
Generalization of Words for Chinese Dependency Parsing

Xianchao Wu, Jie Zhou, Yu Sun, Zhanyi Liu, Dianhai Yu, Hua Wu, Haifeng Wang
Baidu Inc.

{wuxianchao,zhoujie01,sunyu02,liuzhanyi,yudianhai,wu hua,wanghaifeng}@baidu.com

Abstract

In this paper, we investigate the influence of
generalization of words to the accuracies of
Chinese dependency parsing. Specially, in
our shift-reduce parser, we use a neural lan-
guage model based word embedding (NLMWE)
method (Bengio et al., 2003) to generate dis-
tributed word feature vectors and then per-
form K-means based word clustering to gen-
erate word classes. We designed feature tem-
plates by making use of words, part-of-speech
(POS) tags, coarse-grained POS (CPOS) tags,
NLMWE-based word classes and their combi-
nations. NLMWE-based word classes is shown
to be an important supplement of POS-tags, es-
pecially when POS-tags are automatically gen-
erated. Experiments on a Query treebank,
CTB5 and CTB7 show that the combinations
of features from CPOS-tags, POS-tags, and
NLMWE-based word classes yield the best un-
labelled attachment scores (UASs). Our final
UAS−p (excluding punctuations) of 86.79% on
the CTB5 test set is comparable to state-of-the-
art results. Our final UAS−p of 86.80% and
87.05% on the CTB7 Stanford dependency test
set and original test set is significantly better
than three well known open-source dependency
parsers.

1 Introduction

Current dependency parsing framework is facing the
following challenge, training the model using manu-
ally annotated treebanks and then apply the model to
the whole Web. In terms of words, it is not possible for
the treebank to cover all the words in the Web. Given
a test sentence, how can we expect the parser to out-
put a correct tree if there are out-of-vocabulary (OOV)

words (compared to the training data of the treebank)
and/or the POS-tags are wrongly annotated?

Words need to be generalized to solve this prob-
lem in a sense. Indeed, POS-tag itself is a way
to generalize words into word classes. This is be-
cause POS-taggers can be trained on larger-scale data
compared with treebanks. Annotating trees is far
more difficult than annotating POS-tags. Consider-
ing that unsupervised word clustering methods can
make use of TB/PB-level Web data, these approaches
have been shown to be helpful for dependency parsing
(Koo et al., 2008).

In this paper, we investigate the influence of gener-
alization of words to the accuracies of Chinese depen-
dency parsing. Specially, in our shift-reduce parser,
we use a neural language model based word em-
bedding method (Bengio et al., 2003) to generate dis-
tributed word feature vectors and then perform K-
means based word clustering (Yu et al., 2013) to gen-
erate word classes. Our usage of word embedding is
in line with Turian et al. (2010) and Yu et al. (2013),
who study the effects of different clustering algo-
rithms for POS tagging and named entity recogni-
tion (NER). We designed feature templates by mak-
ing use of words, POS tags, CPOS tags, NLMWE-
based word classes and their combinations. NLMWE-
based word classes is shown to be an important sup-
plement of POS-tags. Experiments on a Query tree-
bank, CTB5 and CTB7 show that the combinations of
features from CPOS-tags, POS-tags, and NLMWE-
based word classes yield the best UASs.

1.1 Shift-reduce parsing

We use a transition-based shift-reduce parser
(Kudo and Matsumoto, 2002; Nivre, 2003;
Nivre et al., 2006; Huang and Sagae, 2010) to
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perform all the experiments in this paper. In a typical
transition-based parsing process, the input words are
stored in a queue and partially built dependency struc-
tures (e.g., sub-trees) are organized by a configuration
(or state). A parser configuration (or, state) can be
represented by a tuple < S,N, A >, where S is the
stack, N is the queue of incoming words, and A is
the set of dependency arcs that have been built. A set
of shift-reduce actions are defined, which are used to
construct new dependency arcs by connecting the top
word of the queue and the top word of the stack. We
adopt the arc-standard system (Nivre, 2008), whose
actions include:

• shift, which removes the top word in the queue
and pushes it onto the top of the stack;

• left-arc, which pops the top item off the stack,
and adds it as a modifier to the front of the queue;

• right-arc, which removes the front of the queue,
and adds it as a modifier to the top of the stack.
In addition, the top of the stack is popped and
added to the front of the queue.

We follow Kudo and Matsumoto (2002) and
use the Support Vector Machines (SVMs) for
action classification training and beam search
(Zhang and Clark, 2008) for decoding.

2 Neural Language Model Based Word
Embedding

Following (Bengio et al., 2003), we use a neural net-
work with two hidden layers to learn distributed word
feature vectors from large-scale training data. Recall
that, the goal of statistical language modelling is to
learn the joint probability function of sequences of
words in a language. This is intrinsically difficult
because of the curse of dimensionality: a word se-
quence on which the model will be tested is likely to
be different from all the word sequences seen during
training (so called OOV words and/or sequences). N-
gram based approach obtains generalization by con-
catenating very short overlapping sequences seen in
the training set. Bengio et al. (2003) propose to fight
the curse of dimensionality by learning a distributed
representation (of feature vectors) for words which
allows each training sentence to inform the model

about an exponential number of semantically neigh-
bouring sentences. The model learns simultaneously
(1) a distributed representation for each word along
with (2) the probability function for word sequences,
expressed in terms of these representations.

The general process of neural language model
based word embedding is as follows:

• associate with each word in the vocabulary a dis-
tributed word feature vector (a real valued vector
in Rm);

• express the joint probability function of word se-
quences in terms of the feature vectors of these
words in the sequence; and,

• learn simultaneously the word feature vectors
and the parameters of that probability function.

The training set of the NLMWE model is a se-
quence w1, ..., wT of words wt ∈ V , where the vo-
cabulary V is a large yet finite set. The objective is
to learn a model f(wt, ..., wt−n+1) = P (wt|wt−1

1 ),
so that that the model gives high out-of-sample like-
lihood. The only constraint on the model is that for
any choice of wt−1

1 ,
∑|V |

i=1 f(i, wt−1, ..., wt−n+1) = 1
with f > 0. By the product of these conditional prob-
abilities, one obtains a model of the joint probability
of sequences of words.

Function f(wt, ..., wt−n+1) = P (wt|wt−1
1 ) is de-

composed into two parts:

• A mapping C from any element i of V to a real
vector C(i) ∈ Rm. It represents the distributed
feature vectors associated with each word in the
vocabulary. In practice, C is represented by a
|V | × m matrix of free parameters.

• The probability function over words, expressed
with C: a function g maps an input se-
quence of feature vectors for words in con-
text, (C(wt−n+1), ..., C(wt−1)), to a conditional
probability distribution over words in V for the
next word wt . The output of g is a vector whose
i-th element estimates the probability P (wt =
i|wt−1

1 ) as in Figure 1 in (Bengio et al., 2003).

Following (Bengio et al., 2003), in the real imple-
mentation, we speed up with both parallel data and
parallel parameter estimation. We finally use the well-
known K-means clustering algorithm based on the
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distributed word feature vectors for word clustering.
We separately set the number of word classes to be
100, 500, and 1,000 in our experiments.

3 Feature Templates

At each step during shift-reducing, a parser con-
figuration (or, state) can be represented by a tuple
< S,N,A >. We denote the top of stack with S0,
the front items from the queue with N0, N1, N2, and
N3, the leftmost and rightmost modifiers of S0 (if
any) with S0l and S0r, respectively, and the leftmost
modifier of N0 (if any) with N0l (refer to Figure
1). The baseline feature templates without any word
class level information (such as POS-tags) are shown
in Table 1. These features are mostly taken from
Zhang and Clark (2008), Huang and Sagae (2010),
and Zhang and Nivre (2011). In this table, w, l
and d represents the word, dependency label, and
the distance between S0 and N0, respectively. For
example, S0wN0w represents the feature template
that takes the word of S0, and combines it with the
word of N0.

In Table 1, (S/N)0l2, (S/N)0r2, and (S/N)0rn

refer to the second leftmost modifier, the second
rightmost modifier, and the right nearest modifier of
(S/N)0, respectively. It should be mentioned that, for
the arc-standard algorithm used in this paper, S0 or N0

never contain a head word. The reason is that, once
the head is found for a node, that node will be hidden
under the head and being removed from the stack or
the queue1.

Table 2 lists the features templates that are related
to POS-tags and their combination with words and de-
pendency labels. In the table, (S/N)0ll and (S/N)0rr

stand for the left(ll)/right(rr)-hand-side neighbour
word of S0/N0 in the input sentence for training or
decoding. For example, features such as POS-tags
of bi-siblings of N0 (e.g., N0l2pN0r2p) and S0 (e.g.,
S0r2pS0rp) are included in the combination of two
feature templates. These bi-sibling features together
with (S/N)0 (e.g., N0N0l2pN0r2p and S0S0r2pS0rp)
are included in the combination of three feature tem-
plates. N0 (similar with S0) and its surrounding
words, such as neighbour words and child words are
shown in Figure 1 for intuitive understanding. For
comparison with other levels of word classes, we will

1Thanks one reviewer for pointing this out.

single feature templates (14)
N0lw, N0w, N1w, N2w, S0l2l, S0l2w, S0ll,
S0lw, S0r2l, S0r2w, S0rnw, S0rl, S0rw, S0w

combination of two feature templates (19)
N0lwS0w, N0rnwS0w, N0rwS0w, N0wN0ll, N0wN1w,
N0wN2w, N0wN3w, N0wd, N1wN2w, N1wN3w,
N1wS0rl, N2wN3w, S0lwN0w, S0rnwN0w, S0rwN0w,
S0wN0w, S0wS0ll, S0wS0rl, S0wd

combination of three feature templates (8)
N0wN0llN0l2l, N0wN1wN2w, N0wN1wN3w,
N0wN2wN3w, N1wN2wN3w, S0wN0wd,
S0wS0llS0l2l, S0wS0rlS0r2l

combination of four feature templates (1)
N0wN1wN2wN3w

Table 1: Feature templates related to words (w), depen-
dency labels (l) and the distance between S0 and N0 (d).

combination of two feature templates (3)
S1wS1p, S0wS1w, S0pS1p

combination of three feature templates (13)
S0wS0pS1p, S0pS1wS1p, S0wS1wS1p, S0wS0pS1w,
S1pS0pN0p, S1pS0wN0p, S1pS1lpS0p, S1pS1rpS0p,
S1pS0pS0rp, S1pS1lpS0p, S1pS1rpS0w, S1pS0wS0lp,
S2pS1pS0p

combination of four feature templates (1)
S0wS0pS1wS1p

Table 3: Feature templates related to S1 and S2.

directly replace POS-tags (p) by other kind of word
classes, such as CPOS-tags and NLMWE-based K-
means word clusterings. For example, instead of re-
turning the POS-tag of S0, S0p will return CPOS-tag
of the word of S0 in CPOS-tag related feature tem-
plates, and return NLMWE-based word class index of
the word of S0 in NLMWE clustering related feature
templates.

Besides Table 1 and 2, we further include S0 and S1

related features2 following (Huang and Sagae, 2010).
These features are listed in Table 3. As will be shown
in Table 16, UASs are improved around 0.2% after
appending these feature templates to Table 1 and 2.

4 Experiments

4.1 Setup

We use three Chinese treebanks in our experiments.
The first one is an in-house Chinese Query treebank
with 12,028 sentences (averagely 4.04 words per sen-

2Thanks one reviewer for pointing this out.
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single feature templates (13)
N0l2p, N0lp, N0p, N1p, N2p, N4p, S0l2p, S0lp, S0r2p, S0rp, S0p, S1p, S2p

combination of two feature templates (54)
N0l2pN0r2p, N0l2pN0rnp, N0l2pN0rp, N0lpN0l2p, N0lpN0r2p, N0lpN0rnp, N0lpN0rp, N0lpS0p, N0lpS0w, N0lwS0p,
N0r2pN0rp, N0rnpN0r2p, N0rnpN0rp, N0rnpS0p, N0rnpS0w, N0rnwS0p, N0rpS0p, N0rpS0w, N0rwS0p, N0pN0ll,
N0pN1p, N0pN2p, N0pN3p, N0pd, N0wN0p, N1pN2p, N1pN3p, N1pS0w, N1wN1p, N2pN3p, S0l2pS0r2p, S0l2pS0rnp,
S0l2pS0rp, S0lpN0p, S0lpN0w, S0lpS0l2p, S0lpS0r2p, S0lpS0rnp, S0lpS0rp, S0lwN0p, S0r2pS0rp, S0rnpN0p, S0rnpN0w,
S0rnpS0r2p, S0rnpS0rp, S0rnwN0p, S0rpN0p, S0rpN0w, S0rwN0p, S0pN0p, S0pS0ll, S0pS0rl, S0pd, S0wS0p

combination of three feature templates (43)
N0llpN0pS0p, N0llpS0pS0rrp, N0pN0l2pN0r2p, N0pN0l2pN0rnp, N0pN0l2pN0rp, N0pN0llN0l2l, N0pN0lpN0l2p,
N0pN0lpN0r2p, N0pN0lpN0rnp, N0pN0lpN0rp, N0pN0r2pN0rp, N0pN0rnpN0r2p, N0pN0rnpN0rp, N0pN0rnpS0p,
N0pN0rrpS0p, N0pN0rpS0p, N0pN1pN2p, N0pN1pN3p, N0pN2pN3p, N0pS0llpS0p, N0pS0pS0rrp, N1pN2pN3p,
S0pN0pN0lp, S0pN0pN1p, S0pN0pd, S0pN0wN0p, S0pS0l2pS0r2p, S0pS0l2pS0rnp, S0pS0l2pS0rp, S0pS0llS0l2l,
S0pS0lpN0p, S0pS0lpS0l2p, S0pS0lpS0r2p, S0pS0lpS0rnp, S0pS0lpS0rp, S0pS0rnpN0p, S0pS0rnpS0r2p,
S0pS0rnpS0rp, S0pS0rlS0r2l, S0pS0rpS0r2p, S0wN0wN0p, S0wS0pN0p, S0wS0pN0w

combination of four feature templates (6)
N0llpN0pS0llpS0p, N0llpN0pS0pS0rrp, N0pN0rrpS0llpS0p, N0pN0rrpS0pS0rrp, N0pN1pN2pN3p, S0wS0pN0wN0p

Table 2: Feature templates related to POS-tags (p) and their combination with words (w) and dependency labels (l).

 

  

N0 N0ll N0rr  … … 

N0l N0l2 N0r N0r2 N0rn 

input queue 

Figure 1: N0, its neighbour words (N0ll and N0rr), and
child words (N0l, N0l2, N0rn, N0r2, and N0r).

tence) for training and 500 sentences (averagely 3.95
words per sentence) for testing.

Sections Sentences Tokens
Train 001-815;1001-1136 16,118 437,859
Dev 886-931;1148-1151 804 20,453
Test 816-885;1137-1147 1,915 50,319

Table 4: Standard split of CTB5 data.

The second one is the Chinese Treebank 5.03

(CTB5) (Xue et al., 2007). We follow the standard
split of this treebank, as shown in Table 4. The devel-
opment set is used to tune the hyper-parameter in the
SVM classification model for predicting the next sift-
reduce actions. We report the unlabelled attachment
scores (UASs) of the test set with and without punc-
tuations. We use Penn2Malt toolkit4 with Chinese
head rules5 to convert the PCFG trees into CoNLL-

3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId
=LDC2005T01

4http://stp.lingfil.uu.se/ñivre/research/Penn2Malt.html
5http://stp.lingfil.uu.se/ñivre/research/chn headrules.txt

style6 dependency trees. Besides the head rules orig-
inally used in Penn2Malt, we also independently use
the head rules expressed in (Zhang and Clark, 2008)
for direct comparison with related works (refer to Ta-
ble 16). In our experiments, it reveals that using of
these two kinds of head rules does not bring a signifi-
cant differences of UASs.

Files Sentences Tokens
Train 2,083 46,572 1,039,942
Dev 160 2,079 59,955
Test 205 2,796 81,578

Table 5: Statistics of CTB7 data.

The third one is the Chinese Treebank 7.07 (CTB7).
The statistics is shown in Table 5 by following the
standard split of this treebank. Again, the develop-
ment set is used to tune the hyper-parameter in the
SVM classification model. The PCFG tree to CoNLL
format conversion is similar to CTB5.

Table 6 shows the coverage rates of training/testing
words in our NLMWE word clustering dictionary
(with 1,000 word classes and 4,999,890 unique words)
and OOV rates in the testing sets of the Query tree-
bank, CTB5 and CTB7.

As shown in Table 7, we manually construct a map-
ping from POS-tags to CPOS-tags and then apply this

6http://ilk.uvt.nl/conll/#dataformat
7http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId

=LDC2010T07
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Train Test
NLMWE NLMWE OOV (in NLMWE)

Query 99.94 99.90 24.08 (99.58)
CTB5 91.60 91.60 6.25 (65.46)
CTB7 91.39 92.11 4.78 (57.03)

Table 6: Coverage rates (%) of training/testing words in
NLMWE word clustering dictionary and OOV rates in the
testing sets of the Query treebank, CTB5 and CTB7.

POS CPOS
VA VC VE VV 1
NR NT NN 2
LC 3
PN 4
DT CD OD 5
M 6
AD 7
P 8
CC CS 9
DEC DEG DER DEV AS SP ETC MSP 10
IJ ON LB SB BA JJ FW 11
PU 12
X 13

Table 7: Mapping from POS-tags to CPOS-tags in CTB5
and CTB7.

mapping to CTB5 and CTB7 to obtain CPOS-tags for
each word. For the Query treebank with POS-tags
of the Peking University Corpus standard, we simply
choose the first letter of the POS-tag to be its CPOS-
tag.

4.2 Comparison of number of word classes

wc.1000 wc.500 wc.100
nlmwe 87.13 (84.00) 86.21 (82.32) 85.86 (81.89)
+pos 88.70 (85.89) 87.84 (85.47) 87.28 (83.58)
+cpos 88.60 (85.68) 87.08 (83.79) 88.19 (84.42)
+pos+cpos 89.56 (86.74) 88.24 (85.05) 88.09 (84.84)

Table 8: The influence of the number of word classes to
UAS−p (%) of words and OOV words (numbers in the
brackets) in the Query treebank.

Table 8 shows the influence of the number of word
classes (of 100, 500, and 1,000) to UAS−p (with-
out punctuations kept and a beam size of 10) in
the Query treebank. We observe that, for NLMWE,
POS+NLMWE and POS+CPOS+NLMWE, UAS in-
creases as the number of word classes increases. Here,
1,000 word classes performs the best accuracies.

In particular, in order to investigate the general-
ization of unknown words, we individually show the
UAS of OOV words in the test set as influenced by
the number of words classes (UASs in the brackets in
Table 8). The absolute value of OOV words’ UAS
is lower than UAS of all words. Again, the combina-
tion of CPOS-tags, POS-tags, and NLMWE clustering
with 1,000 classes yields the best result.

4.3 Comparison of POS, CPOS, NLMWE and
their combinations

UAS UASoov UASin
words 84.03 80.42 85.18
nlmwe 87.13 84.00 88.12
pos 87.18 85.05 87.85
pos+nlmwe 88.70 85.89 89.59
cpos 86.67 84.21 87.45
cpos+nlmwe 88.60 85.68 89.52
pos+cpos 87.63 85.05 88.45
pos+cpos+nlmwe 89.56 86.74 90.45

Table 9: The UAS−p (%) scores of using feature templates
that are related to POS, CPOS, NLMWE and their combi-
nations in the Query treebank.

Table 9 intuitively shows the UAS scores of us-
ing feature templates that are related to POS, CPOS,
NLMWE (of 1,000 word classes) and their combina-
tions in the Query treebank. We use “words” to repre-
sent the feature templates listed in Table 1, i.e., no ad-
ditional word generalized feature templates are used.
For “pos”, “cpos”, and “nlmwe”, they separately use
not only the feature templates listed in Table 2 but also
the word-related feature templates listed in Table 1.
We observe that:

• when only using surface word related feature
templates, the UAS (80.42%) of OOV words is
the worst. This tells us that word classes are im-
portant for generalization. Referring to Table 1,
we argue n-gram features such as N0wN1wN2w
and their combinations with dependency labels
such as N0wN0ll contribute for the 80.42% ac-
curacy of UAS;

• respectively appending POS/CPOS/NLMWE re-
lated features (Table 2) to words yields signifi-
cant improvements of UAS;

• the combination of either two of POS, CPOS,
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and NLMWE yields a better UAS than the in-
dividuals;

• finally, the UAS scores are the best for both OOV
words (UASoov) and non-OOV words (UASin)
when we combine POS, CPOS and NLMWE to-
gether.

UAS UASoov UASin
words 71.93 66.98 72.32
nlmwe 76.98 71.88 77.39
pos 86.49 84.87 86.62
pos+nlmwe 86.41 84.91 86.53
cpos 84.43 82.46 84.59
cpos+nlmwe 84.82 83.64 84.92
pos+cpos 86.56 84.78 86.70
pos+cpos+nlmwe 86.58 84.87 86.72

Table 10: The UAS−p (%) scores of using feature tem-
plates that are related to POS, CPOS, NLMWE and their
combinations in CTB5.

UAS UASoov UASin
words 72.71 68.80 72.94
nlmwe 78.03 75.17 78.19
pos 86.47 86.25 86.49
pos+nlmwe 87.01 86.69 87.03
cpos 84.21 83.04 84.28
cpos+nlmwe 85.03 83.81 85.10
pos+cpos 86.81 86.45 86.83
pos+cpos+nlmwe 87.05 86.48 87.09

Table 11: The UAS−p (%) scores of using feature tem-
plates that are related to POS, CPOS, NLMWE and their
combinations in CTB7.

UAS UASoov UASin
words 69.76 64.16 70.09
nlmwe 74.56 69.86 74.83
pos 86.18 83.89 86.31
pos+nlmwe 86.36 84.38 86.48
cpos 83.66 81.94 83.76
cpos+nlmwe 84.55 82.35 84.68
pos+cpos 86.53 84.71 86.64
pos+cpos+nlmwe 86.80 84.99 86.91

Table 12: The UAS−p (%) scores of using feature tem-
plates that are related to POS, CPOS, NLMWE and their
combinations in CTB7 with Stanford dependency.

Table 10, 11 and 12 intuitively shows the UAS
scores of using feature templates that are related to

POS, CPOS, NLMWE (of 1,000 word classes) and
their combinations in CTB5, CTB7 and CTB7 with
Stanford dependency, respectively. Different with
the 24.08% OOV rate of the test of the Query tree-
bank, 6.25%/4.78% OOV rates of the test sets of
CTB5/CTB7 are smaller. This makes UAS and UASin
in these three tables quite close with each other. For
NLMWE, we have the following observations:

• in CTB5, NLMWE does not bring a signifi-
cant improvements after being appended to POS
and/or CPOS related feature templates;

• in CTB7, appending NLMWE to POS yields
an UAS−p improvement of 0.54% (87.01%
- 86.47%), which is significant; appending
NLMWE to POS+CPOS further yields an
UAS−p improvement of 0.24% (87.05% -
86.81%);

• in CTB7 with Stanford dependency, append-
ing NLMWE to POS yields an UAS−p im-
provement of 0.18% (86.36% - 86.18%); ap-
pending NLMWE to POS+CPOS further yields
an UAS−p improvement of 0.27% (86.80% -
86.53%), which is significant;

• in CTB5, CTB7 and CTB7 with Stanford de-
pendency, POS+CPOS+NLMWE yields the best
UAS−ps.

Recall that we introduce CPOS to generalize POS
in a sense. For example, all verb related POS tags
of VA, VC, VE, and VV are taken as one CPOS tag.
We hope that CPOS tags can capture the dependency
grammar in a more generalized level than POS tags.
For CPOS, we have the following observations:

• in CTB5, appending CPOS to POS yields a
slight UAS−p improvement of 0.07% (86.56%
- 86.49%); appending CPOS to POS+NLMWE
further yields an UAS−p improvement of 0.17%
(86.58% - 86.41%);

• in CTB7, appending CPOS to POS yields a
slightly UAS−p improvement of 0.34% (86.81%
- 86.47%), which is significant; appending CPOS
to POS+NLMWE further yields a slight UAS−p
improvement of 0.04% (87.05% - 87.01%);
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• in CTB7 with Stanford dependency, appending
CPOS to POS yields an UAS−p improvement
of 0.35% (86.53% - 86.18%), which is signif-
icant; appending CPOS to POS+NLMWE fur-
ther yields an UAS−p improvement of 0.44%
(86.80% - 86.36%), which is also significant.

4.4 Comparison of golden/non-golden POS tags

Not-Golden Diff Same Golden
words 84.03 89.19 83.94 84.03
nlmwe 87.13 91.89 87.04 87.13
pos 87.13 89.19 87.09 87.18
pos+nlmwe 88.80 89.19 88.79 88.70
cpos 86.67 91.89 86.57 86.67
cpos+nlmwe 88.65 91.89 88.58 88.60
pos+cpos 87.53 89.19 87.50 87.63
pos+cpos+nlmwe 89.56 89.19 89.57 89.56

Table 13: The UAS−p (%) of using the golden and not-
golden POS-tags in the Query test set.

Not-Golden Diff Same Golden
words 71.91 63.75 72.14 71.93
nlmwe 76.96 68.81 77.19 76.98
pos 83.78 61.61 84.40 86.49
pos+nlmwe 83.94 62.55 84.54 86.41
cpos 82.80 61.78 83.39 84.43
cpos+nlmwe 83.17 62.90 83.74 84.82
pos+cpos 83.83 60.93 84.48 86.56
pos+cpos+nlmwe 83.96 61.95 84.58 86.58

Table 14: The UAS−p (%) of using the golden and not-
golden POS-tags in the CTB5 test set.

Not-Golden Diff Same Golden
words 72.71 65.46 72.87 72.71
nlmwe 78.03 69.71 78.22 78.03
pos 83.82 59.25 84.39 86.47
pos+nlmwe 84.41 59.82 84.97 87.01
cpos 82.61 60.71 83.11 84.21
cpos+nlmwe 83.42 62.23 83.91 85.03
pos+cpos 84.12 57.79 84.72 86.81
pos+cpos+nlmwe 84.49 59.13 85.07 87.05

Table 15: The UAS−p (%) of using the golden and not-
golden POS-tags in the CTB7 test set.

We finally replace the golden POS-tags in the test
sets by POS-tags generated by a CRF-based POS-
tagger. Table 13 (POS precision = 98.1%), 14
(POS precision = 97.7%), and 15 (POS precision

= 98.1%) respectively show the UAS−p differences
of the Query, CTB5, and CTB7 test sets. In this
three tables, “Not-Golden” and “Golden” (denoted
as UASnot-golden and UASgolden, hereafter) stand
for the UAS−ps of not using or using the golden
POS-tags; “Diff” and “Same” (denoted as UASdiff
and UASsame, hereafter) are the UAS−ps of those
words whose POS-tags are different or similar with
the golden POS-tags.

Specially, it is important for us to check whether
NLMWE performs better when POS-tags are wrongly
annotated. In all these three test sets, NLMWE’s
UASdiff performs better than that of POS or CPOS.
Also, by combining wrong POS-tags (and/or CPOS-
tags) and NLMWE together, UASdiff drops. Most im-
portantly, when we look at UASdiff and compare POS
with POS+NLMWE, NLMWE does supply POS (and
CPOS). For example, in the CTB5 test set, UASdiff
significantly increases from 61.61% to 62.55%; in the
CTB7 test set, UASdiff significantly increases from
59.25% to 59.82%. On the other hand, by combining
correct POS-tags (and/or CPOS-tags) and NLMWE
together, UASsame increases, showing that NLMWE
even being a good supplement for correct POS-tags.

Finally, when we check the results of append-
ing NLMWE to POS/CPOS in the combination of
UASsame and UASdiff, i.e., UASnot-golden, the in-
creasing of UAS is significant in the Query test set
(e.g., from 87.53% of POS+CPOS to 89.56% of
POS+CPOS+NLMWE). In CTB5 and CTB7 test sets,
we observe that NLMWE does bring increasings yet
the increasings are not that significant. Referring back
to Table 6, we argue that the low coverage (91-92%
which is much lower than 99.9% in the Query tree-
bank) of NLMWE clustering dictionary in the CTB5
and CTB7 response for this tendency.

4.5 Comparison to state-of-the-art
Table 16 shows the comparison of our system with
state-of-the-art results on CTB5 and CTB7 test sets.
We set the beam size of all our system variants to
be 10. Note that most related researches only report
their results on the CTB5 test set which makes direct
comparison in the CTB7 test set unavailable. In the
CTB5 test set, we observe that our final result of us-
ing POS+CPOS+NLMWE is comparable to most of
related researches.

Besides the original data of CTB5 and CTB7, fol-
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System UAS+p UAS−p

CTB5
Ours (words) 69.85 71.93
Ours (nlmwe) 75.05 76.98
Ours (pos) 84.65 86.49
Ours (pos+nlmwe) 84.52 86.41
Ours (cpos) 82.50 84.43
Ours (cpos+nlmwe) 82.91 84.82
Ours (pos+cpos) 84.72 86.56
Ours (pos+cpos+nlmwe) 84.70 86.58
Ours (pos+cpos+nlmwe)∗ 84.62 86.59
Ours (pos+cpos+nlmwe)∗,+s1s2 84.88 86.79
(Huang and Sagae, 2010)∗ NA 85.2
(Zhang and Nivre, 2011)∗ NA 86.0
(Zhang and McDonald, 2012)∗ NA 86.87
(Li et al., 2012)∗ NA 86.55
(Sun and Wan, 2013) 84.65 NA
(Hayashi et al., 2013)∗ NA 85.9
(Ma et al., 2013)∗ NA 86.33

CTB7
Ours (words) 70.57 72.71
Ours (nlmwe) 75.90 78.03
Ours (pos) 84.35 86.47
Ours (pos+nlmwe) 84.85 87.01
Ours (cpos) 82.08 84.21
Ours (cpos+nlmwe) 82.91 85.03
Ours (pos+cpos) 84.66 86.81
Ours (pos+cpos+nlmwe) 84.89 87.05
Ours (pos+cpos+nlmwe)∗ 84.84 86.99

CTB7, Stanford
Ours (words)+ 68.14 69.76
Ours (nlmwe)+ 73.00 74.56
Ours (pos)+ 84.80 86.18
Ours (pos+nlmwe)+ 84.97 86.36
Ours (cpos)+ 82.27 83.66
Ours (cpos+nlmwe)+ 83.19 84.55
Ours (pos+cpos)+ 85.11 86.53
Ours (pos+cpos+nlmwe)+ 85.43 86.80
MaltParser (libsvm)+ NA 78.0
MSTParser (1st-order)+ NA 78.9
Mate (2nd-order)+ NA 83.1

Table 16: Comparison of our system with state-of-the-art
results on CTB5/CTB7 test sets. Here, UAS+p/−p stands
for UAS (%) with/without punctuations taken into com-
puting. ∗ stands for using (Zhang and Clark, 2008)’s head
rules. + stands for using (Chang et al., 2009)’s head rules.
+s1s2 stands for appending S1 and S2 related feature tem-
plates.

lowing (Che et al., 2012), we further apply the Stan-
ford Chinese Dependency (Chang et al., 2009) to the
CTB7’s train/dev/test sets and compare the UASs with
well known open-source systems. Different from the
head rules defined in (Zhang and Clark, 2008) which

yield 12 dependency labels, the Stanford Chinese
Dependency has its own head rules as described in
(Chang et al., 2009) which yields 46 fine-grained de-
pendency labels. We directly used the UASs of these
systems reported in (Che et al., 2012). In this test set,
we observe that our system is significantly better than
open-source systems of MSTParser of version 0.58

(McDonald and Pereira, 2006), Mate parser of ver-
sion 2.09 (Bohnet, 2010) (2nd-order MSTParser) and
MaltParser of version 1.6.1 with the Arc-Eager algo-
rithm10 (Nivre et al., 2006).

5 Conclusion

We have investigated the influence of generalization
of words to the final accuracies of Chinese shift-
reduce dependency parsing. We designed feature tem-
plates by making use of words, POS-tags, CPOS-
tags, NLMWE-based word classes and their combi-
nations. NLMWE-based word classes is shown to be
an important supplement of POS-tags, especially for
the automatically generated POS-tags. Experiments
on a Query treebank, CTB5 and CTB7 show that the
combinations of features from CPOS-tags, POS-tags,
and NLP-WE-based word classes yield the best UASs.
Our final UAS−p of 86.79% on the CTB5 test set
is comparable to state-of-the-art results. Our final
UAS−p of 86.80% and 87.05% on the CTB7 Stanford
dependency test set and original test set is significantly
better than three well known open-source dependency
parsers.

Acknowledgments

The authors thank Wanxiang Che for processing the
CTB7 data into Stanford dependency format, and the
anonymous reviewers for their feedback that substan-
tially improved this paper.

References

Yushua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–
1155.

Bernd Bohnet. 2010. Top accuracy and fast dependency

8http://sourceforge.net/projects/mstparser
9http://code.google.com/p/mate-tools

10http://www.maltparser.org/

80



parsing is not a contradiction. In Proceedings of COL-
ING, pages 89–97, Beijing, China, August. Coling 2010
Organizing Committee.

Pi-Chuan Chang, Huihsin Tseng, Dan Jurafsky, and
Christopher D. Manning. 2009. Discriminative reorder-
ing with Chinese grammatical relations features. In Pro-
ceedings of SSST-3, pages 51–59, Boulder, Colorado,
June. Association for Computational Linguistics.

Wanxiang Che, Valentin Spitkovsky, and Ting Liu. 2012.
A comparison of chinese parsers for stanford dependen-
cies. In Proceedings of ACL (Volume 2: Short Papers),
pages 11–16, Jeju Island, Korea, July. Association for
Computational Linguistics.

Katsuhiko Hayashi, Shuhei Kondo, and Yuji Matsumoto.
2013. Efficient stacked dependency parsing by forest
reranking. Transactions of the Association for Compu-
tational Linguistics, 1(1):139–150.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of ACL, pages 1077–1086, Uppsala, Sweden, July.
Association for Computational Linguistics.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In Pro-
ceedings of ACL-08: HLT, pages 595–603, Columbus,
Ohio, June. Association for Computational Linguistics.

Taku Kudo and Yuji Matsumoto. 2002. Japanese depen-
dency analysis using cascaded chunking. In Proceed-
ings of Co-NLL, pages 63–69.

Zhenghua Li, Min Zhang, Wanxiang Che, and Ting Liu.
2012. A separately passive-aggressive training algo-
rithm for joint POS tagging and dependency parsing. In
Proceedings of COLING 2012, pages 1681–1698, Mum-
bai, India, December. The COLING 2012 Organizing
Committee.

Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013. Easy-
first pos tagging and dependency parsing with beam
search. In Proceedings of ACL (Volume 2: Short Pa-
pers), pages 110–114, Sofia, Bulgaria, August. Associa-
tion for Computational Linguistics.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algorithms.
In Proceedings of EACL, pages 81–88.

Joakim Nivre, Johan Hall, , and Jens Nilsson. 2006. Malt-
parser: A data-driven parser-generator for dependency
parsing. In Proceedings of LREC, pages 2216–2219.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of IWPT, pages
149–160.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguistics,
34(4):513–553.

Weiwei Sun and Xiaojun Wan. 2013. Data-driven, pcfg-
based and pseudo-pcfg-based models for chinese depen-
dency parsing. Transactions of the Association for Com-
putational Linguistics, 1(1):301–314.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceedings
of ACL, pages 384–394, Uppsala, Sweden, July. Associ-
ation for Computational Linguistics.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer.
2007. The penn chinese treebank: Phrase structure an-
notation of a large corpus. Natural Language Engineer-
ing, 11(2):207–238.

Mo Yu, Tiejun Zhao, Daxiang Dong, Hao Tian, and Di-
anhai Yu. 2013. Compound embedding features for
semi-supervised learning. In Proceedings of NAACL-
HLT, pages 563–568, Atlanta, Georgia, June. Associa-
tion for Computational Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two parsers:
Investigating and combining graph-based and transition-
based dependency parsing. In Proceedings of EMNLP,
pages 562–571, Honolulu, Hawaii, October. Association
for Computational Linguistics.

Hao Zhang and Ryan McDonald. 2012. Generalized
higher-order dependency parsing with cube pruning. In
Proceedings of EMNLP-CoNLL, pages 320–331, Jeju Is-
land, Korea, July. Association for Computational Lin-
guistics.

Yue Zhang and Joakim Nivre. 2011. Transition-based de-
pendency parsing with rich non-local features. In Pro-
ceedings of ACL:HLT, pages 188–193, Portland, Ore-
gon, USA, June. Association for Computational Lin-
guistics.

81


