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Introduction

Type theory has been a central area of research in logic, the semantics of programming languages,
and natural language semantics over the past fifty years. Recent developments in type theory have
been used to reconstruct the formal foundations of computational semantics. The treatments are
generally intensional and polymorphic in character. They allow for structured, fine-grained encoding
of information across a diverse set of linguistic domains.

The work in this area has opened up new approaches to modelling the relations between, inter alia, syntax,
semantic interpretation, dialogue, inference, and cognition, from a largely proof theoretic perspective.
The papers in this volume cover a wide range of topics on the application of type theory to modelling
semantic properties of natural language.

TTNLS 2014 is providing a forum for the presentation of leading edge research in this fast developing
sub-field of computational linguistics. To the best of our knowledge it is the first major conference on
this topic hosted by the ACL.

We received a total of 13 relevant submissions, 10 of which were accepted for presentation. Each
submission was reviewed by two members of our Programme Committee. We thank these people for
their detailed and helpful reviews.

We are also including Aarne Ranta’s invited paper here. We are honoured that he has accepted our
invitation to present this paper at TTNLS, and we look forward to his talk.

We would like to thank the organisers of the EACL 2014 both for their financial assistance and their
organisational support. We are also grateful to the Dialogue Technology Lab at the Centre for Language
Technology of University of Gothenburg, and to the Wenner-Gren Foundations for funding Shalom
Lappin’s research visits to University of Gothenburg, during which this workshop was organised.

Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson

University of Gothenburg and London

March 2014
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Abstract

This paper studies the use of records
and dependent types in GF (Grammatical
Framework) to build a grammar for pred-
ication with an unlimited number of sub-
categories, also covering extraction and
coordination. The grammar is imple-
mented for Chinese, English, Finnish, and
Swedish, sharing the maximum of code
to identify similarities and differences be-
tween the languages. Equipped with a
probabilistic model and a large lexicon,
the grammar has also been tested in wide-
coverage machine translation. The first
evaluations show improvements in parsing
speed, coverage, and robustness in com-
parison to earlier GF grammars. The study
confirms that dependent types, records,
and functors are useful in both engineer-
ing and theoretical perspectives.

1 Introduction

Predication is the basic level of syntax. In logic, it
means building atomic formulas by predicates. In
linguistics, it means building sentences by verbs.
Categorial grammars (Bar-Hillel, 1953; Lambek,
1958) adapt logical predication to natural lan-
guage. Thus for instance transitive verbs are cat-
egorized as (n\s/n), which is the logical type
n→ n→ s with the information that one argument
comes before the verb and the other one after. But
most approaches to syntax and semantics, includ-
ing (Montague, 1974), introduce predicate cate-
gories as primitives rather than as function types.
Thus transitive verbs are a category of its own, re-
lated to logic via a semantic rule. This gives more
expressive power, as it permits predicates with dif-
ferent syntactic properties and variable word order
(e.g. inversion in questions). A drawback is that

a grammar may need a large number of categories
and rules. In GPSG (Gazdar et al., 1985), and later
in HPSG (Pollard and Sag, 1994), this is solved
by introducing a feature called subcat for verbs.
Verbs taking different arguments differ in the sub-
cat feature but share otherwise the characteristic of
being verbs.

In this paper, we will study the syntax and se-
mantics of predication in GF, Grammatical Frame-
work (Ranta, 2011). We will generalize both over
subcategories (as in GPSG and HPSG), and over
languages (as customary in GF). We use depen-
dent types to control the application of verbs to
legitimate arguments, and records to control the
placement of arguments in sentences. The record
structure is inspired by the topological model of
syntax in (Diderichsen, 1962).

The approach is designed to apply to all lan-
guages in the GF Resource Grammar Library
(RGL, (Ranta, 2009)), factoring out their typolog-
ical differences in a modular way. We have tested
the grammar with four languages from three fam-
ilies: Chinese, English, Finnish, and Swedish. As
the implementation reuses old RGL code for all
parts but predication, it can be ported to new lan-
guages with just a few pages of new GF code. We
have also tested it in wide coverage tasks, with a
probabilistic tree model and a lexicon of 60,000
lemmas.

We will start with an introduction to the abstrac-
tion mechanisms of GF and conclude with a sum-
mary of some recent research. Section 2 places
GF on the map of grammar formalisms. Section 3
works out an example showing how abstract syn-
tax can be shared between languages. Section 4
shows how parts of concrete syntax can be shared
as well. Section 5 gives the full picture of predi-
cation with dependent types and records, also ad-
dressing extraction, coordination, and semantics.
Section 6 gives preliminary evaluation. Section 7
concludes.
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2 GF: an executive summary

GF belongs to a subfamily of categorial grammars
inspired by (Curry, 1961). These grammars make
a distinction between tectogrammar, which spec-
ifies the syntactic structures (tree-like representa-
tions), and phenogrammar, which relates these
structures to linear representations, such as se-
quences of characters, words, or phonemes. Other
formalisms in this family include ACG (de Groote,
2001) and Lambda grammars (Muskens, 2001).

GF inherits its name from LF, Logical Frame-
works, which are type theories used for defin-
ing logics (Harper et al., 1993). GF builds on
the LF called ALF, Another Logical Framework
(Magnusson, 1994), which implements Martin-
Löf’s higher-level type theory (first introduced
in the preface of (Martin-Löf, 1984); see Chap-
ter 8 of (Ranta, 1994) for more details). Before
GF was introduced as an independent formalism
in 1998, GF-like applications were built as plug-
ins to ALF (Ranta, 1997). The idea was that the
LF defines the tectogrammar, and the plug-in de-
fines the phenogrammar. The intended application
was natural language interfaces to formal proof
systems, in the style of (Coscoy et al., 1995).

GF was born via two additions to the natural
language interface idea. The first one was multi-
linguality: one and the same tectogrammar can
be given multiple phenogrammars. The second
addition was parsing: the phenogrammar, which
was initially just linearization (generating strings
from type theoretical formulas), was reversed to
rules that parse natural language into type theory.
The result was a method for translation, which
combines parsing the source language with lin-
earization into the target language. This idea was
indeed suggested in (Curry, 1961), and applied
before GF in the Rosetta project (Landsbergen,
1982), which used Montague’s analysis trees as
tectogrammar.

GF can be seen as a formalization and gener-
alization of Montague grammar. Formalization,
because it introduces a formal notation for the
linearization rules that in Montague’s work were
expressed informally. Generalization, because of
multilinguality and also because the type system
for analysis trees has dependent types.

Following the terminology of programming lan-
guage theory, the tectogrammar is in GF called
the abstract syntax whereas the phenogrammar is
called the concrete syntax. As in compilers and

logical frameworks, the abstract syntax encodes
the structure relevant for semantics, whereas the
concrete syntax defines “syntactic sugar”.

The resulting system turned out to be equiv-
alent to parallel multiple context-free gram-
mars (Seki et al., 1991) and therefore parsable
in polynomial time (Ljunglöf, 2004). Compre-
hensive grammars have been written for 29 lan-
guages, and later work has optimized GF pars-
ing and also added probabilistic disambiguation
and robustness, resulting in state-of-the-art perfor-
mance in wide-coverage deep parsing (Angelov,
2011; Angelov and Ljunglöf, 2014).

3 Example: subject-verb-object
sentences

Let us start with an important special case of predi-
cation: the subject-verb-object structure. The sim-
plest possible rule is
fun PredTV : NP -> TV -> NP -> S

that is, a function that takes a subject NP, a tran-
sitive verb TV, and an object NP, and returns a
sentence S. This function builds abstract syntax
trees. Concrete syntax defines linearization rules,
which convert trees into strings. The above rule
can give rise to different word orders, such as SVO
(as in English), SOV (as in Hindi), and VSO (as in
Arabic):
lin PredTV s v o = s ++ v ++ o
lin PredTV s v o = s ++ o ++ v
lin PredTV s v o = v ++ s ++ o

where ++ means concatenation.
The above rule builds a sentence in one step.

A more flexible approach is to do it in two steps:
complementation, forming a VP (verb phrase)
from the verb and the object, and predication
proper that provides the subject. The abstract syn-
tax is
fun Compl : TV -> NP -> VP
fun Pred : NP -> VP -> S

These functions are easy to linearize for the SVO
and SOV orders:
lin Compl v o = v ++ o -- SVO
lin Compl v o = o ++ v -- SOV
lin Pred s vp = s ++ vp -- both

where -- marks a comment. However, the VSO
order cannot be obtained in this way, because the
two parts of the VP are separated by the subject.
The solution is to generalize linearization from
strings to records. Complementation can then re-
turn a record that has the verb and the object as
separate fields. Then we can also generate VSO:
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lin Compl v o = {verb = v ; obj = o}
lin Pred s vp = vp.verb ++ s ++ vp.obj

The dot (.) means projection, picking the value
of a field in a record.

Records enable the abstract syntax to abstract
away not only from word order, but also from
whether a language uses discontinuous con-
stituents. VP in VSO languages is one example.
Once we enable discontinuous constituents, they
turn out useful almost everywhere, as they enable
us to delay the decision about linear order. It can
then be varied even inside a single language, if it
depends on syntactic context (as e.g. in German;
cf. (Müller, 2004) for a survey).

The next thing to abstract away from is inflec-
tion and agreement. Given the lexicon

fun We, She : NP
fun Love : TV

we can build the abstract syntax tree
Pred We (Compl Love She)

to represent we love her. If we swap the subject
and the object, we get

Pred She (Compl Love We)

for she loves us. Now, these two sentences are
built from the same abstract syntax objects, but
no single word is shared between them! This is
because the noun phrases inflect for case and the
verb agrees to the subject.

In contrast to English, Chinese just reorders the
words:

women ai ta - “we love her”

ta ai women - “she loves us”

Thus the above rules for SVO languages work as
they are for Chinese. But in English, we must in-
clude case and agreement as features in the con-
crete syntax. Thus the linearization of an NP is
a record that includes a table producing the case
forms, and agreement as an inherent feature:

lin She = {
s = table {

Nom => "she" ;
Acc => "her"
} ;

a = {n = Sg ; p = P3} ;
}

The agreement feature (field a) is itself a record,
with a number and a gender. In other languages,
case and agreement can of course have different
sets of values.

Verbs likewise include tables that inflect them
for different agreement features:

lin Love = {
s = table {

{n = Sg ; p = P3} => "loves" ;
_ => "love"

}
}

We can now define English linearization:
lin Compl v o =
{s = table {a => v.s ! a ++ o.s ! Acc}}

lin Pred s vp =
{s = s.s ! Nom ++ vp.s ! np.a}

using the same type of records for VP as for TV,
and a one-string record for S. The Compl rule
passes the agreement feature to the verb of the VP,
and selects the Acc form of the object (with ! de-
noting selection from a table). The Pred rule se-
lects the Nom form of the subject, and attaches to
this the VP form selected for np.a, i.e. the agree-
ment feature of the subject.

4 Generalized concrete syntax

To see the full power of GF, we now take a look
at its type and module system. Figure 1 shows a
complete set of grammar modules implementing
transitive verb predication for Finnish and Chinese
with a maximum of shared code.

The first module in Figure 1 is the abstract syn-
tax Pred, where the fun rules are preceded by
a set of cat rules defining the categories of the
grammar, i.e. the basic types. Pred defines five
categories: S, Cl, NP, VP, and TV. S is the top-
level category of sentences, whereas Cl (clause) is
the intermediate category of predications, which
can be used as sentences in many ways—here, as
declaratives and as questions.

The concrete syntax has corresponding lincat
rules, which equip each category with a lineariza-
tion type, i.e. the type of the values returned
when linearizing trees of that category. The mod-
ule PredFunctor in Figure 1 contains four such
rules. In lincat NP, the type Case => Str is
the type of tables that produce a string as a func-
tion of a case, and Agr is the type of agreement
features.

When a GF grammar is compiled, each lin rule
is type checked with respect to the lincats of the
categories involved, to guarantee that, for every

fun f : C1→ ··· →Cn→C

we have

lin f : C∗1 → ··· →C∗n →C∗

3



abstract Pred = {
cat S ; Cl ; NP ; VP ; TV ;
fun Compl : TV -> NP -> VP ; fun Pred : TV -> NP -> Cl ;
fun Decl : Cl -> S ; fun Quest : Cl -> S ;
}

incomplete concrete PredFunctor of Pred = open PredInterface in {
lincat S = {s : Str} ; lincat Cl = {subj,verb,obj : Str} ;
lincat NP = {s : Case => Str ; a : Agr} ;
lincat VP = {verb : Agr => Str ; obj : Str} ; lincat TV = {s : Agr => Str} ;
lin Compl tv np = {verb = tv.s ; obj = np.s ! objCase} ;
lin Pred np vp = {subj = np.s !subjCase ; verb = vp.verb ! np.a ; obj = vp.obj} ;
lin Decl cl = {s = decl cl.subj cl.verb cl.obj} ;
lin Quest cl = {s = quest cl.subj cl.verb cl.obj} ;
}

interface PredInterface = {
oper Case, Agr : PType ;
oper subjCase, objCase : Case ;
oper decl, quest : Str -> Str -> Str -> Str ;
}

instance PredInstanceFin of PredInterface = { concrete PredFin of Pred =
oper Case = -- Nom | Acc | ... ; PredFunctor with
oper Agr = {n : Number ; p : Person} ; (PredInterface =
oper subjCase = Nom ; objCase = Acc ; PredInstanceFin) ;
oper decl s v o = s ++ v ++ o ;
oper quest s v o = v ++ "&+ ko" ++ s ++ o ;
}

instance PredInstanceChi of PredInterface = { concrete PredChi of Pred =
oper Case, Agr = {} ; PredFunctor with
oper subjCase, objCase = <> ; (PredInterface =
oper decl s v o = s ++ v ++ o ; PredInstanceChi) ;
oper quest s v o = s ++ v ++ o ++ "ma" ;
}

Figure 1: Functorized grammar for transitive verb predication.

where A∗ is the linearization type of A. Thus lin-
earization is a homomorphism. It is actually
an instance of denotational semantics, where the
lincats are the domains of possible denota-
tions.

Much of the strength of GF comes from us-
ing different linearization types for different lan-
guages. Thus English needs case and agreement,
Finnish needs many more cases (in the full gram-
mar), Chinese needs mostly only strings, and so
on. However, it is both useful and illuminating to
unify the types. The way to do this is by the use
of functors, also known as a parametrized mod-
ules.

PredFunctor in Figure 1 is an example; func-
tors are marked with the keyword incomplete. A
functor depends on an interface, which declares
a set of parameters (PredInterface in Figure
1). A concrete module is produced by giving
an instance to the interface (PredInstanceFin
and PredInstanceChi).

The rules in PredFunctor in Figure 1 are de-
signed to work for both languages, by varying the
definitions of the constants in PredInterface.

And more languages can be added to use it. Con-
sider for example the definition of NP. The expe-
rience from the RGL shows that, if a language
has case and agreement, its NPs inflect for case
and have inherent agreement. The limiting case
of Chinese can be treated by using the unit type
({} i.e. the record type with no fields) for both
features. This would not be so elegant for Chinese
alone, but makes sense in the code sharing context.

Discontinuity now appears as another useful
generalization. With the lincat definition in
PredFunctor, we can share the Compl rule in all
of the languages discussed so far. In clauses (Cl),
we continue on similar lines: we keep the subject,
the verb, and the object on separate fields. Notice
that verb in Cl is a plain string, since the value of
Agr gets fixed when the subject is added.

The final sentence word order is created as the
last step, when converting Cl into S. As Cl is dis-
continuous, it can be linearized in different orders.
In Figure 1, this is used in Finnish for generat-
ing the SVO order in declaratives and VSO on
questions (with an intervening question particle ko
glued to the verb). It also supports the other word
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orders of Finnish (Karttunen and Kay, 1985).
By using an abstract syntax in combination with

unordered records, parameters, and functors for
the concrete syntax, we follow a kind of a “prin-
ciples and parameters” approach to language vari-
ation (Chomsky, 1981). The actual parameter set
for the whole RGL is of course larger than the one
shown here.

Mathematically, it is possible to treat all differ-
ences in concrete syntax by parameters, simply by
declaring a new parameter for every lincat and
lin rule! But this is both vacuous as a theory and
an unnecessary detour in practice. It is more il-
luminating to keep the functor simple and the set
of parameters small. If the functor does not work
for a new language, it usually makes more sense to
override it than to grow the parameter list, and GF
provides a mechanism for this. Opposite to “prin-
ciples and parameters”, this is “a model in which
language-particular rules take over the work of pa-
rameter settings” (Newmeyer, 2004). A combina-
tion of the two models enables language compari-
son by measuring the amount of overrides.

5 The full predication system

So far we have only dealt with one kind of verbs,
TV. But we need more: intransitive, ditransitive,
sentence-complement, etc. The general verb cate-
gory is a dependent type, which varies over argu-
ment type lists:

cat V (x : Args)

The list x : Args corresponds to the subcat fea-
ture in GPSG and HPSG. Verb phrases and clauses
have the same dependencies. Syntactically, a
phrase depending on x : Args has “holes” for
every argument in the list x. Semantically, it is a
function over the denotations of its arguments (see
Section 5.3 below).

5.1 The code

Figure 2 shows the essentials of the resulting
grammar, and we will now explain this code. The
full code is available at the GF web site.

1. Argument lists and dependent categories.
The argument of a verb can be an adjectival phrase
(AP, become old), a clause (Cl, say that we go), a
common noun (CN, become a president), a noun
phrase (NP, love her), a question (QCl, wonder
who goes), or a verb phrase (VP, want to go). The
definition allows an arbitrary list of arguments.

For example, NP+QCl is used in verbs such as ask
(someone whether something).

What about PP (prepositional phrase) comple-
ments? The best approach in a multilingual set-
ting is to treat them as NP complements with des-
ignated cases. Thus in Figure 2.5, the lineariza-
tion type of VP has fields of type complCase.
This covers cases and prepositions, often in com-
bination. For instance, the German verb lieben
(“love”) takes a plain accusative argument, fol-
gen (“love”) a plain dative, and warten (“wait”)
the preposition auf with the accusative. From the
abstract syntax point of view, all of them are NP-
complement verbs. Cases and prepositions, and
thereby transitivity, are defined in concrete syntax.

The category Cl, clause, is the discontinuous
structure of sentences before word order is deter-
mined. Its instance Cl (c np O) corresponds to
the slash categories S/NP and S/PP in GPSG.
Similarly, VP (c np O) corresponds to VP/NP
and VP/PP, Adv (c np O) to Adv/NP (preposi-
tions), and so on.

2. Initial formation of verb phases. A VP is
formed from a V by fixing its tense and polarity.
In the resulting VP, the verb depends only on the
agreement features of the expected subject. The
complement case comes from the verb’s lexical
entry, but the other fields—such as the objects—
are left empty. This makes the VP usable in both
complementation and slash operations (where the
subject is added before some complement).

VPs can also be formed from adverbials, ad-
jectival phrases, and common nouns, by adding a
copula. Thus was in results from applying UseAdv
to the preposition (i.e. Adv/NP) in, and expands to
a VP with ComplNP (was in France) and to a slash
clause with PredVP (she was in).

3. Complementation, VP slash formation, re-
flexivization. The Compl functions in Figure 2.3
provide each verb phrase with its “first” comple-
ment. The Slash functions provide the “last”
complement, leaving a “gap” in the middle. For
instance, SlashCl provides the slash clause used
in the question whom did you tell that we sleep.
The Refl rules fill argument places with reflexive
pronouns.

4. NP-VP predication, slash termination, and
adverbial modification. PredVP is the basic NP-
VP predication rule. With x = c np O, it be-
comes the rule that combines NP with VP/NP to
form S/NP. SlashTerm is the GPSG “slash termi-
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1. Argument lists and some dependent categories

cat Arg ; Args -- arguments and argument lists
fun ap, cl, cn, np, qcl, vp : Arg -- AP, Cl, CN, NP, QCl, VP argument
fun O : Args -- no arguments
fun c : Arg -> Args -> Args -- one more argument

cat V (x : Args) -- verb in the lexicon
cat VP (x : Args) -- verb phrase
cat Cl (x : Args) -- clause
cat AP (x : Args) -- adjectival phrase
cat CN (x : Args) -- common noun phrase
cat Adv (x : Args) -- adverbial phrase

2. Initial formation of verb phases

fun UseV : (x : Args) -> Temp -> Pol -> V x -> VP x -- loved (X)
fun UseAP : (x : Args) -> Temp -> Pol -> AP x -> VP x -- was married to (X)
fun UseCN : (x : Args) -> Temp -> Pol -> CN x -> VP x -- was a son of (X)
fun UseAdv : (x : Args) -> Temp -> Pol -> Adv x -> VP x -- was in (X)

3. Complementation, VP slash formation, reflexivization

fun ComplNP : (x : Args) -> VP (c np x) -> NP -> VP x -- love her
fun ComplCl : (x : Args) -> VP (c cl x) -> Cl x -> VP x -- say that we go
fun SlashNP : (x : Args) -> VP (c np (c np x)) -> NP -> VP (c np x) -- show (X) to him
fun SlashCl : (x : Args) -> VP (c np (c cl x)) -> Cl x -> VP (c np x) -- tell (X) that..
fun ReflVP : (x : Args) -> VP (c np x) -> VP x -- love herself
fun ReflVP2 : (x : Args) -> VP (c np (c np x)) -> VP (c np x) -- show (X) to herself

4. NP-VP predication, slash termination, and adverbial modification

fun PredVP : (x : Args) -> NP -> VP x -> Cl x -- she loves (X)
fun SlashTerm : (x : Args) -> Cl (c np x) -> NP -> Cl x -- she loves + X

5. The functorial linearization type of VP

lincat VP = {
verb : Agr => Str * Str * Str ; -- finite: would,have,gone
inf : VVType => Str ; -- infinitive: (not) (to) go
imp : ImpType => Str ; -- imperative: go
c1 : ComplCase ; -- case of first complement
c2 : ComplCase ; -- case of second complement
vvtype : VVType ; -- type of VP complement
adj : Agr => Str ; -- adjective complement
obj1 : Agr => Str ; -- first complement
obj2 : Agr => Str ; -- second complement
objagr : {a : Agr ; objCtr : Bool} ; -- agreement used in object control
adv1 : Str ; -- pre-verb adverb
adv2 : Str ; -- post-verb adverb
ext : Str ; -- extraposed element e.g. that-clause
}

6. Some functorial linearization rules

lin ComplNP x vp np = vp ** {obj1 = \\a => appComplCase vp.c1 np}
lin ComplCl x vp cl = vp ** {ext = that_Compl ++ declSubordCl cl}
lin SlashNP2 x vp np = vp ** {obj2 = \\a => appComplCase vp.c2 np}
lin SlashCl x vp cl = vp ** {ext = that_Compl ++ declSubordCl cl}

7. Some interface parameters

oper Agr, ComplCase : PType -- agreement, complement case
oper appComplCase : ComplCase -> NP -> Str -- apply complement case to NP
oper declSubordCl : Cl -> Str -- subordinate question word order

Figure 2: Dependent types, records, and parameters for predication.
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nation” rule.
5. The functorial linearization type of VP.

This record type contains the string-valued fields
that can appear in different orders, as well as the
inherent features that are needed when comple-
ments are added. The corresponding record for Cl
has similar fields with constant strings, plus a sub-
ject field.

6. Some functorial linearization rules. The
verb-phrase expanding rules typically work with
record updates, where the old VP is left un-
changed except for a few fields that get new val-
ues. GF uses the symbol ** for record updates.
Notice that ComplCl and SlashCl have exactly
the same linearization rules; the difference comes
from the argument list x in the abstract syntax.

7. Some interface parameters. The code
in Figure 2.5 and 2.6 is shared by different lan-
guages, but it depends on an interface that declares
parameters, some of which are shown here.

5.2 More constructions

Extraction. The formation of questions and rel-
atives is straighforward. Sentential (yes/no) ques-
tions, formed by QuestCl in Figure 3.1, don’t in
many languages need any changes in the clause,
but just a different ordering in final linearization.
Wh questions typically put one interrogative (IP)
in the focus, which may be in the beginning of the
sentence even though the corresponding argument
place in declaratives is later. The focus field in
QCl is used for this purpose. It carries a Boolean
feature saying whether the field is occupied. If its
value is True, the next IP is put into the “normal”
argument place, as in who loves whom.

Coordination. The VP conjunction rules in
Figure 3.2 take care of both intransitive VPs (she
walks and runs) and of verb phrases with argu-
ments (she loves and hates us). Similarly, Cl con-
juction covers both complete sentences and slash
clauses (she loves and we hate him). Some VP
coordination instances may be ungrammatical, in
particular with inverted word orders. Thus she is
tired and wants to sleep works as a declarative,
but the question is not so good: ?is she tired and
wants to sleep. Preventing this would need a much
more complex rules. Since the goal of our gram-
mar is not to define grammaticality (as in formal
language theory), but to analyse and translate ex-
isting texts, we opted for a simple system in this
case (but did not need to do so elsewhere).

5.3 Semantics
The abstract syntax has straightforward denota-
tional semantics: each type in the Args list of a
category adds an argument to the type of denota-
tions. For instance, the basic VP denotation type is
Ent -> Prop, and the type for an arbitrary sub-
category of VP x is
(x : Args) -> Den x (Ent -> Prop)

where Den is a type family defined recursively
over Args,
Den : Args -> Type -> Type
Den O t = t
Den (c np xs) t = Ent -> Den xs t
Den (c cl xs) t = Prop -> Den xs t

and so on for all values of Arg. The second ar-
gument t varies over the basic denotation types of
VP, AP, Adv, and CN.

Montague-style semantics is readily available
for all rules operating on these categories. As a
logical framework, GF has the expressive power
needed for defining semantics (Ranta, 2004). The
types can moreover be extended to express selec-
tional restrictions, where verb arguments are re-
stricted to domains of individuals. Here is a type
system that adds a domain argument to NP and
VP:
cat NP (d : Dom)
cat VP (d : Dom)(x : Args)
fun PredVP : (d : Dom) -> (x : Args)

-> NP d -> VP d x -> Cl x

The predication rule checks that the NP and the
VP have the same domain.

6 Evaluation

Coverage. The dependent type system for verbs,
verb phrases, and clauses is a generalization of
the old Resource Grammar Library (Ranta, 2009),
which has a set of hard-wired verb subcategories
and a handful of slash categories. While it cov-
ers “all usual cases”, many logically possible ones
are missing. Some such cases even appear in the
Penn treebank (Marcus et al., 1993), requiring ex-
tra rules in the GF interpretation of the treebank
(Angelov, 2011). An example is a function of type
V (c np (c vp O)) ->

VPC (c np O) -> VP (c np O)

which is used 12 times, for example in This is de-
signed to get the wagons in a circle and defend
the smoking franchise. It has been easy to write
conversion rules showing that the old coverage is
preserved. But it remains future work to see what
new cases are covered by the increased generality.
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1. Extraction.

cat QCl (x : Args) -- question clause
cat IP -- interrogative phrase
fun QuestCl : (x : Args) -> Cl x -> QCl x -- does she love him
fun QuestVP : (x : Args) -> IP -> VP x -> QCl x -- who loves him
fun QuestSlash : (x : Args) -> IP -> QCl (c np x) -> QCl x -- whom does she love

lincat QCl = Cl ** {focus : {s : Str ; isOcc : Bool}} -- focal IP, whether occupied

2. Coordination.

cat VPC (x : Args) -- VP conjunction
cat ClC (x : Args) -- Clause conjunction
fun StartVPC : (x : Args) -> Conj -> VP x -> VP x -> VPC x -- love or hate
fun ContVPC : (x : Args) -> VP x -> VPC x -> VPC x -- admire, love or hate
fun UseVPC : (x : Args) -> VPC x -> VP x -- [use VPC as VP]
fun StartClC : (x : Args) -> Conj -> Cl x -> Cl x -> ClC x -- he sells and I buy
fun ContClC : (x : Args) -> Cl x -> ClC x -> ClC x -- you steal, he sells and I buy
fun UseClC : (x : Args) -> ClC x -> Cl x -- [use ClC as Cl]

Figure 3: Extraction and coordination.

Multilinguality. How universal are the con-
crete syntax functor and interface? In the stan-
dard RGL, functorization has only been attempted
for families of closely related languages, with Ro-
mance languages sharing 75% of syntax code and
Scandinavian languages 85% (Ranta, 2009). The
new predication grammar shares code across all
languages. The figure to compare is the percent-
age of shared code (abstract syntax + functor + in-
terface) of the total code written for a particular
language (shared + language-specific). This per-
centage is 70 for Chinese, 64 for English, 61 for
Finnish, and 76 for Swedish, when calculated as
lines of code. The total amount of shared code is
760 lines. One example of overrides is negation
and questions in English, which are complicated
by the need of auxiliaries for some verbs (go) but
not for others (be). This explains why Swedish
shares more of the common code than English.

Performance. Dependent types are not inte-
grated in current GF parsers, but checked by post-
processing. This implies a loss of speed, be-
cause many trees are constructed just to be thrown
away. But when we specialized dependent types
and rules to nondependent instances needed by the
lexicon (using them as metarules in the sense of
GPSG), parsing became several times faster than
with the old grammar. An analysis remains to do,
but one hypothesis is that the speed-up is due to
fixing tense and polarity earlier than in the old
RGL: when starting to build VPs, as opposed to
when using clauses in full sentences. Dependent
types made it easy to test this refactoring, since
they reduced the number of rules that had to be

written.
Robustness. Robustness in GF parsing is

achieved by introducing metavariables (“ques-
tion marks”) when tree nodes cannot be con-
structed by the grammar (Angelov, 2011). The
subtrees under a metavariable node are linearized
separately, just like a sequence of chunks. In
translation, this leads to decrease in quality, be-
cause dependencies between chunks are not de-
tected. The early application of tense and polarity
is an improvement, as it makes verb chunks con-
tain information that was previously detected only
if the parser managed to build a whole sentence.

7 Conclusion

We have shown a GF grammar for predication al-
lowing an unlimited variation of argument lists: an
abstract syntax with a concise definition using de-
pendent types, a concrete syntax using a functor
and records, and a straightforward denotational se-
mantics. The grammar has been tested with four
languages and shown promising results in speed
and robustness, also in large-scale processing. A
more general conclusion is that dependent types,
records, and functors are powerful tools both for
computational grammar engineering and for the
theoretical study of languages.

Acknowledgements. I am grateful to Krasimir
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ital Communication).
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Abstract

We propose a system for the interpreta-
tion of anaphoric relationships between
unbound pronouns and quantifiers. The
main technical contribution of our pro-
posal consists in combining generalized
quantifiers with dependent types. Empir-
ically, our system allows a uniform treat-
ment of all types of unbound anaphora, in-
cluding the notoriously difficult cases such
as quantificational subordination, cumula-
tive and branching continuations, and don-
key anaphora.

1 Introduction

The phenomenon of unbound anaphora refers to
instances where anaphoric pronouns occur outside
the syntactic scopes (i.e. the c-command domain)
of their quantifier antecedents. The main kinds of
unbound anaphora are regular anaphora to quan-
tifiers, quantificational subordination, and donkey
anaphora, as exemplified by (1) to (3) respectively:

(1) Most kids entered. They looked happy.

(2) Every man loves a woman. They kiss them.

(3) Every farmer who owns a donkey beats it.

Unbound anaphoric pronouns have been dealt
with in two main semantic paradigms: dynamic
semantic theories (Groenendijk and Stokhof,
1991); (Van den Berg, 1996); (Nouwen, 2003) and
the E-type/D-type tradition (Evans, 1977); (Heim,
1990); (Elbourne, 2005). In the dynamic seman-
tic theories pronouns are taken to be (syntactically
free, but semantically bound) variables, and con-
text serves as a medium supplying values for the
variables. In the E-type/D-type tradition pronouns
are treated as quantifiers. Our system combines
aspects of both families of theories. As in the E-
type/D-type tradition we treat unbound anaphoric

pronouns as quantifiers; as in the systems of dy-
namic semantics context is used as a medium sup-
plying (possibly dependent) types as their poten-
tial quantificational domains. Like Dekker’s Pred-
icate Logic with Anaphora and more recent mul-
tidimensional models (Dekker, 1994); (Dekker,
2008), our system lends itself to the compositional
treatment of unbound anaphora, while keeping a
classical, static notion of truth. The main novelty
of our proposal consists in combining generalized
quantifiers (Mostowski, 1957); (Lindström, 1966);
(Barwise and Cooper, 1981) with dependent types
(Martin-Löf, 1972); (Ranta, 1994).

The paper is organized as follows. In Section 2
we introduce informally the main features of our
system. Section 3 sketches the process of English-
to-formal language translation. Finally, sections 4
and 5 define the syntax and semantics of the sys-
tem.

2 Elements of system

2.1 Context, types and dependent types
The variables of our system are always typed. We
write x : X to denote that the variable x is of type
X and refer to this as a type specification of the
variable x. Types, in this paper, are interpreted as
sets. We write the interpretation of the type X as
‖X‖.

Types can depend on variables of other types.
Thus, if we already have a type specification x :
X , then we can also have type Y (x) depending
on the variable x and we can declare a variable y
of type Y by stating y : Y (x). The fact that Y
depends on X is modeled as a projection

π : ‖Y ‖ → ‖X‖.
So that if the variable x of type X is interpreted as
an element a ∈ ‖X‖, ‖Y ‖(a) is interpreted as the
fiber of π over a (the preimage of {a} under π)

‖Y ‖(a) = {b ∈ ‖Y ‖ : π(b) = a}.
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One standard natural language example of such a
dependence of types is that if m is a variable of
the type of months M , there is a type D(m) of
the days of the month m. Such type dependencies
can be nested, i.e., we can have a sequence of type
specifications of the (individual) variables:

x : X, y : Y (x), z : Z(x, y).

Context for us is a partially ordered sequence of
type specifications of the (individual) variables
and it is interpreted as a parameter set, i.e. as a
set of compatible n-tuples of the elements of the
sets corresponding to the types involved (compat-
ible wrt all projections).

2.2 Quantifiers, chains of quantifiers
Our system defines quantifiers and predicates
polymorphically. A generalized quantifier Q is
an association to every set Z a subset of the
power set of Z. If we have a predicate P de-
fined in a context Γ, then for any interpreta-
tion of the context ‖Γ‖ it is interpreted as a
subset of its parameter set. Quantifier phrases,
e.g. every man or some woman, are interpreted
as follows: ‖everym:man‖ = {‖man‖} and
‖somew:woman‖ = {X ⊆ ‖woman‖ : X 6= ∅}.

The interpretation of quantifier phrases is fur-
ther extended into the interpretation of chains of
quantifiers. Consider an example in (2):

(2) Every man loves a woman. They kiss them.

Multi-quantifier sentences such as the first sen-
tence in (2) are known to be ambiguous with
different readings corresponding to how various
quantifiers are semantically related in the sen-
tence. To account for the readings available for
such multi-quantifier sentences, we raise quanti-
fier phrases to the front of a sentence to form
(generalized) quantifier prefixes - chains of quan-
tifiers. Chains of quantifiers are built from quanti-
fier phrases using three chain-constructors: pack-
formation rule (?, . . . , ?), sequential composi-
tion ?|?, and parallel composition ?

? . The se-
mantical operations that correspond to the chain-
constructors (known as cumulation, iteration and
branching) capture in a compositional manner cu-
mulative, scope-dependent and branching read-
ings, respectively.

The idea of chain-constructors and the cor-
responding semantical operations builds on
Mostowski’s notion of quantifier (Mostowski,

1957) further generalized by Lindström to a
so-called polyadic quantifier (Lindström, 1966),
see (Bellert and Zawadowski, 1989). To use a
familiar example, a multi-quantifier prefix like
∀m:M |∃w:W is thought of as a single two-place
quantifier obtained by an operation on the two
single quantifiers, and it has as denotation:

‖∀m:M |∃w:W ‖ = {R ⊆ ‖M‖× ‖W‖:{a ∈ ‖M‖:

{b ∈ ‖W‖: 〈a, b〉 ∈ R} ∈ ‖∃w:W ‖} ∈ ‖∀m:M‖}.
In this paper we generalize the three chain-
constructors and the corresponding semantical op-
erations to (pre-) chains defined on dependent
types.

2.3 Dynamic extensions of contexts

In our system language expressions are all defined
in context. Thus the first sentence in (2) (on the
most natural interpretation where a woman de-
pends on every man) translates (via the process de-
scribed in Section 3) into a sentence with a chain
of quantifiers in a context:

Γ ` ∀m:M |∃w:WLove(m,w),

and says that the set of pairs, a man and a woman
he loves, has the following property: the set of
those men that love some woman each is the set
of all men. The way to understand the second sen-
tence in (2) (i.e. the anaphoric continuation) is that
every man kisses the women he loves rather than
those loved by someone else. Thus the first sen-
tence in (2) must deliver some internal relation be-
tween the types corresponding to the two quanti-
fier phrases.

In our analysis, the first sentence in (2) extends
the context Γ by adding new variable specifica-
tions on newly formed types for every quantifier
phrase in the chain Ch = ∀m:M |∃w:W - for the
purpose of the formation of such new types we in-
troduce a new type constructor T. That is, the first
sentence in (2) (denoted as ϕ) extends the context
by adding:

tϕ,∀m : Tϕ,∀m:M
; tϕ,∃w : Tϕ,∃w:W

(tϕ,∀m)

The interpretations of types (that correspond to
quantifier phrases in Ch) from the extended con-
text Γϕ are defined in a two-step procedure using
the inductive clauses through which we define Ch
but in the reverse direction.
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Step 1. We define fibers of new types by inverse
induction.
Basic step.
For the whole chain Ch = ∀m:M |∃w:W we put:

‖Tϕ,∀m:M |∃w:W
‖ := ‖Love‖.

Inductive step.

‖Tϕ,∀m:M
‖ = {a ∈ ‖M‖: {b ∈ ‖W‖:

〈a, b〉 ∈ ‖Love‖} ∈ ‖∃w:W ‖}
and for a ∈ ‖M‖
‖Tϕ,∃w:W

‖(a) = {b ∈ ‖W‖: 〈a, b〉 ∈ ‖Love‖}
Step 2. We build dependent types from fibers.

‖Tϕ,∃w:W
‖ =

⋃
{{a} × ‖Tϕ,∃w:W

‖(a) :

a ∈ ‖Tϕ,∀m:M
‖}

Thus the first sentence in (2) extends the con-
text Γ by adding the type Tϕ,∀m:M

, interpreted
as ‖Tϕ,∀m:M

‖ (i.e. the set of men who love some
women), and the dependent type Tϕ,∃w:W

(tϕ,∀m),
interpreted for a ∈ ‖Tϕ,∀m:M

‖ as ‖Tϕ,∃w:W
‖(a)

(i.e. the set of women loved by the man a).
Unbound anaphoric pronouns are interpreted

with reference to the context created by the fore-
going text: they are treated as universal quantifiers
and newly formed (possibly dependent) types in-
crementally added to the context serve as their po-
tential quantificational domains. That is, unbound
anaphoric pronouns theym and themw in the sec-
ond sentence of (2) have the ability to pick up and
quantify universally over the respective interpreta-
tions. The anaphoric continuation in (2) translates
into:

Γϕ ` ∀tϕ,∀m :Tϕ,∀m:M
|∀tϕ,∃w :Tϕ,∃w:W

(tϕ,∀m )

Kiss(tϕ,∀m , tϕ,∃w),

where:

‖∀tϕ,∀m :Tϕ,∀m:M
|∀tϕ,∃w :Tϕ,∃w:W

(tϕ,∀m )‖ =

{R ⊆ ‖Tϕ,∃w:W
‖ : {a ∈ ‖Tϕ,∀m:M

‖ :

{b ∈ ‖Tϕ,∃w:W
‖(a) : 〈a, b〉 ∈ R} ∈

‖∀tϕ,∃w :Tϕ,∃w:W
(tϕ,∀m )‖(a)} ∈ ‖∀tϕ,∀m :Tϕ,∀m:M

‖},
yielding the correct truth conditions: Every man
kisses every woman he loves.

Our system also handles intra-sentential
anaphora, as exemplified in (3):

(3) Every farmer who owns a donkey beats it.

To account for the dynamic contribution of modi-
fied common nouns (in this case common nouns
modified by relative clauses) we include in our
system ∗-sentences (i.e. sentences with dummy
quantifier phrases). The modified common noun
gets translated into a ∗-sentence (with a dummy-
quantifier phrase f : F ):

Γ ` f : F |∃d:DOwn(f, d)

and we extend the context by dropping the speci-
fications of variables: (f : F, d : D) and adding
new variable specifications on newly formed types
for every (dummy-) quantifier phrase in the chain
Ch∗:

tϕ,f : Tϕ,f :F ; tϕ,∃d
: Tϕ,∃d:D

(tϕ,f ),

The interpretations of types (that correspond to the
quantifier phrases in the Ch∗) from the extended
context Γϕ are defined in our two-step procedure.
Thus the ∗-sentence in (3) extends the context by
adding the type Tϕ,f :F interpreted as ‖Tϕ,f :F ‖
(i.e. the set of farmers who own some donkeys),
and the dependent type Tϕ,∃d:D

(tϕ,f ), interpreted
for a ∈ ‖Tϕ,f :F ‖ as ‖Tϕ,∃d:D

‖(a) (i.e. the set of
donkeys owned by the farmer a). The main clause
translates into:

Γϕ ` ∀tϕ,f :Tϕ,f :F
|∀tϕ,∃d :Tϕ,∃d:D

(tϕ,f )

Beat(tϕ,f , tϕ,∃d
),

yielding the correct truth conditions Every farmer
who owns a donkey beats every donkey he owns.
Importantly, since we quantify over fibers (and not
over 〈farmer, donkey〉 pairs), our solution does
not run into the so-called ‘proportion problem’.

Dynamic extensions of contexts and their in-
terpretation are also defined for cumulative and
branching continuations. Consider a cumulative
example in (4):

(4) Last year three scientists wrote (a total of) five
articles (between them). They presented them
at major conferences.

Interpreted cumulatively, the first sentence in (4)
translates into a sentence:

Γ ` (Threes:S , F ivea:A) Write(s, a).

The anaphoric continuation in (4) can be inter-
preted in what Krifka calls a ‘correspondence’
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fashion (Krifka, 1996). For example, Dr. K wrote
one article, co-authored two more with Dr. N, who
co-authored two more with Dr. S, and the scien-
tists that cooperated in writing one or more articles
also cooperated in presenting these (and no other)
articles at major conferences. In our system, the
first sentence in (4) extends the context by adding
the type corresponding to (Threes:S , F ivea:A):

tϕ,(Threes,F ivea) : Tϕ,(Threes:S ; Fivea:A),

interpreted as a set of tuples

‖Tϕ,(Threes:S ,F ivea:A)‖ =

= {〈c, d〉 : c ∈ ‖S‖ & d ∈ ‖A‖ & c wrote d}
The anaphoric continuation then quantifies univer-
sally over this type (i.e. a set of pairs), yielding the
desired truth-conditions The respective scientists
cooperated in presenting at major conferences the
respective articles that they cooperated in writing.

3 English-to-formal language translation

We assume a two-step translation process.
Representation. The syntax of the representa-

tion language - for the English fragment consid-
ered in this paper - is as follows.
S → Prdn(QP1, . . . , QPn);
MCN → Prdn(QP1, . . . , CN , . . . , QPn);
MCN → CN ;
QP → Det MCN ;
Det→ every,most, three, . . .;
CN → man,woman, . . .;
Prdn → enter, love, . . .;
Common nouns (CNs) are interpreted as types,
and common nouns modified by relative clauses
(MCNs) - as ∗-sentences determining some (pos-
sibly dependent) types.

Disambiguation. Sentences of English, con-
trary to sentences of our formal language, are of-
ten ambiguous. Hence one sentence representa-
tion can be associated with more than one sentence
in our formal language. The next step thus in-
volves disambiguation. We take quantifier phrases
of a given representation, e.g.:

P (Q1X1, Q2X2, Q3X3)
and organize them into all possible chains of quan-
tifiers in suitable contexts with some restrictions
imposed on particular quantifiers concerning the
places in prefixes at which they can occur (a de-
tailed elaboration of the disambiguation process is
left for another place):

Q1x1:X1|Q2x2:X2

Q3x3:X3
P (x1, x2, x3).

4 System - syntax

4.1 Alphabet
The alphabet consists of:
type variables: X,Y, Z, . . .;
type constants: M,men,women, . . .;
type constructors:

∑
,
∏
,T;

individual variables: x, y, z, . . .;
predicates: P, P ′, P1, . . .;
quantifier symbols: ∃, ∀, five,Q1, Q2, . . .;
three chain constructors: ?|?, ?

? , (?, . . . , ?).

4.2 Context
A context is a list of type specifications of (indi-
vidual) variables. If we have a context

Γ = x1 : X1, . . . , xn : Xn(〈xi〉i∈Jn)

then the judgement

` Γ : cxt

expresses this fact. Having a context Γ as above,
we can declare a type Xn+1 in that context

Γ ` Xn+1(〈xi〉i∈Jn+1) : type

where Jn+1 ⊆ {1, . . . , n} such that if i ∈ Jn+1,
then Ji ⊆ Jn+1, J1 = ∅. The type Xn+1 depends
on variables 〈xi〉i∈Jn+1 . Now, we can declare a
new variable of the type Xn+1(〈xi〉i∈Jn+1) in the
context Γ

Γ ` xn+1 : Xn+1(〈xi〉i∈Jn+1)

and extend the context Γ by adding this variable
specification, i.e. we have

` Γ, xn+1 : Xn+1(〈xi〉i∈Jn+1) : cxt

Γ′ is a subcontext of Γ if Γ′ is a context and a sub-
list of Γ. Let ∆ be a list of variable specifications
from a context Γ, ∆′ the least subcontext of Γ con-
taining ∆. We say that ∆ is convex iff ∆′ −∆ is
again a context.

The variables the types depend on are always
explicitly written down in specifications. We can
think of a context as (a linearization of) a partially
ordered set of declarations such that the declara-
tion of a variable x (of type X) precedes the dec-
laration of the variable y (of type Y ) iff the type Y
depends on the variable x.

The formation rules for both Σ- and Π-types are
as usual.
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4.3 Language
Quantifier-free formulas. Here, we need only
predicates applied to variables. So we write

Γ ` P (x1, . . . , xn) : qf-f

to express that P is an n-ary predicate and the
specifications of the variables x1, . . . , xn form a
subcontext of Γ.

Quantifier phrases. If we have a context Γ, y :
Y (~x),∆ and quantifier symbol Q, then we can
form a quantifier phrase Qy:Y (~x) in that context.
We write

Γ, y : Y (~x),∆ ` Qy:Y (~x) : QP

to express this fact. In a quantifier prase Qy:Y (~x):
the variable y is the binding variable and the vari-
ables ~x are indexing variables.

Packs of quantifiers. Quantifiers phrases can
be grouped together to form a pack of quantifiers.
The pack of quantifiers formation rule is as fol-
lows.

Γ ` Qi yi:Yi(~xi) : QP i = 1, . . . k
Γ ` (Q1 y1:Y1(~x1), . . . , Qk yk:Yk(~xk)) : pack

where, with ~y = y1, . . . , yk and ~x =
⋃k
i=1 ~xi, we

have that yi 6= yj for i 6= j and ~y ∩ ~x = ∅. In so
constructed pack: the binding variables are ~y and
the indexing variables are ~x. We can denote such
a pack Pc~y:~Y (~x) to indicate the variables involved.
One-element pack will be denoted and treated as
a quantifier phrase. This is why we denote such a
pack as Qy:Y (~x) rather than (Qy:Y (~x)).

Pre-chains and chains of quantifiers. Chains
and pre-chains of quantifiers have binding vari-
ables and indexing variables. By Ch~y:~Y (~x) we de-
note a pre-chain with binding variables ~y and in-
dexing variables ~x so that the type of the variable
yi is Yi(~xi) with

⋃
i ~xi = ~x. Chains of quantifiers

are pre-chains in which all indexing variables are
bound. Pre-chains of quantifiers arrange quantifier
phrases into N -free pre-orders, subject to some
binding conditions. Mutually comparable QPs in a
pre-chain sit in one pack. Thus the pre-chains are
built from packs via two chain-constructors of se-
quential ?|? and parallel composition ?

? . The chain
formation rules are as follows.

1. Packs of quantifiers. Packs of quantifiers
are pre-chains of quantifiers with the same bind-
ing variable and the same indexing variables, i.e.

Γ ` Pc~y:~Y (~x) : pack

Γ ` Pc~y:~Y (~x) : p-ch

2. Sequential composition of pre-chains

Γ ` Ch1 ~y1:~Y1(~x1) : p-ch,Γ ` Ch2 ~y2:~Y2(~x2) : p-ch

Γ ` Ch1 ~y1:~Y1(~x1)|Ch2 ~y2:~Y2(~x2) : p-ch

provided ~y2 ∩ (~y1 ∪ ~x1) = ∅; the specifications of
the variables (~x1 ∪ ~x2) − (~y1 ∪ ~y2) form a con-
text, a subcontext of Γ. In so obtained pre-chain:
the binding variables are ~y1 ∪ ~y2 and the indexing
variables are ~x1 ∪ ~x2.

3. Parallel composition of pre-chains

Γ ` Ch1 ~y1:~Y1(~x1) : p-ch,Γ ` Ch2 ~y2:~Y2(~x2) : p-ch

Γ ` Ch
1 ~y1:~Y1(~x1)

Ch
2 ~y2:~Y2(~x2)

: p-ch

provided ~y2 ∩ (~y1 ∪ ~x1) = ∅ = ~y1 ∩ (~y2 ∪ ~x2).
As above, in so obtained pre-chain: the binding
variables are ~y1 ∪ ~y2 and the indexing variables
are ~x1 ∪ ~x2.

A pre-chain of quantifiers Ch~y:~Y (~x) is a chain
iff ~x ⊆ ~y. The following

Γ ` Ch~y:~Y (~x) : chain

expresses the fact thatCh~y:~Y (~x) is a chain of quan-
tifiers in the context Γ.

Formulas, sentences and ∗-sentences. The for-
mulas have binding variables, indexing variables
and argument variables. We write ϕ~y:Y (~x)(~z) for
a formula with binding variables ~y, indexing vari-
ables ~x and argument variables ~z. We have the
following formation rule for formulas

Γ ` A(~z) : qf-f,Γ ` Ch~y:~Y (~x) : p-ch

Γ ` Ch~y:~Y (~x) A(~z) : formula

provided ~y is final in ~z, i.e. ~y ⊆ ~z and variable
specifications of ~z − ~y form a subcontext of Γ. In
so constructed formula: the binding variables are
~y, the indexing variables are ~x, and the argument
variables are ~z.

A formula ϕ~y:Y (~x)(~z) is a sentence iff ~z ⊆ ~y
and ~x ⊆ ~y. So a sentence is a formula without free
variables, neither individual nor indexing. The fol-
lowing

Γ ` ϕ~y:Y (~x)(~z) : sentence

expresses the fact that ϕ~y:Y (~x)(~z) is a sentence
formed in the context Γ.

We shall also consider some special formulas
that we call ∗-sentences. A formula ϕ~y:Y (~x)(~z) is a
∗-sentence if ~x ⊆ ~y∪~z but the set ~z−~y is possibly
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not empty and moreover the type of each variable
in ~z−~y is constant, i.e., it does not depend on vari-
ables of other types. In such case we consider the
~z − ~y as a set of biding variables of an additional
pack called a dummy pack that is placed in front of
the whole chain Ch. The chain ’extended’ by this
dummy pack will be denoted by Ch∗. Clearly, if
~z − ~y is empty there is no dummy pack and the
chain Ch∗ is Ch, i.e. sentences are ∗-sentences
without dummy packs. We write

Γ ` ϕ~y:Y (~x)(~z) : ∗-sentence

to express the fact that ϕ~y:Y (~x)(~z) is a ∗-sentence
formed in the context Γ.

Having formed a ∗-sentence ϕ we can form a
new context Γϕ defined in the next section.

Notation. For semantics we need some notation
for the variables in the ∗-sentence. Suppose we
have a ∗-sentence

Γ ` Ch~y:Y (~x) P (~z) : ∗-sentence

We define: (i) The environment of pre-chain Ch:
Env(Ch) = Env(Ch~y:~Y (~x)) - is the context
defining variables ~x−~y; (ii) The binding variables
of pre-chain Ch: Bv(Ch) = Bv(Ch~y:~Y (~x)) - is
the convex set of declarations in Γ of the binding
variables in ~y; (iii) env(Ch) = env(Ch~y:~Y (~x)) -
the set of variables in the environment of Ch, i.e.
~x − ~y; (iv) bv(Ch) = bv(Ch~y:~Y (~x)) - the set of
biding variables ~y; (v) The environment of a pre-
chainCh′ in a ∗-sentenceϕ = Ch~y:Y (~x) P (~z), de-
noted Envϕ(Ch′), is the set of binding variables
in all the packs inCh∗ that are<ϕ-smaller than all
packs in Ch′. Note Env(Ch′) ⊆ Envϕ(Ch′). If
Ch′ = Ch1|Ch2 is a sub-pre-chain of the chain
Ch~y:Y (~x), then Envϕ(Ch2) = Envϕ(Ch1) ∪
Bv(Ch1) and Envϕ(Ch1) = Envϕ(Ch′).

4.4 Dynamic extensions
Suppose we have constructed a ∗-sentence in a
context

Γ ` Ch~y:~Y (~x) A(~z) : ∗-sentence

We write ϕ for Ch~y:~Y (~x) A(~z).
We form a context Γϕ dropping the specifica-

tions of variables ~z and adding one type and one
variable specification for each pack in PacksCh∗ .

Let Γ̌ denote the context Γ with the specifica-
tions of the variables ~z deleted. Suppose Φ ∈
PacksCh∗ and Γ′ is an extension of the context

Γ̌ such that one variable specification tΦ′,ϕ : TΦ′,ϕ
was already added for each pack Φ′ ∈ PacksCh∗
such that Φ′ <Ch∗ Φ but not for Φ yet. Then we
declare a type

Γ′ ` TΦ,ϕ(〈tΦ′,ϕ〉Φ′∈PacksCh∗ ,Φ′<Ch∗Φ) : type

and we extend the context Γ′ by a specification of
a variable tΦ,ϕ of that type

Γ′, tΦ,ϕ : TΦ,ϕ(〈tΦ′,ϕ〉Φ′∈PacksCh∗ ,Φ′<Ch∗Φ) : cxt

The context obtained from Γ̌ by adding the new
variables corresponding to all the packs PacksCh∗
as above will be denoted by

Γϕ = Γ̌ ∪T(Ch~y:~Y (~x) A(~z)).

At the end we add another context formation
rule

Γ ` Ch~y:~Y (~x) A(~z) : ∗-sentence,

Γϕ : cxt

Then we can build another formula starting in the
context Γϕ. This process can be iterated. Thus
in this system sentence ϕ in a context Γ is con-
structed via specifying sequence of formulas, with
the last formula being the sentence ϕ. However,
for the lack of space we are going to describe here
only one step of this process. That is, sentence ϕ
in a context Γ can be constructed via specifying
∗-sentence ψ extending the context as follows

Γ ` ψ : ∗-sentence

Γψ ` ϕ : sentence

For short, we can write

Γ ` Γψ ` ϕ : sentence

5 System - semantics

5.1 Interpretation of dependent types
The context Γ

` x : X(. . .), . . . , z : Z(. . . , x, y, . . .) : cxt

gives rise to a dependence graph. A dependence
graph DGΓ = (TΓ, EΓ) for the context Γ has
types of Γ as vertices and an edge πY,x : Y → X
for every variable specification x : X(. . .) in Γ
and every type Y (. . . , x, . . .) occurring in Γ that
depends on x.
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The dependence diagram for the context Γ is an
association ‖ − ‖ : DGΓ → Set to every type X
in TΓ a set ‖X‖ and every edge πY,x : Y → X
in EΓ a function ‖πY,x‖ : ‖Y ‖ → ‖X‖, so that
whenever we have a triangle of edges in EΓ, πY,x
as before πZ,y : Z → Y , πZ,x : Z → X we have
‖πZ,x‖ = ‖πY,x‖ ◦ ‖πZ,y‖.

The interpretation of the context Γ, the param-
eter space ‖Γ‖, is the limit of the dependence dia-
gram ‖ − ‖ : DGΓ → Set. More specifically,

‖Γ‖ = ‖x : X(. . .), . . . , z : Z(. . . , x, y, . . .)‖ =

{~a : dom(~a) = var(Γ), ~a(z) ∈ ‖Z‖(~adenv(Z)),

‖πZ,x‖(~a(z)) = ~a(x), for z : Z in Γ, x ∈ envZ}
where var(Γ) denotes variables specified in Γ and
env(Z) denotes indexing variables of the type Z.

The interpretation of the Σ- and Π-types are as
usual.

5.2 Interpretation of language
Interpretation of predicates and quantifier sym-
bols. Both predicates and quantifiers are inter-
preted polymorphically.

If we have a predicate P defined in a context Γ:

x1 : X1, . . . , xn : Xn(〈xi〉i∈Jn]) ` P (~x) : qf-f

then, for any interpretation of the context ‖Γ‖, it
is interpreted as a subset of its parameter set, i.e.
‖P‖ ⊆ ‖Γ‖.

Quantifier symbol Q is interpreted as quantifier
‖Q‖ i.e. an association to every1 set Z a subset
‖Q‖(Z) ⊆ P(Z).

Interpretation of pre-chains and chains of quan-
tifiers. We interpret QP’s, packs, pre-chains, and
chains in the environment of a sentence Envϕ.
This is the only case that is needed. We could
interpret the aforementioned syntactic objects in
their natural environment Env (i.e. independently
of any given sentence) but it would unnecessarily
complicate some definitions. Thus having a (∗-)
sentence ϕ = Ch~y:Y (~x) P (~z) (defined in a con-
text Γ) and a sub-pre-chain (QP, pack) Ch′, for
~a ∈ ‖Envϕ(Ch′)‖ we define the meaning of

‖Ch′‖(~a)

Notation. Let ϕ = Ch~y:~Y P (~y) be a ∗-
sentence built in a context Γ, Ch′ a pre-chain used
in the construction of the (∗)-chain Ch. Then

1This association can be partial.

Envϕ(Ch′) is a sub-context of Γ disjoint from the
convex set Bv(Ch′) and Envϕ(Ch′), Bv(Ch′) is
a sub-context of Γ. For ~a ∈ ‖Envϕ(Ch′)‖ we de-
fine ‖Bv(Ch′)‖(~a) to be the largest set such that

{~a}×‖Bv(Ch′)‖(~a) ⊆ ‖Envϕ(Ch′), Bv(Ch′)‖

Interpretation of quantifier phrases. If we have
a quantifier phrase

Γ ` Qy:Y (~x) : QP

and ~a ∈ ‖Envϕ(Qy:Y (~x))‖, then it is interpreted
as ‖Q‖(‖Y ‖(~a)) ⊆ P(‖Y ‖(~ad~x)).

Interpretation of packs. If we have a pack of
quantifiers in the sentence ϕ

Pc = (Q1y1:Y1(~x1), . . . Qnyn:Yn(~xn))

and ~a ∈ ‖Envϕ(Pc)‖, then its interpretation with
the parameter ~a is

‖Pc‖(~a) = ‖(Q1y1:Y1(~x1), . . . , Qnyn:Yn(~xn))‖(~a) =

{A ⊆
n∏
i=1

‖Yi‖(~ad~xi) : πi(A) ∈ ‖Qi‖(‖Yi‖(~ad~xi),

for i = 1, . . . , n}
where πi is the i-th projection from the product.

Interpretation of chain constructors.
1. Parallel composition. For a pre-chain of

quantifiers in the sentence ϕ

Ch′ =
Ch1~y1:~Y1(~x1)

Ch2~y2:~Y2(~x2)

and ~a ∈ ‖Envϕ(Ch′)‖ we define

‖
Ch1~y1:~Y1(~x1)

Ch2~y2:~Y2(~x2)

‖(~a) = {A×B :

A ∈ ‖Ch1~y1:~Y1(~x1)‖(~ad~x1) and

B ∈ ‖Ch2~y2:~Y2(~x2)‖(~ad~x2)}
2. Sequential composition. For a pre-chain of

quantifiers in the sentence ϕ

Ch′ = Ch1~y1:~Y1(~x1)|Ch2~y2:~Y2(~x2)

and ~a ∈ ‖Envϕ(Ch′)‖ we define

‖Ch1~y1:~Y1(~x1)|Ch2~y2:~Y2(~x2)‖(~a) =

{R ⊆ ‖Bv(Ch′)‖(~a) : {~b ∈ ‖Bv(Ch1)‖(~a) :
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{~c ∈ ‖Bv(Ch2)‖(~a,~b) : 〈~b,~c〉 ∈ R} ∈
‖Ch2~y2:~Y2(~x2)‖(~a,~b)} ∈ ‖Ch1~y1:~Y1(~x1)‖(~a)}
Validity. A sentence

~x : ~X ` Ch~y:~Y P (~y)

is true under the above interpretation iff

‖P‖(‖~Y ‖) ∈ ‖Ch~y:~Y ‖

5.3 Interpretation of dynamic extensions

Suppose we obtain a context Γϕ from Γ by the fol-
lowing rule

Γ ` Ch~y:~Y (~x) A(~z) : ∗-sentence,

Γϕ : cxt

where ϕ is Ch~y:~Y (~x) A(~z). Then

Γϕ = Γ̌ ∪T(Ch~y:~Y (~x) A(~z)).

From dependence diagram ‖ − ‖Γ : DGΓ → Set
we shall define another dependence diagram

‖ − ‖ = ‖ − ‖Γϕ : DGΓϕ → Set

Thus, for Φ ∈ PackCh∗ we need to define
‖TΦ,ϕ‖Γϕ and for Φ′ <Ch∗ Φ we need to define

‖πTΦ,ϕ,tΦ′‖ : ‖TΦ,ϕ‖ −→ ‖TΦ′,ϕ‖

This will be done in two steps:
Step 1. (Fibers of new types defined by inverse

induction.)
We shall define for the sub-prechains Ch′ of

Ch∗ and ~a ∈ ‖Envϕ(Ch′)‖ a set

‖Tϕ,Ch′‖(~a) ⊆ ‖Bv(Ch′)‖(~a)

This is done using the inductive clauses through
which we have defined Ch∗ but in the reverse di-
rection.

The basic case is when Ch′ = Ch∗. We put

‖Tϕ,Ch‖(∅) = ‖P‖

The inductive step. Now assume that the set
‖Tϕ,Ch′‖(~a) is defined for ~a ∈ ‖Envϕ(Ch′)‖.

Parallel decomposition. If we have

Ch′ =
Ch1~y1:~Y1(~x1)

Ch2~y2:~Y2(~x2)

then we define sets

‖Tϕ,Chi
‖(~a) ∈ ‖Chi‖(~a)

for i = 1, 2 so that

‖Tϕ,Ch′‖(~a) = ‖Tϕ,Ch1‖(~a)× ‖Tϕ,Ch2‖(~a)

if such sets exist, and these sets (‖Tϕ,Chi
‖(~a)) are

undefined otherwise.
Sequential decomposition. If we have

Ch′ = Ch1~y1:~Y1(~x1)|Ch2~y2:~Y2(~x2)

then we put

‖Tϕ,Ch1‖(~a) = {~b ∈ ‖Bv(Ch1)‖(~a) :

{~c ∈ ‖Bv(Ch2)‖(~a,~b) : 〈~b,~c〉 ∈ ‖Tϕ,Ch′‖(~a)}
∈ ‖Ch2‖(~a,~b)}

For~b ∈ ‖Bv(Ch1)‖ we put

‖Tϕ,Ch2‖(~a,~b) = {~c ∈ ‖Bv(Ch2)‖(~a,~b) :

〈~b,~c〉 ∈ ‖Tϕ,Ch′‖(~a)}
Step 2. (Building dependent types from fibers.)
If Φ is a pack in Ch∗, ~a ∈ ‖Envϕ(Φ)‖ then we

put

‖Tϕ,Φ‖ =
⋃
{{~a}×‖Tφ,Φ‖(~a) : ~a ∈ ‖Envϕ(Φ)‖,

∀Φ′<Ch∗Φ, (~adenvϕ(Φ′)) ∈ ‖Tϕ,Φ′‖}
It remains to define the projections between de-

pendent types. If Φ′ <ϕ Φ we define

πTϕ,Φ,tϕ,Φ′ : ‖Tϕ,Φ‖ −→ ‖Tϕ,Φ′‖
so that ~a 7→ ~ad(envϕ(Φ′) ∪ bvΦ′).

6 Conclusion

It was our intention in this paper to show that
adopting a typed approach to generalized quan-
tification allows a uniform treatment of a wide ar-
ray of anaphoric data involving natural language
quantification.
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Abstract

In this paper we discuss a conservative ex-
tension of the simply-typed lambda calcu-
lus in order to model a class of expres-
sions that generalize the notion of opaque
contexts. Our extension is based on previ-
ous work in the semantics of programming
languages aimed at providing a mathemat-
ical characterization of computations that
produce some kind of side effect (Moggi,
1989), and is based on the notion of mon-
ads, a construction in category theory that,
intuitively, maps a collection of “simple”
values and “simple” functions into a more
complex value space, in a canonical way.
The main advantages of our approach with
respect to traditional analyses of opacity
are the fact that we are able to explain in
a uniform way a set of different but re-
lated phenomena, and that we do so in a
principled way that has been shown to also
explain other linguistic phenomena (Shan,
2001).

1 Introduction

Opaque contexts have been an active area of re-
search in natural language semantics since Frege’s
original discussion of the puzzle (Frege, 1892). A
sentence like (1) has a non-contradictory interpre-
tation despite the fact that the two referring expres-
sions Hesperus and Phosphorus refer to the same
entity, the planet we know as Venus.

(1) Reza doesn’t believe Hesperus is Phos-
phorus.

The fact that a sentence like (1) includes the
modal believe has influenced much of the analy-
ses proposed in the literature, and has linked the
phenomenon with the notion of modality. In this
paper we challenge this view and try to position

data like (1) inside a larger framework that also
includes other types of expressions.

We decompose examples like (1) along two di-
mensions: the presence or absence of a modal ex-
pression, and the way in which we multiply re-
fer to the same individual. In the case of (1), we
have a modal and we use two different co-referring
expressions. Examples (2)-(4) complete the land-
scape of possible combinations:

(2) Dr. Octopus punched Spider-Man but he
didn’t punch Spider-Man.

(3) Mary Jane loves Peter Parker but she
doesn’t love Spider-Man.

(4) Reza doesn’t believe Jesus is Jesus.

(2) is clearly a contradictory statement, as we
predicate of Dr. Octopus that he has the property
of having punched Spider-Man and its negation.
Notice that in this example there is no modal and
the exact same expression is used twice to refer
to the object individual. In the case of (3) we
still have no modal and we use two different but
co-referring expressions to refer to the same in-
dividual. However in this case the statement has
a non-contradictory reading. Similarly (4) has a
non-contradictory reading, which states that, ac-
cording to the speaker, Reza doesn’t believe that
the entity he (Reza) calls Jesus is the entity that the
speaker calls Jesus (e.g., is not the same individual
or does not have the same properties). This case is
symmetrical to (3), as here we have a modal ex-
pression but the same expression is used twice to
refer to the same individual.

If the relevant reading of (4) is difficult to get,
consider an alternative kind of scenario, as in (5),
in which the subject of the sentence, Kim, suffers
from Capgras Syndrome1 and thinks that Sandy is
an impostor. The speaker says:

1From Wikipedia: “[Capgras syndrome] is a disorder in
which a person holds a delusion that a friend, spouse, par-
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(5) Kim doesn’t believe Sandy is Sandy

Given the definition of Capgras Syndrome (in
fn. 1), there is a clear non-contradictory reading
available here, in which the speaker is stating that
Kim does not believe that the entity in question,
that the speaker and (other non-Capgras-sufferers)
would call Sandy, is the entity that she associate
with the name Sandy.

We propose an analysis of the non-contradictory
cases based on the intuition that the apparently co-
referential expressions are in fact interpreted us-
ing different interpretation functions, which cor-
respond to different perspectives that are pitted
against each other in the sentences. Furthermore,
we propose that modal expressions are not the only
ones capable of introducing a shift of perspective,
but also that verbs that involve some kind of men-
tal attitude of the subject towards the object have
the same effect.

Notice that this last observation distinguishes
our approach from one where a sentence like (3) is
interpreted as simply saying that Mary Jane loves
only one guise of the entity that corresponds to Pe-
ter Parker but not another one. The problem with
this interpretation is that if it is indeed the case
that different co-referring expressions simply pick
out different guises of the same individual, then a
sentence like (6) should have a non-contradictory
reading, while this seems not to be the case.

(6) Dr. Octopus killed Spider-Man but he
didn’t kill Peter Parker.

While a guise-based interpretation is compatible
with our analysis2, it is also necessary to correctly
model the different behaviour of verbs like love
with respect to others like punch or kill. In fact,
we need to model the difference between, for ex-
ample, kill and murder, since murder does involve
a mental attitude of intention and the correspond-
ing sentence to (6) is not necessarily contradictory:

(7) Dr. Octopus murdered Spider-Man but he
didn’t murder Peter Parker.

The implementation of our analysis is based on
monads. Monads are a construction in category
theory that defines a canonical way to map a set
of objects and functions that we may consider as

ent, or other close family member has been replaced by an
identical-looking impostor.”

2Indeed, one way to understand guises is as different ways
in which we interpret a referring term (Heim, 1998).

simple into a more complex object and function
space. They have been successfully used in the
semantics of programming languages to charac-
terise computations that are not “pure”. By pure
we mean code objects that are totally referentially
transparent (i.e. do not depend on external factors
and return the same results given the same input
independently of their execution context), and also
that do not have effects on the “real world”. In
contrast, monads are used to model computations
that for example read from or write to a file, that
depend on some random process or whose return
value is non-deterministic.

In our case we will use the monad that describe
values that are made dependent on some exter-
nal factor, commonly known in the functional pro-
gramming literature as the Reader monad.3 We
will represent linguistic expressions that can be as-
signed potentially different interpretations as func-
tions from interpretation indices to values. Effec-
tively we will construct a different type of lexicon
that does not represent only the linguistic knowl-
edge of a single speaker but also her (possibly par-
tial) knowledge of the language of other speak-
ers. So, for example, we will claim that (4) can
be assigned a non-contradictory reading because
the speaker’s lexicon also includes the information
regarding Reza’s interpretation of the name Jesus
and therefore makes it possible for the speaker to
use the same expression, in combination with a
verb such as believe, to actually refer to two dif-
ferent entities. In one case we will argue that the
name Jesus is interpreted using the speaker’s inter-
pretation while in the other case it is Reza’s inter-
pretation that is used.

Notice that we can apply our analysis to any
natural language expression that may have differ-
ent interpretations. This means that, for exam-
ple, we can extend our analysis, which is limited
to referring expressions here for space reasons, to
other cases, such as the standard examples involv-
ing ideally synonymous predicates like groundhog
and woodchuck (see, e.g., Fox and Lappin (2005)).

The paper is organised as follows: in section
2 we discuss the technical details of our analysis;
in section 3 we discuss our analyses of the moti-
vating examples; section 4 compares our approach
with a standard approach to opacity; we conclude
in section 5.

3Shan (2001) was the first to sketch the idea of using the
Reader monad to model intensional phenomena.
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2 Monads and interpretation functions

To avoid introducing the complexities of the cat-
egorical formalism, we introduce monads as they
are usually encountered in the computer science
literature. A monad is defined as a triple 〈♦, η, ?〉.
♦ is what we call a functor, in our case a mapping
between types and functions. We call the com-
ponent of ♦ that maps between types ♦1, while
the one that maps between functions ♦2. In our
case ♦1 will map each type to a new type that
corresponds to the original type with an added
interpretation index parameter. Formally, if i is
the type of interpretation indices, then ♦1 maps
any type τ to i → τ . In terms of functions,
♦2 maps any function f : τ → δ to a function
f ′ : (i → τ) → i → δ. ♦2 corresponds to func-
tion composition:

♦2(f) = λg.λi.f(g(i)) (8)

In what follows the component ♦2 will not be used
so we will use ♦ as an abbreviation for ♦1. This
means that we will write ♦τ for the type i→ τ .
η (pronounced “unit”) is a polymorphic func-

tion that maps inhabitants of a type τ to inhabitants
of its image under ♦, formally η : ∀τ.τ → ♦τ .
Using the computational metaphor, η should em-
bed a value in a computation that returns that value
without any side-effect. In our case η should sim-
ply add a vacuous parameter to the value:

η(x) = λi.x (9)

? (pronounced “bind”) is a polymorphic func-
tion of type ∀τ.∀δ.♦τ → (τ → ♦δ) → ♦δ, and
acts as a sort of enhanced functional application.4

Again using the computational metaphor, ? takes
care of combining the side effects of the argument
and the function and returns the resulting compu-
tation. In the case of the monad we are interested
in, ? is defined as in (10).

a ? f = λi.f(a(i))(i) (10)

Another fundamental property of ? is that, by
imposing an order of evaluation, it will provide
us with an additional scoping mechanism distinct
from standard functional application. This will al-
low us to correctly capture the multiple readings

4We use for ? the argument order as it is normally used in
functional programming. We could swap the arguments and
make it look more like standard functional application. Also,
we write ? in infix notation.

associated with the expressions under considera-
tion.

We thus add two operators, η and ?, to the
lambda calculus and the reductions work as ex-
pected for (9) and (10). These reductions are im-
plicit in our analyses in section 3.

2.1 Compositional logic

For composing the meanings of linguistic re-
sources we use a logical calculus adapted for the
linear case5 from the one introduced by Benton et
al. (1998). The calculus is based on a language
with two connectives corresponding to our type
constructors: (, a binary connective, that corre-
sponds to (linear) functional types, and ♦, a unary
connective, that represents monadic types.

The logical calculus is described by the proof
rules in figure 1. The rules come annotated with
lambda terms that characterise the Curry-Howard
correspondence between proofs and meaning
terms. Here we assume a Lexical Functional
Grammar-like setup (Dalrymple, 2001), where
a syntactic and functional grammar component
feeds the semantic component with lexical re-
sources already marked with respect to their
predicate-argument relationships. Alternatively
we could modify the calculus to a categorial set-
ting, by introducing a structural connective, and
using directional versions of the implication con-
nective together with purely structural rules to
control the compositional process.

We can prove that the Cut rule is admissible,
therefore the calculus becomes an effective (al-
though inefficient) way of computing the meaning
of a linguistic expression.

A key advantage we gain from the monadic ap-
proach is that we are not forced to generalize all
lexical entries to the “worst case”. With the log-
ical setup we have just described we can in fact
freely mix monadic and non monadic resources.
For example, in our logic we can combine a pure
version of a binary function with arguments that
are either pure or monadic, as the following are all

5Linearity is a property that has been argued for in the
context of natural language semantics by various researchers
(Moortgat (2011), Asudeh (2012), among others).
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id
x : A ` x : A

Γ ` B B,∆ ` C
CutΓ,∆ ` C

Γ, x : A ` t : B
( RΓ ` λx.t : A( B

∆ ` t : A Γ, x : B ` u : C
( LΓ,∆, y : A( B ` u[y(t)/x] : C

Γ ` x : A ♦R
Γ ` η(x) : ♦A

Γ, x : A ` t : ♦B ♦LΓ, y : ♦A ` y ? λx.t : ♦B

Figure 1: Sequent calculus for a fragment of multiplicative linear logic enriched with a monadic modality,
together with a Curry-Howard correspondence between formulae and meaning terms.

provable theorems in this logic.

A( B( C,A,B ` ♦C (11)

A( B( C,♦A,B ` ♦C (12)

A( B( C,A,♦B ` ♦C (13)

A( B( C,♦A,♦B ` ♦C (14)

In contrast, the following is not a theorem in the
logic:

A( B( C, I ( A, I ( B 6` I ( C (15)

In general, then, if we were to simply lift the type
of the lexical resources whose interpretation may
be dependent on a specific point of view, we would
be forced to lift all linguistic expressions that may
combine with them, thus generalizing to the worst
case after all.

The monadic machinery also achieves a higher
level of compositionality. In principle we could
directly encode our monad using the→ type con-
structor, with linear implication,(, on the logical
side. However this alternative encoding wouldn’t
have the same deductive properties. Compare the
pattern of inferences we have for the monadic
type, in (11)–(14), with the equivalent one for the
simple type:

A( B( C,A,B ` C (16)

A( B( C, I ( A,B ` I ( C (17)

A( B( C,A, I ( B ` I ( C (18)

A( B( C, I ( A, I ( B ` (19)

I ( I ( C

In the case of the simple type, the final formula we
derive depends in some non-trivial way on the en-
tire collection of resources on the left-hand side of
the sequent. In contrast in the case of the monadic
type, the same type can be derived for all config-
urations. What is important is that we can pre-
dict the final formula without having to consider

the entire set of resources available. This shows
that the compositionality of our monadic approach
cannot be equivalently recapitulated in a simple
type theory.

3 Examples

The starting point for the analysis of examples (1)-
(4) is the lexicon in table 1. The lexicon represents
the linguistic knowledge of the speaker, and at
the same time her knowledge about other agents’
grammars.

Most lexical entries are standard, since we do
not need to change the type and denotation of lex-
ical items that are not involved in the phenomena
under discussion. So, for instance, logical opera-
tors such as not and but are interpreted in the stan-
dard non-monadic way, as is a verb like punch or
kill. Referring expressions that are possibly con-
tentious, in the sense that they can be interpreted
differently by the speaker and other agents, instead
have the monadic type ♦e. This is reflected in
their denotation by the fact that their value varies
according to an interpretation index. We use a
special index σ to refer to the speaker’s own per-
spective, and assume that this is the default index
used whenever no other index is specifically in-
troduced. For example, in the case of the name
Spider-Man, the speaker is aware of his secret
identity and therefore interprets it as another name
for the individual Peter Parker, while Mary Jane
and Dr. Octopus consider Spider-Man a different
entity from Peter Parker.

We assume that sentences are interpreted in a
model in which all entities are mental entities, i.e.
that there is no direct reference to entities in the
world, but only to mental representations. Enti-
ties are therefore relativized with respect to the
agent that mentally represents them, where non-
contentious entities are always relativized accord-
ing to the speaker. This allows us to represent the
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WORD DENOTATION TYPE

Reza rσ e
Kim kσ e
Dr. Octopus oσ e
Mary Jane mjσ e
Peter Parker ppσ e
not λp.¬p t→ t
but λp.λq.p ∧ q t→ t→ t
is λx.λy.x = y e→ e→ t
punch λo.λs.punch(s)(o) e→ e→ t
believe λc.λs.λi.B(s)(c(κ(s))) ♦t→ e→ ♦t
love λo.λs.λi.love(s)(o(κ(s))) ♦e→ e→ ♦t
Hesperus λi.

{
esr if i = r,
vσ if i = σ

♦e

Phosphorus λi.

{
msr if i = r,
vσ if i = σ

♦e

Spider-Man λi.

{
smi if i = o or i = mj,
ppσ if i = σ

♦e

Jesus λi.

{
jr if i = r,
jσ if i = σ

♦e

Sandy λi.

{
impk if i = k,
sσ if i = σ

♦e

Table 1: Speaker’s lexicon

fact that different agents may have distinct equiv-
alencies between entities. For example, Reza in
our model does not equate the evening star and
the morning star, but the speaker equates them
with each other and with Venus. Therefore, the
speaker’s lexicon in table 1 represents the fact
that the speaker’s epistemic model includes what
the speaker knows about other agents’ models,
e.g. that Reza has a distinct denotation (from the
speaker) for Hesperus, that Mary Jane has a dis-
tinct representation for Spider-Man, that Kim has
a distinct representation for Sandy, etc.

The other special lexical entries in our lexicon
are those for verbs like believe and love. The two
entries are similar in the sense that they both take
an already monadic resource and actively supply
a specific interpretation index that corresponds to
the subject of the verbs. The function κmaps each
entity to the corresponding interpretation index,
i.e. κ : e → i. For example, in the lexical en-
tries for believe and love, κmaps the subject to the
interpretation index of the subject. Thus, the entry
for believe uses the subject’s point of view as the
perspective used to evaluate its entire complement,

while love changes the interpretation of its object
relative to the perspective of its subject. However
we will see that the interaction of these lexical en-
tries and the evaluation order imposed by ?will al-
low us to let the complement of a verb like believe
and the object of a verb like love escape the spe-
cific effect of forcing the subject point of view, and
instead we will be able to derive readings in which
the arguments of the verb are interpreted using the
speaker’s point of view.

Figure 2 reports the four non-equivalent read-
ings that we derive in our system for example (1),
repeated here as (20).6

(20) Reza doesn’t believe that Hesperus is
Phosphorus.

Reading (21) assigns to both Hesperus and
Phosphorus the subject interpretation and results,
after contextualising the sentence by applying it
to the standard σ interpretation index, in the truth
conditions in (25), i.e. that Reza does not be-
lieve that the evening star is the morning star. This

6The logic generates six different readings but the monad
we are using here has a commutative behaviour, so four of
these readings are pairwise equivalent.
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JbelieveK (JHesperusK ? λx. JPhosphorusK ? λy.η(JisK (x)(y)))(JRezaK) ? λz.η(JnotK (z)) (21)JHesperusK ? λx. JbelieveK (JPhosphorusK ? λy.η(JisK (x)(y)))(JRezaK) ? λz.η(JnotK (z)) (22)JPhosphorusK ? λx. JbelieveK (JHesperusK ? λy.η(JisK (y)(x)))(JRezaK) ? λz.η(JnotK (z)) (23)JHesperusK ? λx. JPhosphorusK ? λy. JbelieveK (η(JisK (x)(y)))(JRezaK) ? λz.η(JnotK (z)) (24)

Figure 2: Non-equivalent readings for Reza doesn’t believe Hesperus is Phosphorus.

reading would not be contradictory in an epistemic
model (such as Reza’s model) where the evening
star and the morning star are not the same entity.

¬B(r)(esr = msr) (25)

In the case of (22) and (23) we get a similar ef-
fect although here we mix the epistemic models,
and one of the referring expressions is interpreted
under the speaker perspective while the other is
again interpreted under Reza’s perspective. For
these two readings we obtain respectively the truth
conditions in (26) and (27).

¬B(r)(vσ = msr) (26)

¬B(r)(vσ = esr) (27)

Finally for (24) we get the contradictory reading
that Reza does not believe that Venus is Venus, as
both referring expressions are evaluated using the
speaker’s interpretation index.

¬B(r)(vσ = vσ) (28)

The different contexts for the interpretation of
referring expressions are completely determined
by the order in which we evaluate monadic re-
sources. This means that, just by looking at the
linear order of the lambda order, we can check
whether a referring expression is evaluated inside
the scope of a perspective changing operator such
as believe, or if it is interpreted using the standard
interpretation.

If we consider a case like sentence (2), we ought
to get only a contradictory reading as the statement
is intuitively contradictory. Our analysis produces
a single reading that indeed corresponds to a con-
tradictory interpretation:

JSpider-ManK ? λx. JSpider-ManK ?
λy.η(JbutK (JpunchK (JDr. OctopusK)(x))
(JnotK (JpunchK (JDr. OctopusK)(y)))) (29)

The verb punch is not a verb that can change
the interpretation perspective and therefore the po-
tentially controversial name Spider-Man is inter-
preted in both instances using the speaker’s inter-
pretation index. The result are unsatisfiable truth
conditions, as expected:

punch(oσ)(ppσ) ∧ ¬punch(oσ)(ppσ) (30)

In contrast a verb like love is defined in our lex-
icon as possibly changing the interpretation per-
spective of its object to that of its subject. There-
fore in the case of a sentence like (3), we ex-
pect one reading where the potentially contentious
name Spider-Man is interpreted according to the
subject of love, Mary Jane. This is in fact the re-
sult we obtain. Figure 3 reports the two readings
that our framework generates for (3).

Reading (31), corresponds to the non contradic-
tory interpretation of sentence (3), where Spider-
Man is interpreted according to Mary Jane’s per-
spective and therefore is assigned an entity differ-
ent from Peter Parker:

love(mjσ)(ppσ) ∧ ¬love(mjσ)(smmj) (33)

Reading (32) instead generates unsatisfiable truth
conditions, as Spider-Man is identified with Peter
Parker according to the speaker’s interpretation:

love(mjσ)(ppσ) ∧ ¬love(mjσ)(ppσ) (34)

Our last example, (4), repeated here as (35), is
particularly interesting as we are not aware of pre-
vious work that discusses this type of sentence.
The non-contradictory reading that this sentence
has seems to be connected specifically to two dif-
ferent interpretations of the same name, Jesus,
both under the syntactic scope of the modal be-
lieve.

(35) Reza doesn’t believe Jesus is Jesus.

24



JloveK (η(JPeter ParkerK))(JMary JaneK) ? λp. JloveK (JSpider-ManK)(JMary JaneK) ?
λq.η(JbutK (p)(JnotK (q))) (31)JloveK (η(JPeter ParkerK))(JMary JaneK) ? λp. JSpider-ManK ? λx. JloveK (η(x))(JMary JaneK) ?
λq.η(JbutK (p)(JnotK (q))) (32)

Figure 3: Non-equivalent readings for Mary Jane loves Peter Parker but she doesn’t love Spider-Man.

JbelieveK (JJesusK ? λx. JJesusK ? λy.η(JisK (x)(y)))(JRezaK) ? λz.η(JnotK (z)) (36)JJesusK ? λx. JJesusK ? λy. JbelieveK (η(JisK (x)(y)))(JRezaK) ? λz.η(JnotK (z)) (37)JJesusK ? λx. JbelieveK (JJesusK ? λy.η(JisK (x)(y)))(JRezaK) ? λz.η(JnotK (z)) (38)

Figure 4: Non-equivalent readings for Reza doesn’t believe Jesus is Jesus.

Our system generates three non-equivalent read-
ings, reported here in figure 4.7

Reading (36) and (37) corresponds to two con-
tradictory readings of the sentence: in the first
case both instances of the name Jesus are inter-
preted from the subject perspective and therefore
attribute to Reza the non-belief in a tautology, sim-
ilarly in the second case, even though in this case
the two names are interpreted from the perspec-
tive of the speaker. In contrast the reading in (38)
corresponds to the interpretation that assigns two
different referents to the two instances of the name
Jesus, producing the truth conditions in (39) which
are satisfiable in a suitable model.

¬B(r)(jσ = jr) (39)

The analysis of the Capgras example (5), re-
peated in (40), is equivalent; the non-contradictory
reading is shown in (41).

(40) Kim doesn’t believe Sandy is Sandy.

¬B(k)(sσ = impk) (41)

We use impk as the speaker’s representation of
the “impostor” that Kim thinks has taken the place
of Sandy.

More generally, there are again three non-
equivalent readings, including the one above,
which are just those in figure 4, with JJesusK re-
placed by JSandyK and JRezaK replaced by JKimK.

7Again, there are six readings that correspond to different
proofs, but given the commutative behaviour of the Reader
monad, the fact that equality is commutative, and the fact that
we have in this case two identical lexical items, only three of
them are non-equivalent readings.

4 Comparison with traditional
approaches

In this section we try to sketch how a traditional
approach to opaque contexts, such as one based
on a de dicto/de re ambiguity with respect to a
modal operator, would fare in the analysis of (4),
our most challenging example.

To try to explain the two readings in the con-
text of a standard possible worlds semantics, we
could take (4) to be ambiguous with respect to a
de dicto/de re reading. In the case of the de dicto
reading (which corresponds to the non-satisfiable
reading) the two names are evaluated under the
scope of the doxastic operator believe, i.e. they
both refer to the same entity that is assigned to the
name Jesus in each accessible world. Clearly this
is always the case, and so (4) is not satisfiable. In
the case of the de re reading, we assume that the
two names are evaluated at different worlds that
assign different referents to the two names. One
of these two worlds will be the actual world and
the other one of the accesible worlds. The reading
is satisfiable if the doxastic modality links the ac-
tual world with one in which the name Jesus refers
to a different entity. Notice that for this analysis to
work we need to make two assumptions: 1. that
names behave as quantifiers with the property of
escaping modal contexts, 2. that names can be as-
signed different referents in different worlds, i.e.
we have to abandon the standard notion that names
are rigid designators (Kripke, 1972). In contrast,
in our approach we do not need to abandon the
idea of rigid designation for names (within each
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agent’s model).

However, such an approach would present a
number of rather serious problems. The first is
connected with the assumption that names are
scopeless. This is a common hypothesis in natural
language semantics and indeed if we model names
as generalized quantifiers they can be proven to be
scopeless (Zimmermann, 1993). But this is prob-
lematic for our example. In fact we would predict
that both instances of the name Jesus escape the
scope of believe. The resulting reading would bind
the quantified individual to the interpretation of Je-
sus in the actual world. In this way we only cap-
ture the non-satisfiable reading. To save the sco-
pal approach we would need to assume that names
in fact are sometimes interpreted in the scope of
modal operators.

One way to do this would be to set up our se-
mantic derivations so that they allow different sco-
pal relations between quantifiers and other opera-
tors. The problem with this solution is that for sen-
tences like (4) we generate twelve different deriva-
tions, some of which do not correspond to valid
readings of the sentence.

Even assuming that we find a satisfactory solu-
tion for these problems, the scopal approach can-
not really capture the intuitions behind opacity in
all contexts. Consider again (4) and assume that
there are two views about Jesus: Jesus as a divine
being and Jesus as a human being. Assume that Je-
sus is a human being in the actual world and that
Reza is an atheist, then the only possible reading
is the non-satisfiable one, as the referent for Jesus
will be the same in the actual world and all acces-
sible Reza-belief-worlds. The problem is that the
scopal approach assumes a single modal model,
while in this case it seems that there are two doxas-
tic models, Reza’s model and the speaker’s model,
under discussion. In contrast, in our approach the
relevant part of Reza’s model is embedded inside
the speaker’s model and interpretation indices in-
dicate which interpretation belongs to Reza and
which to the speaker.

Finally an account of modality in terms of sco-
pal properties is necessarily limited to cases in
which modal operators are present. While this
may be a valid position in the case of typical in-
tensional verbs like seek or want, it would not be
clear how we could extend this approach to cases
like 3, as the verb love has no clear modal con-
notation. Thus, the scopal approach would not be

sufficiently general.

5 Conclusion

We started by discussing a diverse collection of
expressions that share the common property of
showing nontrivial referential behaviours. We
have proposed a common analysis of all these
expressions in terms of a combination of differ-
ent interpretation contexts. We have claimed that
the switch to a different interpretation context is
triggered by specific lexical items, such as modal
verbs but also verbs that express some kind of
mental attitude of the subject of the verb towards
its object. The context switch is not obligatory,
as witnessed by the multiple readings that the sen-
tences discussed seem to have. We implemented
our analysis using monads. The main idea of
our formal implementation is that referring ex-
pressions that have a potential dependency from
an interpretation context can be implemented as
functions from interpretation indices to fully in-
terpreted values. Similarly, the linguistic triggers
for context switch are implemented in the lexi-
con as functions that can modify the interpreta-
tion context of their arguments. Monads allow
us to freely combine these “lifted” meanings with
standard ones, avoiding in this way to generalize
our lexicon to the worst case. We have also seen
how more traditional approaches, while capable of
dealing with some of the examples we discuss, are
not capable of providing a generalised explanation
of the observed phenomena.
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Abstract

Linear Categorial Grammar (LinCG) is a
sign-based, Curryesque, relational, logi-
cal categorial grammar (CG) whose cen-
tral architecture is based on linear logic.
Curryesque grammars separate the ab-
stract combinatorics (tectogrammar) of
linguistic expressions from their concrete,
audible representations (phenogrammar).
Most of these grammars encode linear or-
der in string-based lambda terms, in which
there is no obvious way to distinguish right
from left. Without some notion of direc-
tionality, grammars are unable to differen-
tiate, say, subject and object for purposes
of building functorial coordinate struc-
tures. We introduce the notion of a phe-
nominator as a way to encode the term
structure of a functor separately from its
“string support”. This technology is then
employed to analyze a range of coordina-
tion phenomena typically left unaddressed
by Linear Logic-based Curryesque frame-
works.

1 Overview

Flexibility to the notion of constituency in con-
junction with introduction (and composition) rules
has allowed categorial grammars to successfully
address an entire host of coordination phenomena
in a transparent and compositional manner. While
“Curryesque” CGs as a rule do not suffer from
some of the other difficulties that plague Lambek
CGs, many are notably deficient in one area: co-
ordination. Lest we throw the baby out with the
bathwater, this is an issue that needs to be ad-
dressed. We take the following to be an exemplary
subset of the relevant data, and adopt a fragment
methodology to show how it may be analyzed.

(1) Tyrion and Joffrey drank.

(2) Joffrey whined and sniveled.
(3) Tyrion slapped and Tywin chastised Jof-

frey.

The first example is a straightforward instance
of noun phrase coordination. The second and third
are both instances of what has become known in
the categorial grammar literature as “functor co-
ordination”, that is, the coordination of linguistic
material that is in some way incomplete. The third
is particularly noteworthy as being an example of
a “right node raising” construction, whereby the
argument Joffrey serves as the object to both of
the higher NP-Verb complexes. We will show that
all three examples can be given an uncomplicated
account in the Curryesque framework of Linear
Categorial Grammar (LinCG), and that (2) and
(3) have more in common than not.

Section 1 provides an overview of the data and
and central issues surrounding an analysis of co-
ordination in Curryesque grammars. Section 2 in-
troduces the reader to the framework of LinCG,
and presents the technical innovations at the heart
of this paper. Section 3 gives lexical entries and
derivations for the examples in section 1, and sec-
tion 4 discusses our results and suggests some di-
rections for research in the near future, with refer-
ences following.

1.1 Curryesque grammars and Linear
Categorial Grammar

We take as our starting point the Curryesque (af-
ter Curry (1961)) tradition of categorial grammars,
making particular reference to those originating
with Oehrle (1994) and continuing with Abstract
Categorial Grammar (ACG) of de Groote (2001),
Muskens (2010)’s Lambda Grammar (λG), Kub-
ota and Levine’s Hybrid Type-Logical Catego-
rial Grammar (Kubota and Levine, 2012) and
to a lesser extent the Grammatical Framework
of Ranta (2004), and others. These dialects
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of categorial grammar make a distinction be-
tween Tectogrammar, or “abstract syntax”, and
Phenogrammar, or “concrete syntax”. Tec-
togrammar is primarily concerned with the struc-
tural properties of grammar, among them co-
occurrence, case, agreement, tense, and so forth.
Phenogrammar is concerned with computing a
pre-phonological representation of what will even-
tually be produced by the speaker, and encom-
passes word order, morphology, prosody, and the
like.

Linear Categorial Grammar (LinCG) is a sign-
based, Curryesque, relational, logical categorial
grammar whose central architecture is based on
linear logic. Abbreviatory overlap has been
a regrettably persistent problem, and LinCG is
the same in essence as the framework varyingly
called Linear Grammar (LG) and Pheno-Tecto-
Differentiated Categorial Grammar (PTDCG), and
developed in Smith (2010), Mihalicek (2012),
Martin (2013), Pollard and Smith (2012), and Pol-
lard (2013). In LinCG, the syntax-phonology and
syntax-semantics interfaces amount to noting that
the logics for the phenogrammar, the tectogram-
mar, and the semantics operate in parallel. This
stands in contrast to ‘syntactocentric’ theories of
grammar, where syntax is taken to be the fun-
damental domain within which expressions com-
bine, and then phonology and semantics are ‘read
off’ of the syntactic representation. LinCG is con-
ceptually different in that it has relational, rather
than functional, interfaces between the three com-
ponents of the grammar. Since we do not interpret
syntactic types into phenogrammatical or semantic
types, this allows us a great deal of freedom within
each logic, although in practice we maintain a
fairly tight connection between all three compo-
nents. Grammar rules take the form of derivational
rules which generate triples called signs, and they
bind together the three logics so that they operate
concurrently. While the invocation of a grammar
rule might simply be, say, point-wise application,
the ramifications for the three systems can in prin-
ciple be different; one can imagine expressions
which exhibit type asymmetry in various ways.

By way of example, one might think of ‘focus’
as an operation which has reflexes in all three as-
pects of the grammar: it applies pitch accents to
the target string(s) in the phenogrammar (the dif-
ference between accented and unaccented words
being reflected in the phenotype), it creates ‘low-

ering’ operators in the tectogrammar (that is, ex-
pressions which scope within a continuation), and
it ‘focuses’ a particular meaningful unit in the se-
mantics. A focused expression might share its tec-
totype ((NP ( S) ( S) with, say, a quantified
noun phrase, but the two could have different phe-
notypes, reflecting the accentuation or lack thereof
by placing the resulting expression in the domain
of prosodic boundary phenomena or not. Never-
theless, the system is constrained by the fact that
the tectogrammar is based on linear logic, so if we
take some care when writing grammar rules, we
should still find resource sensitivity to be at the
heart of the framework.

1.2 Why coordination is difficult for
Curryesque grammars

Most Curryesque CGs encode linear order in
lambda terms, and there is no obvious way to dis-
tinguish ‘right’ from ‘left’ by examining the types
(be they linear or intuitionistic).1 This is not a
problem when we are coordinating strings directly,
as de Groote and Maarek (2007) show, but an anal-
ysis of the more difficult case of functor coordi-
nation remains elusive.2 Without some notion of
directionality, grammars are unable to distinguish
between, say, subject and object. This would seem
to predict, for example, that λs. s · SLAPPED ·
JOFFREY and λs. TYRION · SLAPPED · s would
have the same syntactic category (NP ( S in the
tectogrammar, and St → St in the phenogram-
mar), and would thus be compatible under coor-
dination, but this is generally not the case. What
we need is a way to examine the structure of a
lambda term independently of the specific string
constants that comprise it. To put it another way,
in order to coordinate functors, we need to be able
to distinguish between what Oehrle (1995) calls
their string support, that is, the string constants
which make up the body of a particular functional
term, and the linearization structure such functors
impose on their arguments.

2 Linear Categorial Grammar (LinCG)

Curryesque grammars separate the notion of linear
order from the abstract combinatorics of linguis-

1A noteworthy exception is Ranta’s Grammatical Frame-
work (GF), explored in, e.g. Ranta (2004) and Ranta
(2009). GF also makes distinctions between tectogrammar
and phenogrammar, though it has a somewhat different con-
ception of each.

2A problem explicitly recognized by Kubota (2010) in
section 3.2.1.
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tic expressions, and as such base their tectogram-
mars around logics other than bilinear logic; the
Grammatical Framework is based on Martin-Löf
type theory, and LinCG and its cousins ACG and
λG use linear logic. Linear logic is generally de-
scribed as being “resource-sensitive”, owing to the
lack of the structural rules of weakening and con-
traction. Resource sensitivity is an attractive no-
tion, theoretically, since it allows us to describe
processes of resource production, consumption,
and combination in a manner which is agnostic
about precisely how resources are combined. Cer-
tain problems which have been historically tricky
for Lambek categorial grammars (medial extrac-
tion, quantifier scope, etc.) are easily handled by
LinCG.

Since a full introduction to the framework is re-
grettably impossible given current constraints, we
refer the interested reader to the references in sec-
tion 1.1, which contain a more in-depth discus-
sion of the potential richness of the architecture
of LinCG. We do not wish to say anything new
about the semantics or the tectogrammar of coor-
dination in the current discussion, so we will ex-
pend our time fleshing out the phenogrammatical
component of the framework, and it is to this topic
that we now turn.

2.1 LinCG Phenogrammar
LinCG grammar rules take the form of tripartite
inference rules, indicating what operations take
place pointwise within each component of the
signs in question. There are two main gram-
mar rules, called application (App) for combining
signs, and abstraction (Abs) for creating the po-
tential for combination through hypothetical rea-
soning. Aside from the lexical entries given as
axioms of the theory, it is also possible to obtain
typed variables using the rule of axiom (Ax), and
we make use of this rule in the analysis of right
node raising found in section 3.4. While the tec-
togrammar of LinCG is based on a fragment of
linear logic, the phenogrammatical and semantic
components are based on higher order logic. Since
we are concerned only with the phenogrammatical
component here, we have chosen to simplify the
exposition by presenting only the phenogrammat-
ical part of the rules of application and abstraction:

Ax
f : A ` f : A

Γ ` f : A→ B ∆ ` a : A
App

Γ,∆ ` (f a) : B

Γ, x : A ` b : B
AbsΓ ` λx : A. b : A→ B

We additionally stipulate the following familiar
axioms governing the conversion and reduction of
lambda terms:3

` λx : A. b = λy : A. [y/x]b (α-conversion)
` (λx. b a) = [a/x]b (β-reduction)

As is common to any number of Curryesque
frameworks, we encode the phenogrammatical
parts of LinCG signs with typed lambda terms
consisting of strings, and functions over strings.4

We axiomatize our theory of strings in the familiar
way:

` ε : St
` · : St→ St→ St
` ∀stu : St. s · (t · u) = (s · t) · u
` ∀s : St. ε · s = s = s · ε

The first axiom asserts that the empty string ε is
a string. The second axiom asserts that concate-
nation, written ·, is a (curried) binary function on
strings. The third axiom represents the fact that
concatenation is associative, and the fourth, that
the empty string is a two-sided identity for con-
catenation. Because of the associativity of con-
catenation, we will drop parentheses as a matter
of convention.

The phenogrammar of a typical LinCG sign will
resemble the following (with one complication to
be added shortly):

` λs. s · SNIVELED : St→ St

Since we treat St as the only base type, we will
generally omit typing judgments in lambda terms
when no confusion will result. Furthermore, we
use SMALL CAPS to indicate that a particular con-
stant is a string. So, the preceding lexical entry
provides us with a function from some string s, to
strings, which concatenates the string SNIVELED

to the right of s.

2.1.1 Phenominators
The center of our analysis of coordination is
the notion of a phenominator (short for pheno-
combinator), a particular variety of typed lambda
term. Intuitively, phenominators serve the same
purpose for LinCG that bilinear (slash) types do
for Lambek categorial grammars. Specifically,

3The exact status of the rule of η-conversion with respect
to this framework is currently unclear, and since we do not
make use of it, we omit its discussion here.

4although other structures have been proposed, e.g. the
node sets found in Muskens (2001).
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they encode the linearization structure of a func-
tor, that is, where arguments may eventually oc-
cur with respect to its string support. To put it an-
other way, a phenominator describes the structure
a functor “projects”, in terms of linear order.

From a technical standpoint, we would like to
define a phenominator as a closed monoidal linear
lambda term, i.e. a term containing no constants
other than concatenation and the empty string.
The idea is that phenominators are the terms of
the higher order theory of monoids, and they in
some ways describe the abstract “shape” of pos-
sible string functions. For those accustomed to
thinking of “syntax” as being word order, then
phenominators can be thought of as a kind of syn-
tactic combinator. In practice, we will make use
only of what we call the unary phenominators, the
types of which we will refer to using the sort Φ
(with ϕ used by custom as a metavariable over
unary phenominators, i.e. terms whose type is in
Φ). These are not unary in the strict sense, but they
will have as their centerpiece one particular string
variable, which will be bound with the highest
scope. We will generally abbreviate phenomina-
tors by the construction with which they are most
commonly associated: VP for verb phrases and
intransitive verbs, TV for transitive verbs, DTV
for ditransitive verbs, QNP for quantified noun
phrases, and RNR for right node raising construc-
tions. Here are examples of some of the most com-
mon phenominators we will make use of and the
abbreviations we customarily use for them:

Phenominator Abbreviation
λs.s (omitted)
λvs.s · v VP
λvst.t · v · s TV
λvstu.u · v · s · t DTV
λvP.(P v) QNP
λvs.v · s RNR

As indicated previously, the first argument of a
phenominator always corresponds to what we re-
fer to (after Oehrle (1995)) as the string support
of a particular term. With the first argument dis-
pensed with, we have chosen the argument order
of the phenominators out of general concern for
what we perceive to be fairly uncontroversial cat-
egorial analyses of English grammatical phenom-
ena. That is, transitive verbs take their object ar-
guments first, and then their subject arguments, di-
transitives take their first and second object argu-
ments, followed by their subject argument, etc. As

long as the arguments in question are immediately
adjacent to the string support at each successive
application, it is possible to permute them to some
extent without losing the general thrust of the anal-
ysis. For example, the choice to have transitive
verbs take their object arguments first is insignifi-
cant.5 Since strings are implicitly under the image
of the identity phenominator λs.s, we will consis-
tently omit this subscript.

We will be able to define a function we call
say, so that it will have the following property:

` ∀s : St.∀ϕ : Φ.say (ϕ s) = s

That is, say is a left inverse for unary phenomi-
nators.

The function say is defined recursively via cer-
tain objects we call vacuities. The idea of a vacu-
ity is that it be in some way an “empty argument”
to which a functional term may apply. If we are
dealing with functions taking string arguments, it
seems obvious that the vacuity on strings should
be the empty string ε. If we are dealing with
second-order functions taking St→ St arguments,
for example, quantified noun phrases like every-
one, then the vacuity on St → St should be the
identity function on strings, λs.s. Higher vacuities
than these become more complicated, and defin-
ing all of the higher-order vacuities is not entirely
straightforward, as certain types are not guaran-
teed to have a unique vacuity. Fortunately, we can
do it for any higher-function taking as an argument
another function under the image of a phenomina-
tor – then the vacuity on such a function is just the
phenominator applied to the empty string.6 The
central idea is easily understood when one asks
what, say, a vacuous transitive verb sounds like.
The answer seems to be: by itself, nothing, but
it imposes a certain order on its arguments. One
practical application of this clause is in analyzing
so-called “argument cluster coordination”, where
this definition will ensure that the argument cluster
gets linearized in the correct manner. This analy-
sis is regrettably just outside the scope of the cur-
rent inquiry, though the notion of the phenomina-

5Since we believe it is possible to embed Lambek catego-
rial grammars in LinCG, this fact reflects that the calculus we
are dealing with is similar to the associative Lambek Calcu-
lus.

6A reviewer suggests that this concept may be related to
the “context passing representation” of Hughes (1995), and
the association of a nil term with its continuation with re-
spect to contexts is assuredly evocative of the association of
the vacuity on a phenominator-indexed type with the contin-
uation of ε with respect to a phenominator.
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tor can be profitably employed to provide exactly
such an analysis by adopting and reinterpreting a
categorial account along the lines of the one given
in Dowty (1988).

We formally define vacuities as follows:

vacSt→St =def λs.s
vacτϕ =def (ϕ ε)

The reader should note that as a special case of the
second clause, we have

vacSt = vacStλs.s = (λs.s ε) = ε

This in turn enables us to define say:
saySt =def λs.s
sayτ1→τ2 =def λk : τ1 → τ2. sayτ2(k vacτ1)
say(τ1→τ2)ϕ =def sayτ1→τ2

For an expedient example, we can apply say to
our putative lexical entry from earlier, and verify
that it will reduce to the string SNIVELED as de-
sired:

saySt→St λs. s · SNIVELED

= λk : St→ St.
(saySt(k vacSt)) λs. s · SNIVELED

= saySt (λs. s · SNIVELED vacSt)
= saySt (λs. s · SNIVELED ε)
= saySt ε · SNIVELED

= saySt SNIVELED

= λs.s SNIVELED

= SNIVELED

2.1.2 Subtyping by unary phenominators
In order to augment our type theory with the
relevant subtypes, we turn to Lambek and Scott
(1986), who hold that one way to do subtyping is
by defining predicates that amount to the charac-
teristic function of the particular subtype in ques-
tion, and then ensuring that these predicates meet
certain axioms embedding the subtype into the su-
pertype. We will be able to write such predicates
using phenominators. A unary phenominator is
one which has under its image a function whose
string support is a single contiguous string. With
this idea in place, we are able to assign subtypes
to functional types in the following way.

For τ a (functional) type, we write τϕ (with ϕ a
phenominator) as shorthand for τϕ′ , where:

ϕ′ = λf : τ . ∃s : St.f = (ϕ s)

Then ϕ′ constitutes a subtyping predicate in the
manner of Lambek and Scott (1986). For example,
let τ = St→ St and ϕ = λvs.s·v. Let us consider
the following (putative) lexical entry (pheno only):

` λs′. s′ · SNIVELED : (St→ St)VP

Then our typing is justified along the following
lines:
τϕ ::= (St→ St)VP

::= (St→ St)λvs.s·v
::= (St→ St)λf :St→St. ∃t:St.f=(λvs.s·v t)

So applying the subtyping predicate to the term in
question, we have

(λf : St→ St. ∃t : St.
f = (λvs.s · v t) λs′. s′ · SNIVELED)
= ∃t : St.λs′. s′ · SNIVELED = (λvs.s · v t)
= ∃t : St.λs′. s′ · SNIVELED = λs. s · t
= ∃t : St.λs. s · SNIVELED = λs. s · t

which is true with t = SNIVELED, and the term is
shown to be well-typed.

3 Analysis

The basic strategy underlying our analysis of coor-
dination is that in order to coordinate two linguis-
tic signs, we need to track two things: their lin-
earization structure, and their string support. If we
have access to the linearization structure of each
conjunct, then we can check to see that it is the
same, and the signs are compatible for coordina-
tion. Furthermore, we will be able to maintain this
structure independent of the actual string support
of the individual signs.

Phenominators simultaneously allow us to
check the linearization structure of coordination
candidates and to reconstruct the relevant lin-
earization functions after coordination has taken
place. The function say addresses the second
point. For a given sign, we can apply say to it
in order to retrieve its string support. Then, we
will be able to directly coordinate the resulting
strings by concatenating them with a conjunction
in between. Finally, we can apply the phenomi-
nator to the resulting string and retrieve the new
linearization function, containing the entire coor-
dinate structure as its string support.

3.1 Lexical entries
In LinCG, lexical entries constitute the (nonlogi-
cal) axioms of the proof theory. First we consider
the simplest elements of our fragment, the phenos
for the proper names Joffrey, Tyrion, and Tywin:

(4) a. ` JOFFREY : St
b. ` TYRION : St
c. ` TYWIN : St

Next, we consider the intransitive verbs drank,
sniveled and whined. :
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(5) a. ` λs. s · DRANK : (St→ St)VP

b. ` λs. s · SNIVELED : (St→ St)VP

c. ` λs. s · WHINED : (St→ St)VP

Each of these is a function from strings to strings,
seeking to linearize its ‘subject’ string argument to
the left of the verb. They are under the image of
the “verb phrase” phenominator λvs.s · v.

The transitive verbs chastised and slapped seek
to linearize their first string argument to the right,
resulting in a function under the image of the VP
phenominator, and their second argument to the
left, resulting in a string.

(6) a. ` λst. t · CHASTISED · s
: (St→ St→ St)TV

b. ` λst. t · SLAPPED · s
: (St→ St→ St)TV

Technically, this type could be written (St →
(St → St)VP)TV, but for the purposes of coordina-
tion, the present is sufficient. Each of these entries
is under the image of the “transitive verb” phe-
nominator λvst.t · v · s.

Finally, we come to the lexical entry schema for
and:

(7) ` λc1 : τϕ. λc2 : τϕ.
ϕ ((sayτϕ c2) · AND · (sayτϕ c1))
: τϕ → τϕ → τϕ

We note first that it takes two arguments of iden-
tical types τ , and furthermore that these must be
under the image of the same phenominator ϕ. It
then returns an expression of the same subtype.7

This mechanism bears more detailed examination.
First, each conjunct is subjected to the function
say, which, given its type, will return the string
support of the conjunct. Then, the resulting strings
are concatenated to either side of the string AND.
Finally, the phenominator of each argument is ap-
plied to the resulting string, creating a function
identical to the linearization functions of each of
the conjuncts, except with the coordinated string
in the relevant position.

3.2 String coordination
String coordination is direct and straightforward.
Since string-typed terms are under the image of

7Since ϕ occurs within both the body of the term and the
subtyping predicate, we note that this effectively takes us into
the realm of dependent types. Making the type theory of the
phenogrammar precise is an ongoing area of research, and we
are aware that constraining the type system is of paramount
importance for computational tractability.

the identity phenominator, and since saySt is also
defined to be the identity on strings, the lexical en-
try we obtain for and simply concatenates each
argument string to either side of the string AND.
We give the full term reduction here, although this
version of and can be shown to be equal to the fol-
lowing:
` λc1c2 : St. c2 · AND · c1 : St→ St→ St

Since our terms at times become rather large,
we will adopt a convention where proof trees are
given with numerical indexes instead of sequents,
with the corresponding sequents following below
(at times on multiple lines). We will from time
to time elide multiple steps of reduction, noting in
passing the relevant definitions to consider when
reconstructing the proof.

6

1 2
3 4

5
7

1. ` λc1 : St. λc2 : St.
λs.s ((saySt c2) · AND · (saySt c1))
: St→ St→ St

2. ` JOFFREY : St

3. ` λc2 : St.
λs.s ((saySt c2) · AND · (saySt JOFFREY))
= λc2 : St.
λs.s ((saySt c2) · AND · (λs.s JOFFREY))
= λc2 : St. λs.s ((saySt c2)·AND·JOFFREY)
: St→ St

4. ` TYRION : St

5. ` λs.s ((saySt TYRION) · AND · JOFFREY) :
St
= λs.s ((λs.s TYRION)·AND·JOFFREY) : St
= λs.s (TYRION · AND · JOFFREY) : St
= TYRION · AND · JOFFREY : St

6. ` λs. s · DRANK : (St→ St)VP

7. ` TYRION · AND · JOFFREY · DRANK : St

3.3 Functor coordination
Here, in order to understand the term appearing
in each conjunct, it is helpful to notice that the
following equality holds (with f a function from
strings to strings, under the image of the VP phe-
nominator):

f : (St→ St)VP ` say(St→St)VP f

= saySt→St f
= saySt (f vacSt)
= saySt (f ε)
= λs.s (f ε)
= (f ε) : St
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This says that to coordinate VPs, we will first need
to reduce them to their string support by feeding
their linearization functions the empty string. For
the sake of brevity, this term reduction will be
elided from steps 5 and 8 in the derivations be-
low. Steps 2 and 6 constitute the hypothesizing
and subsequent withdrawal of an ‘object’ string
argument t′, as do steps 10 and 14 (s′). Format-
ting restrictions prohibit rule-labeling on the proof
trees, so we note that these are each instances of
the rules of axiom (Ax) and abstraction (Abs), re-
spectively.

1 2
3 4

5 6
7

1. ` λc1 : (St→ St)VP. λc2 : (St→ St)VP.
λvs.s · v
((say(St→St)VP c2) · AND · (say(St→St)VP c1))
: (St→ St)VP → (St→ St)VP → (St→ St)VP

2. ` λs. s · SNIVELED : (St→ St)VP

3. ` λc2 : (St→ St)VP. λvs.s · v
((say(St→St)VP c2) · AND

· (say(St→St)VP λs. s · SNIVELED))
...
= λc2 : (St→ St)VP. λvs.s · v
((say(St→St)VP c2) · AND · SNIVELED)
: (St→ St)VP → (St→ St)VP

4. ` λs. s · WHINED : (St→ St)VP

5. ` λvs.s · v ((say(St→St)VP λs. s · WHINED)
· AND · SNIVELED)
...
= (λvs.s · v WHINED · AND · SNIVELED)
= λs. s · WHINED · AND · SNIVELED

: (St→ St)VP

6. ` JOFFREY : St

7. ` JOFFREY · WHINED · AND · SNIVELED : St

3.4 Right node raising
In the end, ‘right node raising’ constructions prove
only to be a special case of functor coordination.
The key here is the licensing of the ‘rightward-
looking’ functors, which are under the image of
the phenominator λvs.v · s. As was the case with
the ‘leftward-looking’ functor coordination exam-
ple in section 3.3, this analysis is essentially the
same as the well-known Lambek categorial gram-
mar analysis originating in Steedman (1985) and
continuing in Dowty (1988) and Morrill (1994).

The difference is that we encode directionality in
the phenominator, rather than in the type. Since
our system does not include function composition
as a rule, but as a theorem, we will need to make
use of hypothetical reasoning in order to permute
the order of the string arguments in order to con-
struct expressions with the correct structure.8

As was the case with the functor coordina-
tion example in section 3.3, applying say to the
conjuncts passes them the empty string, reducing
them to their string support, as shown here:

f : (St→ St)RNR ` say(St→St)RNR f

= saySt→St f
= saySt (f vacSt)
= saySt (f ε)
= λs.s (f ε)
= (f ε) : St

As before, this reduction is elided in the proof
given below, occurring in steps 8 and 15.

7

1 2
3 4

5
6

8

9 10
11 12

13
14

15 16
17

1. ` λst. t · CHASTISED · s : (St→ St→ St)TV

2. t′ : St ` t′ : St

3. t′ : St ` λt. t · CHASTISED · t′ : (St→ St)VP

4. ` TYWIN : St

5. t′ : St ` TYWIN · CHASTISED · t′ : St

6. ` λt′. TYWIN ·CHASTISED ·t′ : (St→ St)RNR

7. ` λc1 : (St→ St)RNR. λc2 : (St→ St)RNR.
λvs.v · s ((say(St→St)RNR c2)
· AND · (say(St→St)RNR c1))
: (St→ St)RNR → (St→ St)RNR

→ (St→ St)RNR

8. ` λc2 : (St→ St)RNR. λvs.v · s
((say(St→St)RNR c2) · AND

·(say(St→St)RNR λt
′. TYWIN·CHASTISED·t′))

...
= λc2 : (St→ St)RNR. λvs.v · s

8Regrettably, space constraints prohibit a discussion veri-
fying the typing for the ‘right node raised’ terms. The reader
can verify that the terms are in fact well-typed given the sub-
typing schema in section 2.1.2. It is possible to write infer-
ence rules that speak directly to the introduction and elimina-
tion of the relevant functional subtypes, but these are omitted
here for the sake of brevity.
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((say(St→St)RNR c2)
· AND · TYWIN · CHASTISED)
: (St→ St)RNR → (St→ St)RNR

9. ` λst. t · SLAPPED · s : (St→ St→ St)TV

10. s′ : St ` s′ : St

11. s′ : St ` λt. t · SLAPPED · s′ : (St→ St)VP

12. ` TYRION : St

13. s′ : St ` TYRION · SLAPPED · s′ : St

14. ` λs′. TYRION · SLAPPED · s′ : (St→ St)RNR

15. ` λvs.v · s ((say(St→St)RNR

λs′. TYRION · SLAPPED · s′)
· AND · TYWIN · CHASTISED)
...
= (λvs.v · s TYRION · SLAPPED

· AND · TYWIN · CHASTISED)
= λs. TYRION · SLAPPED · AND

· TYWIN · CHASTISED · s : (St→ St)RNR

16. ` JOFFREY : St

17. ` TYRION · SLAPPED · AND

· TYWIN · CHASTISED · JOFFREY : St

4 Discussion

We provide a brief introduction to the framework
of Linear Categorial Grammar (LinCG). One of
the primary strengths of categorial grammar in
general has been its ability to address coordina-
tion phenomena. Coordination presents a uniquely
particular problem for grammars which distin-
guish between structural combination (tectogram-
mar) and the actual linear order of the strings gen-
erated by such grammars (part of phenogrammar).
Due to the inability to distinguish ‘directionality’
in string functors within a standard typed lambda
calculus, a general analysis of coordination seems
difficult.

We have elaborated LinCG’s concept of
phenogrammar by introducing phenominators,
closed monoidal linear lambda terms. We have
shown how the recursive function say provides a
left inverse for unaryphenominators, and we have
defined a more general notion of an ‘empty cate-
gory’ known as a vacuity, which say is defined
in terms of. It is then possible to describe sub-
types of functional types suitable to make the rele-
vant distinctions. These technologies enable us to
give analyses of various coordination phenomena
in LinCG, extending the empirical coverage of the
framework.

4.1 Future work
It is possible to give an analysis of argument clus-
ter coordination using phenominators, instantiat-
ing the lexical entry for and with τ as the type
(St→ St→ St→ St)DTV → (St→ St)VP and ϕ as
λvPs. s·(Pεεε)·v, and using hypothetical reason-
ing. Regrettably, the necessity of brevity prohibits
a detailed account here.

Given that phenominators provide access to the
structure of functional terms which concatenate
strings to the right and left of their string support,
it is our belief that any Lambek categorial gram-
mar analysis can be recast in LinCG by an algo-
rithmic translation of directional slash types into
phenominator-indexed functional phenotypes, and
we are currently in the process of evaluating a po-
tential translation algorithm from directional slash
types to phenominators. This should in turn pro-
vide us with most of the details necessary to de-
scribe a system which emulates the HTLCG of
Kubota and Levine (2012), which provides anal-
yses of various gapping phenomena, greatly in-
creasing the overall empirical coverage.

There are a number of coordination phenomena
that require modifications to the tectogrammatical
component. We would like to be able to analyze
unlike category coordinations like rich and an ex-
cellent cook in the manner of Bayer (1996), as well
as Morrill (1996), which would require the addi-
tion of some variety of sum types in the tectogram-
mar. Further muddying the waters is so-called “it-
erated” or “list” coordination, which requires the
ability to generate coordinate structures contain-
ing a number of conjuncts with no coordinating
conjunction, as in Thurston, Kim, and Steve.

It is our intent to extend the use of phenom-
inators to analyze intonation as well, and we
expect that they can be fruitfully employed to
give accounts of focus, association with focus,
contrastive topicalization, “in-situ” topicalization,
alternative questions, and any number of other
phenomena which are at least partially realized
prosodically.
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Abstract

In this paper, we study natural language
inference based on the formal semantics
in modern type theories (MTTs) and their
implementations in proof-assistants such
as Coq. To this end, the type theory
UTT with coercive subtyping is used as
the logical language in which natural lan-
guage semantics is translated to, followed
by the implementation of these semantics
in the Coq proof-assistant. Valid infer-
ences are treated as theorems to be proven
via Coq’s proof machinery. We shall em-
phasise that the rich typing mechanisms in
MTTs (much richer than those in the sim-
ple type theory as used in the Montagovian
setting) provide very useful tools in many
respects in formal semantics. This is ex-
emplified via the formalisation of various
linguistic examples, including conjoined
NPs, comparatives, adjectives as well as
various linguistic coercions. The aim of
the paper is thus twofold: a) to show that
the use of proof-assistant technology has
indeed the potential to be developed into
a new way of dealing with inference, and
b) to exemplify the advantages of having a
rich typing system to the study of formal
semantics in general and natural language
inference in particular.

1 Introduction

Natural Language Inference (NLI), i.e. the task of
determining whether an NL hypothesis can be in-
ferred from an NL premise, has been an active re-
search theme in computational semantics in which
various approaches have been proposed (see, for
example (MacCartney, 2009) and some of the ref-
erences therein). In this paper, we study NLI based

∗This work is supported by the research grant F/07-
537/AJ of the Leverhulme Trust in the U.K.

on formal semantics in MTTs with coercive sub-
typing (Luo, 2012b) and its implementation in the
proof assistant Coq (Coq, 2007).

A Modern Type Theory (MTT) is a dependent
type theory consisting of an internal logic, which
follows the propositions-as-types principle. This
latter feature along with the availability of power-
ful type structures make MTTs very useful for for-
mal semantics. The use of MTTs for NL semantics
has been proposed with exciting results as regards
various issues of NL semantics, ranging from
quantification and anaphora to adjectival modifi-
cation, co-predication, belief and context formal-
ization. (Sundholm, 1989; Ranta, 1994; Boldini,
2000; Cooper, 2005; Fox and Lappin, 2005; Re-
toré, 2013; Ginzburg and Cooper, forthcoming;
Luo, 2011a; Luo, 2012b; Chatzikyriakidis and
Luo, 2012; Chatzikyriakidis and Luo, 2013a). Re-
cently, there has been a systematic study of MTT
semantics using Luo’s UTT with coercive subtyp-
ing (type theory with coercive subtyping, hence-
forth TTCS) (Luo, 2010; Luo, 2011a; Luo, 2012b;
Chatzikyriakidis and Luo, 2012; Chatzikyriakidis
and Luo, 2013a; Chatzikyriakidis and Luo, 2013b;
Chatzikyriakidis and Luo, 2014). This is the ver-
sion of MTT used in this paper. More specifically,
the paper concentrates on one of the key differ-
ences between MTTs and simple typed ones, i.e.
rich typing. Rich typing will be shown to be a
key ingredient for both formal semantics in gen-
eral and the study of NLI in particular.

A proof assistant is a computer system that as-
sists the users to develop proofs of mathemati-
cal theorems. A number of proof assistants im-
plement MTTs. For instance, the proof assistant
Coq (Coq, 2007) implements pCIC, the predica-
tive Calculus of Inductive Constructions1 and sup-

1pCIC is a type theory that is rather similar to UTT, es-
pecially after its universeSet became predicative since Coq
8.0. A main difference is that UTT does not have co-inductive
types. The interested reader is directed to Goguen’s PhD the-
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ports some very useful tactics that can be used to
help the users to automate (parts of) their proofs.
Proof assistants have been used in various applica-
tions in computer science (e.g., program verifica-
tion) and formalised mathematics (e.g., formalisa-
tion of the proof of the 4-colour theorem in Coq).

The above two developments, the use of MTT
semantics on the one hand and the implementa-
tion of MTTs in proof assistants on the other, has
opened a new research avenue: the use of existing
proof assistants in dealing with NLI. In this pa-
per, two different goals are to be achieved: a) on a
more practical level, to show how proof-assistant
technology can be used in order to deal with NLI
and b) on a theoretical level, the significance of
rich typing for formal semantics and NLI in par-
ticular. These two different aspects of the paper
will be studied on a par, by concentrating on a
number of NLI cases (quite a lot actually) that
are adequately dealt with on a theoretical level via
rich typing and the implementation of the account
making use of rich type structures in Coq on a
more practical level. We shall also consider how to
employ dependent typing in the coercive subtyp-
ing framework to formalise linguistic coercions.

2 Rich typing in MTTs

A Modern Type Theory (MTT) is a variant of
a class of type theories in the tradition initiated
by the work of Martin-Löf (Martin-Löf, 1975;
Martin-Löf, 1984), which have dependent and
inductive types, among others. We choose to
call them Modern Type Theories in order to dis-
tinguish them from Church’s simple type theory
(Church, 1940) that is commonly employed within
the Montagovian tradition in formal semantics.

Among the variants of MTTs, we are going to
employ the Unified Theory of dependent Types
(UTT) (Luo, 1994) with the addition of the co-
ercive subtyping mechanism (see, for example,
(Luo, 1999; Luo et al., 2012) and below). UTT is
an impredicative type theory in which a typeProp
of all logical propositions exists.2 This stands
as part of the study of linguistic semantics using
MTTs rather than simply typed ones. In particu-
lar, in this paper we discuss a number of key issues
as regards the typing system, which will be shown
to allow more fine-grained distinctions and expres-

sis (Goguen, 1994) as regards the meta-theory of UTT.
2This is similar to simple type theory where a typet of

truth values exists.

sivity compared to classical simple typed systems
as these are used in mainstream Montagovian se-
mantics.

2.1 Type many-sortedness and CNs as types

In Montague semantics (Montague, 1974), the
underlying logic (Church’s simple type theory
(Church, 1940)) can be seen as ‘single-sorted’ in
the sense that there is only one typee of all enti-
ties. The other types such ast of truth values and
the function types generated frome and t do not
stand for types of entities. In this respect, there are
no fine-grained distinctions between the elements
of typee and as such all individuals are interpreted
using the same type. For example,John andMary
have the same type in simple type theories, the
typee of individuals. An MTT, on the other hand,
can be regarded as a ‘many-sorted’ logical system
in that it contains many types and as such one can
make fine-grained distinctions between individu-
als and further use those different types to interpret
subclasses of individuals. For example, one can
haveJohn : [[man]] andMary : [[woman]], where
[[man]] and[[woman]] are different types.

An important trait of MTT-based semantics is
the interpretation of common nouns (CNs) astypes
(Ranta, 1994) rather than sets or predicates (i.e.,
objects of typee → t) as it is the case within
the Montagovian tradition. The CNsman, human,
table and book are interpreted as types[[man]],
[[human]], [[table]] and[[book]], respectively. Then,
individuals are interpreted as being of one of the
types used to interpret CNs. The interpretation of
CNs as Types is also a prerequisite in order for the
subtyping mechanism to work. This is because,
assuming CNs to be predicates, subtyping would
go wrong given contravariance of function types.3

2.2 Subtyping

Coercive subtyping (Luo, 1999; Luo et al., 2012)
provides an adequate framework to be employed
for MTT-based formal semantics (Luo, 2010; Luo,
2012b).4 It can be seen as an abbreviation mech-
anism: A is a (proper) subtype ofB (A < B) if

3See (Chatzikyriakidis and Luo, 2013b) for more infor-
mation. See also (Luo, 2012a) for further philosophical argu-
mentation on the choosing to represent CNs as types.

4It is worth mentioning that subsumptive subtyping, i.e.
the traditional notion of subtyping that adopts the subsump-
tion rule (if A ≤ B, then every object of typeA is also of
type B), is inadequate for MTTs in the sense that it would
destroy some important metatheoretical properties of MTTs
(see, for example,§4 of (Luo et al., 2012) for details).
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there is a unique implicit coercionc from typeA
to typeB and, if so, an objecta of typeA can be
used in any contextCB[ ] that expects an object of
type B: CB[a] is legal (well-typed) and equal to
CB[c(a)].

As an example, assuming that both[[man]] and
[[human]] are base types, one may introduce the
following as a basic subtyping relation:

(1) [[man]] < [[human]]

In case that[[man]] is defined as a compos-
ite Σ-type (see§2.3 below for details), where
male : [[human]] → Prop:

(2) [[man]] = Σh : [[human]]. male(h)

we have that (1) is the case because the aboveΣ-
type is a subtype of[[human]] via the first projec-
tion π1:

(3) (Σh : [[human]]. male(h)) <π1 [[human]]
We will see in the next section the importance of

the coercive subtyping mechanism when dealing
with NLI.

2.3 Dependent typing and universes

One of the basic features of MTTs is the use of
Dependent Types. A dependent type is a family of
types depending on some values. Here we explain
two basic constructors for dependent types,Σ and
Π, both highly relevant for the study of linguistic
semantics.

The constructor/operatorΣ is a generaliza-
tion of the Cartesian product of two sets that
allows the second set to depend on values of
the first. For instance, if[[human]] is a type
andmale : [[human]] → Prop, then theΣ-type
Σh : [[human]]. male(h) is intuitively the type of
humans who are male.

More formally, if A is a type andB is anA-
indexed family of types, thenΣ(A,B), or some-
times written asΣx : A.B(x), is a type, consist-
ing of pairs(a, b) such thata is of typeA andb
is of type B(a). WhenB(x) is a constant type
(i.e., always the same type no matter whatx is),
theΣ-type degenerates into product typeA×B of
non-dependent pairs.Σ-types (and product types)
are associated projection operationsπ1 andπ2 so
thatπ1(a, b) = a andπ2(a, b) = b, for every(a, b)
of typeΣ(A,B) or A×B.

The linguistic relevance ofΣ-types can be di-
rectly appreciated once we understand that in its

dependent case,Σ-types can be used to interpret
linguistic phenomena of central importance, like
for example adjectival modification (Ranta, 1994).
For example,handsome man is interpreted as a
Σ-type (4), the type of handsome men (or more
precisely, of those men together with proofs that
they are handsome):

(4) Σm : [[man]]. [[handsome]](m)

where [[handsome]](m) is a family of proposi-
tions/types that depends on the manm.5

The other basic constructor for dependent types
isΠ. Π-types can be seen as a generalization of the
normal function space where the second type is a
family of types that might be dependent on the val-
ues of the first. AΠ-type degenerates to the func-
tion typeA → B in the non-dependent case. In
more detail, whenA is a type andP is a predicate
over A, Πx : A.P (x) is the dependent function
type that, in the embedded logic, stands for the
universally quantified proposition∀x : A.P (x).
For example, the following sentence (5) is inter-
preted as (6):

(5) Every man walks.

(6) Πx : [[man]].[[walk]](x)

Type Universes. An advanced feature of MTTs,
which will be shown to be very relevant in inter-
preting NL semantics, is that of universes. Infor-
mally, a universe is a collection of (the names of)
types put into a type (Martin-Löf, 1984).6 For ex-
ample, one may want to collect all the names of
the types that interpret common nouns into a uni-
verseCN : Type. The idea is that for each typeA
that interprets a common noun, there is a nameA
in CN. For example,

[[man]] : CN and TCN([[man]]) = [[man]].

5Adjectival modification is a notoriously difficult issue
and as such not all cases of adjectives can be captured via
using aΣ type analysis. For a proper treatment of adjecti-
val modification within this framework, see (Chatzikyriakidis
and Luo, 2013a).

6There is quite a long discussion on how these universes
should be like. In particular, the debate is largely concen-
trated on whether a universe should be predicative or im-
predicative. A strongly impredicative universeU of all types
(with U : U and Π-types) is shown to be paradoxical (Gi-
rard, 1971) and as such logically inconsistent. The theory
UTT we use here has only one impredicative universeProp
(representing the world of logical formulas) together within-
finitely many predicative universes which as such avoids Gi-
rard’s paradox (see (Luo, 1994) for more details).
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In practice, we do not distinguish a type inCN and
its name by omitting the overlines and the operator
TCN by simply writing, for instance,[[man]] : CN.
Thus, the universe includes the collection of the
names that interpret common nouns. For example,
in CN, we shall find the following types:

(7) [[man]], [[woman]], [[book]], ...

(8) Σm : [[man]].[[handsome]](m)
(9) GR + GF

where theΣ-type in (8 is the proposed inter-
pretation of ‘handsome man’ and the disjoint sum
type in (9) is that of ‘gun’ (the sum of real guns
and fake guns – see above).7 Interesting appli-
cations of the use of universes can be proposed
like for example, their use in giving the types for
quantifiers and VP adverbs as extending over the
universeCN (Luo, 2011b) as well as coordination
extending over the universe of all linguistic types
LType (Chatzikyriakidis and Luo, 2012).

3 NL Inference in Coq

Coq is a dependently typed interactive theorem
prover implementing the calculus of Inductive
Constructions (pCiC, see (Coq, 2007)). Coq, and
in general proof-assistants, provide assistance in
the development of formal proofs. The idea is sim-
ple: you use Coq in order to see whether state-
ments as regards anything that has been either pre-
defined or user-defined (definitions, parameters,
variables) can be proven or not. In the case of NLI,
the same idea applies: once the semantics of NL
words are defined, then these semantics can be rea-
soned about by using Coq’s proof mechanism. In
this sense, valid NLIs can be seen as theorems, or
better valid NLIs must be theorems.

A very simple case of semantic entailment, that
of example (10), will therefore be formulated as
the following theorem in Coq (11):

(10) John walks⇒ some man walks

(11) Theorem x: John walks→ some man walks
Now, depending on the semantics of the indi-

vidual lexical items one may or may not prove the
theorem that needs to be proven in each case. In-
ferences like the one shown in (11) are easy cases
in Coq. Assuming the semantics ofsome which
specify that given anyA of typeCN and a predi-
cate of typeA → Prop, there exists anx : A such

7The use of disjoint sum types was proposed by
(Chatzikyriakidis and Luo, 2013a) in order to deal with priva-
tive modification. The interested reader is directed there for
details.

thatP (x) : Prop, such cases are straightforwardly
proven.

3.1 The FraCas test suite

In this section we present how implementing MTT
NL semantics in Coq can deal with various cases
of NLI inference. For this reason, we use exam-
ples from the FraCas test suite. The FraCas Test
Suite (Cooper et al., 1996) arose out of the FraCas
Consortium, a huge collaboration with the aim to
develop a range of resources related to computa-
tional semantics. The FraCas test suite is specifi-
cally designed to reflect what an adequate theory
of NL inference should be able to capture. It com-
prises NLI examples formulated in the form of a
premise (or premises) followed by a question and
an answer. For instance,

(12) Either Smith, Jones and Anderson signed the
contract.
Did Jones sign the contract? [Yes]

The examples are quite simple in format but are
designed to cover a very wide spectrum of seman-
tic phenomena, e.g. generalized quantifiers, con-
joined plurals, tense and aspect related phenom-
ena, adjectives and ellipsis, among others. In what
follows, we show how the use of a rich type sys-
tem can deal with NLI adequately (at least for the
cases looked at) from both a theoretical and an im-
plementational point of view.

3.2 Rich typing and NLI

3.2.1 Quantifiers

A great deal of the FraCas examples are cases of
inference that result from the monotone properties
of quantifiers. Examples concerning monotonic-
ity on the first argument are very easily treated in
a system encoding an MTT with coercive subtyp-
ing, by employing the subtyping relations between
CNs. To put this claim in context, let us look at
the following example (3.55) from the FraCas test
suite:

(13) Some Irish delegates finished the survey on
time.
Did any delegate finish the report on time

[Yes]

Treating adjectival modification as involving a
Σ type where the first projection is always a coer-
cion as in (Luo, 2011a), we getIrish delegate to
be a subtype ofdelegate, i.e. [[Irishdelegate]] <
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[[delegate]]. This is basically all that Coq needs in
order to prove the inference.8

Moving on to quantifier cases involving mono-
tonicity on the second argument, we notice that
these are more difficult to get since an adjunct (e.g.
a PP) is involved in deriving the inference:

(14) Some delegates finished the survey on time.
Did any delegate finish the survey? [Yes]

The type proposed for VP adverbs by Luo (Luo,
2011b) is based on the idea of a type universe of
CNs. As already said in the introduction, type uni-
verses a universe is a collection of (the names of)
types put into a type. In this respect, one can form
the universeCN which basically stands for the
collection of names interpreting common nouns.
The type proposed for VP adverbs makes use of
this CN universe and assumes quantification over
it (Chatzikyriakidis and Luo, 2013a; Chatzikyri-
akidis and Luo, 2012):

(15) ΠA : CN. (A → Prop) → (A → Prop)

However, in order to derive the inference
needed in cases of monotonicity on the second ar-
gument cases, this typing alone is not enough.Σ
types can be used in order to slightly modify the
typing. In order to do this, we first introduce an
auxiliary objectADV as follows:

(16) ADV : ΠA : CN.Πv : A → Prop.Σp : A →
Prop.∀x : A.p(x) ⊃ v(x)

This reads as follows: for any common nounA
and any predicatev overA, ADV (A, v) is a pair
(p,m) such that for anyx : A, p(x) impliesv(x).
Taking the sentence (14) as an example, for the
CN delegate and predicate[[finish]]9, we define
on time to be the first projection of the auxiliary
object (16) which is of type (15):

(17) on time = λA : CN.λv : A → Prop.
π1(ONTIME(A, v))

As a consequence, for instance, any delegate
who finished the survey on time (p(x)) in (16) did
finish the survey (v(x)).

8For details on the semantics of the other lexical items like
e.g. VP adverbs in the sentence, see the following discussion.
Also, following Luo (Luo, 2011a) we implementΣ-types as
dependent record types in Coq. Again, see (Chatzikyriakidis
and Luo, 2013b) for details.

9Note that [[finish]] : [[human]] → Prop <
[[delegate]] → Prop.

3.2.2 Conjoined NPs

Inference involving conjoined NPs concerns cases
like the one shown below:

(18) Smith, Jones and Anderson signed the con-
tract.
Did Jones sign the contract? [Yes]

In (Chatzikyriakidis and Luo, 2012), a polymor-
phic type for binary coordinators that extends over
the constructed universeLType, the universe of
linguistic types was proposed. This can be ex-
tended ton-ary coordinators. For example, the
coordinatorand may take three arguments, as in
the premise of (18). In such cases, the type of the
coordinator, denoted asand3 in semantics, is:

(19) and3 : ΠA : LType.A → A → A → A.

Intuitively, we may write this type as
ΠA : LType.A3 → A. For instance, the
semantics of (18) is (20), wherec is ‘the contract’:

(20) [[sign]](and3(s, j, a), c)

In order to consider such coordinators in rea-
soning, we consider the following auxiliary object
(similarly to the auxiliary objectADV ) and define
and3 as follows:

(21) AND3 : ΠA : LType. Πx, y, z : A. Σa :
A. ∀p : A → Prop. p(a) ⊃ p(x) ∧ p(y) ∧
p(z).

(22) and3 = λA : LType.λx, y, z : A.
π1(AND3(A, x, y, z))

Having defined the coordinators such asand in
such a way, we can get the desired inferences. For
example, from the semantics (20), we can infer
that ‘Jones signed the contract’, the hypothesis in
(18).10 Coordinators such asor can be defined in
a similar way.

3.2.3 Comparatives

Inference with comparatives can also be treated by
usingΣ types. Two ways of doing this will be pro-
posed, one not involving and one involving mea-
sures. We shall considershorter than as a typi-
cal example. Intuitively,shorter than should be

10A note about Coq is in order here: building new uni-
verses is not an option in Coq (or, put in another way, Coq
does not support building of new universes). Instead, we shall
use an existing universe in Coq in conducting our examples
for coordination.
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of type Human → Human → Prop as in the
following example:

(23) Mary is shorter than John.

We assume that there be a predicate
short : Human → Prop, expressing that a
human is short. Intuitively, if Mary is shorter
than John and John is short, then so is Mary.
Furthermore, one should be able to take care of
the transitive properties of comparatives. Thus,
if A is COMP than B and B is COMP than
C, then A is also COMP than C. All these
can be captured by consideringCOMP of the
following Σ-type and defineshorter than to be its
first projection:

(24) COMP : Σp : Human → Human →
Prop.∀h1, h2, h3 : Human.
p(h1, h2) ∧ p(h2, h3) ⊃ p(h1, h3) ∧
∀h1, h2 : Human.p(h1, h2) ⊃ short(h2) ⊃
short(h1).

(25) [[shorter than]] = π1(COMP )
With the above, we can easily show that the in-

ferences like (26) can be obtained as expected.11

(26) John is shorter than George.
George is shorter than Stergios.

Is John shorter than Stergios? [Yes]

Given the definition inCOMP according to
which if two elements stand in aCOMP relation
(meaning that the first argument is shorter than
the second one), and there is also a third element
standing in aCOMP relation with the second,
then by transitivity defined inCOMP , this third
element also stands in aCOMP relation with the
first, i.e. the third element is shorter than the first.

3.2.4 Factive/Implicative verbs

This section concerns inference cases with various
types of verbs that presuppose the truth of their
complement like for example factive or implica-
tive verbs. Example (27) is an example of such a
verb, while (28) is not:

(27) Smith knew that Itel had won the contract
1991.
Did Itel win the contract in 1991? [Yes]

11In giving a full analysis of compratives, one may further
consider measures. Such an account is also possible usingΣ
types, in effect extending the account just proposed for com-
paratives. The idea is basically to extend the above account
using dependent typing over measures. Such an account can
be found in (Chatzikyriakidis and Luo, 2013b)

(28) Smith believed that Itel had won the contract
1991.
Did Itel win the contract in 1991? [Don’t

know]

What we need is to encode that verbs likeknow
presuppose their argument’s truth while verbs like
believe do not. For instance,know belongs to the
former class and its semantics is given as follows:

(29) KNOW = Σp : Human → Prop →
Prop. ∀h : Human∀P : Prop. p(h, P ) ⊃
P

(30) [[know]] = π1(KNOW )
In effect, a similar reasoning to the one used in

dealing with VP adverbs is proposed. In effect,
an auxiliary object is firstly used, followed by the
definition of know as the first projection of theΣ
type involved in the auxiliary object. With this, the
inference (27) can be obtained as expected. In-
tensional verbs likebelieve on the other hand do
not imply their arguments and inferences like (28)
cannot be shown to be valid inferences.

3.2.5 Adjectival inference

As a last example of the use of rich typing in order
to deal with NLI, we discuss NLI cases involving
adjectives. In (Chatzikyriakidis and Luo, 2013a)
we have shown that the use of subtyping,Σ types
and universes can give us a correct account of at
least intersective and subsective adjectives. Note
that the originalΣ type analysis proposed by re-
searchers like Ranta (Ranta, 1994) is inadequate to
capture the inferential properties of either intersec-
tive or subsective adjectives. The FraCas test suite
has a rather different classification. One major dis-
tinction is between affirmative and non-affirmative
adjectives shown below:

(31) Affirmative: Adj(N)⇒ (N)

(32) Non-affirmative: Adj(N); (N)

Concentrating on affirmative adjectives for the
moment, we see that aΣ type analysis is enough
in these cases.Cases of affirmative adjectives are
handled well with the existing record mechanism
already used for adjectives. The following infer-
ence as well as similar inferences are correctly
captured, given that a CN modified by an inter-
sective adjective is interpreted as aΣ-type which
is a subtype of the CN via means of the first pro-
jection.

Cases of subsective adjectives are discussed
in the section dubbed asextensional comparison
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classes in the FraCas test suite. There, cases of
adjectival inference involving adjectives likesmall
and large are discussed. Cases like these can be
handled using a typing which quantifies over a uni-
verse. In the case oflarge andsmall this universe
is the universeCN:12

(33) ΠA : CN. (A → Prop)
With this typing, cases like the one shown be-

low are correctly treated:

(34) All mice are small animals.
Mickey is a large mouse.
Is Mickey a large animal? [No]

Lastly, one should be able to take care of infer-
ences associated with intersective adjectives like
the one shown below:

(35) Adjinter man⇒ Adjinter human
A concrete example would beblack man im-

plying black human. Given that coercions ac-
cording to Luo’s MTT propagate via the various
type constructors, we have:Σ([[man]], black) <
Σ([[human]], black). 13

4 Linguistic Coercions in MTTs with
Coercive Subtyping

Besides being crucial for MTT-semantics, coer-
cive subtyping (Luo, 1999; Luo et al., 2012) also
provides us a framework to interpret various lin-
guistic coercions (Asher and Luo, 2012). Besides
explaining the basic mechanisms, we shall also
show (in§4.3) that dependent types have interest-
ing applications in dealing with situations with so-
phisticated coercions in MTT-semantics.

4.1 Basic coercions

The basic coercive subtyping mechanism that co-
ercesf(a) into f(c(a)) by inserting the coercion
c into a gap betweenf anda, suffices to represent
many linguistic coercions. For example, consider

(36) Julie enjoyed a book.

12Other more restricted universes will be needed for adjec-
tives like skilful given that we may want to avoid construc-
tions like skilful table. Universe subtyping can take care of
these issues. In effect, one can introduce a subuniverse ofCN
containing the names of the types[[human]] and its subtypes
only. Let us call this universeCNH , which is a subtype of
CN: CNH < CN. Now skillful extends over this more re-
stricted universe. See (Chatzikyriakidis and Luo, 2013a) for
more detalis.

13Cases of non-committal and privative adjectives will not
be dealt with in this paper for reasons of space. The interested
reader is directed to (Chatzikyriakidis and Luo, 2013a) fora
treatment of these types of adjectives within the MTT setting
discussed in this paper.

The MTT-semantics of (36) is (37):

(37) ∃x : [[book]]. [[enjoy]](j, x)

where

(38) [[enjoy]] : Human → Event → Prop.

However, the domain type of[[enjoy]](j) is
Event, which is different fromBook! Then, how
can[[enjoy]](j, x) in (37) be well-typed? The an-
swer is that, in the framework of coercive subtyp-
ing and, in particular, under the assumption of the
following coercion:

(39) Book <reading Event

[[enjoy]](j, x) is coerced into (and, formally, equal
to) [[enjoy]](j, reading(x)) and hence well-typed.
Informally, the sentence (36) is coerced into (40):

(40) Julie enjoyed reading a book.

Note that, in the above, we have considered
only one possible coercion (39): from ‘enjoy a
book’ to ‘enjoy reading a book’. As we noted
in the previous section, however, there are in fact
context-dependent ‘multiple coercions’: e.g., (36)
could have meant ‘Julie enjoyed writing a book’;
there could also be several reading events of that
book. Coercive subtyping requires contextual
uniqueness of coercions14, we must restrict the
scope/context usinglocal coercions (Luo, 2011a).

4.2 Local Coercions

In many situations, it is necessary to limit the
scope of a coercion. (36) furnishes an example:
with the formal coercion (39), (37) is the correct
interpretation of (36). However, there may be sev-
eral possible coercions and hence (36) may have
several meanings: which one to use can only be
decided contextually. But note that coherence in
coercive subtyping (contextual uniqueness of co-
ercions) is necessary for formal semantics to deal
with ambiguity. In such situations, we use local
coercions to limit the scope of applicability of co-
ercions. For instance, if (36) is used to mean (40)
or ‘Julie enjoyed writing a book’, we exploit the
following two coercions for (36):

(41) coercionBook <reading Event in (37)

14This refers to the notion ofcoherence, the requirement
that any two coercions between the same two types (in the
same context) be the same. See (Luo, 1999; Luo et al., 2012)
for its formal definition.
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(42) coercionBook <writing Event in (37)

Note that such interpretations involve different lo-
cal coercions and can be used in the same context.
There is no ambiguity or confusion as to which co-
ercion is to be employed, but we must make clear
the scope of each one of the coercions, over what
terms they are operative.

Local coercions have a dual notion – coer-
cion contexts, which are contexts (in type theory)
which may contain coercion entries of the form
A <c B as well as entries of the usual formx : A.
Coercion contexts occur left to thè-sign. One
can move a coercion entry in a coercion context
to the right-hand side of thè-sign to form a lo-
cal coercion, while the inversion of this moves
the coercion in a local coercion to the left. These
constructs are governed by the relevant inference
rules, some of which are discussed in, for exam-
ple, (Luo, 2011a).

4.3 Dependent Types in Coercion Semantics

Sometimes, a simple scoping restriction is not
enough. For example, consider

(43) Jill just startedWar and Peace, which Tol-
stoy finished after many years of hard work.
But that won’t last because she never gets
through long novels.

It is not difficult to see that in (43) the scopes of the
reading and writing coercions overlap intertwin-
ingly, and so restrictions on the scopes of coer-
cions will not be sufficient here to ensure unique-
ness to eliminate ambiguity.

In many such cases, dependent typing proves to
be useful. Indeed, this is the first time in the litera-
ture, as far as we know, that dependent types have
been shown to be useful directly in the formal se-
mantics of linguistic coercions.

For example, for the above sentences (43), in-
stead ofEvent, we may consider the family of
types

Evt : Human → Type;

intuitively, for any h : Human, the depen-
dent type Evt(h) is the type of events con-
ducted by h. Now, we can assume that
the verbs start, finish and last have type
Πh : Human. (Evt(h) → Prop) and read
and write have typeΠh : Human. (Book →
Evt(h)). Furthermore, we can consider the
following parameterised coercions, for any
h : Human,

Book <c(h) Evt(h),

where the coercionc(h) is the function fromBook
to Evt(h) defined as follows: for anyb : Book,

c(h, b) =

{
write(h, b) if h wroteb,

read(h, b) otherwise.

where we have simplified the second case by as-
suming that one would read a book if he/she has
not written it. (One may think of other actions to
consider more subcases here.) Having the above,
we can now interpret (43) as follows (in a simpli-
fied form):

(44) start(j, wp)
& finish(t, wp)
& ¬last(j, wp)
& ∀lb : LBook.finish(j, π1(lb))

whereLBook ≡ Σb : Book.long(b) is the type
that interprets the CN ‘long book’ andπ1 is the
first projection operator that takes a long book and
returns the book itself. In the coercive subtyping
framework, (44) is coerced into (and equal to) the
following:

(45) start(j, c(j, wp))
& finish(t, c(t, wp))
& ¬last(j, c(j, wp))
& ∀lb : LBook. finish(j, c(j, π1(lb)))

which is (equal to)

(46) start(j, read(j, wp))
& finish(t, write(t, wp))
& ¬last(j, read(j, wp))
& ∀lb : LBook. finish(j, c(j, π1(lb)))

Note that, in the last conjunct, the coercionc is
still present –c(j, π1(lb)) cannot be reduced fur-
thermore becauselb is a variable.

5 Conclusions

In this paper we proposed to deal with NLI by
making use of proof-assistant technology, in par-
ticular the proof-assistant Coq. It was shown that
the combination of MTT semantics as well as the
use of a proof-assistant that ‘understands’ so to say
MTT semantics can provide us with encouraging
results as regards the computational treatment of
NLI. More specifically, the paper has concentrated
on the importance and expressivity of MTTs as re-
gards typing by exemplifying the use of a rich typ-
ing system in order to deal with a number of infer-
ence cases ranging from adjectival and adverbial
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modification to conjoined/disjoined NPs, compar-
atives as well as factive/implicative verbs and type
coercions.
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Abstract

This paper shows how the tensor-based se-
mantic framework of Coecke et al. can
be seamlessly integrated with Combina-
tory Categorial Grammar (CCG). The inte-
gration follows from the observation that
tensors are linear maps, and hence can
be manipulated using the combinators of
CCG, including type-raising and compo-
sition. Given the existence of robust,
wide-coverage CCG parsers, this opens up
the possibility of a practical, type-driven
compositional semantics based on distri-
butional representations.

1 Intoduction

In this paper we show how tensor-based distribu-
tional semantics can be seamlessly integrated with
Combinatory Categorial Grammar (CCG, Steed-
man (2000)), building on the theoretical discus-
sion in Grefenstette (2013). Tensor-based distribu-
tional semantics represents the meanings of words
with particular syntactic types as tensors whose se-
mantic type matches that of the syntactic type (Co-
ecke et al., 2010). For example, the meaning of a
transitive verb with syntactic type (S\NP)/NP is
a 3rd-order tensor from the tensor product space
N ⊗ S ⊗ N . The seamless integration with CCG

arises from the (somewhat trivial) observation that
tensors are linear maps — a particular kind of
function — and hence can be manipulated using
CCG’s combinatory rules.

Tensor-based semantics arises from the desire to
enhance distributional semantics with some com-
positional structure, in order to make distribu-
tional semantics more of a complete semantic the-
ory, and to increase its utility in NLP applica-
tions. There are a number of suggestions for how
to add compositionality to a distributional seman-
tics (Clarke, 2012; Pulman, 2013; Erk, 2012).

One approach is to assume that the meanings of
all words are represented by context vectors, and
then combine those vectors using some operation,
such as vector addition, element-wise multiplica-
tion, or tensor product (Clark and Pulman, 2007;
Mitchell and Lapata, 2008). A more sophisticated
approach, which is the subject of this paper, is to
adapt the compositional process from formal se-
mantics (Dowty et al., 1981) and attempt to build
a distributional representation in step with the syn-
tactic derivation (Coecke et al., 2010; Baroni et al.,
2013). Finally, there is a third approach using neu-
ral networks, which perhaps lies in between the
two described above (Socher et al., 2010; Socher
et al., 2012). Here compositional distributed rep-
resentations are built using matrices operating on
vectors, with all parameters learnt through a su-
pervised learning procedure intended to optimise
performance on some NLP task, such as syntac-
tic parsing or sentiment analysis. The approach
of Hermann and Blunsom (2013) conditions the
vector combination operation on the syntactic type
of the combinands, moving it a little closer to the
more formal semantics-inspired approaches.

The remainder of the Introduction gives a short
summary of distributional semantics. The rest of
the paper introduces some mathematical notation
from multi-linear algebra, including Einstein nota-
tion, and then shows how the combinatory rules of
CCG, including type-raising and composition, can
be applied directly to tensor-based semantic rep-
resentations. As well as describing a tensor-based
semantics for CCG, a further goal of this paper is to
present the compositional framework of Coecke et
al. (2010), which is based on category theory, to a
computational linguistics audience using only the
mathematics of multi-linear algebra.

1.1 Distributional Semantics

We assume a basic knowledge of distributional se-
mantics (Grefenstette, 1994; Schütze, 1998). Re-
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cent inroductions to the topic include Turney and
Pantel (2010) and Clark (2014).

A potentially useful distinction for this paper,
and one not commonly made, is between distri-
butional and distributed representations. Distri-
butional representations are inherently contextual,
and rely on the frequently quoted dictum from
Firth that “you shall know a word from the com-
pany it keeps” (Firth, 1957; Pulman, 2013). This
leads to the so-called distributional hypothesis that
words that occur in similar contexts tend to have
similar meanings, and to various proposals for
how to implement this hypothesis (Curran, 2004),
including alternative definitions of context; alter-
native weighting schemes which emphasize the
importance of some contexts over others; alterna-
tive similarity measures; and various dimension-
ality reduction schemes such as the well-known
LSA technique (Landauer and Dumais, 1997). An
interesting conceptual question is whether a sim-
ilar distributional hypothesis can be applied to
phrases and larger units: is it the case that sen-
tences, for example, have similar meanings if they
occur in similar contexts? Work which does ex-
tend the distributional hypothesis to larger units
includes Baroni and Zamparelli (2010), Clarke
(2012), and Baroni et al. (2013).

Distributed representations, on the other hand,
can be thought of simply as vectors (or possibly
higher-order tensors) of real numbers, where there
is no a priori interpretation of the basis vectors.
Neural networks can perhaps be categorised in this
way, since the resulting vector representations are
simply sequences of real numbers resulting from
the optimisation of some training criterion on a
training set (Collobert and Weston, 2008; Socher
et al., 2010). Whether these distributed represen-
tations can be given a contextual interpretation de-
pends on how they are trained.

One important point for this paper is that the
tensor-based compositional process makes no as-
sumptions about the interpretation of the tensors.
Hence in the remainder of the paper we make no
reference to how noun vectors or verb tensors,
for example, can be acquired (which, for the case
of the higher-order tensors, is a wide open re-
search question). However, in order to help the
reader who would prefer a more grounded dis-
cussion, one possibility is to obtain the noun vec-
tors using standard distributional techniques (Cur-
ran, 2004), and learn the higher-order tensors us-

ing recent techniques from “recursive” neural net-
works (Socher et al., 2010). Another possibility
is suggested by Grefenstette et al. (2013), extend-
ing the learning technique based on linear regres-
sion from Baroni and Zamparelli (2010) in which
“gold-standard” distributional representations are
assumed to be available for some phrases and
larger units.

2 Mathematical Preliminaries

The tensor-based compositional process relies on
taking dot (or inner) products between vectors and
higher-order tensors. Dot products, and a number
of other operations on vectors and tensors, can be
conveniently written using Einstein notation (also
referred to as the Einstein summation convention).
In the rest of the paper we assume that the vector
spaces are over the field of real numbers.

2.1 Einstein Notation
The squared amplitude of a vector v ∈ Rn is given
by:

|v|2 =
n∑
i=1

vivi

Similarly, the dot product of two vectors v,w ∈
Rn is given by:

v ·w =
n∑
i=1

viwi

Denote the components of an m×n real matrix
A by Aij for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then
the matrix-vector product of A and v ∈ Rn gives
a vector Av ∈ Rm with components:

(Av)i =
n∑
j=1

Aijvj

We can also multiply an n×mmatrix A and an
m × o matrix B to produce an n × o matrix AB
with components:

(AB)ij =
m∑
k=1

AikBkj

The previous examples are some of the most
common operations in linear algebra, and they all
involve sums over repeated indices. They can be
simplified by introducing the Einstein summation
convention: summation over the relevant range
is implied on every component index that occurs
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twice. Pairs of indices that are summed over are
known as contracted, while the remaining indices
are known as free. Using this convention, the
above operations can be written as:

|v|2 = vivi

v ·w = viwi

(Av)i = Aijvj , i.e. the contraction of v with
the second index of A

(AB)ij = AikBkj , i.e. the contraction of the
second index of A with the first of B

Note how the number of free indices is always
conserved between the left- and right-hand sides in
these examples. For instance, while the last equa-
tion has two indices on the left and four on the
right, the two extra indices on the right are con-
tracted. Hence counting the number of free indices
can be a quick way of determining what type of
object is given by a certain mathematical expres-
sion in Einstein notation: no free indices means
that an operation yields a scalar number, one free
index means a vector, two a matrix, and so on.

2.2 Tensors
Linear Functionals Given a finite-dimensional
vector space Rn over R, a linear functional is a
linear map a : Rn → R.

Let a vector v have components vi in a fixed ba-
sis. Then the result of applying a linear functional
a to v can be written as:

a(v) = a1v1+· · ·+anvn =
(
a1 · · · an

) v1...
vn


The numbers ai are the components of the lin-

ear functional, which can also be pictured as a row
vector. Since there is a one-to-one correspondence
between row and column vectors, the above equa-
tion is equivalent to:

v(a) = a1v1+· · ·+anvn =
(
v1 · · · vn

) a1
...
an


Using Einstein convention, the equations above

can be written as:

a(v) = viai = v(a)

Thus every finite-dimensional vector is a linear
functional, and vice versa. Row and column vec-
tors are examples of first-order tensors.

Definition 1 (First-order tensor). Given a vector
space V over the field R, a first-order tensor T
can be defined as:

• an element of the vector space V ,

• a linear map T : V → R,

• a |V |-dimensional array of numbers Ti, for
1 ≤ i ≤ |V |.

These three definitions are all equivalent. Given
a first-order tensor described using one of these
definitions, it is trivial to find the two other de-
scriptions.

Matrices An n×mmatrix A over R can be rep-
resented by a two-dimensional array of real num-
bers Aij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Via matrix-vector multiplication, the matrix A
can be seen as a linear map A : Rm → Rn. It
maps a vector v ∈ Rm to a vectorA11 · · · A1m

...
. . .

...
An1 · · · Anm


 v1

...
vm

 ,

with components

A(v)i = Aijvj .

We can also contract a vector with the first index
of the matrix, which gives us a map A : Rn →
Rm. This corresponds to the operation

(
w1 · · · wn

)A11 · · · A1m
...

. . .
...

An1 · · · Anm

 ,

resulting in a vector with components

(wTA)i = Ajiwj .

We can combine the two operations and see a
matrix as a map A : Rn × Rm → R, defined by:

wTAv =
(
w1 · · · wn

)A11 · · · A1m
...

. . .
...

An1 · · · Anm


 v1

...
vm


In Einstein notation, this operation can be writ-

ten as
wiAijvj ,
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which yields a scalar (constant) value, consistent
with the fact that all the indices are contracted.

Finally, matrices can also be characterised in
terms of Kronecker products. Given two vectors
v ∈ Rn and w ∈ Rm, their Kronecker product
v ⊗w is a matrix

v ⊗w =

v1w1 · · · v1wm
...

. . .
...

vnw1 · · · vnwm

 ,

with components

(v ⊗w)ij = viwj .

It is a general result in linear algebra that any
n × m matrix can be written as a finite sum of
Kronecker products

∑
k x(k) ⊗ y(k) of a set of

vectors x(k) and y(k). Note that the sum over k
is written explicitly as it would not be implied by
Einstein notation: this is because the index k does
not range over vector/matrix/tensor components,
but over a set of vectors, and hence that index ap-
pears in brackets.

An n × m matrix is an element of the tensor
space Rn ⊗Rm, and it can also be seen as a linear
map A : Rn ⊗ Rm → R. This is because, given
a matrix B with decomposition

∑
k x(k) ⊗ y(k),

the matrix A can act as follows:

A(B) = Aij

∑
k

x
(k)
i y

(k)
j

=
∑

k

(
x

(k)
1 · · · x

(k)
n

)A11 · · · A1m

...
. . .

...
An1 · · · Anm


y(k)

...
y
(k)
m


= AijBij .

Again, counting the number of free indices in the
last line tells us that this operation yields a scalar.

Matrices are examples of second-order tensors.

Definition 2 (Second-order tensor). Given vector
spaces V,W over the field R, a second-order ten-
sor T can be defined as:

• an element of the vector space V ⊗W ,

• a |V | × |W |-dimensional array of numbers
Tij , for 1 ≤ i ≤ |V | and 1 ≤ j ≤ |W |,
• a (multi-) linear map:

– T : V →W ,
– T : W → V ,

– T : V ×W → R or T : V ⊗W → R.

Again, these definitions are all equivalent. Most
importantly, the four types of maps given in the
definition are isomorphic. Therefore specifying
one map is enough to specify all the others.

Tensors We can generalise these definitions to
the more general concept of tensor.

Definition 3 (Tensor). Given vector spaces
V1, . . . , Vk over the field R, a kth-order tensor T
is defined as:

• an element of the vector space V1⊗ · · ·⊗Vk,

• a |V1| × · · · × |Vk|, kth-dimensional array of
numbers Ti1···ik , for 1 ≤ ij ≤ |Vj |,

• a multi-linear map T : V1 × · · · × Vk → R.

3 Tensor-Based CCG Semantics

In this section we show how CCG’s syntactic types
can be given tensor-based meaning spaces, and
how the combinator’s employed by CCG to com-
bine syntactic categories carry over to those mean-
ing spaces, maintaining what is often described
as CCG’s “transparent interface” between syntax
and semantics. Here are some example syntactic
types, and the corresponding tensor spaces con-
taining the meanings of the words with those types
(using the notation syntactic type : semantic type).

We first assume that all atomic types have
meanings living in distinct vector spaces:

• noun phrases, NP : N

• sentences, S : S

The recipe for determining the meaning space
of a complex syntactic type is to replace each
atomic type with its corresponding vector space
and the slashes with tensor product operators:

• Intransitive verb, S\NP : S⊗ N

• Transitive verb, (S\NP)/NP : S⊗ N⊗ N

• Ditransitive verb, ((S\NP)/NP)/NP :
S⊗ N⊗ N⊗ N

• Adverbial modifier, (S\NP)\(S\NP) :
S⊗ N⊗ S⊗ N

• Preposition modifying NP , (NP\NP)/NP :
N⊗ N⊗ N
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Hence the meaning of an intransitive verb, for
example, is a matrix in the tensor product space
S ⊗ N. The meaning of a transitive verb is a
“cuboid”, or 3rd-order tensor, in the tensor product
space S⊗N⊗N. In the same way that the syntac-
tic type of an intransitive verb can be thought of as
a function — taking an NP and returning an S —
the meaning of an intransitive verb is also a func-
tion (linear map) — taking a vector in N and re-
turning a vector in S. Another way to think of this
function is that each element of the matrix spec-
ifies, for a pair of basis vectors (one from N and
one from S), what the result is on the S basis vec-
tor given a value on the N basis vector.

Now we describe how the combinatory rules
carry over to the meaning spaces.

3.1 Application
The function application rules of CCG are forward
(>) and backward (<) application:

X/Y Y =⇒ X (>)
Y X\Y =⇒ X (<)

In a traditional semantics for CCG, if function
application is applied in the syntax, then function
application applies also in the semantics (Steed-
man, 2000). This is also true of the tensor-based
semantics. For example, the meaning of a subject
NP combines with the meaning of an intransitive
verb via matrix multiplication, which is equivalent
to applying the linear map corresponding to the
matrix to the vector representing the meaning of
the NP . Applying (multi-)linear maps in (multi-
)linear algebra is equivalent to applying tensor
contraction to the combining tensors. Here is the
case for an intransitive verb:

Pat walks
NP S\NP
N S⊗ N

Let Pat be assigned a vector P ∈ N and walks
be assigned a second-order tensor W ∈ S ⊗ N.
Using the backward application combinator cor-
responds to feeding P , an element of N, into W ,
seen as a function N→ S. In terms of tensor con-
traction, this is the following operation:

WijPj .

Here we use the convention that the indices
maintain the same order as the syntactic type.
Therefore, in the tensor of an object of type X/Y ,

the first index corresponds to the type X and the
second to the type Y . That is why, when perform-
ing the contraction corresponding to Pat walks,
P ∈ N is contracted with the second index of
W ∈ S ⊗ N, and not the first.1 The first index
of W is then the only free index, telling us that the
above operation yields a first-order tensor (vector).
Since this index corresponds to S, we know that
applying backward application to Pat walks yields
a meaning vector in S.

Forward application is performed in the same
manner. Consider the following example:

Pat kisses Sandy
NP (S\NP)/NP NP
N S⊗ N⊗ N N

with corresponding tensors P ∈ N for Pat, K ∈
S⊗ N⊗ N for kisses and Y ∈ N for Sandy.

The forward application deriving the type of
kisses Sandy corresponds to

KijkYk,

where Y is contracted with the third index of K
because we have maintained the order defined by
the type (S\NP)/NP : the third index then corre-
sponds to an argument NP coming from the right.

Counting the number of free indices in the
above expression tells us that it yields a second-
order tensor. Looking at the types corresponding
to the free indices tells us that this second-order
tensor is of type S⊗N, which is the semantic type
of a verb phrase (or intransitive verb), as we have
already seen in the walks example.

3.2 Composition
The forward (>B) and backward (<B) composi-
tion rules are:

X/Y Y/Z =⇒ X/Z (>B)
Y \Z X\Y =⇒ X\Z (<B)

Composition in the semantics also reduces to a
form of tensor contraction. Consider the following
example, in which might can combine with kiss
using forward composition:

Pat might kiss Sandy
NP (S\NP)/(S\NP) (S\NP)/NP NP
N S⊗ N⊗ S⊗ N S⊗ N⊗ N N

1The particular order of the indices is not important, as
long as a convention such as this one is decided upon and
consistently applied to all types (so that tensor contraction
contracts the relevant tensors from each side when a combi-
nator is used).
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with tensors M ∈ S ⊗ N ⊗ S ⊗ N for might and
K ∈ S⊗N⊗N for kiss. Combining the meanings
of might and kiss corresponds to the following op-
eration:

MijklKklm,

yielding a tensor in S ⊗ N ⊗ N, which is the
correct semantic type for a phrase with syntactic
type (S\NP)/NP . Backward composition is per-
formed analogously.

3.3 Backward-Crossed Composition
English also requires the use of backward-crossed
composition (Steedman, 2000):

X/Y Z\X =⇒ Z/Y (<B×)

In tensor terms, this is the same as forward com-
position; we just need to make sure that the con-
traction matches up the correct parts of each ten-
sor correctly. Consider the following backward-
crossed composition:

(S\NP)/NP (S\NP)\(S\NP) ⇒<B× (S\NP)/NP

Let the two items on the left-hand side be rep-
resented by tensors A ∈ S ⊗ N ⊗ N and B ∈
S ⊗ N ⊗ S ⊗ N. Then, combining them with
backward-crossed composition in tensor terms is

BijklAklm,

resulting in a tensor in S ⊗ N ⊗ N (correspond-
ing to the indices i, j and m). Note that we have
reversed the order of tensors in the contraction to
make the matching of the indices more transpar-
ent; however, tensor contraction is commutative
(since it corresponds to a sum over products) so
the order of the tensors does not affect the result.

3.4 Type-raising
The forward (>T) and backward (<T) type-
raising rules are:

X =⇒ T/(T\X) (>T)
X =⇒ T\(T/X) (<T)

where T is a variable ranging over categories.
Suppose we are given an item of atomic type Y ,

with corresponding vector A ∈ Y. If we apply
forward type-raising to it, we get a new tensor of
type A′ ∈ T ⊗ T ⊗ Y. Now suppose the item of
type Y is followed by another item of type X\Y ,
with tensor B ∈ X ⊗ Y. A phrase consisting of
two words with types Y and X\Y can be parsed
in two different ways:

• Y X\Y ⇒ X , by backward application;

• Y X\Y ⇒T X/(X\Y ) X\Y , by forward
type-raising, and X/(X\Y ) X\Y ⇒ X , by
forward application.

Both ways of parsing this sentence yield an item
of type X , and crucially the meaning of the result-
ing item should be the same in both cases.2 This
property of type-raising provides an avenue into
determining what the tensor representation for the
type-raised category should be, since the tensor
representations must also be the same:

AjBij = A′ijkBjk.

Moreover, this equation must hold for all items,
B. As a concrete example, the requirement says
that a subject NP combining with a verb phrase
S\NP must produce the same meaning for the
two alternative derivations, irrespective of the verb
phrase. This is equivalent to the requirement that

AjBij = A′ijkBjk, ∀B ∈ X⊗ Y.

So to arrive at the tensor representation, we sim-
ply have to solve the tensor equation above. We
start by renaming the dummy index j on the left-
hand side:

AkBik = A′ijkBjk.

We then insert a Kronecker delta (δij = 1 if i = j
and 0 otherwise):

AkBjkδij = A′ijkBjk.

Since the equation holds for allB, we are left with

A′ijk = δijAk,

which gives us a recipe for performing type-
raising in a tensor-based model. The recipe is par-
ticularly simple and elegant: it corresponds to in-
serting the vector being type-raised into the 3rd-
order tensor at all places where the first two in-
dices are equal (with the rest of the elements in
the 3rd-order tensor being zero). For example, to
type-raise a subject NP , its meaning vector in N is
placed in the 3rd-order tensor S⊗S⊗N at all places
where the indices of the two S dimensions are the
same. Visually, the 3rd-order tensor correspond-
ing to the meaning of the type-raised category is

2This property of CCG resulting from the use of type-
raising and composition is sometimes referred to as “spurious
ambiguity”.
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a cubiod in which the noun vector is repeated a
number of times (once for each sentence index),
resulting in a series of “steps” progressing diag-
onally from the bottom of the cuboid to the top
(assuming a particular orientation).

The discussion so far has been somewhat ab-
stract, so to finish this section we include some
more examples with CCG categories, and show
that the tensor contraction operation has an intu-
itive similarity with the “cancellation law” of cat-
egorial grammar which applies in the syntax.

First consider the example of a subject NP
with meaning A, combining with a verb phrase
S\NP with meaning B, resulting in a sentence
with meaning C. In the syntax, the two NPs can-
cel. In the semantics, for each basis of the sentence
space S we perform an inner product between two
vectors in N:

Ci = AjBij

Hence, inner products in the tensor space corre-
spond to cancellation in the syntax.

This correspondence extends to complex argu-
ments, and also to composition. Consider the sub-
ject type-raising case, in which a subject NP with
meaning A in S ⊗ S ⊗ N combines with a verb
phrase S\NP with meaning B, resulting in a sen-
tence with meaning C. Again we perform inner
product operations, but this time the inner product
is between two matrices:3

Ci = AijkBjk

Note that two matrices are “cancelled” for each
basis vector of the sentence space (i.e. for each
index i in Ci).

As a final example, consider the forward com-
position from earlier, in which a modal verb with
meaningA in S⊗N⊗S⊗N combines with a tran-
sitive verb with meaning B in S ⊗ N ⊗ N to give
a transitive verb with meaning C in S ⊗ N ⊗ N.
Again the cancellation in the syntax corresponds
to inner products between matrices, but this time
we need an inner product for each combination of
3 indices:

Cijk = AijlmBlmk

3To be more precise, the two matrices can be thought of
as vectors in the tensor space S ⊗ N and the inner product is
between these vectors. Another way to think of this opera-
tion is to “linearize” the two matrices into vectors and then
perform the inner product on these vectors.

For each i, j, k, two matrices — corresponding to
the l,m indices above — are “cancelled”.

This intuitive explanation extends to arguments
with any number of slashes. For example, a
composition where the cancelling categories are
(N /N )/(N /N ) would require inner products be-
tween 4th-order tensors in N⊗ N⊗ N⊗ N.

4 Related Work

The tensor-based semantics presented in this pa-
per is effectively an extension of the Coecke et al.
(2010) framework to CCG, re-expressing in Ein-
stein notation the existing categorical CCG exten-
sion in Grefenstette (2013), which itself builds
on an earlier Lambek Grammar extension to the
framework by Coecke et al. (2013).

This work also bears some similarity to the
treatment of categorial grammars presented by Ba-
roni et al. (2013), which it effectively encompasses
by expressing the tensor contractions described by
Baroni et al. as Einstein summations. However,
this paper also covers CCG-specific operations not
discussed by Baroni et al., such as type-raising and
composition.

One difference between this paper and the orig-
inal work by Coecke et al. (2010) is that they use
pregroups as the syntactic formalism (Lambek,
2008), a context-free variant of categorial gram-
mar. In pregroups, cancellation in the syntax is
always between two atomic categories (or more
precisely, between an atomic category and its “ad-
joint”), whereas in CCG the arguments in complex
categories can be complex categories themselves.
To what extent this difference is significant re-
mains to be seen. For example, one area where this
may have an impact is when non-linearities are
added after contractions. Since the CCG contrac-
tions with complex arguments happen “in one go”,
whereas the corresponding pregroup cancellation
in the semantics would be a series of contractions,
many more non-linearities would be added in the
pregroup case.

Krishnamurthy and Mitchell (2013) is based on
a similar insight to this paper – that CCG provides
combinators which can manipulate functions op-
erating over vectors. Krishnamurthy and Mitchell
consider the function application case, whereas we
have shown how the type-raising and composition
operators apply naturally in this setting also.
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5 Conclusion

This paper provides a theoretical framework for
the development of a compositional distributional
semantics for CCG. Given the existence of ro-
bust, wide-coverage CCG parsers (Clark and Cur-
ran, 2007; Hockenmaier and Steedman, 2002),
together with various techniques for learning the
tensors, the opportunity exists for a practical im-
plementation. However, there are significant engi-
neering difficulties which need to be overcome.

Consider adapting the neural-network learning
techniques of Socher et al. (2012) to this prob-
lem.4 In terms of the number of tensors, the lexi-
con would need to contain a tensor for every word-
category pair; this is at least an order of magnitude
more tensors then the number of matrices learnt in
existing work (Socher et al., 2012; Hermann and
Blunsom, 2013). Furthermore, the order of the
tensors is now higher. Syntactic categories such as
((N /N )/(N /N ))/((N /N )/(N /N )) are not un-
common in the wide-coverage grammar of Hock-
enmaier and Steedman (2007), which in this case
would require an 8th-order tensor. This combina-
tion of many word-category pairs and higher-order
tensors results in a huge number of parameters.

As a solution to this problem, we are investigat-
ing ways to reduce the number of parameters, for
example using tensor decomposition techniques
(Kolda and Bader, 2009). It may also be possi-
ble to reduce the size of some of the complex cat-
egories in the grammar. Many challenges remain
before a type-driven compositional distributional
semantics can be realised, similar to the work of
Bos for the model-theoretic case (Bos et al., 2004;
Bos, 2005), but in this paper we have set out the
theoretical framework for such an implementation.

Finally, we repeat a comment made earlier that
the compositional framework makes no assump-
tions about the underlying vector spaces, or how
they are to be interpreted. On the one hand, this
flexibility is welcome, since it means the frame-
work can encompass many techniques for building
word vectors (and tensors). On the other hand, it
means that a description of the framework is nec-
essarily abstract, and it leaves open the question

4Non-linear transformations are inherent to neural net-
works, whereas the framework in this paper is entirely linear.
However, as hinted at earlier in the paper, non-linear transfor-
mations can be applied to the output of each tensor, turning
the linear networks in this paper into extensions of those in
Socher et al. (2012) (extensions in the sense that the tensors
in Socher et al. (2012) do not extend beyond matrices).

of what the meaning spaces represent. The lat-
ter question is particularly pressing in the case of
the sentence space, and providing an interpretation
of such spaces remains a challenge for the distri-
butional semantics community, as well as relating
distributional semantics to more traditional topics
in semantics such as quantification and inference.
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Abstract

We define an algorithm translating natural
language sentences to the formal syntax of
RDF, an existential conjunctive logic widely
used on the Semantic Web. Our translation
is based on pregroup grammars, an efficient
type-logical grammatical framework with a
transparent syntax-semantics interface. We in-
troduce a restricted notion of side effects in
the semantic category of finitely generated free
semimodules over {0, 1} to that end. The
translation gives an intensional counterpart to
previous extensional models. We establish
a one-to-one correspondence between exten-
sional models and RDF models such that sat-
isfaction is preserved. Our translation encom-
passes the expressivity of the target language
and supports complex linguistic constructions
like relative clauses and unbounded dependen-
cies.

1 Introduction

There is a general agreement that Natural Language
Processing has two aspects. One is syntax, rules how
words are put together to form a grammatical string.
The other is semantics, rules how meanings of strings
are computed from the meanings of words. To this we
add a third aspect, namely that semantics must include
rules of logic how to compute the truth of the whole
string from the truth of its parts.

The Resource Description Framework (RDF)
(Hayes and McBride, 2004) is an artificial language
that takes the intuitive form of knowledge graphs. Its
semantics has the expressive power of the fragment of
multisorted first order logic that uses conjunction and
existential quantification only. This restricted expres-
sive power limits the statements of natural language
that can be interpreted as RDF graphs. Typically,
statements with negation words are excluded.

We use pregroup grammars as the linguistic and
mathematical tool to recognise and interpret natu-
ral language strings in RDF. Pregroup Calculus, also
known as Compact Bilinear Logic (Lambek, 1993)
(Lambek, 1999), is a simplification of Lambek’s Syn-
tactic Calculus, (Lambek, 1958). Pregroup grammars

are based on a lexicon like all categorial grammars.
Syntactical analysis consists in the construction of a
proof (derivation) in the calculus.

All semantics proposed so far use functors from
the lexical category of (Preller and Lambek, 2007)
into some symmetric compact closed category. They
include the compositional distributional vector space
models of (Clark et al., 2008), (Kartsaklis et al., 2013)
based on context and the functional logical models of
(Preller, 2012).

We proceed as follows. Recalling that words and
grammatical strings recognised by the grammar are
represented by meaning-morphisms in the lexical cat-
egory, we propose a "syntactic" functor from the latter
into a symmetric monoidal category CS of ‘morphisms
with side effects’ over the category C of finite dimen-
sional semimodules over the lattice B = {0, 1}. The el-
ements of the semimodule S identify with RDF graphs.
The value of the syntactic functor at a statement is the
RDF graph of the statement. The extensional models
of logic are recast as "semantic" functors from the lexi-
cal category to C. We associate to any semantic functor
an RDF interpretation and show that a statement is true
in the semantic functor if and only if the corresponding
RDF graph is true in the RDF interpretation.

2 Preliminaries
2.1 RDF graphs
RDF is a widely-adopted framework introduced in
(Hayes and McBride, 2004) as a standard for linked
information representation on the Web. Informally, an
RDF graph is a set of labeled links between objects,
which represent statements concerning the linked ob-
jects.

Throughout this article we will simply consider that
they are represented by strings of characters without
spaces, written in a mono-spaced font: the entity John
is denoted by the string John.

A link between two objects is a triple, made of one
entity (the subject of the predicate), a property (the type
of the link, also represented by a string) and a second
entity (the object of the predicate). Graphically, we rep-
resent a triple as a directed property from the subject to
the object, labeled by the predicate.

RDF allows to use nodes without labels, called blank
nodes. Concretely, this means that we can always pick
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a fresh node, named blank-n where n is some num-
ber, such that this node is not involved in any triple yet.

An example We can represent the sentence John
owns a white boat using a fresh blank node for a white
boat:

John owns blank-1
blank-1 rdf:type boat
blank-1 is_white true

Here, rdf:type is a special RDF predicate indicating
the type of its subject. The graph representing this set
of triples is

John blank-1

true boat

owns

is-w
hite

rdf:type

Figure 1: A graph with a blank node

Recall that our goal is to translate natural language
sentences to graphs. Graphs can indeed be seen as se-
mantic representations of sentences, in the sense that
they can be used to assign a truth value to a sentence,
trough the notion of entailment (Hayes and McBride,
2004).

A graph H is an instance of G when H can be ob-
tained from G by assigning labels to some blank nodes
(possibly none of them). A graph G0 entails another
graph G if an instance of G is a subgraph of G0. With
these definitions, we can define true RDF graphs as the
graphs entailed by some reference graph, storing all the
true facts.

2.2 Pregroup grammars
A pregroup grammar (Lambek, 1999), consists of the
free pregroup C(B) generated by a partially ordered
set B and a lexicon DB. By ‘free pregroup’ we mean
the free compact closed category C(B) generated by
B following the version given in (Preller and Lambek,
2007)1. The lexicon DB introduces the monoidal cat-
egory LB, freely generated by the inequalities and the
lexical morphisms given by the lexicon. Lexical entries
have "formal meanings" in the lexical category, the free
compact closed category generated by B and the mor-
phisms introduced by the words. They are analogue to
the lambda-terms intervening in categorial grammars,
(Steedman, 1996).

The working of pregroup grammars can be described
without explicit use of category theory. The main result
of this section however, the decomposition lemma, in-
vokes properties of the graphs proved in (Preller and
Lambek, 2007).

1Semantics requires more than one morphism between
objects, whereas the partial preorder of the free pregroup of
(Lambek, 1999) confounds all morphisms with identical do-
main and codomain.

We start with the formal definition of a monoidal cat-
egory followed by the condition it must satisfy to be
compact closed.

Definition 1. A category C is
1. monoidal if there is a bifunctor ⊗ : C × C → C,

a distinguished object I , the unit of ⊗, satisfying
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), (f ⊗ g) ⊗ h =
f ⊗ (g ⊗ h) 2

2. compact closed if it is monoidal and there are con-
travariant endofunctors ( )r and ( )`, called right
adjoint and left adjoint, such that for every object
A and every morphism f : A→ B there are mor-
phisms ηf : I → Ar ⊗ A, the name of f , and
εf : A⊗ Br → I , the coname of f , satisfying for
any g : B → C

(A⊗B)r = Br ⊗Ar, (A⊗B)` = B` ⊗A`

(εf ⊗ 1C) ◦ (1A ⊗ ηg) = g ◦ f
(1Ar ⊗ εg) ◦ (ηf ⊗ 1Cr ) = (f ◦ g)r .

3. symmetric if it is monoidal and there is a natural
isomorphism σAB : A ⊗ B → B ⊗ A such that
σ−1

AB = σBA.

Recall that ⊗ is a bifunctor if and only if the follow-
ing equalities are satisfied for all objects A,B and all
morphisms fi : Ai → Bi, gi : Bi → Ci, i = 1, 2

1A ⊗ 1B = 1A⊗B

Interchange Law
(f2 ◦ f1)⊗ (g2 ◦ g1) = (f2 ⊗ g2) ◦ (f1 ⊗ g1)

(1)

The morphisms of C(B) and LB identify with
graphs, which we now describe without invoking cat-
egory theory.

The objects of C(B) are called types. They include
the elements of B, called basic types. For instance, the
set B may include the basic types s for statements, d
for determiners, n for noun phrases, o for direct ob-
jects with corresponding types in relatives clauses r,
n̂ and ô. There is only one strict inequality n < o.
Assimilating B to a category, we write iab : a → b
instead of a ≤ b and 1a for iaa. A simple type
is an iterated left adjoint or right adjoint of a basic
type . . . ,a`` = a(−2),a` = a(−1),a = a(0),ar =
a(1),arr = a(2), . . . . The iterator of t = a(z) is the
integer z. An arbitrary type is a string of simple types
separated by the symbol ⊗. In particular, the empty
string is a type, denoted I .

The lexicon of a pregroup grammar consists of a set
of pairs word : T where the type T ∈ C(B) captures
the different grammatical roles a word may play. For

2Strictly speaking, these equalities hold up to natural iso-
morphisms, but the coherence theorem of (Mac Lane, 1971)
makes it possible to replace the isomorphisms by equalities
without loss of generality.
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instance

proper name : n
transitive verb : nr ⊗ s⊗ o`

transitive verb : n̂r ⊗ r ⊗ o`

transitive verb : nr ⊗ ôr ⊗ r
determiner : d
adjective : dr ⊗ d
countnoun : dr ⊗ n
relpronoun : nr ⊗ n⊗ r` ⊗ n̂
relpronoun : nr ⊗ n⊗ r` ⊗ ô

A pregroup grammars analyses a string of words by
constructing a graph: choose an entry wi : Ti for each
word wi and align the types in the order of the words.
Place non-crossing oriented underlinks such that the
tail of an underlink is a basic type with an even num-
ber of iterations, say t = a(z), where z = ±2n. If
the head is to the left of the tail then it is the left ad-
joint b(z)` = b(z−1), for some basic type b ≥ a. If it
is to the right then its a right adjoint b(z)r = b(z+1).
Complete the graph by repeating the nodes that are not
head or tail of an underlink in a line below and adding
a vertical link between corresponding nodes.

The string is said to be grammatical if exactly one
simple type remains that is not the tail or head of an
underlink and if it is a basic type. The resulting graph
is called a reduction and denotes a unique morphism
r : T1⊗ . . .⊗Tn → b of C(B). More generally, graphs
standing for morphisms align the domain above and the
codomain below.

For instance, the graph below exhibits a reduction to
the sentence type s

(n)⊗ (nr ⊗ s⊗ o`)⊗ (d)⊗ (dr ⊗ d)⊗ (dr ⊗ n)
john owns a white boat

;;

s
��
gg ;; ;;

The following two graphs are reductions to the noun
phrase type n. The first graph corresponds to the case
where the relative pronoun is the object of the verb in
the relative clause whereas it is the subject in the sec-
ond graph

d⊗ dr ⊗ n⊗ nr ⊗ n⊗ r` ⊗ ô⊗ n⊗ nr ⊗ ôr ⊗ r
a cat that bob hates

?? ??

n
��

bb ::??

d⊗ dr ⊗ n⊗ nr ⊗ n⊗ r` ⊗ n̂⊗ n̂r ⊗ r ⊗ o` ⊗ n
a cat that bobhates

?? ??

n
��

ee ?? cc

The meanings of words are also represented by
graphs that correspond to morphisms of the lexical cat-
egory LB. In fact, every entry w : T in the lexicon
gives rise to a meaning morphism wT : I → T and a
lexical morphism wT represented by the following ori-
ented labelled graphs

wb = w ��
b

= wb

T = ar ⊗ b

wT =
ar ⊗ b

""
w

wT =
a
w ��
b

T = ar ⊗ b⊗ c`

wT =
ar ⊗ b ⊗ c`

��
wT

wT =

a ⊗ c

b

TTT jjj

wT ��

T = ar ⊗ cr ⊗ b

wT =
ar ⊗ cr ⊗ b

w�� wT =

c ⊗ a

b

TTT jjj

wT ��

If T has two factors that are basic types, there is besides
the main lexical morphismwT an auxiliary lexical mor-
phism jT .

T = nr ⊗ n⊗ r` ⊗ d, d = n̂, ô

thatT =
nr ⊗ n ⊗ r` ⊗ d

jd

""}} that

r

n

that
��

n

d

jd
��

We omit the subscript T if this does not lead to confu-
sion.

The nodes of the meaning graphs are the simple
types of T . They form the lower line of the graph, the
upper line is the empty string I . The corresponding
morphism has domain I and codomain T . An overlink
may have several tails but only one head. The tails of
overlinks are right or left adjoints of basic types, the
head is a basic type3.

The lexical category LB generated by the lexicon
DB is the compact closed category freely generated by
B, the symmetry morphisms σab and the lexical mor-
phisms introduced by DB.

Strings of words also have meaning(s) in the lex-
ical category. The lexical meaning of a grammati-
cal string word1 . . .wordn recognised by the reduction
r : T1 . . . Tn → b is, by definition, the composite of
the tensor product of the word meanings and the cho-
sen reduction.

r ◦ (word1T1 ⊗ . . .⊗ wordnTn
) : I → b .

The meaning of a composite morphism g ◦ f can be
simplified graphically. Stack the graph of f above the
graph of g and walk the paths of the graph starting at
a node that is not the head of a link until you arrive
at a node that is not the tail of a link. Compose the
labels in the order they are encountered along the path.
Replace the whole path by a single link labelling it by
the composite label of the path. The resulting graph
represents the morphism g ◦ f , (Selinger, 2011).

For instance, the grammatical strings mentioned

3"basic type" is replaced by simple type with an even iter-
ator in the general case
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above above simplify to

(n)⊗ (nr ⊗ s⊗ o`)⊗ (d)⊗ (dr ⊗ d)⊗ (dr ⊗ n)
�� john

white boat

;;

s
��
gg ;; ;;

��
own

��
a

�� ��

=
n ⊗ o

john
�� boat◦red◦a��

s

TTT jjj

own ��

=

I

s

own◦(john⊗(boat◦red◦a))

��

T = n̂r ⊗ r ⊗ o`

d⊗ dr ⊗ n⊗ nr ⊗ n⊗ r` ⊗ n̂⊗ n̂r ⊗ r ⊗ o` ⊗ n

a cat
that

bobhateT

?? ??

n
��

ee ?? ff
�� �� !!�� �� ��

that ◦ hateT ◦ ((cat ◦ a)⊗ bob)] : I ⊗ I → n

T ′ = nr ⊗ ôr ⊗ r

d⊗ dr ⊗ n⊗ nr ⊗ n⊗ r` ⊗ ô⊗ n⊗ nr ⊗ ôr ⊗ r

a cat
that

bob hateT ′

?? ??

n
��

dd ::??
�� �� !!�� �� ��

= that ◦ hateT ′ ◦ ((cat ◦ a)⊗ bob)] : I ⊗ I → n

All unlabelled links in the graph above correspond
to inequalities of basic types. Inserting the strict in-
equalities at the appropriate place and applying the in-
terchange law, we decompose the label into minimal
building blocks that correspond one-to-one to the re-
sources occurring in the RDF graph associated to the
statement. For example,

own ◦ (john⊗ (boat ◦ white ◦ a))
= own ◦ (1n ⊗ in) ◦ (1n ⊗ boat) ◦ (1n ⊗ white))
◦(john⊗ a) .

(2)
The expression after the equality symbol above is a
composite of tensor products the factors of which are
either inequalities between basic objects or lexical mor-
phisms. Only the rightmost tensor product contains
more than one lexical morphism. In fact, all factors
are lexical morphisms with domain I .

The translation of statements to RDF graphs rests on
the existence of this decomposition. Borrowing the ter-
minology of RDF graphs, call any lexical morphism
with domain I a node word and any other lexical mor-
phism a property word.

Lemma 1 (Decomposition). Let word1 . . .wordn

be a grammatical string with lexical morphisms
word1, . . . , wordn and a reduction r : T1 . . . Tn →
b. Then there is an enumeration of the node words
wordi1 : I → b1, . . . , wordim : I → bm such that

the lexical meaning of the string satisfies

r ◦ (word1 ⊗ . . .⊗ wordn)
= p1 ◦ · · · ◦ pm′ ◦ (wordi1 ⊗ . . .⊗ wordim

) ,

where each pk is either a tensor product of inequalities
of basic types or a tensor product of inequalities and
one property word wordjk

. Moreover, k < k′ implies
jk < jk′ .

In particular, the meaning of the string belongs to
the monoidal category generated by the lexicon

This is a straightforward consequence of the charac-
terisation of morphisms as normal graphs in the free
category, (Preller and Lambek, 2007) and the inter-
change law.

We map lexical morphisms to "unfinished" RDF
triples

lexical morphism RDF triple
noun : d→ n ? rdf : type noun
adjective : d→ d ? is-adjective true
verb : a⊗ b→ c ? verb ?
determiner : I → d blank ? ?,

? ? blank
propername : I → n propername ? ?,

? ? propername
(3)

The question marks designate unoccupied positions in
the triple. Node words occupy either the subject or the
object position, unary property words leave only the
subject position open, binary property words occupy
the centre position leaving subject and object position
unoccupied. Finally, the noun phrases a cat that hates
Bob and a cat that Bob hates are respectively translated
to the following graphs :

blank-1

Bob cat

hate
s

rdf:type

(a) A cat that hates Bob

blank-1

Bob cat

hate
s

rdf:type

(b) A cat that Bob hates

3 The Translation
Let B = 〈{0, 1},+, ·〉 be the commutative semiring in
which the addition, +, is the lattice operator ∨ and the
multiplication, ·, the lattice operator ∧ on {0, 1}.

The semantic category which hosts the RDF graphs
and our models of grammatical strings is the category C
of finitely generated semimodules over B. It is compact
closed satisfying A` = A = Ar for each object A.
Every object A has a‘canonical’ basis (ei)i such that
every element v ∈ A can be written uniquely as v =∑

i αiei, where αi ∈ B. We refer to elements ofA as
vectors. Morphisms of C are maps that commute with
addition and scalar multiplication.

We interpret RDF graphs as elements of a semimod-
ule S determined by the RDF vocabulary, see below.
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The translation of grammatical strings is given by a
functor from the monoidal category generated by the
lexical morphisms into a category of morphisms with
side effects mapping the decomposition of a grammati-
cal string to a vector of S.

Let L be a set of labels that includes the property
words and a ‘very large’, but finite number n0 of la-
bels blanki, for i = 1, . . . n0

4. The other elements
of L are node names and property names of an RDF
vocabulary.

Define N as the semimodule over the semi-ring B
freely generated by L and denote elabel the basis vec-
tor of N corresponding to label ∈ L. We present
RDF triples by basis vectors of S = N ⊗ N ⊗ N and
RDF graphs by sums of basis vectors of S, for instance
ebob⊗ehate⊗eblank+eblank⊗erdf−type⊗ecat. Hence,
the vector sum models the union of RDF graphs.

We want to interpret the lexical morphisms such that
they construct a triple when applied to an argument and
add it to the vector of S already constructed. Composi-
tion of the category C alone is not powerful enough to
achieve this. We define a new category CS in which
the entity a white boat will be denoted by the pair
(eblank-1, eblank-1 ⊗ erdf:type ⊗ eboat + eblank-1 ⊗ eis-white ⊗
etrue).

Therefore we switch from C to the monoidal cate-
gory CS below in which arrows have two components.
The first component creates the triple and the second
component adds the new triple to the graph as a ‘side
effect’.

Definition 2 (Category with Side Effects). Let
{a1, . . . , am} and {b1, . . . , bn} be the basis5 of A and
B. For any p ∈ C(A,S), q ∈ C(B,S), define p⊗+ q ∈
C(A⊗B,S) as the unique linear map satisfying for an
arbitrary basis vector ai ⊗ bj of A⊗B

(p⊗+ q) : ai ⊗ bj 7→ p(ai) + q(bj) .

The category CS of morphisms with side effects in S
has:
• objects as in C
• morphisms (f, p) : A → B where f ∈ C(A,B),

Ker(f) = {0} and p ∈ C(A,S).
• arrows 1A = (1A, 0).
• an operation ◦ defined by (f, p)◦ (h, q) = (f ◦h, p◦
h+ q).
• an operation ⊗ on objects defined as in C
• an operation ⊗ on arrows defined by (f, p) ⊗

(h, q) = (f ⊗ h, p⊗+ q).

Examples of morphisms in the first component are
the symmetry σ : N⊗N → N⊗N , π1, π2 : N⊗N →
N defined by σ(ai ⊗ bj) = bj ⊗ ai, π1(ai ⊗ bj) = ai

and π2(ai ⊗ bj) = bj .
The new operation ⊗+ introduced above concerns

the second component only. The morphism p ⊗+ q

4it suffices that n0 exceeds the number of occurrences of
determiners in the set of digitalised documents

5In C, every object has a unique basis: the canonical one.

computes at ai ⊗ bj the union of the RDF graphs p(ai)
and q(bj), computed separately by p and q.

As an illustration, consider the following morphisms
of CS

mjohn = (ejohn, 0), mblanki
= (eblanki

, 0)

The arrow of a proper noun consists of the node rep-
resenting this entity, e.g. ejohn, paired with the empty
graph represented by 0 ∈ S. Choosing the empty graph
means that nothing is said about this node. A similar
remark holds for determiners.

mwhite = (1N , 1N ⊗ eis-white ⊗ etrue),
mboat = (1N , 1N ⊗ erdf-type ⊗ eboat)

An adjective or a noun is a morphism that maps a node
word to itself and to the empty slot in the corresponding
triple. As a side effect, it adds this triple to the second
component.

mown = (1N ⊗ eown ⊗ 1N , 1N ⊗ eown ⊗ 1N )

A transitive verb is a morphism that maps an ordered
pair of nodes to a triple making the first the subject and
the second the object of the triple.

Compose the morphisms

mwhite ◦mblanki
= (eblanki

, t1)
t1 = (eblanki ⊗ eis-white ⊗ etrue)

mboat ◦mwhite ◦mblanki = (eblanki , t2 + t1)
t2 = (eblanki

⊗ erdf-type ⊗ eboat)
mown ◦ (mjohn ⊗ (mboat ◦mwhite ◦mblanki

)) =
mown ◦ (ejohn ⊗ eblanki

, 0 + t2 + t1) =
(ejohn ⊗ eown ⊗ eblanki , t3 + t2 + t1)
t3 = ejohn ⊗ eown ⊗ eblanki

(4)
The effect of composition is to create a new triple on

the left of the comma and to store it on the right.
Proposition 1. The category with side effects CS is a
monoidal category.

The proof of this proposition is given in appendix A.
Define a monoidal structure preserving functor F

from the monoidal category generated by the lexical
morphisms to CS thus
• F(s) = S = N ⊗N ⊗N
• F(a) = N if a 6= s
• F(1a) = F(ia b) = F(ja b) = 1F (a), for all basic

types a, b ∈ B
• F(that : r → n) = (1, 0)
• F(name : I → d) = (ename, 0)
• F(determiner : I → d) = (eblanki , 0)
• F(word : dr ⊗ n) = (1, 1⊗ erdf-type ⊗ eword)
• F(word : dr ⊗ d) = (1, 1⊗ eis-word ⊗ etrue)
• F(wordnr⊗s⊗ol) = (1⊗ eword⊗ 1, 1⊗ eword⊗ 1)
F(wordn̂r⊗r⊗ol) = (π1, 1⊗ eword ⊗ 1)
F(wordnr⊗ôr⊗r) = (π2, (1⊗ eword ⊗ 1) ◦ σ).

Note that the morphisms in the example above satisfy
mword = F(word). Computation (4) shows that F
maps the lexical meaning of john owns a white boat to
the three RDF triples t1, t2, t3.
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Lemma 2. Let word1 . . .wordn be a statement with
corresponding lexical entries word1 : T1 . . .wordn :
Tn and r : T1 . . . Tn → s a reduction to the sentence
type. Then second component of

F(r ◦ (word1 ⊗ . . .⊗ wordn)) =
(f, t1 + · · ·+ tm) ∈ CS(I, S)

is a sum of RDF triples ti ∈ S, for k = 1, . . . ,m.
Moreover, tk has the form (3) determined by the prop-
erty word wordjk

such that the unlabelled nodes are
filled by node words of the statement.

The proof is given in Appendix B.

Definition 3 (RDF Translation). The RDF graph trans-
lating the statement word1 . . .wordn with reduction
r : T1 . . . Tn → s is the second component of F(r ◦
(word1 ⊗ . . .⊗ wordn)).

For instance, the translation of the statement John
owns a white boat is
ejohn ⊗ eown ⊗ eblanki

+ eblanki
⊗ eis-white ⊗ etrue

+ eblanki
⊗ erdf-type ⊗ eboat ,

because
F(own ◦ (john⊗ (boat ◦ white ◦ a))
= mown ◦ (mjohn ⊗ (mboat ◦mwhite ◦mblanki

)) .

The translation algorithm from text to RDF graphs
starts with a parsing algorithm of pregroup grammars
that chooses a type for each word of the statement and
provides a reduction to the sentence type. Next it com-
putes the decomposition of the formal meaning in the
lexical category by ‘yanking’. Finally it computes the
RDF graph by applying the translation functor F to the
decomposition. The parsing algorithm is cubic poly-
nomial in the number of words. Decomposition is lin-
ear, because the number of links is proportional to the
number of words. Finally, translation again is linear,
because the sum of the number of property words and
of the number of node words in the decomposition is
proportional to the number of words.

4 C-Models and RDF Interpretations

In this section, we establish the connection between the
extensional models of meaning of (Preller, 2012) with
the RDF interpretations of (Hayes, 2004) via the trans-
lation F from natural language to RDF graphs. We
show that a statement is true in an extensional model
if and only if the RDF graph computed by F is true
in the RDF interpretation associated to the extensional
model.

Choose an object U of C, the ‘universe of discourse’
of the fragment of natural language. The basis vectors
of U stand for individuals or concepts. Properties are
represented by maps that test (n-tuples of) entities and
let (part of) them pass if the test succeeds.

Let 1 ≤ i1 < · · · < im ≤ n be a strictly increasing
sequence. A linear map q : U1 ⊗ . . . ⊗ Un → Ui1 ⊗

. . .⊗Uim
is said to be a selector if for any basis vector

e1 ⊗ . . .⊗ en ∈ U1 ⊗ . . .⊗ Un

q(e1⊗. . .⊗en) = ei1⊗. . .⊗eim
or q(e1⊗. . .⊗en) = 0 .

We say that q selects the i-th factor ifm = 1 and i = i1
and that it is a projector if m = n. If the latter is
the case then q is an idempotent and self-adjoint en-
domorphism, hence a ‘property’ in quantum logic, see
(Abramsky and Coecke, 2004).

If the domain V and the codomainUi1⊗. . .⊗Uim are
fixed then the selectors are in a one-to-one correspon-
dence with the ‘truth-value’ functions p : A→ {>,⊥}
on the set A of basis vectors of V related by the condi-
tion

p(a) = > if and only if q(a) 6= 0

for all a ∈ A .
Let v =

∑k
l=1 ajl

be an arbitrary vector of V . A
selector q : V →W is said to be true at v if q(ajl

) 6= 0,
for l = 1, . . . , k.

Lemma 3. Selectors are closed under composition and
the tensor product. Every identity is a selector.

Let p : V → W and q : W → X be selectors and
v ∈ V . Then q ◦ p is true at v if and only if p is true at
v and q is true at w = p(v).

Proof. The first assertion is straight forward. To show
the second, assume that a is a basis vector for which
(q ◦ p)(a) 6= 0. Then p(a) 6= 0 because q(0) = 0.
Hence p(a) is a basis vector of W selected by p. The
property now follows for an arbitrary vector from the
definitions.

Definition 4. A compact closed structure preserving
functorM : LB → C is a C-model with universe U if
it satisfies
• M(s) = U ⊗ U
• M(a) = U for any basic type a 6= s
• M(1a) = M(ia b) = M(ja b) = 1M(a), for all

basic types a, b ∈ B
• M(that) = 1U

• M(wordar⊗b) and M(wordnr⊗s⊗ol) are projec-
tors
• M(wordn̂⊗r⊗ol) = π1 ◦M(wordnr⊗s⊗ol)
M(wordnr⊗ôr⊗r) = π2 ◦M(wordnr⊗s⊗ol) ◦ σ
• M maps determiners and proper names in the sin-

gular to basis vectors.

The last condition guarantees that the interpretations
of a transitive verb in a statement and in a relative
clause are equal if the relative pronoun is the subject of
the verb in the relative clause and that they differ only
by the symmetry isomorphism if the relative pronoun
is the object.

Definition 5. A statement word1 . . .wordn with re-
duction r : T1 ⊗ . . . ⊗ Tn → b is true in M if
M(r ◦ (word1 ⊗ . . .⊗ wordn) 6= 0.

Truth in a model can be reformulated in terms of se-
lector truth with the help of Lemma 1.
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Lemma 4. Let p1◦· · ·◦ pm′ ◦(wordi1⊗ . . .⊗wordim
)

be the decomposition of the formal meaning of the
statement word1 . . .wordn. Then M(pl) is a selec-
tor and M(wordik

) a vector in U, for 1 ≤ l ≤ m′,
1 ≤ k ≤ m.

Moreover, the statement is true in M if and only if
the selectorM(pl) is true atM(pl+1)◦· · ·◦M(pm′)◦
(M(wordi1)⊗ . . .⊗M(wordim)) for 1 ≤ l ≤ m′.
Proof. M maps the meaning of the string toM(p1) ◦
· · · ◦ M(pm′) ◦ (M(wordi1) ⊗ . . . ⊗M(wordim

)).
Note that for k = 1, . . . ,m′ any factor of M(pk) is
the identity of U unless it isM(wordjk

) = qk. Thus
M(pk) is a tensor product of selectors. Hence both
assertions follow from Lemma 3.

Any C-modelM defines an RDF interpretation. The
vocabulary consists of the basis vectors elabel ∈ N ,
see previous section. The set of property symbols is
given by
P = {eis-adjective : adjective ∈ D} ∪ {rdf:type}

∪ {everb : verb ∈ C}
Define an RDF interpretation IM as follows
• set of properties

IP = {M(word) : eword ∈ P} ∪ {rdf:type}

• set of resources
IR = IP ∪ U ∪ {true}

• mapping IS and its extension to blank nodes
IS(eword) =M(word),
IS(eblanki) =M(determineri)

• mapping IEXT from IP into the power set of IR× IR
IEXT(rdf-type) =
{〈e,M(noun)〉 : M(noun) is true at e}

IEXT(IS(eis-adjective)) =
{〈e,true〉 : M(adjective) is true at e}

IEXT(IS(everb)) =
{〈e1, e2〉 : M(verb) is true at e1 ⊗ e2} .

Proposition 2. A statement word1 . . .wordn is true in
a C-model M if and only if every triple of its RDF
translation G is true in the RDF interpretation IM
The proof is given in Appendix B.

5 Conclusion
The modelling of natural language by RDF graphs re-
mains limited by the expressivity of RDF. The latter
goes way beyond the few examples presented here. So
far, we have only considered the extensional branch of
a word. Future work will take advantage of the dis-
tinction between a property and its extension in RDF to
introduce the conceptual branch of a plural, which does
not refer to an extension, e.g Tom likes books, or cap-
ture the difference between Eve and John own a boat
and Eve and John are athletes.
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A Proof of proposition 1
Note first that composition and the tensor are well de-
fined.

Assume (f, p) : A → B and (g, q) : B → C. Then
q ◦ f : A→ S and p : A→ S, so q ◦ f + p : A→ S.
Therefore (g, q) ◦ (f, p) = (g ◦ f, q ◦ f + p) : A→ C
is well defined. Similarly, if (fi, pi) : Ai → Bi for
i = 1, 2 then p1 ⊗+ p2 : A1 ⊗ A2 → S and therefore
(f1⊗f2, p1⊗+ p2) : A1⊗A2 → B1⊗B2 as required.

The operation ⊗+ is associative on arrows. Indeed,
let (ai)i, (bj)j and (ck)k be the basis of A, B and C,
respectively. Then for r : C → S

((p⊗+ q)⊗+ r)(ai ⊗ bj ⊗ ck)
=(p⊗+ q)(ai ⊗ bj) + r(ck)
=p(ai) + q(bj) + r(ck)
=(p⊗+ (q ⊗+ r))(ai ⊗ bj ⊗ ck) .

Hence the tensor product on arrows of CS is associative.
To show the interchange law (1), we need a lemma:

Lemma 5. Let p : C → S, q : D → S and f : A →
C, g : B → D with Ker(f) = Ker(g) = {0}. Then

(p⊗+ q) ◦ (f ⊗ g) = (p ◦ f)⊗+ (q ◦ g)
Indeed, let (ai)i, (bi)i, (ci)i and (di)i be the bases

of A, B, C and D respectively. For all i and j, we
decompose f(ai) on the basis (ci)i and similarly for
g(bj) on (di)i:

f(ai) =
∑

r

cir
and g(bj) =

∑
s

dis

Each family of indices (ir)r and (is)s is non empty,
because Ker(f) = Ker(g) = {0}. Hence,

((p⊗+ q) ◦ (f ⊗ g))(ai ⊗ bj)
=(p⊗+ q)(f(ai)⊗ g(bj))
=(p⊗+ q)((

∑
r

cir
)⊗ (

∑
s

dis
))

=(p⊗+ q)(
∑
r,s

cir
⊗ dis

)

=
∑
r,s

p(cir ) + q(dis)

=
∑

r

p(cir
) +

∑
s

q(dis
)

=p(f(ai)) + q(g(bj))
=((p ◦ f)⊗+ (q ◦ g))(ai ⊗ bj)

The fifth equality uses the fact that 1 + 1 = 1 and the
sum is non empty. This terminates the proof of the
lemma.

Now let (f1, p1) : A → C, (f2, p2) : C → E,
(g1, q1) : B → D and (g2, q2) : D → F . We show
first the following equality

(f1⊗+g1)+(f2⊗+g2) = (f1+f2)⊗+ (g1+g2). (5)

Indeed, let (ei)i and (fj)j be the bases of A and B
respectively. Then, for all i and j,

((f1 ⊗+ g1) + (f2 ⊗+ g2))(ei ⊗ fj)
=(f1 ⊗+ g1)(ei ⊗ fj) + (f2 ⊗+ g2)(ei ⊗ fj)
=f1(ei) + g1(fj) + f2(ei) + g2(fj)
=((f1 + f2)⊗+ (g1 + g2))(ei ⊗ fj) .

Finally, the Interchange Law follows from (5) and the
definitions thus

((f2, p2)⊗ (g2, q2)) ◦ ((f1, p1)⊗ (g1, q1))
=(f2 ⊗ g2, p2 ⊗+ q2) ◦ (f1 ⊗ g1, p1 ⊗+ q1)
=((f2 ⊗ g2) ◦ (f1 ⊗ g1), (p2 ⊗+ q2) ◦ (f1 ⊗ g1) + (p1 ⊗+ q1))
=((f2 ◦ f1)⊗ (g2 ◦ g1), (p2 ◦ f1)⊗+ (q2 ◦ g1) + (p1 ⊗+ q1))
=((f2 ◦ f1)⊗ (g2 ◦ g1), (p2 ◦ f1 + p1)⊗+ (q2 ◦ g1 + q1))
=(f2 ◦ f1, p2 ◦ f1 + p1)⊗ (g2 ◦ g1, q2 ◦ g1 + q1)
=((f2, p2) ◦ (f1, p1))⊗ ((g2, q2) ◦ (g1, q1)) .

Therefore CS is a monoidal category.

B Proof of Lemma 2 and Proposition 2
Proof. Note that both F and M map inequalities of
basic types to identities, hence also any atom without
a lexical morphism to an identity. Let wordjl

be the
property word occurring in pl, say as the kl-th fac-
tor, ql = M(wordjl

) and ml = F(wordjl
), for

l = 1, . . . ,m. Then M(pl) = 1U ⊗ . . . ql . . . ⊗ 1U

and F(pl) = 1N ⊗ . . .ml . . . ⊗ 1N . Suppose that ei

is a basis vector of U and enodei a basis vector of N
satisfying ei = I(enodei).

Use induction on n−m−l and assume that e1⊗. . .⊗
erl

=M(pl+1)◦· · ·◦M(pn−m)◦(M(nodei1)⊗. . .⊗
M(nodeim

)) and (enode1 , 0) ⊗ . . . ⊗ (enoderl
, 0) =

F(pl+1) ◦ · · · ◦ F(pn−m) ◦ (F(enodei1
) ⊗ . . . ⊗

F(enodeim
)).6

Let tl be the triple created when composing F(pl)
with (enode1 , 0)⊗ . . .⊗ (enoderl

, 0). We want the show
that tl is true in IM if and only ifM(pl) is true at e1 ⊗
. . .⊗ erl

.
Consider the case where wordjl

: d → d. The
other cases are shown similarly. Recall that ml ◦
(enodekl

, 0) = (enodekl
, tl), with tl = enodekl

⊗
eis-wordjl

⊗ etrue. Hence, F(pl)((enode1 , 0) ⊗ . . . ⊗
(enoder

, 0)) = ((enode1 , 0) ⊗ . . . (enodekl
, tl) . . . ⊗

(enoder
, 0) = (enode1 ⊗ . . . ⊗ enoder

, tl). Then tl
is true in IM if and only if (I(enodekl

),true) ∈
IEXT(I(eis-word)) if and only if ql is true at ekl

, by
definition of I . On the other hand, 1U⊗. . . ql . . .⊗1U is
true at e1⊗ . . . ekl

. . .⊗er if and only if ql is true at ekl
.

If that is the case thenM(pl)(e1 ⊗ . . . ekl
. . .⊗ er) =

e1 ⊗ . . . ekl
. . .⊗ er.

60 can be replaced by any vector of S without changing
the proof.
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Abstract

Scales for natural language semantics are
analyzed as moving targets, perpetually
under construction and subject to ad-
justment. Projections, factorizations and
constraints are described on strings of
bounded but refinable granularities, shap-
ing types by the processes that put seman-
tics in flux.

1 Introduction

An important impetus for recent investigations
into type theory for natural language semantics is
the view of “semantics in flux,” correcting “the im-
pression” from, for example, Montague 1973 “of
natural languages as being regimented with mean-
ings determined once and for all” (Cooper 2012,
page 271). The present work concerns scales
for temporal expressions and gradable predicates.
Two questions that loom large from the perspec-
tive of semantics in flux are: how to construct
scales and align them against one another (e.g.
Klein and Rovatsos 2011). The formal study car-
ried out below keeps scales as simple as possi-
ble, whilst allowing for necessary refinements and
adjustments. The basic picture is that a scale is
a moving target finitely approximable as a string
over an alphabet which we can expand to refine
granularity. Reducing a scale to a string comes,
however, at a price; indivisible points must give
way to refinable intervals (embodying underspec-
ification).

Arguments for a semantic reorientation around
intervals (away from points) are hardly new. Best
known within linguistic semantics perhaps are
those in tense and aspect from Bennett and Partee
1972, which seem to have met less resistance than
arguments in the degree literature from Kennedy
2001 and Schwarzschild and Wilkinson 2002 (see
Solt 2013). At the center of the present argument

for intervals is a notion of finite approximabil-
ity, plausibly related to cognition. What objection
might there be to it? The fact that no finite lin-
ear order is dense raises the issue of compatibility
between finite approximability and density — no
small worry, given the popularity of dense linear
orders for time (e.g. Kamp and Reyle 1993, Pratt-
Hartmann 2005, Klein 2009) as well as measure-
ment (e.g. Fox and Hackl 2006).

Fortunately, finite linear orders can be orga-
nized into a system of approximations converging
at the limit to a dense linear order. The present
work details ways to form such systems and lim-
its, with density reanalyzed as refinability of ar-
bitrary finite approximations. A familiar example
provides some orientation.

Example A (calendar) We can represent a cal-
endar year as the string

smo := Jan Feb Mar · · · Dec

of length 12, or, were we interested also in days
d1,d2. . .,d31, the string

smo,dy := Jan,d1 Jan,d2 · · · Jan,d31

Feb,d1 · · · Dec,d31

of length 365 for a non-leap year (Fernando
2011).1 In contrast to the points in the real line
R, a box can split, as Jan in smo does (30 times)
to

Jan,d1 Jan,d2 · · · Jan,d31

in smo,dy, on introducing days d1, d2,. . ., d31
into the picture. Reversing direction and gener-
alizing from

mo := {Jan,Feb,. . .Dec}
1We draw boxes (instead of the usual curly braces { and })

around sets-as-symbols, stringing together “snapshots” much
like a cartoon/film strip.
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to any set A, we define the function ρA on strings
(of sets) to componentwise intersect with A

ρA(α1 · · ·αn) := (α1 ∩A) · · · (αn ∩A)

(throwing out non-A’s from each box) so that

ρmo(smo,dy) = Jan
31

Feb
28 · · · Dec

31
.

Next, the block compression bc(s) of a string s
compresses all repeating blocks αn (for n ≥ 1)
of a box α in a string s to α for

bc(s) :=


bc(αs′) if s = ααs′

α bc(βs′) if s = αβs′ with
α 6= β

s otherwise

so that if bc(s) = α1 · · ·αn then αi 6= αi+1 for i
from 1 to n− 1. In particular,

bc( Jan
31

Feb
28 · · · Dec

31
) = smo.

Writing bcA for the function mapping s to
bc(ρA(s)), we have

bcmo(smo,dy) = smo.

In general, we can refine a string sA of granu-
larity A to one sA′ of granularity A′ ⊇ A with
bcA(sA′) = sA. Iterating over a chain

A ⊆ A′ ⊆ A′′ ⊆ · · · ,
we can glue together strings sA, sA′ , sA′′ , . . . such
that

bcX(sX′) = sX for X ∈ {A,A′, A′′, . . .}.
Details in section 2.

We shall refer to the expressions we can put in
a box as fluents (short for temporal propositions),
and assume they are the elements of a set Φ. While
the set Φ of fluents might be infinite, we restrict the
boxes that we string together to finite sets of flu-
ents. Writing Fin(Φ) for the set of finite subsets
of Φ and 2X for the powerset of X (i.e. the set
of X’s subsets), we will organize the strings over
the infinite alphabet Fin(Φ) around finite alpha-
bets 2A, for A ∈ Fin(Φ)

Fin(Φ)∗ =
⋃

A∈Fin(Φ)

(2A)∗.

In addition to projecting Fin(Φ) down to 2A for
some A ∈ Fin(Φ), we can build up, forming

the componentwise unions of strings α1 · · ·αn and
β1 · · ·βn of the same number n of sets for their su-
perposition

α1 · · ·αn & β1 · · ·βn := (α1 ∪ β1) · · · (αn ∪ βn)

and superposing languages L and L′ over Fin(Φ)
by superposing strings in L and L′ of the same
length

L & L′ := {s&s′ | s ∈ L, s′ ∈ L′ and

length(s) = length(s′)}

(Fernando 2004). For example,

smo,dy = ρmo(smo,dy) & ρdy(smo,dy)

where dy := {d1, d2 . . . , d31}. More generally,
writing LA for the image of L under ρA

LA := {ρA(s) | s ∈ L},

observe that for L ⊆ (2B)∗ and A ⊆ B, L is
included in the superposition of LA and LB−A

L ⊆ LA & LB−A.

The next step is to identify a language L′ such that

L = (LA & LB−A) ∩ L′ (1)

other than L′ = L. For a decomposition (1) of
L into (generic) contextual constraints L′ separate
from the (specific) components LA and LB−A,
it will be useful to sharpen LA, LB−A and &,
factoring in bc and variants of bc (not to mention
∩). Measurements ranging from crude compar-
isons (of order) to quantitative judgments (mul-
tiplying unit magnitudes with real numbers) can
be expressed through fluents in Φ. We interpret
the fluents relative to suitable strings in Fin(Φ)∗,
presented below in category-theoretic terms con-
nected to type theory (e.g. Mac Lane and Moerdijk
1992). Central to this presentation is the notion of
a presheaf on Fin(Φ) — a functor from the op-
posite category Fin(Φ)op (a morphism in which
is a pair (B,A) of finite subsets of Φ such that
A ⊆ B) to the category Set of sets and functions.
The Fin(Φ)-indexed family of functions bcA (for
A ∈ Fin(Φ)) provides an important example that
we generalize in section 2.

An example of linguistic semantic interest to
which block compression bc applies is
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Example B (continuous change) The pair (a),
(b) below superposes two events, soup cooling and
an hour passing, in different ways (Dowty 1979).

(a) The soup cooled in an hour.

(b) The soup cooled for an hour.

A common intuition is that in an hour requires
an event that culminates, while for an hour re-
quires a homogeneous event. In the case of (a),
the culmination may be that some threshold tem-
perature (supplied by context) was reached, while
in (b), the homogeneity may be the steady drop
in temperature over that hour. We might track
soup cooling by a descending sequence of degrees,
d1 > d2 > · · · > dn, with d1 at the beginning
of the hour, and dn at the end. But no sample of
finite size n can be complete. To overcome this
limitation, it is helpful to construe the ith box in
a string as a description of an interval Ii over the
real line R. We call a sequence I1 · · · In of inter-
vals a segmentation if

⋃n
i=1 Ii is an interval and for

1 ≤ i < n, Ii < Ii+1, where < is full precedence

I < I ′ iff (∀r ∈ I)(∀r′ ∈ I ′) r < r′.

Now, assuming an assignment of degrees sDg(r)
to real numbers r representing temporal instants,
the idea is to define satisfaction |= between inter-
vals I and fluents sDg < d according to

I |= sDg < d iff (∀r ∈ I) sDg(r) < d

and similarly for d ≤ sDg. We then lift |= to
segmentations I1 · · · In and strings α1 · · ·αn ∈
Fin(Φ)n of the same length n such that

I1 · · · In |= α1 · · ·αn iff whenever 1 ≤ i ≤ n
and ϕ ∈ Ii, Ii |= ϕi

and analyze (a) above as (c) below, where d is
the contextually given threshold required by in an
hour, and x is the start of that hour, the end of
which is marked by hour(x).

(c) x, d ≤ sDg d ≤ sDg hour(x), sDg < d

All fluents ϕ in (c) have the stative property

(†) for all intervals I and I ′ whose union I ∪ I ′
is an interval,

I ∪ I ′ |= ϕ iff I |= ϕ and I ′ |= ϕ

(Dowty 1979). (†) holds also for the fluents in
the string (d) below for (b), where the subinterval
relation v is inclusion restricted to intervals,

I |= [w]ϕ iff (∀I ′ v I) I ′ |= ϕ

and sDg↓ is the fluent

∃x (sDg < x ∧ Prev(x ≤ sDg))

saying the degree drops (with I |= Prev(ϕ) iff
I ′I |= ϕ for some I ′ < I such that I ∪ I ′ is
an interval).

(d) x [w]sDg↓ hour(x), [w]sDg↓

(†) is intimately related to block compression bc
(Fernando 2013b), supporting derivations of (c)
and (d) by a modification &bc of & defined in §2.3
below.

Our third example directly concerns computa-
tional processes, which we take up in section 3.

Example C (finite automata) Given a finite al-
phabet A, a (non-deterministic) finite automaton
A over A is a quadruple (Q, δ, F, q0) consisting
of a finite set Q of states, a transition relation
δ ⊆ Q × A × Q, a subset F of Q consisting of
final (accepting) states, and an initial state q0 ∈ Q.
A accepts a string a1 · · · an ∈ A∗ precisely if there
is a string q1 · · · qn ∈ Qn such that

qn ∈ F and δ(qi−1, ai, qi) for 1 ≤ i ≤ n (2)

(where q0 is A’s designated initial state). The ac-
cepting runs of A are strings of the form

a1, q1 · · · an, qn ∈ (2A∪Q)∗

satisfying (2). While we can formulate such runs
as strings over the alphabet A×Q, we opt for the
alphabet 2A∪Q (formed from A ∪ Q ∈ Fin(Φ))
to link up smoothly with examples where more
than one automata may be running, not all neces-
sarily known nor in perfect harmony with others.
Such examples are arguably of linguistic interest,
the so-called Imperfective Paradox (Dowty 1979)
being a case in point (Fernando 2008). That said,
the attention below is largely on certain category-
theoretic preliminaries for type theory.2

We adopt the following notational conventions.
Given a function f and a set X , we write

2Only the most rudimentary category-theoretic notions
are employed; explanations can be found in any number of in-
troductions to category theory available online (and in print).
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- f � X for f restricted to X ∩ domain(f)

- image(f) for {f(x) | x ∈ domain(f)}
- fX for image(f � X)

- f−1X for {x ∈ domain(f) | f(x) ∈ X}
and if g is a function for which image(f) ⊆
domain(g),

- f ; g for f composed (left to right) with g

(f ; g)(x) := g(f(x))

for all x ∈ domain(f).

We say f is a function on X if

domain(f) = X ⊇ image(f)

— i.e., f : X → X . The kernel of f , ker(f), is
the equivalence relation on domain(f) that holds
between s, s′ such that f(s) = f(s′). Clearly,

ker(f) ⊆ ker(f ; g)

when f ; g is defined.

2 Some presheaves on Fin(Φ)

Given a function f on Fin(Φ)∗ and A ∈ Fin(Φ),
let us write fA for the function ρA; f on Fin(Φ)∗

fA(s) := f(ρA(s))

(recalling ρA(α1 · · ·αn) := (α1∩A) · · · (αn∩A)
and generalizing bcA from Example A). To extract
a presheaf on Fin(Φ) from the Fin(Φ)-indexed
family of functions fA, certain requirements on f
are helpful. Toward that end, let us agree that

- f preserves a function g with domain
Fin(Φ)∗ if g = f ; g

- f is idempotent if f preserves itself (i.e., f =
f ; f )

- the vocabulary voc(s) of s ∈ Fin(Φ)∗ is the
set of fluents that occur in s

voc(α1 · · ·αn) :=
n⋃
i=1

αi

whence s ∈ voc(s)∗.

Note that for idempotent f , image(f) consists of
canonical representatives f(s) of ker(f)’s equiva-
lence classes {s′ ∈ Fin(Φ)∗ | f(s′) = f(s)}.

2.1 Φ-preserving functions
A function f on Fin(Φ)∗ is Φ-preserving if f pre-
serves voc and fA, for all A ∈ Fin(Φ). Note that
bc is Φ-preserving, as is the identity function id on
Fin(Φ)∗.

Proposition 1. If f is Φ-preserving then f is
idempotent and

fB; fA = fA∩B

for all A,B ∈ Fin(Φ).

Let Pf be the function with domain

Fin(Φ) ∪ {(B,A) ∈ Fin(Φ)×Fin(Φ) |A ⊆ B}

mapping A ∈ Fin(Φ) to f(2A)∗

Pf (A) := {f(s) | s ∈ (2A)∗}

and a Fin(Φ)op-morphism (B,A) to the restric-
tion of fA to Pf (B)

Pf (B,A) := fA � Pf (B).

Corollary 2. If f is Φ-preserving then Pf is a
presheaf on Fin(Φ).

Apart from bc, we get a Φ-preserving function
by stripping off any initial or final empty boxes

unpad(s) :=


unpad(s′) if s = s′ or

else s = s′

s otherwise

so that unpad(s) neither begins nor ends with .
Notice that bc; unpad = unpad; bc.

Proposition 3. If f and g are Φ-preserving and
f ; g = g; f , then f ; g is Φ-preserving.

2.2 The Grothendieck construction
Given a presheaf F on Fin(Φ), the category

∫
F

of elements of F (also known as the Grothendieck
construction for F ) has

- objects (A, s) ∈ Fin(Φ) × F (A) (making∑
X∈Fin(Φ) F (X) the set of objects in

∫
F )

- morphisms (B, s′, A, s) from objects (B, s′)
to (A, s) when A ⊆ B and F (B,A)(s′) = s

(e.g. Mac Lane and Moerdijk 1992). Let πf be the
left projection

πf (A, s) = A
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from
∫

Pf back to Fin(Φ). The inverse limit of
Pf , lim←−Pf , is the set of (

∫
Pf )-valued presheaves

p on Fin(Φ) (i.e. functors p : Fin(Φ)op → ∫
Pf )

that are inverted by πf

πf (p(A)) = A for all A ∈ Fin(Φ).

That is, p(A) = (A, sA) for some sA ∈ f(2A)∗

such that

(‡) sA = fA(sB) whenever A ⊆ B ∈ Fin(Φ).

(‡) is the essential restriction that lim←−Pf adds
to objects {sX}X∈Fin(Φ) of the dependent type∏
X∈Fin(Φ) Pf (X).

2.3 Superposition and non-determinism
Taking the presheaf Pid induced by the identity
function id on Fin(Φ)∗, observe that in

∫
Pid,

there is a product of

(∅, ) and ({ϕ}, ϕ )

but not of

({ϕ}, ) and ({ϕ}, ϕ ).

The tag A in (A, s) differentiating (∅, ) from
({ϕ}, ) cannot be ignored when forming prod-
ucts in

∫
Pid. A necessary and sufficient condition

for (A, s) and (B, s′) to have a product is

ρB(s) = ρA(s′)

presupposed by the pullback of

(A, s) → (A ∩B, ρB(s)) ← (B, s′).

By comparison, the superposition s&s′ exists (as
a string) if and only if

ρ∅(s) = ρ∅(s′)

for

(voc(s), s) → (∅, ρ∅(s)) ← (voc(s′), s′)

(or length(s) = length(s′) as ρ∅(s) = length(s)).
Products in

∫
Pid are superpositions, but superpo-

sitions need not be products.
Next, we step from id to other Φ-preserving

functions f such as bc and bc; unpad. A pair
(A, s) and (B, s′) of

∫
Pf -objects may fail to

have a product not because there is no
∫

Pf -object
(A ∪B, s′′) such that

(A, s) ← (A ∪B, s′′) → (B, s′)

but too many non-isomorphic choices for such s′′.
Consider the case of bc; unpad, with (∅, ε) terminal
in
∫

Pbc;unpad (where ε is the null string of length
0). For distinct fluents a and b ∈ Φ, there are 13
strings s ∈ Pbc;unpad({a, b}) such that

({a}, a )← ({a, b}, s)→ ({b}, b ))

corresponding to the 13 interval relations in Allen
1983 (Fernando 2007).

The explosion of solutions s′′ ∈ Pf (A ∪ B) to
the equations

fA(s′′) = s and fB(s′′) = s′

given

(A, s) → (A ∩B, fB(s)) ← (B, s′)

(i.e., fB(s) = fA(s′)) is paralleled by the trans-
formation, under f , of a language L to

Lf := f−1fL

used to turn the superposition L&L′ of languages
L and L′ into

L &f L
′ := f(Lf & L′f ).

For f := bc; unpad, the set a &f b consists of
the 13 strings mentioned above. (We follow the
usual practice of conflating a string s with the sin-
gleton language {s} whenever convenient.)

Stepping from strings to languages, we lift the
presheaf Pf to the presheaf Qf mapping A ∈
Fin(Φ) to

Qf (A) := {fL | L ⊆ (2A)∗}

and a Fin(Φ)op-morphism (B,A) to the function

Qf (B,A) := (λL ∈ Qf (B)) fAL

sending L ∈ Qf (B) to fAL ∈ Qf (A). Then,
for non-identity morphisms between

∫
Qf -objects

(A,L) and (A,L′) where L ⊆ L′, we add in-
clusions from (A,L) to (A,L′) to the

∫
Qf -

morphisms for the category C(Φ, f) with

- objects the same as those in
∫

Qf , and

- morphisms (B,L′, A, L) from objects
(B,L′) to (A,L) whenever A ⊆ B and
fAL

′ ⊆ L.
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As is the case with
∫

Qf -morphisms, the sources
(domains) of C(Φ, f)-morphisms entail their tar-
gets (codomains). To make these entailments pre-
cise, we can identify the space of possible worlds
with the inverse limit of Pf , and reduce (A,L) to

[[A,L]]f := {p ∈ lim←−Pf |
(∃s ∈ L) p(A) = (A, s)}.

The inclusion

[[B,L′]]f ⊆ [[A,L]]f

can then be pronounced: (B,L′) f -entails (A,L).

Proposition 4. Let f be a Φ-preserving function
and (A,L) and (B,L′) be

∫
Qf -objects such that

A ⊆ B. (B,L′) f -entails (A,L) iff there is a
C(Φ, f)-morphism from (B,L′) to (A,L).

Relaxing the assumption A ⊆ B, one can also
check that for f ∈ {bc, unpad, (bc; unpad)}, pull-
backs of

(A,L)→ (A ∩B, (f∅L) ∩ f∅L′)← (B,L′)

in C(Φ, f) are given by

(A,L)← (A ∪B,L&fL
′)→ (B,L′) (3)

although (3) need not hold for L&fL
′ to be well-

defined.

3 Constraints and finite automata

We now bring finite automata into the picture, re-
calling from section 1 Example C’s superpositions

a1 · · · an & q1 · · · qn (4)

where a1 · · · an is accepted by a finite automaton
A going through the sequence q1 · · · qn of (inter-
nal) states. We can assume the tape alphabet A ⊇
{a1, . . . , an} and the state set Q ⊇ {q1, . . . , qn}
are two disjoint subsets of the set Φ of fluents; flu-
ents in A are “observable” (on a tape), while flu-
ents in Q are “hidden” (inside a black box). Dis-
joint though they may be,A andQ are tightly cou-
pled byA’s transition table δ ⊆ Q×A×Q (not to
mention the other components of A, its initial and
final states). That coupling can hardly be recreated
by superposition & (or some simple modification
&f ) without the help of some machinery encoding
δ. But first, there is the small matter of formulat-
ing the map a1 · · · an 7→ a1 · · · an implicit in
(4) above as a natural transformation.

3.1 Bottom ⊥ naturally

If the function ηA such that for a1 · · · an ∈ A∗,

ηA(a1 · · · an) = a1 · · · an
is to be the A-th component of a natural trans-
formation η : S ⇒ Pid, we need to specify
the presheaf S on Fin(Φ). To form a function
S(B,A) : S(B) → S(A) for A ⊆ B ∈ Fin(Φ)
with B∗ ⊆ S(B) and A∗ ⊆ S(A), it is handy to
introduce a bottom ⊥ for B −A, adjoining ⊥ to a
finite subset X of Φ for X⊥ := X + {⊥} before
forming the strings in S(X) := X⊥∗. We then set
S(B,A) : B⊥∗ → A⊥∗

S(B,A)(ε) := ε

S(B,A)(βs) :=
{
β S(B,A)(s) if β ∈ A⊥
⊥ S(B,A)(s) otherwise

(e.g. S({a, b}, {a})(ba⊥) = ⊥a⊥) and let ηA :
A⊥∗ → (2A)∗ map ε to itself, and

ηA(αs) :=
{

ηA(s) if α = ⊥
α ηA(s) otherwise

(e.g. η{a}(⊥a⊥) = a ).

Proposition 5. η is a natural transformation
from S to Pid.

3.2 Another presheaf and category

Turning now to finite automata, we recall a funda-
mental result about languages that are regular (i.e.,
accepted by finite automata),3 the Büchi-Elgot-
Trakhtenbrot theorem (e.g. Thomas 1997)

for every finite alphabet A 6= ∅, a language
L ⊆ A+ is regular iff there is a sentence ϕ of
MSOA such that

L = {s ∈ A+ | s |=A ϕ} .

MSOA is Monadic Second Order logic with a
unary relation symbol Ua for each a ∈ A, plus a
binary relation symbol S for successors. The pred-
icate |=A treats a string a1a2 · · · an over A as an
MSOA-model with universe {1, 2, . . . , n}, Ua as
its subset {i | ai = a}, and S as

{(1, 2), (2, 3), . . . , (n− 1, n)}
3Whether or not this sense of regular has an interesting

connection with regular categories (which are, among other
things, finitely complete), I do not know.
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so that, for instance,

a1 · · · an |=A ∃x∃y S(x, y) iff n ≥ 2 (5)

for all finite A 6= ∅. Notice that no a ∈ A is
required to interpret ∃x∃y S(x, y), which after all
is an MSO∅-sentence suited to strings ⊥n ∈ S(∅).
Furthermore, for a 6= b and {a, b} ⊆ A,

no string in A+ satisfies ∃x Ua(x) ∧ Ub(x) (6)

which makes it awkward to extend |=A to formulas
with free variables (requiring variable assignments
on top of strings in A+).

A simple way to accommodate variables is to
include them in A and interpret MSOA-formulas
not over A+ but over (2A)+, lifting |=A from
strings s over A to a predicate |=A on strings over
2A such that

s |=A ϕ iff ηA(s) |=A ϕ (7)

for every MSOA-sentence ϕ (Fernando 2013a).
For all s ∈ (2A)+, we set

s |=A S(x, y) iff ρ{x,y}(s) ∈ ∗ x y ∗ (8)

for A ⊇ {x, y}, and

s |=A Ua(x) iff ρ{a,x}(s) ∈ Ea a, x Ea (9)

forA ⊇ {a, x}, where Ea := ( + a )∗. We must
be careful to incorporate into the clauses defining
s |=A ϕ the presupposition that each first-order
variable x free in ϕ occurs uniquely in s — i.e.
s |=A x = x where

s |=A x = y iff ρ{x,y}(s) ∈ ∗ x, y ∗ (10)

for x, y ∈ A. In particular, we restrict negation
¬ϕ to strings |=A-satisfying x = x, for each first-
order variable x free in ϕ. We can then put

s |=A ∃x ϕ iff (∃s′) ρA(s′) = ρA(s)

and s′ |=A∪{x} ϕ

and similarly for second-order existential quantifi-
cation. The equivalence (5) above then becomes

s |=A ∃x∃y S(x, y) iff ρ∅(s) ∈ + (11)

and in place of (6), we have

s |=A ∃x Ua(x) ∧ Ub(x) iff ρ{a,b}(s) ∈
(2{a,b})∗ a, b (2{a,b})∗ (12)

for a, b ∈ A.
Working back from (7)

s |=A ϕ iff ηA(s) |=A ϕ

to the Büchi-Elgot-Trakhtenbrot theorem, one can
check that for every finite A and MSOA-formula
ϕ, the set

LA(ϕ) := {s ∈ (2A)+ | s |=A ϕ}

of strings over 2A that |=A-satisfy ϕ is regular, us-
ing the fact that for all A′ ⊆ A, the restriction
of ρA′ to (2A)∗ is computable by a finite state
transducer. But for A ⊆ Φ,4 ρA′ � (2A)∗ is just
Pid(A,A′). In recognition of the role of these
functions in |=A, we effectivize the presheaf Qid

from §2.3 as follows. Let RΦ be the presheaf on
Fin(Φ) mapping

- A ∈ Fin(Φ) to the set of languages over the
alphabet 2A that are regular

RΦ(A) := {L ∈ Qid(A) | L is regular}

and

- a Fin(Φ)op-morphism (B,A) to the restric-
tion of Qid(B,A) to RΦ(B)

RΦ(B,A) := (λL ∈ RΦ(B)) ρAL.∫
RΦ-objects are then pairs (A,L) where A ∈

Fin(Φ) and L is a regular language over the al-
phabet 2A, while

∫
RΦ-morphisms are quadru-

ples (B,L,A, ρAL) from (B,L) to (A, ρAL) for
A ⊆ B ∈ Fin(Φ). To account for the Boolean op-
erations in MSO (as opposed to the predications
(8)– (10) involving ρA), we add inclusions for a
category R(Φ) with

- the same objects as
∫

RΦ

- morphisms all of those in C(Φ, id) be-
tween objects in

∫
RΦ — i.e., quadruples

(B,L′, A, L) such that A ⊆ B ∈ Fin(Φ),
L′ ⊆ (2B)∗ is regular, L ⊆ (2A)∗ is regular,
and ρAL′ ⊆ L.

Let us agree to write

(B,L′) ; (A,L)
4Note an MSOA-formula ϕ is not strictly a fluent in Φ but

is formed in part from fluents.
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to mean (B,L′, A, L) is a R(Φ)-morphism.
Clearly, for s ∈ (2A)+, A′ ⊆ A and L ⊆ (2A

′
)+,

ρA′(s) ∈ L iff (A, {s}) ; (A′, L).

In particular, for x ∈ A and s ∈ (2A)+,

s |=A x = x iff (A, {s}) ; ({x}, ∗ x ∗)

and similarly for x = x replaced by the differ-
ent MSOA-formulas specified in clauses (8)–(12)
above. The MSOA-sentence

spec(A) := ∀x
∨
a∈A

(Ua(x) ∧
∧

b∈A−{a}
¬Ub(x))

associating a unique a ∈ A with each string po-
sition (presupposed in |=A but not in |=A) fits the
same pattern

s |=A spec(A) iff ρA(s) ∈ { a | a ∈ A}+
iff (A ∪ voc(s), {s}) ;

(A, { a | a ∈ A}+)
iff ρA(s) ∈ ηAA+.

Let us define a string s ∈ Fin(Φ)+ to be

- A-specified if s |=A spec(A)

- A-underspecified if ρA(s) ∈ ηA(A⊥+−A+)

- A-overspecified if ρA(s) 6∈ image(ηA)

so that for a 6= a′ and A = {a, a′}, a a is A-
specified, a is A-underspecified, and a, a′ a
is A-overspecified. Given a finite automaton A
over A with set Q of states, its set AcRun(A) of
accepting runs (Example C) is both A-specified
and Q-specified, provided A ∩ Q = ∅ (and other-
wise risks being A-overspecified). The language
accepted by A is the η−1

A -image of the language
ρAAcRun(A) that is Q-underspecified, in accor-
dance with the intuition that the states are hidden.
From the regularity of AcRun(A), however, it is
clear that we can make these states visible, with
AcRun(A) as the language accepted by a finite au-
tomaton A′ (over 2A∪Q) that may (or may not)
have the same set Q of states.

The maps ρA and inclusions ⊆ underlying the
morphisms of R(Φ) represent the two ways in-
formation may grow from

∫
RΦ-objects (A,L)

to (B,L′) — expansively with A ⊆ B and L =
ρAL

′, and eliminatively with L′ ⊆ L and A = B.
The same notion of f -entailment defined in §2.3
through the sets [[A,L]]f applies, but we have been
careful here to fix f to id, in view of

Proposition 6. For A ⊆ B ∈ Fin(Φ), ϕ an
MSOA-formula and s ∈ (2B)+,

s |=B ϕ iff ρA(s) |=A ϕ.

Proposition 6 says that s |=B ϕ depends only on
the part ρA(s) of s mentioned in ϕ. It is a par-
ticular instance of the satisfaction condition in in-
stitutions, expressing the invariance of truth under
change of notation (Goguen and Burstall 1992).
Proposition 6 breaks down if we replace ρA by
bcA or unpadA, as can be seen with A = ∅, and
ϕ = ∃x∃y S(x, y), for which recall (11).

3.3 Varying grain and span
Troublesome as they are, the maps bcA and
unpadA have some use. Just as we can vary tem-
poral grain through bc (Examples A and B in sec-
tion 1), we can vary temporal span through unpad.
For instance, we can combine runs of automataA1

over A1 and A2 over A2 in

L(A1,A2) := AcRun(A1) &unpad AcRun(A2)

with the subscript unpad on & relaxing the re-
quirement thatA1 andA2 start and finish together
(running in lockstep throughout). For i ∈ {1, 2},
and Qi the state set for Ai,

AcRun(Ai) = unpadAi∪Qi
L(A1,A2)

assuming the sets A1, A2, Q1 and Q2 are pair-
wise disjoint. The disjointness assumption rules
out any communication (or interference) between
A1 and A2. As subsets of one large set Φ of
fluents, however, it is perfectly natural for these
sets to intersect (and communicate through a com-
mon vocabulary), and we might express very par-
tial constraints involving them through, for ex-
ample, MSO-formulas. Recalling the definition
LA(ϕ) := {s ∈ (2A)+ | s |=A ϕ}, we can rewrite
the satisfaction condition

s |=B ϕ iff fA(s) |=A ϕ

on MSOA-formulas ϕ, A ⊆ B ∈ Fin(Φ) and s ∈
(2B)+ as

LB(ϕ) = {s ∈ (2B)+ | fA(s) ∈ LA(ϕ)}.
This equation lifts any regular language LA(ϕ) to
a regular languageLB(ϕ), provided f is computed
by a finite-state transducer (as in the case of bc or
unpad). Inverse images under such relations are a
useful addition to the stock of operations constitut-
ing MSO-formulas as well as regular expressions.
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Abstract
We propose a probabilistic type theory in which a

situation s is judged to be of a type T with probabil-

ity p. In addition to basic and functional types it in-

cludes, inter alia, record types and a notion of typ-

ing based on them. The type system is intensional

in that types of situations are not reduced to sets

of situations. We specify the fragment of a com-

positional semantics in which truth conditions are

replaced by probability conditions. The type sys-

tem is the interface between classifying situations

in perception and computing the semantic interpre-

tations of phrases in natural language.

1 Introduction

Classical semantic theories (Montague, 1974), as
well as dynamic (Kamp and Reyle, 1993) and un-
derspecified (Fox and Lappin, 2010) frameworks
use categorical type systems. A type T identifies
a set of possible denotations for expressions in T ,
and the system specifies combinatorial operations
for deriving the denotation of an expression from
the values of its constituents.

These theories cannot represent the gradience
of semantic properties that is pervasive in speak-
ers’ judgements concerning truth, predication, and
meaning relations. In general, predicates do not
have determinate extensions (or intensions), and
so, in many cases, speakers do not make categor-
ical judgements about the interpretation of an ex-
pression. Attributing gradience effects to perfor-
mance mechanisms offers no help, unless one can
show precisely how these mechanisms produce the
observed effects.

Moreover, there is a fair amount of evidence in-
dicating that language acquisition in general cru-
cially relies on probabilistic learning (Clark and
Lappin, 2011). It is not clear how a reasonable
account of semantic learning could be constructed
on the basis of the categorical type systems that ei-
ther classical or revised semantic theories assume.

Such systems do not appear to be efficiently learn-
able from the primary linguistic data (with weak
learning biases), nor is there much psychological
data to suggest that they provide biologically de-
termined constraints on semantic learning.

A semantic theory that assigns probability
rather than truth conditions to sentences is in a
better position to deal with both of these issues.
Gradience is intrinsic to the theory by virtue of
the fact that speakers assign values to declarative
sentences in the continuum of real numbers [0,1],
rather than Boolean values in {0,1}. In addition,
a probabilistic account of semantic learning is fa-
cilitated if the target of learning is a probabilistic
representation of meaning. Both semantic repre-
sentation and learning are instances of reasoning
under uncertainty.

Probability theorists working in AI often de-
scribe probability judgements as involving distri-
butions over worlds. In fact, they tend to limit
such judgements to a restricted set of outcomes
or events, each of which corresponds to a par-
tial world which is, effectively, a type of situa-
tion (Halpern, 2003). A classic example of the re-
duction of worlds to situation types in probability
theory is the estimation of the likelihood of heads
vs tails in a series of coin tosses. Here the world
is held constant except along the dimension of a
binary choice between a particular set of possi-
ble outcomes. A slightly more complex case is
the probability distribution for possible results of
throwing a single die, which allows for six pos-
sibilities corresponding to each of its numbered
faces. This restricted range of outcomes consti-
tutes the sample space.

We are making explicit the assumption, com-
mon to most probability theories used in AI, with
clearly defined sample spaces, that probability
is distributed over situation types (Barwise and
Perry, 1983), rather than over sets of entire worlds.
An Austinian proposition is a judgement that a
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situation is of a particular type, and we treat it
as probabilistic. In fact, it expresses a subjec-
tive probability in that it encodes the belief of an
agent concerning the likelihood that a situation is
of that type. The core of an Austinian proposi-
tion is a type judgement of the form s : T , which
states that a situation s is of type T . On our ac-
count this judgement is expressed probabilistically
as p(s : T ) = r, where r ∈ [0,1].1

On the probabilistic type system that we pro-
pose situation types are intensional objects over
which probability distributions are specified. This
allows us to reason about the likelihood of alter-
native states of affairs without invoking possible
worlds.

Complete worlds are not tractably repre-
sentable. Assume that worlds are maximal con-
sistent sets of propositions (Carnap, 1947). If
the logic of propositions is higher-order, then the
problem of determining membership in such a set
is not complete. If the logic is classically first-
order, then the membership problem is complete,
but undecidable.

Alternatively, we could limit ourselves to
propositional logic, and try to generate a maxi-
mally consistent set of propositions from a single
finite proposition P in Conjunctive Normal Form
(CNF, a conjunction of disjunctions), by simply
adding conjuncts to P . But it is not clear what
(finite) set of rules or procedures we could use to
decide which propositions to add in order to gen-
erate a full description of a world in a systematic
way. Nor is it obvious at what point the conjunc-
tion will constitute a complete description of the
world.

Moreover, all the propositions that P entails
must be added to it, and all the propositions with
which P is inconsistent must be excluded, in or-
der to obtain the maximal consistent set of propo-
sitions that describe a world. But then testing the
satisfiability of P is an instance of the ksat prob-
lem, which, in the general case, is NP-complete.2

1Beltagy et al. (2013) propose an approach on which clas-
sical logic-based representations are combined with distribu-
tional lexical semantics and a probabilistic Markov logic, in
order to select among the set of possible inferences from a
sentence. Our concern here is more foundational. We seek to
replace classical semantic representations with a rich proba-
bilistic type theory as the basis of both lexical and composi-
tional interpretation.

2The ksat problem is to determine whether a formula in
propositional logic has a satisfying set of truth-value assign-
ments. For the complexity results of different types of ksat
problem see Papadimitriou (1995).

By contrast situation types can be as large or as
small as we need them to be. They are not max-
imal in the way that worlds are, and so the issue
of completeness of specification does not arise.
Therefore, they can, in principle, be tractably rep-
resented.

2 Rich Type Theory and Probability

Central to standard formulations of rich type the-
ories (for example, (Martin-Löf, 1984)) is the no-
tion of a judgement a : T , that object a is of type
T . We represent the probability of this judgement
as p(a : T ). Our system (based on Cooper (2012))
includes the following types.

Basic Types are not constructed out of other ob-
jects introduced in the theory. If T is a basic type,
p(a : T ) for any object a is provided by a probabil-
ity model, an assignment of probabilities to judge-
ments involving basic types.

PTypes are constructed from a predicate and
an appropriate sequence of arguments. An exam-
ple is the predicate ‘man’ with arity 〈Ind ,Time〉
where the types Ind and Time are the basic type
of individuals and of time points respectively.
Thus man(john,18:10) is the type of situation (or
eventuality) where John is a man at time 18:10.
A probability model provides probabilities p(e :
r(a1, . . . , an)) for ptypes r(a1, . . . , an). We take
both common nouns and verbs to provide the com-
ponents out of which PTypes are constructed.

Meets and Joins give, for T1 and T2, the meet,
T1 ∧ T2 and the join T1 ∨ T2, respectively. a :
T1 ∧ T2 just in case a : T1 and a : T2. a : T1 ∨
T2 just in case either a : T1 or a : T2 (possibly
both).3 The probabilities for meet and joint types
are defined by the classical (Kolmogorov, 1950)
equations p(a : T1 ∧ T2) = p(a : T1)p(a : T2 | a : T1)

(equivalently, p(a : T1 ∧ T2) = p(a : T1, a : T2)), and
p(a : T1 ∨ T2) = p(a : T1) + p(a : T2) − p(a : T1 ∧ T2),
respectively.

Subtypes A type T1 is a subtype of type T2,
T1 v T2, just in case a : T1 implies a : T2 no mat-
ter what we assign to the basic types. If T1 v T2

then a : T1∧T2 iff a : T1 and a : T1∨T2 iff a : T2.
Similarly, if T2 v T1 then a : T1 ∧ T2 iff a : T2

and a : T1 ∨ T2 iff a : T1.
If T2 v T1, then p(a : T1 ∧ T2) = p(a : T2),

and p(a : T1 ∨ T2) = p(a : T1). If T1 v T2,
3This use of intersection and union types is not standard in

rich type theories, where product and disjoint union are pre-
ferred following the Curry-Howard correspondence for con-
junction and disjunction.
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then p(a : T1) ≤ p(a : T2). These definitions
also entail that p(a : T1 ∧ T2) ≤ p(a : T1), and
p(a : T1) ≤ p(a : T1 ∨ T2).

We generalize probabilistic meet and join types
to probabilities for unbounded conjunctive and
disjunctive type judgements, again using the clas-
sical equations.

Let
∧
p

(a0 : T0, . . . , an : Tn) be the conjunctive

probability of judgements a0 : T0, . . . , an : Tn.
Then

∧
p

(a0 : T0, . . . , an : Tn) =
∧
p

(a0 : T0, . . . , an−1 :

Tn−1)p(an : Tn | a0 : T0, . . . , an−1 : Tn−1). If n = 0,∧
p

(a0 : T0, . . . , an : Tn) = 1.

We interpret universal quantification as an un-
bounded conjunctive probability, which is true if
it is vacuously satisfied (n = 0) (Paris, 2010).

Let
∨p

(a0 : T0, a1 : T1, . . .) be the disjunctive

probability of judgements a0 : T0, a1 : T1, . . ..
It is computed by

∨p
(a0 : T0, . . . , an : Tn) =∨p

(a0 : T0, . . . , an−1 : Tn−1) + p(an : Tn) −
∧
p

(a0 :

T0, . . . , an−1 : Tn−1)p(an : Tn | a0 : T0, . . . , an−1 :

Tn−1). If n = 0,
∨p

(a0 : T0, . . . , an : Tn) = 0.

We take existential quantification to be an un-
bounded disjunctive probability, which is false if it
lacks a single non-nil probability instance (n = 0).

Conditional Conjunctive Probabilities are
computed by

∧
p

(a0 : T0, . . . , an : Tn | a : T ) =∧
p

(a0 : T0, . . . , an−1 : Tn−1 | a : T )p(an : Tn |

a0 : T0, . . . , an−1 : Tn−1, a : T )). If n = 0,
∧
p

(a0 :

T0, . . . , an : Tn | a : T ) = 1.

Function Types give, for any types T1 and T2,
the type (T1 → T2). This is the type of total func-
tions with domain the set of all objects of type
T1 and range included in objects of type T2. The
probability that a function f is of type (T1 → T2)
is the probability that everything in its domain is of
type T1 and that everything in its range is of type
T2, and furthermore that everything not in its do-
main which has some probability of being of type
T1 is not in fact of type T1. p(f : (T1 → T2)) =∧
a∈dom(f)

p
(a : T1, f(a) : T2)(1−

∨
a6∈dom(f)

p
(a : T1))

Suppose that T1 is the type of event where there
is a flash of lightning and T2 is the type of event
where there is a clap of thunder. Suppose that f
maps lightning events to thunder events, and that

it has as its domain all events which have been
judged to have probability greater than 0 of being
lightning events. Let us consider that all the puta-
tive lightning events were clear examples of light-
ning (i.e. judged with probability 1 to be of type
T1) and are furthermore associated by f with clear
events of thunder (i.e. judged with probability 1 to
be of type T2). Suppose there were four such pairs
of events. Then the probability of f being of type
(T1 → T2) is (1× 1)4, that is, 1.

Suppose, alternatively, that for one of the four
events f associates the lightning event with a silent
event, that is, one whose probability of being of
T2 is 0. Then the probability of f being of type
(T1 → T2) is (1 × 1)3 × (1 × 0) = 0. One clear
counterexample is sufficient to show that the func-
tion is definitely not of the type.

In cases where the probabilities of the an-
tecedent and the consequent type judgements are
higher than 0, the probability of the entire judge-
ment on the existence of a functional type f will
decline in proportion to the size of dom(f). As-
sume, for example that there are k elements a ∈
dom(f), where for each such a p(a : T1) =
p(f(a) : T2) ≥ .5. Every ai that is added to
dom(f) will reduce the value of p(f : (T1 →
T2)), even if it yields higher values for p(a : T1)
and p(f(a) : T2). This is due to the fact that we
are treating the probability of p(f : (T1 → T2))
as the likelihood of there being a function that is
satisfied by all objects in its domain. The larger
the domain, the less probable that all elements in
it fulfill the functional relation.

We are, then, interpreting a functional type
judgement of this kind as a universally quantified
assertion over the pairing of objects in dom(f)
and range(f). The probability of such an asser-
tion is given by the conjunction of assertions cor-
responding to the co-occurrence of each element a
in f ’s domain as an instance of T1 with f(a) as an
instance of T2. This probability is the product of
the probabilities of these individual assertions.

This seems reasonable, but it only deals with
functions whose domain is all objects which have
been judged to have some probability, however
low, of being of type T1. Intuitively, functions
which leave out some of the objects with lower
likelihood of being of type T1 should also have a
probability of being of type (T1 → T2). This fac-
tor in the probability is represented by the second
element of the product in the formula.
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Negation ¬T , of type T , is the function type
(T → ⊥), where ⊥ is a necessarily empty type
and p(⊥) = 0. It follows from our rules for func-
tion types that p(f : ¬T ) = 1 if dom(f) = ∅, that
is T is empty, and 0 otherwise.

We also assign probabilities to judgements con-
cerning the (non-)emptiness of a type, p(T ). we
pass over the details of how we compute the prob-
abilities of such judgements, but we note that our
account of negation entails that p(T ∨ ¬T ) = 1,
and (ii) p(¬¬T ) = p(T ). Therefore, we sustain
classical Boolean negation and disjunction, in con-
trast to Martin-Löf’s (1984) intuitionistic type the-
ory.

Dependent Types are functions from objects to
types. Given appropriate arguments as functions
they will return a type. Therefore, the account of
probabilities associated with functions above ap-
plies to dependent types.

Record Types A record in a type system asso-
ciated with a set of labels is a set of ordered pairs
(fields) whose first member is a label and whose
second member is an object of some type (possibly
a record). Records are required to be functional on
labels (each label in a record can only occur once
in the record’s left projection).

A dependent record type is a set of fields (or-
dered pairs) consisting of a label ` followed by T
as above. The set of record types is defined by:

1. [], that is the empty set or Rec, is a record type. r : Rec
just in case r is a record.

2. If T1 is a record type, ` is a label not occurring in T1,
and T2 is a type, then T1 ∪ {〈`, T2〉} is a record type.
r : T1 ∪ {〈`, T2〉} just in case r : T1, r.` is defined (`
occurs as a label in r) and r.` : T2.

3. If T is a record type, ` is a label not occuring in
T , T is a dependent type requiring n arguments, and
〈π1, . . . , πn〉 is an n-place sequence of paths in T ,4

then T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉} is a record type.
r : T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉} just in case r : T ,
r.` is defined and r.` : T (r.π1, . . . , r.πn).

The probability that an object r is of a record
type T is given by the following clauses:

1. p(r : Rec) = 1 if r is a record, 0 otherwise

2. p(r : T1 ∪ {〈`, T2〉}) =
∧
p

(r : T1, r.` : T2)

3. If T : (T1 → (. . . → (Tn → Type) . . .)), then

p(r : T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉}) =
∧
p

(r : T, r.` :

T (r.π1, . . . , r.πn) | r.π1 : T1, . . . , r.πn : Tn)

4In the full version of TTR we also allow absolute paths
which point to particular records, but we will not include
them here.

3 Compositional Semantics

Montague (1974) determines the denotation of a
complex expression by applying a function to an
intensional argument (as in [[ NP ]]([[ ∧VP ]])). We
employ a variant of this general strategy by ap-
plying a probabilistic evaluation function [[ · ]]p to
a categorical (non-probabilistic) semantic value.
For semantic categories that are interpreted as
functions, [[ · ]]p yields functions from categorical
values to probabilities. For sentences it produces
probability values.

The probabilistic evaluation function [[ · ]]p pro-
duces a probabilistic interpretation based on a
classical compositional semantics. For sentences
it will return the probability that the sentence is
true. For categories that are interpreted as func-
tions it will return functions from (categorical) in-
terpretations to probabilities. We are not propos-
ing strict compositionality in terms of probabili-
ties. Probabilities are like truth-values (or rather,
truth-values are the limit cases of probabilities).

We would not expect to be able to compute the
probability associated with a complex constituent
on the basis of the probabilities associated with its
immediate constituents, any more than we would
expect to be able to compute a categorical inter-
pretation entirely in terms of truth-functions and
extensions. However, the simultaneous computa-
tion of categorical and probabilistic interpretations
provides us with a compositional semantic system
that is closely related to the simultaneous com-
putation of intensions and extensions in classical
Montague semantics.

The following definition of [[ · ]]p for a fragment
of English is specified on the basis of our proba-
bilistic type system and a non-probabilistic inter-
pretation function [[ · ]], which we do not give in
this version of the paper. (It’s definition is given
by removing the probability p from the definition
below.)

[[ [S S1 and S2] ]]p = p(
[

e1:[[ S1 ]]
e2:[[ S2 ]]

]
)

[[ [S S1 or S2] ]]p = p(
[
e:[[ S1 ]]∨[[ S2 ]]

]
)

[[ [S Neg S] ]]p = [[ Neg ]]p([[ S ]])
[[ [S NP VP] ]]p = [[ NP ]]p([[ VP ]])
[[ [NP Det N] ]]p = [[ Det ]]p([[ N ]])
[[ [NP Nprop] ]]p = [[ Nprop ]]p
[[ [VP Vt NP] ]]p = [[ Vt ]]p([[ NP ]])
[[ [VP Vi] ]]p = [[ Vi ]]p

[[ [Neg “it’s not true that”] ]]p = λT :RecType(p(
[
e:¬T ]))

[[ [Det “some”] ]]p = λQ:Ppty(λP :Ppty(p(
[
e:some(Q, P )

]
)))

[[ [Det “every”] ]]p = λQ:Ppty(λP :Ppty(p(
[
e:every(Q, P )

]
)))

[[ [Det “most”] ]]p = λQ:Ppty(λP :Ppty(p(
[
e:most(Q, P )

]
)))

75



[[ [N “boy”] ]]p = λr:
[
x:Ind

]
(p(
[
e:boy(r.x)

]
))

[[ [N “girl”] ]]p = λr:
[
x:Ind

]
(p(
[
e:girl(r.x)

]
))

[[ [Adj “green”] ]]p =

λP :Ppty(λr:
[
x:Ind

]
(p((
[
e:green(r.x,P )

]
)))))

[[ [Adj “imaginary”] ]]p =

λP :Ppty(λr:
[
x:Ind

]
(p((
[
e:imaginary(r.x,P )

]
)))))5

[[ [Nprop
“Kim”] ]]p = λP :Ppty(p(P (

[
x=kim

]
)))

[[ [Nprop
“Sandy”] ]]p = λP :Ppty(p(P (

[
x=sandy

]
)))

[[ [Vt “knows”] ]]p =

λP:Quant(λr1:
[
x:Ind

]
(p(P(λr2:(

[
e:know(r1.x,r2.x)

]
)))))

[[ [Vt “sees”] ]]p =

λP:Quant(λr1:
[
x:Ind

]
(p(P(λr2:(

[
e:see(r1.x,r2.x)

]
)))))

[[ [Vi “smiles”] ]]p = λr:
[
x:Ind

]
(p(
[
e:smile(r.x)

]
))

[[ [Vi “laughs”] ]]p = λr:
[
x:Ind

]
(p(
[
e:laugh(r.x)

]
))

A probability distribution d for this fragment,
based on a set of situations S, is such that:
pd(a : Ind) = 1 if a is kim or sandy6

pd(s : T ) ∈ [0, 1] if s ∈ S and T is a ptype

pd(s : T ) = 0 if s 6∈ S and T is a ptype7

pd(a : [τP ]) = pd(P (
[
x=a
]
))

pd(some(P,Q)) = pd([
τP ] ∧ [τQ])

pd(every(P,Q)) = pd([
τP ]→ [τQ])

pd(most(P,Q)) = min(1, pd([
τP ]∧[τQ]

θmost pd([
τP ])

)

The probability that an event e is of the type in
which the relation some holds of the properties P
andQ is the probability that e is of the conjunctive
type P ∧Q. The probability that e is of the every
type for P and Q is the likelihood that it instanti-
ates the functional type P → Q. As we have de-
fined the probabilities associated with functional
types in terms of universal quantification (an un-
bounded conjunction of the pairings between the
elements of the domain P of the function and its
range Q), this definition sustains the desired read-
ing of every. The likelihood that e is of the type
most for P and Q is the likelihood that e is of
type P ∧Q, factored by the product of the contex-
tually determined parameter θmost and the likeli-
hood that e is of type P , where this fraction is less
than 1, and 1 otherwise.

Consider a simple example.
[[ [S [NP [Nprop

Kim]] [VP [Vi smiles]]] ]]p =

λP :Ppty(p(P (
[
x=kim

]
)))(λr:

[
x:Ind

]
(
[
e:smile(r.x)

]
)) =

p(λr:
[
x:Ind

]
(
[
e:smile(r.x)

]
)(
[
x=kim

]
)) =

p(
[
e:smile(kim)

]
)

5Notice that we characterize adjectival modifiers as rela-
tions between records of individuals and properties. We can
then invoke subtyping to capture the distinction between in-
tersective and non-intersective modifier relations.

6This seems an intuitive assumption, though not a neces-
sary one.

7Again this seems an intuitive, though not a necessary as-
sumption.

Suppose that pd(s1:smile(kim)) = .7,
pd(s2:smile(kim)) = .3, pd(s3:smile(kim)) =
.4, and there are no other situations si such
that pd(si:smile(kim)) > 0. Furthermore, let
us assume that these probabilities are indepen-
dent of each other, that is, pd(s3:smile(kim)) =
pd(s3:smile(kim) | s1:smile(kim), s2:smile(kim))
and so on. Then
pd(smile(kim))=∨p
d(s1 : smile(kim), s2 : smile(kim), s3 : smile(kim)) =∨p
d(s1 : smile(kim), s2 : smile(kim)) + .4 − .4

∨p
d(s1 :

smile(kim), s2 : smile(kim)) =

(.7 + .3− .7× .3) + .4− .4(.7 + .3− .7× .3) =

.874

This means that pd(
[
e:smile(kim)

]
) = .874.

Hence [[ [S [NP [Nprop
Kim]] [VP [Vi smiles]]] ]]pd = .874

(where [[ α ]]pd is the result of computing [[ α ]]p
with respect to the probability distribution d).

Just as for categorical semantics, we can con-
struct type theoretic objects corresponding to
probabilistic judgements. We call these proba-
bilistic Austinian propositions. These are records
of type sit : Sit

sit-type : Type
prob : [0,1]


where [0,1] is used to represent the type of real
numbers between 0 and 1. They assert that the
probability that a situation s is of type Type is the
value of prob.

The definition of [[ · ]]p specifies a compositional
procedure for generating an Austinian proposition
(record) of this type from the meanings of the syn-
tactic constituents of a sentence.

4 An Outline of Semantic Learning

We outline a schematic theory of semantic learn-
ing on which agents acquire classifiers that form
the basis for our probabilistic type system. For
simplicity and ease of presentation we take these
to be Naive Bayes classifiers, which an agent ac-
quires from observation. In future developments
of this theory we will seek to extend the approach
to Bayesian networks (Pearl, 1990).

We assume that agents keep records of observed
situations and their types, modelled as probabilis-
tic Austinian propositions. For example, an obser-
vation of a man running might yield the following
Austinian proposition for some a:Ind, s1:man(a),
s2:run(a):
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sit =

 ref = a
cman = s1
crun = s2


sit-type =

 ref : Ind
cman : man(ref)
crun : run(ref)


prob = 0.7


An agent, A, makes judgements based on a

finite string of probabilistic Austinian proposi-
tions, J, corresponding to prior judgements held
in memory. For a type, T , JT represents that set of
Austinian propositions j such that j.sit-type v T .
If T is a type and J a finite string of probabilis-
tic Austinian propositions, then || T ||J represents
the sum of all probabilities associated with T in J

(
∑
j∈JT

j.prob). P(J) is the sum of all probabilities
in J (

∑
j∈J j.prob).

We use priorJ(T ) to represent the prior proba-
bility that anything is of type T given J, that is
||T ||J
P(J)

if P(J) > 0, and 0 otherwise.
pA,J(s : T ) denotes the probability that agent A

assigns with respect to prior judgements J to s be-
ing of type T . Similarly, pA,J(s : T1 | s : T2) is
the probability that agent A assigns with respect
to prior judgements J to s being of type T1, given
that A judges s to be of type T2.

When an agent A encounters a new situation
s and considers whether it is of type T , he/she
uses probabilistic reasoning to determine the value
of pA,J(s : T ). A uses conditional probabilities
to calculate this value, where A computes these
conditional probabilities with the equation pA,J(s :

T1 | s : T2) =
||T1∧T2||J
||T2||J , if || T2 ||J 6= 0. Otherwise,

pA,J(s : T1 | s : T2) = 0.

This is our type theoretic variant of the stan-
dard Bayesian formula for conditional probabili-
ties: p(A | B) = |A&B|

|B| . But instead of counting
categorical instances, we sum the probabilities of
judgements. This is because our “training data” is
not limited to categorical observations. Instead it
consists of probabilistic observational judgements
that situations are of particular types.8

Assume that we have the following types:
Tman =

[
ref : Ind
cman : man(ref)

]
and

Trun =
[

ref : Ind
crun : run(ref)

]
8As a reviewer observes, by using an observer’s previous

judgements for the probability of an event being of a partic-
ular type, as the prior for the rule that computes the proba-
bility of a new event being of that type, we have, in effect,
compressed information that properly belongs in a Bayesian
network into our specification of a naive Bayesian classifier.
This is a simplification that we adopt here for ease of expo-
sition. In future work, we will characterise classifier learning
through full Bayesian networks.

Assume also that JTman∧Trun has three members,
corresponding to judgements by A that a man was
running in three observed situations s1, s3, and
s4, and that these Austinian propositions have the
probabilities 0.6, 0.6. and 0.5 respectively.

Take JTman to have five members correspond-
ing to judgements by A that there was a man in
s1, . . . , s5, and that the Austinian propositions as-
signing Tman to s1, . . . , s5 all have probability 0.7.
Given these assumptions, the conditional probabil-
ity that A will assign on the basis of J to someone
runs, given that he is a man is pA,J(r : Trun | r :

Tman) =
||Tman∧Trun||J
||Tman||J = 0.6+0.6+0.5

0.7+0.7+0.7+0.7+0.7
= .486

We use conditional probabilities to construct a
Naive Bayes classifier. A classifies a new situa-
tion s based on the prior judgements J, and what-
ever evidence A can acquire about s. This evi-
dence has the form pA,J(s : Te1 ), . . ., pA,J(s : Ten ),
where Te1 , . . . , Ten are the evidence types. The
Naive Bayes classifier assumes that the evidence is
independent, in that the probability of each piece
of evidence is independent of every other piece of
evidence.

We first formulate Bayes’ rule of conditional
probability. This rule defines the conditional prob-
ability of a conclusion r : Tc, given evidence r :

Te1 , r : Te2 , . . . , r : Ten , in terms of conditional prob-
abilities of the form p(si : Tei | si : Tc), 1 ≤ i ≤ n,
and priors for conclusion and evidence:
pA,J(r : Tc | r : Te1 , . . . , r : Ten) =

priorJ(Tc)

||Te1∧Tc||J
||Tc||J

...
||Ten∧Tc||J
||Tc||J

priorJ(Te1 )...priorJ(Ten )

The conditional probabilities are computed
from observations as indicated above. The rule of
conditional probability allows the combination of
several pieces of evidence, without requiring pre-
vious observation of a situation involving all the
evidence types.

We formulate a Naive Bayes classifier as a func-
tion from evidence types Te1 , Te2 , . . . , Ten (i.e. from
a record of type Te1 ∧ Te2 ∧ . . . ∧ Ten) to conclusion
types Tc1 , Tc2 , . . . , Tcm . The conclusion is a disjunc-
tion of one or more T ∈ {Tc1 , Tc2 , . . . , Tcm}, where
m ranges over all possible non-disjunctive conclu-
sions distinguished by the classifier. This function
is specified as follows.
κ : (Te1 ∧ . . .∧Ten)→ (Tc1 ∨ . . .∨Tcm) such that κ(r) =

(
∨

argmax
T∈〈Tc1 ,...,Tcm 〉

pA,J(r : T | r : Te1 , . . . , r : Ten)

The classifier returns the type T which max-
imises the conditional probability of r : T given
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the evidence provided by r. The argmax operator
here takes a sequence of arguments and a func-
tion and yields a sequence containing the argu-
ments which maximise the function (if there are
more than one).

The classifier will output a disjunction in case
both possibilities have the same probability. The∨

operator takes a sequence and returns the dis-
junction of all elements of the sequence.

In addition to computing the conclusion which
receives the highest probability given the evi-
dence, we also want the posterior probability of
the judgement above, i.e. the probability of the
judgement in light of the evidence. We obtain the
non-normalised probabilities (pnn

A,J) of the different
possible conclusions by factoring in the probabili-
ties of the evidence:
pnn
A,J(r : κ(r)) =∑
T∈∨−1 κ(r) pA,J(r : T | r : Te1 , . . . , r : Ten)pA,J(r :

Te1) . . . pA,J(r : Ten)

where
∨−1 is the inverse of

∨
, i.e. a function that

takes a disjunction and returns the set of disjuncts.
We then take the probability of r : κ(r) and

normalise over the sum of the probabilities of
all the possible conclusions. This gives us the
normalised probability of the judgement resulting
from classification p(r : κ(r)) =

pnn
A,J(r:κ(r))∑

1≤i≤m pnn
A,J

(r:Tci )
.

However, since the probabilities of the evidence
are identical for all possible conclusions, we can
ignore them and instead compute the normalised
probability with the following equation (where m
ranges over all possible non-disjunctive conclu-
sions distinguished by the classifier, as above).

pA,J(r : κ(r)) =

∑
T∈∨−1 κ(r) pA,J(r:T |r:Te1 ,...,r:Ten )∑
1≤i≤m pA,J(r:Tci |r:Te1 ,...,r:Ten )

The result of classification can be represented as
an Austinian proposition sit = s

sit-type = κ(s)
prob = pA,J(s : κ(s))


which A adds to J as a result of observing and
classifying s, and is thus made available for sub-
sequent probabilistic reasoning.

5 Conclusions and Future Work

We have presented a probabilistic version of a rich
type theory with records, relying heavily on classi-
cal equations for types formed with meet, join, and

negation. This has permitted us to sustain classi-
cal equivalences and Boolean negation for com-
plex types within an intensional type theory. We
have replaced the truth of a type judgement with
the probability of it being the case, and we have
applied this approach to judgements that a situa-
tion if of type T .

Our probabilistic formulation of a rich type the-
ory with records provides the basis for a compo-
sitional semantics in which functions apply to cat-
egorical semantic objects in order to return either
functions from categorical interpretations to prob-
abilistic judgements, or, for sentences, to proba-
bilistic Austinian propositions. One of the inter-
esting ways in which this framework differs from
classical model theoretic semantics is that the ba-
sic types and type judgements at the foundation of
the type system correspond to perceptual judge-
ments concerning objects and events in the world,
rather than to entities in a model and set theoretic
constructions defined on them.

We have offered a schematic view of semantic
learning. On this account observations of situa-
tions in the world support the acquisition of naive
Bayesian classifiers from which the basic proba-
bilistic types of our type theoretical semantics are
extracted. Our type theory is, then, the interface
between observation-based learning of classifiers
for objects and the situations in which they figure
on one hand, and the computation of complex se-
mantic values for the expressions of a natural lan-
guage from these simple probabilistic types and
type judgements on the other. Therefore our gen-
eral model of interpretation achieves a highly in-
tegrated bottom-up treatment of linguistic mean-
ing and perceptually-based cognition that situates
meaning in learning how to make observational
judgements concerning the likelihood of situations
obtaining in the world.

The types of our semantic theory are inten-
sional. They constitute ways of classifying situ-
ations, and they cannot be reduced to set of situa-
tions. The theory achieves fine-grained intension-
ality through a rich and articulated type system,
where the foundation of this system is anchored in
perceptual observation.

The meanings of expressions are acquired on
the basis of speakers’ experience in the applica-
tion of classifiers to objects and events that they
encounter. Meanings are dynamic and updated in
light of subsequent experience.
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Probability is distributed over alternative situ-
ation types. Possible worlds, construed as maxi-
mal consistent sets of propositions (ultrafilters in a
proof theoretic lattice of propositions) play no role
in this framework.

Bayesian reasoning from observation provides
the incremental basis for learning and refining
predicative types. These types feed the combina-
torial semantic procedures for interpreting the sen-
tences of a natural language.

In future work we will explore implementations
of our learning theory in order to study the viabil-
ity of our probabilistic type theory as an interface
between perceptual judgement and compositional
semantics. We hope to show that, in addition to
its cognitive and theoretical interest, our proposed
framework will yield results in robotic language
learning, and dialogue modelling.
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Abstract

We present an adaptation of recent work
on probabilistic Type Theory with Records
(Cooper et al., 2014) for the purposes of
modelling the incremental semantic pro-
cessing of dialogue participants. After
presenting the formalism and dialogue
framework, we show how probabilistic
TTR type judgements can be integrated
into the inference system of an incremen-
tal dialogue system, and discuss how this
could be used to guide parsing and dia-
logue management decisions.

1 Introduction

While classical type theory has been the predomi-
nant mathematical framework in natural language
semantics for many years (Montague, 1974, in-
ter alia), it is only recently that probabilistic type
theory has been discussed for this purpose. Sim-
ilarly, type-theoretic representations have been
used within dialogue models (Ginzburg, 2012);
and probabilistic modelling is common in dia-
logue systems (Williams and Young, 2007, inter
alia), but combinations of the two remain scarce.
Here, we attempt to make this connection, taking
(Cooper et al., 2014)’s probabilistic Type Theory
with Records (TTR) as our principal point of de-
parture, with the aim of modelling incremental in-
ference in dialogue.

To our knowledge there has been no practi-
cal integration of probabilistic type-theoretic in-
ference into a dialogue system so far; here we dis-
cuss computationally efficient methods for imple-
mentation in an extant incremental dialogue sys-
tem. This paper demonstrates their efficacy in sim-
ple referential communication domains, but we ar-
gue the methods could be extended to larger do-
mains and additionally used for on-line learning
in future work.

2 Previous Work

Type Theory with Records (TTR) (Betarte and
Tasistro, 1998; Cooper, 2005) is a rich type the-
ory which has become widely used in dialogue
models, including information state models for
a variety of phenomena such as clarification re-
quests (Ginzburg, 2012; Cooper, 2012) and non-
sentential fragments (Fernández, 2006). It has also
been shown to be useful for incremental semantic
parsing (Purver et al., 2011), incremental genera-
tion (Hough and Purver, 2012), and recently for
grammar induction (Eshghi et al., 2013).

While the technical details will be given in sec-
tion 3, the central judgement in type theorys ∶ T
(that a given objects is of type T ) is extended
in TTR so thats can be a (potentially complex)
record andT can be arecord type– e.g. s could
represent a dialogue gameboard state andT could
be a dialogue gameboard state type (Ginzburg,
2012; Cooper, 2012). As TTR is highly flexible
with a rich type system, variants have been con-
sidered with types corresponding to real-number-
valued perceptual judgements used in conjunction
with linguistic context, such as visual perceptual
information (Larsson, 2011; Dobnik et al., 2012),
demonstrating its potential for embodied learning
systems. The possibility of integration of per-
ceptron learning (Larsson, 2011) and naive Bayes
classifiers (Cooper et al., 2014) into TTR show
how linguistic processing and probabilistic con-
ceptual inference can be treated in a uniform way
within the same representation system.

Probabilistic TTR as described by Cooper et al.
(2014) replaces the categoricals ∶ T judgement
with the real number valuedp(s ∶ T ) = v where
v ∈ [0,1]. The authors show how standard proba-
bility theoretic and Bayesian equations can be ap-
plied to TTR judgements and how an agent might
learn from experience in a simple classification
game. The agent is presented with instances of
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a situation and it learns with each round by updat-
ing its set of probabilistic type judgements to best
predict the type of object in focus — in this case
updating the probability judgement that something
is an apple given its observed colour and shape
p(s ∶ Tapple ∣ s ∶ TShp, s ∶ TCol) whereShp ∈{shp1, shp2} and Col ∈ {col1, col2}. From a
cognitive modelling perspective, these judgements
can be viewed as probabilistic perceptual informa-
tion derived from learning. We use similar meth-
ods in our toy domain, but show how prior judge-
ments could be constructed efficiently, and how
classifications can be made without exhaustive it-
eration through individual type classifiers.

There has also been significant experimental
work on simple referential communication games
in psycholinguistics, computational and formal
modelling. In terms of production and genera-
tion, Levelt (1989) discusses speaker strategies
for generating referring expressions in a simple
object naming game. He showed how speakers
use informationally redundant features of the ob-
jects, violating Grice’s Maxim of Quantity. In
natural language generation (NLG), referring ex-
pression generation (REG) has been widely stud-
ied (see (Krahmer and Van Deemter, 2012) for
a comprehensive survey). The incremental algo-
rithm (IA) (Dale and Reiter, 1995) is an iterative
feature selection procedure for descriptions of ob-
jects based on computing the distractor set of ref-
erents that each adjective in a referring expression
could cause to be inferred. More recently Frank
and Goodman (2012) present a Bayesian model
of optimising referring expressions based on sur-
prisal, the information-theoretic measure of how
much descriptions reduce uncertainty about their
intended referent, a measure which they claim cor-
relates strongly to human judgements.

The element of the referring expression do-
main we discuss here is incremental processing.
There is evidence from (Brennan and Schober,
2001)’s experiments that people reason at an in-
credibly time-critical level from linguistic infor-
mation. They demonstratedself-repaircan speed
up semantic processing (or at least object refer-
ence) in such games, where an incorrect object
being partly vocalized and then repaired in the
instructions (e.g. “the yell-, uh, purple square”)
yields quicker response times from the onset of
the target (“purple”) than in the case of the flu-
ent instructions (“the purple square”). This exam-

ple will be addressed in section 5. First we will
set out the framework in which we want to model
such processing.

3 Probabilistic TTR in an incremental
dialogue framework

In TTR (Cooper, 2005; Cooper, 2012), the princi-
pal logical form of interest is therecord type(‘RT’
from here), consisting of sequences offieldsof the
form [ l ∶ T ] containing a labell and a typeT .1

RTs can be witnessed (i.e. judged as inhabited)
by recordsof that type, where a record is a set of
label-value pairs[ l = v ]. The central type judge-
ment in TTR that a records is of (record) type
R, i.e. s ∶ R, can be made from the component
type judgements of individual fields; e.g. the one-
field record[ l = v ] is of type[ l ∶ T ] just in case
v is of typeT . This is generalisable to records and
RTs with multiple fields: a records is of RT R if
s includes fields with labels matching those occur-
ring in the fields ofR, such that all fields inR are
matched, and all matched fields ins must have a
value belonging to the type of the corresponding
field in R. Thus it is possible fors to have more
fields thanR and fors ∶ R to still hold, but not
vice-versa:s ∶ R cannot hold ifR has more fields
thans.

R1 ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
l1 ∶ T1

l2 ∶ T2

l3 ∶ T3(l1)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

R2 ∶ [ l1 ∶ T1

l2 ∶ T2′
] R3 ∶ []

Figure 1: Example TTR record types

Fields can have values representing predicate
types (ptypes), such asT3 in Figure 1, and conse-
quently fields can bedependenton fields preced-
ing them (i.e. higher) in the RT, e.g.l1 is bound in
the predicate type fieldl3, sol3 depends onl1.

Subtypes, meets and joins A relation between
RTs we wish to explore is⊑ (‘is a subtype of’),
which can be defined for RTs in terms of fields as
simply: R1 ⊑ R2 if for all fields [ l ∶ T2 ] in R2,
R1 contains[ l ∶ T1 ] whereT1 ⊑ T2. In Figure 1,
both R1 ⊑ R3 and R2 ⊑ R3; and R1 ⊑ R2 iff
T2 ⊑ T2′ . The transitive nature of this relation (if
R1 ⊑ R2 andR2 ⊑ R3 thenR1 ⊑ R3) can be used
effectively for type-theoretic inference.

1We only introduce the elements of TTR relevant to the
phenomena discussed below. See (Cooper, 2012) for a de-
tailed formal description.
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We also assume the existence ofmanifest(sin-
gleton) types, e.g.Ta, the type of which onlya is
a member. Here, we write manifest RT fields such
as[ l ∶ Ta ] whereTa ⊑ T using the syntactic sugar[ l=a ∶ T ]. The subtype relation effectively allows
progressive instantiation of fields (as addition of
fields toR leads toR

′ whereR
′
⊑ R), which is

practically useful for an incremental dialogue sys-
tem as we will explain.

We can also definemeetand join types of two
or more RTs. The representation of the meet type
of two RTs R1 and R2 is the result of a merge
operation (Larsson, 2010), which in simple terms
here can be seen as union of fields. A meet type
is also equivalent to the extraction of a maxi-
mal common subtype, an operation we will call
MaxSub(Ri..Rn):2

if R1 = [ l1 ∶ T1

l2 ∶ T2
] andR2 = [ l2 ∶ T2

l3 ∶ T3
]

R1 ∧R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
l1 ∶ T1

l2 ∶ T2

l3 ∶ T3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= MaxSub(R1,R2)

R1 andR2 here are commonsupertypes of the
resultingR1 ∧ R2. On the other hand, the join of
two RTsR1 andR2, the typeR1 ∨ R2 cannot be
represented by field intersection. It is defined in
terms of type checking, in thats ∶ R1 ∨ R2 iff
s ∶ R1 or s ∶ R2. It follows that if R1 ⊑ R2 then
s ∶ R1 ∧R2 iff s ∶ R1, ands ∶ R1 ∨ R2 iff s ∶ R2.

While technically the maximally common su-
pertype ofR1 andR2 is the join typeR1 ∨ R2,
here we introduce the maximally commonsimple
(non disjunctive) supertype of two RTsR1 andR2

as field intersection:

if R1 = [ l1 ∶ T1

l2 ∶ T2
] andR2 = [ l2 ∶ T2

l3 ∶ T3
]

MaxSuper(R1, R2) = [ l2 ∶ T2 ]
We will explore the usefulness of this new op-

eration in terms of RT lattices in sec. 4.

3.1 Probabilistic TTR

We follow Cooper et al. (2014)’s recent extension
of TTR to include probabilistic type judgements of
the formp(s ∶ R) = v wherev ∈ [0,1], i.e. the real
valued judgement that a records is of RTR. Here

2Here we concern ourselves with simple examples that
avoid label-type clashes between two RTs (i.e. whereR1 con-
tainsl1 ∶ T1 andR2 containsl1 ∶ T2); in these cases the op-
erations are more complex than field concatenation/sharing.

we use probabilistic TTR to model a common psy-
cholinguistic experimental set up in section 5. We
repeat some of Cooper et al.’s calculations here
for exposition, but demonstrate efficient graphical
methods for generating and incrementally retriev-
ing probabilities in section 4.

Cooper et al. (2014) define the probability of the
meet and join types of two RTs as follows:

p(s ∶ R1 ∧R2) = p(s ∶ R1)p(s ∶ R2 ∣ s ∶ R1)
p(s ∶ R1 ∨R2) = p(s ∶ R1) + p(s ∶ R2) − p(s ∶ R1 ∧R2)

(1)

It is practically useful, as we will describe be-
low, that the join probability can be computed in
terms of the meet. Also, there are equivalences be-
tween meets, joins and subtypes in terms of type
judgements as described above, in that assuming
if R1 ⊑ R2 thenp(s ∶ R2 ∣ s ∶ R1) = 1, we have:

if R1 ⊑ R2

p(s ∶ R1 ∧R2) = p(s ∶ R1)
p(s ∶ R1 ∨R2) = p(s ∶ R2)

p(s ∶ R1) ≤ p(s ∶ R2)
(2)

The conditional probability of a record being of
typeR2 given it is of typeR1 is:

p(s ∶ R2 ∣ s ∶ R1) = p(s ∶ R1 ∧ s ∶ R2)
p(s ∶ R1) (3)

We return to an explanation for these classical
probability equations holding within probabilistic
TTR in section 4.

Learning and storing probabilistic judgements
When dealing with referring expression games, or
indeed any language game, we need a way of stor-
ing perceptual experience. In probabilistic TTR
this can be achieved by positing a judgement setJ
in which an agent stores probabilistic type judge-
ments.3 We refer to the sum of the value of proba-
bilistic judgements that a situation has been judged
to be of typeRi within J as∥Ri∥J and the sum of
all probabilistic judgements inJ simply asP (J );
thus the prior probability that anything is of type

Ri under the set of judgementsJ is ∥Ri∥J

P (J ) . The

conditional probabilityp(s ∶ R1 ∣ s ∶ R2) un-
der J can be reformulated in terms of these sets
of judgements:

pJ (s ∶ R1 ∣ s ∶ R2) = { ∥R1∧R2∥J∥R2∥J
iff ∥R2∥J ≠ 0

0 otherwise
(4)

3(Cooper et al., 2014) characterise a type judgement as an
Austinian proposition that a situation is of a given type with
a given probability, encoded in a TTR record.
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where the sample spaces∥R1 ∧ R2∥J and∥R2∥J

constitute the observations of the agent so far.J
can have new judgements added to it during learn-
ing. We return to this after introducing the incre-
mental semantics needed to interface therewith.

3.2 DS-TTR and the DyLan dialogue system

In order to permit type-theoretic inference in a
dialogue system, we need to provide suitable
TTR representations for utterances and the cur-
rent pragmatic situation from a parser, dialogue
manager and generator as instantaneously and ac-
curately as possible. For this purpose we use
an incremental framework DS-TTR (Eshghi et
al., 2013; Purver et al., 2011) which integrates
TTR representations with the inherently incre-
mental grammar formalism Dynamic Syntax (DS)
(Kempson et al., 2001).

♢, T y(t),
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x=john ∶ e
e=arrive ∶ es

p=subj(e,x) ∶ t
head=p ∶ t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ty(e),
[ x=john ∶ e

head=x ∶ e ]
Ty(e → t),

λr ∶ [ head ∶ e ] .⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x=r.head ∶ e
e=arrive ∶ es

p=subj(e,x) ∶ t
head=p ∶ t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 2: DS-TTR tree

DS produces an incrementally specified, partial
logical tree as words are parsed/generated; follow-
ing Purver et al. (2011), DS tree nodes are dec-
orated not with simple atomic formulae but with
RTs, and corresponding lambda abstracts repre-
senting functions of typeRT → RT (e.g. λr ∶[ l1 ∶ T1 ].[ l2=r.l1 ∶ T1 ] where r.l1 is a path ex-
pression referring to the labell1 in r) – see Fig-
ure 2. Using the idea of manifestness of fields
as mentioned above, we have a natural represen-
tation for underspecification of leaf node content,
e.g. [x ∶ e ] is unmanifest whereas[x=john ∶ e ]4
is manifest and the latter is a subtype of the for-
mer. Functional application can apply incremen-
tally, allowing a RT at the root node to be com-
piled for any partial tree, which is incrementally
further specified as parsing proceeds (Hough and
Purver, 2012). Within a given parse path, due to

4This is syntactic sugar for[ x ∶ ejohn ] and the = sign is
not the same semantically as that in a record.

DS-TTR’s monotonicity, each maximal RT of the
tree’s root node is a subtype of the parser’s previ-
ous maximal output.

Following (Eshghi et al., 2013), DS-TTR tree
nodes include a fieldhead in all RTs which cor-
responds to the DS tree node type. We also as-
sume a neo-Davidsonian representation of predi-
cates, with fields corresponding to an event term
and to each semantic role; this allows all available
semantic information to be specified incrementally
in a strict subtyping relation (e.g. providing the
subj() field when subject but not object has been
parsed) – see Figure 2.

We implement DS-TTR parsing and genera-
tion mechanisms in theDyLan dialogue system5

within Jindigo (Skantze and Hjalmarsson, 2010),
a Java-based implementation of the incremental
unit (IU) framework of (Schlangen and Skantze,
2009). In this framework, each module has input
and output IUs which can beadded as edges be-
tween vertices in module buffer graphs, and be-
comecommitted should the appropriate condi-
tions be fulfilled, a notion which becomes im-
portant in light of hypothesis change and repair
situations. Dependency relations between differ-
ent graphs within and between modules can be
specified bygroundedInlinks (see (Schlangen and
Skantze, 2009) for details).

The DyLan interpreter module (Purver et al.,
2011) uses Sato (2011)’s insight that the context of
DS parsing can be characterized in terms of a Di-
rected Acyclic Graph (DAG) with trees for nodes
and DS actions for edges. The module’s state is
characterized by three linked graphs as shown in
Figure 3:

• input: a time-linear word graph posted by the
ASR module, consisting of word hypothesis
edge IUs between verticesWn

• processing: the internal DS parsing DAG,
which adds parse state edge IUs between ver-
ticesSn groundedInthe corresponding word
hypothesis edge IU

• output: a concept graph consisting of domain
concept IUs (RTs) as edges between vertices
Cn, groundedInthe corresponding path in the
DS parsing DAG

Here, our interest is principally in the parser out-
put, to support incremental inference; a DS-TTR
generator is also included which uses RTs as goal
concepts (Hough and Purver, 2012) and uses the

5Available from http://dylan.sourceforge.net/
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same parse graph as the interpreter to allow self-
monitoring and compound contributions, but we
omit the details here.

Figure 3: Normal incremental parsing in Dylan

4 Order theoretic and graphical methods
for probabilistic TTR

RT lattices to encode domain knowledge To
support efficient inference inDyLan, we represent
dialogue domain concepts via partially ordered
sets (posets) of RT judgements, following similar
insights used in inducing DS-TTR actions (Eshghi
et al., 2013). A poset has several advantages over
an unordered list of un-decomposed record types:
the possibility of incremental type-checking; in-
creased speed of type-checking, particularly for
pairs of/multiple type judgements; immediate use
of type judgements to guide system decisions; in-
ference from negation; and the inclusion of learn-
ing within a domain. We leave the final challenge
for future work, but discuss the others here.

We can construct a poset of type judgements
for any single RT by decomposing it into its con-
stituent supertype judgements in arecord type lat-
tice. Representationally, as per set-theoretic lat-
tices, this can be visualised as a Hasse diagram
such as Figure 4, however here the ordering arrows
show⊑ (‘subtype of’) relations from descendant to
ancestor nodes.

To characterize an RT latticeG ordered by⊑,
we adapt Knuth (2005)’s description of lattices in
line with standard order theory: for a pair of RT
elementsRx andRy, their lower bound is the set
of all Rz ∈ G such thatRz ⊑ Rx andRz ⊑ Ry.
In the event that a unique greatest lower bound ex-
ists, this is their meet, which inG happily corre-
sponds to the TTR meet typeRx ∧ Ry. Dually, if
their unique least upper bound exists, this is their

R1200 = [] = ⊤

R120 = [ a ∶ b ] R121 = [ c ∶ d ] R110 = [ e ∶ f ]

R10 = [ a ∶ b
c ∶ d ] R11 = [ a ∶ b

e ∶ f ] R12 = [ c ∶ d
e ∶ f ]

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a ∶ b
c ∶ d
e ∶ f

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = ⊥

Figure 4: Record Type lattice ordered by the sub-
type relation

join and in TTR terms isMaxSuper(Rx, Ry) but
not necessarily their join typeRx ∨ Ry as here
we concern ourselves with simple RTs. One el-
ementcoversanother if it is a direct successor to
it in the subtype ordering relation hierarchy.G
has a greatest element (⊤) and least element (⊥),
with the atomsbeing the elements that cover⊥;
in Figure 4 if R1 is viewed as⊥ , the atoms are
R{10,11,12}. An RT elementRx has acomple-
ment if there is a unique element¬Rx such that
MaxSuper(Rx,¬Rx) = ⊤ andRx ∧ ¬Rx = ⊥

(the lattice in Figure 4 iscomplementedas this
holds for every element).

Graphically, the join of two elements can be
found by following the connecting edges upward
until they first converge on a single RT, giving us
MaxSuper(R10, R12) = R121 in Figure 4, and the
meet can be found by following the lines down-
ward until they connect to give their meet type,
i.e. R10 ∧R12 = R1.

If we considerR1 to be a domain concept in
a dialogue system, we can see how its RT lattice
G can be used for incremental inference. As in-
crementally specified RTs become available from
the interpreter they are matched to those inG to
determine how far down towards the final domain
conceptR1 our current state allows us to be. Dif-
ferent sequences of words/utterances lead to dif-
ferent paths. However, any practical dialogue sys-
tem must entertain more than one possible domain
concept as an outcome;G must therefore contain
multiple possible final concepts, constituting its
atoms, each with several possible dialogue move
sequences, which correspond to possible down-
ward paths – e.g. see the structure of Figure 5.
Our aim here is to associate each RT inG with a
probabilistic judgement.

Initial lattice construction We define a simple
bottom-up procedure in Algorithm 1 to build a RT
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lattice G of all possible simple domain RTs and
their prior probabilistic judgements, initialised by
the disjunction of possible final state judgements
(the priors),6 along with the absurdity⊥, stipu-
lated a priori as the least element with probability
0 and the meet type of the atomic priors. The al-
gorithm recursively removes one field from the RT
being processed at a time (except fields referenced
in a remaining dependentptypefield), then orders
the new supertype RT inG appropriately.

Each node inG contains its RTRi and a sum
of probability judgements{∥Rk∥J + .. + ∥Rn∥J}
corresponding to the probabilities of the priors it
stands in a supertype relation to. These sums are
propagated up from child to parent node as it is
constructed. It terminates when all simple maxi-
mal supertypes7 have been processed, leaving the
maximally common supertype as⊤ (possibly the
empty type [ ]), associated with the entire proba-
bility massP (J ), which constitutes the denomina-
tor to all judgements- given this, only the numer-

ator of equation∥Ri∥J

P (J ) needs to be stored at each
node.

Algorithm 1 Probabilistic TTR record type lattice
construction algorithm

INPUT: priors ▷ use the initial prior judgements for G’s atoms
OUTPUT: G
G = newGraph(priors) ▷ P(J) set to equal sum of prior probs
agenda = priors ▷ Initialise agenda
while not agenda is emptydo

RT = agenda.pop()
for field ∈ RT do

if field ∈ RT.pathsthen ▷ Do not remove bound fields
continue

superRT = RT - field
if superRT∈ G then ▷ not new? order w.r.t. RT and inherit RT’s priors

G.order(RT.address,G.getNode(superRT),⊑)
else ▷ new?

superNode = G.newNode(superRT) ▷ create new node w. empty priors
for node∈ G do ▷ order superNode w.r.t. other nodes in G

if superRT.fields⊂ node.fieldsthen
G.order(node,superNode,⊑) ▷ superNode inherits node’s priors

agenda.append(superRT) ▷ add to agenda for further supertyping

Direct inference from the lattice To explain
how our approach models incremental inference,
we assume Brennan and Schober (2001)’s experi-
mental referring game domain described in section
2: three distinct domain situation RTsR1, R2 and
R3 correspond to a purple square, a yellow square
and a yellow circle, respectively.

The RT latticeG constructed initially upon ob-
servation of the game (by instructor or instructee)
shown in Figure 5 uses a uniform distribution for

6Although the priors’ disjunctive probability sums to 1 af-
terG is constructed, i.e. in Figure 5∥R1∥J+∥R2∥J+∥R3∥J

P (J ) = 1,
the real values initially assigned to them need not sum to
unity, as they form the atoms ofG (see (Knuth, 2005)).

7Note that it does not generate the join types but maximal
common supertypes defined by field intersection.

the three disjunctive final situations. Each node
shows an RTRi on the left and the derivation of
its prior probabilitypJ (Ri) that any game situa-
tion record will be of typeRi on the right, purely
in terms of the relevant priors and the global de-
nominatorP (J ).

G can be searched to make inferences in light
of partial information from an ongoing utterance.
We model inference as predicting the likelihood
of relevant type judgementsRy ∈ G of a situa-
tion s, given the judgements ∶ Rx we have so far.
To do this we use conditional probability judge-
ments following Knuth’s work on distributive lat-
tices, using the⊑ relation to give a choice function:

pJ (s ∶ Ry ∣ s ∶ Rx) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if Rx ⊑ Ry

0 if Rx ∧Ry = ⊥

p otherwise, where0 ≤ p ≤ 1

(5)

The third case is the degree of inclusion ofRy

in Rx, and can be calculated using the conditional
probability calculation (4) in sec. 3. For nega-
tive RTs, a lattice generated from Algorithm 1 will
be distributive but not guaranteed to be comple-
mented, however we can still derivepJ (s ∶ Ry ∣
s ∶ ¬Rx) by obtainingpJ (s ∶ Ry) in G modulo the
probability mass ofRx and that of its subtypes:

pJ (s ∶ Ry ∣ s ∶ ¬Rx) = {0 if Ry ⊑ Rx
pJ (s∶Ry )−pJ (s∶Rx∧Ry )

pJ (s∶⊤)−pJ (s∶Rx ) otherwise
(6)

The subtype relations and atomic, join and meet
types’ probabilities required for (1) - (6) can be
calculated efficiently through graphical search al-
gorithms by characterisingG as a DAG: the re-
verse direction of the subtype ordering edges can
be viewed as reachability edges, making⊤ the
source and⊥ the sink. With this characterisation,
if Rx is reachable fromRy thenRx ⊑ Ry.

In DAG terms, the probability of the meet of
two RTsRx andRy can be found at their highest
common descendant node – e.g.pJ (R4 ∧ R5) in
Figure 5 can be found as1

3
directly atR1. Note if

Rx is reachable fromRy, i.e. Rx ⊑ Ry, then due
to the equivalences listed in (2),pJ (Rx ∧ Ry) can
be found directly atRx. If the meet of two nodes
is ⊥ (e.g.R4 andR3 in Figure 5), then their meet
probability is 0 aspJ (⊥)=0.

While the lattice does not have direct access to
the join types of its elements, a join type prob-
ability pJ (Rx ∨ Ry) can be calculated in terms
of pJ (Rx ∧ Ry) by the join equation in (1),
which holds for all probabilistic distributive lat-
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PRIORS:∥R1∥J =
1
3∥R2∥J =
1
3∥R3∥J =
1
3

R8 = [ x ∶ind ] ∥R1∥J +∥R2∥J +∥R3∥J
P (J ) = ⊤ = 1

R4 = [ x ∶ ind
shpsq ∶ square(x) ] ∥R1∥J +∥R2∥J

P (J ) R5 = [ x ∶ ind
colp ∶ purple(x) ] ∥R1∥J

P (J ) R6 = [ x ∶ ind
coly ∶ yellow(x) ] ∥R2∥J +∥R3∥J

P (J ) R7 = [ x ∶ ind
shpc ∶ circle(x) ] ∥R3∥J

P (J )

R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x ∶ ind
colp ∶ purple(x)
shpsq ∶ square(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∥R1∥J
P (J ) R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x ∶ ind
coly ∶ yellow(x)
shpsq ∶ square(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∥R2∥J
P (J ) R3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
x ∶ ind
coly ∶ yellow(x)
shpc ∶ circle(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∥R3∥J
P (J )

R0 = ⊥ = 0

Figure 5: Record type lattice with initial uniform prior probablities

tices (Knuth, 2005).8 As regards efficiency, worst
case complexity for finding the meet probability at
the common descendant ofRx andRy is a linear
O(m+ n) wherem andn are the number of edges
in the downward (possibly forked) pathsRx → ⊥

andRy → ⊥.9

5 Simulating incremental inference and
self-repair processing

Interpretation inDyLan and its interface to the
RT latticeG follows evidence that dialogue agents
parse self-repairs efficiently and that repaired di-
alogue content (reparanda) is given special sta-
tus but not removed from the discourse context.
To model Brennan and Schober (2001)’s findings
of disfluent spoken instructions speeding up ob-
ject recognition (see section 2), we demonstrate
a self-repair parse in Figure 6 for “The yell-, uh,
purple square” in the simple game of predicting
the final situation from{R1, R2, R3} continuously
given the type judgements made so far. We de-
scribe the stages T1-T4 in terms of the current
word being processed- see Figure 6:

At T1:‘the’ the interpreter will not yield a sub-
type checkable inG so we can only condition on
R8 (⊤), giving uspJ (s ∶ Ri ∣ s ∶ R8) =

1
3

for
i ∈ {1, 2, 3}, equivalent to the priors. AtT2:

8The search for the meet probability is generalisable to
conjunctive types by searching for the conjuncts’ highest
common descendant. The join probability is generalisable to
the disjunctive probability of multiple types, used, albeit pro-
gramatically, in Algorithm 1 for calculating a node’s proba-
bility from its child nodes.

9While we do not give details here, simple graphical
search algorithms for conjunctive and disjunctive multiple
types are linear in the number of conjuncts and disjuncts, sav-
ing considerable time in comparison to the algebraic calcula-
tions of the sum and product rules for distributive lattices.

‘yell-’, the best partial word hypothesis is now
“yellow”; 10 the interpreter therefore outputs an RT
which matches the type judgements ∶ R6 (i.e. that
the object is a yellow object). Taking this judge-
ment as the conditioning evidence using function
(5) we getpJ (s ∶ R1 ∣ s ∶ R6) = 0 and us-
ing (4) we getpJ (s ∶ R2 ∣ s ∶ R6) = 0.5 and
pJ (s ∶ R3 ∣ s ∶ R6) = 0.5 (see the schematic
probability distribution at stage T2 in Figure 6 for
the three objects). The meet type probabilities
required for the conditional probabilities can be
found graphically as described above.

At T3:‘uh purple’, low probability in the in-
terpreter output causes a self-repair to be recog-
nised, enforcing backtracking on the parse graph
which informally operates as follows (see Hough
and Purver (2012)) :

Self-repair:
IF from parsing wordW the edgeSEn is in-
sufficiently likely to be constructed from ver-
tex Sn OR IF there is no sufficiently likely
judgementp(s ∶ Rx) for Rx ∈ G
THEN parse wordW from vertexSn−1. IF
successfuladd a new edge to the top path,
without removing anycommitted edges be-
ginning atSn−1; ELSE setn=n−1 and repeat.

This algorithm is consistent with a local model
for self-repair backtracking found in corpora
(Shriberg and Stolcke, 1998; Hough and Purver,
2013). As regards inference inG, upon detection
of a self-repair that revokess ∶ R6, the type judge-
ments ∶ ¬R6, i.e. that this is not a yellow object,

10In practice, ASR modules yielding partial results are less
reliable than their non-incremental counterparts, but progress
is being made here (Schlangen and Skantze, 2009).
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Figure 6: Incremental DS-TTR self-repair parsing. Inter-graphgroundedInlinks go top to bottom.

is immediately available as conditioning evidence.
Using (6) our distribution of RT judgements now
shifts: pJ (s ∶ R1 ∣ s ∶ ¬R6) = 1, pJ (s ∶ R2 ∣
s ∶ ¬R6) = 0 andpJ (s ∶ R3 ∣ s ∶ ¬R6) = 0 be-
fore “purple” has been parsed – thus providing a
probabilistic explanation for increased subsequent
processing speed. Finally atT4: ‘square’ given
pJ (s ∶ R1 ∣ s ∶ R1) = 1 andR1∧R2 = R1∧R3 = ⊥,
the distribution remains unchanged.

The system’s processing models how listen-
ers reason about the revocation itself rather than
predicting the outcome through positive evidence
alone, in line with (Brennan and Schober, 2001)’s
results.

6 Extensions

Dialogue and self-repair in the wild To move
towards domain-generality, generating the lattice
of all possible dialogue situations for interesting
domains is computationally intractable. We in-
tend instead to consider incrementally occurring
issuesthat can be modelled as questions (Lars-
son, 2002). Given one or more issues manifest in
the dialogue at any time, it is plausible to gener-
ate small lattices dynamically to estimate possible
answers, and also assign a real-valued relevance
measure to questions that can be asked to resolve
the issues. We are exploring how this could be
implemented using the inquiry calculus (Knuth,
2005), which defines information theoretic rele-
vance in terms of a probabilistic question lattice,
and furthermore how this could be used to model
the cause of self-repair as a time critical trade-off
between relevance and accuracy.

Learning in a dialogue While not our focus
here, latticeG’s probabilities can be updated
through observations after its initial construction.
If a reference game is played over several rounds,
the choice of referring expression can change
based on mutually salient functions from words
to situations- see e.g. (DeVault and Stone, 2009).
Our currently frequentist approach to learning is:
given an observation of an existing RTRi is made
with probabilityv, then∥Ri∥J , the overall denom-
inator P (J ) , and the nodes in the upward path
from Ri to ⊤ are incremented byv. The approach
could be converted to Bayesian update learning by
using the prior probabilities inG for calculatingv
before it is added. Furthermore, observations can
be added toG that include novel RTs: due to the
DAG structure ofG, their subtype ordering and
probability effects can be integrated efficiently.

7 Conclusion

We have discussed efficient methods for construct-
ing probabilistic TTR domain concept lattices or-
dered by the subtype relation and their use in
incremental dialogue frameworks, demonstrating
their efficacy for realistic self-repair processing.
We wish to explore inclusion of join types, the
scalability of RT lattices to other domains and
their learning capacity in future work.
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yonatan.ginzburg@univ-paris-diderot.fr

Robin Cooper Tim Fernando
University of Gothenburg Trinity College, Dublin
cooper@ling.gu.se Tim.Fernando@cs.tcd.ie

Abstract

We consider how to develop types cor-
responding to propositions and questions.
Starting with the conception of Proposi-
tions as Types, we consider two empirical
challenges for this doctrine. The first re-
lates to the putative need for a single type
encompassing questions and propositions
in order to deal with Boolean operations.
The second relates to adjectival modifica-
tion of question and propositional entities.
We partly defuse the Boolean challenge
by showing that the data actually argue
against a single type covering questions
and propositions. We show that by ana-
lyzing both propositions and questions as
records within Type Theory with Records
(TTR), we can define Boolean operations
over these distinct semantic types. We ac-
count for the adjectival challenge by em-
bedding the record types defined to deal
with Boolean operations within a theory of
semantic frames formulated within TTR.

1 Introduction

Propositions as types has long been viewed as a
sine qua non of many a type theoretic approach to
semantics (see e.g., the seminal work of (Ranta,
1994)). Although this has lead to a variety of
very elegant formal accounts, one can question its
appropriateness as a type for NL propositions—
the denotata of declaratives and of nouns such as
‘claim’ and the objects of assertion. One imme-
diate issue concerns semantic selection—how to
specify the semantic types of predicates such as
‘believe’ and ‘assert’ so that they will not select
for e.g., the type of biscuits or the type of natural
numbers, given their inappropriateness as objects
of belief or assertion. However, one resolves this
issue, we point to two other significant challenges:

1. Recently there have been a number of pro-
posals that questions and propositions are of a
single ontological category (see (Nelken and
Francez, 2002; Nelken and Shan, 2006)) and
most influentially work in Inquisitive Seman-
tics (IS) (Groenendijk and Roelofsen, 2009).
A significant argument for this is examples
like (1), where propositions and questions
can apparently be combined by boolean con-
nectives.

(1) If Kim is not available, who should
we ask to give the talk?

In Inquisitive Semantics, such data are han-
dled by postulating a common type for ques-
tions and propositions as sets of sets of
worlds. It is not a priori clear how propo-
sitions as types can account for such cases.

2. Adjectives pose a challenge to all existing
theories of questions and propositions, pos-
sible worlds based (e.g., (Karttunen, 1977;
Groenendijk and Stokhof, 1997; Groenendijk
and Roelofsen, 2009), or type theoretic, as in
Type Theory with Records (TTR, (Cooper,
2012; Ginzburg, 2012)). There is nothing
in the semantic entity associated with a po-
lar question as in (2), be it a two cell parti-
tion (as in partition semantics) or a constant
function from records into propositions (as in
Ginzburg 2012) that will allow it to distin-
guish difficult from easy questions. Similarly,
since the denotation of a question is not con-
ceived as an event, this denotation is not ap-
propriate for the adjective quick:

(2) A: I have a quick question: is every
number above 2 the sum of two
primes?

B: That’s a difficult question.
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And yet, these two distinct classes of adjec-
tives can simultaneously apply to a question
together with ‘resolved’, a target of all exist-
ing theories of questions, as in (3), calling for
a unified notion of question:

(3) The quick question you just posed
is difficult and for the moment unre-
solved.

‘Difficult’ and ‘silly’ apply to both proposi-
tional and question entities, suggesting the
need for a unified meaning for the adjective
and a means of specifying its selection so
that it can modify both questions and propo-
sitions:

(4) a. silly claim (a claim silly to assert)
b. silly question (a question silly to

ask);
c. difficult claim (a claim difficult to

prove)

In this paper we partly defuse the Boolean
challenge by showing that the data actually ar-
gue against a single type covering questions and
propositions. We show that by analyzing both
propositions and questions as records within TTR,
we can define Boolean operations over these dis-
tinct semantic types. We then propose to deal
with the adjectival challenge by embedding the
types initially defined within a theory of semantic
frames (Fillmore, 1985; Pustejovsky, 1995) for-
mulated within TTR.

2 Questions and Propositions: a unified
semantic type?

Although there has been a recent trend to assume
a commonality of type for questions and propo-
sitions, both Hamblin and Karttunen gave argu-
ments for distinguishing questions as an ontologi-
cal category from propositions—(Hamblin, 1958)
pointing out that interrogatives lack truth values;
to which one can add their incompatibility with a
wider scoping alethic modality:

(5) a. It’s true/false who came yesterday

b. # Necessarily, who will leave tomorrow?

Whereas (Karttunen, 1977) pointed to the exis-
tence of predicates that select interrogatives, but
not for declaratives and vice versa:

(6) a. Bo asked/investigated/wondered/#
believed /# claimed who came yesterday.

b. Bo # asked/# investigated/# wondered/
believed /claimed that Mary came yester-
day.

We argue that although speech acts involving
questions and propositions can be combined by
boolean connectives they are not closed under
boolean operations. Furthermore, we argue that
the propositions and questions qua semantic ob-
jects cannot be combined by boolean operations
at all. This, together with the examples above,
strongly suggests that questions and propositions
are distinct types of semantic objects.

We use embedding under attitude verbs as a test
for propositions and questions as semantic objects.
Here we do not find mixed boolean combinations
of questions and propositions. Thus, for exam-
ple, wonder selects for an embedded question and
believe for an embedded proposition but a mixed
conjunction does not work with either, showing
that it is neither a question nor a proposition:

(7) The manager *wonders/*believes that
several people left and what rooms we
need to clean.

The verb know is compatible with both
interrogative and declarative complements,
though(Vendler, 1972; Ginzburg and Sag, 2000)
argue that such predicates do not take questions or
propositions as genuine arguments (i.e. not purely
referentially), but involve coercions which leads
to a predication of a fact. The well formedness
of these coercion processes require that sentences
involving decl/int conjunctions such as (8) can
only be understood where the verb is distributed
over the two conjuncts: “knows that John’s smart
and knows what qualifications he has”:

(8) The manager knows that John’s smart and
what qualifications he has.

Compare (9a,b)—in the second mixed case
there is only a reading which entails that it is sur-
prising the conference was held at the usual time
whereas arguably in the first sentence only the
conjunction but not the individual conjuncts need
be surprising.

(9) a. It’s surprising that the conference was
held at the usual time and so few people
registered.
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b. It’s surprising that the conference was
held at the usual time and how few peo-
ple registered.

Embedded conditional questions are impossible
although, of course, embedded questions contain-
ing conditionals are fine:

(10) *The manager wonders if Hollande left,
whether we need to clean the west wing.

a. The manager wonders whether, if Hol-
lande left, we need to clean the west wing.

Why, then, do apparent mixed boolean com-
binations appear in root sentences? Our answer
is that natural language connectives, in addition
to their function as logical connectives combin-
ing propositions, can be used to combine speech
acts into another single speech act. This, however,
can only be expressed in root sentences and speech
acts are not closed under operations correspond-
ing to boolean connectives. For example in (11a),
where a query follows an assertion is fine whereas
the combination of an assertion with a preceding
query is not, as in (11b):

(11) a. John’s very smart but does he have any
qualifications?

b. *Does John have any qualifications
and/but he’s smart

This is puzzling because a discourse corre-
sponding to a string of the same separate speech
acts works well:

(12) Does John have any qualifications? (no
answer) But he’s smart.

Similarly, while we can apparently conditionalize
a query with a proposition, we cannot conditional-
ize an assertion with a question, nor can we condi-
tionalize a query with a question:

(13) a. If Hollande left, do we need to clean the
west wing? ( “If Hollande left, I ask you
whether we need to clean the west wing”),

b. *If whether Hollande left/did Hollande
leave, we need to clean the west wing?

c. *If who left, do we need to clean the west
wing?

However we treat these facts, it seems clear that
it would be dangerous to collapse questions and
propositions into the same type of semantic object
and allow general application of semantic boolean
operators. This would seem to force you into a sit-
uation where you have to predict acceptability of
these sentences purely on the basis of a theory of
syntax, although semantically/pragmatically they
would have made perfect sense. It seems to us that
distinguishing between questions and propositions
and combinations of speech acts offers a more ex-
planatory approach.

3 Austinian Types for Propositions and
Questions

3.1 TTR as synthesizing Constructive Type
Theory and Situation Semantics

The system we sketch is formulated in TTR
(Cooper, 2012). TTR is a framework that draws its
inspirations from two quite distinct sources. One
source is Constructive Type Theory, whence the
repertory of type constructors, and in particular
records and record types, and the notion of wit-
nessing conditions. The second source is situa-
tion semantics (Barwise and Perry, 1983; Barwise,
1989) which TTR follows in viewing semantics as
ontology construction. This is what underlies the
emphasis on specifying structures in a model the-
oretic way, introducing structured objects for ex-
plicating properties, propositions, questions etc. It
also takes from situation semantics an emphasis on
partiality as a key feature of information process-
ing. This aspect is exemplified in a key assumption
of TTR—the witnessing relation between records
and record types: the basic relationship between
the two is that a record r is of type RT if each
value in r assigned to a given label li satisfies the
typing constraints imposed by RT on li:

(14) record witnessing

The record:
l1 = a1

l2 = a2

. . .
ln = an


is of type:


l1 : T1

l2 : T2(l1)
. . .
ln : Tn(l1, l2, . . . , ln−1)
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iff a1 : T1, a2 : T2(a1), . . . , an :
Tn(a1, a2, . . . , an−1)

This allows for cases where there are fields in
the record with labels not mentioned in the record
type. This is important when e.g., records are used
to model contexts and record types model rules
about context change—we do not want to have to
predict in advance all information that could be
in a context when writing such rules. (15) illus-
trates this: the record (15a) is of the type (15b),
though the former has also a field for FACTS;
(15b) constitutes the preconditions for a greeting,
where FACTS—the contextual presuppositions—
has no role to play.

(15) a.


spkr = A
addr = B
utt-time = t1
c1 = p1

Moves =
〈〉

qud =
{}

facts = cg1


b.



spkr : IND
addr : IND
utt-time : TIME
c1 : addressing(spkr,addr,utt-time)

Moves =
〈〉

: list(LocProp)

qud =
{}

: set(Question)


3.2 Propositions
Our starting point is the situation semantics no-
tion of an Austinian proposition (Barwise and
Etchemendy, 1987). (Ginzburg, 2012) introduces
Austinian propositions as records of the form:

(16)

[
sit = s
sit-type = T

]
This gives us a type theoretic object correspond-

ing to a judgement. The type of Austinian proposi-
tions is the record type (17a),where the type Rec-
Type† is a basic type which denotes the type of
(non-dependent) record types closed under meet,
join and negation.1 Truth conditions for Austinian

1When we say ‘the type of record types’, this should be
understood in a relative, not absolute way. That is, this means
the type of record types up to some level of stratification, oth-
erwise foundational problems such as russellian paradoxes
can potentially ensue. See (Cooper, 2012) for discussion and
a more careful development.

propositions are defined in (17b):

(17) a. AustProp =def[
sit : Rec
sit-type : RecType†

]

b. A proposition p =[
sit = s0
sit-type = ST0

]
is true iff

s0 : ST0

We introduce negative types by the clause in
(18a). Motivated in part by data concerning nega-
tive perception complements ((Barwise and Perry,
1983; Cooper, 1998), we can characterize wit-
nesses for negative types by (18b).

(18) a. If T is a type then ¬T is a type

b. a : ¬T iff there is some T ′ such that a : T ′

and T ′ precludes T . We assume the exis-
tence of a binary, irreflexive and symmet-
ric relation of preclusion which satisfies
also the following specification:
T ′ precludes T iff either (i) T = ¬T ′ or,
(ii) T, T ′ are non-negative and there is no
a such that a : T and a : T ′ for any mod-
els assigning witnesses to basic types and
p(red)types

(19a) and (19b) follow from these two defini-
tions:

(19) a. a : ¬¬T iff a : T

b. a : T ∨¬T is not necessary (a may not be
of type T and there may not be any type
which precludes T either).

Thus this negation is a hybrid of classical and
intuitionistic negation in that (19a) normally holds
for classical negation but not intuitionistic whereas
(19b), that is failure of the law of the excluded
middle, normally holds for intuitionistic negation
but not classical negation.

The type of negative (positive) Austinian propo-
sitions can be defined as (20a,b), respctively:

(20) a.

[
sit : Rec
sit-type : RecType¬†

]

b.

[
sit : Rec
sit-type : RecType

]
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If p:Prop and p.sit-type is T1 ∧ T2

(T1 ∨ T2) we say that p is the conjunction

(disjunction) of

[
sit = p.sit
sit-type = T1

]
and[

sit = p.sit
sit-type = T2

]
.

3.3 Questions

Extensive motivation for the view of questions
as propositional abstracts has been provided in
(Ginzburg, 1995; Ginzburg and Sag, 2000)—TTR
contributes to this by providing an improved no-
tion of simultaneous, restricted abstraction: A (ba-
sic, non-compound) question is a function from
records into propositions. In particular, a polar
question is a 0-ary propositional abstract, which
in TTR makes it a constant function from the uni-
verse of all records into propositions. We pro-
pose a refinement of this view which we believe
maintains the essential insights of the proposi-
tional function approach, motivated in part by the
need to enable conjunction and disjunction to be
defined for questions.

We introduce a notion of Austinian questions
defined as records containing a record and a func-
tion into record types, the latter associated with
the label ‘abstr(act)’. The role of wh-words on
this view is to specify the domains of these func-
tions; in the case of polar questions there is no re-
striction, hence the function component of such a
question is a constant function. (21) exemplifies
this for a unary ‘who’ question and a polar ques-
tion:

(21) a. Who =
[

x1 : Ind
c1 : person(x1)

]
; Whether = Rec;

b. ‘Who runs’ 7→sit =r1

abstr = λr:Who(
[
c : run(r.x1)

]
)

;

c. ‘Whether Bo runs’ 7→sit =r1

abstr = λr:Whether(
[
c : run(b)

]
)


We characterize the type AustQuestion within

TTR by means of the parametric type given in
(22); the parametric component of the type char-
acterizes the range of abstracts that build up ques-
tions:

(22) AustQuestion(T) =def[
sit : Rec
abstr : (T → RecType)

]

Given this, we define the following relation be-
tween a situation and a function, which is the ba-
sis for defining key coherence answerhood no-
tions such as resolvedness and aboutness (weak
partial answerhood (Ginzburg and Sag, 2000))
and question dependence (cf. erotetic implica-
tion,(Wiśniewski, 2001)):

(23) s resolves q, where q is λr : (T1)T2, (in
symbols s?q) iff either

(i) for some a : T1 s : q(a),
or

(ii) a : T1 implies s : ¬q(a)

Austinian questions can be conjoined and dis-
joined though not negated. The definition for
conj/disj-unction, from which it follows that q1
and (or) q2 is resolved iff q1 is resolved and (or)
q2 is resolved, is as follows:

(24)

[
sit = s
abstr = λr : T1 (T2)

]
∧ (∨)[

sit = s
abstr = λr : T3 (T4)

]
=

sit = s

abstr = λr:

[
left:T1

right:T3

]
(q1(r.left) ∧ (∨)q2(r.right))


Following (Cooper and Ginzburg, 2012)) we ar-

gue that “negative questions” involve questions re-
lating to negative propositions rather than nega-
tions of positive questions. As Cooper and
Ginzburg show, such negative questions are cru-
cially distinct from the corresponding positive
question. Since we have a clear way of distin-
guishing negative and positive propositions, we do
not conflate positive and negative polar questions.

4 Connectives in dialogue

We assume a gameboard dialogue semantics
(Ginzburg, 2012) which keeps track of questions
under discussion (QUD). One of the central con-
versational rules in KoS is QSPEC, a conversa-
tional rule that licenses either speaker to follow
up q, the maximal element in QUD with asser-
tions and queries whose QUD update Depends on
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q. These in turn become MaxQUD. Consequently,
QSPEC seems to be able to handle the commonest
case of successive questions, as in (25).

(25)

a. Ann: Anyway, talking of over the road,
where is she? Is she home?
Betty: No. She’s in the Cottage.

b. Arthur: How old is she? Forty?
Evelyn: Forty one!

Nonetheless, not all cases of successive ques-
tions do involve a second question which is a sub-
question of the first, as exemplified in (26):

(26) On the substantive front, we now have
preliminary answers to two key ques-
tions: What did the agency do wrong?
And who ordered it to target conservative
groups? Notwithstanding Miller’s resig-
nation, which the President himself an-
nounced on Tuesday evening, the answers
appear to be: not nearly as much as re-
cent headlines suggest; and, nobody in
the Obama Administration. (The New
Yorker, May 16, 2013)

In contrast to cases covered by QSPEC, these
cases are strange if the second question is posed
by the addressee of the first question—one gets the
feeling that the original question was ignored:

(27) A: What did the agency do wrong? B:
Who ordered it to target conservative
groups?

(Ginzburg, 2012) postulates an additional con-
versational rule that allows a speaker to follow up
an initial question with a non-influencing question,
where the initial question remains QUD-maximal.
We believes this basic treatment allows one to ex-
plain how the mixed cases involving conjunctions
of assertions and queries can be captured. and,but
and or can be used as discourse particles which
express a relationship between a speech act and
the one preceding it:

• and can indicate that the following question
is Independent of MaxQUD.

• but indicates that the following question
is not independent, but unexpected given
MaxQUD:

– John’s smart (no response) But what
qualifications does he have?

– John’s smart might be offered as an en-
thymematic argument (Breitholtz, 2011;
Breitholtz and Cooper, 2011) to a con-
clusion, e.g. “we should hire John”. but
indicates that the answer to the ques-
tion might present an enthymematic ar-
gument against this conclusion.

• or can indicate that q1 addresses the same
ultimate issue as MaxQUD, so retain both
as MaxQUD; sufficient to address one issue
since it will resolve both simultaneously:

(28) a. Would you like coffee and biscuits
or would you like some fruit or a
piece of bread and jam or what do
you fancy?

b. are you gonna stay on another day or
what are you doing?

c. David Foster Wallace is overrated
or which novel by him refutes this
view?

5 Abstract Entities and Adjectives

How to deal with adjectival modification of propo-
sitional and question entities, exemplified in (3,4)
above? The extended notion of question required
can be explicated within Cooper 2012’s theory
of semantic frames, inspired by (Fillmore, 1985;
Pustejovsky, 1995). Neither Ty2 (Groenendijk and
Stokhof, 1997) nor inquisitive semantics in propo-
sitional or first order formulation support the de-
velopment of such an ontology. Cooper formu-
lates a frame as a record type (RT). In (29) we
exemplify a possible frame for question. Here,
the illoc role represents a question’s role in dis-
course, whereas the telic role describes the goal of
the process associated with resolving a question
— finding a resolving answer. The frame repre-
sents a ‘default’ view of a question, which vari-
ous in effect non-subsective adjectives can modify
(e.g., ‘unspoken question’ negates the existence
of an associated utterance, while ‘open question’
negates the end point of the resolution event).2

2Here Resolve maps an austinian proposition and an aus-
tinian question to a predicate type. In a more detailed account
one would add an additional argument for an information
state, given the arguments that this notion is agent–relative
(Ginzburg, 1995) and much subsequent literature.
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(29) Question =def

T : Type
external : AustQuestion(T),

illoc :


u : Event
A : Ind
c2 : Ask(A,external,u)


telic :

[
p : AustProp
c1 : Resolve(p,external)

]


A type-driven compositional analysis is for-

mulated with adjectives as record type modifiers
(functions from RTs to RTs) that pick out frame el-
ements of the appropriate type (for a related view
cf. Asher & Luo 2012). For example, difficult
question has the record type in (30):

(30)


T : Type
external : AustQuestion

telic :

[
p : AustProp
c1 : difficult(Resolve(p,external))

]


Records and record types come with a well-
known notion of subtyping, often construed syn-
tactically (see e.g., (Betarte and Tasistro, 1998)).
However, given our ontological perspective on se-
mantics, we take a semantic perspective on sub-
typing (see e.g. (Frisch et al., 2008) for a detailed
exposition of such an approach.), wherein T < T ′

iff {s|s : T} ⊂ {s|s : T ′}. Given this, a record of
the type (29) above can be viewed as also having
type:

(31)
[

T : Type
external : AustQuestion(T)

]
This forms the basis of our account of how an

adjective such as difficult applies simultaneously
to question and to path. Difficult is specified as
in (32)— a function from record types subsumed
by the record type given in the domain whose
output involves a modification of the restriction
field of the telic role. This yields (32b) when
combined with question and (32c) when combined
with path:3

(32) a. f : (RT <
external : Type
P : Type

telic :
[
c1 : P

]

)RT[P;difficult(P)]

3Here difficult maps any type P into the predicate type
difficult(P ). One probably needs to narrow this specifica-
tion somewhat.

b.


T : Type
external : AustQuestion(T)

telic :

[
p : AustProp
c1 : difficult(Resolve(p,external))

]


c.


external : PhysTrajectory

telic :

[
a : Ind
c1 : difficult(Cross(a,external))

]


Turning to propositions, we postulate (33) as a
type for proposition. This allows us, for instance,
to specify the adjective silly as modifying along
the illoc dimension, thereby capturing silly claim
(a claim silly to assert) and silly question (a ques-
tion silly to ask); given the specification of the telic
dimension and our lexical entry for difficult, diffi-
cult claim is correctly predicted to mean ‘a claim
difficult to prove’.

(33) Proposition =def

external : AustProp,

illoc :


u : Event
A : Ind
c2 : Assert(A,external,u)


telic :

[
f : Fact
c1 : Prove(f,external)

]


Subject matter adjectives such as political, per-

sonal, moral, philosophical as in (34) lead us to
another intrinsic advantage for rich type theories
such as TTR over possible worlds based type the-
ories, relating to the types AustQuestion/Prop.

(34) a. A: Are you involved with Demi Lovato?
B: That’s a personal question.

b. A: One shouldn’t eat meat. B:
That’s a moral claim.

Subject matter adjectives target the external role
of a question/proposition. This can be explicated
on the basis of the predicate types which consti-
tute the sit-type (abstr type) field in propositions
(questions). Given the coarse granularity of possi-
ble worlds, it to unclear how to do so in ontologies
based on sets of possible worlds.
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