., 2010), might improve
the tagging accuracy.

In addition, our results show that the perfor-
mance of distributional models depends on many
factors, including compositional operator selec-
tion and weighting of the initial co-occurrence ma-
trix. Our work leaves much scope for improve-
ments in these factors, including co-occurrence
matrix instantiation. For example, the window
size of 2, which we used to obtain co-occurrence
counts, is lower than the usual size of 5 (Dinu and
Lapata, 2010), or the sentence level (Baroni and
Zamparelli, 2010). Word representation in a vec-
tor space using neural networks might improve ac-
curacy as well (Mikolov et al., 2013).

Previous approaches to dialogue act tagging
have shown utterance/tag sequence to be a use-
ful source of information for improved accuracy
(Stolcke et al., 2000). We therefore conclude that
the lower accuracy we obtained using models that
include information about the previous utterance
is due again to our simplistic method of compo-
sition (vector concatenation); models which re-
flect dialogue structure or sequence explicitly are
likely to be more suited. Kalchbrenner and Blun-
som (2013) give one way in which this can be
achieved by learning from a specific corpus, and
the question of possible alternatives and more gen-
eral models remains for future research.
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