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Abstract

This paper briefly sketches new work-in-
progress (i) developing task-based scenar-
ios where human-robot teams collabora-
tively explore real-world environments in
which the robot is immersed but the hu-
mans are not, (ii) extracting and construct-
ing “multi-modal interval corpora” from
dialog, video, and LIDAR messages that
were recorded in ROS bagfiles during task
sessions, and (iii) testing automated meth-
ods to identify, track, and align co-referent
content both within and across modalities
in these interval corpora. The pre-pilot
study and its corpora provide a unique,
empirical starting point for our longer-
term research objective: characterizing the
balance of explicitly shared and tacitly as-
sumed information exchanged during ef-
fective teamwork.

1 Overview

Robots that are able to move into areas where peo-
ple cannot during emergencies and collaboratively
explore these environments by teaming with hu-
mans, have tremendous potential to impact search
and rescue operations. For human-robot teams
to conduct such shared missions, humans need to
trust that they will be kept apprised, at a miniu-

Figure 1: Outside View: Video Image & LIDAR.

mum, of where the robot is and what it is sensing,
as it moves about without them present.

To begin documenting the communication chal-
lenges humans face in taking a robot’s perspective,
we conducted a pre-pilot study1 to record, iden-
tify and track the dialog, video, and LIDAR in-
formation that is explicitly shared by, or indirectly
available to, members of human-robot teams when
conducting collaborative tasks.

1.1 Approach

We enlisted colleagues to be the commander (C) or
the human (R) controlling a mobile physical robot
in such tasks. Neither could see the robot. Only
R could “see for” the robot, via its onboard video
camera and LIDAR. C and R communicated by
text chat on their computers, as in this example,

R 41: I can see in the entrance.
C 42: Enter and scan the first room.

R 44: I see a door to the right and a door to the left.
C 45: Scan next open room on left.

Utterances R 41 & C 42 occur when the robot is
outdoors (Fig. 1) and R 44 & C 45 occur after it
moves indoors (Fig. 2). Although our approach re-
sembles a Wizard and Oz paradigm (Riek, 2012),

1Statisticians say pre-pilots are for “kicking the tires,”
early-stage tests of scenarios, equipment, and data collection.

Figure 2: Inside View: Video Image & LIDAR.
Brightness and contrast of video image increased
for print publication.
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with C as User and R as Wizard controlling the
robot, there is no intent for R to deceive C.

In these dialog snippets, notice that the doors
mentioned in R 44 are not visible in the image
of that utterance’s time interval and, even if they
had been visible, their referents were context-
dependent and ambiguous. How are the robot and
human to refer to the same door? This challenge
entails resolving several types of co-reference (lin-
guistic, are they talking about the same door? vi-
sual, are they looking at the door? navigational, is
one backing into a door no longer in view but pre-
viosuly stored in its map?) Successful communi-
cation on human-robot teams, where humans send
messages to direct robot movements and receive
robot-processed messages as the robot navigates,
entails effective identification of named referents
(such as doors), both within and across available
modalities during exploratory tasks. The research
question is, how might the identification and align-
ment of entities using combinations of (i) NLP
on dialog, (ii) image processing on the video and
LIDAR stream, with (iii) robot position, motion,
and orientation coordinates, support more effec-
tive human-robot missions?

We conducted the pre-pilot study with ten trial
sessions to collect multi-modal data from C-R and
R-only scenarios (Table 1). Each session involved
a single participant playing the role of R with con-
trol over the physical robot, or two participants,
one person playing R and one playing C.

Team R’s Task
R only Rotate in place and describe surroundings.
R only Move along road, describe surroundings.
C, R Follow C’s guidance in navigating build-

ing’s perimeter, describe surroundings.
C, R Follow C’s guidance in searching buildings

for specified objects.

Table 1: Pre-pilot Scenarios.

Participants sat indoors and could not see the robot
outside, roughly 30 meters away. In each session,
R was instructed to act as though he or she were
situated in the robot’s position and to obey C. R
was to consider the robot’s actions as R’s own,
and to consider available video and LIDAR point
cloud feeds as R’s own perceptions.

1.2 Equipment
All participants worked from their own comput-
ers. Each was instructed, for a given scenario, to
be either C or R and to communicate by text only.

On their screen they saw a dedicated dialog (chat)
window in a Linux terminal. For sessions with
both C and R, the same dialog content (the ongo-
ing sequence of typed-in utterances) appeared in
the dialog window on each of their screens.

The physical robot ran under the Robot Operat-
ing System (ROS) (Quigley et al., 2009), equipped
with a video camera, laser sensors, magnetome-
ter, GPS unit, and rotary encoders. R could “see
for the robot” via two ROS rviz windows with live
feeds for video from the robot’s camera and con-
structed 3D point cloud frames.2 R had access to
rotate and zoom functions to alter the screen dis-
play of the point cloud. C saw only a static bird’s-
eye-view map of the area. R remotely controlled
over a network connection the robot’s four wheels
and its motion, using the left joystick of an X-Box
controller.

1.3 Collection

During each session, all data from the robot’s sen-
sors and dialog window was recorded via the ros-
bag tool and stored in a single bagfile.3 A bagfile
contains typed messages. Each message contains
a timestamp (specified at nanosecond granularity)
and values for that message type’s attributes. Mes-
sage types geometry msgs/PoseStamped, for ex-
ample, contain a time stamp, a three-dimensional
location vector and a four-dimensional orientation
vector that indicates an estimate of the robot’s lo-
cation and the direction in which it is facing. The
robot’s rotary encoders generate these messages
as the robot moves. The primary bagfile message
types most relevant to our initial analyses4 were:

1) instant messenger/StringStamped
that included speaker id, text utterances

2) sensor msgs/PointCloud2
that included LIDAR data

3) sensor msgs/CompressedImage
with compressed, rectified video images

4) sensor msgs/GPS, with robot coordinates
Message types are packaged and published at dif-
ferent rates: some are published automatically at
regular intervals (e.g., image frames), while oth-
ers depend on R, C, or robot activity (e.g., dialog
utterances). And the specific rate of publication
for some message types can be limited at times by
network bandwidth constraints (e.g. LIDAR data).
Summary statistics for our initial pre-pilot collec-

2LIDAR measures distance from robot by illuminating
targets with robot lasers and generates point cloud messages.

3http://wiki.ros.org/rosbag
4We omit here details of ROS topics, transformation mes-

sages, and other sensor data collected in the pre-pilot.
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tion consisting of ten task sessions conducted over
two days, and that together spanned roughly five
hours in real-time, are presented in Table 2.

#bagfile msgs 15, 131K #dialog utts 434
min per sn 140, 848 min per sn 15
max per sn 3, 030K max per sn 116
#tokens 3, 750 #image msgs 10, 650
min per sn 200 min per sn 417
max per sn 793 max per sn 1, 894
#unique words 568 #LIDAR msgs 8, 422
min per sn 84 min per sn 215
max per sn 176 max per sn 2, 250

Table 2: Collection Statistics (sn = session).

2 From Collection to Interval Corpora

After collecting millions of messages in the pre-
pilot with content in different modalities, the im-
mediate research challenge has been identifying
the time interval that covers the messages directly
related to the content in each utterance.

We extracted each utterance message u and its
corresponding time stamp t. For a given u, we ex-
tracted the five image, five point cloud, and five
GPS messages immediately preceding and the five
of each immediately following u, based on mes-
sage time-stamps, for a total of thirty sensor mes-
sages per utterance. These message types were
published independent of the robot’s movement,
approximately once per second. In the second
phase, we assigned the earliest and latest time
stamp from the first-phase messages to delimit an
interval [ts, te] and conducted another extraction
round from the bagfile, this time pulling out all
messages with time stamps in that interval as pub-
lished by the rotary encoders, compass, and iner-
tial measurement unit, only when the robot moved.
The messages from both phases constitute a ten-
second interval corpus for u.

These interval corpora serve as a first approx-
imation at segmenting the massive stream pub-
lished at nanosecond-level into units pertaining to
commander-robot dialog during the task at hand.
With manual inspection, we found that many
automatically-constructed intervals do track rele-
vant changes in the robot’s location. For exam-
ple, the latest interval in a task’s time sequence
that was constructed with the robot being outside a
building is distinct from the first interval that cov-
ers when the robot moves inside the building.5

5This appears likely due to the paced descriptions in R’s
utterances. Another pre-pilot is needed to test this hypothesis.

3 Corpora Language Processing

Each utterance collected from the sessions was
tokenized, parsed, and semantically interpreted
using SLURP (Brooks et al., 2012), a well-
tested NLP front-end component of a human-robot
system.6 The progression in SLURP’s analysis
pipeline for utterance C 45 is shown in Figure 3.

SLURP extracts a parse tree (top-left), identifies
a sub-tree that constitutes a verb-argument struc-
ture, and enumerates possibly matching sense-
specific verb frames from VerbNet (Schuler, 2005)
(bottom-left). VerbNet provides a syntactic to se-
mantic role mapping for each frame (top-right).
SLURP selects the best mapping and generates a
compact semantic representation (bottom-right).7

In this example, the correct sense of “scan” is se-
lected (investigate-35.4) along with a frame that
matches the syntactic parse. Overall, half the com-
mands run through SLURP generated a semantic
interpretation. Of the other half, roughly one quar-
ter failed or had errors at parsing and the other
quarter at the argument matching stage.

Figure 3: Analyses of Scan next open room on left.

Our next step is to augment SLURP’s lexicon
and retrain a parser for new vocabulary so that we
can directly map semantic structures of the pre-
pilot corpora into ResearchCyc8, an extensive on-
tology, for cross-reference to other events and ob-
jects, already stored and possibly originated as vi-
sual input. Following McFate (2010), we will test

6https://github.com/PennNLP/SLURP.
7Verbnet associates each frame with a conjunction of

boolean semantic predicates that specify how and when event
participants interact, for an event variable (not shown).

8ResearchCyc and CycL are trademarks of Cycorp, Inc.
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Figure 4: Outside View: Image, Zones, Overlay

the mapping of matched VerbNet frames to Re-
searchCyc’s semantic predicates to assess its lexi-
cal coverage for our corpora.

4 Image Processing

Interval corpus images were labelled by a neu-
ral network trained for visual scene classifica-
tion (Munoz, 2013) of nine material classes: dirt,
foliage, grass, road, sidewalk, sky, wall, wood, and
ground cover (organic debris). Figures 4 and 5
show the images from Figures 1 and 2 with two
additional versions: one with colored zones for
system-recognized class boundaries and another
with colored zones as trasparent overlays on the
original. The classes differentiate terrain types
that work well with route-finding techniques that
leverage them in selecting traversible paths. As the
robot systems are enhanced with more sophisti-
cated path planning software, that knowledge may
be combined with recognized zones to send team
members messages about navigation problems as
the robot explores where they cannot go.

Accuracy is limited at the single image level:
the actual grass in Figure 4 is mostly mis-classified
as dirt (blue) along with some correctly identified
grass (green), while the floor in Figure 5 is mis-
classified as road, although much of what shows
through the window is correctly classified as fo-
liage. We are experimenting with automatically
assigning natural language (NL) labels to a range
of objects and textures recognized in images from
other larger datasets. We can retrieve labeled im-
ages stored in ResearchCyc via NL query con-
verted into CycL, allowing a commander to, for
example, ask questions about objects and regions
using terms related to but not necessarily equal to
the original recognition system-provided labels.

5 Related Work

We are aware of no other multi-modal corpora
obtained from human-robot teams conducting ex-
ploratory missions with collected dialog, video
and other sensor data. Corpora with a robot

Figure 5: Inside View: Image, Zones, Overlay.
Brightness and contrast of video image and over-
lay increased for print publication.

recording similar data modalities do exist (Green
et al., 2006; Wienke et al., 2012; Maas et al., 2006)
but for fundamentally different tasks. Tellex et al.
(2011) and Matuszek et al. (2012) pair commands
with formal plans without dialog and Zender et al.
(2008) and Randelli et al. (2013) build multi-level
maps but with a situated commander.

Eberhard et al. (2010)’s CReST corpus contains
a set-up similar to ours minus the robot; a hu-
man task-solver wears a forward-facing camera
instead. The SCARE corpus (Stoia et al., 2008)
records similar modalities but in a virtual environ-
ment, where C has full access to R’s video feed.
Other projects yielded corpora from virtual envi-
ronments that include route descriptions without
dialog (Marge and Rudnicky, 2011; MacMahon et
al., 2006; Vogel and Jurafsky, 2010) or referring
expressions without routes (Schütte et al., 2010;
Fang et al., 2013), assuming pre-existing abstrac-
tions from sensor data.

6 Conclusion and Ongoing Work

We have presented our pre-pilot study with data
collection and corpus construction phases. This
work-in-progress requires further analysis. We are
now processing dialog utterances for more system-
atic semantic interpretation using disambiguated
VerbNet frames that map into ResearchCyc pred-
icates. We will run object recognition software
retrained on a broader range of objects so that
it can be applied to images that will be labelled
and stored in ResearchCyc micro-worlds for sub-
sequent co-reference with terms in the dialog ut-
terances. Ultimately we want to establish in real
time links across parts of messages in different
modalities that refer to the same abstract enti-
ties, so that humans and robots can share their
separately-obtained knowledge about the entities
and their spatial relations — whether seen, sensed,
described, or inferred — when communicating on
shared tasks in environments.
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