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Abstract

In this work we take a view of syntactic anal-
ysis as processing ‘raw’, running text instead
of idealised, pre-segmented inputs—a task we
dub document parsing. We observe the state of
the art in sentence boundary detection and to-
kenisation, and their effects on syntactic parsing
(for English), observing that common evalua-
tion metrics are ill-suited for the comparison of
an ‘end-to-end’ syntactic analysis pipeline. To
provide a more informative assessment of per-
formance levels and error propagation through-
out the full pipeline, we propose a unified eval-
uation framework and gauge document parsing
accuracies for common processors and data sets.

1 Introduction

The term parsing is used somewhat ambiguously in
Natural Language Processing. In its ‘pure’, iso-
lated interpretation, parsing maps from a sequence (or
maybe a lattice) of token objects to syntactic analy-
ses, say trees; from a more ‘practical’ point of view,
however, parsing is also used to refer to a complete
pipeline for syntactic analysis, starting with just run-
ning text (i.e. a string of characters) as its input. The
two interpretations are of course closely related, but
the underlying difference of perspective seems closely
correlated with the distinction between parser devel-
opers vs. parser users. The parsing research literature
and most contrastive benchmarking have their focus
on parsing in isolation; at the same time, parsing soft-
ware is most commonly applied to ‘raw’ string inputs.
In this work, we take the practical, document parsing
point of view and seek to inform parser users about
configuration choices in a complete syntactic analy-
sis pipeline, as well as about what they can expect in
terms of end-to-end performance.

Parser evaluation, complementary to its utility in
system development and scholarly comparison, has as

one of its central purposes an aim of providing an indi-
cation of how a specific system or configuration might
be expected to perform on unseen text. Genre and do-
main variation have been observed as important fac-
tors in predicting parser performance (Gildea, 2001;
Zhang & Wang, 2009; Petrov & McDonald, 2012),
but more fundamental issues related to pre-processing
of parser inputs have largely been ignored.1 That is,
parser evaluation so far has been predominantly per-
formed on perfectly segmented inputs. Indeed, the de-
facto standard for evaluating phrase structure parsers
is the PARSEVAL metric (Black et al., 1991, as imple-
mented in the evalb tool), which assumes that both
the gold standard and the parser output use the same
tokenisation—an unrealistic idealisation from the user
point of view.

Recent research (Dridan & Oepen, 2012; Read et
al., 2012) has shown that many standard NLP systems,
and even tools specialised for sentence and token seg-
mentation perform well below 100% on these funda-
mental tasks. However, the effects of errors so early
in the pipeline on end-to-end parser accuracy are cur-
rently unexplored. The goal of this paper is to dis-
cover and document these effects, and also to pro-
mote a complementary tradition of parsing real doc-
uments, rather than the idealised, pre-segmented to-
ken sequences used in parser development. For these
purposes, we propose a unified evaluation perspec-
tive applicable across all sub-tasks of syntactic anal-
ysis (§ 2) and contrast it with earlier work on parser
evaluation under ambiguous tokenisation (§ 3). In § 4
and § 5 we apply this framework to a number of pars-
ing pipelines built from state-of-the-art components
and demonstrate that differences in pre-processing can
yield large differences in parser performance, varying
across domains and parsers—larger in fact than incre-

1Until recently, it was in fact difficult to obtain raw, unseg-
mented text for the most widely used English parser evaluation
data, Wall Street Journal articles from 1989.
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〈0, 12, TOP 〉 〈0, 12, S 〉 〈0, 4, NP 〉
〈5, 11, VP 〉 〈11, 11, VP 〉

Figure 1: Parse tree and span labels for They didn’t.

mental PARSEVAL improvements frequently reported
for ‘pure’ statistical parsing in the past decade.

2 Robust Evaluation of Syntactic Analysis

Parsing gold-standard token sequences into trees,
common training and testing data, and a standard eval-
uation method have given the research community a
well-defined and stable task over the past two decades
that has enabled great advances in statistical parsing.
In order to evaluate document parsing, however, we
need to generalise the evaluation method somewhat.

PARSEVAL evaluates spans of text defined by token
index. If the tokens are no longer considered as given,
this definition is invalid. We take the obvious step and
opt for character-based span indexing, with the slight
twist of using inter-character positions from the raw
text, rather than character counts. This allows greater
flexibility and precision in describing spans. Figure 1
shows a parse tree and the phrase structure spans ex-
tracted from it, assuming this sentence started at char-
acter position 0 in the document.

While character-based token indexing is a simple
concept, it is complicated by the fact that both tree-
banks and parsers ‘normalise’ raw text in a variety
of ways, including Unicode/ASCII mappings, quote
disambiguation and bracket escaping. In order to cal-
culate the character spans for a token and be able to
match to a system output that might use a different
normalisation, we have implemented a tool that aligns
between the tokens of an analysis and the raw input
to the parsing process. Since we are not assuming
gold sentence segmentation, this requires aligning full

documents, making a simple implementation of string
edit distance, for example, intractable. Instead, we
have implemented the space-efficient longest common
subsequence algorithm of Myers (1986), and calculate
the shortest edit script with consideration of the most
commonly accepted mappings. This enables an effi-
cient alignment that is even robust to occasional miss-
ing analyses (due to parse failure).

Phrase structure is not the only annotation that can
be represented as a labelled span. Many standard NLP
tasks, including part-of-speech (PoS) tagging, tokeni-
sation, and sentence segmentation can also be viewed
this way. For PoS tagging, the parallel is obvious.
Tokenisation and sentence segmentation have previ-
ously been evaluated in a variety of manners (Palmer
& Hearst, 1997; Kiss & Strunk, 2006; Read et al.,
2012), but are also amenable to being seen as span
labelling, allowing us to use a consistent generalised
evaluation framework. Thus, we represent each an-
notation as a triple consisting of span start and end
positions, together with a label. This is particularly
useful for our present purpose of evaluating the ef-
fect of these pre-processing tasks on phrase structure
parsing. Figure 2 shows all such triples that can be
extracted from our running example.2

3 Previous Work

A character-based version of evalb, dubbed SPar-
seval, was earlier used for parser evaluation over the
output from speech recognisers, which cannot be ex-
pected (or easily forced) to adhere to gold standard
sentence and token segmentation (Roark et al., 2006).
As word recognition errors can lead to very different
parse yields, this approach required a separate, exter-
nal word alignment step, far more complicated than
our in-built alignment stage.

Parsing morphologically rich languages is another
area where expecting gold standard parse yields is
unrealistic. In this case, parse yields are often mor-
pheme sequences, ambiguously derived from the in-
put strings. Tsarfaty et al. (2012) propose an eval-

2Note that, at this point, we include several elements of the
gold-standard annotation of Figure 1 that are commonly sup-
pressed in parser evaluation, notably the root category TOP, the
empty node at position 〈11, 11〉, and the final punctuation mark.
In § 4 below, we return to some of these and reflect on the com-
mon practice of ignoring parts of the gold standard, against our
goal of ‘realistic’ parser evaluation.
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1: 〈0, 4, POS:PRP 〉 2: 〈0, 4, TOK 〉
3: 〈5, 8, POS:VBD 〉 4: 〈5, 8, TOK 〉
5: 〈8, 11, POS:RB 〉 6: 〈8, 11, TOK 〉
7: 〈11, 11, POS:-NONE- 〉 8: 〈11, 11, TOK 〉
9: 〈11, 12, POS:. 〉 10: 〈11, 12, TOK 〉

11: 〈0, 12, TOP 〉 12: 〈0, 12, S 〉
13: 〈0, 4, NP-SBJ 〉 14: 〈5, 11, VP 〉
15: 〈11, 11, VP 〉 16: 〈0, 12, SENT 〉

Figure 2: All triples from the tree in Figure 1.

uation metric (TEDEVAL) based on tree edit distance
for Hebrew, rejecting character-based evalb as in-
sufficient because it cannot (a) evaluate morphemes
unrealised in the surface form; or (b) enforce only
yields that break at whitespace and correspond to a
path through the lattice of the morphological analyser.
For languages like English, where the raw string is
conventionally a concatenation of the parse yield, ob-
servation (a) is not an issue. However, we note that
zero-length spans, made possible by our decision to
record spans in terms of inter-character positions, can
preserve linear precedence without requiring explicit
realisation in the raw text. As for the second objec-
tion of Tsarfaty et al. (2012), that is specific to their
situation of allowing ambiguous morphological seg-
mentation only within pre-segmented tokens. In our
more general case, we consider enumerating all pos-
sible tokenisations of a sentence (or document) neither
practical or desirable, nor do we wish to enforce token
breaks at whitespace, since different tokenisation con-
ventions such as those described by Fares et al. (2013)
allow mid-token spaces.

4 Experimental Setup

To evaluate end-to-end parsing, we selected three
commonly used phrase structure parsers: the Char-
niak and Johnson reranking parser (C&J; Charniak
& Johnson, 2005), the Berkeley parser (Petrov, Bar-
rett, Thibaux, & Klein, 2006), and the Stanford parser
(Klein & Manning, 2003). For each parser, we used
the recommended pre-trained English model, and
mostly default settings.3 All parsers tokenise their in-

3We used the -accurate setting for the Berkeley parser, to
improve coverage on our out-of-domain data. Full configuration
details and other background, including an open-source imple-
mentation of our evaluation framework will be distributed through
a companion website.

put by default and the Stanford parser also includes a
sentence splitting component. Since both the C&J and
Berkeley parsers require sentence-segmented text, we
pre-segmented for those parsers using tokenizer,
the top-performing, lightweight, rule-based segmenter
in the recent survey of Read et al. (2012).

For parser evaluation, the standard test data is Sec-
tion 23 of the venerable WSJ portion of the Penn
Treebank (PTB, Marcus et al., 1993). In addition to
this data, we also use the full Brown portion of the
PTB (often used for experiments in domain variation)
and the relatively new English Web Treebank (EWTB,
LDC #2012T13), which comprises several web gen-
res. To evaluate document parsing, we start from the
raw, running text. In the case of the EWTB this was
provided with the treebank; for the other corpora, we
use the raw texts distributed by Read et al. (2012).
Corpora sizes are included in Table 1.

Our reference implementation for evaluation in-
stantiates the triple-based framework outlined in § 2
above. For compatibility with much previous work,
our tool supports the same configuration options as
evalb, to discard tree nodes or consider different
labels as equivalent. Somewhat ambivalently (since
we experience these ‘tweaks’ as obstacles to trans-
parency and replicability), we mimic the standard
practice of discarding triples labelled TOP (the root
category) and -NONE- (empty elements, absent in
most parser outputs), as well as truncating labels at
the first hyphen (i.e. ignoring function tags); further-
more, we allow the commonly accepted equivalence
of ADVP and PRT, even though we have been unable to
trace the origins of this convention. However, we do
not follow the convention of ignoring tokens tagged
as punctuation, for two reasons. First, Black et al.
(1991) suggested ignoring punctuation for indepen-
dently developed, hand-built parsers, to reduce varia-
tion across linguistic theories; in evaluating statistical
parsers trained directly on PTB structures, however,
it is natural to include syntactic information related
to punctuation in the evaluation—as is common prac-
tice in data-driven dependency parsing since the 2007
CoNLL Shared Task. Second, the evalb technique
of identifying punctuation nodes merely by PoS tags
is problematic in the face of tagging errors; and even
if one were to ‘project’ gold-standard PoS tags onto
parser outputs, there would be ambiguity about how to
count erroneous labels involving punctuation spans.
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# Gold # Gold C&J Berkeley StanfordCorpus
Sentences Tokens Gold Auto Gold Auto Gold Auto

Brown 13919 234375 82.7 81.2 82.2 82.3 77.1 77.7
EWTB 16622 254830 78.3 74.8 76.2 76.5 73.6 71.6
WSJ23 2416 56684 90.9 86.4 89.8 88.4 85.4 83.8

Table 1: Phrase structure accuracy (labelled F1) for three parsers (Charniak and Johnson, Berkeley and Stanford) over three
different data sets, first using gold sentence segmentation and tokenisation, and then in the default string-input mode for
each parser. Since only the Stanford parser performs sentence segmentation, the tokenizer sentence splitter was used
to pre-process running text for the other two parsers.

Sentences Tokens
Corpus Tokenizer Stanford C&J Berkeley Stanford REPP

F1 F1 F1 SA F1 SA F1 SA F1 SA
Brown 96.0 95.7 98.3 77.0 99.5 85.8 99.5 86.1 99.6 86.5
EWTB 85.2 70.3 96.9 77.8 97.3 83.1 97.8 85.9 97.3 81.4
WSJ23 94.4 93.5 99.1 86.8 99.6 94.8 99.6 94.9 99.9 98.0

Table 2: Preprocessing accuracy: Sentence segmentation is evaluated as the F1 over sentence spans for tokenizer and
the Stanford parser. Token accuracy is reported both as F1 and sentence accuracy (SA), the percentage of sentences with
completely correct tokenisation, for each of the parser-internal tokenisers, plus the stand-alone tokeniser REPP.

5 Experimental Results

End-to-end results of our first attempt at document
parsing for each parser are shown in Table 1 (Auto
columns), alongside the results of parsing idealised
inputs with gold sentence and token segmentation
(Gold). Accuracy is in terms of F1 over phrase struc-
ture triples. The drop in F1 from earlier published re-
sults on WSJ23 with gold tokens is due to our inclu-
sion of punctuation and evaluation of all sentences,
regardless of length.

We see a wide variation in how automatic pre-
processing affects parser accuracy for the different
parsers and domains. Focussing on WSJ23, the in-
domain set for all parser models, we see a drop in
parser accuracy for all parsers when moving away
from gold tokenisation. However, the size of the drop
varies across parsers, with the C&J parser particularly
affected. Indeed, with automatic pre-processing the
Berkeley parser is now the more accurate for this data
set. Over the out-of-domain sets, the C&J parser again
loses accuracy switching from gold tokens, but the
drop is not so severe, even though we would expect
more pre-processing errors in, for example, the web
text of EWTB.

For the Brown data set, the numbers show a slight
increase in accuracy for both Berkeley and Stanford
parsers when using automatically processed input, an

unexpected effect. Berkeley again out-performs the
C&J parser when not using gold tokens.

The low scores on EWTB are not surprising, since
none of the parsers were tuned to this quite differ-
ent genre, but the relative difference between idealised
and document parsing is unexpected, giving how dif-
ficult one might expect this text to be for sentence
segmentation and tokenisation. Again, we see that
the Berkeley parser has actually improved in accuracy
with automatic pre-processing, but the Stanford parser
shows a similar drop to that it produced over WSJ23.

In order to drill down to the reasons behind some
of these variations, Table 2 shows the accuracy of the
sentence segmentation and tokenisation used in the
automatic configurations above.

Looking at sentence segmentation in Table 2, we
see that accuracy is much lower over EWTB, reflect-
ing the more informal nature of these texts, particu-
larly with regards to capitalisation and punctuation.
Our numbers are lower than in Read et al. (2012), due
to differences in the evaluation method,4 but we also
see that tokenizer is the more accurate sentence
splitter. The Stanford sentence segmentation is mod-

4While they evaluated only boundary points (i.e. sentence end
points), we are interested in the effect of incorrect sentence seg-
mentation on parsing and so evaluate the full sentence span (i.e.
start and end points jointly). Thus, one incorrect sentence bound-
ary point can lead to two incorrect sentence spans.
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erately less accurate for the edited text, but radically
under-segments the messier web text, returning 12914
sentences, compared to 14954 from tokenizer.

For tokenisation accuracy, there’s very little differ-
ence between Berkeley and Stanford, which is not
surprising, since the Berkeley parser tokeniser was
built using the Stanford code. The in-built tokeniser
in the C&J parser however is significantly less accu-
rate. While the drop in F1 doesn’t seem too large,
examining the sentence accuracy shows a much big-
ger effect. This echoes the findings of Dridan and
Oepen (2012) which demonstrate that the built-in to-
keniser of the C&J parser is well below state-of-
the-art. For completeness, we also looked at their
best performing tokeniser (REPP) on tokenizer-
segmented sentences, adding those token accuracy
numbers to Table 2. Here we see that relative perfor-
mance of the better tokenisers varies with domain. As
Dridan and Oepen (2012) found, REPP outperforms
Stanford over Wall Street Journal text, but the perfor-
mance difference over Brown is slight, and on EWTB,
the advantage is to the Stanford tokeniser.

We re-parsed using the best tokeniser and sen-
tence segmenter for each domain, with the results
shown in Table 3. By comparing back to Table 1,
we can see that there are a few times that the best
pre-processing accuracy doesn’t lead to the best pars-
ing results, but the differences are slight. While the
tokenizer+REPP combination gave the best per-
formance for all parsers on WSJ23, the results over
Brown are surprising. The best input for each parser
was the default, except for the C&J parser, where
tokenizer+REPP led to the best results. The auto-
matic tokenisers led to equal or better parse accuracy
than using gold tokens. Our hypothesis to explain this
phenomenon is that subtle differences in the tokenisa-
tion of the Brown corpus and the EWTB, compared
to the WSJ portion of the PTB, confuse the parsers,
which have been tuned not just to the WSJ text type,
but also to the idiosyncrasies of its annotation. Giv-
ing the parsers ‘more familiar’ inputs can thus lead to
more accurately bracketed analyses.

Sentence segmentation is still a major impact on
the comparatively low parse accuracies on EWTB.
Switching to tokenizer improved Stanford parser
accuracy by almost 1 point, but further experiments
using gold sentence boundaries with automatic to-
kenisation showed a boost of 2–4 points F1, leaving

C&J Berkeley StanfordCorpus
Gold Auto Gold Auto Gold Auto

Brown 82.7 82.7 82.2 82.2 77.1 77.6
EWTB 78.3 77.7 76.2 76.3 73.6 72.4
WSJ23 90.9 89.9 89.8 88.8 85.4 84.5

Table 3: Final document parsing phrase structure accura-
cies, showing the results of using the best combination of
sentence segmentation and tokenisation for each domain.
Gold tokenisation F1numbers are repeated for easy com-
parison.

further room for improvement there.
Overall, our results show that document parsing is a

viable task, leading to parser accuracies only slightly
below the state of the art over gold tokens for the (po-
tentially overfitted) WSJ23, given the right preproces-
sors. Furthermore, by actually evaluating the end-to-
end pipeline, as well as the performance, in-situ, of the
various preprocessors we have discovered that parser
accuracy can actually be improved by matching the to-
kenisation to the expectations of the parser, rather than
merely using the tokenisation of the treebank. This
subtle tuning of annotation style, rather than domain
could even help explain previous cross-domain results
(McClosky, Charniak, & Johnson, 2006) that showed
better accuracy from not using labelled Brown data
for parser training.

6 Conclusions and Outlook

Through this work, we hope to call the syntactic anal-
ysis research community to arms and initiate a shift
of emphasis towards practical use cases and docu-
ment parsing—with the aim of mitigating the risks of
overestimating parser performance and over-tuning to
individual treebank idiosyncrasies. Our triple-based
proposal for Robust Evaluation of Syntactic Analy-
sis synthesises earlier work and existing metrics into a
uniform framework that (a) encompasses the complete
analysis pipeline; (b) enables comparison between
analyses that use different normalisation conventions
of the same text; and (c) allows one to quantify per-
formance levels of individual sub-tasks as well as de-
grees of error propagation. Furthermore, we demon-
strate how this setup supports ‘mixing and matching’
of gold-standard and system outputs, to isolate the
effects of individual sub-tasks on end-to-end perfor-
mance, which can bring to light unexpected effects.
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Our evaluation framework is supported by an open-
source reference implementation, with configuration
options very similar to evalb, that can be used as
a plug-in replacement too for evaluation of the com-
plete syntactic analysis pipeline.5 Immediate future
work on this tool is planned to also allow evaluation
of dependency analysis under ambiguous tokenisation
by also evaluating tuples consisting of two character-
defined sub-spans, plus a dependency label.
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