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Preface

Welcome to the 13th International Conference on Parsing Technologies in the beautiful an-
cient city of Nara, Japan. This conference continues the tradition of biennial conferences orga-
nized by SIGPARSE, ACL’s Special Interest Group on Parsing. The first International Work-
shop on Parsing Technologies (IWPT) took place in 1989 in Philadelphia, and was followed
by successful biennial workshops in Cancun (’91); Tilburg (’93); Prague (’95); Boston (’97);
Trento (2000); Beijing (2001); Nancy (2003); and Vancouver (2005), after which the name was
changed from ’workshop’ to ’conference’ , while retaining the abbreviation ’IWPT’. Subse-
quent IWPT conferences were held in Prague (2007), Paris (2009) and Dublin (2011). Over
time, these conferences have developed more and more as the primary specialized forum for
research on natural language parsing.

Based on contributions to IWPT workshops and conferences, five books on parsing have been
published of which the latest one, based on IWPT 2007 and ’09, was published by Springer in
2010 as Trends in Parsing Technology, edited by Harry Bunt, Paola Merlo and Joakim Nivre.
Selected revised papers from IWPT 2011 have been accepted for publication in a special is-
sue of the Journal for Logic and Computation which is scheduled to appear in April 2014; see
http://logcom.oxfordjournals.org/content/early/recent for online pre-
publication of these papers.

This year we received a total of 28 valid submissions, Of these, 9 were accepted as long papers
and 8 as short papers. All accepted papers are published in these proceedings and presented at
the conference either as a long talk or as a short talk and a poster

In addition to the contributed papers, IWPT 2013 as usual features invited talks on topics rel-
evant to natural language parsing. This year we are delighted to welcome two distinguished
Japanese invited speakers: Jun’ichi Tsujii (Microsoft Research) and Taro Watanabe (National
Institute for Communication Technologies NiCT).

Organizing IWPT 2013 would not have been possible without the dedicated work of a number
of people. We would like to thank the local organizing committee, chaired by Yuji Matsumoto
and including Kevin Duh and Sorami Hisamoto, for an outstanding job in taking care of the
local and practical organization of this conference. We also thank Kai Zhao for his excellent
work in setting up and maintaining the IWPT 2013 website. We are extremely grateful to the
members of the program committee, who spent precious time on reviewing submitted papers
in the middle of the summer holiday season. Many thanks are also due to the sponsors whose
support helped to make IWPT 2013 possible: NAIST - the Nara Institute of Science and Tech-
nology, Springer Publishers, and the Nara Vistors Bureau. Finally, we like to thank the directors
of the NAIST, NiCT, and NTT Communication Sciences laboratories for the post-conference
visit to these labs that the IWPT 2013 participants are all invited to.

Enjoy the conference and its setting!

Harry Bunt Khalil Sima’an and Liang Huang
General Chair Program Chairs

http://logcom.oxfordjournals.org/content/early/recent
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Invited Talks

Semantic Processing – The Depth and Width

Jun’ichi Tsujii
Microsoft Research

Abstract
Accumulation of large amounts of structured or semi-structured facts and knowledge, such
as FreeBase, Yago, Wikipedia, etc., will make semantics-based Natural Language Processing
plausible in practical application settings. In this talk, I would like to address crucial problems
involved in wide and deep semantic processing. While the ability of making inferences would
be crucial, logically rigorous frameworks, which are required to solve problems intelligently,
would not be what we need in Natural Language Processing for semantics-based information
access. What we need to do first is to make linkages between textual expressions and structured
facts/knowledge. We can extend word-centered concepts such as synonymy to more general
concepts such as paraphrases of larger units of linguistic expressions such as phrases, clauses,
etc. We discuss several on-going projects in this direction of semantic processing.

Grammar Induction for Machine Translation

Taro Watanabe
National Institute for Communication Technnologies

Kyoto, Japan

Abstract
Unsupervised methods for inducing bilingual correspondence are important components in ma-
chine translation. In this talk I would like to focus on automatically inducing grammatical
information from bilingual data. Based on non-parametric Bayesian methods, first, an inver-
sion transduction grammar is learnt though binary branching in two languages. The recursive
splitting strategy is combined with the hierarchical Pitman-Yor process to memorize all the
granularities of phrasal rules. Next, I would discuss part-of-speech tag induction given depen-
dency trees in one language to improve the performance of machine translation. In particular
the monolingual infinite tree model is extended to a bilingual scenario by emitting a source
word with its aligned target words, either jointly or independently, from each hidden state of a
source-side dependency tree. Finally, I would like to present some work in progress for machine
translation.





Discontinuous Parsing with an Efficient and Accurate DOP Model

Andreas van Cranenburgh*† Rens Bod†

*Huygens ING †Institute for Logic, Language and Computation
Royal Dutch Academy of Science University of Amsterdam

P.O. box 90754, 2509 LT, The Hague, The Netherlands Science Park 904, 1098 XH, The Netherlands
andreas.van.cranenburgh@huygens.knaw.nl rens.bod@uva.nl

Abstract

We present a discontinuous variant of tree-
substitution grammar (tsg) based on Linear
Context-Free Rewriting Systems. We use this
formalism to instantiate a Data-Oriented Parsing
model applied to discontinuous treebank parsing,
and obtain a significant improvement over earlier
results for this task. The model induces a tsg
from the treebank by extracting fragments that
occur at least twice. We give a direct comparison
of a tree-substitution grammar implementation
that implicitly represents all fragments from the
treebank, versus one that explicitly operates with
a significant subset. On the task of discontinuous
parsing of German, the latter approach yields a
16 % relative error reduction, requiring only a
third of the parsing time and grammar size. Fi-
nally, we evaluate the model on several treebanks
across three Germanic languages.

1 Introduction

A Probabilistic Context-Free Grammar (pcfg) extracted
from a treebank (Charniak, 1996) provides a simple
and efficient model of natural language syntax. How-
ever, its independence assumptions are too strong to
form an accurate model of language syntax. A tree-
substitution grammar (tsg) provides a generalization
of context-free grammar (cfg) that operates with larger
chunks than just single grammar productions. A prob-
abilistic tsg can be seen as a pcfg in which several
productions may be applied at once, capturing struc-
tural relations between those productions.

Tree-substitution grammars have numerous applica-
tions. They can be used for statistical parsing, such
as with Data-Oriented Parsing (dop; Scha, 1990; Bod
et al., 2003; Sangati and Zuidema, 2011) and Bayesian

TOP

SMAIN

PPART

NP

DET NOUN VERB NOUN ADV VERB PUNCT

Dat
That

werkwoord
verb

had
had

ze
she

zelf
herself

uitgevonden
invented

.

.

Figure 1: A tree from the Dutch Alpino treebank (van der
Beek et al., 2002). PPART is a discontinuous constituent
(indicated with crossing branches) due to its extraposed NP
object. Translation: She had invented that verb herself.

tsgs (Post and Gildea, 2009; Cohn et al., 2010; Shindo
et al., 2012). Other applications include grammaticality
judgements (Post, 2011), multi-word expression identi-
fication (Green et al., 2011), stylometry and authorship
attribution (Bergsma et al., 2012; van Cranenburgh,
2012c), and native language detection (Swanson and
Charniak, 2012).

An orthogonal way to extend the domain of locality
of pcfg is to employ a formalism that produces richer
derived structures. An example of this is to allow for
producing trees with discontinuous constituents (cf. fig-
ure 1 for an example). This can be achieved with
(string rewriting) Linear Context-Free Rewriting Sys-
tems (lcfrs; Vijay-Shanker et al., 1987). Kallmeyer
and Maier (2010, 2013) use this formalism for statisti-
cal parsing with discontinuous constituents.

The notion of discontinuous constituents in annota-
tion is useful to bridge the gap between the informa-
tion represented in constituency and dependency struc-
tures. Constituency structures capture the hierarchical
structure of phrases—which is useful for identifying re-
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Figure 2: A discontinuous tree-substitution derivation of the tree in figure 1. Note that in the first fragment, which has a
discontinuous frontier non-terminal, the destination for the discontinuous spans is marked in advance, shown as ellipses.

usable elements; discontinuous constituents extend this
to allow for arbitrary long-distance relations that may
arise due to such phenomena as extraposition and word-
order freedom. The essential difference between tradi-
tional phrase-structure trees and discontinuous ones is
that the former is a two-dimensional (planar) structure
of a one-dimensional surface form, while the latter al-
lows for a higher dimensional structure. This can be
contrasted with the alternative of introducing artificial
empty categories, which encode the same information
but in the labels instead of the tree structure.

The two approaches of tree-substitution and discon-
tinuity have been synthesized into a discontinuous all-
fragments grammar (van Cranenburgh et al., 2011; van
Cranenburgh, 2012a) defined implicitly through a re-
duction (Goodman, 2003). The present paper extends
this work. We present a grammar transformation to
parse with an arbitrary discontinuous tsg and present
results with this new implementation, using tsgs in-
duced by extracting fragments from treebanks. Our
method outperforms previous results for discontinuous
constituency parsing.

2 Grammar formalisms

In this section we formulate how a discontinuous Tree-
Substitution Grammar can be implemented using a
Linear Context-Free Rewriting System as the base
grammar.

2.1 Linear Context-Free Rewriting Systems
lcfrs can be seen as the discontinuous equivalent of
cfg, and its probabilistic variant can be used as a dis-
continuous treebank grammar. lcfrs generalizes over
cfg by rewriting a fixed number of strings at a time for
each non-terminal. This number, the measure of dis-
continuity in a constituent, is called the fan-out. A cfg
is an lcfrs with a maximum fan-out of 1. In this paper
we use the simple rcg notation (Boullier, 1998) for

lcfrs. We will define a restricted variant that operates
on unary and binary productions.

A binarized, string-rewriting lcfrs is a 4-tuple
G “ xN,T, P, S y. N and T are disjoint finite sets of
non-terminals and terminals, respectively. A function
φ : N Ñ t1, 2, . . . , u specifies the unique fan-out for
every non-terminal symbol. S is the distinguished start
symbol with S P N, φpS q “ 1. We assume a set V of
variables of the form bi and ci with i P N. P is a finite
set of productions, which come in three forms:

Apα1, . . . , αφpAqq Ñ Bpb1, . . . , bφpBqq Cpc1, . . . , cφpCqq

Apα1, . . . , αφpAqq Ñ Bpb1, . . . , bφpBqq

Dptq Ñ ε

where A, B,C,D P N, αi P V˚ for 1 ď i ď φpAiq,
t P T , and φpDq “ 1.

Productions must be linear: if a variable occurs in
a production, it occurs exactly once on the left hand
side (lhs), and exactly once on the right hand side
(rhs). A production is ordered if for any two variables
x1 and x2 occurring in a non-terminal on the rhs, x1
precedes x2 on the lhs iff x1 precedes x2 on the rhs. A
production can be instantiated when its variables can
be bound to spans such that for each component αi of
the lhs, the concatenation of its terminals and bound
variables forms a contiguous span in the input. In the
remainder we will notate discontinuous non-terminals
with a subscript indicating their fan-out.
lcfrs productions may be induced from a discontin-

uous tree, using a procedure described in Maier and
Søgaard (2008). We extend this procedure to handle
frontier non-terminals, i.e., non-terminals that do not
dominate terminals or non-terminals, because they are
part of a tree fragment extracted from a treebank.

Given a discontinuous tree, we extract a grammar
production for each non-leaf non-terminal node. The
node itself forms the lhs non-terminal, and the non-
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terminals that are immediately dominated by it forms
the rhs. The yield of each node is converted to a
sequence of indices reflecting sentence order; this in-
cludes the spans of any frontier non-terminals. For
each span in the yield, identified as a maximally con-
tinuous range in the sequence of indices, a variable is
introduced. The variables become the arguments of the
lhs and rhs non-terminals, ordered as in the original
yield. For the rhs non-terminals, each argument is a
single variable. The arguments to the lhs non-terminal
consist of a tuple of one or more variables correspond-
ing to consecutive ranges of the sequence of indices.
Pre-terminals yield a production with their terminal as
a direct argument to the pre-terminal, and an empty
rhs. Frontier non-terminals only appear on the rhs
of a production. See figure 3 for examples of lcfrs
productions extracted from discontinuous trees.

2.2 Tree-Substitution Grammar
In this section we present a reduction of an arbitrary
discontinuous tsg to a string-rewriting lcfrs. We first
look at general strategies for reducing a tsg to a simpler
formalism, and then show that these also apply for the
discontinuous case.

A tsg is a tuple xN,T,R, S y. N and T are disjoint
finite sets of non-terminals and terminals, respectively.
R is a finite set of elementary trees of depth greater than
or equal to 1. Elementary trees from R are combined by
substituting a derived tree rooted at a non-terminal X
at some leaf node in an elementary tree with a frontier
node labeled with X. Derived trees rooted at the start
symbol S with leaf nodes labeled by terminal symbols
are taken to be the trees generated by the grammar.
See figure 2 for an example of a tsg derivation; this
derivation contains discontinuous constituents, how
these are combined with a tsg shall be explained below.

Goodman (2003) gives a reduction to a pcfg for the
special case of a tsg based on all fragments from a
given treebank. This reduction is stochastically equiva-
lent after the summation of probabilities from equiva-
lent derivations—however, it does not admit parsing of
tsgs with arbitrary sets of elementary trees or arbitrary
probability models.

We use a transformation based on the one given
in Sangati and Zuidema (2011). Internal nodes are
removed from elementary trees, yielding a flattened
tree of depth 1. We binarize this flattened tree with a
left-factored binarization that adds unique identifiers to

Elementary tree Productions

S

VP2

NP

...

VB

uitgevonden

VB

...

NN

...

ADV

...

Spabq Ñ S1paq VBpbq

S1pabq Ñ S2paq ADVpbq

S2pabq Ñ S3paq NNpbq

S3pabq Ñ NPpaq VB4pbq

VB4puitgevondenq Ñ ε

S

VP2

. . . . . .

VB

had

NN

ze

ADV

zelf

Spabcq Ñ S5
2pa, cq ADV6pbq

S5
2pab, cq Ñ S7

2pa, cq NNpbq

S7
2pab, cq Ñ VP2pa, cq VB8pbq

VB8phadq Ñ ε
NN7pzeq Ñ ε
ADV6pzelfq Ñ ε

VP2

NP

. . .

VB

uitgevonden

VP2pa, bq Ñ NPpaq VB9pbq

VB9puitgevondenq Ñ ε

Figure 3: Transforming a tree-substitution grammar into an
lcfrs. The elementary trees are extracted from the tree in
figure 1 with abbreviated labels. The right column shows
the productions after transforming each elementary tree.
Note that the productions for the first elementary tree con-
tain no discontinuity, because the discontinuous internal
node is eliminated. Conversely, the transformation may also
introduce more discontinuity, due to the binarization.

every intermediate node introduced by the binarization.
In order to separate phrasal and lexical productions,
a new pos tag is introduced for each terminal, which
selects for that specific terminal. A sequence of pro-
ductions is then read off from the transformed tree.
The unique identifier in the first production is used to
look up the original elementary tree in a backtransform
table,1 which is used to restore the internal nodes after
parsing. The weight associated with an elementary tree
carries over to the first production it produces; the rest
of the productions are assigned a weight of 1.

The transformation defined above assumes that a
sequence of productions can be read off from a syntac-
tic tree, such as a standard phrase-structure tree that
can be converted into a sequence of context-free gram-
mar productions. Using the method for inducing lcfrs
productions from syntactic trees given in the previ-
ous section, we can apply the tsg transformation for
discontinuous trees as well. Figure 3 illustrates the
transformation of a discontinuous tsg.

1Note that only this first production requires a globally unique
identifier; to reduce the grammar constant, the other identifiers can
be merged for equivalent productions.
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3 Inducing a TSG from a treebank

In Data-Oriented Parsing the grammar is the treebank
itself, and in principle all possible fragments from its
trees can be used to derive new sentences. Grammar
induction is therefore conceptually simple (although
the grammar is very large), as there is no training or
learning involved. A fragment of a tree T is defined
as a connected subgraph of T with two or more nodes,
where each node in the fragment either has no children
or the same children as the corresponding node in T .

The use of all possible fragments allows for multiple
derivations of the same tree; this spurious ambiguity is
seen as a virtue in dop, because it combines the advan-
tages of specific larger fragments and the smoothing
of smaller fragments. This is in contrast to more parsi-
monious approaches which decompose each tree in the
training corpus into a sequence of fragments represent-
ing a single derivation, such as in Bayesian tsg (Post
and Gildea, 2009; Cohn et al., 2010)

Representing all possible fragments of a treebank is
infeasible, since the number of fragments is exponen-
tial in the number of nodes. A practical solution is to
define a subset. A method called Double-dop (2dop;
Sangati and Zuidema, 2011) realizes this without com-
promising on the principle of data-orientation by re-
stricting the set to recurring fragments, i.e., fragments
that occur at least twice. These are found by con-
sidering every pair of trees and extracting the largest
tree fragments they have in common. It is feasible to
do this exhaustively for the whole treebank. This is
in contrast to the sampling of fragments in earlier dop
models (Bod, 2001) and Bayesian tsgs. Since the space
of fragments is enormous (viz. exponential), it stands
to reason that a sampling approach will not extract all
relevant fragments in a reasonable time frame.

Sangati et al. (2010) presents a tree-kernel method
for extracting maximal recurring fragments that oper-
ates in time quadratic in the number of nodes in the
treebank. However, using a different tree kernel, tree
fragments can be obtained from a treebank in linear
average time (van Cranenburgh, 2012b).

3.1 Discontinuous fragments

The aforementioned fragment extraction algorithms
can be adapted to support trees with discontinuous con-
stituents, using a representation where leaf nodes are
decorated with indices indicating their ordering. This

1. Translate indices so that they start at 0; e.g.:
VB

uitgevonden5

VB

uitgevonden0

2. Reduce spans of frontier non-terminals to length 1;
move surrounding indices accordingly; e.g.:

S

VP2

0:1 5:5

VB

had2

NN

ze3

ADV

zelf4

S

VP2

0 5

VB

had1

NN

ze2

ADV

zelf3

3. Compress gaps to length 1; e.g.:
VP2

NP

0

VB

uitgevonden5

VP2

NP

0

VB

uitgevonden2

Figure 4: Canonicalization of fragments extracted from
parse trees. The example fragments have been extracted
from the tree in figure 1. The fragments are visualized here
as discontinuous tree structures, but since the discontinu-
ities are encoded in the indices of the yield, they can be
represented in a standard bracketing format as used by the
fragment extractor.

makes it possible to use the same data structures as for
continuous trees, as long as the child nodes are kept
in a canonical order (induced from the order of the
lowest index of each child). Indices are used not only
to keep track of the order of lexical nodes in a frag-
ment, but also for that of the contribution of frontier
non-terminals. This is necessary in order to preserve
the configuration of the yield in the original sentence.
The indices are based on those in the original sentence,
but need to be decoupled from this original context.
This process is analogous to how lcfrs productions are
read off from a tree with discontinuous constituents.
The canonicalization of fragments is achieved in three
steps, described and illustrated in figure 4. In the exam-
ples, frontier non-terminals have spans denoted with
inclusive start:end intervals, as extracted from the orig-
inal parse tree, which are reduced to variables denoting
a contiguous spans whose relation to the other spans is
reflected by their indices.

When binarized with h “ 8, v “ 1 markoviza-
tion (Klein and Manning, 2003), about 8.5 % of frag-
ments extracted from the Negra treebank (cf. sec. 5.1)
contain a discontinuous root or internal node, com-
pared to 30 % of sentences in the treebank that contain
one or more discontinuous constituents.
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4 Parsing

After extracting fragments, we apply the grammar
transformation to turn them into grammar productions.
In order to achieve full coverage, we augment the set
of fragments with cover fragments of depth 1 corre-
sponding to all single productions in the treebank. Pro-
ductions corresponding to fragments are assigned a
probability based on the frequency of the respective
fragment, productions introduced by the transforma-
tion are given a probability of 1.

We parse with the transformed grammar using the
disco-dop parser (van Cranenburgh et al., 2011; van
Cranenburgh, 2012a). This is an agenda-based parser
for plcfrs based on the algorithm in Kallmeyer and
Maier (2010, 2013), extended to produce n-best deriva-
tions (Huang and Chiang, 2005) and exploit coarse-to-
fine pruning (Charniak et al., 2006).

4.1 Probabilities and disambiguation

To instantiate the probabilistic model we use the rel-
ative frequency estimate (rfe), since it has shown
good results with the Double-dop model (Sangati and
Zuidema, 2011). The frequency of fragments is ob-
tained by the fragment extractor, divided by the total
frequency mass of fragments with the same root node.

In dopmany derivations may produce the same parse
tree, and it has been shown that approximating the
most probable parse, which considers all derivations
for a tree, yields better results than the most probable
derivation (Bod, 1995). To select a parse tree from a
derivation forest, we marginalize the 10,000-best dop
derivations and select the tree with the most probability
mass.

4.2 Coarse-to-fine pruning

In order to tame the complexity of lcfrs and dop, we
apply the same coarse-to-fine pruning as in van Cra-
nenburgh (2012a). Namely, we parse in three stages:

1. Split-pcfg: A pcfg approximation of the discon-
tinuous treebank grammar; rewrites spans of dis-
continuous constituents independently

2. plcfrs: The discontinuous treebank grammar;
rewrites discontinuous constituents in a single
operation

3. The discontinuous dop grammar: tree fragments
instead of individual productions from treebank

The first stage is necessary because without pruning,
the plcfrs generates too many discontinuous spans, the
majority of which are implausible or not even part of
a complete derivation. The second stage is not neces-
sary for efficiency but gives slightly better accuracy on
discontinuous constituents.

The pcfg approximation splits discontinuous con-
stituents into several non-terminals related through
their labels; e.g.:

plcfrs production: VP2pa, bq Ñ VBpaq PRTpbq

pcfg approximation: t VP2*1 Ñ VB,

VP2*2 Ñ PRT u

In a post-processing step pcfg derivations are converted
to discontinuous trees by merging siblings marked with
’*’. This approximation overgenerates compared to
the respective lcfrs; e.g., two components VP2*1 and
VP2*2 may be generated which where extracted from
different discontinuous constituents, such that their
combination could not be generated by the lcfrs.

Pruning is achieved by limiting the second and third
stages to the labeled spans occurring in the k-best
derivations of the previous stage. The initial values for
k are 10,000 and 50, for the plcfrs and dop grammar
respectively. These values are chosen to be able to
directly compare the new approach with the results
in van Cranenburgh (2012a). However, experimenting
with a higher value for k for the dop stage has shown
to yield improved performance.

4.3 Reconstructing derivations

After a derivation forest is obtained and a list of k-best
derivations has been produced, the backtransform is ap-
plied to these derivations to recover their internal struc-
ture. This proceeds by doing a depth-first traversal of
the derivations, and expanding each non-intermediate2

node into a template of the original fragment. These
templates are stored in a backtransform table indexed
by the first binarized production of the fragment in
question. The template fragment has its substitution
sites marked, which are filled with values obtained
by recursively expanding the children of the current
constituent. To reconstruct 10,000 derivations takes 2
seconds on average.

2An intermediate node is a node introduced by the binarization.
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Language treebank train dev test

german Negra sent. 1–18,602 sent. 19,603–20,602 sent. 18,603–19,602
german Tiger sec. 2–9 / 1–9 sec. 1 sec. 0
english ptb: wsj sec. 2-21 sec. 24 sec. 23
dutch Alpino 16,319 sents. extra: 446 sents. CoNLL2006: 386 sents.
dutch Lassy small 52,157 sents. 6,520 sents. 6,523 sents.

Table 1: The discontinuous treebanks used in the experiments.

5 Experimental setup

In this section we describe the experimental setup for
benchmarking our discontinuous Double-dop imple-
mentation on several discontinuous treebanks.

5.1 Data

We evaluate on three languages: the German Negra &
Tiger treebanks (Skut et al., 1997; Brants et al., 2002),
a discontinuous version of the Penn treebank (Evang
and Kallmeyer, 2011), and the Dutch Alpino & Lassy
treebanks (van der Beek et al., 2002; Van Noord, 2009);
cf. table 1. Negra contains discontinuous annotations
by design, as a strategy to cope with the relatively
free word-order of German. The discontinuous Penn
treebank consists of the wsj section in which traces
have been converted to discontinuous constituents; we
use the version used in Evang and Kallmeyer (2011,
sec. 5.1-5.2) without restrictions on the transforma-
tions. The Alpino treebank is referred to as a depen-
dency treebank but when discontinuity is allowed it can
be directly interpreted as a constituency treebank. Fi-
nally, Tiger and Lassy use similar annotation schemes
as Negra and Alpino, respectively. The train-dev-test
splits we employ are as commonly used for the Penn
treebank; for Negra we use the one defined in Dubey
and Keller (2003); for Tiger we follow Hall and Nivre
(2008) who define sections 0–9 where sentence i be-
longs to section i mod 10; for Alpino and Lassy the
split is our own.3

For purposes of training we remove grammatical
functions from the treebanks, and binarize the trees
in the training sets head-outward with h “ 1, v “ 1

3The Alpino training set consists of all manually corrected
sentences distributed with the Alpino parser, except for the Lassy
corpus samples, gen g suite, and our development and test set,
extra and CoNNL2006 respectively. The Lassy split derives from
80-10-10 partitions of the canonically ordered sentence IDs in each
subcorpus (viz. dpc, WR, WS, and wiki).

markovization (v “ 2 for ptb) and heuristics for head
assignment (Klein and Manning, 2003); i.e., n-ary
nodes are factored into nodes specifying an immediate
sibling and parent. We add fan-out markers to guaran-
tee unique fan-outs for non-terminal labels, e.g., tVP,
VP2, VP3, . . .u, which are removed again for evalua-
tion. We apply a few simple manual state splits.4 In
order to compare the results on Negra with previous
work, we do not apply the state splits when working
with gold pos tags.

The complexity of parsing with an lcfrs depends on
the maximal sum of the non-terminal fan-outs of its
productions (Gildea, 2010). Using this measure, pars-
ing with the dop grammars extracted from Negra, wsj,
and Alpino has a worst-case time complexity of Opn9q.
The complexities for Tiger and Lassy are Opn10q and
Opn12q respectively, due to a handful of anomalous
sentences; by discarding these sentences, a grammar
with a complexity of Opn9q can be obtained with no or
negligible effect on accuracy.

5.2 Unknown words

In initial experiments we present the parser with the
gold part-of-speech tags, as in previous experiments
on discontinuous parsing. Later we show results when
tags are assigned automatically with a simple unknown
word model, based on the Stanford parser (Klein and
Manning, 2003). Tags that rewrite more than σ words
are considered open class tags, and words they rewrite
are open class words. Open class words in the training

4For English we apply the state splits described in Evang and
Kallmeyer (2011, sec. 4.2). S nodes with a WH-element are
marked as such. VPs with as head a bare infinitive, to-infinitive, or
particle verb are marked as such. The marking for VPs headed by
a bare or to-infinitive is percolated to the parent S-node.

For Dutch and German we split the pos tags for sentence-ending
punctuation ‘.!?’. For German we additionally split S nodes that
are relative clauses, based on the respective grammatical function
label.
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set that do not occur more than 4 times are replaced
with features; words in the test set which are not part
of the known words from the training set are replaced
with the same features. The features are defined in
the Stanford parser as model 4, which is relatively
language independent. ϵ probability mass is handed
out for combinations of known open class words with
unseen tags. For ϵ we use 0.01; σ is tuned on each
training set to ensure that no closed class words are
identified as open class words; for English and German
we use 150, and 100 for Dutch.

5.3 Discontinuity without lcfrs

The idea up to now has been to generate discontin-
uous constituents using formal rewrite operations of
lcfrs. However, the pcfg approximation used in the
pruning stage encodes discontinuities as part of the
labels. Instead of using this technique only as a crutch
for pruning, it can also be combined with the use of
fragments to obtain a purely cubic time pipeline. While
the pcfg approximation increases the independence as-
sumptions for discontinuous constituents, the use of
large fragments can mitigate this increase. We shall
refer to this alternative approach as ‘Split-2dop.’

5.4 Metrics

We employ the exact match and the Parseval mea-
sures (Black et al., 1992) as evaluation metrics. The
latter can be straightforwardly generalized to discontin-
uous spans by representing spans of bracketings as sets
of indices (Maier, 2010). Unfortunately it is not always
made explicit in previous work on Negra parsing what
kind of evaluation parameters are being used. We use
the evaluation parameters typically used with EVALB
on the Penn treebank. Namely, the root node, as well as
punctuation, are not counted towards the score (similar
to COLLINS.prm, except that we discount all punctu-
ation, including brackets). Counting the root node as
a constituent should not be done because it is not part
of the corpus annotation and the parser is able to gen-
erate it without doing any work; when the root node
is counted it inflates the F-score by several percentage
points. Punctuation should be ignored because in the
original annotation of the Dutch and German treebanks,
punctuation is attached directly under the root node
instead of as part of constituents. Punctuation can be
re-attached using heuristics for the purposes of parsing,
but evaluation should not be affected by this.

Model k=50 k=5000

dop reduction: disco-dop 74.3 73.5
Double-dop: disco-2dop 76.3 77.7

Table 2: Comparing the dop reduction (implicit fragments)
with Double-dop (explicit fragments) on the Negra develop-
ment set with different amounts of pruning (higher k means
less pruning; gold pos tags).

6 Evaluation

Table 2 compares previous results of Disco-dop to the
new Disco-2dop implementation. The second column
shows the accuracy for different values of k, i.e., the
number of coarse derivations that determine the al-
lowed labeled spans for the fine stage. While increas-
ing this value did not yield improvements using the
dop reduction, with Disco-2dop there is a substantial
improvement in performance, with k “ 5000 yielding
the best score among the handful of values tested.

Table 3 lists the results for discontinuous parsing of
three Germanic languages, with unknown word mod-
els. The cited work by Kallmeyer and Maier (2013)
and Evang and Kallmeyer (2011) also uses lcfrs for
discontinuity but employs a treebank grammar with
relative frequencies of productions. Hall and Nivre
(2008) use a conversion to dependencies from which
discontinuous constituents can be recovered. For En-
glish and German the results improve upon the best
known discontinuous constituency parsing results. The
new system achieves a 16 % relative error reduction
over the previous best result for discontinuous parsing
on sentences ď 40 in the Negra test set. In terms of
efficiency the Disco-2dop model is more than three
times as fast as the dop reduction, taking about 3 hours
instead of 10 on a single core. The grammar is also
more compact: the size of the Disco-2dop grammar is
only a third of the dop reduction, at 6 mb versus 18 mb
compressed size.

The substantial improvements on the larger Ger-
man and Dutch treebanks Tiger and Lassy suggest that
providing more training data will keep improving ac-
curacy. The results for Dutch are not comparable to
earlier work because such work has only been evalu-
ated on dependency relations of grammatical functions,
which our model does not produce. Earlier work on re-
covering empty categories and their antecedents in the
Penn treebank (Johnson, 2002; Gabbard et al., 2006;
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Parser, treebank |w| DEV TEST
POS F1 EX POS F1 EX

GERMAN
*vanCra2012, Negra ď 40 100 74.3 34.3 100 72.3 33.2

†*KaMa2013, Negra ď 30 100 75.8
*this paper, Negra ď 40 100 77.7 41.5 100 76.8 40.5
this paper, Negra ď 40 96.7 76.4 39.2 96.3 74.8 38.7
HaNi2008, Tiger ď 40 97.0 75.3 32.6
this paper, Tiger ď 40 97.6 78.7 40.5 97.6 78.8 40.8

ENGLISH
†*EvKa2011, wsj ă 25 100 79.0

this paper, wsj ď 40 96.0 85.2 28.0 96.6 85.6 31.3

DUTCH
this paper, Alpino ď 40 90.1 74.5 37.2 85.2 65.9 23.1
this paper, Lassy ď 40 94.1 79.0 37.4 94.6 77.0 35.2

Table 3: Discontinuous parsing of three Germanic languages.
POS is the part-of-speech tagging accuracy, F1 is the labeled
bracketing F1-score, EX is the exact match score. Results
marked with * use gold pos tags; those marked with † do not
discount the root node and punctuation. NB: KaMa, EvKa,
and HaNi use a different test set and length restriction. Key
to citations: vanCra: van Cranenburgh (2012a); KaMa:
Kallmeyer and Maier (2013); HaNi: Hall and Nivre (2008);
EvKa: Evang and Kallmeyer (2011).

Schmid, 2006) has recovered long-distance dependen-
cies by producing the traces and co-indexation as in the
original annotation; unfortunately the results are not di-
rectly comparable because their evaluation method de-
pends on having both traces and antecedents, while our
model directly generates discontinuous constituents.

Table 4 shows a comparison of coarse-to-fine
pipelines with and without lcfrs, showing that, sur-
prisingly, the use of a formalism that explicitly models
discontinuity as an operation does not give any im-
provement over a simpler model in which discontinu-
ities are only modeled probabilistically by encoding
them into labels and fragments. This demonstrates that
given the use of tree fragments, discontinuous rewrit-
ing through lcfrs comes at a high computational cost
without a clear benefit over cfg.

From the results it is clear that a probabilistic tree-
substitution grammar is able to provide much better
results than a simple treebank grammar. However, it
is not obvious whether the improvement is due to the
more fine-grained statistics (i.e., weakened indepen-
dence assumptions), or because of the use of larger
chunks. A serendipitous discovery during develop-
ment of the parser provides insight into this: during an

Pipeline F1 % EX %

Split-pcfg (no lcfrs, no tsg) 65.8 28.0
Split-pcfgñ plcfrs (no tsg) 65.9 28.6
Split-pcfgñ plcfrsñ 2dop 77.7 41.5
Split-pcfgñ Split-2dop (no lcfrs) 78.1 42.0

Table 4: Parsing discontinuous constituents is possible with-
out lcfrs (Negra dev. set, gold pos tags; results are for final
stage).

experiment, the frequencies of fragments were acciden-
tally permuted and assigned to different fragments, but
the resulting decrease in accuracy was surprisingly low,
from 77.7 % to 74.1 % F1—suggesting that most of the
improvement over the 65.9 % of the plcfrs treebank
grammar comes from memorizing larger chunks, as
opposed to statistical reckoning.

7 Conclusion

We have shown how to parse with discontinuous tree-
substitution grammars along with a practical imple-
mentation. We have presented a fragment extraction
tool that finds recurring structures in treebanks effi-
ciently, and supports discontinuous treebanks. This
enables a data-oriented parsing implementation pro-
viding a compact, efficient, and accurate model for
discontinuous parsing in a single generative model that
improves upon previous results for this task.

Surprisingly, it turns out that the formal power of
lcfrs to describe discontinuity is not necessary, since
equivalent results can be obtained with a probabilistic
tree-substitution grammar in which long-distance de-
pendencies are encoded as part of non-terminal labels.

The source code of the parser used in this work has
been released as disco-dop 0.4, available at:
https://github.com/andreasvc/disco-dop
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Abstract

Many applications (not necessarily only from
computational linguistics), involving record- or
graph-like structures, would benefit from a
framework which would allow to efficiently test
a single structure φ under various operations �
against a compact representation = of a set of
similar structures: φ � =. Besides a Boolean
answer, we would also like to see those struc-
tures stored in = which are entailed by opera-
tion �. In our case, we are especially interested
in�s that implement feature structure subsump-
tion and unifiability. The urgent need for such
a kind of framework is related to our work on
the approximation of (P)CFGs from unification-
based grammars. We not only define the mathe-
matical apparatus for this in terms of finite-state
automata, but also come up with an efficient im-
plementation mostly along the theoretical basis,
together with measurements in which we com-
pare our implementation of = against a discrim-
ination tree index.

1 Introduction and Motivation

There exist several applications in which a single fea-
ture structure (FS) is tested against a large set of struc-
tures with operations like forward and backward sub-
sumption, unifiability, or containedness.
One possibility to optimize this task is to separate the
set into subsets with disjoint properties that help to
quickly cut down the number of structures under con-
sideration. This is usually called indexing of feature
structures and several proposals have been published
on how to achieve this efficiently, namely, (Goetz
et al., 2001), (Kiefer and Krieger, 2002), (Ninomiya
and Makino, 2002), and (Munteanu, 2003). All ap-
proaches use more or less the same strategy: select a
set of paths from the FSs, extract the values/types at
the end of these paths, and then build indexing infor-
mation based on these types. The approaches differ
mostly in the last step, viz., on how the information of
the set of types is encoded or exploited, resp.

In cases where the structures originate from applica-
tions like constraint-based natural language process-
ing, they are often structurally similar to one an-
other. In graph-based implementations, all the above
mentioned operations require a traversal of the graph
structure and the execution of appropriate tests at the
edges or nodes. It seems natural to exploit this simi-
larity by avoiding multiple traversals, packing the in-
formation of the elements such that the tests can be
performed for a whole set of structures at once.
With this idea in mind, we propose a new method to
store a large set of FSs in a very compact form, which
is more memory efficient than storing the set of single
structures. The resulting data structure = reminds us
of distributed disjunctions (Maxwell III and Kaplan,
1991). Mathematically, we will characterize= and the
required operations in terms of finite automata and op-
erations over these automata, will provide implemen-
tation details of the packed index data structure, and
will compare = with the index used in (Kiefer and
Krieger, 2004).
The motivation to study this task arose from ex-
periments to approximate a large-coverage constraint
grammar, the LinGO ERG (Flickinger, 2011), in
terms of CFGs. Besides this, feature structure index-
ing can and has also been used for
• feature structure operations for extracting

context-free grammars (this paper);
• lexicon and chart lookup during parsing or gen-

eration, or for accessing FS tree banks;
• establishing a lookup structure for a semantic

RDF triple repository.

The structure of this paper is as follows. In sec-
tion 2, the application that motivates this work is de-
scribed. After that, a mathematical characterization
of the data structure and algorithms in terms of finite
state automata and operations thereon is presented in
section 3. The implementation and its relation to the
mathematical apparatus is covered in section 4. Sec-
tion 5 contains measurements which compare the im-
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plementation of the new index to the discrimination
tree index from (Kiefer and Krieger, 2004).

2 Our Application: CF Approximations

The need for this data structure arose from an attempt
to compute a context-free approximation of the cur-
rent LinGO ERG HPSG grammar (Flickinger, 2011).
This grammar is one of the most complex constraint-
based grammars ever written, containing 91934 types,
217 rules, and 36112 lexical types, resulting in a very
high coverage of the English language.
The first tests were run using a reimplementation of
(Kiefer and Krieger, 2004) in a 32-bit Java environ-
ment, all ending in memory overflow. After a reduc-
tion of the initial (lexicon) structures, the next test
was manually cancelled after two weeks which made
the need for a more efficient way of handling the vast
amount of FSs and operations obvious. The algorithm
outlined below is described in more detail in (Kiefer
and Krieger, 2004), including various optimizations.
The Approximation Algorithm. Approximation
starts by applying the available rules of a grammar to
the already existing lexical entries, thereby generating
new FSs which, again, are used as rule arguments in
new rule instantiations. This process is iterated, until
no further structures are computed, i.e., until a fixpoint
is reached. For this process to terminate, it must be
ensured that the FSs will not continue to grow forever.
This is achieved by two means.
Applying restrictors. Restrictors are functions that
delete or transform parts of a feature structure, and
are applied to get rid of features that encode the con-
stituent tree, or parts that will only increase the num-
ber of structures without imposing constraints during
parsing, e.g., terminal string labels in lexicon entries.
More than one restrictor may be used, e.g., to take
proper care of lexical vs. phrasal structures.
Reducing the set of FSs under subsumption. The
set of FSs T may not contain elements which are
comparable under subsumption, i.e., there are no FS
φ, φ′ ∈ T s.t. φ v φ′. This implies that a newly gen-
erated FS ψ must be checked against T , and in case ψ
is subsumed by some element from T , it is discarded;
conversely, all elements that are subsumed by ψ must
be found and removed from T .
The informal algorithm from above makes use of an
index structure = to efficiently implement T , using

the following operations thereon:

1. find potential unifiable members for an input fea-
ture structure during rule instantiations;

2. check if a new FS is subsumed by a structure in the
index after a new structure has been created;

3. add a non-subsumed structure, and remove all cur-
rent members which are subsumed by the new one.

It is worth noting that operation 1 is only an imper-
fect filter in all implementations, i.e., full unification
still has to be performed on all structures that are re-
turned, and there will still be unification failures for
some structures. Contrary to other approaches, the
subsumption operations in our implementation return
all and only all correct answers.

3 A FSA Characterization of the Index

We start this section with some recap in order to moti-
vate our decisions why we have deviated from some of
the standard definitions. This includes a special defi-
nition of typed feature structures (TFS) as determinis-
tic finite state automata (deterministic FSA or DFSA)
which replaces the type decoration of nodes by addi-
tional type labels, attached to new edges.
Given the DFSA characterization of typed feature
structures, we define TFS unification and subsump-
tion in terms of operations on the corresponding au-
tomata and their recognized languages.
We then present the finite-state characterization of the
index, focussing on the integration of new TFSs.
After that, we describe typed feature structure sub-
sumption of an input query (a potentially underspeci-
fied TFS) against the index. This includes the defini-
tion of an effective procedure that constructs answer
automata with their enclosing result structures.

3.1 Edge-Typed Feature Structures
In line with early work by Shieber on the PATR-II sys-
tem (Shieber, 1984) and work by Kasper & Rounds
(Kasper and Rounds, 1986; Rounds and Kasper, 1986)
for the untyped case, Carpenter defines a typed fea-
ture structure (without disjunctions or sets) as a kind
of deterministic finite state automaton (Hopcroft and
Ullman, 1979) with the following signature (Carpen-
ter, 1992, p. 36):

Definition 1 (TYPED FEATURE STRUCTURE)
A (conjunctive) typed feature structure (TFS) over a
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finite set of types T and a finite set of features F is a
quadruple 〈Q, q0, θ, δ〉, such that
• Q is a finite set of nodes,
• q0 ∈ Q is the root node,
• θ : Q→ T is a total node typing function, and
• δ : Q×F → Q a partial feature value function.

The use of θ and δ thus allows us to attach labels
(types and features) to nodes and edges of an automa-
ton, representing a TFS. We note here that this def-
inition does not employ a distinguished set of final
states F . When extending the TFS model in Defi-
nition 3, we will assume that F always refers to the
set of all leaf nodes, nodes that do not have outgoing
edges. This will turn out important when we charac-
terize TFS unification and subsumption as operations
over the languages recognized by the FSA. The fol-
lowing TFS represents an underspecified singular NP.

Example 1 (FEATURE STRUCTURE)

np
x

agr

>

sg

pers

AGR

SUBJ AGR

NUM

PERS

We often use an alternative representation to de-
pict TFSs, so-called attribute-value matrices (AVMs).
Reentrancies in the above automaton are expressed
through logical variables in the AVM (here: x).
Example 2 (ATTRIBUTE-VALUE MATRIX)




np

AGR x




agr
NUM sg
PERS pers




SUBJ|AGR x




In the following, we no longer distinguish between
TFSs and AVMs as they denote the same set of ob-
jects (there exists a trivial bijection between TFSs and
AVMs). We also make use of the notion of a type hi-
erarchy, underlying a typed feature structure and op-
erations thereon, such as typed feature structure unifi-
cation and subsumption.

Definition 2 (TYPE HIERARCHY)
Let T be a finite set of types and let ≤ be a binary
relation over T , called type subsumption. A decid-
able partial order 〈T ,≤〉 then is called a type hier-
archy (or an inheritance hierarchy). T contains two
special symbols: > is called the top type (or the most

general type) and ⊥ is called the bottom type (or the
most specific type), according to ≤.
We will now deviate from the TFS definition in (Car-
penter, 1992) in that we move away from the node-
oriented type representation to an edge-based im-
plementation whose set of features is now given by
F ] T . Thus, we have to make sure that T and F are
disjoint (as can be easily realized via renaming). This
extension results in deterministic automata with di-
rectly interpretable edge labels and unlabeled nodes.
The following TFS depicts this modification when ap-
plied to the TFS from Example 1. Note that we have
not renamed the types here, but have used a differ-
ent style (italics) in order to distinguish them from the
original features (typewriter).

Example 3 (FEATURE STRUCTURE, EXTENDED)

. .

.

..

AGR

SUBJ
AGR

NUM

PERS

np agr

>

sg

pers

Given the above edge-based representation, we can
now define an edge-typed feature structure (ETFS),
mirroring exactly this modification.

Definition 3 (EDGE-TYPED FS)
An edge-typed feature structure (ETFS) over a finite
set of types T and a finite set of features F is a quin-
tuple 〈Q,Σ, δ, q0, F 〉, such that
• Q is a finite set of nodes,
• Σ = F ] T is a finite input alphabet,
• δ : Q×Σ→ Q is a partial feature value function,
• q0 ∈ Q is the root node, and
• F = {q ∈ Q | δ(q, a) ↑, for all a ∈ Σ} is the

finite set of final states.
We notice here that F corresponds exactly to the set
of leaf nodes, nodes without outgoing edges, and that
the total typing function θ is no longer needed.
We finally define a stronger class of ETFSs by enforc-
ing acyclicity, meaning that these structures are only
able to recognize finite languages. This assumption
makes the definition of the index together with index
unification and subsumption easy to understand. It is
also worth noting that the applications in which we
are interested (parsing with HPSG grammars (Pollard
and Sag, 1994) and grammar approximation (Kiefer
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and Krieger, 2004)) do forbid such cyclic TFS. In case
cyclic structure result from a unification of two TFSs,
the Tomabechi-style unification engines that we were
using in our systems will signal a failure in the final
copy phase.
Definition 4 (ACYCLIC ETFS)
An acyclic edge-typed feature structure is an ETFS
which does not allow for infinite paths:
6 ∃q ∈ Q, 6 ∃f ∈ F∗ . δ̂(q, f) = q

Recall, Σ = F ] T , so when we say path here, we
usually refer to elements from F∗ (but not from F∗T ,
for which we use the term extended path). Note that δ̂
above refers to the usual extension of δ, when moving
from Σ to Σ∗ (Hopcroft and Ullman, 1979, p. 17):
• δ̂(q, ε) := q
• δ̂(q, wa) := δ(δ̂(q, w), a), for q ∈ Q,w ∈ Σ∗,

and a ∈ Σ

3.2 TFS Unification and Subsumption
Given Definition 3, we are now able to define ETFS
subsumption v and ETFS unification u of two ETFSs
φ and ψ in terms of the languages, recognized by
φ and ψ. Since the types, represented by the typed
edges, need to be interpreted against an inheritance
hierarchy 〈T ,≤〉, we first define the recognized pre-
language of an ETFS. Due to space requirements, we
restrict ourselves in the paper (but not in the oral pre-
sentation) to coreference-free ETFSs, as a proper han-
dling of coreferences would require a further modifi-
cation of the ETFS definition (edges in the DFSA need
to be labelled with sets of elements from F∗, express-
ing equivalence classes).
Definition 5 (ETFS PRE-LANGUAGE)
The pre-language L−(φ) recognized by an ETFS φ is
defined as follows:

L−(φ) := {w ∈ Σ∗ | δ̂(q0, w) ∈ F}
Now, the type hierarchy 〈T ,≤〉 comes into play when
defining the recognized language of an ETFS φ. Es-
sentially, we “expand” type t at the end of each word
from L− by {s | s ≤ t}.
Definition 6 (ETFS LANGUAGE)
The language L(φ) recognized by an ETFS φ is de-
fined as follows:
L(φ) := {vs ∈ Σ∗ | vt ∈ L−(φ) and s ≤ t}

Note that the languages we are dealing with are not
only regular, but even finite, due to the acyclicity as-
sumption, imposed on ETFSs (see Definition 4).

In order to define ETFS subsumption and unification,
we need a further definition that introduces an opera-
tor Π that basically chops off the types at the end of
extended paths.

Definition 7 (STRIPPED-DOWN FS)
A stripped-down FS can be obtain from an ETFS φ by
applying Π to L(φ), where

Π(L(φ)) := {w ∈ F∗ | ws ∈ L(φ) and s ∈ T }
We are now almost ready to define the usual ETFS
operations. Before doing so, need to talk about the
unique paths (depicted by L=) and shared paths (de-
picted by L6=), relative to φ and ψ.

Definition 8 (UNIQUE AND SHARED PATHS)
Given two ETFSs φ and ψ, we deconstruct their cor-
responding languages as follows:

L(φ) := L=(φ) ] L 6=(φ)
L(ψ) := L=(ψ) ] L 6=(ψ)

such that
Π(L=(φ)) = Π(L=(ψ))

Thus L 6=(φ) = L(φ) \ L=(φ)
L 6=(ψ) = L(ψ) \ L=(ψ)

Definition 9 (ETFS SUBSUMPTION/UNIFICATION)

φ v ψ :⇐⇒ L=(φ) ⊆ L=(ψ) and L6=(ψ) = ∅
φ u ψ = π :⇐⇒ L(π) = L 6=(φ) ∪ L 6=(ψ) ∪
{wu | ws ∈ L=(φ), wt ∈ L=(φ), and u = s ∧ t}

It is worth noting that the unification operation di-
rectly above assumes that the underlying type hierar-
chy is GLB-completed as it assumes a unique (and not
many) u, resulting from taking the GLB s∧ t. We fur-
ther note that if s∧ t fails at any point (i.e., returns⊥),
π is supposed to be inconsistent.

3.3 A TFS Index
In this subsection, we will establish a typed feature
structure index = that arises from a collection of
ETFSs {φ1, . . . , φn} by taking the union of the cor-
responding automata, an operation that can be effec-
tively constructed, resulting in, what we call later, an
answer automaton:

= =
n⊔

i=1

φi

With effectively, we mean here and in the following
that there exists an algorithm that directly constructs
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the resulting DFSA (the answer FSA) from the input
DFSAs. When an ETFS φ has already been inserted
in =, we write

φ ∈ =
In order to address all this properly, we need to
slightly extend the signature of an ETFS by a total
indexing function ι defined on F , enumerating those
ETFSs φ ∈ ι(q) at a final node q ∈ F , such that
δ̂(q0, w) = q and w ∈ L−(φ). Thus, ι records TFSs
at q that share an extended path w = ft from root
node q0 to q (f ∈ F∗, t ∈ T ).
As we we will see in a moment, ιwill be utilized to re-
turn all and only all TFSs recorded in the index = that
are more specific (or equal) than or which are unifiable
with a given query TFS. Due to space requirements,
we restrict ourself here to coreference-free TFSs as
this simplifies the formal description of the index.

Definition 10 (ETFS, REVISED)
An edge-typed feature structure (ETFS) is a sextuple
〈Q,Σ, δ, q0, F, ι〉, where Q,Σ, δ, q0 and F is given in
Definition 3 and ι defined as follows:
• ι : F → 2I is a total indexing function.

As we see from this definition, ι does not access the
feature structures directly. Instead, it utilizes a set of
IDs I that identify the corresponding ETFSs Φ from
the index through the use of an additional bijective
function, viz., id : I → Φ and id−1 : Φ→ I .
This strategy gives an implementation the freedom to
relocate the TFSs to a separate table in RAM or even
to store them in an external file system. Since it is
possible to reconstruct feature structures from the in-
dex =, given a specific ID from I , we can even use a
memory-bounded internal cache to limit the memory
footprint of =, which is the method of choice in the
implementation described in section 2.
When entering a TFS φ to the index, a brand-new
identifier from I is obtained and added to every fi-
nal node of φ. This assignment is important when
we define subsumption and unification over the in-
dex in Section 3.4. In the end, the index = is still a
ETFS/DFSA, but its ι-function differs from a single
TFS in that it does not return a singleton set, but usu-
ally a set with more than one ID.

Before moving on, let us take an example that explains
the ideas, underlying the index. The example will dis-
play the index after three ETFSs have been added.
To ease the pictures here, we will not use the DFSA

model of ETFSs, but instead employ the correspond-
ing equivalent AVM description from Example 2. As
already explained, types occur as “ordinary” features,
and the AVM for the index usually comes with more
than one outgoing type features at every node in the
DFSA. The set of IDs that refer to those TFSs “en-
tailed” by a current extended path at a final node in
the index are attached (via ‘:’) to the type features in
the AVMs below.
Example 4 (INDEX WITH THREE ETFSS)
We assume a type hierarchy with the following six
types (“lower” depicted types are more specific) and
will add the following three ETFSs to an empty index

>
/ \
s bool
| / \
t + −

[
s : {1}
A
[

bool : {1}
]
]




t : {2}
A
[

+ : {2}
]

B
[

+ : {2}
]







t : {3}
A
[

+ : {3}
]

B
[
− : {3}

]




The resulting index =, integrating 1, 2, and 3, is:

= ≡




s : {1}
t : {2, 3}
A

[
bool : {1}
+ : {2, 3}

]

B

[
+ : {2}
− : {3}

]




What this example shows is that the index does in
fact result from taking the union of the three DF-
SAs/ETFSs. We also see that the associated ID sets
at the final nodes of the index are extended by the IDs
of the ETFSs that are going to be inserted.
In order to obtain the complete set of ETFSs Φ stored
in the index, we need to walk over the set of final
nodes and take the union of all ID sets (actually, the
TFSs associated with the indices):

Φ =
⋃

q∈F

⋃

i∈ι(q)
{id(i)}

3.4 Querying the Index
We will now define two further natural operations
w.r.t. index = and a query ETFS ψ, and will present a
construction procedure for one of them, viz., = v ψ:

1. return all φi which are equal or more specific
than query ψ:
= v ψ :⇐⇒∪i φi s.t. φi v ψ and φi ∈ =
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2. return all φi which are unifiable with query ψ:
ψ u = :⇐⇒∪i φi s.t. φi u ψ 6= ⊥ and φi ∈ =

(1.) essentially reduces to the construction of a subau-
tomaton, whereas (2.) results in the construction of an
intersecting FSA, again two operations that can be ef-
fectively constructed. By this, as before, we mean that
we can directly construct a new ETFS/DFSA from the
signatures (see Definition 10) of = and ψ. Note that
we let the indexing function ιψ for query ψ always
map to the empty set, as it is a query, and not a TFS
that is part eof the index, i.e., ιψ : Fψ → ∅.
Since the result of these two operations are again DF-
SAs, we call them answer automata, as the subsumed
or unifiable structures can be obtained through the use
of ι and id—the resulting FSA, as such, is not the an-
swer.
Before presenting the construction procedure for = v
ψ, we need to report on two important observations.
Firstly, the following equality relations always hold
for the resulting structure ∪i φi w.r.t query ψ:

∀i . Π(L−=(ψ)) = Π(L−=(φi))

In other words, the subsumed ETFSs φi from = must
at least contain the same paths from F∗ than query ψ,
and perhaps come up with more specific type labels
(and, of course, additional own unique paths).
Secondly, if φ ∈ = and w,w′ ∈ L−(φ) s.t. w = ft
and w′ = ff ′t′ (f ∈ F∗; f ′ ∈ F+; t, t′ ∈ T ),
then id−1(φ) ∈ ι(q) and id−1(φ) ∈ ι(q′), given
δ̂(q0, w) = q and δ̂(q0, w′) = q′ (q0 being the root
node of =). I.e., a recorded ETFS φ in = with index
id−1(φ) under path f will also be recorded with the
same index under the longer path ff ′.
Given these two remarks, it thus suffices to construct
an answer automaton = v ψ that is structural equiva-
lent to ψ and whose ι-function is no longer empty, but
instead constructed from ι of = w.r.t. a type hierarchy.

Algorithm 1 (INDEX SUBSUMPTION)
Given an index = = 〈Q=,Σ=, δ=, q=0 , F=, ι=〉, a
query ψ = 〈Qψ,Σψ, δψ, qψ0 , F

ψ, ιψ〉, and a type hi-
erarchy 〈T ,≤〉, we define the subsumed answer au-
tomaton

= v ψ := 〈Q,Σ, δ, q0, F, ι〉
where Q := Qψ,Σ := Σψ, δ := δψ, q0 := qψ0 , and
F := Fψ. Now let δ̂(q0, ft) = q ∈ F , where f ∈
F∗, t ∈ T , and ft ∈ L−(ψ). ι then is given by the
following definition (q ∈ F ):

ι(q) :=
⋃

s≤t

{
∅, if δ̂=(q=0 , fs)↑
ι=(δ̂=(q=0 , fs)), otherwise

The set Φ = ∪i φi of subsumed ETFSs φi w.r.t. ψ is
finally given by

Φ =
⋂

q∈F

⋃

i∈ι(q)
{id(i)}

It is worth noting that the transition function for fs
is not necessarily defined in =, since query ψ might
employ a feature from F and/or use a type labeling
from T that is not literally present in =.

Let us now present a further example, showing how
= v ψ looks for two queries w.r.t the index depicted
in Example 4.

Example 5 (ANSWER FA FOR TWO QUERIES)
Given the index from Example 4 and queries

ψ1 ≡




s
A +
B bool


 and ψ2 ≡




s
A bool
C bool




the answer automata have the following structure:

= v ψ1 ≡




s : {1} ∪ {2, 3} = {1, 2, 3}
A
[

+ : {2, 3} ]

B
[

bool : ∅ ∪ {2} ∪ {3} = {2, 3} ]




= v ψ2 ≡




s : {1} ∪ {2, 3} = {1, 2, 3}
A
[

bool : {1} ∪ {2, 3} ∪ ∅ = {1, 2, 3} ]

C
[

: ∅ ∪ ∅ ∪ ∅ = ∅
]




The indices Id for the ETFSs from = hidden in these
answer automata are given by the intersection of the
ID sets associated with the final nodes (see Algor. 1):

Id(= v ψ1) = {1, 2, 3} ∩ {2, 3} ∩ {2, 3} = {2, 3}

Id(= v ψ2) = {1, 2, 3} ∩ {1, 2, 3} ∩ ∅ = ∅
I.e., ETFS 2 and 3 from Example 4 are subsumed by
ψ1, whereas no ETFS can be found in = for ψ2.

Due to space limitations, we are not allowed here
to describe the answer automata for index construc-
tion φ t =, for the inverse case of index subsumption
ψ v =, and for index unifiability ψ u =. This will be
addressed in the oral presentation, where we will also
indicate how coreferences in the theoretical descrip-
tion of the index are represented.
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4 Implementing the Index

The proposed data structure exploits the similarity of
the structures by putting all information into the tree
structure of =, which contains all paths occurring in
the stored TFSs. Now, ι is implemented by attaching
bit vectors to the nodes, which is very compact since
the member indices are themselves small integer num-
bers. In contrast to the mathematical description, they
encode not only the presence of a type under a specific
path, but also the presence or absence of other values,
namely features and coreferences.
Our implementation can straightforwardly be used
in a parallel execution environment, which allows to
scale up the target application more easily with mod-
ern machines, as can be seen in the next section. Sub-
sumption and generalization in our implementation al-
ways return correct results, while other indexing tech-
niques require the full test to be applied on the results,
thus thread-safe versions of the FS operations have to
be provided by them. Since almost all unification en-
gines draw their efficiency from invalidating interme-
diate results by increasing a global counter, concur-
rent evaluation is only possible at higher costs.1 Our
implementation provides multiple-read/single-write,
beneficial for the application described in Section 2, as
the amount of queries by far surmounts that of adding
or removing structures.
To perform the operations, the index structure is tra-
versed in a canonical order which in turn implies an
order over all occurring paths and establishes a one-to-
one correspondence between index nodes and nodes
in the query feature structure. Because of this, when
we subsequently talk about the current node, we al-
ways mean the pair of corresponding index and query
structure node.
Boolean bit vector operations are employed to exclude
invalid structures. As a starting point for traversal,
a bit vector a is used, where all the bits, represent-
ing the current index feature structures, are set. When
checking unifiability, for example, we collect at every
current node all those defined types t which are in-
compatible with type s in the query structure ψ at the
same current node q. We then use the stored bit vec-

1We plan to implement a thread-safe unifier in the near future,
which will enable us to assess a parallel version of the discrim-
ination, tree. For the approximation, however, the packed index
outperforms the discrimination tree even in sequential mode.

tors bqt that encode the index feature structures bearing
t to remove them from the set of valid candidates a by
executing a ∧ (

∧
t ¬bqt ).

We describe the implementation of Id(= v ψ) and
Id(ψ v =) in detail below, that is, determining TFSs
from the index that are subsumed by (resp. subsum-
ing) query structure ψ. The currently implemented
unifiability method only deals with type constraints,
and ignores coreferences.
Every member from =, whose type t is not subsumed
(not subsuming, resp.) by type s in the current node
of the query ψ, is removed. For the generalization
case, all contexts with outgoing features missing in the
query are removed. After that, the coreference con-
straints are evaluated. Coreference constraints (sets
of paths leading to the same node in an FS) estab-
lish equivalence classes of index nodes (exploiting the
one-to-one correspondence between query FS nodes
and index nodes). We write Eqψ for the equivalence
class at node q of the query structure ψ. These sets can
be collected during traversal. A valid member φ ∈ =
for a subsumption query ψ in terms of coreferences is
one where Eqψ ⊆ E

q
φ, for every q. This condition has

to be checked only at nodes where a new coreference
is introduced, whereas the information that nodes are
coreferent has to be stored also at paths that reach be-
yond such an introduction node.
In the index, the sets Eqφ are only encoded implicitly.
Every non-trivial equivalence class (non-singleton
set) is replaced by its representative which is the low-
est node in the canonical order that belongs to this
class. Analogous to the bit vectors for types, there
are bit vectors bqr for all members, using r as the rep-
resentative at node q.
To test the subset condition above, we have to make
sure that all members of Eqψ point to the same repre-
sentative for some index member. Thus for the valid
contexts, we have to compute

∨
r∈Eq

φ
(
∧
q′∈Eq

ψ
bq

′
r ).

For the generalization case, computing that the equiv-
alence class of the index is a subset of that in the query,
we have to check if a representative node r in Eqφ is not
an element of Eqψ, and to remove all members where
this holds by computing a ∧ (

∧
r∈Eq

φ
∧r 6∈Eq

ψ
¬bqr).

5 Measurements

To be able to compare the performance of the two in-
dex structures, we have designed the following syn-
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Figure 1: Time to get all subsumed (left) and all unifiable members (right) from the index. The graphs show the time needed
for 10,000 operations (in 100 ms steps on the vertical axis) in relation to the index size (×1, 000 members). Experiments
were executed on a 2.4 GHz Quad-Core Opteron with 64GB main memory which only ran the test process. We would like
to draw the reader’s attention to the difference in scale on the vertical axes.

thetic experiment: 20 million feature structures gen-
erated during the approximation were dumped, from
which three random sets were selected, such that in-
dices of up to 10,000 TFSs are created, and three
random sets of 10,000 query structures. The num-
bers from the resulting nine experiments were aver-
aged to remove effects that are due to characteris-
tics of the data set. Every index and query set was
used to perform two of the operations executed in
the CF approximation: (1) determining the set of all
subsumed elements in the index and (2) returning all
unifiable elements (see Figure 1). Where the index
only acts as a filter, the time to compute the correct
result is included, i.e., the full unification or subsump-
tion. The indexing method we are comparing against
is described in detail in (Kiefer and Krieger, 2004) and
is an instance of discrimination tree indexing.
The performance of the subsumed members operation
is slightly worse, while the unifiability test is superior
as it avoids many of the costly full unification opera-
tions. At first sight, the graphs in figure 1 don’t seem
to indicate a large improvement. However, we ran
these synthetic experiments to demonstrate the raw
performance; When applying it to grammar approx-
imation, the picture is quite different. The unifiabil-
ity test is the first and therefore most important step,
and together with the potential that it can be used al-
most effortlessly with low locking overhead in con-
current environments, the packed index by far out-
performs the discrimination tree. To show this, we
ran the approximation in three different setups, with
the discrimination tree, and the packed index without
and with parallelization. The numbers below show the
real time needed to complete the third iteration of the
fixpoint computation of the CF approximation:

1. discrimination tree: 139,279 secs
2. packed sequential: 49,723 secs (2.8× faster)

3. packed parallel: 15,309 secs (9.1× faster)
To measure the space requirements, we used the
59,646 feature structures at the end of this third iter-
ation and, running the system in a profiling environ-
ment, stored it in both implementations. This gave us,
subtracting the 144 MB that the profiler showed after
loading the grammar, 103 MB for the packed and 993
MB for the discrimination tree index, a factor of 9.64.
As is true for most techniques that optimize feature
structure operations, the effectiveness strongly de-
pends on the way they are used in the application,
e.g., the number of executions of the different opera-
tions, the implementation of basic functions like type
unification or subsumption, etc. This means that the
presented method, while very effective for our appli-
cation, may have to be adapted by others to produce
a significant gain. And there is still a lot of room for
improvement, e.g., by combining the tree and packed
index, or tuning the implementation of the bit set op-
erations, which will often operate on sparse sets.

6 Summary and Outlook

In this paper, we have described a new indexing
method for typed feature structures that deviates from
the index techniques mentioned in the introduction.
Our measurements have shown that the new method
outperforms the discrimination tree index, at least
when applied to our approximation experiments.
We note here that the new methods might also be
important to other areas in computational linguistics,
such as lexicon lookup for a large lexical data base
or tree bank, unification-based parsing under packing,
or even chart-based generation. Other areas involv-
ing record-like structures would also benefit from our
approach and we envisage semantic repositories for
storing RDF graphs, as similar operations to unifiabil-
ity and subsumption are of importance to OWL.
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Abstract

We present the first known experiments incorpo-
rating unsupervised bilingual nonterminal cat-
egory learning within end-to-end fully unsu-
pervised transduction grammar induction using
matched training and testing models. Despite
steady recent progress, such induction experi-
ments until now have not allowed for learning
differentiated nonterminal categories. We di-
vide the learning into two stages: (1) a boot-
strap stage that generates a large set of cate-
gorized short transduction rule hypotheses, and
(2) a minimum conditional description length
stage that simultaneously prunes away less use-
ful short rule hypotheses, while also iteratively
segmenting full sentence pairs into useful longer
categorized transduction rules. We show that
the second stage works better when the rule
hypotheses have categories than when they do
not, and that the proposed conditional descrip-
tion length approach combines the rules hypoth-
esized by the two stages better than a mixture
model does. We also show that the compact
model learned during the second stage can be
further improved by combining the result of dif-
ferent iterations in a mixture model. In total,
we see a jump in BLEU score, from 17.53 for
a standalone minimum description length base-
line with no category learning, to 20.93 when
incorporating category induction on a Chinese–
English translation task.

1 Introduction

Even simple lexical translations are surprisingly
context-dependent, in this paper we aim to learn a
translation model that can base contextual translation
decision on more than lexical n-grams, both in the in-
put and output language. In a syntactic translation sys-

tem such as inversion transduction grammars (ITGs),
this can be achieved with unsupervised bilingual cat-
egory induction. Surface-based and hierarchical mod-
els only use output language n-grams, and syntactic
model typically choose the categories from either the
input or the output language, or attempts to heuris-
tically synthesize a set of bilingual categories from
the two monolingual sets. In contrast, we attempt to
learn a set of bilingual categories without supervision,
which gives a unique opportunity to strike a good bal-
ance between the two approaches.
The specific translation of words and segments de-

pend heavily on the context. A grammar-based trans-
lation model can model the context with nonterminal
categories, which allows (a) moving beyond n-grams
(as a compliment to the language model prior which is
typically preserved), and (b) taking both the input and
output language context into account. Typical syn-
tactic MT systems either ignore categories (bracket-
ing ITGs and hierarchical models), or derive the cat-
egories from tree-banks, which relies on choosing the
set of categories from either language, or heuristically
synthesize it from both; both approaches eliminates
the full benefits of (b). In contrast, unsupervised in-
duction of a bilingual category set has the potential to
fully take advantage of (b).
Recent work has seen steady improvement in

translation quality for completely unsupervised trans-
duction grammar induction under end-to-end purely
matched training and testing model conditions. In this
paper, we take a further step along this line of research
by incorporating unsupervised bilingual category in-
duction into the learning process. To our knowledge,
no previous attempt has been made to incorporate
bilingual categories under such conditions. Matching
the training and testing models as closely as possible is
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a fundamental principle taken for granted in most ap-
plications of machine learning, but for machine trans-
lation it has been the norm to see very different as-
sumptions during training and testing, which makes it
difficult to assess the effects of changing or tweaking
the model—the observed effect may not be repeatable.
By matching training and testing conditions, this risk
is minimized.
A bilingual category is similar to a monolingual cat-

egory in that it is realized as the left-hand side label
of a (transduction) grammar rule, but differ in what
it represents. A monolingual category only encodes
how something relates to other parts of the language,
a bilingual category should encode how a translation
equivalence relates to other translation equivalences.
It needs to account for the relationship between two
languages as well as the relationship between the parts
of the individual languages. This makes the usage of
existing tagging schemes problematic. It would be
possible to use the categories from either of the lan-
guages (assuming they are languages with enough re-
sources) and impose these on the other language. This
could work for closely related languages, but we are
translating between English and Chinese: two very
different languages, and we know that the category
sets of either language is a poor fit for the other. An-
other possibility is to take the cross-product of the
monolingual category sets, but handling such a large
set of categories becomes unwieldy in ITG induction,
a process which is resource intensive as is, without ex-
ploding the set of nonterminals. Instead, we opt for
unsupervised learning of the bilingual categories dur-
ing induction of the ITG itself.
The novel learning method we propose consists of

an initial hypothesis generator that proposes (a) short
lexical translations and (b) nonterminal categories,
screened by a mechanism that (c) verifies the useful-
ness of the hypotheses while (d) uses them to further
generate longer transduction rules. For convenience,
our implementation breaks this into two stages: one
that generates a large set of short transduction rule hy-
potheses, and another that iteratively segments long
transduction rules (initialized from the sentence pairs
in the training data) by trying to reuse aminimal subset
of the hypotheses while chipping away at the long sen-
tence pair rules until the conditional description length
is minimized.
The paper is structured so that, after giving the back-

ground situated within the context of relevant related
research (Section 2 ), we define the proposed condi-
tional description length approach, which represents
the ideal model search (Section 3 ). We then detail the
two stages of our proposed learning algorithm, which
represents our approximation of the search problem
(Sections 4 and 5 ). After the theory we detail the par-
ticular experiments we conducted (Section 6 ) and the
results from those experiments (Section 7). Finally,
we offer some conclusions (Section 8 ).

2 Background

Description length has been used before to drive itera-
tive segmenting ITG learning (Saers et al., 2013). We
will use their algorithm as our baseline, but the simple
mixture model we used then works poorly with our
ITG with categories. Instead, we propose a tighter in-
corporation, where the rule segmenting learning is bi-
ased towards rules that are present in the categorized
ITG.
We refer to this objective as minimizing conditional

description length, since technically, the length of the
ITG being segmented is conditioned on the catego-
rized ITG. Conditional description length (CDL) is de-
tailed in Section 3. The minimum CDL (MCDL) ob-
jective differs from the simple mixture model in that
it separates the rule hypotheses into two groups: the
ones that are used during segmentation and therefor
carries over to the final induced ITG, and those that
do not and are effectively filtered out. As we will see,
MCDL far outperforms the mixture model when one
of the ITGs has categories and the other does not.
A problem with the description length family of

learning objectives is that they tend to commit to a
segmentationwhen it would bewise to keep the unseg-
mented rule as well—a significant part of the success
of phrase-based translation models comes from their
approach to keep all possible segmental translations
(that do not violate the prerequisite word alignment).
We will show that we can counter this by combining
different iterations of the same segmentation process
into a single grammar, which gives a significant bump
in BLEU scores.
By insisting on the fundamental machine learning

principle of matching the training model to the test-
ing model, we do forfeit the short term boost in BLEU
that is typically seen when embedding a learned ITG
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in the midst of the common heuristics employed in sta-
tistical machine translation. For example, Cherry and
Lin (2007), Zhang et al. (2008), Blunsom et al. (2008),
Blunsom et al. (2009), Haghighi et al. (2009), Saers
and Wu (2009), Blunsom and Cohn (2010), Burkett et
al. (2010), Riesa andMarcu (2010), Saers et al. (2010),
Saers and Wu (2011), Neubig et al. (2011), and Neu-
big et al. (2012) all plug some aspect of the ITGs they
learn into training pipelines for existing, mismatched
decoders, typically in the form of the word alignment
that an ITG imposes on a parallel corpus as it is bi-
parsed. Our own past work has also taken similar ap-
proaches, but it is not necessary to do so—instead, any
ITG can be used for decoding by directly parsing with
the input sentence as a hard constraint, as we do in this
paper. Although it allows you to tap into the vast engi-
neering efforts that have gone into perfecting existing
decoders, it also prevents you from surpassing them
in the long run. The motivation for our present series
of experiments is that, as a field we are well served
by tackling the fundamental questions as well, and not
exclusively focusing on engineering short term incre-
mental BLEU score boosts where the quality of an in-
duced ITG itself is obscured because it is embedded
within many other heuristic algorithms.

When the structure of an ITG is induced without su-
pervision, it is possible to get an effect that resembles
MDL. Zhang et al. (2008) impose a sparsity prior over
the rule probabilities to prevent the search from having
to consider all the rules found in the Viterbi biparses.
Blunsom et al. (2008), Blunsom et al. (2009), Blunsom
and Cohn (2010), Neubig et al. (2011), and Neubig et
al. (2012) use Gibbs sampling to learn ITGs with pri-
ors over the rule structures that serve a similar purpose
to the model length component of description length.
All of the above evaluate their models by biparsing the
training data and feeding the imposed word alignment
into an existing, mismatched SMT learning pipeline.

Transduction grammars can also be induced with
supervision from treebanks, which cuts down the
search space by enforcing external constraints (Gal-
ley et al., 2006). Although this constitutes a way to
borrow nonterminal categories that help the translation
model, it complicates the learning process by adding
external constraints that are bound to match the trans-
lation model poorly.

3 Conditional description length

Conditional description length (CDL) is a general
method for evaluating a model and a dataset given a
preexisting model. This makes it ideal for augment-
ing an existing model with a variant model of the same
family. In this paper we will apply this to augment an
existing inversion transduction grammar (ITG) with
rules that are found with a different search strategy.
CDL is similar to description length (Solomonoff,
1959; Rissanen, 1983), but the length calculations
are subject to additional constraints. When minimum
CDL (MCDL) is used as a learning objective, all
the desired properties of minimum description length
(MDL) are retained: the model is allowed to become
less certain about the data provided that the it shrinks
sufficiently to compensate for the loss in precision.
MDL is a goodway to prevent over-fitting, andMCDL
retains this property, but for the task of inducing a
model that is specifically tailored toward augmenting
an existing model. Formally, the conditional descrip-
tion length is:

DL (Φ, D|Ψ) = DL (D|Φ, Ψ) + DL (Φ|Ψ)

whereΨ is the fixed preexisting model,Φ is the model
being induced, and D is the data. The total uncondi-
tional length is:

DL (Ψ, Φ, D) =

DL (D|Φ, Ψ) + DL (Φ|Ψ) + DL (Ψ)

In minimizing CDL, we fix DL (Ψ) instead of allow-
ingΨ to vary as wewould in full MCDL; to be precise,
we seek:

argmin
Φ

DL (Ψ, Φ, D)

= argmin
Φ

DL (D|Φ, Ψ) + DL (Φ|Ψ) + DL (Ψ)

= argmin
Φ

DL (Φ, D|Ψ)

= argmin
Φ

DL (D|Φ, Ψ) + DL (Φ|Ψ)

To measure the CDL of the data, we turn to informa-
tion theory to count the number of bits needed to en-
code the data given the two models under an optimal
encoding (Shannon, 1948), which gives:

DL (D|Φ, Ψ) = −lg P (D|Φ, Ψ)
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To measure the CDL of the model, we borrow the
encoding scheme for description length presented in
Saers et al. (2013), and define the conditional descrip-
tion length as:

DL (Φ|Ψ) ≡ DL (Φ)−DL (Φ∩Ψ)

To determine whether a model Φ has a shorter con-
ditional description length, than another model Φ′, it
is sufficient to be able to subtract one length from the
other. For the model length, this is trivial as we merely
have to calculate the length of the difference between
the two models in our theoretical encoding. For data
length, we need to solve:

DL
(
D|Φ′, Ψ

)
−DL (D|Φ, Ψ)

= −lg P
(
D|Φ′, Ψ

)
−−lg P (D|Φ, Ψ)

= −lg P (D|Φ′, Ψ)

P (D|Φ, Ψ)

4 Generating rule hypotheses

In the first stage of our learning approach, we gener-
ate a large set of possible rules, from which the second
stage will choose a small subset to keep. The goal of
this stage is to keep the recall high with respect to a
theoretical “optimal ITG”, precision is achieved in the
second stage. We rely on chunking and category split-
ting to generate this large set of rule hypotheses.
To generate these high-recall ITGs, we will follow

the bootstrapping approach presented in Saers et al.
(2012), and start with a finite-state transduction gram-
mar (FSTG), do the chunking and category splitting
within the FSTG framework before transferring the re-
sulting grammar to a corresponding ITG. This is likely
to produce an ITG that performs poorly on its own, but
may be informative in the second stage.

5 Segmenting rules

In the second stage of our learning approach, we seg-
ment rules explicitly representing the entire training
data, into smaller—more general—rules, reusing rules
from the first stage whenever we can. By driving
the segmentation-based learning with a minimum de-
scription length objective, we are learning a very con-
cise ITG, and by conditioning the description length
on the rules hypothesized in the first stage, we sepa-
rate the good rule hypotheses from the bad: the good

rules—along with their categorizing left-hand sides—
are reused and the bad are not.
In this work, we are only considering segmenta-

tion of lexical rules, which keeps the ITG in nor-
mal form, greatly simplifying processing without al-
tering the expressivity. A lexical ITG rule has the
form A → e0..T /f0..V , where A is the left-hand side
nonterminal—the category, e0..T is a sequence of T
(from position 0 up to but not including position T )L0

tokens and f0..V is a sequence of V (from position 0 up
to but not including position V )L1 tokens. When seg-
menting this rule, three new rules are produced which
take one of the following forms depending on whether
the segmentation is inverted or not:

A→ [BC] A→ ⟨BC⟩
B → e0..S/f0..U or B → e0..S/fU..V

C → eS..T /fU..V C → eS..T /f0..U

All possible splits of the terminal rule can be ac-
counted for by choosing the identities of B, C, S and
U , as well as whether the split it straight or inverted.

Algorithm 1 Iterative rule segmenting learning driven
by minimum conditional description length.

Φ ▷ The ITG being induced
Ψ ▷ The ITG the learning is conditioned on
repeat

δsum ← 0
bs← collect_biaffixes(Φ)
bδ ← []
for all b ∈ bs do

δ ← eval_cdl(b, Ψ, Φ)
if δ < 0 then

bδ ← [bδ, ⟨b, δ⟩]
sort_by_delta(bδ)
for all ⟨b, δ⟩ ∈ bδ do

δ′ ← eval_cdl(b, Ψ, Φ)
if δ′ < 0 then

Φ← make_segmentations(b, Φ)
δsum ← δsum + δ′

until δsum ≥ 0
return Φ

The pseudocode for the iterative rule segment-
ing learning algorithm driven by minimal condi-
tional description length can be found in Algo-
rithm 1. It uses the methods collect_biaffixes,
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eval_cdl, sort_by_delta and make_segmentations.
These methods collect all biaffixes in the rules of an
ITG, evaluate the difference in conditional description
length, sorts candidates by these differences, and com-
mits to a given set of candidates, respectively. To eval-
uate the CDL of a proposed set of candidate segmen-
tations, we need to calculate the difference in CDL be-
tween the current model, and the model that would re-
sult from committing to the candidate segmentations:

DL
(
D, Φ′|Ψ

)
−DL (D, Φ|Ψ)

= DL
(
D|Φ′, Ψ

)
−DL (D|Φ, Ψ)

+ DL
(
Φ′|Ψ

)
−DL (Φ|Ψ)

The model lengths are trivial, as we merely have to
encode the rules that are removed and inserted accord-
ing to our encoding scheme and plug in the summed
lengths in the above equation. This leaves the length
of the data, which would be:

DL
(
D|Φ′, Ψ

)
−DL (D|Φ, Ψ) = −lg P (D|Φ′, Ψ)

P (D|Φ,Ψ)

For the sake of convenience in efficiently calculating
this probability, we make the simplifying assumption
that:

P (D|Φ, Ψ) ≈ P (D|Φ) = P (D|θ)
where θ represents the model parameters, which re-
duces the difference in data CDL to

−lg P (D|θ′)
P (D|θ)

which lets us determine the probability through bipars-
ing with the model being induced. Biparsing is, how-
ever, a very expensive operation, and we are making
relatively small changes to the ITG, so we will fur-
ther assume that we can estimate the CDL difference
in closed form based on the model parameters. Given
that we are splitting the rule r0 into the three rules r1,
r2 and r3, and that the probability mass of r0 is dis-
tributed uniformly over the new rules, the new gram-
mar parameters θ′ will be identical to θ, except that:

θ′
r0 = 0

θ′
r1 = θr1 +

1

3
θr0

θ′
r2 = θr2 +

1

3
θr0

θ′
r3 = θr3 +

1

3
θr0

We estimate the CDL of the corpus given this new pa-
rameters to be:

−lg P (D|θ′)
P (D|θ) ≈ −lg

θ′
r1θ

′
r2θ

′
r3

θr0

To generalize this to a set of rule segmentations,
we construct the new parameters θ′ to reflect all the
changes in the set in a first pass, and then sum the dif-
ferences in CDL for all the rule segmentations with the
new parameters in a second pass.

6 Experimental setup

The learning approach we chose has two stages, and
in this section we describe the different ways of using
these two stages to arrive at a final ITG, and how we
intend to evaluate the quality of those ITGs.
For the first stage, we will use the technique de-

scribed in Saers et al. (2012) to start with a finite-state
transduction grammar (FSTG) and perform chunking
before splitting the nonterminal categories andmoving
the FSTG into ITG form. We will perform one round
of chunking, and two rounds of category splitting (re-
sulting in 4 nonterminals and 4 preterminals, which
becomes 8 nonterminals in the ITG form). Splitting
all categories is guarnteed to at least double the size
of the grammar, which makes is impractical to repeat
more times. At each stage, we run a few iterations of
expectationmaximization using the algorithm detailed
in Saers et al. (2009) for biparsing. For comparison
we also bootstrap a comparable ITG that has not had
the categories split. Before using either of the boot-
strapped ITGs, we eliminate all rules that do not have
a probability above a threshold that we fixed to 10−50.
This eliminates the highly unlikely rules from the ITG.
For the second stage, we use the iterative rule seg-

mentation learning algorithm driven byminimum con-
ditional description length that we introduced in Sec-
tion 5. We will try three different variants on this al-
gorithm: one without an ITG to condition on, one con-
ditioned on the chunked ITG, and one conditioned on
the chunked ITG with categories. The first variant is
completely independent from the chunked ITGs, sowe
will also try to create mixture models with it and the
chunked ITGs.
Since the MCDL objective tends to segment large

rules and count on them being recreatable when
needed, many of the longer rules that would be good
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Table 1: Experimental results. Chunked is the base model, which has categories added to produce chunked w/categories.
Segmented corresponds to the second learning stage, which can be done in isolation (only), mixed with a base model, or
conditioned on a base model.

Model BLEU NIST Categories
Chunked ITG only 3.76 0.0119 1
Chunked ITG w/categories only 9.39 0.7481 8
Segmented ITG only 17.53 4.5409 1
Segmented ITG mixed with chunked ITG 10.23 0.2886 1
Segmented ITG mixed with chunked ITG w/categories 12.06 1.1415 8
Segmented ITG conditioned on chunked ITG 17.04 4.4920 1
Segmented ITG conditioned on chunked ITG w/categories 19.02 4.6079 8
... with iterations combined 20.20 4.8287 8
... and improved search parameters 20.93 4.8426 8
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Figure 1: Description length in bits over the different iter-
ations of segmenting search. The lower portion represents
the conditional description length of the model,DL (Φ|Ψ),
and the upper portion represents the conditional description
length of the data given the model, DL (D|Φ, Ψ).

to have when translating are not explicitly in the gram-
mar. This is potentially a source of translation mis-
takes, and to investigate this, we create a mixture
model from iterations of the segmenting learning pro-
cess leading up to the learned ITG.
All the above outlined ITGs are trained using the

IWSLT07 Chinese–English data set (Fordyce, 2007),
which contains 46,867 sentence pairs of training data,
and 489 Chinese sentences with 6 English reference
translations each as test data; all the sentences are
taken from the traveling domain. Since the Chinese
is written without whitespace, we use a tool that tries
to clump characters together into more “word like” se-
quences (Wu, 1999).
To test the learned ITGs, we use them as trans-
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Figure 2: Rule count versus BLEU scores for the boot-
strapped ITG, the pruned bootstrapped ITG and the seg-
mented ITG conditioned on the pruned bootstrapped ITG.

lation systems with our in-house ITG decoder. The
decoder uses a CKY-style parsing algorithm (Cocke,
1969; Kasami, 1965; Younger, 1967) and cube prun-
ing (Chiang, 2007) to integrate the language model
scores. For language model, we use a trigram lan-
guage model trained with the SRILM toolkit (Stolcke,
2002) on the English side of the training corpus. To
evaluate the resulting translations, we use BLEU (Pa-
pineni et al., 2002) and NIST (Doddington, 2002).

7 Results

In this section we present the empirical results: bilin-
gual categories help translation quality under the ex-
perimental conditions detailed in the previous section.
The results are summarized in Table 1. As predicted
the base chunked only ITG fares poorly, while the cat-
egories help a great deal in the chunked w/categories
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only ITG—though the scores are not very reliable
when in this low range.
The trade-off between model and data size during

segmentation conditioned on the ITG with categories
is illustrated in Figure 1. It starts out with most of the
total description being used to describe the model, and
very little to describe the data. This is the degenerate
situation where every sentence pair is its own lexical
rule. Then there is a sharp drop in model size with
a slight increase in data size. This is where the most
dramatic generalizations take place. It levels off fairly
quickly, and the minor adjustments that take place on
the plateau still represent valid generalizations, they
just have a very small effect on the over-all description
length of either the model or the data.
That the chunked ITG with split categories suffers

from having too many irrelevant rules is clearly seen
in Figure 2, where we plotted the number of rules con-
trasted to the BLEU score. Merely pruning to a thresh-
old helps somewhat, but the sharper improvement—
both in terms of model size and BLEU score—is seen
with the filtering that MCDL represents.
A number of interesting lessons emerge from the re-

sults, as follows.

7.1 Minimum CDL outperforms mixture modeling
The segmenting approach works as expected (seg-
mented only), essentially reproducing the results re-
ported by Saers et al. (2013) for this style of bilingual
grammar induction.
Interestingly, however, where they had success with

the mixture model combining the base ITGs with the
ITG learned through the segmenting approach (seg-
mented mixed with...), we see a significant drop in
translation quality. This may be because we have cat-
egories in our base ITG and they do not.

7.2 Category induction strongly improves
minimum CDL learning

When we use the base ITGs to condition the segment-
ing approach, we see something interesting. The base
ITG that has categories causes a sharp 1.5 BLEU point
rise in translation quality (compare segmented only to
segmented conditioned on chunked w/categories).
In contrast, the base ITG that does not have cate-

gories causes a slight 0.5 BLEU point fall in trans-
lation quality (compare segmented only to segmented
conditioned on chunked).

7.3 Redundant segmental rule granularities help

As mentioned, the minimum description length objec-
tive may be theoretically nice, but it also relies on the
learned ITG being able to reassemble segmented rules
with fairly high fidelity at decoding time. To demand
that all transduction rules are reduced to exactly a sin-
gle right level of granularity may be a bit of a tall order.
Our way to test this was to uniformly mix the

ITGs at different iterations though the segmenting pro-
cess. By mixing the ITG after each iteration up to
the one labeled segmented conditioned on chunked
w/categories, we get the same model labeled ...with
iterations combined, which secures an additional 1.18
BLEU points.

7.4 Tuning search parameters

Lastly, for the best approach, we further experimented
with adjusting the parameters somewhat. Pruning the
base grammar harder (a threshold of 10−10 instead of
10−50), and allowing for a wider beam (100 items in-
stead of 25) during the parsing part of the segment-
ing learning approach, we see the BLEU score rise to
20.93.

7.5 Analysis of learned rules

A manual inspection of the content of the categories
learned reveals that the main nonterminal contains
mainly structural rules, segments that it could not seg-
ment further. The latter type of rules varies from full
clauses such as that ' s a really beautiful dress/真是件漂
亮的衣服 to reasonable translation units such as Kazuo
Yamada/ＫａｚｕｏＹａｍａｄａ, which is really hard
to capture because each Latin character on the Chinese
side is its own individual token whereas the English
side has whole names as individual tokens.
A second nonterminal category contains punctua-

tion such as full stop and question mark, along with ,
sir/，先生, which can be considered as a form of punc-
tuation in the domain of the training data.
A third nonterminal category contains personal pro-

nouns in subject form (I, we, he, and also ambiguous
pronouns that could be either subject or object form
such as you and it) paired up with their respective Chi-
nese translations. It also contains please/请, which—
like pronouns in subject form—occurs frequently in
the beginning of sentence pairs.
A fourth nonterminal category contains pairs such
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as can/吗, do you/吗, is/吗, could you/吗 and will you/吗—
instances where Chinese typically makes a statement,
possibly eliding the pronoun, and adds the question
particle (吗) to the end, and where English prefixes
that statement with a verb; both languages use a ques-
tion mark in the particular training data we used. The
main nonterminal learned that this category typically
was used in inverted rules, and the other translation
equivalences conform to that pattern. They include
where/在哪, where the Chinese more literally trans-
lates to on/at which, what/什么 which is a good trans-
lation, and have/了, where the English auxiliary verb
corresponds well to the Chinese particle signaling per-
fect aspect—that the action described in the preceed-
ing clause is finished.
Other categories appear to still be consolidating,

with a mix of nouns, verbs, adjectives, and adverbials.
Chinese words and phrases typically can function as
any of these, so it is possible that differentiating them
may require increased emphasis on the English half of
the rules.
Although the well-formed categories are few and

somewhat trivial, it is very encouraging to see them
emerging without any form of human supervision. Fu-
ture work will expand to continue learning an even
wider range of categories.

8 Conclusions

We have presented the first known experiments for
incorporating bilingual category learning within com-
pletely unsupervised transduction grammar induction
under end-to-end matched training and testing model
conditions. The novel approach employs iterative
rule segmenting driven by a minimum conditional de-
scription length learning objective, conditioned on a
prior defined by a stochastic ITG containing automat-
ically induced bilingual categories. We showed that
this learning objective is superior to the previously
used mixture model, when bilingual categories are in-
volved. We also showed that the segmenting learn-
ing algorithm may be committing too greedily to seg-
mentations since combining the ITGs with different
degrees of segmentation gives better scores than any
single point in the segmentation process; this points
out an interesting avenue of future research. We fur-
ther saw that the segmenting minimization of condi-
tional description length can pick up some of the sig-

nal in categorization that was buried in noise in the
base ITG the induction was conditioned on, leading to
an ITG with much clearer categories. In total we have
seen an improvement of 3.40 BLEU points due to the
incorporation of unsupervised category induction.
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Abstract

Discourse relation parsing is an important task
with the goal of understanding text beyond the
sentence boundaries. One of the subtasks of
discourse parsing is the extraction of argument
spans of discourse relations. A relation can be
either intra-sentential – to have both arguments
in the same sentence – or inter-sentential – to
have arguments span over different sentences.
There are two approaches to the task. In the
first approach the parser decision is not condi-
tioned on whether the relation is intra- or inter-
sentential. In the second approach relations are
parsed separately for each class. The paper eval-
uates the two approaches to argument span ex-
traction on Penn Discourse Treebank explicit re-
lations; and the problem is cast as token-level
sequence labeling. We show that processing
intra- and inter-sentential relations separately,
reduces the task complexity and significantly
outperforms the single model approach.

1 Introduction

Discourse analysis is one of the most challenging
tasks in Natural Language Processing, that has appli-
cations in many language technology areas such as
opinion mining, summarization, information extrac-
tion, etc. (see (Webber et al., 2011) and (Taboada
and Mann, 2006) for detailed review). With the avail-
ability of annotated corpora, such as Penn Discourse
Treebank (PDTB) (Prasad et al., 2008), statistical
discourse parsers were developed (Lin et al., 2012;
Ghosh et al., 2011; Xu et al., 2012).

PDTB adopts non-hierarchical binary view on dis-
course relations: Argument 1 (Arg1) and Argument 2
(Arg2), which is syntactically attached to a discourse

connective. Thus, PDTB-based discourse parsing can
be roughly partitioned into discourse relation detec-
tion, argument position classification, argument span
extraction, and relation sense classification. For dis-
course relations signaled by a connective (explicit re-
lations), discourse relation detection is cast as classifi-
cation of connectives as discourse and non-discourse.
Argument position classification involves detection of
the location of Arg1 with respect to Arg2: usually ei-
ther the same sentence (SS) or previous ones (PS).1

Argument span extraction, on the other hand, is ex-
traction (labeling) of text segments that belong to each
of the arguments. Finally, relation sense classifica-
tion is the annotation of relations with the senses from
PDTB.

Since arguments of explicit discourse relations can
appear in the same sentence or in different ones (i.e.
relations can be intra- or inter-sentential); there are
two approaches to argument span extraction. In the
first approach the parser decision is not conditioned on
whether the relation is intra- or inter-sentential (e.g.
(Ghosh et al., 2011)). In the second approach rela-
tions are parsed separately for each class (e.g. (Lin et
al., 2012; Xu et al., 2012)). In the former approach ar-
gument span extraction is applied right after discourse
connective detection, while the latter approach also re-
quires argument position classification.

The decision on argument span can be made on dif-
ferent levels: from token-level to sentence-level. In
(Ghosh et al., 2011) the decision is made on token-
level, and the problem is cast as sequence labeling
using conditional random fields (CRFs) (Lafferty et

1We use the term inter-sentential to refer to a set of relations
that includes both previous sentence (PS) and following sentence
(FS) Arg1. Intra-sentential and same sentence (SS) relations, on
the other hand, are the same set.
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al., 2001). In this paper we focus on argument span
extraction, and extend the token-level sequence label-
ing approach of (Ghosh et al., 2011) with the separate
models for arguments of intra-sentential and inter-
sentential explicit discourse relations. To compare
to the other approaches (i.e. (Lin et al., 2012) and
(Xu et al., 2012)) we adopt the immediately previous
sentence heuristic to select a candidate Arg1 sentence
for the inter-sentential relations. Additionally to the
heuristic, we train and test CRF argument span ex-
traction models to extract exact argument spans.

The paper is structured as follows. In Section 2
we briefly present the corpus that was used in the ex-
periments – Penn Discourse Treebank. Section 3 de-
scribes related works. Section 4 defines the problem
and assesses its complexity. In Section 5 we describe
argument span extraction cast as the token-level se-
quence labeling; and in Section 6 we present the eval-
uation of the two approaches – either single or sepa-
rate processing of intra- and inter-sentential relations.
Section 7 provides concluding remarks.

2 The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) (Prasad et al.,
2008) is a corpus that contains discourse relation an-
notation on top of WSJ corpus; and it is aligned with
Penn Treebank (PTB) syntactic tree annotation. Dis-
course relations in PDTB are binary: Arg1 and Arg2,
where Arg2 is an argument syntactically attached to
a discourse connective. With respect to Arg2, Arg1
can appear in the same sentence (SS case), one of the
preceding (PS case) or following (FS case) sentences.

A discourse connective is a member of a well de-
fined list of 100 connectives and a relation expressed
via such connective is an Explicit relation. There are
other types of discourse and non-discourse relations
annotated in PDTB; however, they are out of the scope
of this paper. Discourse relations are annotated us-
ing 3-level hierarchy of senses. The top level (level
1) senses are the most general: Comparison, Contin-
gency, Expansion, and Temporal (Prasad et al., 2008).

3 Related Work

Pitler and Nenkova (2009) applied machine learn-
ing methods using lexical and syntactic features and
achieved high classification performance on discourse
connective detection task (F1: 94.19%, 10 fold cross-

validation on PDTB sections 02-22). Later, Lin et
al. (2012) achieved an improvement with additional
lexico-syntactic and path features (F1: 95.76%).

After a discourse connective is identified as such, it
is classified into relation senses annotated in PDTB.
Pitler and Nenkova (2009) classify discourse connec-
tives into 4 top level senses – Comparison, Contin-
gency, Expansion, and Temporal – and achieve ac-
curacy of 94.15%, which is slightly above the inter-
annotator agreement. In this paper we focus on the
parsing steps after discourse connective detection;
thus, we use gold reference connectives and their
senses as features.

The approaches used for the argument position
classification even though useful, are incomplete as
they do not make decision on argument spans. (Well-
ner and Pustejovsky, 2007) and (Elwell and Baldridge,
2008), following them, used machine learning meth-
ods to identify head words of the arguments of explicit
relations expressed by discourse connectives. (Prasad
et al., 2010), on the other hand, addressed a more dif-
ficult task of identification of sentences that contain
Arg1 for cases when arguments are located in differ-
ent sentences.

Dinesh et al. (2005) and Lin et al. (2012) approach
the problem of argument span extraction on syntactic
tree node-level. In the former, it is a rule based sys-
tem that covers limited set of connectives; whereas in
the latter it is a machine learning approach with full
PDTB coverage. Both apply syntactic tree subtrac-
tion to get argument spans. Xu et al. (2012) approach
the problem on a constituent-level: authors first de-
cide whether a constituent is a valid argument and
then whether it is Arg1, Arg2, or neither. Ghosh et al.
(2011) (and further (Ghosh et al., 2012a; Ghosh et al.,
2012b)), on the other hand, cast the problem as token-
level sequence labeling. In this paper we follows the
approach of (Ghosh et al., 2011).

4 Problem Definition

In the introduction we mentioned Immediately Pre-
vious Sentence Heuristic for Arg1 of inter-sentential
explicit relations and Argument Position Classifica-
tion as a prerequisite for processing intra- and inter-
sentential relations separately. In this section we ana-
lyze PDTB to assess the complexity and potential ac-
curacy of the heuristic and the classification task.
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SingFull SingPart MultFull MultPart Total
ARG1

IPS 3,192 (44.2%) 1,880 (26.0%) 370 (5.1%) 107 (1.5%) 5,549 (76.8%)
NAPS 993 (13.8%) 551 (7.6%) 71 (1.0%) 51 (0.7%) 1,666 (23.1%)
FS 2 (0.0%) 0 (0.0%) 1 (0.0%) 5 (0.0%) 8 (0.1%)
Total 4,187 (58.0%) 2,431 (33.7%) 442 (6.1%) 163 (2.3%) 7,223 (100%)

ARG2
SS/Total 5,181 (71.7%) 1,936 (26.8%) 84 (1.2%) 22 (0.3%) 7,223 (100%)

Table 1: Distribution of Arg1 with respect to the location (rows) and extent (columns) (partially copied from (Prasad et al.,
2008)); and distribution of Arg2 with respect to extent in inter-sentential explicit discourse relations.
SS = same sentence as the connective; IPS = immediately previous sentence; NAPS = non-adjacent previous sentence;
FS = some sentence following the sentence containing the connective; SingFull = Single Full sentence; SingPart = Part of
single sentence; MultFull = Multiple full sentences; MultPart = Parts of multiple sentences.

4.1 Immediately Previous Sentence Heuristic

According to Prasad et al. (2008)’s analysis of explicit
discourse relations annotated in PDTB, out of 18,459
relations, 11,236 (60.9%) have both of the arguments
in the same sentence (SS case), 7,215 (39.1%) have
Arg1 in the sentences preceding the Arg2 (PS case),
and only 8 instances have Arg1 in the sentences fol-
lowing Arg2 (FS case). Since FS case has too few
instances it is usually ignored. For the PS case, the
Arg1 is located either in Immediately Previous Sen-
tences (IPS: 30.1%) or in some Non-Adjacent Previ-
ous Sentences (NAPS: 9.0%).

CRF-based discourse parser of Ghosh et al. (2011),
which processes SS and PS cases with the same
model, uses ±2 sentence window as a hypothesis
space (5 sentences: 1 sentence containing the con-
nective, 2 preceding and 2 following sentences). The
window size is motivated by the observation that it
entirely covers arguments of 94% of all explicit rela-
tions. The authors also report that the performance
of the parser on inter-sentential relations (i.e. mainly
PS case) has F-measure of 36.0. However, since in
44.2% of inter-sentential explicit discourse relations
Arg1 fully covers the sentence immediately preced-
ing Arg2 (see Table 1 partially copied from (Prasad et
al., 2008)), the heuristic that selects the immediately
previous sentence and tags all of its tokens as Arg1
already yields F-measure of 44.2 over all PDTB (the
performance on the test set may vary).

The same heuristic is mentioned in (Lin et al., 2012)
and (Xu et al., 2012) as a majority classifier for the
relations with Arg1 in previous sentences.

Compared to the ±2 window, the heuristic cov-
ers Arg1 of only 88.4% explicit discourse relations
(60.9% SS + 27.5% PS); since it ignores all the rela-
tions with Arg1 in Non-Adjacent Previous Sentences
(NAPS) (9.0% of all explicit relations), and does not
accommodate Arg1 spanning multiple immediately
preceding sentences (2.6% of all explicit relations).
Nevertheless, 70.2% of all PS explicit relations have
Arg1 entirely inside the immediately previous sen-
tence. Thus, the integration of the heuristic is ex-
pected to improve the argument span extraction per-
formance for inter-sentential Arg1.

In 98.5% of all PS cases Arg2 is within the sentence
containing the connective (remaining 1.5% are multi-
sentence Arg2); and in 71.7% of all PS cases it fully
covers the sentence containing the discourse connec-
tive (see Table 1). Thus, similar heuristic for Arg2 is
to tag all the tokens of the sentence except the connec-
tive as Arg2.

For the heuristics to be applicable, a discourse con-
nective has to be classified as requiring its Arg1 in the
same sentence (SS) or the previous ones (PS), i.e. it
requires argument position classification.

4.2 Argument Position Classification
Explicit discourse connectives, annotated in PDTB,
belong to one of the three syntactic categories: (1)
subordinating conjunctions (e.g. when), (2) coordinat-
ing conjunctions (e.g. and), and (3) discourse adver-
bials (e.g. for example). With few exceptions, a dis-
course connective belongs to a single syntactic cate-
gory (see Appendix A in (Knott, 1996)). Each of these
syntactic categories has a strong preference on the po-
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Sentence Initial Sentence Medial
SS PS SS PS

Coordinating 10 (0.05%) 2,869 (15.54%) 3,841 (20.81%) 202 (1.09%)
Subordinating 1,402 (7.60%) 114 (0.62%) 5,465 (29.61%) 83 (0.45%)
Discourse Adverbial 13 (0.07%) 1,632 (8.84%) 495 (2.68%) 2,325 (12.60%)

Table 2: Distribution of discourse connectives in PDTB with respect to syntactic category (rows) and position in the
sentence (columns) and the location of Arg1 as in the same sentence (SS) as the connective or the previous sentences (PS).
The case when Arg1 appears in some following sentence (FS) is ignored, since it has only 8 instances.

sition of Arg1, depending on whether the connective
appears sentence-initially or sentence-medially. Here,
a connective is considered sentence-initial if it appears
as the first sequence of words in a sentence. Table 2
presents the distribution of discourse connectives in
PDTB with respect to the syntactic categories, their
position in the sentence, and having Arg1 in the same
or previous sentences. The distribution of sentence-
medial discourse adverbials, which is the most am-
biguous class, between SS and PS cases is 17.5% to
82.5%; for all other classes it higher than 90% to 10%.
Thus, the overall accuracy of the SS vs. PS majority
classification using just syntactic category and posi-
tion information is already 95.0%.

When analyzed on per connective basis, the obser-
vation is that some connectives require Arg1 in the
same or previous sentence irrespective of their po-
sition in the sentence. For instance, sentence-initial
subordinating conjunction so always has its Arg1 in
the previous sentence; and the parallel sentence-initial
subordinating conjunction if..then in the same sen-
tence. Others, such as sentence-medial adverbials
however and meanwhile mainly require their Arg1 in
the previous sentence. Even though low, there is still
an ambiguity: e.g. for sentence-medial adverbials
also, therefore, still, instead, in fact, etc. Arg1 ap-
pears in SS and PS cases evenly. Consequently, as-
signing the position of the Arg1 considering the dis-
course connective, together with its syntactic category
and its position in the sentence, for PDTB will be cor-
rect in more than 95% of instances.

In the literature, the task of argument position clas-
sification was addressed by several researchers (e.g.
(Prasad et al., 2010), (Lin et al., 2012)). Lin et al.
(2012), for instance, report F1 of 97.94% for a clas-
sifier trained on PDTB sections 02-21, and tested on
section 23. The task has a very high baseline and even
higher performance on supervised machine learning,

Feature ABBR Arg2 Arg1
Token TOK Y Y
POS-Tag POS
Lemma LEM Y Y
Inflection INFL Y Y
IOB-Chain IOB Y Y
Connective Sense CONN Y Y
Boolean Main Verb BMV Y
Prev. Sent. Festure PREV Y
Arg2 Label ARG2 Y

Table 3: Feature sets for Arg2 and Arg1 argument span ex-
traction in (Ghosh et al., 2011)

which is an additional motivation to process intra- and
inter-sentential relations separately.

5 Parsing Models

We replicate and evaluate the discourse parser of
(Ghosh et al., 2011), then modify it to process intra-
and inter-sentential explicit relations separately. This
is achieved by integrating Argument Position Classi-
fication and Immediately Previous Sentence heuristic
into the parsing pipe-line.

Since the features used to train argument span ex-
traction models for both approaches are the same, we
first describe them in Subsection 5.1. Then we pro-
ceed with the description of the single model dis-
course parser (our baseline) and separate models dis-
course parser, Subsections 5.2 and 5.3, respectively.

5.1 Features

The features used to train the models for Arg1 and
Arg2 are given in Table 3. Besides the token itself
(TOK), the rest of the features is described below.

Lemma (LEM) and inflectional affixes (INFL) are
extracted using morpha tool (Minnen et al., 2001),
that requires token and its POS-tag as input. For in-
stance, for the word flashed the lemma and infection
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features are ‘flash’ and ‘+ed’, respectively.
IOB-Chain (IOB) is the path string of the syntactic

tree nodes from the root node to the token, prefixed
with the information whether a token is at the begin-
ning (B-) or inside (I-) the constituent. The feature is
extracted using the chunklink tool (Buchholz, 2000).
For example, the IOB-Chain ‘I-S/B-VP’ indicates that
a token is the first word of the verb phrase (B-VP) of
the main clause (I-S).

PDTB Level 1 Connective sense (CONN) is the
most general sense of a connective in PDTB sense
hierarchy: one of Comparison, Contingency, Expan-
sion, or Temporal. For instance, a discourse connec-
tive when might have the CONN feature ‘Temporal’
or ‘Contingency’ depending on the discourse relation
it appears in, or ‘NULL’ in case of non-discourse us-
age. The value of the feature is ‘NULL’ for all tokens
except the discourse connective.

Boolean Main Verb (BMV) is a feature that indi-
cates whether a token is a main verb of a sentence or
not (Yamada and Matsumoto, 2003). For instance in
the sentence Prices collapsed when the news flashed,
the main verb is collapsed; thus, its BMV feature is
‘1’, whereas for the rest of tokens it is ‘0’.

Previous Sentence Feature (PREV) signals if a sen-
tence immediately precedes the sentence starting with
a connective, and its value is the first token of the con-
nective (Ghosh et al., 2011). For instance, if some
sentence A is followed by a sentence B starting with
discourse connective On the other hand, all the tokens
of the sentence A have the PREV feature value ‘On’.
The feature is similar to a heuristic to select the sen-
tence immediately preceding a sentence starting with
a connective as a candidate for Arg1.

Arg2 Label (ARG2) is an output of Arg2 span ex-
traction model, and it is used as a feature for Arg1
span extraction. Since for sequence labeling we use
IOBE (Inside, Out, Begin, End) notation, the possible
values of ARG2 are IOBE-tagged labels, i.e. ‘ARG2-
B’ – if a word is the first word of Arg2, ‘ARG2-I’ – if
a word is inside the argument span, ‘ARG2-E’ – if a
word is in the last word of Arg2, and ‘O’ otherwise.

CRF++2 – conditional random field implementa-
tion we use – allows definition of feature templates.
Via templates these features are enriched with n-
grams: tokens with 2-grams in the window of ±1 to-

2https://code.google.com/p/crfpp/
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Arg2
Extraction

Arg1
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Figure 1: Single model discourse parser architecture of
(Ghosh et al., 2011). CRF argument span extraction mod-
els are in bold.

kens, and the rest of the features with 2 & 3-grams in
the window of ±2 tokens.

For instance, labeling a token as Arg2 is an as-
signment of one of the four possible labels: ARG2-
B, ARG2-I, ARG2-E and O (ARG2 with IOBE nota-
tion). The feature set (token, lemma, inflection, IOB-
chain and connective sense (see Table 3)) is expanded
by CRF++ via template into 55 features (5 ∗ 5 uni-
grams, 2 token bigrams, 4 ∗ 4 bigrams and 4 ∗ 3 tri-
grams of other features).

5.2 Single Model Discourse Parser

The discourse parser of (Ghosh et al., 2011) is a cas-
cade of CRF models to sequentially label Arg2 and
Arg1 spans (since Arg2 label is a feature for Arg1
model) (see Figure 1). There is no distinction between
intra- and inter-sentential relations, rather the single
model jointly decides on the position and the span of
an argument (either Arg1 or Arg2, not both together)
in the window of ±2 sentences (the parser will be fur-
ther abbreviated as W5P – Window 5 Parser).

The single model parser achieves F-measure of 81.7
for Arg2 and 60.3 for Arg1 using CONNL evaluation
script. The performance is higher than (Ghosh et al.,
2011) – Arg2: F1 of 79.1 and Arg1: F1 of 57.3 –
due to improvements in feature and instance extrac-
tion, such as the treatment of multi-word connectives.
These models are the baseline for comparison with
separate models architecture. However, we change the
evaluation method (see Section 6).

5.3 Separate Models Discourse Parser

Figure 2 depicts the architecture of the discourse
parser processing intra- and inter-sentential relations
separately. It is a combination of argument position
classification with specific CRF models for each of
the arguments of SS and PS cases, i.e. there are 4
CRF models – SS Arg1 and Arg2, and PS Arg1 and
Arg2 (following sentence case (FS) is ignored). SS
models are applied in a cascade and, similar to the
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Figure 2: Separate models discourse parsing architecture.
CRF argument span extraction models are in bold.

baseline single model parser, Arg2 label is a feature
for Arg1 span extraction. These SS models are trained
using exactly the same features, with the exception of
PREV feature: since we consider only the sentence
containing the connective, it naturally falls out.

For the PS case, we apply a heuristic to select can-
didate sentences. Based on the observation that in
PDTB for the PS case Arg2 span is fully located in
the sentence containing the connective in 98.5% of in-
stances; and Arg1 span is fully located in the sentence
immediately preceding Arg2 in 71.7% of instances;
we select sentences in these positions to train and test
respective CRF models. The feature set for Arg2 re-
mains the same, whereas, from Arg1 feature set we
remove PREV and Arg2 label (since in PS case Arg2
is in different sentence, the feature will always have
the same value of ‘O’).

For Argument Position Classification we train uni-
gram BoosTexter (Schapire and Singer, 2000) model
with 100 iterations3 on PDTB sections 02-22 and test
on sections 23-24; and, similar to other researchers,
achieve high results: F1 = 98.12. The features
are connective surface string, POS-tags, and IOB-
chains. The results obtained using automatic features
(F1 = 97.87) are insignificantly lower (McNemar’s
χ2(1, 1595) = 0.75, p = 0.05); thus, this step will
not cause deterioration in performance with automatic
features. Here we used Stanford Parser (Klein and
Manning, 2003) to obtain POS-tags and automatic
constituency-based parse trees.

Since both argument span extraction approaches
are equally affected by the discourse connective de-
tection step, we use gold reference connectives. As
an alternative, discourse connectives can be detected

3The choice is based on the number of discourse connectives
defined in PDTB.

with high accuracy using addDiscourse tool (Pitler
and Nenkova, 2009).

In the separate models discourse parser, the steps
of the process to extract argument spans given a dis-
course connective are as follows:

1. Classify connective as SS or PS;
2. If classified as SS:

(a) Use SS Arg2 CRF model to label the sen-
tence tokens for Arg2;

(b) Use SS Arg1 CRF model to label the sen-
tence tokens for Arg1 using Arg2 label as a
feature;

3. If classified as PS

(a) Select the sentence containing the connec-
tive and use PS Arg2 CRF model to label
Arg2 span;

(b) Select the sentence immediately preceding
the Arg2 sentence and use PS Arg1 CRF
model to label Arg1 span.

The separate model parser with CRF models will
be further abbreviated as SMP; and with the heuristics
for PS case as hSMP.

6 Experiments and Results

We first describe the evaluation methodology. Then
present evaluation of PS case CRF models against the
heuristic. In subsection 6.3 we compare the perfor-
mance of the single and separate model parsers on SS
and PS cases of the test set separately and together.
Finally, we compare the results of the separate model
parser to (Lin et al., 2012) and (Xu et al., 2012).

6.1 Evaluation

There are two important aspects regarding the evalu-
ation. First, in this paper it is different from (Ghosh
et al., 2011); thus, we first describe it and evaluate
the difference. Second, in order to compare the base-
line single and separate model parsers, the error from
argument position classification has to be propagated
for the latter one; and the process is described in 6.1.2.

Since both versions of the parser are affected by
automatic features, the evaluation is on gold features
only. The exception is for Arg2 label; since it is gen-
erated within the segment of the pipeline we are in-
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terested in. Unless stated otherwise, all the results for
Arg1 are reported for automatic Arg2 labels as a fea-
ture. Following (Ghosh et al., 2011) PDTB is split as
Sections 02-22 for training, 00-01 for development,
and 23-24 for testing.

6.1.1 CONLL vs. String-based Evaluation
Ghosh et al. (2011) report using CONLL-based eval-
uation script. However, it is not well suited for the
evaluation of argument spans because the unit of eval-
uation is a chunk – a segment delimited by any out-
of-chunk token or a sentence boundary. However, in
PDTB arguments can (1) span over several sentences,
(2) be non-contiguous in the same sentence. Thus,
CONLL-based evaluation yields incorrect number of
test instances: Ghosh et al. (2011) report 1,028 SS
and 617 PS test instances for PDTB sections 23-24
(see caption of Table 7 in the original paper), which
is 1,645 in total; whereas there is only 1,595 explicit
relations in these sections.

In this paper, the evaluation is string-based; i.e. an
argument span is correct, if it matches the whole ref-
erence string. Following (Ghosh et al., 2011) and (Lin
et al., 2012), argument initial and final punctuation
marks are removed; and precision (p), recall (r) and
F1 score are computed using the equations 1 – 3.

p =
Exact Match

Exact Match + No Match
(1)

r =
Exact Match

References in Gold
(2)

F1 =
2 ∗ p ∗ r
p+ r

(3)

In the equations, Exact Match is the count of correctly
tagged argument spans; No Match is the count of ar-
gument spans that do not match the reference string
exactly (even one token difference is counted as an
error); and References in Gold is the total number of
arguments in the reference.

String-based evaluation of the single model dis-
course parser with gold features reduces F1 for Arg2
from 81.7 to 77.8 and for Arg1 from 60.33 to 55.33.

6.1.2 Error Propagation
Since the single model parser applies argument span
extraction right after discourse connective detection,

Arg2 Arg1
P R F1 P R F1

hSMP 74.19 74.19 74.19 39.19 39.19 39.19
SMP 78.61 78.23 78.42 46.81 37.90 41.89

Table 4: Argument span extraction performance of the
heuristics (hSMP) and the CRF models (SMP) on inter-
sentential relations (PS case). Results are reported as pre-
cision (P), recall (R) and F-measure (F1)

whereas in the separate model parser there is an addi-
tional step of argument position classification; for the
two to be comparable an error from the argument po-
sition classification is propagated. Even though, the
performance of the classifier is very high (98.12%)
there are still some misclassified instances. These in-
stances are propagated to the counts of Exact Match
and No Match of the argument span extraction. For
example, if the argument position classifier misclassi-
fied an SS connective as PS; in the SS evaluation its
Arg1 and Arg2 are considered as not recalled regard-
less of argument span extractor’s decision (i.e. neither
Exact Match nor No Match); and in the PS evaluation,
they are both considered as No Match.

The separate model discourse parser results are re-
ported without error propagation for in-class compar-
ison of the heuristic and CRF models, and with error
propagation for cross-class comparison with the sin-
gle model parser.

6.2 Heuristic vs. CRF Models

The goal of this section is to assess the benefit of train-
ing CRF models for the extraction of exact argument
spans of PS Arg1 and Arg2 on top of the heuristics.
The performance of the heuristics (immediately previ-
ous sentence for Arg1 and the full sentence except the
connective for Arg2) and the CRF models is reported
in Table 4. CRF models perform significantly better
for Arg2 (McNemar’s χ2(1, 620) = 7.48, p = 0.05).
Even though, they perform 2.7% better for Arg1, the
difference is insignificant (McNemar’s χ2(1, 620) =
0.66, p = 0.05). For both arguments, the CRF model
results are lower than expected.

6.3 Single vs. Separate Models

To compare the single and the separate model parsers,
the results of the former must be split into SS and PS
cases. For the latter, on the other hand, we propagate
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Arg2 Arg1
P R F1 P R F1

W5P 87.57 84.51 86.01 71.73 62.97 67.07
SMP 90.36 87.49 88.90 70.27 66.67 68.42

Table 5: Performance of the single ±2 window (W5P) and
separate model (SMP) parsers on argument span extraction
of SS relations; reported as precision (P), recall (R) and
F-measure (F1). For the SMP results are with error propa-
gation from argument position classification.

Arg2 Arg1
P R F1 P R F1

W5P 71.12 59.19 64.61 40.06 22.74 29.01
hSMP 74.67 72.23 73.94 38.98 38.23 38.60

SMP 79.01 77.10 78.04 46.23 36.61 40.86

Table 6: Performance of the single model parser (W5P) and
the separate model parser with the heuristics (hSMP) and
CRF models (SMP) on argument span extraction of PS re-
lations; reported as precision (P), recall (R) and F-measure
(F1). For the separate model parsers, results include error
propagation from argument position classification.

error from the argument position classification step.
For the PS case we also report the performance of the
heuristic with error propagation.

Table 5 reports the results for the SS case, and Ta-
ble 6 reports the results for the PS case. In both cases
the separate model parser with error propagation from
argument position classification step significantly out-
performs the single model parser.

The performance of the separate model parsers (re-
ported in Table 7) with heuristics and CRF models
on all relations (SS + PS) both are significantly bet-
ter than the performance of single ±2 window model
parser (for SMP McNemar’s χ2(1, 1595) = 17.75 for
Arg2 and χ2(1, 1595) = 19.82 for Arg1, p = 0.05).

Arg2 Arg1
P R F1 P R F1

W5P 81.47 74.42 77.79 61.90 46.96 53.40
hSMP 84.21 81.94 83.06 57.86 55.61 56.71

SMP 85.93 83.45 84.67 61.94 54.98 58.25

Table 7: Performance of the single model parser (W5P) and
the separate model parser with the heuristics (hSMP) and
CRF models (SMP) on argument span extraction of all re-
lations; reported as precision (P), recall (R) and F-measure
(F1). For the separate model parsers, results include error
propagation from argument position classification.

Arg2 Arg1
Lin et al. (2012) 82.23 59.15
Xu et al. (2012) 81.00 60.69
hSMP 80.04 54.37
SMP 82.35 57.26

Table 8: Comparison of the separate model parsers (with
heuristics (hSMP) and CRFs (SMP)) to (Lin et al., 2012)
and (Xu et al., 2012) reported as F-measure (F1). Trained
on PDTB sections 02-21, tested on 23.

6.4 Comparison of Separate Model Parser to (Lin
et al., 2012) and (Xu et al., 2012)

The separate model parser allows to compare argu-
ment span extraction cast as token-level sequence la-
beling to the syntactic tree-node level classification
approach of (Lin et al., 2012) and constituent-level
classification approach of (Xu et al., 2012); since now
the complexity and the hypothesis spaces are equal.
For this purpose we train models on sections 02-21
and test on 23.

Unfortunately, the authors do not report the results
on SS and PS cases separately, but only the combined
results that include the heuristic. Moreover, the per-
formance of the heuristic is mentioned to be 76.9% in-
stead of 44.2% for the exact match (see IPS x SingFull
cell in Table 1 or Table 1 in (Prasad et al., 2008)).
Thus, the comparison provided here is not definite.
Since all systems have different components up the
pipe-line, the only possible comparison is without er-
ror propagation.

From the results in Table 8, we can observe that all
the systems perform well on Arg2. As expected, for
the harder case of Arg1, performances are lower.

7 Conclusion

In this paper we compare two strategies for the ar-
gument span extraction: to process intra- and inter-
sentential explicit relations by a single model, or sep-
arate ones. We extend the approach of (Ghosh et al.,
2011) to argument span extraction cast as token-level
sequence labeling using CRFs and integrate argument
position classification and immediately previous sen-
tence heuristic. The evaluation of parsing strategies
on the PDTB explicit discourse relations shows that
the models trained specifically for intra- and inter-
sentential relations significantly outperform the single
±2 window models.
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Abstract

Parsing and named entity recognition are two
standalone techniques in natural language pro-
cessing community. We expect that these t-
wo types of annotations should provide useful
information to each other, and that modeling
them jointly should improve performance and
produce consistent outputs. Employing more
fine-grained named entity annotations helps to
parse complex named entity structures correct-
ly. Thus, we integrate parsing and named entity
recognition in a unified framework: 1. Through
a joint representation of syntactic and named en-
tity structures, we annotate named entity infor-
mation to Penn Chinese Treebank5.0 (CTB5.0);
2. We annotate the nested structures for all nest-
ed named entities; 3. A latent annotation proba-
bilistic context-free grammar (PCFGLA) model
is trained on the data with joint representation.
Experiment results demonstrate the mutual ben-
efits for both Chinese parsing and named entities
recognition tasks.

1 Why Exploit Named Entity Cue for Chinese
Parsing?

Chinese parsing and named entity recognition are t-
wo basic Chinese NLP technologies. They play an
important role in the Chinese information extraction,
machine translation and question answering systems.

However, to the best of our knowledge, previous re-
searches generally regard them as two standalone pro-
cesses. One of the reasons is that the Treebank for
training a parser has not been annotated with adequate
named entity information. We argue that it will be
beneficial to utilize named entity cue in parsing. Be-
cause one of the main difficulties in parsing Chinese is

bracketing phrases with complex structure, and many
complex phrases are named entities.

In Chinese there are a large number of named en-
tities. Named entities (NEs) can be generally divided
into three types: entity names, temporal expressions,
and number expressions. They are /unique identi-
fiers0of entities (organizations, persons, locations),
time (date, times), and quantities (monetary values,
percentages). According to Chinese Treebank fifth
edition (CTB5.0) (Xue et al., 2002), every sentence
contains over 1.5 entity names. Table 1 shows the dis-
tribution of these named entities in CTB5.0.

Figure 1: A named entity example with complex structures.

Different types of named entity phrases have their
distinct structure patterns. However, all noun phras-
es including named entities get an identical label, say,
noun phrase (NP). Computational processing of Chi-
nese is typically based on the coarse syntactic tags.
For example, in Figure 1, the structures of¥I<¬
Õ1“People’s Bank of China” and ¥I<¬Õ1
Üõg£«©11�¢K�3“Sonam Dharge, the
president of the Tibet Autonomous Region branch of
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NE-Types SubTypes Description Percent Example

Entity Names

GPE
geographical / social /
political entities

44.95
þ°“Shanghai”,
ìÀ�“Shandong Province”

PERSON person 29.34
n��#Z�t
“Richard Nixon”

ORG organization 21.62
�e½��Û
“Shenzhen Education Bureau”

LOC location(non-GPE lo-
cations)

8.67 �à“Huai River”

Temporal
expressions

DATE date 14.74 �ÊÊÊc“the year of 1999”

TIME time 0.44 12�“12:00”

Number Ex-
pressions

NUM number 52.58 172, 1.5

ORD ordinal number 6.78 1�“first”

FRACTION traction 4.06 z©�Ô�“70%”

CODE code 2.28 AK-47

EVENT event 0.83 Êo“May Fourth Movement”

TEMPERATURE temperature 0.10 ��Ý“12e”

RATIO ratio, score 0.08 0:05

TEL telephone number 0.05 23482192

MONEY money 0.02 nz��“three million Yuan”

Table 1: The distribution of the named entity types (#sentences = 18789)

the People’s Bank of China” is quite different, but they
get the identical label NP in CTB. A parser trained on
these annotations is messy and hard to discriminate
these complex structures correctly. Much work has
illustrated that training the parser with manually an-
notated fine-grained labels and structures could help
disambiguate parsing structure and improve parsing
accuracy (Li, 2011; Li and Wu, 2012).

Thus, it is necessary to introduce these named enti-
ties in syntactic structure and integrate their recogni-
tion in the parsing process.

We integrate syntactic and named entity informa-
tion in a unified framework through a joint representa-
tion. We add these named entity annotations into the
syntactic structures in CTB5.0, with special care for
nested named entity. Then we validate our annotation-
s in parsing and named entity recognition tasks. This
joint representation improves Chinese parsing accu-
racy significantly. Furthermore, the accuracies of the
named entity recognition of our joint model outperfor-

m CRF-based NER system.
The rest of this paper is organized as follows. Sec-

tion 2.1 reviews previously established Chinese Tree-
bank (Penn Chinese Treebank) and Chinese corpus
annotated with named entities (OntoNotes). Section 3
represents our joint representation of syntactic struc-
tures and named entities. In section 4 we perform
experiments to illustrate the effectiveness of our joint
representation.

2 Related Work

Penn Chinese Treebank (CTB) is the most widely
used treebank for parsing Chinese. OntoNotes is a
corpus annotated with both syntactic structure and
named entities. We first review the annotations in
these two corpora. Then, a brief introduction of Chi-
nese parsing on character-level is given. Finally, we
reviews the previous work on utilizing named entity
cue in parsing.
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Length of word #NEs #All Percent

1 10276 166881 6.16

2 21843 222539 9.82

3 13588 30436 44.64

4 2532 6287 40.27

5 2300 2454 93.72

6 704 772 91.19

7 283 325 87.08

8 283 307 92.18

9 83 103 80.58

10 32 38 84.21

11 14 16 87.5

12 2 4 50

13 5 6 83.33

Table 2: Statistics of NEs’ percent in different words’
length

2.1 Penn Chinese Treebank and OntoNotes

CTB is a segmented, part-of-speech tagged, and ful-
ly bracketed corpus that currently has 500 thousand
words (over 824K Chinese characters). There are to-
tally 890 files in CTB5.0.

Parsing of Chinese is typically based on coarse part-
of-speech tags and syntactic tags in CTB. In CTB,
named entity phrase is simply labeled as a noun phrase
(NP) without distinction of their diverse types (some
of them may be labeled with an extra function tag P-
N). Similarly, named entity words are simply labeled
as a proper noun (NR), cardinal number (CD), ordinal
number (OD) or temporal noun (NT), and they corre-
spond to words in the parse trees without annotation
of their internal word structure.

OntoNotes Release 4.0 (LDC2011T03) is a large,
manually annotated corpus that contains various text
genres and annotations (Hovy et al., 2006). It is also a
corpus with annotation of entity names in Chinese. It
contains 403 files which are also in CTB5.0, including
the test set and development set in the standard pars-
ing evaluation setup. Entity names in OntoNotes4.0
are annotated with 18 types of entity names, including
PERSON, ORGANIZATION, GPE, LOC, PRODUC-
T and so on.

Many named entities contain other named entities
inside them. However, works on named entity recog-
nition (NER) and the annotation of OntoNotes have
almost entirely ignored nested entities and instead
chosen to focus on the outermost entities.

2.2 Parsing

Most high-performance parsers is based on proba-
bilistic context-free grammars (PCFGs). They all re-
fine grammar labels to capture more syntactic char-
acteristic, ranging from full lexicalization and intri-
cate smoothing (Collins, 1999; Charniak, 2000) to
category refinement (Johnson, 1998; Klein and Man-
ning, 2003). Latent annotation probabilistic context-
free grammar (PCFG-LA) method in Matsuzaki et
al. (2005) and Petrov and Klein (2007) automatical-
ly refines syntactic and lexical tags in an unsuper-
vised manner, and has achieved state-of-the-art per-
formance on both English and Chinese.

In recent years, there has been much work on
character-level Chinese parsing. Qian and Liu (2012)
trained three individual models of Chinese segmen-
tation, POS tagging and Parsing separately during
training, and incorporated them together in a discrim-
inative framework. Zhang et al. (2013) integrated
character-structure features in the joint model based
on the discriminative shift-reduce parser of Zhang and
Clark (2009) and Zhang and Clark (2011)Zhang and
Clark (2009; 2011).

In spite of the convenience of its totally automatic
learning process, the main defect of the latent factor
models lies in that the training process is completely
data-driven and suffers from data sparseness. To alle-
viate this problem, we leverage named entity cue, in
the form of explicit annotation.

2.3 Named Entity Cue in Parsing

There is a large body of work on parsing and named
entity recognition (Bikel and Chiang, 2000; Sekine
and Nobata, 2004; Klementiev and Roth, 2006; S-
ingh et al., 2010) separately. The sequence labeling
approach has been shown to perform well on the task
of Chinese NER (Chen et al., 2006; Yu et al., 2008).
Finkel and Manning (2009a) and Finkel and Manning
(2009b) paid special attention to the entity names in
paring English. They gave a joint NER and parsing
model with a discriminative parser, and improved ac-
curacy for both tasks. We take advantage of named
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entity cue in character-level Chinese parsing, and fur-
ther exploiting nested named entities in parsing.

Some existing work investigates the number ex-
pressions in parsing. Harper and Huang (2009) ad-
dressed this issue for achieving better parsing perfor-
mance. Our work is not to verbalize sequences of dig-
its; we annotate the entire constituent with fine label,
such as DATE, NUM, TIME, FRACTION.

3 Our Approach

However, the completely data-driven state-split ap-
proach is prone to overfit the training data. Be-
cause the training data is always extremely sparse,
and the automatically split categories might not be
adequate. To improve parsing accuracy, Li (2011)
manually annotated the internal structure of word-
s, /citeli2012conjuncting manually annotated fine-
grained labels for function words.

In our approach, all these types of named entity
information are annotated to CTB5.0 through a joint
representation in both word-level and character-level.
Then we train a PCFG-LA parser on the corpus, and
validate that named entity cue helps to improve pars-
ing and NER accuracy simultaneously.

3.1 Named Entity Representation in Syntactic
Tree

We argue that syntactic information and named entity
information are mutual beneficial, so we enrich the
annotations of the parse tree with fine-grained named
entity labels to achieve the joint representation.

It is an important issue of how to define the type-
s of Named entities. OntoNotes Release 4.0 (LD-
C2011T03) has annotated eighteen types of entity
names. Some of these entity types do not occur fre-
quently and are not always useful in practice, such as
works of art, product and law, so we discard
them in this study. In addition, we annotate the types
of code, ratio and tel. All the named entity types are
explained in Table 1.

There are totally 890 files in CTB5.0, and 403 of
them have already been annotated with entity names
in OntoNotes4.0. The test set and development set are
setup as in the standard parsing evaluation. We an-
notated the left 487 files with previously mentioned
types of named entities following the guideline of
OntoNotes4.0.

3.2 Nested Named Entities Annotations

One of the main challenges for named entity recog-
nition task is dealing with nested named entities. For
example, Figure 1 contains nested named entities ¥
I<¬Õ1Üõg£«©1“the Tibet Autonomous
Region branch of the People’s Bank of China”, ¥
I<¬Õ1“the People’s Bank of China”, and ¢
K�3“Sonam Dharge”. Tradition sequence label-
ing methods, such as CRF, treat the text as a linear
sequence and have great difficulty in handling nested
named entities, if not impossible.

We adopt a novel solution to explicitly represent
nested named entities naturally in the syntactic struc-
ture. Nested named entities are exhaustively labelled
in the syntactic tree structure, and each corresponds to
one node in the tree.

Next, we will discuss the annotation process
in detail. We refine the label of named enti-
ties.components. As shown in Figure 1, ¥I<
¬Õ1Üõg£«©1“People.s Bank of China
branch of the Tibet Autonomous Region” is labeled
as “NP ORG”, and its two children in the tree are also
labeled as “NP ORG”. All the words.structures are
not changed; we just add a finer label to replace the
original coarse label.

Further, we annotate the internal structure of a word
that represents a nested named entity. There are three
types of nested named entities: GPE, PERSON and
temporal expression. We handle them respectively as
follows.

For GPE, we split the GPE name and its geograph-
ical unit apart in a tree structure. This annotation
style has the advantage of generalizing the common
GPE composition structure. For example, �e½�
�Û“Shenzhen Education Bureau” is a ORG, but�
e“Shenzhen” and �e½“Shenzhen city” are both
GPE. The character½“city” will obtain a special la-
bel. 1 In this case, we get a derivation which includes
GPE→ GPE GPEend. The experiment results in the
next section show that the parser benefits a lot from
this derivation. This example is shown in Figure 2.

We also distinguish the Chinese and foreign name
by the entity name labels NR PERSONF (Foreign

1When annotating the internal word structure, We do not need
to distinguish an original word (e.g., Shenzhen City: NR GPE)
from an internal sub-word (e.g., Shenzhen: NR GPE) explicitly.
Because the internal sub-word can always be located by the geo-
graphical unit which is tagged by ”end”.
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Figure 2: An example annotation for the phrase�e½�
�Û“Shenzhen Education Bureau”

Person Name) and NR PERSONC (Chinese Person
Name). It is obvious that a name containing the char-
acter ‘#.is a foreign name. Using this cue, it is easy
to recognize the foreign names. See Figure 3 for an
illustration.

For temporal expressions, the nested structure is
bracketed into number expressions and temporal u-
nit. For instance, the word �ÊF“the 15th day in
a month” will be split with �Ê-NUM and F-Day.
Figure 4 gives a detailed example.

Figure 3: An example of annotation for the foreign name
n��#Z�t“Richard Nixon”

Figure 4: An example of nested annotation for the temporal
expression�ÊF“the 15th day in a month”

3.3 Our Annotation Method
The process of annotating named entity labels is as
follows: Firstly, sentences also in OntoNotes (with file
number from 1 to 325 and 1001 to 1078) will be se-
lected, resulting in a small treebank with named entity

annotations. A PCFG-LA parser is trained on the s-
mall treebank. Then the parser is used to label the rest
of the sentences (with file number from 400 to 931
and 1100 to 1151). After that, the parsed sentences
are manually corrected. Two persons marked the cor-
rect tags to each named entity independently. Manual
correction is necessary, so can we avoid the danger of
low-recall. Both persons should agree on a single tag
when differences occurred.

The size of our new corpus is shown in Table 3.

CTB files #Files #Sens. #NE #NestedNE

1-325
403 8971 28344 1754

1001-1078

400-931
487 9778 28149 1144

1100-1151

Table 3: Statistics of the annotated corpus

3.4 Parsing Model

PCFG-LA in Petrov et al. (2006) used a hierarchi-
cal state-split approach to refine the original gram-
mars. Starting with the basic non-terminal nodes, this
method repeats the split-merge (SM) cycle to increase
the complexity of grammars. Specifically, it splits ev-
ery symbol into two, and then re-merge some new
subcategories which cause little or less loss in like-
lihood incurred when removing it. In other words, the
parser introduces latent annotations to refine the syn-
tactic categories.

We employ Berkeley parser2 in this study. We have
re-implemented and enhance the Berkeley parser to
handle Chinese character involved in nested named
entity words efficiently and robustly. Especially, when
the input is character not the word, we will change the
strategy to deal the unknown character accordingly .

4 Experiments

In this section, we examine the effect of named entity
cue in parsing Chinese. At the same time, the parser
output an NER result. For the sake of comparison,
here we also train a CRF model for NER as a baseline.

2http://code.google.com/p/berkeleyparser/
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4.1 Experimental Setup

We present experimental results on Chinese Treebank
(CTB) 5.0 with annotation of the named entity infor-
mation. We adapted the standard data allocation and
split the corpus as follows: files from CHTB 001.fid
to CHTB 270.fid, and files from CHTB 400.fid to
CHTB 1151.fid were used as training set. The devel-
opment set includes files from CHTB 301.fid to CHT-
B 325.fid, and the test set includes files CHTB 271.fid
to CHTB 300.fid. All traces and functional tags were
stripped.

For comparison, we also trained a baseline Berke-
leyParser without the cue, and a CRF model for
named entity recognition. Our CRFs were implement-
ed based on the CRF++ package 3, and the features
used were mentioned in (Wan et al., 2011).

With regard to the parser from (Petrov et al., 2006),
all the experiments were carried out after six cycles of
split-merge.

4.2 Evaluation Metric

Three metrics were used for the evaluation of syntac-
tic parsing: precision (P), recall (R) and F1-measure
(F1) which is defined as 2PR/(P+R).

In the evaluation using the EVALB parseval, the ad-
ditional named entity labels are also ignored. For in-
stance, the label-NP ORG.and-NR ORG.will
be replaced as ’NP’ and ’NR’ separately. The internal
structure of nested named entity words are discarded
by rules to make the results comparable to previous
work.

We tested the significance of our results using Dan
Bikel’s randomized parsing evaluation comparator4,
and validate the improvement in F1-measure is sta-
tistically significant.

4.3 Results on Parsing

In this section, we examine the effect of joint learn-
ing of syntactic structure and named entity cues for
parsing.

Using the same data set setup and evaluation met-
ric as the previous experiments, our parser achieves
performance of 84.43 in F1-measure on the test data.
Table 4 lists a few state-of-the-art word-level parser
performance, showing that our system is competitive

3http://crfpp.sourceforge.net/
4http://www.cis.upenn.edu/dbikel/software.html

(a) A tree without nested annotation

(b) A tree with nested annotation

Figure 5: Not nested and Nested named entity annotation
in the character-level tree for �(shen) e(zhen) ½(shi)
�(jiao)�(yu)Û(ju) “Shenzhen Education Bureau”

with all the others.

Experiment results show that named entity cue is
useful for parsing. PCFG-LA method refines the syn-
tactic categories by latent annotations, whereas, we in-
troduce the fine-grained subcategorizations in the for-
m of explicit annotations. The completely data-driven
approach is prone to overfit, and the introduction of
named entity cue by manual annotations is a more re-
liable way than unsupervised clustering.

System P R F1

Petrov ’07 84.8 81.9 83.3

Qian’12 84.57 83.68 84.13

This paper 85.53 83.34 84.43

Table 4: Comparisons of our word-level parsing results
with state-of-the-art systems
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4.4 Examining the Effectiveness of These
Annotations for NER

The above experiments demonstrate that syntactic
parsing benefits from our integrated approach. In this
section, we exploit the effect on named entity recog-
nition of joint learning.

For comparison to previous work, we convert word-
level trees into character-level trees according to some
rules. Then, the trained grammar has the ability to
parse on characters and output syntactic structure and
named entity labels. The simple rules used in this con-
version are as follows:

• All part-of-speech tags in Word-level become
constituent labels in character-level trees. Then
a new node for each character if cerated, and we
assign a new label for each new node. The new
label consists of the POS tag of its word and its
position in its word(’b’ for starting position, ’e’
for end position, and ’m’ for others). For exam-
ple , the character �“Jiao” in NN-��Û“Jiao
Yu Ju”, will be labeled as-NNb.. 5

• All the characters underlying the NUM node will
replace with/#NUM#0.

In Table 5, we show the NER result of our joint
model. In the named entity evaluation, only the named
entities with the correct boundaries and the correct
categories are regarded as a correct recognition.

Model GPE PER ORG LOC

CRF 86.98 88.56 48.79 67.28

Parsing+NotNested 85.61 85.63 40.63 54.73

Parsing+NestedNR 89.64 89.97 63.44 73.07

Table 5: NER F1 results using different models

There is a great performance improvement on
named entity recognition, especially on the recogni-
tion for ORG. On one hand, the internal structure of
the named entity helps to determine the boundary of
the entity. For instance, the organization phrase ¥
Iu{IS©z�6r?¬“China International
Cultural Exchange Association of the overseas Chi-
nese” can be recognized . But the CRF model can-
not capture the long-distance structure. On the other

5This rule is the same as in Luo (2003) and Li (2011)

hand, the structural context in which it appears can
help determine the type of the entity. As illustrated
in Figure 6, the structure “NP ORG CC NP ORG” is
a pattern, and the noun phrases on both sides of the
�“and” should be of the same type.

Figure 6: An example parsing result on the phrase {I
ÜÂúi�þ°>í8ì”Westinghouse Electric and
Shanghai Electric”

5 Conclusion and Future Work

In this paper, we exploit the named entity cue in a u-
nified framework for parsing. We annotate this cue
in CTB5.0 through a joint representation of syntac-
tic and named entity structures. Furthermore, we
annotate nested named entity structure for all entity
names, temporal expressions and number expression-
s. A PCFG-LA parser is then trained on the corpus.
The evaluation shows that, introducing the named en-
tity cue when training a parser help to recognize the
complex named entity structures.

This preliminary investigation could be extended in
several ways. First, it is natural to introduce other
cues together, such as verbal subcategories and func-
tion word subcategories. Second, we would like to
adopt discriminative parsing to integrate named entity
cue into parsing.
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Abstract

Recently, several statistical parsers have been
trained and evaluated on the dependency version
of the French TreeBank (FTB). However, older
symbolic parsers still exist, including FRMG, a
wide coverage TAG parser. It is interesting to
compare these different parsers, based on very
different approaches, and explore the possibili-
ties of hybridization. In particular, we explore
the use of partially supervised learning tech-
niques to improve the performances of FRMG
to the levels reached by the statistical parsers.

1 Introduction

Most stochastic parsers are trained and evaluated on
the same source treebank (for instance the Penn Tree-
Bank), which, by definition, avoid all problems re-
lated to differences between the structures returned by
the parsers and those present in the treebank. Some
symbolic or hybrid parsers are evaluated on a treebank
specifically designed for their underlying formalism,
possibly by converting and hand-correcting the tree-
bank from some other annotation scheme (as done
in (Hockenmaier and Steedman, 2007)). Besides the
cost of the operation, an issue concerns the compar-
ison with other parsers. By contrast, the most prob-
lematic case remains the evaluation of a parser on an
unrelated treebank and scheme (Sagae et al., 2008).

This situation arose for French with the recent
emergence of several statistical parsers trained and
evaluated on the French TreeBank (FTB) (Abeillé et
al., 2003), in particular under its dependency version
(Candito et al., 2010b) represented in CONLL for-
mat (Nivre et al., 2007). On the other hand, older
parsing systems still exist for French, most of them

not based on statistical approaches and not related to
FTB. For instance, FRMG is a wide coverage sym-
bolic parser for French (de La Clergerie, 2005), based
on Tree Adjoining Grammars (TAGs), that has already
participated in several parsing campaigns for French.
It was important to be able to compare it with statisti-
cal parsers on their native treebank, but also possibly
to extend the comparison for other treebanks.

A first necessary step in this direction was a conver-
sion from FRMG’s native dependency scheme into
FTB’s dependency scheme, a tedious task highlight-
ing the differences in design at all levels (segmen-
tation, parts of speech, representation of the syntac-
tic phenomena, etc.). A preliminary evaluation has
shown that accuracy is good, but largely below the
scores reached by the statistical parsers.

A challenge was then to explore if training on the
FTB could be used to improve the accuracy of a
symbolic parser like FRMG. However, the main dif-
ficulty arises from the fact that FTB’s dependency
scheme has little in common with FRMG’s under-
lying grammar, and that no reverse conversion from
FTB to FRMG structures is available. Such a conver-
sion could be investigated but would surely be diffi-
cult to develop. Instead, we tried to exploit directly
FTB data, using only very minimal assumptions, nev-
ertheless leading to important gains and results close
to those obtained by the statistical parsers. The in-
terest is that the technique should be easily adaptable
for training data with different annotation schemes.
Furthermore, our motivation was not just to improve
the performances on the FTB and for the annotation
scheme of FTB, for instance by training a reranker (as
often done for domain adaptation), but to exploit the
FTB to achieve global improvement over all kinds of
corpora and for FRMG native annotation scheme.

54



Section 2 provides some background about FRMG.
We expose in Section 3 how partially supervised
learning may be used to improve its performances.
Section 4 briefly presents the French TreeBank and
several other corpora used for training and evaluation.
Evaluation results are presented and discussed in Sec-
tion 5 with a preliminary analysis of the differences
between FRMG and the other statistical parsers.

2 FRMG, a symbolic TAG grammar

FRMG (de La Clergerie, 2005) denotes (a) a French
meta-grammar; (b) a TAG grammar (Joshi et al.,
1975) generated from the meta-grammar; and (c) a
chart-like parser compiled from the grammar. As a
parser, FRMG parses DAGs of words, built with SX-
PIPE (Sagot and Boullier, 2008), keeping all potential
segmentation ambiguities and with no prior tagging.
The parser tries to get full parses covering the whole
sentence, possibly relaxing some constraints (such as
number agreement between a subject and its verb); if
not possible, it switches to a robust mode looking for
a sequence of partial parses to cover the sentence.

All answers are returned as shared TAG deriva-
tion forests, which are then converted into depen-
dency shared forests, using the anchors of the elemen-
tary trees as sources and targets of the dependencies.
Some elementary trees being not anchored, pseudo
empty words are introduced to serve as source or tar-
get nodes. However, in most cases, by a simple trans-
formation, it is possible to reroot all edges related to
these pseudo anchors to one of their lexical child.

Finally, the dependency forests are disambiguated
using heuristic rules to get a tree. The local
edge rules assign a positive or negative weight
to an edge e, given information provided by e
(form/lemma/category/. . . for the source and target
nodes, edge label and type, anchored trees, . . . ), by
neighbouring edges, and, sometimes, by competing
edges. A few other regional rules assign a weight to a
governor node G, given a set of children edges form-
ing a valid derivation from G. The disambiguation
algorithm uses dynamic programming techniques to
sum the weights and to return the best (possibly non-
projective) dependency tree, with maximal weight.

Several conversion schemes may be applied on
FRMG’s native dependency trees. A recent one re-
turns dependency structures following the annotation

scheme used by the dependency version of the French
TreeBank and represented using the column-based
CONLL format (Nivre et al., 2007). The conver-
sion process relies on a 2-stage transformation system,
with constraints on edges used to handle non-local
edge propagation, as formalized in (Ribeyre et al.,
2012). Figure 1 illustrates the native FRMG’s depen-
dency structure (top) and, on the lower side, its con-
version to FTB’s dependency scheme (bottom). One
may observe differences between the two dependency
trees, in particular with a (non-local) displacement of
the root node. It may be noted that FTB’s scheme only
considers projective trees, but that the conversion pro-
cess is not perfect and may return non projective trees,
as shown in Figure 1 for the p_obj edge.

Let’s also mention an older conversion pro-
cess from FRMG dependency scheme to
the EASy/Passage scheme, an hybrid con-
stituency/dependency annotation scheme used
for the first French parsing evaluation campaigns
(Paroubek et al., 2009). This scheme is based on a set
of 6 kinds of chunks and 14 kinds of dependencies.

3 Partially supervised learning

The set of weights attached to the rules may be seen as
a statistical model, initially tailored by hand, through
trials. It is tempting to use training data, provided by
a treebank, and machine learning techniques to im-
prove this model. However, in our case, the “anno-
tation schemes” for the training data (FTB) and for
FRMG are distinct. In other words, the training de-
pendency trees cannot be immediately used as oracles
as done in most supervised learning approaches, in-
cluding well-known perceptron ones. Still, even par-
tial information extracted from the training data may
help, using partially supervised learning techniques.

Figure 2 shows the resulting process flow. Learn-
ing is done, using the disambiguated dependency
trees produced by FRMG on training sentences, with
(partial) information about the discarded alternatives.
The resulting statistical model may then be used to
guide disambiguation, and be improved through itera-
tions. Actually, this simple process may be completed
with the construction and use of (imperfect) oracles
adapted to FRMG. The learning component can pro-
duce such an oracle but can also exploit it. Even bet-
ter, the oracle can be directly used to guide the disam-
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par qui a -t-elle voulu que ces deux livres et ce DVD lui soient rendus _ ?
by whom did she want that these two books and this DVD to-her be returned _ ?

prep pri aux cln v que det adj nc coo det nc cld aux v S _
P PRO V CL V C D A N C D N CL V V PONCT

preparg

N2
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subject
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csu
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obj

aux_tps

suj

root

obj
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mod

suj

coord det

dep_coord a_obj

aux_pass

obj

ponct

Figure 1: Sample of disambiguated FRMG output, without conversion (top) and with FTB conversion (bottom)

biguation process. Again, by iterating the process, one
can hopefully get an excellent oracle for the learning
component, useful to get better models.

model

oracle

train parsing disamb learning

Figure 2: Parsing and partially supervised learning with
imperfect oracles

The minimal information we have at the level of
a word w is the knowledge that the its incoming de-
pendency d proposed by conversion is correct or not,
leading to 4 situations as summarized in Table 1.

d is correct d is not correct
selected D favor r penalize r′

competitor D′ penalize r′ ??

Table 1: Handling weight updates for rules

For the FTB conversion, when d is correct, we can
generally assume that the FRMG incoming depen-
dency D for w is also correct and that disambigua-
tion is correct in selecting D. We can then con-
sider than any edge disambiguation rule r applicable
on D should then be favored by (slightly) increas-

ing its weight and rules applying on competitors of
D should see their weight decrease (to reinforce the
non-selection of D).

On the other hand, when d is not correct, we should
penalize the rules r applying on D and try to favor
some competitor D′ of D (and favor the rules r′ ap-
plying to D′). However, we do not know which com-
petitor should be selected, except in cases where there
is only one possible choice. By default, we assume
that all competitors have equal chance to be the correct
choice and favor/penalize in proportion their rules. If
we have n competitors, we can say that it is a bad
choice not to keep D′ in 1

n cases (and should favor
rules r′) and it is a bad choice to keep D′ in n−1

n
cases (and should penalize rules r′). So, practically,
the dependency D′ falling in the problematic case is
distributed between the keep/bad case (with weight 1

n
) and the discard/bad case (with weight n−1n ). These
proportions may be altered if we have more precise
information about the competitors, provided by an or-
acle (as hinted in Figure 2), weights, ranks, or other el-
ements. For instance, if we known that d is not correct
but has the right dependency label or the right gover-
nor, we use this piece of information to discard some
competitors and rerank the remaining ones.

Of course, the update strategy for the problem-
atic case will fail in several occasions. For instance,
maybe D is the right FRMG dependency to keep, but
the conversion process is incorrect and produces a bad
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FTB dependency d. Maybe FRMG is incomplete and
has no correct source dependency D. Finally, maybe
d (with target word w) derives from some source de-
pendency Dw′ for some other target word w′. We as-
sume that these cases remain limited and that improv-
ing edge selection for the easy cases will then guide
edge selection for the more complex cases.

The learning algorithm could be used online, ad-
justing the weights when processing a sentence. How-
ever, we have only implemented an offline version
where the weights are updated after considering all
training sentences (but discarding some long sen-
tences and sentences with low accuracy scores).

More formally, given the parses for the training sen-
tences, for any edge disambiguation rule r and value
tuple v for a feature template f , we compute the num-
ber nr,f=v of occurrences of r in context f = v, and
keepokr,f=v the number of occurrences where the edge
was selected and it was a correct choice. Similarly,
but taking into account the above-mentioned redis-
tribution, we compute discardokr,f=v, keepbadr,f=v, and
discardbadr,f=v.

These figures are used to compute an adjustment
δr,f=v added to the base weight wr of r for context
f = v, using Eq (1), where θ denotes a temperature:

(1) δr,f=v = θ.ar,f=v.

{
discardbadr,f=v if ar,f=v > 0

keepbadr,f=v otherwise

The ar,f=v factor is related to the direction and
force of the expected change1, being positive when se-
lecting an edge thanks to r tends to be a good choice,
and negative otherwise (when the edge should rather
be discarded), as expressed in the following formula:

ar,f=v =
keepok

keepok + keepbad
− discardok

discardok + discardbad

The last factor in Eq (1) is the number of edges
whose status (selected or discarded) should ideally
change.

The process is iterated, reducing the temperature at
each step, and we keep the best run. At each iteration,
the edges found to be correctly kept or discarded are
added to an oracle for the next iteration.

1It may be noted that the interpretation of ar,f=v may some-
times be unclear, when both keepok

r,f=v and discardok
r,f=v are low

(i.e., when neither keeping or discarding the corresponding edges
is a good choice). We believe that these cases signal problems in
the conversion process or the grammar.

We use standard features such as form, lemma, pos,
suffixes, sub-categorization information, morphosyn-
tactic features, anchored TAG trees for words (depen-
dency heads and targets, plus adjacent words); and de-
pendency distances, direction, type, label, and rank
for the current dependency and possibly for its par-
ent. For smoothing and out-of-domain adaptation, we
add a cluster feature attached to forms and extracted
from a large raw textual corpus using Brown cluster-
ing (Liang, 2005). It may noted that the name of a
disambiguation rule may be considered as the value
of a rule feature. Each feature template includes the
label and type for the current FRMG dependency.

It seems possible to extend the proposed learning
mechanism to adjust the weight of the regional rules
by considering (second-order) features over pairs of
adjacent sibling edges (for a same derivation). How-
ever, preliminary experiments have shown an explo-
sion of the number of such pairs, and no real gain.

4 The corpora

The learning method was tried on the French Tree-
Bank(Abeillé et al., 2003), a journalistic corpus of
12,351 sentences, annotated in morphology and con-
stituency with the Penn TreeBank format, and then
automatically converted into projective dependency
trees, represented in the CONLL format (Candito et
al., 2010a). For training and benchmarking, the tree-
bank is split into three parts, as summarized in Table 2.

Cover. Time (s)
Corpus #sent. (%) Avg Median

FTB train 9,881 95.9 1.04 0.26
FTB dev 1,235 96.1 0.88 0.30
FTB test 1,235 94.9 0.85 0.30

Sequoia 3,204 95.1 1.53 0.17
EASyDev 3,879 87.2 0.87 0.14

Table 2: General information on FTB and other corpora

To analyze the evolution of the performances, we
also consider two other corpora. The Sequoia corpus
(Candito and Seddah, 2012) also uses the FTB depen-
dency scheme (at least for its version 3), but covers
several styles of documents (medical, encyclopedic,
journalistic, and transcription of political discourses).
The EASyDev corpus also covers various styles (jour-
nalistic, literacy, medical, mail, speech, . . . ), but was
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annotated following the EASy/Passage scheme for
evaluation campaigns (Paroubek et al., 2006).

Table 2 shows that coverage (by full parses) is high
for all corpora (slightly lower for EASyDev because
of the mail and speech sub-corpora). Average time
per sentence is relatively high but, as suggested by the
much lower median times, this is largely due to a few
long sentences and due to a large timeout.

5 Results and discussions

Table 3 shows evaluation results for different versions
of FRMG on each corpus. On FTB and Sequoia, we
use Labelled Attachment Scores (LAS) without tak-
ing into account punctuation, and, on EASyDev, F1-
measure on the dependencies2. The init system corre-
sponds to a baseline version of FRMG with a basic set
of rules and hand-tailored weights. The +restr version
of FRMG adds restriction rules, exploiting attach-
ment preferences and word (semantic) similarities ex-
tracted from a very large corpus parsed with FRMG,
using Harris distributional hypothesis3. This version
shows that unsurpervised learning methods already
improve significantly the performances of a symbolic
parser like FRMG for all corpora. The +tuning ver-
sion of FRMG keeps the restriction rules and adds
the partially supervised learning method. We observe
large improvements on the FTB dev and test parts (be-
tween 4 and 5 points), but also on Sequoia (almost 3
points) on different styles of documents. We also get
similar gains on EASyDev, again for a large diversity
of styles, and, more interestingly, for a different anno-
tation scheme and evaluation metric.

The bottom part of Table 3 lists the accuracy of
3 statistical parsers on FTB as reported in (Candito
et al., 2010b). The Berkeley parser (BKY) is a
constituent-based parser whose parses are then con-
verted into FTB dependencies (using the same tool
used to convert the FTB). MALT parser is a greedy
transition-based parser while MST (maximum span-
ning tree) globally extracts the best dependency tree
from all possible ones. We see that FRMG (with tun-

2F1-measures on chunks are less informative.
3We used a 700Mwords corpus composed of AFP news,

French Wikipedia, French Wikisource, etc.. The attachment
weights are used for handling PP attachments over verbs, nouns,
adjectives, but also for relatives over antecedents, or for filling
some roles (subject, object, attribute). Similarities between words
are used for handling coordination.

FTB other corpora
system train dev test Sequoia EASy

init 79.95 80.85 82.08 81.13 65.92
+restr 80.67 81.72 83.01 81.72 66.33
+tuning 86.60 85.98 87.17 84.56 69.23

BKY – 86.50 86.80 – –
MALT – 86.90 87.30 – –
MST – 87.50 88.20 – –

Table 3: Performances of various systems on French data

system emea-test ftb-test loss

BKY (evalb) 80.80 86.00 5.20
FRMG+tuning (LAS) 84.13 87.17 3.04

Table 4: Evolution for an out-of-domain medical corpus

ing) is better than BKY on the test part (but not on
the dev part), close to MALT, and still below MST.
Clearly, tuning allows FRMG to be more competitive
with statistical parsers even on their native treebank.

We do not have results for the 3 statistical parsers
on the Sequoia corpus. However, (Candito and Sed-
dah, 2012) reports some results for Berkeley parser
on constituents for the medical part of Sequoia, listed
in Table 4. The metrics differ, but we observe a loss
of 5.2 for BKY and only of 3.04 for FRMG, which
tends to confirm the stability of FRMG across do-
mains, possibly due to the constraints of its underlying
linguistically-motivated grammar (even if we observe
some over-fitting on FTB).

Figure 3 shows the evolution of accuracy on the 3
components of FTB during the learning iterations. We
observe that learning is fast with a very strong increase
at the first iteration, and a peak generally reached at
iterations 3 or 4. As mentioned in Section 3, rule
names may be seen as feature values and it is possi-
ble to discard them, using only a single dummy rule.
This dummy edge rule checks nothing on the edges
but only acts as a default value for the rule feature.
However, old experiments showed a LAS on FTB dev
of 84.31% keeping only a dummy rule and of 85.00%
with all rules, which seems to confirm the (global) per-
tinence of the hand-crafted disambiguation rules. In-
deed, these rules are able to consult additional infor-
mation (about adjacent edges and alternative edges)
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not available through the other features. 4

As suggested in Figure 2, the oracle built by the
learning component on FTB train may be used dur-
ing disambiguation (on FTB train) by setting a very
high weight for the edges in the oracle and a very low
weight for the others. The disambiguation process is
then strongly encouraged to select the edges of the or-
acle (when possible). Iterating the process, we reach
an accuracy of 89.35% on FTB train, an interesting
first step in direction of a FRMG version of the FTB5.

0 2 4 6 8

82

84

86

iteration

L
A

S
(%

)

train
dev
test

Figure 3: LAS evolution on FTB train per iteration

One reason still explaining the differences between
FRMG and the statistical parsers arises from the con-
version process to FTB annotation scheme being not
perfect. For instance, FRMG and FTB do not use the
same list of multi-word expressions, leading to prob-
lems of mapping between words and of dependency
attachments, in particular for complex prepositions
and conjunctions. The segmenter SXPIPE also recog-
nizes named entities such as Communauté européenne
(European Community), 5 millions, or Mardi prochain
(next Tuesday) as single terms whereas FTB adds in-
ternal dependencies for these expressions. During the
conversion phase, most of the missing dependencies
are added leading to an accuracy of 75.38% on the
specific dependencies in FTB train (around 3.5% of
all dependencies), still largely below the global accu-
racy (86.6%). There are also 1259 sentences in FTB
train (12.7%) where FRMG produces non-projective
trees when FTB expects projective ones.6

4However, it is clear that some disambiguation rules are re-
dundant with the other features and could be discarded.

5The problem is that the treebank would have to be re-
generated to follow the evolution of FRMG.

6It does not mean that so many FRMG trees are non-
projective, just that the conversion builds non-projective trees, be-
cause of edge movement. A quick investigation has shown that
many cases were related to punctuation attachment.

Then, following (McDonald and Nivre, 2007), we
tried to compare the performance of FRMG, MST,
and MALT with respect to several properties of the de-
pendencies. Figure 4(a) compares the recall and preci-
sion of the systems w.r.t. the distance of the dependen-
cies (with, in background, the number of gold depen-
dencies). We observe that all systems have very close
recall scores for small distances, then MST is slightly
better, and, at long distance, both MST and MALT are
better. On the other hand, FRMG has a much better
precision than MALT for long distance dependencies.
One may note the specific case of null distance de-
pendencies actually corresponding to root nodes, with
lower precision for FRMG. This drop corresponds to
the extra root nodes added by FRMG in robust mode
when covering a sentence with partial parses.

As shown in Figure 4(b), the recall curves w.r.t.
dependency depths are relatively close, with FRMG
slightly below for intermediate depths and slightly
above for large depths. Again, we observe a preci-
sion drop for root nodes (depth=0) which disappears
when discarding the sentences in robust mode.

In Figure 4(c), we get again a lower recall for large
numbers of sibling edges with, surprisingly, a much
higher precision for the same values.

Figure 4(d) compares recall and precision w.r.t. de-
pendency rank7, with again the lower precision due to
the extra root nodes (rank=0) and again a lower recall
and higher precision for large absolute ranks.

More generally, FRMG tends to behave like MST
rather than like MALT. We hypothesize that it reflects
than both systems share a more global view of the de-
pendencies, in particular thanks to the domain locality
provided by TAGs for FRMG.

Figure 5 shows recall wrt some of the dependency
labels. The most striking point is the weak recall
for coordination by all systems but, nevertheless, the
better score of FRMG. We observe a lower recall
of FRMG for some verbal prepositional arguments
(a_obj, de_obj) that may be confused with verb
modifiers or attached to a noun or some other verb.
Verbal modifiers (mod), a category covering many dif-
ferent syntactic phenomena, seem also difficult, partly
due to the handling of prepositional attachments. On

7defined as the number of siblings (plus 1) between a depen-
dant and its head, counted positively rightward and negatively
leftward.
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Figure 5: System comparison w.r.t. dependency labels

the other hand, FRMG has a better recall for subjects,
possibly because the grammar accepts a large range of
positions and realization for subjects.

6 Conclusion

We have presented a new partially supervised learn-
ing approach exploiting the information of a train-
ing treebank for tuning the disambiguation process of
FRMG, a symbolic TAG-based parser. Even consid-
ering minimal assumptions for transferring oracle in-
formation from the training treebank, we strongly im-
prove accuracy, allowing FRMG to be on par with
statistical parsers on their native treebank, namely the
French TreeBank. Even if the gains are important,
several extensions of the learning algorithm have still
to be explored, in particular to build and exploit better
oracles, and to incorporate more higher order features,
such as sibling features.

The approach explored in this paper, even if tried
in the specific context of FRMG, is susceptible to be
adapted for other similar contexts, in particular when
some imperfect annotation conversion process takes
place between a disambiguation process and a training
treebank. However, some work remains be done to get
a better characterization of the learning algorithm, for
instance w.r.t. perceptrons.

We are aware that some of the data collected by the
learning algorithm could be used to track problems

either in the conversion process or in FRMG gram-
mar (by exploring the cases where neither selecting
or discarding an edge seems to be a good choice).
We would like to fix these problems, even if most of
them seem to have very low frequencies. The con-
version process could also be improved by allowing
some non-deterministic choices, again controlled by
probabilistic features. However, it is not yet clear how
we can couple learning for the disambiguation process
and learning for the conversion process.

More investigations and comparisons are
needed, but some hints suggest that an underly-
ing linguistically-motivated grammar ensures a better
robustness w.r.t. document styles and domains. On
the other hand, the evaluation shows that the choices
made in FRMG to handle lack of full coverage using
partial parses should be improved, maybe by using
some guiding information provided by a statistical
parser to handle the problematic areas in a sentence.
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Abstract
We compare three different approaches to pars-
ing into syntactic, bi-lexical dependencies for
English: a ‘direct’ data-driven dependency
parser, a statistical phrase structure parser, and a
hybrid, ‘deep’ grammar-driven parser. The anal-
yses from the latter two are post-converted to bi-
lexical dependencies. Through this ‘reduction’
of all three approaches to syntactic dependency
parsers, we determine empirically what perfor-
mance can be obtained for a common set of de-
pendency types for English, across a broad va-
riety of domains. In doing so, we observe what
trade-offs apply along three dimensions, accu-
racy, efficiency, and resilience to domain vari-
ation. Our results suggest that the hand-built
grammar in one of our parsers helps in both ac-
curacy and cross-domain performance.

1 Motivation
Bi-lexical dependencies, i.e. binary head–argument
relations holding exclusively between lexical units,
are widely considered an attractive target representa-
tion for syntactic analysis. At the same time, Cer et
al. (2010) and Foster et al. (2011), inter alios, have
demonstrated that higher dependency accuracies can
be obtained by parsing into a phrase structure rep-
resentation first, and then reducing parse trees into
bi-lexical dependencies.1 Thus, if one is willing to
accept pure syntactic dependencies as a viable inter-
face (and evaluation) representation, an experimental
setup like the one of Cer et al. (2010) allows the ex-
act experimental comparison of quite different parsing
approaches.2 Existing such studies to date are lim-

1This conversion from one representation of syntax to an-
other is lossy, in the sense of discarding constituency information,
hence we consider it a reduction in linguistic detail.

2In contrast, much earlier work on cross-framework compari-
son involved post-processing parser outputs in form and content,
into a target representation for which gold-standard annotations
were available. In § 2 below, we argue that such conversion in-
evitably introduces blur into the comparison.

ited to purely data-driven (or statistical) parsers, i.e.
systems where linguistic knowledge is exclusively ac-
quired through supervised machine learning from an-
notated training data. For English, the venerable Wall
Street Journal (WSJ) portion of the Penn Treebank
(PTB; Marcus et al., 1993) has been the predominant
source of training data, for phrase structure and de-
pendency parsers alike.

Two recent developments make it possible to
broaden the range of parsing approaches that can be
assessed empirically on the task of deriving bi-lexical
syntactic dependencies. Flickinger et al. (2012) make
available another annotation layer over the same WSJ
text, ‘deep’ syntacto-semantic analyses in the linguis-
tic framework of Head-Driven Phrase Structure Gram-
mar (HPSG; Pollard & Sag, 1994; Flickinger, 2000).
This resource, dubbed DeepBank, is available since
late 2012. For the type of HPSG analyses recorded
in DeepBank, Zhang and Wang (2009) and Ivanova
et al. (2012) define a reduction into bi-lexical syn-
tactic dependencies, which they call Derivation Tree-
Derived Dependencies (DT). Through application of
the converter of Ivanova et al. (2012) to DeepBank,
we can thus obtain a DT-annotated version of the stan-
dard WSJ text, to train and test a data-driven depen-
dency and phrase structure parser, respectively, and to
compare parsing results to a hybrid, grammar-driven
HPSG parser. Furthermore, we can draw on a set
of additional corpora annotated in the same HPSG
format (and thus amenable to conversion for both
phrase structure and dependency parsing), instantiat-
ing a comparatively diverse range of domains and gen-
res (Oepen et al., 2004). Adding this data to our setup
for additional cross-domain testing, we seek to doc-
ument not only what trade-offs apply in terms of de-
pendency accuracy vs. parser efficiency, but also how
these trade-offs are affected by domain and genre vari-
ation, and, more generally, how resilient the different
approaches are to variation in parser inputs.
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2 Related Work

Comparing between parsers from different frame-
works has long been an area of active interest, rang-
ing from the original PARSEVAL design (Black et al.,
1991), to evaluation against ‘formalism-independent’
dependency banks (King et al., 2003; Briscoe &
Carroll, 2006), to dedicated workshops (Bos et al.,
2008). Grammatical Relations (GRs; Briscoe & Car-
roll, 2006) have been the target of a number of bench-
marks, but they require a heuristic mapping from
‘native’ parser outputs to the target representations
for evaluation, which makes results hard to interpret.
Clark and Curran (2007) established an upper bound
by running the mapping process on gold-standard
data, to put into perspective the mapped results from
their CCG parser proper. When Miyao et al. (2007)
carried out the same experiment for a number of dif-
ferent parsers, they showed that the loss of accuracy
due to the mapping process can swamp any actual
parser differences. As long as heuristic conversion
is required before evaluation, cross-framework com-
parison inevitably includes a level of fuzziness. An
alternative approach is possible when there is enough
data available in a particular representation, and con-
version (if any) is deterministic. Cer et al. (2010)
used Stanford Dependencies (de Marneffe & Man-
ning, 2008) to evaluate a range of statistical parsers.
Pre- or post-converting from PTB phrase structure
trees to the Stanford dependency scheme, they were
able to evaluate a large number of different parsers.

Fowler and Penn (2010) formally proved that a
range of Combinatory Categorial Grammars (CCGs)
are context-free. They trained the PCFG Berkeley
parser on CCGBank, the CCG annotation of the PTB
WSJ text (Hockenmaier & Steedman, 2007), advanc-
ing the state of the art in terms of supertagging ac-
curacy, PARSEVAL measures, and CCG dependency
accuracy. In other words, a specialized CCG parser
is not necessarily more accurate than the general-
purpose Berkeley parser; this study, however, fails to
also take parser efficiency into account.

In related work for Dutch, Plank and van Noord
(2010) suggest that, intuitively, one should expected
that a grammar-driven system can be more resiliant
to domain shifts than a purely data-driven parser. In
a contrastive study on parsing into Dutch syntactic
dependencies, they substantiated this expectation by

showing that their HPSG-based Alpino system per-
formed better and was more resilient to domain varia-
tion than data-driven direct dependency parsers.

3 Background: Experimental Setup

In the following, we summarize data and software re-
sources used in our experiments. We also give a brief
introduction to the DT syntactic dependency scheme
and a comparison to ‘mainstream’ representations.

DeepBank HPSG analyses in DeepBank are man-
ually selected from the set of parses licensed by the
English Resource Grammar (ERG; Flickinger, 2000).
Figure 1 shows an example ERG derivation tree,
where labels of internal nodes name HPSG construc-
tions (e.g. subject–head or head–complement: sb-
hd_mc_c and hd-cmp_u_c, respectively; see below
for more details on unary rules). Preterminals are
labeled with fine-grained lexical categories, dubbed
ERG lexical types, that augment common parts of
speech with additional information, for example argu-
ment structure or the distinction between count, mass,
and proper nouns. In total, the ERG distinguishes
about 250 construction types and 1000 lexical types.

DeepBank annotations were created by combin-
ing the native ERG parser, dubbed PET (Callmeier,
2002), with a discriminant-based tree selection tool
(Carter, 1997; Oepen et al., 2004), thus making it pos-
sible for annotators to navigate the large space of pos-
sible analyses efficiently, identify and validate the in-
tended reading, and record its full HPSG analysis in
the treebank. Owing to this setup, DeepBank in its
current version 1.0 lacks analyses for some 15 percent
of the WSJ sentences, for which either the ERG parser
failed to suggest a set of candidates (within certain
bounds on time and memory usage), or the annotators
found none of the available parses acceptable.3 Fur-
thermore, DeepBank annotations to date only com-
prise the first 21 sections of the PTB WSJ corpus.
Following the splits suggested by the DeepBank de-
velopers, we train on Sections 0–19, use Section 20
for tuning, and test against Section 21 (abbreviated as
WSJ below).4

3Thus, limitations in the current ERG and PET effectively lead
to the exclusion of a tangible percentage of sentences from our
training and testing corpora. We discuss methodological ramifi-
cations of this setup to our study in § 9 below.

4To ‘protect’ Section 21 as unseen test data, also for the ERG
parser, this final section in Version 1.0 of DeepBank was not ex-
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sb-hd_mc_c

hdn_bnp-pn_c

aj-hdn_norm_c

n-nh_v-cpd_c

w_hyphen_plr

n_-_pn_le

Sun-

v_pas_odlr

v_np_noger_le

filled

n_sg_ilr

n_-_pn_le

Mountain View

hd-cmp_u_c

v_vp_did-n_le

didn’t

hd-cmp_u_c

v_n3s-bse_ilr

v_np*_le

impress

hdn_bnp-qnt_c

w_period_plr

n_-_pr-me_le

me.

Figure 1: Sample HPSG derivation: construction identifiers label internal nodes, lexical types the preterminals.

Sun- filled Mountain View didn’t impress me.
n_-_pn_le v_np_noger_le n_-_pn_le v_vp_did-n_le v_np*_le n_-_pr-me_le

root

sb-hdaj-hdnn-nh hd-cmp hd-cmp

Figure 2: Sample DT bi-lexical dependencies: construction identifiers are generalized at the first underscore.

DT Dependencies As ERG derivations are
grounded in a formal theory of grammar that explic-
itly marks heads, mapping these trees onto bi-lexical
dependencies is straightforward (Zhang & Wang,
2009). Ivanova et al. (2012) coin the term DT for
ERG Derivation Tree-Derived Dependencies, where
they reduce the inventory of some 250 ERG syntactic
rules to 48 broad HPSG constructions. The DT
syntactic dependency tree for our running example is
shown in Figure 2.

To better understand the nature of the DT scheme,
Ivanova et al. (2012) offer a quantitative, structural
comparison against two pre-existing dependency stan-
dards for English, viz. those from the CoNLL de-
pendency parsing competitions (Nivre et al., 2007)
and the ‘basic’ variant of Stanford Dependencies.
They observe that the three dependency representa-
tions are broadly comparable in granularity and that
there are substantial structural correspondences be-
tween the schemes. Measured as average Jaccard sim-
ilarity over unlabeled dependencies, they observe the
strongest correspondence between DT and CoNLL (at
a Jaccard index of 0.49, compared to 0.32 for DT and
Stanford, and 0.43 between CoNLL and Stanford).

posed to its developers until the grammar and disambiguation
model were finalized and frozen for this release.

Ivanova et al. (2013) complement this comparison
of dependency schemes through an empirical asses-
ment in terms of ‘parsability’, i.e. accuracy levels
available for the different target representations when
training and testing a range of state-of-the-art parsers
on the same data sets. In their study, the dependency
parser of Bohnet and Nivre (2012), henceforth B&N,
consistently performs best for all schemes and output
configurations. Furthermore, parsability differences
between the representations are generally very small.

Based on these observations, we conjecture that DT
is as suitable a target representation for parser compar-
ison as any of the others. Furthermore, two linguistic
factors add to the attractiveness of DT for our study:
it is defined in terms of a formal (and implemented)
theory of grammar; and it makes available more fine-
grained lexical categories, ERG lexical types, than is
common in PTB-derived dependency banks.

Cross-Domain Test Data Another benefit of the
DT target representation is the availability of com-
paratively large and diverse samples of additional test
data. The ERG Redwoods Treebank (Oepen et al.,
2004) is similar in genealogy and format to Deep-
Bank, comprising corpora from various domains and
genres. Although Redwoods counts a total of some
400,000 annotated tokens, we only draw on it for addi-
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Name Sentences Tokens Types

D
ee

pB
an

k Train 33,783 661,451 56,582
Tune 1,721 34,063 8,964
WSJ 1,414 27, 515 7,668

R
ed

w
oo

ds CB 608 11,653 3,588
SC 864 13,696 4,925
VM 993 7,281 1,007
WS 520 8,701 2,974

Table 1: Sentence, token, and type counts for data sets.

tional testing data. In other words, we do not attempt
parser re-training or adaptation against this additional
data, but rather test our WSJ-trained parsers on out-of-
domain samples from Redwoods. We report on four
such test corpora, viz. (a) a software advocacy essay,
The Cathedral and the Bazaar (CB); (b) a subset of
the SemCor portion of the Brown Corpus (SC; Francis
& Kucera, 1982); (c) a collection of transcribed, task-
oriented spoken dialogues (VM; Wahlster, 2000); and
(d) part of the Wikipedia-derived WeScience Corpus
(WS; Ytrestøl et al., 2009). Table 1 provides exact
sentence, token, and type counts for these data sets.

Tokenization Conventions A relevant peculiarity
of the DeepBank and Redwoods annotations in this
context is the ERG approach to tokenization. Three
aspects in Figure 1 deviate from the widely used PTB
conventions: (a) hyphens (and slashes) introduce to-
ken boundaries; (b) whitespace in multi-word lexical
units (like ad hoc, of course, or Mountain View) does
not force token boundaries; and (c) punctuation marks
are attached as ‘pseudo-affixes’ to adjacent words, re-
flecting the rules of standard orthography. Adolphs et
al. (2008) offer some linguistic arguments for this ap-
proach to tokenization, but for our purposes it suffices
to note that these differences to PTB tokenization may
in part counter-balance each other, but do increase the
types-per-tokens ratio somewhat. This property of the
DeepBank annotations, arguably, makes English look
somewhat similar to languages with moderate inflec-
tional morphology. To take advantage of the fine-
grained ERG lexical categories, most of our experi-
ments assume ERG tokenization. In two calibration
experiments, however, we also investigate the effects
of tokenization differences on our parser comparison.

PET: Native HPSG Parsing The parser most com-
monly used with the ERG is called PET (Callmeier,
2002), a highly engineered chart parser for unification
grammars. PET constructs a complete parse forest,

using subsumption-based ambiguity factoring (Oepen
& Carroll, 2000), and then extracts from the forest
n-best lists of complete analyses according to a dis-
criminative parse ranking model (Zhang et al., 2007).
For our experiments, we trained the parse ranker on
Sections 00–19 of DeepBank and otherwise used the
default configuration (which corresponds to the envi-
ronment used by the DeepBank and Redwoods devel-
opers), which is optimized for accuracy. This parser,
performing exact inference, we will call ERGa.

In recent work, Dridan (2013) augments ERG pars-
ing with lattice-based sequence labeling over lexi-
cal types and lexical rules. Pruning the parse chart
prior to forest construction yields greatly improved
efficiency at a moderate accuracy loss. Her lexical
pruning model is trained on DeepBank 00–19 too,
hence compatible with our setup. We include the best-
performing configuration of Dridan (2013) in our ex-
periments, a variant henceforth referred to as ERGe.
Unlike the other parsers in our study, PET internally
operates over an ambiguous token lattice, and there is
no easy interface to feed the parser pre-tokenized in-
puts. We approximate the effects of gold-standard to-
kenization by requesting from the parser a 2000-best
list, which we filter for the top-ranked analysis whose
leaves match the treebank tokenization. This approach
is imperfect, as in some cases no token-compatible
analysis may be on the n-best list, especially so in
the ERGe setup (where lexical items may have been
pruned by the sequence-labeling model). When this
happens, we fall back to the top-ranked analysis and
adjust our evaluation metrics to robustly deal with to-
kenization mismatches (see below).

B&N: Direct Dependency Parsing The parser of
Bohnet and Nivre (2012), henceforth B&N, is a
transition-based dependency parser with joint tag-
ger that implements global learning and a beam
search for non-projective labeled dependency parsing.
This parser consistently outperforms pipeline systems
(such as the Malt and MST parsers) both in terms of
tagging and parsing accuracy for typologically diverse
languages such as Chinese, English, and German. We
apply B&N mostly ‘out-of-the-box’, training on the
DT conversion of DeepBank Sections 00–19, and run-
ning the parser with an increased beam size of 80.

Berkeley: PCFG Parsing The Berkeley parser
(Petrov et al., 2006; henceforth just Berkeley) is a gen-
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Unary Rules Preserved Unary Rules Removed
Labels Long Short Mixed Long Short
Cycles 5 6 5 6 5 6 5 6 5 6
Gaps 2 5 0 0 11 19 3 3 0 0
TA 90.96 90.62 91.11 91.62 90.93 90.94 88.46 87.65 89.16 88.46
F1 76.39 75.66 79.81 80.33 76.70 76.74 74.53 73.72 75.15 73.56

LAS 86.26 85.90 82.50 83.15 86.72 86.16 83.96 83.20 80.49 79.56
UAS 89.34 88.92 89.80 90.34 89.42 88.84 87.12 86.54 87.95 87.15

Table 2: Tagging accuracy, PARSEVAL F1, and dependency accuracy for Berkeley on WSJ development data.

erative, unlexicalized phrase structure parser that au-
tomatically derives a smoothed latent-variable PCFG
from the treebank and refines the grammar by a split–
merge procedure. The parser achieves state-of-the-art
performance on various standard benchmarks. In § 4
below, we explain how we adapt ERG derivations for
training and testing with Berkeley; for comparison to
the other parsers in terms of DT dependency accu-
racy, we apply the converter of Ivanova et al. (2012)
to Berkeley outputs. For technical reasons, however,
the optional mapping from ERG to PTB tokenization
is not applicable in this setup, and hence our experi-
ments involving Berkeley are limited to ERG tokens
and fine-grained lexical categories.

Evaluation Standard evaluation metrics in depen-
dency parsing are labeled and unlabeled attachment
scores (LAS, UAS; implemented by the CoNLL
eval.pl scorer). These measure the percentage of to-
kens which are correctly attached to their head token
and, for LAS, have the right dependency label. As as-
signment of lexical categories is a core part of syntac-
tic analysis, we complement LAS and UAS with tag-
ging accuracy scores (TA), where appropriate. How-
ever, in our work there are two complications to con-
sider when using eval.pl. First, some of our parsers oc-
casionally fail to return any analysis, notably Berkeley
and ERGe. For these inputs, our evaluation re-inserts
the missing tokens in the parser output, padding with
dummy ‘placeholder’ heads and dependency labels.

Second, a more difficult issue is caused by occas-
sional tokenization mismatches in ERG parses, as dis-
cussed above. Since eval.pl identifies tokens by their
position in the sentence, any difference of tokeniza-
tion will lead to invalid results. One option would be
to treat all system outputs with token mismatches as
parse failures, but this over-penalizes, as potentially
correct dependencies among corresponding tokens are
also removed from the parser output. For this reason,
we modify the evaluation of dependency accuracy to

use sub-string character ranges, instead of consecutive
identifiers, to encode token identities. This way, tok-
enization mismatches local to some sub-segment of
the input will not ‘throw off’ token correspondences
in other parts of the string.5 We will refer to this
character-based variant of the standard CoNLL met-
rics as LASc and UASc.

4 PCFG Parsing of HPSG Derivations

Formally, the HPSG analyses in the DeepBank and
Redwoods treebanks transcend the class of context-
free grammars, of course. Nevertheless, one can prag-
matically look at an ERG derivation as if it were a
context-free phrase structure tree. On this view, stan-
dard, off-the-shelf PCFG parsing techniques are ap-
plicable to the ERG treebanks. Zhang and Krieger
(2011) explore this space experimentally, combining
the ERG, Redwoods (but not DeepBank), and massive
collections of automatically parsed text. Their study,
however, does not consider parser efficiency.6.

In contrast, our goal is to reflect on practical trade-
offs along multiple dimensions. We therefore focus
on Berkeley, as one of the currently best-performing
(and relatively efficient) PCFG engines. Due to its
ability to internally rewrite node labels, this parser
should be expected to adapt well also to ERG deriva-
tions. Compared to the phrase structure annotations
in the PTB, there are two structural differences evi-
dent in Figure 1. First, the inventories of phrasal and
lexical labels are larger, at around 250 and 1000, re-
spectively, compared to only about two dozen phrasal
categories and 45 parts of speech in the PTB. Second,
ERG derivations contain more unary (non-branching)

5Where tokenization is identical for the gold and system out-
puts, the score given by this generalized metric is exactly the same
as that of eval.pl. Unless indicated otherwise, punctuation marks
are included in scoring.

6Their best PCFG results are only a few points F1 below the
full HPSG parser, using massive PCFGs and exact inference;
parsing times in fact exceed those of the native HPSG parser
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Gaps Time TAc LASc UASc
Berkeley 1+0 1.0 92.9 86.65 89.86

B&N 0+0 1.7 92.9 86.76 89.65
ERGa 0+0 10 97.8 92.87 93.95
ERGe 13+44 1.8 96.4 91.60 92.72

Table 3: Parse failures and token mismatches (‘gaps’), effi-
ciency, and tagging and dependency accuracy on WSJ.

rules, recording for example morphological variation
or syntacto-semantic category changes.7

Table 2 summarizes a first series of experiments,
seeking to tune the Berkeley parser for maximum ac-
curacy on our development set, DeepBank Section 20.
We experimented with preserving unary rules in ERG
derivations or removing them (as they make no dif-
ference to the final DT analysis); we further ran ex-
periments using the native (‘long’) ERG construction
identifiers, their generalizations to ‘short’ labels as
used in DT, and a variant with long labels for unary
and short ones for branching rules (‘mixed’). We re-
port results for training with five or six split–merge
cycles, where fewer iterations generally showed infe-
rior accuracy, and larger values led to more parse fail-
ures (‘gaps’ in Table 2). There are some noticeable
trade-offs across tagging accuracy, dependency accu-
racy, and coverage, without a single best performer
along all three dimensions. As our primary interest
across parsers is dependency accuracy, we select the
configuration with unary rules and long labels, trained
with five split–merge cycles, which seems to afford
near-premium LAS at near-perfect coverage.8

5 In-Domain Results

Our first cross-paradigm comparison of the three
parsers is against the WSJ in-domain test data, as
summarized in Table 3. There are substantive dif-
ferences between parsers both in terms of coverage,
speed, and accuracy. Berkeley fails to return an analy-
sis for one input, whereas ERGe cannot parse 13 sen-
tences (close to one percent of the test set); just as the
44 inputs where parser output deviates in tokenization
from the treebank, this is likely an effect of the lexi-
cal pruning applied in this setup. At an average of one

7Examples of morphological rules in Figure 1 include
v_pas_odlr and v_n3s-bse_ilr, for past-participle and non-third
person singular or base inflection, respectively. Also, there are
two instances of bare noun phrase formation: hdn_bnp-pn_c and
hdn_bnp-qnt_c.

8A welcome side-effect of this choice is that we end up using
native ERG derivations without modifications.

second per input, Berkeley is the fastest of our parsers;
ERGa is exactly one order of magnitude slower. How-
ever, the lexical pruning of Dridan (2013) in ERGe

leads to a speed-up of almost a factor of six, mak-
ing this variant of PET perform comparable to B&N.
Maybe the strongest differences, however, we observe
in tagging and dependency accuracies: The two data-
driven parsers perform very similarly (at close to 93%
TA and around 86.7% LAS); the two ERG parsers are
comparable too, but at accuracy levels that are four to
six points higher in both TA and LAS. Compared to
ERGa, the faster ERGe variant performs very slightly
worse—which likely reflects penalization for missing
coverage and token mismatches—but it nevertheless
delivers much higher accuracy than the data-driven
parsers. In subsequent experiments, we will thus fo-
cus only on ERGe.

6 Error Analysis
The ERG parsers outperform the two data-driven
parsers on the WSJ data. Through in-depth error anal-
ysis, we seek to identify parser-specific properties that
can explain the observed differences. In the following,
we look at (a) the accuracy of individual dependency
types, (b) dependency accuracy relative to (predicted
and gold) dependency length, and (c) the distribution
of LAS over different lexical categories.

Among the different dependency types, we observe
that the notion of an adjunct is difficult for all three
parsers. One of the hardest dependency labels is
hdn-aj (post-adjunction to a nominal head), the rela-
tion employed for relative clauses and prepositional
phrases attaching to a nominal head. The most com-
mon error for this relation is verbal attachment.

It has been noted that dependency parsers may ex-
hibit systematic performance differences with respect
to dependency length (i.e. the distance between a head
and its argument; McDonald & Nivre, 2007). In our
experiments, we find that the parsers perform compa-
rably on longer dependency arcs (upwards of fifteen
words), with ERGa constantly showing the highest ac-
curacy, and Berkeley holding a slight edge over B&N
as dependency length increases.

In Figure 3, one can eyeball accuracy levels per
lexical category, where conjunctions (c) and various
types of prepositions (p and pp) are the most difficult
for all three parsers. That the DT analysis of coordi-
nation is challenging is unsurprising. Schwartz et al.
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Figure 3: WSJ per-category dependency accuracies on
coarse lexical head categories: adjective, adverb, conjunc-
tion, complementizer, determiner, noun, preposition, lexi-
cal prepositional phrase, punctuation, verb, and others.

(2012) show that choosing conjunctions as heads in
coordinate structures is harder to parse for direct de-
pendency parsers (while this analysis also is linguisti-
cally more expressive). Our results confirm this effect
also for the PCFG and (though to a lesser degree) for
ERGa. At the same time, conjunctions are among the
lexical categories for which ERGa most clearly out-
performs the other parsers. Berkeley and B&N exhibit
LAS error rates of around 35–41% for conjunctions,
whereas the ERGa error rate is below 20%. For many
of the coordinate structures parsed correctly by ERGa

but not the other two, we found that attachment to root
constitutes the most frequent error type—indicating
that clausal coordination is particularly difficult for
the data-driven parsers.

The attachment of prepositions constitutes a noto-
rious difficulty in syntactic analysis. Unlike ‘stan-
dard’ PoS tag sets, ERG lexical types provide a more
fine-grained analysis of prepositions, for example rec-
ognizing a lexicalized PP like in full, or making ex-
plicit the distinction between semantically contenful
vs. vacuous prepositions. In our error analysis, we
find that parser performance across the various prepo-
sitional sub-types varies a lot. For some preposi-
tions, all parsers perform comparatively well; e.g.
p_np_ptcl-of_le, for semantically vacuous of, ranks
among the twenty most accurate lexical categories
across the board. Other types of prepositions are
among the categories exhibiting the highest error
rates, e.g. p_np_i_le for ‘common’ prepositions, tak-
ing an NP argument and projecting intersective mod-
ifier semantics. Even so, Figure 3 shows that the at-
tachment of prepositions (p and pp) is an area where
ERGa excels most markedly. Three frequent prepo-

Gaps TAc LASc UASc

C
B

Berkeley 1+0 87.1 78.13 83.14
B&N 0+0 87.7 77.70 82.96

ERGe 8+8 95.3 90.02 91.58

S
C

Berkeley 1+0 87.2 79.81 85.10
B&N 0+0 85.9 78.08 83.21

ERGe 11+7 94.9 89.94 91.26

V
M

Berkeley 7+0 84.0 74.40 83.38
B&N 0+0 83.1 75.28 82.86

ERGe 11+42 94.4 90.18 91.75

W
S

Berkeley 7+0 87.7 80.31 85.09
B&N 0+0 88.4 80.63 85.24

ERGe 4+12 96.9 90.64 91.76

Table 4: Cross-domain coverage (parse failures and token
mismatches) and tagging and dependency accuracies.

sitional lexical types that show the largest ERGa

advantages are p_np_ptcl-of_le (history of Linux),
p_np_ptcl_le (look for peace), and p_np_i_le (talk
about friends). Looking more closely at inputs where
the parsers disagree, they largely involve (usages of)
prepositions which are lexically selected for by their
head. In other words, most prepositions in isolation
are ambiguous lexical items. However, it appears that
lexical information about the argument structure of
heads encoded in the grammar allows ERGa to anal-
yse these prepositions (in context) much more accu-
rately.

7 Cross-Domain Results
To gauge the resilience of the different systems to do-
main and genre variation, we applied the same set of
parsers—without re-training or other adaptation—to
the additional Redwoods test data. Table 4 summa-
rizes coverage and accuracy results across the four
diverse samples. Again, Berkeley and B&N pattern
alike, with Berkeley maybe slightly ahead in terms
of dependency accuracy, but penalized on two of the
test sets for parse failures. LAS for the two data-
driven parsers ranges between 74% and 81%, up to
12 points below their WSJ performance. Though
large, accuracy drops on a similar scale have been ob-
served repeatedly for purely statistical systems when
moving out of the WSJ domain without adaptation
(Gildea, 2001; Nivre et al., 2007). In contrast, ERGe

performance is more similar to WSJ results, with a
maximum LAS drop of less than two points.9 For

9It must be noted that, unlike the WSJ test data, some of
these cross-domain data sets have been used in ERG development
throughout the years, notably VM and CB, and thus the grammar
is likely to have particularly good linguistic coverage of this data.
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Lexical Types PTB PoS Tags
Gaps LASc UASc LASc UASc

W
S

J B&N 0+0 88.78 91.52 91.56 93.63
ERGe 13+9 92.38 93.53 92.38 93.53

C
B B&N 0+0 81.56 86.18 84.54 88.53

ERGe 8+4 90.77 92.21 90.77 92.21

S
C B&N 0+0 81.69 86.11 85.17 88.85

ERGe 11+0 90.13 91.86 90.13 91.86

V
M B&N 0+0 77.00 83.73 82.76 88.11

ERGe 10+0 91.55 93.08 91.55 93.08

W
S B&N 0+0 82.09 86.17 84.59 88.41

ERGe 4+0 91.61 92.62 91.61 92.62

Table 5: Coverage and dependency accuracies with PTB
tokenization and either detailed or coarse lexical categories.

Wikipedia text (WS; previously unseen data for the
ERG, just as for the other two), for example, both tag-
ging and dependency accuracies are around ten points
higher, an error reduction of more than 50%. From
these results, it is evident that the general linguistic
knowledge available in ERG parsing makes it far more
resilient to variation in domain and text type.

8 Sanity: PTB Tokenization and PoS Tags

Up to this point, we have applied the two data-driven
parsers in a setup that one might consider somewhat
‘off-road’; although our experiments are on English,
they involve unusual tokenization and lexical cate-
gories. For example, the ERG treatment of punc-
tuation as ‘pseudo-affixes’ increases vocabulary size,
which PET may be better equipped to handle due to
its integrated treatment of morphological variation. In
two concluding experiments, we seek to isolate the ef-
fects of tokenization conventions and granularity of
lexical categories, taking advantage of optional out-
put flexibility in the DT converter of Ivanova et al.
(2012).10 Table 5 confirms that tokenization does
make a difference. In combination with fine-grained
lexical categories still, B&N obtains LAS gains of two
to three points, compared to smaller gains (around or
below one point) for ERGe.11 However, in this setup

Conversely, SC has hardly had a role in grammar engineering so
far, and WS is genuinely unseen (for the current ERG and Red-
woods release), i.e. treebankers were first exposed to it once the
grammar and parser were frozen.

10As mapping from ERG derivations into PTB-style tokens and
PoS tags is applied when converting to bi-lexical dependencies,
we cannot easily include Berkeley in these final experiments.

11When converting to PTB-style tokenization, punctuation
marks are always attached low in the DT scheme, to the imme-
diately preceding or following token, effectively adding a large
group of ‘easy’ dependencies.

our two earlier observations still hold true: ERGe is
substantially more accurate within the WSJ domain
and far more resilient to domain and genre variation.
When we simplify the syntactic analysis task and train
and test B&N on coarse-grained PTB PoS tags only,
in-domain differences between the two parsers are fur-
ther reduced (to 0.8 points), but ERGe still delivers an
error reduction of ten percent compared to B&N. The
picture in the cross-domain comparison is not qual-
itatively different, also in this simpler parsing task,
with ERGe maintaining accuracy levels comparable
to WSJ, while B&N accuracies degrade markedly.

9 Discussion and Conclusion
Our experiments sought to contrast state-of-the-art
representatives from three parsing paradigms on the
task of producing bi-lexical syntactic dependencies
for English. For the HPSG-derived DT scheme, we
find that hybrid, grammar-driven parsing yields supe-
rior accuracy, both in- and in particular cross-domain,
at processing times comparable to the currently best
direct dependency parser. These results corroborate
the Dutch findings of Plank and van Noord (2010) for
English, where more training data is available and in
comparison to more advanced data-driven parsers. In
most of this work, we have focussed exclusively on
parser inputs represented in the DeepBank and Red-
woods treebanks, ignoring 15 percent of the original
running text, for which the ERG and PET do not make
available a gold-standard analysis. While a parser
with partial coverage can be useful in some contexts,
obviously the data-driven parsers must be credited for
providing a syntactic analysis of (almost) all inputs.
However, the ERG coverage gap can be straighfor-
wardly addressed by falling back to another parser
when necessary. Such a system combination would
undoubtedly yield better tagging and dependency ac-
curacies than the data-driven parsers by themselves,
especially so in an open-domain setup. A secondary
finding from our experiments is that PCFG parsing
with Berkeley and conversion to DT dependencies
yields equivalent or mildly more accurate analyses, at
much greater efficiency. In future work, it would be
interesting to include in this comparison other PCFG
parsers and linear-time, transition-based dependency
parsers, but a tentative generalization over our find-
ings to date is that linguistically richer representations
enable more accurate parsing.
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Abstract

In this paper, we investigate the influence of
generalization of words to the accuracies of
Chinese dependency parsing. Specially, in
our shift-reduce parser, we use a neural lan-
guage model based word embedding (NLMWE)
method (Bengio et al., 2003) to generate dis-
tributed word feature vectors and then per-
form K-means based word clustering to gen-
erate word classes. We designed feature tem-
plates by making use of words, part-of-speech
(POS) tags, coarse-grained POS (CPOS) tags,
NLMWE-based word classes and their combi-
nations. NLMWE-based word classes is shown
to be an important supplement of POS-tags, es-
pecially when POS-tags are automatically gen-
erated. Experiments on a Query treebank,
CTB5 and CTB7 show that the combinations
of features from CPOS-tags, POS-tags, and
NLMWE-based word classes yield the best un-
labelled attachment scores (UASs). Our final
UAS−p (excluding punctuations) of 86.79% on
the CTB5 test set is comparable to state-of-the-
art results. Our final UAS−p of 86.80% and
87.05% on the CTB7 Stanford dependency test
set and original test set is significantly better
than three well known open-source dependency
parsers.

1 Introduction

Current dependency parsing framework is facing the
following challenge, training the model using manu-
ally annotated treebanks and then apply the model to
the whole Web. In terms of words, it is not possible for
the treebank to cover all the words in the Web. Given
a test sentence, how can we expect the parser to out-
put a correct tree if there are out-of-vocabulary (OOV)

words (compared to the training data of the treebank)
and/or the POS-tags are wrongly annotated?

Words need to be generalized to solve this prob-
lem in a sense. Indeed, POS-tag itself is a way
to generalize words into word classes. This is be-
cause POS-taggers can be trained on larger-scale data
compared with treebanks. Annotating trees is far
more difficult than annotating POS-tags. Consider-
ing that unsupervised word clustering methods can
make use of TB/PB-level Web data, these approaches
have been shown to be helpful for dependency parsing
(Koo et al., 2008).

In this paper, we investigate the influence of gener-
alization of words to the accuracies of Chinese depen-
dency parsing. Specially, in our shift-reduce parser,
we use a neural language model based word em-
bedding method (Bengio et al., 2003) to generate dis-
tributed word feature vectors and then perform K-
means based word clustering (Yu et al., 2013) to gen-
erate word classes. Our usage of word embedding is
in line with Turian et al. (2010) and Yu et al. (2013),
who study the effects of different clustering algo-
rithms for POS tagging and named entity recogni-
tion (NER). We designed feature templates by mak-
ing use of words, POS tags, CPOS tags, NLMWE-
based word classes and their combinations. NLMWE-
based word classes is shown to be an important sup-
plement of POS-tags. Experiments on a Query tree-
bank, CTB5 and CTB7 show that the combinations of
features from CPOS-tags, POS-tags, and NLMWE-
based word classes yield the best UASs.

1.1 Shift-reduce parsing

We use a transition-based shift-reduce parser
(Kudo and Matsumoto, 2002; Nivre, 2003;
Nivre et al., 2006; Huang and Sagae, 2010) to
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perform all the experiments in this paper. In a typical
transition-based parsing process, the input words are
stored in a queue and partially built dependency struc-
tures (e.g., sub-trees) are organized by a configuration
(or state). A parser configuration (or, state) can be
represented by a tuple < S,N, A >, where S is the
stack, N is the queue of incoming words, and A is
the set of dependency arcs that have been built. A set
of shift-reduce actions are defined, which are used to
construct new dependency arcs by connecting the top
word of the queue and the top word of the stack. We
adopt the arc-standard system (Nivre, 2008), whose
actions include:

• shift, which removes the top word in the queue
and pushes it onto the top of the stack;

• left-arc, which pops the top item off the stack,
and adds it as a modifier to the front of the queue;

• right-arc, which removes the front of the queue,
and adds it as a modifier to the top of the stack.
In addition, the top of the stack is popped and
added to the front of the queue.

We follow Kudo and Matsumoto (2002) and
use the Support Vector Machines (SVMs) for
action classification training and beam search
(Zhang and Clark, 2008) for decoding.

2 Neural Language Model Based Word
Embedding

Following (Bengio et al., 2003), we use a neural net-
work with two hidden layers to learn distributed word
feature vectors from large-scale training data. Recall
that, the goal of statistical language modelling is to
learn the joint probability function of sequences of
words in a language. This is intrinsically difficult
because of the curse of dimensionality: a word se-
quence on which the model will be tested is likely to
be different from all the word sequences seen during
training (so called OOV words and/or sequences). N-
gram based approach obtains generalization by con-
catenating very short overlapping sequences seen in
the training set. Bengio et al. (2003) propose to fight
the curse of dimensionality by learning a distributed
representation (of feature vectors) for words which
allows each training sentence to inform the model

about an exponential number of semantically neigh-
bouring sentences. The model learns simultaneously
(1) a distributed representation for each word along
with (2) the probability function for word sequences,
expressed in terms of these representations.

The general process of neural language model
based word embedding is as follows:

• associate with each word in the vocabulary a dis-
tributed word feature vector (a real valued vector
in Rm);

• express the joint probability function of word se-
quences in terms of the feature vectors of these
words in the sequence; and,

• learn simultaneously the word feature vectors
and the parameters of that probability function.

The training set of the NLMWE model is a se-
quence w1, ..., wT of words wt ∈ V , where the vo-
cabulary V is a large yet finite set. The objective is
to learn a model f(wt, ..., wt−n+1) = P (wt|wt−1

1 ),
so that that the model gives high out-of-sample like-
lihood. The only constraint on the model is that for
any choice of wt−1

1 ,
∑|V |

i=1 f(i, wt−1, ..., wt−n+1) = 1
with f > 0. By the product of these conditional prob-
abilities, one obtains a model of the joint probability
of sequences of words.

Function f(wt, ..., wt−n+1) = P (wt|wt−1
1 ) is de-

composed into two parts:

• A mapping C from any element i of V to a real
vector C(i) ∈ Rm. It represents the distributed
feature vectors associated with each word in the
vocabulary. In practice, C is represented by a
|V | × m matrix of free parameters.

• The probability function over words, expressed
with C: a function g maps an input se-
quence of feature vectors for words in con-
text, (C(wt−n+1), ..., C(wt−1)), to a conditional
probability distribution over words in V for the
next word wt . The output of g is a vector whose
i-th element estimates the probability P (wt =
i|wt−1

1 ) as in Figure 1 in (Bengio et al., 2003).

Following (Bengio et al., 2003), in the real imple-
mentation, we speed up with both parallel data and
parallel parameter estimation. We finally use the well-
known K-means clustering algorithm based on the
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distributed word feature vectors for word clustering.
We separately set the number of word classes to be
100, 500, and 1,000 in our experiments.

3 Feature Templates

At each step during shift-reducing, a parser con-
figuration (or, state) can be represented by a tuple
< S,N,A >. We denote the top of stack with S0,
the front items from the queue with N0, N1, N2, and
N3, the leftmost and rightmost modifiers of S0 (if
any) with S0l and S0r, respectively, and the leftmost
modifier of N0 (if any) with N0l (refer to Figure
1). The baseline feature templates without any word
class level information (such as POS-tags) are shown
in Table 1. These features are mostly taken from
Zhang and Clark (2008), Huang and Sagae (2010),
and Zhang and Nivre (2011). In this table, w, l
and d represents the word, dependency label, and
the distance between S0 and N0, respectively. For
example, S0wN0w represents the feature template
that takes the word of S0, and combines it with the
word of N0.

In Table 1, (S/N)0l2, (S/N)0r2, and (S/N)0rn

refer to the second leftmost modifier, the second
rightmost modifier, and the right nearest modifier of
(S/N)0, respectively. It should be mentioned that, for
the arc-standard algorithm used in this paper, S0 or N0

never contain a head word. The reason is that, once
the head is found for a node, that node will be hidden
under the head and being removed from the stack or
the queue1.

Table 2 lists the features templates that are related
to POS-tags and their combination with words and de-
pendency labels. In the table, (S/N)0ll and (S/N)0rr

stand for the left(ll)/right(rr)-hand-side neighbour
word of S0/N0 in the input sentence for training or
decoding. For example, features such as POS-tags
of bi-siblings of N0 (e.g., N0l2pN0r2p) and S0 (e.g.,
S0r2pS0rp) are included in the combination of two
feature templates. These bi-sibling features together
with (S/N)0 (e.g., N0N0l2pN0r2p and S0S0r2pS0rp)
are included in the combination of three feature tem-
plates. N0 (similar with S0) and its surrounding
words, such as neighbour words and child words are
shown in Figure 1 for intuitive understanding. For
comparison with other levels of word classes, we will

1Thanks one reviewer for pointing this out.

single feature templates (14)
N0lw, N0w, N1w, N2w, S0l2l, S0l2w, S0ll,
S0lw, S0r2l, S0r2w, S0rnw, S0rl, S0rw, S0w

combination of two feature templates (19)
N0lwS0w, N0rnwS0w, N0rwS0w, N0wN0ll, N0wN1w,
N0wN2w, N0wN3w, N0wd, N1wN2w, N1wN3w,
N1wS0rl, N2wN3w, S0lwN0w, S0rnwN0w, S0rwN0w,
S0wN0w, S0wS0ll, S0wS0rl, S0wd

combination of three feature templates (8)
N0wN0llN0l2l, N0wN1wN2w, N0wN1wN3w,
N0wN2wN3w, N1wN2wN3w, S0wN0wd,
S0wS0llS0l2l, S0wS0rlS0r2l

combination of four feature templates (1)
N0wN1wN2wN3w

Table 1: Feature templates related to words (w), depen-
dency labels (l) and the distance between S0 and N0 (d).

combination of two feature templates (3)
S1wS1p, S0wS1w, S0pS1p

combination of three feature templates (13)
S0wS0pS1p, S0pS1wS1p, S0wS1wS1p, S0wS0pS1w,
S1pS0pN0p, S1pS0wN0p, S1pS1lpS0p, S1pS1rpS0p,
S1pS0pS0rp, S1pS1lpS0p, S1pS1rpS0w, S1pS0wS0lp,
S2pS1pS0p

combination of four feature templates (1)
S0wS0pS1wS1p

Table 3: Feature templates related to S1 and S2.

directly replace POS-tags (p) by other kind of word
classes, such as CPOS-tags and NLMWE-based K-
means word clusterings. For example, instead of re-
turning the POS-tag of S0, S0p will return CPOS-tag
of the word of S0 in CPOS-tag related feature tem-
plates, and return NLMWE-based word class index of
the word of S0 in NLMWE clustering related feature
templates.

Besides Table 1 and 2, we further include S0 and S1

related features2 following (Huang and Sagae, 2010).
These features are listed in Table 3. As will be shown
in Table 16, UASs are improved around 0.2% after
appending these feature templates to Table 1 and 2.

4 Experiments

4.1 Setup

We use three Chinese treebanks in our experiments.
The first one is an in-house Chinese Query treebank
with 12,028 sentences (averagely 4.04 words per sen-

2Thanks one reviewer for pointing this out.
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single feature templates (13)
N0l2p, N0lp, N0p, N1p, N2p, N4p, S0l2p, S0lp, S0r2p, S0rp, S0p, S1p, S2p

combination of two feature templates (54)
N0l2pN0r2p, N0l2pN0rnp, N0l2pN0rp, N0lpN0l2p, N0lpN0r2p, N0lpN0rnp, N0lpN0rp, N0lpS0p, N0lpS0w, N0lwS0p,
N0r2pN0rp, N0rnpN0r2p, N0rnpN0rp, N0rnpS0p, N0rnpS0w, N0rnwS0p, N0rpS0p, N0rpS0w, N0rwS0p, N0pN0ll,
N0pN1p, N0pN2p, N0pN3p, N0pd, N0wN0p, N1pN2p, N1pN3p, N1pS0w, N1wN1p, N2pN3p, S0l2pS0r2p, S0l2pS0rnp,
S0l2pS0rp, S0lpN0p, S0lpN0w, S0lpS0l2p, S0lpS0r2p, S0lpS0rnp, S0lpS0rp, S0lwN0p, S0r2pS0rp, S0rnpN0p, S0rnpN0w,
S0rnpS0r2p, S0rnpS0rp, S0rnwN0p, S0rpN0p, S0rpN0w, S0rwN0p, S0pN0p, S0pS0ll, S0pS0rl, S0pd, S0wS0p

combination of three feature templates (43)
N0llpN0pS0p, N0llpS0pS0rrp, N0pN0l2pN0r2p, N0pN0l2pN0rnp, N0pN0l2pN0rp, N0pN0llN0l2l, N0pN0lpN0l2p,
N0pN0lpN0r2p, N0pN0lpN0rnp, N0pN0lpN0rp, N0pN0r2pN0rp, N0pN0rnpN0r2p, N0pN0rnpN0rp, N0pN0rnpS0p,
N0pN0rrpS0p, N0pN0rpS0p, N0pN1pN2p, N0pN1pN3p, N0pN2pN3p, N0pS0llpS0p, N0pS0pS0rrp, N1pN2pN3p,
S0pN0pN0lp, S0pN0pN1p, S0pN0pd, S0pN0wN0p, S0pS0l2pS0r2p, S0pS0l2pS0rnp, S0pS0l2pS0rp, S0pS0llS0l2l,
S0pS0lpN0p, S0pS0lpS0l2p, S0pS0lpS0r2p, S0pS0lpS0rnp, S0pS0lpS0rp, S0pS0rnpN0p, S0pS0rnpS0r2p,
S0pS0rnpS0rp, S0pS0rlS0r2l, S0pS0rpS0r2p, S0wN0wN0p, S0wS0pN0p, S0wS0pN0w

combination of four feature templates (6)
N0llpN0pS0llpS0p, N0llpN0pS0pS0rrp, N0pN0rrpS0llpS0p, N0pN0rrpS0pS0rrp, N0pN1pN2pN3p, S0wS0pN0wN0p

Table 2: Feature templates related to POS-tags (p) and their combination with words (w) and dependency labels (l).

 

  

N0 N0ll N0rr  … … 

N0l N0l2 N0r N0r2 N0rn 

input queue 

Figure 1: N0, its neighbour words (N0ll and N0rr), and
child words (N0l, N0l2, N0rn, N0r2, and N0r).

tence) for training and 500 sentences (averagely 3.95
words per sentence) for testing.

Sections Sentences Tokens
Train 001-815;1001-1136 16,118 437,859
Dev 886-931;1148-1151 804 20,453
Test 816-885;1137-1147 1,915 50,319

Table 4: Standard split of CTB5 data.

The second one is the Chinese Treebank 5.03

(CTB5) (Xue et al., 2007). We follow the standard
split of this treebank, as shown in Table 4. The devel-
opment set is used to tune the hyper-parameter in the
SVM classification model for predicting the next sift-
reduce actions. We report the unlabelled attachment
scores (UASs) of the test set with and without punc-
tuations. We use Penn2Malt toolkit4 with Chinese
head rules5 to convert the PCFG trees into CoNLL-

3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId
=LDC2005T01

4http://stp.lingfil.uu.se/ñivre/research/Penn2Malt.html
5http://stp.lingfil.uu.se/ñivre/research/chn headrules.txt

style6 dependency trees. Besides the head rules orig-
inally used in Penn2Malt, we also independently use
the head rules expressed in (Zhang and Clark, 2008)
for direct comparison with related works (refer to Ta-
ble 16). In our experiments, it reveals that using of
these two kinds of head rules does not bring a signifi-
cant differences of UASs.

Files Sentences Tokens
Train 2,083 46,572 1,039,942
Dev 160 2,079 59,955
Test 205 2,796 81,578

Table 5: Statistics of CTB7 data.

The third one is the Chinese Treebank 7.07 (CTB7).
The statistics is shown in Table 5 by following the
standard split of this treebank. Again, the develop-
ment set is used to tune the hyper-parameter in the
SVM classification model. The PCFG tree to CoNLL
format conversion is similar to CTB5.

Table 6 shows the coverage rates of training/testing
words in our NLMWE word clustering dictionary
(with 1,000 word classes and 4,999,890 unique words)
and OOV rates in the testing sets of the Query tree-
bank, CTB5 and CTB7.

As shown in Table 7, we manually construct a map-
ping from POS-tags to CPOS-tags and then apply this

6http://ilk.uvt.nl/conll/#dataformat
7http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId

=LDC2010T07
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Train Test
NLMWE NLMWE OOV (in NLMWE)

Query 99.94 99.90 24.08 (99.58)
CTB5 91.60 91.60 6.25 (65.46)
CTB7 91.39 92.11 4.78 (57.03)

Table 6: Coverage rates (%) of training/testing words in
NLMWE word clustering dictionary and OOV rates in the
testing sets of the Query treebank, CTB5 and CTB7.

POS CPOS
VA VC VE VV 1
NR NT NN 2
LC 3
PN 4
DT CD OD 5
M 6
AD 7
P 8
CC CS 9
DEC DEG DER DEV AS SP ETC MSP 10
IJ ON LB SB BA JJ FW 11
PU 12
X 13

Table 7: Mapping from POS-tags to CPOS-tags in CTB5
and CTB7.

mapping to CTB5 and CTB7 to obtain CPOS-tags for
each word. For the Query treebank with POS-tags
of the Peking University Corpus standard, we simply
choose the first letter of the POS-tag to be its CPOS-
tag.

4.2 Comparison of number of word classes

wc.1000 wc.500 wc.100
nlmwe 87.13 (84.00) 86.21 (82.32) 85.86 (81.89)
+pos 88.70 (85.89) 87.84 (85.47) 87.28 (83.58)
+cpos 88.60 (85.68) 87.08 (83.79) 88.19 (84.42)
+pos+cpos 89.56 (86.74) 88.24 (85.05) 88.09 (84.84)

Table 8: The influence of the number of word classes to
UAS−p (%) of words and OOV words (numbers in the
brackets) in the Query treebank.

Table 8 shows the influence of the number of word
classes (of 100, 500, and 1,000) to UAS−p (with-
out punctuations kept and a beam size of 10) in
the Query treebank. We observe that, for NLMWE,
POS+NLMWE and POS+CPOS+NLMWE, UAS in-
creases as the number of word classes increases. Here,
1,000 word classes performs the best accuracies.

In particular, in order to investigate the general-
ization of unknown words, we individually show the
UAS of OOV words in the test set as influenced by
the number of words classes (UASs in the brackets in
Table 8). The absolute value of OOV words’ UAS
is lower than UAS of all words. Again, the combina-
tion of CPOS-tags, POS-tags, and NLMWE clustering
with 1,000 classes yields the best result.

4.3 Comparison of POS, CPOS, NLMWE and
their combinations

UAS UASoov UASin
words 84.03 80.42 85.18
nlmwe 87.13 84.00 88.12
pos 87.18 85.05 87.85
pos+nlmwe 88.70 85.89 89.59
cpos 86.67 84.21 87.45
cpos+nlmwe 88.60 85.68 89.52
pos+cpos 87.63 85.05 88.45
pos+cpos+nlmwe 89.56 86.74 90.45

Table 9: The UAS−p (%) scores of using feature templates
that are related to POS, CPOS, NLMWE and their combi-
nations in the Query treebank.

Table 9 intuitively shows the UAS scores of us-
ing feature templates that are related to POS, CPOS,
NLMWE (of 1,000 word classes) and their combina-
tions in the Query treebank. We use “words” to repre-
sent the feature templates listed in Table 1, i.e., no ad-
ditional word generalized feature templates are used.
For “pos”, “cpos”, and “nlmwe”, they separately use
not only the feature templates listed in Table 2 but also
the word-related feature templates listed in Table 1.
We observe that:

• when only using surface word related feature
templates, the UAS (80.42%) of OOV words is
the worst. This tells us that word classes are im-
portant for generalization. Referring to Table 1,
we argue n-gram features such as N0wN1wN2w
and their combinations with dependency labels
such as N0wN0ll contribute for the 80.42% ac-
curacy of UAS;

• respectively appending POS/CPOS/NLMWE re-
lated features (Table 2) to words yields signifi-
cant improvements of UAS;

• the combination of either two of POS, CPOS,
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and NLMWE yields a better UAS than the in-
dividuals;

• finally, the UAS scores are the best for both OOV
words (UASoov) and non-OOV words (UASin)
when we combine POS, CPOS and NLMWE to-
gether.

UAS UASoov UASin
words 71.93 66.98 72.32
nlmwe 76.98 71.88 77.39
pos 86.49 84.87 86.62
pos+nlmwe 86.41 84.91 86.53
cpos 84.43 82.46 84.59
cpos+nlmwe 84.82 83.64 84.92
pos+cpos 86.56 84.78 86.70
pos+cpos+nlmwe 86.58 84.87 86.72

Table 10: The UAS−p (%) scores of using feature tem-
plates that are related to POS, CPOS, NLMWE and their
combinations in CTB5.

UAS UASoov UASin
words 72.71 68.80 72.94
nlmwe 78.03 75.17 78.19
pos 86.47 86.25 86.49
pos+nlmwe 87.01 86.69 87.03
cpos 84.21 83.04 84.28
cpos+nlmwe 85.03 83.81 85.10
pos+cpos 86.81 86.45 86.83
pos+cpos+nlmwe 87.05 86.48 87.09

Table 11: The UAS−p (%) scores of using feature tem-
plates that are related to POS, CPOS, NLMWE and their
combinations in CTB7.

UAS UASoov UASin
words 69.76 64.16 70.09
nlmwe 74.56 69.86 74.83
pos 86.18 83.89 86.31
pos+nlmwe 86.36 84.38 86.48
cpos 83.66 81.94 83.76
cpos+nlmwe 84.55 82.35 84.68
pos+cpos 86.53 84.71 86.64
pos+cpos+nlmwe 86.80 84.99 86.91

Table 12: The UAS−p (%) scores of using feature tem-
plates that are related to POS, CPOS, NLMWE and their
combinations in CTB7 with Stanford dependency.

Table 10, 11 and 12 intuitively shows the UAS
scores of using feature templates that are related to

POS, CPOS, NLMWE (of 1,000 word classes) and
their combinations in CTB5, CTB7 and CTB7 with
Stanford dependency, respectively. Different with
the 24.08% OOV rate of the test of the Query tree-
bank, 6.25%/4.78% OOV rates of the test sets of
CTB5/CTB7 are smaller. This makes UAS and UASin
in these three tables quite close with each other. For
NLMWE, we have the following observations:

• in CTB5, NLMWE does not bring a signifi-
cant improvements after being appended to POS
and/or CPOS related feature templates;

• in CTB7, appending NLMWE to POS yields
an UAS−p improvement of 0.54% (87.01%
- 86.47%), which is significant; appending
NLMWE to POS+CPOS further yields an
UAS−p improvement of 0.24% (87.05% -
86.81%);

• in CTB7 with Stanford dependency, append-
ing NLMWE to POS yields an UAS−p im-
provement of 0.18% (86.36% - 86.18%); ap-
pending NLMWE to POS+CPOS further yields
an UAS−p improvement of 0.27% (86.80% -
86.53%), which is significant;

• in CTB5, CTB7 and CTB7 with Stanford de-
pendency, POS+CPOS+NLMWE yields the best
UAS−ps.

Recall that we introduce CPOS to generalize POS
in a sense. For example, all verb related POS tags
of VA, VC, VE, and VV are taken as one CPOS tag.
We hope that CPOS tags can capture the dependency
grammar in a more generalized level than POS tags.
For CPOS, we have the following observations:

• in CTB5, appending CPOS to POS yields a
slight UAS−p improvement of 0.07% (86.56%
- 86.49%); appending CPOS to POS+NLMWE
further yields an UAS−p improvement of 0.17%
(86.58% - 86.41%);

• in CTB7, appending CPOS to POS yields a
slightly UAS−p improvement of 0.34% (86.81%
- 86.47%), which is significant; appending CPOS
to POS+NLMWE further yields a slight UAS−p
improvement of 0.04% (87.05% - 87.01%);
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• in CTB7 with Stanford dependency, appending
CPOS to POS yields an UAS−p improvement
of 0.35% (86.53% - 86.18%), which is signif-
icant; appending CPOS to POS+NLMWE fur-
ther yields an UAS−p improvement of 0.44%
(86.80% - 86.36%), which is also significant.

4.4 Comparison of golden/non-golden POS tags

Not-Golden Diff Same Golden
words 84.03 89.19 83.94 84.03
nlmwe 87.13 91.89 87.04 87.13
pos 87.13 89.19 87.09 87.18
pos+nlmwe 88.80 89.19 88.79 88.70
cpos 86.67 91.89 86.57 86.67
cpos+nlmwe 88.65 91.89 88.58 88.60
pos+cpos 87.53 89.19 87.50 87.63
pos+cpos+nlmwe 89.56 89.19 89.57 89.56

Table 13: The UAS−p (%) of using the golden and not-
golden POS-tags in the Query test set.

Not-Golden Diff Same Golden
words 71.91 63.75 72.14 71.93
nlmwe 76.96 68.81 77.19 76.98
pos 83.78 61.61 84.40 86.49
pos+nlmwe 83.94 62.55 84.54 86.41
cpos 82.80 61.78 83.39 84.43
cpos+nlmwe 83.17 62.90 83.74 84.82
pos+cpos 83.83 60.93 84.48 86.56
pos+cpos+nlmwe 83.96 61.95 84.58 86.58

Table 14: The UAS−p (%) of using the golden and not-
golden POS-tags in the CTB5 test set.

Not-Golden Diff Same Golden
words 72.71 65.46 72.87 72.71
nlmwe 78.03 69.71 78.22 78.03
pos 83.82 59.25 84.39 86.47
pos+nlmwe 84.41 59.82 84.97 87.01
cpos 82.61 60.71 83.11 84.21
cpos+nlmwe 83.42 62.23 83.91 85.03
pos+cpos 84.12 57.79 84.72 86.81
pos+cpos+nlmwe 84.49 59.13 85.07 87.05

Table 15: The UAS−p (%) of using the golden and not-
golden POS-tags in the CTB7 test set.

We finally replace the golden POS-tags in the test
sets by POS-tags generated by a CRF-based POS-
tagger. Table 13 (POS precision = 98.1%), 14
(POS precision = 97.7%), and 15 (POS precision

= 98.1%) respectively show the UAS−p differences
of the Query, CTB5, and CTB7 test sets. In this
three tables, “Not-Golden” and “Golden” (denoted
as UASnot-golden and UASgolden, hereafter) stand
for the UAS−ps of not using or using the golden
POS-tags; “Diff” and “Same” (denoted as UASdiff
and UASsame, hereafter) are the UAS−ps of those
words whose POS-tags are different or similar with
the golden POS-tags.

Specially, it is important for us to check whether
NLMWE performs better when POS-tags are wrongly
annotated. In all these three test sets, NLMWE’s
UASdiff performs better than that of POS or CPOS.
Also, by combining wrong POS-tags (and/or CPOS-
tags) and NLMWE together, UASdiff drops. Most im-
portantly, when we look at UASdiff and compare POS
with POS+NLMWE, NLMWE does supply POS (and
CPOS). For example, in the CTB5 test set, UASdiff
significantly increases from 61.61% to 62.55%; in the
CTB7 test set, UASdiff significantly increases from
59.25% to 59.82%. On the other hand, by combining
correct POS-tags (and/or CPOS-tags) and NLMWE
together, UASsame increases, showing that NLMWE
even being a good supplement for correct POS-tags.

Finally, when we check the results of append-
ing NLMWE to POS/CPOS in the combination of
UASsame and UASdiff, i.e., UASnot-golden, the in-
creasing of UAS is significant in the Query test set
(e.g., from 87.53% of POS+CPOS to 89.56% of
POS+CPOS+NLMWE). In CTB5 and CTB7 test sets,
we observe that NLMWE does bring increasings yet
the increasings are not that significant. Referring back
to Table 6, we argue that the low coverage (91-92%
which is much lower than 99.9% in the Query tree-
bank) of NLMWE clustering dictionary in the CTB5
and CTB7 response for this tendency.

4.5 Comparison to state-of-the-art
Table 16 shows the comparison of our system with
state-of-the-art results on CTB5 and CTB7 test sets.
We set the beam size of all our system variants to
be 10. Note that most related researches only report
their results on the CTB5 test set which makes direct
comparison in the CTB7 test set unavailable. In the
CTB5 test set, we observe that our final result of us-
ing POS+CPOS+NLMWE is comparable to most of
related researches.

Besides the original data of CTB5 and CTB7, fol-
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System UAS+p UAS−p

CTB5
Ours (words) 69.85 71.93
Ours (nlmwe) 75.05 76.98
Ours (pos) 84.65 86.49
Ours (pos+nlmwe) 84.52 86.41
Ours (cpos) 82.50 84.43
Ours (cpos+nlmwe) 82.91 84.82
Ours (pos+cpos) 84.72 86.56
Ours (pos+cpos+nlmwe) 84.70 86.58
Ours (pos+cpos+nlmwe)∗ 84.62 86.59
Ours (pos+cpos+nlmwe)∗,+s1s2 84.88 86.79
(Huang and Sagae, 2010)∗ NA 85.2
(Zhang and Nivre, 2011)∗ NA 86.0
(Zhang and McDonald, 2012)∗ NA 86.87
(Li et al., 2012)∗ NA 86.55
(Sun and Wan, 2013) 84.65 NA
(Hayashi et al., 2013)∗ NA 85.9
(Ma et al., 2013)∗ NA 86.33

CTB7
Ours (words) 70.57 72.71
Ours (nlmwe) 75.90 78.03
Ours (pos) 84.35 86.47
Ours (pos+nlmwe) 84.85 87.01
Ours (cpos) 82.08 84.21
Ours (cpos+nlmwe) 82.91 85.03
Ours (pos+cpos) 84.66 86.81
Ours (pos+cpos+nlmwe) 84.89 87.05
Ours (pos+cpos+nlmwe)∗ 84.84 86.99

CTB7, Stanford
Ours (words)+ 68.14 69.76
Ours (nlmwe)+ 73.00 74.56
Ours (pos)+ 84.80 86.18
Ours (pos+nlmwe)+ 84.97 86.36
Ours (cpos)+ 82.27 83.66
Ours (cpos+nlmwe)+ 83.19 84.55
Ours (pos+cpos)+ 85.11 86.53
Ours (pos+cpos+nlmwe)+ 85.43 86.80
MaltParser (libsvm)+ NA 78.0
MSTParser (1st-order)+ NA 78.9
Mate (2nd-order)+ NA 83.1

Table 16: Comparison of our system with state-of-the-art
results on CTB5/CTB7 test sets. Here, UAS+p/−p stands
for UAS (%) with/without punctuations taken into com-
puting. ∗ stands for using (Zhang and Clark, 2008)’s head
rules. + stands for using (Chang et al., 2009)’s head rules.
+s1s2 stands for appending S1 and S2 related feature tem-
plates.

lowing (Che et al., 2012), we further apply the Stan-
ford Chinese Dependency (Chang et al., 2009) to the
CTB7’s train/dev/test sets and compare the UASs with
well known open-source systems. Different from the
head rules defined in (Zhang and Clark, 2008) which

yield 12 dependency labels, the Stanford Chinese
Dependency has its own head rules as described in
(Chang et al., 2009) which yields 46 fine-grained de-
pendency labels. We directly used the UASs of these
systems reported in (Che et al., 2012). In this test set,
we observe that our system is significantly better than
open-source systems of MSTParser of version 0.58

(McDonald and Pereira, 2006), Mate parser of ver-
sion 2.09 (Bohnet, 2010) (2nd-order MSTParser) and
MaltParser of version 1.6.1 with the Arc-Eager algo-
rithm10 (Nivre et al., 2006).

5 Conclusion

We have investigated the influence of generalization
of words to the final accuracies of Chinese shift-
reduce dependency parsing. We designed feature tem-
plates by making use of words, POS-tags, CPOS-
tags, NLMWE-based word classes and their combi-
nations. NLMWE-based word classes is shown to be
an important supplement of POS-tags, especially for
the automatically generated POS-tags. Experiments
on a Query treebank, CTB5 and CTB7 show that the
combinations of features from CPOS-tags, POS-tags,
and NLP-WE-based word classes yield the best UASs.
Our final UAS−p of 86.79% on the CTB5 test set
is comparable to state-of-the-art results. Our final
UAS−p of 86.80% and 87.05% on the CTB7 Stanford
dependency test set and original test set is significantly
better than three well known open-source dependency
parsers.
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Abstract

We adapt the dynamic-oracle training method of
Goldberg and Nivre (2012; 2013) to train clas-
sifiers that produce probabilistic output. Eval-
uation of an Arc-Eager parser on 6 languages
shows that the AdaGrad-RDA based training
procedure results in models that provide the
same high level of accuracy as the averaged-
perceptron trained models, while being sparser
and providing well-calibrated probabilistic out-
put.

1 Introduction

For dependency parsing, it is well established that
greedy transition-based parsers (Nivre, 2008) are very
fast (both empirically and theoretically) while still
providing relatively high parsing accuracies (Nivre et
al., 2007; Kübler et al., 2009).

Recently, it has been shown that by moving
from static to dynamic oracles during training, to-
gether with a training method based on the averaged-
perceptron, greedy parsers can become even more ac-
curate. The accuracy gain comes without any speed
penalty at parsing time, as the inference procedure re-
mains greedy (Goldberg and Nivre, 2012).

In transition-based parsing, the parsing task is
viewed as performing a series of actions, which re-
sult in an incremental construction of a parse-tree. At
each step of the parsing process, a classification model
is used to assign a score to each of the possible ac-
tions, and the highest-scoring action is chosen and ap-
plied. When using perceptron based training, the ac-
tion scores are in the range (−∞,∞), and the only
guarantee is that the highest-scoring action should be
considered “best”. Nothing can be inferred from the

scale of the highest-scoring action, as well as from the
scores assigned to the other actions.

In contrast, we may be interested in a classification
model which outputs a proper probability distribution
over the possible actions at each step of the process.
Such output will allow us to identify uncertain actions,
as well as to reason about the various alternatives.
Probabilistic output can also be used in situations such
as best-first parsing, in which a probabilistic score can
be used to satisfy the required “superiority” property
of the scoring function (Sagae and Lavie, 2006; Zhao
et al., 2013).

Classifiers that output probabilities are well estab-
lished, and are known as maximum-entropy or multi-
nomial logistic regression models. However, their ap-
plications in the context of the dynamic-oracle train-
ing is not immediate. The two main obstacles are (a)
the dynamic oracle may provide more than one correct
label at each state while the standard models expect a
single correct label, and (b) the exploration procedure
used by Goldberg and Nivre (2012; 2013) assumes an
online-learning setup, does not take into account the
probabilistic nature of the classifier scores, and does
not work well in practice.

This work is concerned with enabling training of
classifiers with probabilistic outputs in the dynamic-
oracle framework. Concretely, we propose a loss
function capable of handling multiple correct labels,
show how it can be optimized in the AdaGrad frame-
work (Duchi et al., 2010), and adapt the exploration
procedure used in dynamic-oracle training to the prob-
abilistic setup. We use a variant of AdaGrad that
performs RDA-based (Xiao, 2010) L1 regularization,
achieving sparse model at inference time.

We implemented our method and applied it to train-
ing an Arc-Eager dependency parser on treebanks in
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6 languages. On all languages we achieve 1-best
parsing results which are on-par with the averaged-
perceptron trained models, while also providing well
calibrated probability estimates at each step. The
probabilistic models have 3-4 times fewer parameters
than the perceptron-trained ones. Our code is avail-
able for download at the author’s web page.

2 Background

2.1 Transition Based Parsing

We begin with a quick review of transition-based de-
pendency parsing (Nivre, 2008), establishing nota-
tion. Transition-based parsing assumes a transition
system, an abstract machine that processes sentences
and produces parse trees. The transition system has a
set of states (also called configurations) and a set of
actions (also called transitions) which are applied to
states, producing new states. In what follows we de-
note a state as x ∈ X , an action as y ∈ Y , and an
application of an action to a state as y(x). When pars-
ing, the system is initialized to an initial state based
on the input sentence S, to which actions are applied
repeatedly. After a finite (in our case linear) number
of action applications, the system arrives at a terminal
state, and a parse tree is read off the terminal configu-
ration. In a greedy parser, a classifier is used to choose
the action to take in each state, based on features ex-
tracted from the state itself. Transition systems differ
by the way they define states, and by the particular set
of transitions available. One such system is the Arc-
Eager system (Nivre, 2003), which has 4 action types,
SHIFT, REDUCE, LEFTlb, RIGHTlb, where the last two
are parameterized by a dependency label lb, resulting
in 2+2L actions for a treebank with L distinct arc la-
bels. The system parses a sentence with nwords in 2n
actions. The reader is referred to (Nivre, 2003; Nivre,
2008; Goldberg and Nivre, 2013) for further details
on this system.

2.2 Greedy parsing algorithm

Assuming we have a function score(x, y;w) parame-
terized by a vector w and assigning scores to pairs of
states x and actions y, greedy transition-based pars-
ing is simple and efficient using Algorithm 1. Starting
with the initial state for a given sentence, we repeat-
edly choose the highest-scoring action according to
our model parameters w and apply it, until we reach

Algorithm 1 Greedy transition-based parsing
1: Input: sentence S, parameter-vector w
2: x← INITIAL(S)
3: while not TERMINAL(x) do
4: y ← argmaxy∈LEGAL(x) score(x, y;w)
5: x← y(x)

6: return tree(x)

a terminal state, at which point we stop and return the
parse tree accumulated in the configuration.

In practice, the scoring function takes a linear (or
log-linear) form:

score(x, y;w) ∝ w · φ(x, y)

where φ is a feature extractor returning a high-
dimensional sparse vector, and · is the dot-product op-
eration. The role of training a model is to a set good
weights to the parameter vector w, based on a training
corpus of 〈x, y〉 pairs. The corpus is provided in the
form of 〈sentence, tree〉 pairs, from which states and
actions are extracted.

2.3 Static vs. Dynamic Oracles
Until recently, the training corpus of 〈x, y〉 pairs was
extracted by use of a static-oracle – a function map-
ping a 〈sentence, tree〉 pair to a sequence of 〈x, y〉
pairs.

Recently, Goldberg and Nivre (2012; 2013) pro-
posed the notion of a dynamic parsing oracle. Dy-
namic parsing oracles are functions oracle(x;T ) from
a state x to set of actions Y (given a reference tree T ).
Note that unlike the static oracles which provide only
〈x, y〉 pairs that are part of a single action sequence
leading to a gold tree (and associate a single action y
with each state x on this path), the dynamic oracles
are defined for every state x (even states that cannot
lead to the gold tree), and may associate more than
a single action y with each state. The semantics of
the dynamic oracle is that the set Y associated with
state x contains all and only actions that can lead to
an optimal tree (in terms of hamming distance from
the reference tree T ) which is reachable from state x.

2.4 A Dynamic Oracle for the Arc-Eager System
Goldberg and Nivre (2013) provide a concrete dy-
namic oracle for the Arc-Eager system, which we use
in this work and repeat here for completeness.
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We use a notation in which dependency arcs are of
the form (h,m) where h is a head and m is a modi-
fier, and a tree T is represented as a set of dependency
arcs. Each state x is of the form x = (σ|s, b|β,A)1

where σ|s is a stack with body σ and top s, b|β is a
buffer (queue) with body β and top b, and A is a set of
dependency arcs.

The dynamic oracle for the Arc-Eager system
works by calculating the cost of each action in a given
state, and returning the set of actions with a cost of
zero (the set is guaranteed to be non-empty):

oracle(x, T ) = {a | cost(a;x, T ) = 0}

The cost of an action at a state is the number of gold
arcs which are mutually-reachable from the state, but
will not be reachable after taking the action. The cost
function cost(ACTION;x, T ) of taking an action at
state x with respect to a gold set T of dependency
arcs is calculated as follows (for further details, see
(Goldberg and Nivre, 2013)):

• cost(LEFT;x, T ): Adding the arc (b, s) and pop-
ping s from the stack means that s will not be
able to acquire any head or dependents in β. The
cost is therefore the number of arcs in T of the
form (k, s) or (s, k) such that k ∈ β. Note that
the cost is 0 for the trivial case where (b, s) ∈ T ,
but also for the case where b is not the gold head
of s but the real head is not in β (due to an erro-
neous previous transition) and there are no gold
dependents of s in β.

• cost(RIGHT;x, T ): Adding the arc (s, b) and
pushing b onto the stack means that b will not be
able to acquire any head in σ or β, nor any depen-
dents in σ. The cost is therefore the number of
arcs in T of the form (k, b), such that k ∈ σ ∪ β,
or of the form (b, k) such that k ∈ σ and there
is no arc (u, k) in Ac. Note again that the cost is
0 for the trivial case where (s, b) ∈ T , but also
for the case where s is not the gold head of b but
the real head is not in σ or β (due to an erroneous
previous transition) and there are no gold depen-
dents of b in σ.

• cost(REDUCE;x, T ): Popping s from the stack
means that s will not be able to acquire any de-

1This is a slight abuse of notation, since for the SHIFT action
s may not exist, and for the REDUCE action b may not exist.

pendents in B = b|β. The cost is therefore the
number of arcs in T of the form (s, k) such that
k ∈ B. While it may seem that a gold arc of the
form (k, s) should be accounted for as well, note
that a gold arc of that form, if it exists, is already
accounted for by a previous (erroneous) RIGHT

transition when s acquired its head.

• cost(SHIFT;x, T ): Pushing b onto the stack
means that b will not be able to acquire any head
or dependents in S = s|σ. The cost is there-
fore the number of arcs in T of the form (k, b) or
(b, k) such that k ∈ S and (for the second case)
there is no arc (u, k) in Ac.

2.5 Training with Exploration

An important assumption underlying the training of
greedy transition-based parsing models is that an ac-
tion taken in a given state is independent of previous
or future actions given the feature representation of
the state. This assumption allows treating the train-
ing data as a bag of independent 〈state, action〉 pairs,
ignoring the fact that the states and actions are part
of a sequence leading to a tree, and not considering
the interactions between different actions. If the data
(both at train and test time) was separable and we
could achieve perfect classification at parsing time,
this assumption would hold. In reality, however, per-
fect classification is not possible, and different actions
do influence each other. In particular, once a mistake
is made, the parser may either reach a state it has not
seen in training, or reach a state it has seen before,
but needs to react differently to (previous erroneous
decisions caused the state to be associated with dif-
ferent optimal actions). The effect of this is error-
propagation: once a parser erred, it is more likely to
err again, as it reaches states it was not trained on, and
don’t know how to react to them.

As demonstrated by (Goldberg and Nivre, 2012),
error propagation can be mitigated to some extent by
training the parser on states resulting from common
parser errors. This is referred to as “training with ex-
ploration” and is enabled by the dynamic oracle. In
(Goldberg and Nivre, 2012), training with exploration
is performed by sometimes following incorrect classi-
fier predictions during training.

Training with exploration still assumes that the
〈x, y〉 pairs are independent from each other given the
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feature representation, but instead of working with a
fixed corpus D of 〈x, y〉 pairs, the set D is generated
dynamically based on states x the parser is likely to
reach, and the optimal actions Y = oracle(x;T ) pro-
posed for these states by the dynamic oracle.

In practice, training with exploration using the dy-
namic oracle yields substantial improvements in pars-
ing accuracies across treebanks.

3 Training of Sparse Probabilistic Classifiers

As discussed in the introduction, our aim is to replace
the averaged-perceptron learner and adapt the train-
ing with exploration method of (Goldberg and Nivre,
2012) to produce classifiers that provide probabilistic
output.

3.1 Probabilistic Objective Function and Loss

Our first step is to replace the perceptron hinge-loss
objective with an objective based on log-likelihood.
As discussed in section 2.5 the training corpus is
viewed as a bag of states and their associated actions,
and our objective would be to maximize the (log) like-
lihood of the training data under a probability model.

Static-oracle objective In static-oracle training
each state x is associated with a single action y.

Denoting the label by y ∈ Y and the states by
x ∈ X , we would like to find a parameter vector w
to maximize the data log-likelihood L of our training
data D under parameter values w:

L(D;w) =
∑

〈x,y〉∈D
logP (y|x;w)

where P (y|x;w) takes the familiar log-linear form:

P (y|x;w) = expw · φ(x, y)∑
y′∈Y expw · φ(x, y′)

in which φ is a feature extraction function and
· is the dot-product operation. This is the well
known maximum-entropy classification formulation,
also known as multinomial logistic regression.

Dynamic-oracle objective When moving to the dy-
namic oracle setting, each state x is now associated
with a set of correct actions Y ⊆ Y , and we would
like at least one of these actions y ∈ Y to get a
high probability under the model. To accommodate

this, we change the numerator to sum over the ele-
ments y ∈ Y , resulting in the following model form
(the same approach was taken by Riezler et al. (2002)
for dealing with latent LFG derivations in LFG parser
training, and by Charniak and Johnson (2005) in the
context of discriminative reranking):

L(D;w) =
∑

〈x,Y 〉∈D
logP (Y |x;w)

P (Y |x;w) =
∑

y∈Y expw · φ(x, y)∑
y′∈Y expw · φ(x, y′)

Note the change from y to Y , and the difference be-
tween the Y in the numerator (denoting the set of cor-
rect outcomes) and Y in the denominator (denoting
the set of all possible outcomes). This subsumes the
definition of P (y|x;w) given above as a special case
by setting Y = {y}. We note that the sum ensures
that at least one y ∈ Y receives a high probability
score, but also allows other elements of Y to receive
low scores.

The (convex) loss for a given 〈x, Y 〉 pair under this
model is then:

loss(Y, x;w) = log
∑

y∈Y
ew·φ(x,y) − log

∑

y∈Y
ew·φ(x,y)

and the gradient of this loss with respect to w is:

∂loss
∂wi

=
∑

y∈Y

ew·φ(x,y)

ZY
φi(x, y)−

∑

y∈Y

ew·φ(x,y)

ZY
φi(x, y)

where:

ZY =
∑

y′∈Y
ew·φ(x,y

′) ZY =
∑

y′∈Y
ew·φ(x,y

′)

3.2 L1 Regularized Training with AdaGrad-RDA
The generation of the training set used in the training-
with-exploration procedure calls for an online opti-
mization algorithm. Given the objective function and
its gradient, we could have used a stochastic gradi-
ent based method to optimize the objective. How-
ever, recent work in NLP (Green et al., 2013; Choi
and McCallum, 2013) demonstrated that the adaptive-
gradient (AdaGrad) optimization framework of Duchi
et al. (2010) converges quicker and produces superior
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results in settings which have a large number of train-
ing instances, each with a very high-dimensional but
sparse feature representation, as common in NLP and
in dependency-parsing in particular.

Moreover, a variant of the AdaGrad algorithm
called AdaGrad-RDA incorporates an L1 regulariza-
tion, and produces sparse, regularized models. Regu-
larization is important in our setting for two reasons:
first, we would prefer our model to not overfit acci-
dental features of the training data. Second, smaller
models require less memory to store, and are faster
to parse with as more of the parameters can fit in the
CPU cache.2

For these reasons, we chose to fit our model’s pa-
rameters using the regularized-dual-averaging (RDA)
variant of the AdaGrad algorithm. The AdaGrad
framework works by maintaining a per-feature learn-
ing rate which is based on the cumulative gradient val-
ues for this feature. In the RDA variant, the regular-
ization depends on the average vector of all the gradi-
ents seen so far.

Formally, the weight after the J + 1th AdaGrad-
RDA update with a regularization parameter λ is:

wJ+1
i ← α

1√
Gi + ρ

shrink(gi, Jλ)

where wJ+1
i is the value of the ith coordinate of w at

time J + 1, α is the learning rate, and ρ is a ridge pa-
rameter used for numerical stability (we fix ρ = 0.01
in all our experiments). G is the sum of the squared
gradients seen so far, and g is the sum of the gradients
seen so far.

Gi =

J∑

j=0

(∂ji )
2 gi =

J∑

j=0

∂ji

shrink(gi, Jλ) is the regularizer, defined as:

shrink(gi, Jλ) =





gi − Jλ if gi > 0, |gi − Jλ| > 0

gi + Jλ if gi < 0, |gi − Jλ| > 0

0 otherwise

2Note that in contrast to the perceptron loss that considers only
the highest-scoring and the correct class for each instance, the
multilabel log-likelihood loss considers all of the classes. When
the number of classes is large, such as in the case of labeled pars-
ing, this will result in very many non-zero scores, unless strong
regularization is employed.

For efficiency reasons, the implementation of the
AdaGrad-RDA learning algorithm keeps track of the
two vectors G and g, and calculates the needed coor-
dinates of w based on them as needed. When training
concludes, the final w is calculated and returned. We
note that while the resulting w is sparse, the G and g
vectors are quite dense, requiring a lot of memory at
training time.3

For completeness, the pseudo-code for an
AdaGrad-RDA update with our likelihood objective
is given in algorithm 2.

Algorithm 2 Adagrad-RDA with multilabel logistic
loss update.
Globals The global variables G, g and j are initialized to 0.
The vectors g and G track the sum and the squared sum of the
gradients. The scalar j tracks the number of updates.
Parameters α: learning rate, ρ: ridge, λ: L1 penalty.
Arguments w: current weight vector, φ feature extraction
function, x: state, Y : set of good labels (actions) for x.
Others ZY , ZY and shrink(·,·) are as defined above.
Returns: An updated weight vector w.

1: function ADAGRADUPDATE(w, φ, x, Y )

2: ∀y ∈ Y fy =

{
ew·φ(x,y)
ZY

if y ∈ Y
0 otherwise

3: ∀y ∈ Y py =
ew·φ(x,y)
ZY

4: for i s.t. ∃y, φi(x, y) 6= 0 do
5: ∂i =

∑
y∈Y φi(x, y)(fy − py)

6: gi ← gi + ∂i
7: Gi ← Gi + ∂2i
8: wi ← α 1√

Gi+ρ
shrink(gi, jλ)

9: j ← j + 1
return w

3.3 Probabilistic Data Exploration

A key component of dynamic-oracle training is that
the training set D is not fixed in advance but changes
according to the training progression. As we cannot
explore the state set X in its entirety due to its expo-
nential size (and because the optimal actions Y at a
state x depend on the underlying sentence), we would
like to explore regions of the state space that we are
likely to encounter when parsing using the parameter

3For example, in our implementation, training on the English
treebank with 950k tokens and 42 dependency labels requires al-
most 12GB of RAM for AdaGrad-RDA vs. less than 1.8GB for
the averaged-perceptron.
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vector w, together with their optimal actions Y ac-
cording to the dynamic oracle.

That is, our set D is constructed by sampling val-
ues from X in accordance to our current belief w, and
using the oracle oracle(x;T ) to associate Y values
with each x. In the averaged-perceptron setup, this
sampling is achieved by following the highest-scoring
action rather than a correct one according to the or-
acle with some (high) probability p. This approach
does not fit well with our probabilistic framework, for
two reasons. (a) Practically, the efficiency of the Ada-
Grad optimizer results in the model achieving a good
fit of the training data very quickly, and the highest
scoring action is all too often a correct one. While
great from an optimization perspective, this behavior
limits our chances of exploring states resulting from
incorrect decisions. (b) Conceptually, focusing on the
highest scoring action ignores the richer structure that
our probabilistic model offers, namely the probabilis-
tic interpretation of the scores and the relations be-
tween them.

Instead, we propose a natural sampling procedure.
Given a state x we use our model to obtain a multino-
mial distribution P (y|x;w) over possible next actions
y, sample an action from this distribution, and move
to the state resulting from the sampled action.4 This
procedure focuses on states that the model has a high
probability of landing on, while still allowing explo-
ration of less likely states.

The training procedure is given in algorithm 3.
In the first iteration, we focus on states that are on the
path to the gold tree by following actions ŷ in accor-
dance to the oracle set Y (line 6), while on subsequent
iteration we explore states which are off of the gold
path by sampling the next action ŷ in accordance to
the model belief P (y|x;w) (line 8).

4 Evaluation and Results

Data and Experimental Setup We implemented
the above training procedure in an Arc-Eager tran-
sition based parser, and tested it on the 6 languages

4Things are a bit more complicated in practice: as not all ac-
tions are valid at each state due to preconditions in the transition
system, we restrict P (y|x;w) to only the set of valid actions at x,
and renormalize. In case x is a terminal state (and thus having no
valid actions) we move on to the initial state of the next sentence.
The sentences are sampled uniformly without replacement at each
training round.

Algorithm 3 Online training with exploration for
probabilistic greedy transition-based parsers (ith iter-
ation)

1: for sentence S with gold tree T in corpus do
2: x← INITIAL(S)
3: while not TERMINAL(x) do
4: Y ← oracle(x, T )
5: P (y|x;w)← expw·φ(x,y)∑

y′∈Y expw·φ(x,y′) ∀y ∈ Y
6: if i ≤ k then
7: ŷ ← argmaxy∈Y P (y|x;w)
8: else
9: Sample ŷ according to P (y|x;w)

10: w ← ADAGRADUPDATE(w, φ, x, Y )
11: x← ŷ(x)

return w

comprising the freely available Google Universal De-
pendency Treebank (McDonald et al., 2013). In all
cases, we trained on the training set and evaluated the
models on the dev-set, using gold POS-tags in both
test and train time. Non-projective sentences were re-
moved from the training set. In all scenarios, we used
the feature set of (Zhang and Nivre, 2011). We com-
pared different training scenarios: training percep-
tron based models (PERCEP) and probabilistic mod-
els (ME) with static (ST) and dynamic (DYN) oracles.
For the dynamic oracles, we varied the parameter k
(the number of initial iterations without error explo-
ration). For the probabilistic dynamic-oracle mod-
els further compare the sampling-based exploration
described in Algorithm 3 with the error-based ex-
ploration used for training the perceptron models in
Goldberg and Nivre (2012, 2013). All models were
trained for 15 iterations. The PERCEP+DYN models
are the same as the models in (Goldberg and Nivre,
2013). For the ME models, we fixed the values of
ρ = 0.01, α = 1 and λ = 1/20|D| where we take |D|
to be the number of tokens in the training set.5

Parsing Accuracies are listed in Table 1. Two
trends are emergent: Dynamic Oracles with Error Ex-

5We set the ρ and α values based on initial experiments on an
unrelated dataset. The formula for the L1 penalty λ is based on an
advice from Alexandre Passos (personal communication) which
proved to be very effective. We note that we could have proba-
bly gotten a somewhat higher scores in all the settings by further
optimizing the ρ, α and λ parameters, as well as the number of
training iterations, on held-out data.
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SETUP DE EN ES FR KO SV

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS
PERCEP+ST 84.95 / 80.32 91.06 / 89.48 85.93 / 82.82 85.75 / 82.44 79.96 / 71.90 83.21 / 79.40
ME+ST 84.71 / 80.06 90.83 / 89.32 85.72 / 82.59 85.42 / 82.19 80.47 / 72.15 83.12 / 79.36
PERCEP+DYN(K=1) 86.30 / 81.67 92.22 / 90.72 86.68 / 83.64 86.95 / 83.93 80.59 / 72.66 84.16 / 80.48
PERCEP+DYN(K=0) 86.50 / 81.88 92.28 / 90.82 86.18 / 83.19 86.87 / 83.70 80.59 / 73.06 84.79 / 81.00
ME+DYN(K=1,SAMPLE) 86.34 / 82.04 92.16 / 90.73 86.38 / 83.57 86.59 / 83.46 80.92 / 73.06 84.56 / 80.97
ME+DYN(K=0,SAMPLE) 86.51 / 82.19 92.30 / 90.83 86.66 /83.77 86.69 / 83.61 81.17 / 73.19 84.17 / 80.54

Table 1: Labeled (LAS) and Unlabeled (UAS) parsing accuracies of the different models on various datasets. All scores
are excluding punctuations an using gold POS-tags. Dynamic-oracle training with error exploration clearly outperforms
static-oracle training. The perceptron and ME results are equivalent.

SETUP DE EN ES FR KO SV

UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS UAS / LAS
ME+DYN(K=1,ERR) 85.26 / 80.94 91.62 / 90.10 86.08 / 82.92 86.13 / 83.06 80.42 / 71.97 83.73 / 80.03
ME+DYN(K=0,ERR) 85.78 / 81.63 91.77 / 90.30 86.37 / 83.33 86.53 / 83.23 80.94 / 72.57 83.73 / 80.05
ME+DYN(K=1,SAMPLE) 86.34 / 82.04 92.16 / 90.73 86.38 / 83.57 86.59 / 83.46 80.92 / 73.06 84.56 / 80.97
ME+DYN(K=0,SAMPLE) 86.51 / 82.19 92.30 / 90.83 86.66 /83.77 86.69 / 83.61 81.17 / 73.19 84.17 / 80.54

Table 2: Comparing the sampling-based exploration in Algorithm 3 with the error-based exploration of Goldberg and Nivre
(2012, 2013). Labeled (LAS) and Unlabeled (UAS) parsing accuracies of the different models on various datasets. All
scores are excluding punctuations an using gold POS-tags. The sampling based algorithm outperforms the error-based one.

ploration in training (DYN) models clearly outperform
the models trained with the traditional static oracles
(ST), and the probabilistic models (ME) perform on
par with their averaged-perceptron (PERCEP) counter-
parts.

Sampling vs. Error-Driven Exploration Table 2
verifies that the sampling-based exploration proposed
in this work is indeed superior to the error-based
exploration which was used in Goldberg and Nivre
(2012, 2013), when training multinomial logistic-
regression models with the AdaGrad-RDA algorithm.

Model Sizes Table 3 lists the number of parameters
in the different models. RDA regularization is effec-
tive: the regularization ME models are much smaller.
In the accurate dynamic oracle setting, the regularized
ME models are 3-4 times smaller than their averaged-
perceptron counterparts, while achieving roughly the
same accuracies.
Calibration To asses the quality of the probabilistic
output of the ME+DYN models, we binned the prob-
ability estimates of the highest-scored actions into 10
equally-sized bins, and for each bin calculated the per-
centage of time an action falling in the bin was correct.
Table 4 lists the results, together with the bin sizes.

SETUP DE EN ES FR KO SV

PERCEP+ST 438k 5.4M 1.2M 849k 1.9M 912k
ME+ST 150k 1.9M 448k 294k 725k 304k
PERCEP+DYN 525k 8.5M 1.7M 1.1M 2.9M 1.2M
ME+DYN 160k 2.4M 516k 336k 755k 357k

Table 3: Model sizes (number of non-0 parameters).

First, it is clear that the vast majority of parser ac-
tions fall in the 0.9-1.0 bin, indicating that the parser
is confident, and indeed the parser is mostly correct
in these cases. Second, the models seem to be well
calibrated from the 0.5-0.6 bin and above. The lower
bins are under-estimating the confidence, but they also
contain very few items. Overall, the probability out-
put of the ME+DYN model is calibrated and trust-
worthy.6

5 Conclusions

We proposed an adaptation of the dynamic-oracle
training with exploration framework of Goldberg and
Nivre (2012; 2013) to train classifiers with probabilis-
tic output, and demonstrated that the method works:

6Note, however, that with 69k predictions in bin 0.9-1.0 for
English, an accuracy of 98% means that almost 1400 predictions
with a probability score above 0.9 are, in fact, wrong.
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BIN DE EN ES FR KO SV

0.1 (7) 71% (1) 0% (3) 66% (2) 1% (0) 0% (2) 50%
0.2 (51) 51% (38) 55% (26) 57% (17) 64% (2) 100% (21) 57%
0.3 (121) 54% (139) 54% (83) 65% (58) 72% (29) 55% (100) 61%
0.4 (292) 54% (323) 62% (206) 65% (146) 57% (178) 63% (193) 63%
0.5 (666) 66% (1.2k) 64% (642) 68% (453) 66% (464) 55% (578) 62%
0.6 (787) 66% (1.4k) 69% (694) 73% (469) 70% (616) 60% (636) 70%
0.7 (840) 73% (1.7k) 74% (853) 77% (546) 73% (739) 65% (747) 75%
0.8 (1.5k) 78% (2.9k) 82% (1.2k) 80% (810) 78% (1.1k) 72% (1.2k) 80%
0.9 (18.5k) 97% (69k) 98% (16k) 97% (13k) 97% (9k) 96% (14k) 96%
1.0 (800) 100% (1.7k) 100% (370) 100% (366) 100% (588) 100% (493) 100%

Table 4: Calibration of the ME+DYN(K=0,SAMPLE) scores. (num) denotes the number of items in the bin, and num% the
percent of correct items in the bin. The numbers for ME+DYN(K=1,SAMPLE) are very similar.

the trained classifiers produce well calibrated proba-
bility estimates, provide accuracies on par with the
averaged-perceptron trained models, and, thanks to
regularization, are 3-4 times smaller. However, the
training procedure is slower than for the averaged-
perceptron models, requires considerably more mem-
ory, and has more hyperparameters. If probabilistic
output or sparse models are required, this method is
recommended. If one is interested only in 1-best pars-
ing accuracies and can tolerate the larger model sizes,
training with the averaged-perceptron may be prefer-
able.
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Abstract

Previous researches on incremental dependency
parsing have not discussed how a parser should
output the information about dependency rela-
tion where the modified word has not been in-
putted yet. This paper proposes a dependency
structure which a Japanese incremental depen-
dency parser should produce in the middle of an
input sentence. The dependency structure also
expresses the fact that a word depends on a word
which the parser would receive later. In addi-
tion, we present a method for incremental de-
pendency parsing to produce our proposed de-
pendency structure. As the result of an experi-
ment on incremental parsing, we confirmed the
feasibility of our incremental dependency pars-
ing. Furthermore, this paper shows its applica-
tion in the simultaneous linefeed insertion for
real-time generation of more readable captions,
and then describes the effectiveness of our pro-
posed dependency structure.

1 Introduction

In applications such as simultaneous machine inter-
pretation, spoken dialogue and real-time captioning,
it is necessary to execute processing simultaneously
with speech input, and thus, the questions of what
syntactic information is acquirable and when the in-
formation can be acquired become issues. However,
previous researches on incremental dependency pars-
ing (Kato et al., 2005; Johansson and Nugues, 2007;
Nivre, 2008) have not discussed how a parser should
output the information about dependency relation
where the modified word has not been inputted.

This paper proposes a dependency structure which
a Japanese incremental dependency parser should pro-
duce in the middle of an input sentence. Our proposed

dependency structure makes a parser clarify the fact
that the modified bunsetsu1 of a bunsetsu will be in-
putted later. This enables a higher layer application
to use the information that the bunsetsu does not de-
pend on any bunsetsus which have been already in-
putted. Especially, in the case of Japanese, since the
modified bunsetsu is always inputted after the mod-
ifier bunsetsu, our proposal is effective for the appli-
cations which execute processing simultaneously with
speech input.

In addition, this paper describes a method for incre-
mental dependency parsing to produce our proposed
dependency structure whenever receiving a bunsetsu.
We conducted an experiment on incremental parsing
and confirmed the feasibility of our method. Further-
more, this paper shows its application to the simul-
taneous linefeed insertion for real-time generation of
more readable captions. As the result of an experi-
ment on linefeed insertion, we confirmed the effec-
tiveness of our proposed dependency structure.

2 Dependency structure for incremental
parsing

Since applications such as simultaneous machine in-
terpretation and real-time captioning need to execute
the process simultaneously with speech input, it is de-
sirable for them to be able to acquire the dependency
information at any time. In our research, incremen-
tal dependency parsing shall output the parsing result
whenever receiving a bunsetsu.

1Bunsetsu is a linguistic unit in Japanese that roughly corre-
sponds to a basic phrase in English. A bunsetsu consists of one
independent word and zero or more ancillary words. A depen-
dency relation in Japanese is a modification relation in which a
modifier bunsetsu depends on a modified bunsetsu. That is, the
modifier bunsetsu and the modified bunsetsu work as modifier and
modifyee, respectively.
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nihon-ni kaet-te-kite suguwatashi-mo ie-no terebi-de warudokappu-wo mita-wake-desu

“nihon-ni (to Japan)”

“kaet-te-kite (had come back)”

“sugu (soon after)”

“watashi-mo (I also)”

“ie-no (at home)”

dependency structure：

“non-inputted bunsetsu”

“non-inputted bunsetsu”

“non-inputted bunsetsu”

“terebi-de (on TV)”

(to Japan) (had come 
back)

(soon
after)

(I also) (at  
home)

(on TV) (the world cup) (watched)

<
“kaet-te-kite (had come back)”<

<
<
<

>,
>,

>,
>,

>

(I also watched the world cup on TV at home soon after I had come back to Japan.)

Figure 1: Example of a dependency structure outputted in the middle of an input sentence

Next, we discuss the output contents of incre-
mental dependency parsing. When applications use
incremental dependency parsing, the information
about whether or not the dependency structure
of a sequence of busnetsus is closed, that is, the
information about a syntactically sufficient unit is
also useful. In fact, when identifying the timing of
the start of interpreting in the simultaneous machine
interpretation (Ryu et al., 2006; Fügen et al., 2007;
Paulik and Waibel, 2010), the timing of insert-
ing back-channel feedbacks (Fujie et al., 2004;
Kamiya et al., 2010), and the appropriate position
of a linefeed in captioning (Ohno et al., 2009), the
information about a syntactically sufficient unit is
used as an important clue.

In our research, an incremental dependency parsing
shall clearly output the fact that a bunsetsu depends
on a bunsetsu which will be later inputted. If it be-
comes clear that the modified bunsetsu of a bunsetsu
has not been inputted yet, the higher layer applications
can identify the syntactically sufficient units in the in-
putted sequence of bunsetsus and use the information
effectively.

In what follows, we describe the dependency struc-
ture which incremental dependency parsing in our re-
search outputs in the middle of an input sentence.
When a sentence S composed of a sequence of bun-
setsus b1 · · · bn is parsed2, we define the dependency
structure Dx which is outputted at the time that a bun-
setsu bx(1 ≤ x ≤ n) is inputted as follows:

Dx =
{
⟨b1→dep(b1)⟩, · · · , ⟨bx−1→dep(bx−1)⟩

}


Here, dep(by) ∈

{
{by+1, · · · , bx, bover}(if bx ̸= bn)
{by+1, · · · , bx} (otherwise)

}

(1≤y≤x−1)




2In this research, we assume that sentence boundaries are de-
tected as its preprocessing.

where ⟨by → dep(by)⟩ means the dependency rela-
tion where the modifier bunsetsu is by and where the
modified bunsetsu is dep(by). dep(by) is a member
of a set which contains not only by+1, · · · , bx, which
are inputted after the bunsetsu by, but also bover.
dep(by) = bover means that the modified bunsetsu of
by is not any of by+1,· · ·, bx but a bunsetsu which
will be inputted later. In addition, we assume the
following three Japanese syntactic constraints:

• No dependency is directed from right to left.
• Dependencies don’t cross each other.
• Each bunsetsu, except the final one in a sentence,

depends on only one bunsetsu.
Figure 1 shows an example of a dependency struc-

ture outputted in the middle of an input sentence.
This example shows the dependency structure which
is outputted right after the bunsetsu “terebi-de (on
TV)” was inputted when a parser parses the sentence
“watashi-mo nihon-ni kaet-te-kite sugu ie-no terebi-
de warudokappu-wo mita-wake-desu (I also watched
the world cup on TV at home soon after I had come
back to Japan.)”

3 Incremental dependency parsing

This section describes a method to produce the de-
pendency structure proposed in Section 2 whenever
receiving a bunsetsu. This method is implemented by
improving the dependency parsing method proposed
by Uchimoto et al. (2000).

Generally, stochastic dependency parsing methods
identify the dependency structure which maximizes
the conditional probability P (D|S), which means the
probability that the dependency structure for a sen-
tence S is D. In usual methods, a relationship be-
tween two bunsetsus is tagged with a “1” or “0” to
indicate whether or not there is a dependency rela-
tion between the bunsetsus, respectively. On the other
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hand, in the Uchimoto et al.’s method, a relationship
between two bunsetsus is tagged with a “between,”
“depend,” or “beyond” to indicate the following three
cases, respectively. The anterior bunsetsu can depend
on (1) a bunsetsu between the two, (2) the posterior
bunsetsu, or (3) a bunsetsu beyond the posterior one.
Then, the dependency probability of two bunsetsus is
estimated by using the product of the probabilities of
the relationship between the left bunsetsu and those to
its right in a sentence.

In our research, we thought that by adapting the ba-
sic idea in the Uchimoto et al.’s method, we might
be able to calculate the probability that a bunsetsu
does not depend on any bunsetsus which have been
already inputted, that is, the probability that a bun-
setsu depends on a non-inputted bunsetsu (bover). As
a difference from the Uchimoto et al.’s method, our
method identifies the dependency structure Dx which
should be outputted when the sequence of bunsetsus
Bx = b1, · · · , bx(1 ≤ x ≤ n), which is a subse-
quence of a sentence S = b1 · · · bn, is inputted. Our
method outputs the dependency structure which max-
imizes the probability P (Dx|Bx) as the most appro-
priate dependency structure for the sequence of bun-
setsus Bx.

Here, Dx is described as an ordered
set {d1, · · · , dx−1} of dependency relations
di (1 ≤ i ≤ x − 1), where the modifier bun-
setsu is a bunsetsu bi. In addition, di is described as
di = {di,i+1, · · · , di,x, di,x+1} (1 ≤ i ≤ x−1). di,i+j

is a flag which indicates the relationship between
bunsetsus bi and bi+j , and takes the following value:

di,i+j =





0 (1 ≤ j < dist(i))
1 (j = dist(i))
2 (dist(i) < j ≤ n − i)





where dist(i) is defined as dist(i) = l−i when a bun-
setsu bi depends on a bunsetsu bl(i < l ≤ x+1 ≤ n).
Note that our method adds a flag di,x+1, which indi-
cates the relationship between bi and a non-inputted
bunsetsu bx+1, to the elements of di as a dummy.

Using the above-mentioned notation, our method
calculates P (Dx|Bx) as follows3:

P (Dx|Bx)2 =
x−1∏

i=1

P (di|Bx)

3 Uchimoto et al. (2000a) discussed the rationale and assump-
tions behind the form of this model.
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Figure 2: Calculation of dependency probability

=
x−1∏

i=1

P (di,i+1, · · · , di,x+1|Bx)

=
x−1∏

i=1

(dist(i)−1∏

j=1

P (di,i+j = 0|Bx)

×P (di,i+dist(i) = 1|Bx)

×
x−i+1∏

j=dist(i)+1

P (di,i+j = 2|Bx)

)

where the value of dist(i) is decided based on the Dx.
Here, we use the following value as P (di,i+j |Bx),
which means the probability of the relationship (“be-
yond,” “depend,” or “between”) between two bunset-
sus.

• When 1 ≤ j ≤ x − i: P (di,i+j |Bx) = the value
which is estimated using the maximum entropy
method in the same way4 as the Uchimoto et al.’s
method.

• When j = x − i + 1: P (di,i+j = 0|Bx) = 0,
P (di,i+j = 1|Bx) = P (di,i+j = 2|Bx) = 1/2

The reasons that we decided the second itemization
are as follows: The relationship di,x+1 between a
bunsetsu bi and a non-inputted bunsetsu bx+1 does
not become the relationship “beyond,” but becomes
either “depend” or “between.” Moreover, we as-
sume that the probability that the relationship be-
comes “depend” is equal to that of “between” because
the probabilities are unknown. This assumption en-
ables argmaxDxP (Dx|Bx) to be calculated with no
relation to the probabilities between bi and bx+1.

Finally, if there exists a ⟨bi → bx+1⟩ in the de-
pendency structure Dx which maximizes P (Dx|Bx),

4 However, the features which we used in the maximum en-
tropy method are the same as those used by Ohno et al. (2007).
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our method outputs the dependency structure which is
made by replacing every ⟨bi → bx+1⟩ in the Dx with
⟨bi → bover⟩.

Figure 2 shows how to calculate the dependency
probability P (d1|B3) when a bunsetsu b3 in a sen-
tence composed of b1, · · · , b5 is inputted. Note that we
consider P (⟨b1 → b4⟩|B3) = P (⟨b1 → bover⟩|B3).

4 Experiment

To evaluate the feasibility of incrementally producing
the dependency structure proposed in Section 2, we
conducted an experiment on dependency parsing.

4.1 Outline of experiment
As the experimental data, we used the transcribed
data of Japanese discourse speech in the Simultane-
ous Interpretation Database (Matsubara et al., 2002).
All the data had been manually annotated with infor-
mation on morphological analysis, bunsetsu boundary
detection, clause boundary detection and dependency
analysis (Ohno et al., 2009).

We performed a cross-validation experiment by us-
ing 16 discourses. That is, we repeated the experi-
ment, in which we used one discourse from among 16
discourses as the test data and the others as the learn-
ing data, 16 times. However, since we used 2 dis-
courses among 16 discourses as the preliminary anal-
ysis data, we evaluated the experimental results for
the remaining 14 discourses (1,714 sentences, 20,707
bunsetsus). Here, as the morphological information,
bunsetsu boundary information, and clause boundary
information in the input of dependency parsing, we
used one which had been manually annotated. In ad-
dition, we used the maximum entropy method tool
(Zhang, 2013) with the default options except “-i (it-
eration) 2000.”

4.2 Evaluation index
Our method is designed to output the dependency
structure defined in Section 2 whenever a bunsetsu is
inputted. Therefore, we introduced the following new
evaluation index to evaluate the accuracy of incremen-
tal dependency parsing:

acc. =

∑N
i

∑ni

j=1 DepNum(Match(Di
j , G

i
j))∑N

i

∑ni

j=1 DepNum(Di
j)

where Di
j and Gi

j indicate the dependency struc-
ture which a parser outputs and the correct one which

１ ２ ３ ４ ５

(0/0)１

１ ２ (0/1)

１ ２ ３ (1/2)

１ ２ ３ ４ (3/3)

１ ２ ３ ４ ５ (4/4)

DepNum(Match(D, G))/ DepNum(D)    

Acc.

=(8/10)

=iG5

•correct data

•results of parsing

When     is inputted： =iD1

=iD2

=iD3

=iD4

=iD5

1b

When      is inputted：2b

When      is inputted：3b

When      is inputted：4b

When      is inputted：5b

Figure 3: Calculation of accuracy

recall precision f-measure
non- 70.4% 75.0% 72.6%

inputted (22,811/ (22,811/
32,389) 30,413)

inputted 74.8% 73.8% 74.3%
(102,778/ (102,778/
137,376) 139,352)

Table 1: Recalls and precisions of our method

a parser should output respectively when a bunsetsu
bj(1 ≤ j ≤ ni) in a sentence Si(1 ≤ i ≤ N) is in-
putted. In addition, DepNum() is a function which
returns the number of elements of the input set of de-
pendency relations, and Match() is a function which
returns an intersection between the two input sets of
dependency relations.

Figure 3 shows an example of the calculation of
our defined accuracy in case of parsing a sentence
Si composed of 5 bunsetsus. Here, we explain how
to calculate the DepNum(Match(Di

3, G
i
3)) when

the 3rd bunsetsu is inputted. From the correct data
of the dependency structure of a whole sentence
Si, Gi

3 = {⟨b1 → b2⟩, ⟨b2 → b3⟩} is derived.
On the other hand, the result of parsing is Di

3 =
{⟨b1 → b2⟩, ⟨b2 → bover⟩}. From the Gi

3 and Di
3,

DepNum(Match(Di
3, G

i
3)) = 1 is derived.

Furthermore, we obtained the recalls and preci-
sions, separately for the case that the modified bun-
setsu has not been inputted and the case that the mod-
ified bunsetsu has been inputted. The recall and pre-
cision for the former case are respectively defined as
follows:

rec. =

∑N
i

∑ni

j=1 DepNum(Over(Match(Di
j , G

i
j)))∑N

i

∑ni

j=1 DepNum(Over(Gi
j))
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prec. =

∑N
i

∑ni

j=1 DepNum(Over(Match(Di
j , G

i
j)))∑N

i

∑ni

j=1 DepNum(Over(Di
j))

where Over() is a function which returns a set of de-
pendency relations where the modified bunsetsu has
not been inputted yet from among the input set of
dependency relations. The recall and precision for
the latter case are defined by replacing the Over() in
the above-mentioned definition with the NonOver().
NonOver() is a function which returns a set of depen-
dency relations where the modified bunsetsu has been
inputted from among the input set of dependency re-
lations.

4.3 Experimental results
The accuracy obtained using our method was 74.0%
(125,589/169,765). Only as a guide, we conducted
a parsing experiment by using the Uchimoto et al.’s
method5 and CaboCha(Kudo and Matsumoto, 2002),
which identify the dependency structure after the
whole sentence is inputted. As the result of mea-
suring the conventional dependency accuracy (=∑N

i DepNum(Match(Di
ni

,Gi
ni

))/
∑N

i DepNum(Di
ni

)),
the dependency accuracy of the Uchimoto et al.’s
method and CaboCha were 75.8% (14.391/18,993)
and 78.0% (14,814/18,993) respectively.

Table 1 shows the recalls and precisions of our
method, separately for the case that the modified bun-
setsu has not been inputted and the case that the mod-
ified bunsetsu has been inputted. The f-measure for
the case that the modified bunsetsu has not been in-
putted was not as high as that for the non-inputted
case. However, the precision for the inputted case was
higher than that for the non-inputted case. We con-
firmed the feasibility of outputting our proposed de-
pendency structure whenever a bunsetsu is inputted.

5 Application to sequential linefeed insertion

In this section, we describe application of our incre-
mental dependency parsing described in Section 3 to
sequential linefeed insertion.

5.1 Sequential linefeed insertion
Whenever a bunsetu is inputted, our method deci-
sively judges whether or not a linefeed should be in-
serted between the inputted bunsetsu and the adjacent

5We used the same features in Section 3 when estimating the
probability of the relationship between two bunsetsus.

Clause boundary analysis (CBAP)

Incremental dependency parsing (Section 3)

Judgment of linefeed insertion

Bunsetsus in a sentence on which morphological analysis and bunsetsu

boundary analysis have been performed are inputted one by one.

Whether or not a linefeed should be  inserted between the 

inputted bunsetsu and the adjacent bunsetsu is outputted.

Figure 4: Flow of sequential linefeed insertion

bunsetsu. Here, morphological analysis and bunsetsu
boundary analysis have been already performed for
the input sequence of bunsetsus in a sentence.

Figure 4 shows the flow of our sequential linefeed
insertion. First, our method decides whether there
exists a clause boundary between the inputted bun-
setsu bx and the adjacent bunsetsu bx−1 or not by
using Clause Boundary Annotation Program (CBAP)
(Kashioka and Maruyama, 2004). Next, our method
parses the dependency structure Dx proposed in Sec-
tion 2 by using the incremental dependency parsing
method proposed in Section 3.

Finally, in judgment of linefeed insertion, our
method decisively judges whether a linefeed should
be inserted between the inputted bunsetsu bx and the
adjacent bunsetsu bx−1 by using the maximum en-
tropy method. The maximum entropy method esti-
mates the probability that a linefeed should be in-
serted at a point by considering such information as
morphological analysis results, bunsetsu boundaries,
clause boundaries, and dependency structures. When
the probability is larger than 0.5, our method decides
to insert a linefeed at the point.

The features used in the ME method, which esti-
mates the probability that a linefeed is inserted be-
tween a bunsetsu bx−1 and bx, are as roughly the
same as those for the conventional sentence-based
method (Ohno et al., 2009)6. The difference is that
our method does not use the following three features
among those for the sentence-based method:

• whether or not bx−1 depends on the final bun-
setsu of a clause

• whether or not bx−1 depends on a bunsetsu to
6The sentence-based method decides the most appropriate

linefeed insertion points in the whole of a sentence after the
sentence-end bunsetsu is inputted.
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recall precision f-measure
our method 79.6% 70.2% 74.6%

(4,375/5,497) (4,375/6,228)
conv. method 73.7% 74.4% 74.0%

(4,052/5,497) (4,052/5,447)

Table 2: Experimental results of linefeed insertion

which the number of characters from the start
of the line is less than or equal to the maximum
number of characters (20 characters)

• whether or not there exists a bunsetsu which de-
pends on the modified bunsetsu of bx−1, among
bunsetsus which are located after bx−1 and to
which the number of characters from the start
of the line is less than or equal to the maximum
number of characters

The values of these features can not be decided until
the modified bunsetsu of bx−1 is inputted if bx−1 does
not depend on bx. Since our sequential linefeed in-
sertion method needs to identify the linefeed insertion
points simultaneously with speech input, our method
does not use these features.

5.2 Experiment on linefeed insertion
To evaluate the application potency of the dependency
structure proposed in Section 2, we conducted an ex-
periment on linefeed insertion using the sequential
linefeed insertion method described in the previous
section.

5.2.1 Experimental outline
We used the same experimental data and performed a
cross-validation experiment in the same way as Sec-
tion 4.1. However, when inputting the test data, we
eliminated the information on clause boundaries, de-
pendency, and linefeeds. In the evaluation, we ob-
tained the recall, precision and f-measure on the line-
feed insertion performance.

For comparison, we also performed linefeed inser-
tion using the conventional sentence-based method
(Ohno et al., 2009). Here, when performing the con-
ventional method, clause boundary information and
dependency information were beforehand provided
using Clause Boundary Annotation Program (CBAP)
and Uchimoto et al.’s dependency parsing method
(Uchimoto et al., 2000b), respectively.

5.2.2 Experimental results on linefeed insertion

Table 2 shows the recalls, precisions and f-measures
of our method and conventional method. The f-
measure for our method was 74.6%, which was
slightly larger than that for the conventional method.
We confirmed that our method can output linefeed
insertion points simultaneously with speech input,
maintaining the approximately-same f-measure of
linefeed insertion as that for the conventional method.

However, we measured the sentence accuracy,
which is the ratio of sentences of which all linefeed
insertion points were correctly detected. The sentence
accuracies of our method and the conventional method
were 35.8% (614/1,714) and 46.2% (792/1,714) re-
spectively. The conventional method decides the most
appropriate linefeed insertion points by considering
the whole sentence while our method judges whether
a linefeed should be inserted or not whenever a bun-
setsu is inputted. This difference is thought to have
caused the result. We will confirm that the readabil-
ity of captions generated by our method does not de-
crease, by conducting not only objective evaluation
based on comparing the linefeed insertion result with
the correct data but also subjective evaluation.

6 Conclusion

This paper proposed the dependency structure which
an incremental dependency parser outputs for an in-
putted bunsetsu sequence. Our proposed dependency
structure makes a parser clarify the fact that the mod-
ified bunsetsu is a bunsetsu which will be inputted
later. In addition, we proposed a method for incre-
mental dependency parsing to output our proposed de-
pendency structure. As the result of an experiment on
incremental parsing, we confirmed the feasibility of
our method. Furthermore, we applied our proposed
incremental dependency parsing to the simultaneous
linefeed insertion, and then we confirmed the applica-
tion potency of our proposed dependency structure.
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Abstract

Data-driven dependency parsers need a large an-
notated corpus to learn how to generate depen-
dency graph of a given sentence. But annota-
tions on structured corpora are expensive to col-
lect and requires a labor intensive task. Active
learning is a machine learning approach that al-
lows only informative examples to be selected
for annotation and is usually used when the
number of annotated data is abundant and ac-
quisition of more labeled data is expensive. We
will provide a novel framework in which a com-
mittee of dependency parsers collaborate to im-
prove their efficiency using active learning tech-
niques. Queries are made up only from uncer-
tain tokens, and the annotations of the remaining
tokens of selected sentences are voted among
committee members.

1 Introduction

Emerging digital libraries must manage not only sur-
rogates for traditional publications (such as PDF and
HTML files) but the data-sets associated with, and
sometimes derived from, these traditional publica-
tions. Linguistic annotations such as part of speech
and syntactic function of the words are increasingly
important for students of language. These annotations
are, however, expensive to collect in the best case
when native speakers are readily available. Develop-
ing such databases of annotations for historical lan-
guages, where no native speakers are alive and where
few have even developed advanced language skills;
the process becomes even more expensive. This pa-
per describes how such linguistic data can be extracted
automatically and lays the foundations for smart dig-
ital libraries that can not only offer preservation and
access, but also generate fundamental data.

In the occasions that the number of annotated data
is abundant and acquisition of more labeled data is
expensive, using active learning techniques is one of
the promising approaches. Active learning is a ma-
chine learning approach that allows only informative
examples to be selected for labeling. The main idea of
utilizing active learning is that the learner can achieve
better performance with fewer training data if it can
choose the examples it needs to learn from in an intel-
ligent manner.

Active learning has been successfully applied to
many of natural language processing applications
such as information extraction (Jones et al., 2003; Cu-
lotta et al., 2006), named entity recognition (Kim et
al., 2006; Velachos, 2006; Laws and Schütze, 2008),
part of speech tagging (Argamon-Engelson and Da-
gan, 1999; Ringger et al., 2007), text classification
(Schohn and Cohn, 2000; Tong and Koller, 2002; Hoi
et al., 2006), word segmentation (Sassano, 2002) and
word-sense disambiguation (Zhu and Hovy, 2007).

In this paper we investigate active learning tech-
niques that can be used for dependency parsing to help
us reach better performance with cheaper annotation
cost. The main motivation of this work is, as Mc-
Donald and Nivre showed in (McDonald and Nivre,
2007), different parsers generate different models that
produce different types of errors. Hence, when two
or more parsers agree about annotation of a token it
is not worth to spend a budget to know its true anno-
tation. We will provide a novel framework in which
a committee of dependency parsers collaborate to im-
prove their efficiency using active learning techniques.
In each round of annotation, the committee of parsers
select a few tokens they disagree most from uncertain
selected sentences. An expert then annotates the cho-
sen tokens, and the committee members vote about
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the annotations of the rest of the tokens of the selected
sentences.

The rest of this paper is structured as follows. We
briefly review active learning and pool-based sam-
pling as a commonly used framework of active learn-
ing in section 2. We also talk about different querying
scenarios for pool-based active learning. In section 3,
we bring a literature survey of applications of active
learning for the task of dependency parsing. We also
introduce an uncertainty sampling framework with a
different confidence measure as a baseline to compare
and evaluate our methods. We introduce our proposed
methods of committee-based active learning for de-
pendency parsing in section 4. The experimental re-
sults are presented in section 5 and show that we can
gain better results using a committee-based strategy.
We conclude this paper at section 6 with a brief sum-
mary of the findings and an outline of the future work.

2 Active Learning

Active learning is one of the mostly used applied
machine learning techniques. In an active learning
framework, the learner is able to ask an oracle, a do-
main expert, about the annotations of only those unla-
beled instances that could help it to improve itself.

Pool-based sampling (Lewis and Gale, 1994) is one
of the basic scenarios for active learning. It is usually
used when there is a small set of labeled data L and
a large pool of unlabeled data U . In each round, in-
stances are chosen from U according to a selection
strategy, and their labels are asked from an oracle.
Then, the labeled instances are added to L. This pro-
cess is repeated until there are enough annotated data
at L.

At the heart of each active learning scenario there
is a query strategy that formulates how the next in-
stances should be selected to be queried for their la-
bels. There are different query strategies in the lit-
erature. Two of commonly used query strategies are
uncertainty sampling and query-by-committee.

The simplest and most commonly used method for
selecting samples to be annotated is uncertainty sam-
pling (Lewis and Gale, 1994). In uncertainty sam-
pling, after training a model using existing labeled
data in L, it is used to predict the labels of instances in
U . Then the learner selects the instances about whose
labels it is less confident.

Another approach for sample selection is query-by-
committee (Sebastian Seung and Sompolinsky, 1992)
(QBC). In a QBC framework, the system contains a
committee of c competing modelsM = θ1, θ2, . . . , θc

all trained on the current labeled data set L. Then
each of the committee members votes on the label of
examples in U . The query contains the samples about
which committee members most disagree.

We refer the interested reader to look at Settels (Set-
tles, 2009) for a comprehensive survey of active learn-
ing in general and to Olsson (Olsson, 2009) for a liter-
ature survey of active learning in the context of natural
language processing.

3 Active Learning for Dependency Parsing

There are two common approaches for the selection of
samples to be queried: sentence-wise sample selection
and token-wise sample selection.

In sentence-wise sample selection, the learner se-
lects full sentences that it is not confident about their
parsing to be annotated. Tang et al. (Tang et al., 2002)
and Hwa (Hwa, 2004) use sentence entropy, calcu-
lated based on the n-best parses of a sentence S, to
measure the uncertainty of each sentence. The k un-
certain sentences are selected for the annotation. Lynn
et al. (Lynn et al., 2012) use QBC-based active learn-
ing for bootstrapping a dependency bank at the sen-
tence level.

Another approach is to select only some parts of
a sentence for the annotation rather than full sen-
tences. Sassano and Kurohashi (Sassano and Kuro-
hashi, 2010) use the score that parser assigns to depen-
dencies to select uncertain dependencies for the task
of Japanese dependency parsing. They utilize syntac-
tic constraints of Japanese to decide about annotations
of the rest of dependencies. Mirroshandel and Nasr
(Mirroshandel and Nasr, 2011) use a combined active
learning strategy to select uncertain tokens for the an-
notation. They first calculate each sentence entropy
based on the n-best scores that the parser generates
for each sentence. After selecting k most uncertain
sentences, they calculate the attachment entropy for
every token of each sentence. Given the n-best parse
of a sentence S, they compute the attachment entropy
of token w based on the number of its possible gover-
nors in the n-best parse. They use parser annotations
for the rest of tokens of selected sentences.

99



We use the same idea of selecting uncertain sen-
tences first and then choosing some parts of those
sentences for the annotation. But the contribution
of our work is that unlike (Mirroshandel and Nasr,
2011) work, we use a committee of parsers rather than
only one parser. The parsers of committee collaborate
with each other to choose the next set of tokens to be
queried, and decide about the annotation of remaining
set of tokens. We also use a different query method
and uncertainty measure to select the tokens. In this
paper we extend our approach in (Majidi and Crane,
2013). We provide a solid algorithm and investigate
the effect of number of selected tokens for query.

3.1 Uncertainty Sampling Word Selection

We set uncertainty sampling word selection as a base-
line to compare our work with it. The confidence mea-
sure that we use for uncertainty sampling is KD-Fix,
K-draws with fixed standard deviation, proposed in
(Mejer and Crammer, 2011). KD-Fix is a stochastic
method to generate K alternatives for the best label-
ing. Given a model parameter µ learned by the parser,
a Gaussian probability distribution with an isotropic
covariance matrix, Σ = sI , is defined over that,
w ∼ N (µ,Σ). Then a set of K weight vectors wi are
drawn, and each one outputs a single alternative label-
ing. If y(i)w , i = 1, . . . ,K be theK alternative labeling
generated for token w and ŷw be the actual predicted
label by the model, the confidence in the label ŷw is
defined as :

νw =

∣∣∣{i : ŷw = y
(i)
w }

∣∣∣
K

Along parsing the sentences in U we have the parser
to generate the confidence score for each edge that
shows the parser confidence on the correctness of that
edge (token). We assign the confidence score of each
sentence as the average confidence score of its tokens.
Then we rank the sentences of U based on the com-
puted confidence score and select k sentences with
least confidence score. For each of these k sentences
we choose l tokens with the least confidence score
among the tokens of that sentence. We ask the ex-
pert to annotate the selected tokens (head and rela-
tion), and the trained parser annotates rest of the to-
kens. Finally these k annotated sentences are added
to L.

4 Committee-Based Active Learning for
Dependency Parsing

We use a committee of c parsers in the active learning
framework. Each parser is first trained, using labeled
pool L, and then predicts the head and the relation to
the head of every instance in unlabeled pool U . We
show the head prediction of parser Pi for token w as
h(Pi, w), and its relation prediction as r(Pi, w). Here
we assume that the head and relation of token w are
predicted independently. The trained parsers parse a
separate test set T and their parsing accuracy on the
test set is computed. UA(Pi) shows the unlabeled ac-
curacy of parser Pi and LA(Pi) shows its labeled ac-
curacy. Unlabeled accuracy is the percentage of cor-
rect head dependencies, and labeled accuracy is the
percentage of correct relations for the correct depen-
dencies that the parser predicts.

To select the next tokens to be included in the query,
two entropy measures, HE(w) and RE(w), are com-
puted as the confidence score of each token w:

HE(w) = −
∑ V (hj , w)∑c

i=1 UA(Pi)
· log

V (hj , w)∑c
i=1 UA(Pi)

HE(w) is the head vote entropy of token w in
which hj varies over all of the head values assigned
to token w and V (hj , w) is the number of votes as-
signed to hj as the head of token w:

V (hj , w) =
∑

∀i,hj=h(Pi,w)
UA(Pi)

In a same way, we calculate the relation vote en-
tropy for token w:

RE(w) = −
∑ U(rj , w)∑c

i=1 LA(Pi)
· log

U(rj , w)∑c
i=1 LA(Pi)

U(rj , w) =
∑

∀i,rj=r(Pi,w)
LA(Pi)

RE(w) is the relation vote entropy of token w and
rj varies over all of the relations assigned to token w.
U(rj , w) is the number of votes assigned to rj as the
relation of token w to its head.

The entropy measure of token w is computed as the
mean value of the head entropy and relation entropy:

WE(w) =
HE(w) +RE(w)

2
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Finally, for a sentence S we assign the average en-
tropy value of all its tokens as the sentence entropy:

SE(S) =
n∑

i=1

WE(wi)

n

4.1 Single Parser Prediction

After computing the confidence score of each token
and sentence in U , we select k sentences with most
entropy value. For each sentence we ask the expert to
annotate l tokens that has the highest entropy. Here,
we select one of the parsers as the main parser and use
it to annotate the rest of the words of those k selected
sentences and add them all to L.

4.2 Weighted Committee Prediction

In this section we use the same querying strategy as
the previous one to select l tokens of k sentences with
higher entropy value to be annotated by the expert.
But for predicting the labels of the rest of the words,
we run a majority voting among the parsers. The vote
of each parser Pi for predicting the head and relation
of each token is weighted by its labeled and unlabeled
accuracy, LA(Pi) and UA(Pi), and the label of each
token is set to the one that has majority of votes among
parsers. Algorithm 1 shows the QBC active learning
for dependency parser.

5 Experiments

To evaluate the proposed method, we set up 5 different
experiments. In the first two ones, we select the tokens
that should be annotated randomly. In one case we
first select sentences randomly from unlabeled pool,
and then we choose some random tokens of each se-
lected sentence and ask for their labels. The trained
parser annotates the rest of the words. In another case,
we have a committee of parsers that vote about the
annotations of the rest of the words of sentences that
should be added to the labeled pool. In the third ex-
periment, we try the query by uncertainty sampling
with the confidence measure that we discussed earlier
in 3.1. We set up these three experiments as base-
lines with which we compare the proposed method.
The last two experiments are related to the QBC active
learning. In one case we use only one of the parsers
of the committee to predict the rest of the tokens of
selected sentences that we do not choose for expert

Algorithm 1 QBC Active Learning for Dependency
Parsing with Committee Prediction
L ← Initial labeled training set
U ← Unlabeled pool
T ← Test set
C ← P1, . . . , Pc // A committee of c parsers
repeat
W ← [ ] // Weight vector
for ∀Pi ∈ C do
Pi ← train(L)
U ′
i ← parse(U , Pi)
T ′
i ← parse(T , Pi)
wi ← Calculate weight of Pi given T and T ′

i

W ←W ∪ wi
Calculate confidence score of each token of U ′

given W
S ← k least confident sentences of U ′

I ← {}
for ∀s ∈ S do

Query the expert l least confident tokens of s
Vote among parsers for annotations of the rest
of tokens of s
Add new annotated sentence to I

L ← L ∪ I
U ← U − S

until U is empty or some stopping criteria is not
met
return C,L

annotation. The latter case is an implementation of al-
gorithm 1. All parsers of committee decide together
about the annotation of those tokens. The votes of
each parser are weighted by its accuracy on the test
set.

We use MSTParser (McDonald et al., 2005) as the
main parser in each experiment that only needs one
parser. To set up the QBC experiments, we make
a committee of three parsers including MSTParser,
Mate parser (Bohnet, 2010) and DeSR parser (Attardi,
2006).

5.1 Corpora

In our experiments we use data sets from Ancient
Greek Dependency Treebank (Bamman et al., 2009)
and TUT corpora (Bosco et al., 2000). The An-
cient Greek Dependency Treebank (AGDT) is a
dependency-based treebank of literary works of the
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Data set Language # Of Sentences # Of Tokens Avg Sent Length
Sophocles Ancient Greek 3307 39891 12.06
Wiki Italian 459 14747 32.12

Table 1: Corpora used in the experiments.

Archaic and Classical age published by Perseus. It in-
cludes 13 texts of five Greek scholars from which we
select Sophocles’ works. TUT corpora has been orga-
nized in five sections. Here we use the Wiki section
that includes 459 sentences, randomly chosen from
the Italian version of the Wikipedia. Table 1 shows
the number of sentences and tokens for both data sets.

5.2 Experimental Setup

In each experiment we divide whole sentences of a
text in two random training and test sets. Training set
has 75% of the sentences of the text. We also divide
the training set to two pools L and U . Initially we put
10% of training data in L as the labeled pool and the
rest go to unlabeled pool U . In each iteration we select
10% of unlabeled sentences in initial training set from
U and after having their annotations add them to L.
For every text, we replicate each experiment for 10
different random seeds.

5.3 Experimental Results

Figure 1 shows the learning curve for unlabeled de-
pendency parsing of the Wiki data set when 10 to-
kens per sentence are selected for annotation. x ar-
row grows with the number of tokens in training set,
and y arrow shows the test set accuracy1 that the main
parser, MSTParser, can achieve2. We can observe that
the methods which use an active query strategy do a
better job than those methods which are based on ran-
dom selection strategy. Among active learning meth-
ods, QBC strategy works better than the rest. One
explanation could be the way that the queries are se-
lected. Since each parser generates a different model,
they can make different types of errors. The selected
query by the committee is the one that most of the
members have difficulty on that, and hence know-
ing its label is more informative. We run one-tailed,
paired t-tests to test if these differences are statistically

1The percentage of correct head dependency predictions
2Our experiments on Sophocles show the same behavior. But

due to the lack of space we do not report them here.
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Figure 1: Learning curves for dependency parsing of the
Wiki data set. 10 words per sentence are selected. The
solid horizontal line is the unlabeled accuracy of parser on
the fully annotated training set.

significant. The t-tests run for the best performance
that each of the methods can achieve after the final
loop of active learning. Table 2 shows the p-values for
the case that 10 tokens of each sentence is selected.

Method p-value
Random single parser 0.0014
Random committee of parsers 0.03
Uncertainty sampling 0.002
QBC single parser 0.0006

Table 2: p-values of paired t-tests to compare QBC-
committee of parsers with other methods.

The number of selected tokens, variable l in algo-
rithm 1, has a direct effect on the performance that we
get. To investigate how many tokens we need to se-
lect, we plot the learning curves for both the Wiki and
Sophocles when different number of tokens have been
selected. Figure 2 shows the learning curves of unla-
beled dependency parsing for Wiki and Sophocles. It
compares QBC and random selection scenarios when
1, 5, and 10 words are selected. Solid lines depict
QBC strategy and dashed ones show random selec-
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Figure 2: Comparing learning curves of unlabeled dependency parsing for QBC active learning (solid lines) and random
selection (dashed lines) for different number of selected tokens per sentence (1, 5, and 10).

tion. One can see that when we only select one token
per sentence, both active learning and random selec-
tion strategies perform almost the same. When we in-
crease the number of selected tokens to 5 and then
10, we observe that for Sophocles active learning ap-
proach can achieve better than random selection. For
the Wiki, selecting 10 tokens randomly is almost the
same as selecting 5 tokens with active learning.

One reason could be the length of the sentences in
each data set. As we can see in table 1, the average
sentence length in the Wiki is as twice as the average
sentence length of Sophocles. Table 3 reports the per-
cent of the expert’s annotated tokens that we have in
the training set after the final loop of active learning.
When only 1 token per sentence is selected in each
round, only less than 10% of total tokens in final train-
ing set have gold standard label. Therefore one should
not expect that the active learning approach performs
better than random selection. For the Wiki data set
that has long sentences, 32 tokens per sentence in av-
erage, when 5 tokens from each uncertain sentence
are selected, we finally reach a point that only 15%
of tokens have gold standard label and the random se-
lection of 10 tokens is doing better than that. But as
Sophocles has smaller number of tokens per sentence,
12 tokens per sentence in average, selecting 5 uncer-
tain tokens from each sentence will lead us to a point
that finally more than 40% of tokens in the training
set have gold standard label, and hence active learn-
ing has better performance even better than the case

Data set 1-token 5-token 10-token
Sophocles 8% 41% 83%
Wiki 3% 15% 31%

Table 3: Percentage of tokens in the final training set anno-
tated by an expert.

that 10 tokens per sentence are selected randomly.

6 Conclusions and Future Work

We have set up an active learning framework with a
committee of dependency parsers. The experimental
results show that using a committee of parsers, we can
reach better accuracy with less cost of annotation than
the case where there is only one parser with uncer-
tainty sampling.

We are currently working on a model that instead
of a single oracle we have a committee of experts with
different levels of expertise. We want to build a model
to combine the annotation of those experts together
and send that feedback for the parser.

7 Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. IIS-
0910165 and by a Tufts Collaborates 2011 seed grant.
Thanks are also due to Bridget Almas and Alison
Babeu for their invaluable research assistance.

103



References
Shlomo Argamon-Engelson and Ido Dagan. 1999.

Committee-based sample selection for probabilistic
classifiers. Journal of Artificial Intelligence Research,
11:335–360.

Giuseppe Attardi. 2006. Experiments with a multilan-
guage non-projective dependency parser. In Proceed-
ings of the Tenth Conference on Computational Natu-
ral Language Learning, pages 166–170. Association for
Computational Linguistics.

David Bamman, Francesco Mambrini, and Gregory Crane.
2009. An ownership model of annotation: The an-
cient greek dependency treebank. In Proceedings of the
Eighth International Workshop on Treebanks and Lin-
guistic Theories, pages 5–15.

Bernd Bohnet. 2010. Top accuracy and fast dependency
parsing is not a contradiction. In Proceedings of the
23rd International Conference on Computational Lin-
guistics (Coling 2010), pages 89–97. Coling 2010 Or-
ganizing Committee, August.

Cristina Bosco, Vincenzo Lombardo, Daniela Vassallo, and
Leonardo Lesmo. 2000. Building a treebank for ital-
ian: a data-driven annotation schema. In Proceedings of
the Second International Conference on Language Re-
sources and Evaluation, pages 99–105.

Aron Culotta, Trausti Kristjansson, Andrew McCallum,
and Paul Viola. 2006. Corrective feedback and persis-
tent learning for information extraction. Artificial Intel-
ligence, 170(14):1101–1122, October.

Steven C. H. Hoi, Rong Jin, and Michael R. Lyu. 2006.
Large-scale text categorization by batch mode active
learning. In Proceedings of the 15th international con-
ference on World Wide Web, pages 633–642. ACM.

Rebecca Hwa. 2004. Sample selection for statistical
parsing. Computational Linguistics, 30(3):253–276,
September.

Rosie Jones, Rayid Ghani, Tom Mitchell, and Ellen Rilo.
2003. Active learning for information extraction with
multiple view feature sets. In the ECML workshop on
Adaptive Text Extraction and Mining.

Seokhwan Kim, Yu Song, Kyungduk Kim, Jeong won Cha,
and Gary Geunbae Lee. 2006. Mmr-based active ma-
chine learning for bio named entity recognition. In
Proceedings of the Human Language Technology Con-
ference/North American chapter of the Association for
Computational Linguistics annual meeting, pages 69–
72. Association for Computational Linguistics.

Florian Laws and Hinrich Schütze. 2008. Stopping criteria
for active learning of named entity recognition. In Pro-

ceedings of the 22nd International Conference on Com-
putational Linguistics - Volume 1, pages 465–472. As-
sociation for Computational Linguistics.

David D. Lewis and William A. Gale. 1994. A sequential
algorithm for training text classifiers. In the 17th An-
nual International ACM-SIGIR Conference on Research
and Development in Information Retrieval, pages 3–12.
ACM/Springer.

Teresa Lynn, Jennifer Foster, Elaine Ui Dhonnchadha, and
Mark Dras. 2012. Active learning and the irish tree-
bank. The Annual Meeting of the Australasian Lan-
guage Technology Association (ALTA 2012).

Saeed Majidi and Gregory Crane. 2013. Committee-based
active learning for dependency parsing. In Research and
Advanced Technology for Digital Libraries, pages 442–
445. Springer.

Ryan McDonald and Joakim Nivre. 2007. Characteriz-
ing the errors of data-driven dependency parsing models.
In Proceedings of the Conference on Empirical Methods
in Natural Language Processing and Natural Language
Learning. Association for Computational Linguistics,
June.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan
Hajič. 2005. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the con-
ference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 523–
530. Association for Computational Linguistics.

Avihai Mejer and Koby Crammer. 2011. Confidence esti-
mation in structured prediction. CoRR, abs/1111.1386.

Seyed Abolghasem Mirroshandel and Alexis Nasr. 2011.
Active learning for dependency parsing using partially
annotated sentences. In the 12th International Confer-
ence on Parsing Technologies, pages 140–149. Associa-
tion for Computational Linguistics, October.

Fredrik Olsson. 2009. A literature survey of active ma-
chine learning in the context of natural language pro-
cessing. Computer sciences technical report, Swedish
Institute of Computer Science.

Eric Ringger, Peter McClanahan, Robbie Haertel, George
Busby, Marc Carmen, James Carroll, Kevin Seppi, and
Deryle Lonsdale. 2007. Active learning for part-of-
speech tagging: Accelerating corpus annotation. In Pro-
ceedings of the Linguistic Annotation Workshop, pages
101–108. Association for Computational Linguistics,
June.

Manabu Sassano and Sadao Kurohashi. 2010. Us-
ing smaller constituents rather than sentences in active
learning for japanese dependency parsing. In the 48th

104



Annual Meeting of the ACL, pages 356–365. Associa-
tion for Computational Linguistics, July.

Manabu Sassano. 2002. An empirical study of active
learning with support vector machines for japanese word
segmentation. In Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics, pages
505–512. Association for Computational Linguistics.

Greg Schohn and David Cohn. 2000. Less is more: Active
learning with support vector machines. In Proceedings
of the Seventeenth International Conference on Machine
Learning, pages 839–846.

Manfred Opper Sebastian Seung and Haim Sompolinsky.
1992. Query by committee. In the Fifth Annual ACM
Workshop on Computational Learning Theory, pages
287–294. ACM.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648, University
of Wisconsin–Madison.

Min Tang, Xaoqiang Luo, and Salim Roukos. 2002. Ac-
tive learning for statistical natural language parsing. In
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 120–127. Association for
Computational Linguistics, July.

Simon Tong and Daphne Koller. 2002. Support vector
machine active learning with applications to text classi-
fication. J. Mach. Learn. Res., 2:45–66, March.

Andreas Velachos. 2006. Active annotations. In the
ECML workshop on Adaptive Text Extraction and Min-
ing, pages 64–71. Association for Computational Lin-
guistics.

Jingbo Zhu and Eduard H Hovy. 2007. Active learning for
word sense disambiguation with methods for addressing
the class imbalance problem. In EMNLP-CoNLL, vol-
ume 7, pages 783–790.

105



Development of Amharic Grammar Checker Using Morphological     

Features of Words and N-Gram Based Probabilistic Methods 

 

Aynadis Temesgen 

Department of Computer Science 

Addis Ababa University  

temesgen.aynadis@gmail.com 

Yaregal Assabie 

Department of Computer Science 

Addis Ababa University 

yaregal.assabie@aau.edu.et 

 

  

Abstract 

Amharic is one of the most morphologically 

complex and under-resourced languages which 

effectively hinder the development of efficient 

natural language processing applications. Am-

haric words, especially verbs, are marked for a 

combination of several grammatical functions 

which makes grammar checking complex. This 

paper describes the design and development of 

statistical grammar checker for Amharic by 

treating its morphological features. In a given 

Amharic sentence, the morphologies of individ-

ual words making up the sentence are analyzed 

and then n-gram based probabilistic methods are 

used to check grammatical errors in the sen-

tence. The system is tested with a test corpus and 

experimental results are reported.  

1 Introduction 

 

With the rise of electronic documents, the need of 

natural language processing (NLP) applications 

that automatically process texts has drastically in-

creased. One of such important NLP applications is 

grammar checker which automatically checks 

grammatical errors in texts and also possibly sug-

gests the user to choose among other alternatives. 

Initially, most of the grammar checkers were based 

on checking styles, uncommon words and sentence 

structures, but now they are upgraded to high ca-

pacity with the capability of analyzing complex 

sentence structures, not only as a part of other pro-

grams but also as easy software to be installed in 

many operating system (Richardson, 1997; Liddy, 

2001; Mudge, 2010; Mozgovoy, 2011). Various 

techniques and methods have been proposed so far 

to build systems that could check the grammars of 

texts. Among the most widely used approaches to 

implement grammar checkers are rule-based, sta-

tistical and hybrid (Tsuruga and Aizu, 2011; Ehsan 

and Faili, 2013; Xing et al, 2013). Rule-based sys-

tems check grammars based on a set of manually 

developed rules which are used to match against 

the text. However, it is very difficult to understand 

and include all grammatical rules of languages, 

especially for complex sentences. On the other 

hand, in statistical grammar checking, part-of-

speech (POS)-annotated corpus is used to automat-

ically build the grammatical rules by identifying 

the patterns of POS tag sequences in which case 

common sequences that occur often can be consi-

dered correct and the uncommon ones are reported 

to be incorrect. This has lead statistical approaches 

to become popular methods to build efficient 

grammar checkers. However, it is very difficult to 

understand error messages suggested by such 

checking system as there is no specific error mes-

sage. Hybrid grammar checking is then introduced 

to benefit from the synergy effect of both ap-

proaches (Xing et al, 2013). A number of grammar 

checkers have been developed so far for many lan-

guages around the world. Among the most notable 

grammar checkers are those developed over the 

past few years for resourceful languages such as 

English (Richardson, 1997; Naber, 2003), Swedish 

(Arppe, 2000; Domeij et al, 2000), German 

Schmidt-Wigger, (1998), and Arabic (Shaalan, 

2005), etc.  However, to our best knowledge, there 

is no commercial Amharic grammar checker or 

published article that presents grammar checking 

for Amharic.  

This paper presents statistical-based Amharic 

grammar checker developed by treating the mor-

phological features of the language.  The organiza-

tion of the remaining part of the paper is as fol-

lows. Section 2 discusses an overview of the 

grammatical structure of Amharic. Section 3 
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presents the statistical methods applied to develop 

the system. Experimental results are presented in 

Section 4.  In Section 5, we present our conclusion 

and recommendation for future works. A list of 

references is provided at the end.  

2 Grammatical Structure of Amharic 

2.1 Amharic Morphology 

Amharic is the working language of Ethiopia 

having a population of over 90 million at present. 

Even though many languages are spoken in 

Ethiopia, Amharic is the dominant language that is 

spoken as a mother tongue by a large segment of 

the population and it is the most commonly learned 

second language throughout the country (Lewis et 

al, 2013). Amharic is written using its own script 

which has 33 consonants (base characters) out of 

which six other characters representing 

combinations of vowels and consonants are 

derived for each character.  

Amharic is one of the most morphologically 

complex languages. Amharic nouns and adjectives 

are marked for any combination of number, 

definiteness, gender and case. Morover, they are 

affixed with prepositions.  For example, from the 

noun ተማሪ (tämari/student), the following words 

are generated through inflection and affixation: 

ተማሪዎች (tämariwoč/students), ተማሪው (tämariw/ 

the student {masculine}/his student), ተማሪየ 
(tämariyän/my student), ተማሪየን (tämariyän/my 

student {objective case}), ተማሪሽ (tämariš/your 

{feminine} student), ለተማሪ (lätämari/for student), 

ከተማሪ (kätämari/ from student), etc. Similarly, we 

can generate the following words from the 

adjective ፈጣን (fäţan/fast): ፈጣኑ (fäţanu/fast, 

{definite} {masculine} { singular}), ፈጣኖች 
(fäţanoč/fast {plural}), ፈጣኖቹ (fäţanoču/fast 

{definite} {plural}),  etc.   

Amharic verb inflections and derivations are 

even more complex than those of nouns and 

adjectives. Several verbs in surface forms are 

derived from a single verbal stem, and several 

stems in turn are derived from a single verbal root. 

For example, from the verbal root ውስድ (wsd/to 

take), we can derive verbal stems such as wäsd, 

wäsäd, wasd, wäsasd, täwäsasd, etc. From each of 

these verbal stems we can derive many verbs in 

their surface forms. For example, from the stem 

wäsäd the following verbs can be derived:   

ወሰደ (wäsädä/he took)  

ወሰደች (wäsädäč/she broke)  

ወሰድኩ (wäsädku/I broke) 

ወሰድኩት (alwäsädkutĭm/I took [it/him]) 

አልወሰድኩም (alwäsädkum/I didn’t take) 

አልወሰደችም (alwäsädäčĭm/she didn’t take)  

አልወሰደም (alwäsädäm/he didn’t take) 

አልወሰደኝም (alwäsädäňĭm/he didn’t take me) 

አስወሰደ (aswäsädä/he let [someone] to take) 

ተወሰደ (täwäsädä/[it/he] was taken) 

ስለተወሰደ (sĭlätäwäsädä/as [it/he] was taken) 

ከተወሰደ (kätäwäsädä/ if [it/he] is taken) 

እስኪወሰድ (ĭskiwäsäd/until [it/he] is taken) 

ሲወሰድ (sĭwäsäd/when [it/he] is taken) 
. . . 
etc. 
 
Amharic verbs are marked for any combination 

of person, gender, number, case, tense/aspect, and 
mood  resulting in thousands of words from a 
single verbal root. As a result, a single word may 
represent a complete sentence cosutructed with 
subject, verb and object. For example,  ይወስደኛል 
(yĭwäsdäňal/[he/it] will take me) is a sentence 
where the verbal stem ወስድ (wäsd/ will take) is 
marked for various grammatical functions as 
shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Morphology of the word ይወስደኛል. 

2.2 Grammatical Rules of Amharic 

Common for most languages, if not for all, gram-

mar checking starts with checking the validity of  

the sequence of words in the sentence. This is also 

true for Amharic. In addition, since Amharic is 

morphologically complex language where verbs, 

nouns and adjectives are marked for various 

grammatical functions, the following agreements 

are required to be checked: adjective-noun, adjec-

ይ ወ ስ ደ ኛ ል 

yĭ wä s dä ňa l 
 

ይ....ል/yĭ....l 
Marker for the subject “he/it” 

The verbal stem ወስድ 
(wäsd/ will take) 

-ኧኛ- (-äňa-)      
Marker for the 

objective case “me” 
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tive-verb, subject-verb, object-verb, and adverb-

verb (Yimam, 2000; Amare, 2010). 

Word Sequence: Amharic language follows 

subject-object-verb (SOV) grammatical pattern as 

opposed to, for example, English language which 

has SVO sequence of words. For instance, the 

Amharic equivalent of sentence “John ate bread” is 

written as “ጆን (jon/John) ዳቦ (dabo/bread) በላ 
(bäla/ate)”.  Here, the part-of-speech (POS) tags of 

individual words are used as inputs to check the 

validity of grammatical patterns. 

Adjective-Noun Agreement: Amharic nouns 

are required to agree for number of modifying ad-

jectives.  For example, ረጃጅም ልጆች (räjajĭm lĭjoč/ 

tall {plural} children) is a valid noun phrase whe-

reas ረጃጅም ልጅ (räjajĭm lĭj/ tall {plural} child) is 

an invalid noun phrase construction.  
Subject-Verb Agreement: Amharic verbs are 

marked for number, person and gender of subjects. 

For example, ልጆቹ መስኮት ሰበሩ (lĭjoču mäskot 

säbäru/the children broke a window) is a valid 

Amharic sentence. However, ልጅቷ መስኮት ሰበረ 
(lĭjt

w
a mäskot säbärä/the girl broke {masculine} a 

window) is not a valid Amharic sentence since the 

subject ልጅቷ (lĭjt
w
a/the girl) is feminine and the 

verb ሰበረ (säbärä /broke {masculine}) is marked 

for masculine. 

Object-Verb Agreement: Amharic verbs are 

also marked for number, person and gender of ob-

jective cases.  For example, in the sentence ልጆቹ 

መስኮቶቹን ሰበሯቸው (lĭjoču mäskotočun säbär
w
a-

čäw/the children broke {plural} the windows), the 

verb ሰበሯቸው (säbäru/broke {plural}) is marked for 

the plural property of the object መስኮቶቹን 

(mäskotočun/the windows). 

Adverb-Verb Agreement: Tenses of verbs are 

required to agree with time adverbs. For example, 

ትላንት ሰበሩ (tĭlant säbäru/ [they] broke yesterday) 

is a valid verb phrase construction whereas ትላንት 
ይሰብራሉ (tĭlant yĭsäbralu/ [they] will break yester-

day) is an invalid construction. 

3 The Proposed Grammar Checker 

The proposed grammar checker for Amharic text 

passes through three phases:  

• Checking word sequences; 

• Checking adjective-noun-verb agreements; 

• Checking adverb-verb agreement.  

In the first two phases, we employ the n-gram 

based statistical method. The n-gram probabilities 

are computed from the linguistic properties of 

words in a sentence. 

3.1 Representation of the Morphological    

Properties of Words   

To check grammatical errors in an Amharic sen-

tence, the morphological properties of words is 

required. The morphological property of Amharic 

words contains linguistic information such as 

number, gender, person, etc. Such linguistic infor-

mation is used to check whether the linguistic 

properties of one word agree with that of the other 

words in the sentence. For this task, we used an 

Amharic morphological analyzer known as   

HornMorpho developed by Gasser (2011). After 

performing morphological analysis for a given 

word, the morphological property of the word is 

stored along with its POS tag using a structure with 

four slots as shown in Figure 2.  

 

 

 

 

 
Figure 2: A structure for representing the linguistic 

properties of words 

 

Slot1: This slot contains information about the 

POS tag of the word. The corpus we used in this 

work contains 31 types of POS tags, and the value 

for this slot is retrieved from the corpus.  In addi-

tion to checking the correct POS tag sequence in a 

sentence, this slot is required to check agreements 

in number, person and gender as well. 

Slot2: This slot holds number information about 

the word, i.e. whether the word is plural (P), singu-

lar (S), or unknown (U). In the case of nouns and 

adjectives, it has three values: P, S, or U. Since 

Amharic verbs are marked for numbers of subject 

and object, the value for this slot are combinations 

of the aforementioned values for subject and objec-

tive cases. We use the symbol “^” to represent 

such combinations. For example, a verb marked 

for plural subject and singular object is represented 

as SP^OS; a verb marked for singular subject and 

singular object is represented as SS^OS; etc.   

Slot3: This slot stores person information about 

the word, i.e. first person (P1), second person (P2), 

third person (P3), or unknown (PU). The slot has 

four different possible values for the nouns and 

adjectives: P1, P2, P3 and PU. However, verbs can 

Word < POS Number Person Gender > 

Slot1      Slot2     Slot3      Slot4 
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have a combination of these four values for subject 

and object grammatical functions. Examples of slot 

values for verbs are the following. 

SP1^OP1: verb marked for first person subject 

and first person object  

SP2^OP1: verb marked for second person sub-

ject and first person object  

SP3^OP1: verb marked for third person subject 

and first person object  

SP2^OP3: verb marked for second person sub-

ject and third person object 
. . . 
etc. 

 

Slot4: This slot holds gender information about 

the word, i.e. whether the word is masculine (M), 

feminine (F), or unknown (U). In the case of nouns 

and adjectives, it has three values: M, F, or U. The 

values of this slot for verbs are are combinations of 

the aforementioned values for subject and objec-

tive cases. Accordingly, a verb marked for mascu-

line subject and feminine object is represented as 

SM^OF; a verb marked for feminine subject and 

masculine object is represented as SF^OM; etc.   

For example, the linguistic information built for 

the noun ፕሬዚዳንቱ (prezidantu/the president {mas-

culine}) is: ፕሬዚዳንቱ <N|S|P3|M>. Likewise, the 

linguistic information for the verb ደረሰችበት 
(däräsäčĭbät/she reached at him) is: ደረሰችበት 
<V|SS^OS|SP3^OP3|SF^OM>. Accordingly, the 

linguistic information about each word in the entire 

corpus is automatically constructed so as to use it 

for training and testing. 

3.2 Word Sequences  

To check the validity of POS tag sequence for a 

given sentence, we use n-gram probability pt com-

puted as: 
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121

121
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−
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where n is the number of words in a sequence and 

w is POS tags of words.  We have calculated n-

gram values for n=2 (bigram) and n=3 (trigram) 

where they are saved in repository and used in 

grammar checking process. The probabilities of 

sequence occurrences are determined from the cor-

pus, which is used to train the system. The training 

process starts by accepting the training corpus and 

the n-value as inputs. For each sentence in the cor-

pus, the sequences of POS tags of words are ex-

tracted. For each unique sequence of POS tags, the 

probability of the occurrence of the sequence is 

computed using n-gram models. The n-gram prob-

abilities of POS tag sequences stored in the perma-

nent repository are accessed to check grammatical 

errors in a given sentence. The probability pst of 

the correctness of the POS tag sequence of words 

in a given sentence construction is computed as:  
 

             ∏ =
=

n

i tst i
pp

1
                                  (2) 

 

where n is the number of POS tags extracted in the 

sentence. Sentence with higher values of pst are 

considered to be having a valid sequence of words 

whereas those with low values are regarded as hav-

ing unlikely sequence of words. Finally, the deci-

sion is made based on a threshold value set by em-

pirical method. The training process is illustrated 

in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: A flowchart of the training process for check-

ing sequences of words. 

3.3 Adjective-Noun-Verb Agreements  

The agreements between words serving various 

grammatical functions in Amharic sentence are 

also checked using n-gram approach. Number, per-
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son and gender agreements are checked at this 

phase. We perform this task by analyzing the four 

slots representing linguistic information about 

words as discussed in Section 3.1. Since the values 

for  number,  person,  and  gender  depends  on  the 

word class, the POS tag information is required. 

Thus, for each word in the corpus, we extract such 

information as <slot1,slot2>, <slot1|slot3> and 

<slot1|slot4> where slot1, slot2, slot3 and slot4 

represent POS tag, number, person and gender in-

formation, respectively. Given the POS tag w of a 

word, the sequence probability pa of adjective-

noun-verb agreement for a slot is computed as: 
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where v is the value of the slot. The n-gram proba-

bility values for each unique pattern was computed 

and stored in a permanent repository which would 

be later accessed to adjective-noun-verb agree-

ments in a given sentence. The probability psa of 

the correctness of the adjective-noun-verb agree-

ments in a given sentence is then computed as: 
 

                    ∏ =
=

n

i asa i
pp

1
                           (4) 

 

3.4 Adverb-Verb Agreement  

Amharic adverbs usually come before the verb 

they modify. When adverb appears in the sentence 

it usually modifies the next verb that comes after it. 

There could be a number of other words in be-

tween the adverb and the verb, but the modified 

verb appears next to the modifier before any other 

verb in the sentence. As Amharic adverbs are few 

in number, adverb-verb agreement was not 

checked in the previous phases. To check time 

agreement between the adverb and the verb, the 

tense for the verb that the adverb modifies should 

be identified. In this work, we considered four dif-

ferent types of tenses: perfective, imperfective, 

jussive/ imperative and gerundive. The pattern of 

time adverbs associated with each tense type was 

extracted from the corpus and stored in repository. 

Whenever these time adverbs are found in the sen-

tence to be checked, the tense type of the next verb 

is extracted by using morphological analysis. If the 

tense type extracted from the given sentence 

matches with an adverb-tense pattern in the reposi-

tory, the adverb and the verb are considered to 

have correct agreement. Otherwise, it is reported as 

grammatically incorrect sentence. 

4 Experiment 

4.1 The Corpus  

We used Walta Information Center (WIC) news 

corpus which contains 8067 sentences where 

words are annotated with POS tags. We used 7964 

sentences for training and the remaining for test-

ing. In addition, to test the performance of the sys-

tem with grammatically wrong sentences, we also 

used manually prepared sentences which are 

grammatically incorrect.   

4.2 Test Results  

In order to test the performance of the grammar 

checker, we are required to compute the number of 

actual errors in the test set, number of errors re-

ported by the system and the number of false posi-

tives generated by the system. These numbers were 

then used to calculate the precision and recall of 

the system as follows. 
 

 

%100*
 ged errorser of flagtotal numb

rors flagged ercorrectly number of 
precision =

       

 

%100*
rorsmatical erer of gramtotal numb

rors flagged ercorrectly number of 
recall =             (6) 

 

Accordingly, we tested the system with simple 

and complex sentences where we obtained experi-

mental results as shown in Table1. 

  

Type of   

Sentence 

n-gram  

model 

Precision Recall 

Simple Bigram 59.72% 82.69% 

Trigram 67.14%  90.38% 

Complex Bigram 57.82%  65.38% 

Trigram 63.76%  67.69% 

 

Table 1:  Experimental results. 

 

Experimental results were also analyzed to eva-

luate the performance of the system with regard to 

identifying various types of grammatical errors. 

The detection rate of the various grammatical error 

types is shown in Table 2. 

 

 

(5)
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Table 2:  Detection rate by error types. 

4.3 Discussion  

A complete system that checks Amharic gram-

matical errors is developed. To train and test our 

system, we used WIC corpus which is manually 

annotated with POS tags. However, we have ob-

served that a number of words are tagged with 

wrong POS and many of them are also misspelled. 

Since Amharic is one of the less-resourced lan-

guages, to our best knowledge, there is no tool that 

checks and corrects the spelling of Amharic words. 

Although attempts have been made to correct some 

of the erroneously tagged words in the corpus, 

were were unable to manually correct all wrongly 

tagged words. POS tag errors cause the wrong tag 

patterns to be interpreted as correct ones during the 

training process which would ultimately affect the 

performance of the system.  Thus, the performance 

of the system can be maximized if the system is 

trained with error-free corpus. Moreover, since the 

corpus is collected from news items, most of the 

sentences contain words which refer to third per-

son. For this reason, occurrence of first and second 

person in the corpus is very small. This has af-

fected the system while checking person disagree-

ment. This is evidenced by the low accuracy ob-

tained while the system detects number disagree-

ment (see Table 2). 

To our best knowledge, HornMorpho is the only 

tool at present publicly available to morphological-

ly analyze Amharic words.  However, the tool ana-

lyses only some specific types of verbs and nouns. 

Adjectives analyzed as nouns and adverbs are not 

analyzed at all.  Since Amharic is morphologically 

very complex language where combinations of var-

ious linguistic information are encoded in a single 

word, the effectiveness of grammar checking is 

hugely compromised if words are not properly ana-

lyzed. Thus, the performance of the system can be 

greatly enhanced by using a more effective Amhar-

ic morphological analyzer. 

Test results have shown that trigram models per-

form better than bigram models. In Amharic, head 

words in verb phrases, noun phrases, adjective 

phrases are located at the end of the phrases (Yi-

mam, 2000). This means that, for verb phrases, the 

nouns and adjectives for which verbs are marked 

come immediately before the head word (which is 

a verb).  Likewise, sequences of adjectives modify-

ing nouns in noun phrases come immediately be-

fore the head word (which is a noun). Thus, se-

quences of multiple words in phrases are better 

captured by trigrams than bigrams.   We have also 

seen that grammatical errors in simple sentences 

are detected more accurately than in complex sen-

tences. The reason is that complex sentences have 

complex phrasal structures which could not be di-

rectly treated by trigram and bigram models.  

However, the performance of the system can be 

improved by using a parser that generates phrasal 

structures hierarchically at different levels. We can 

then systematically check grammatical errors at 

various levels in line with the parse result.   

5 Conclusion and Future Works 

Amharic is one of the most morphologically com-

plex languages. Furthermore, it is considered to be 

less-resourced language. Despite its importance, 

these circumstances lead to unavailability of effi-

cient NLP tools that automatically process Amhar-

ic texts at present. This work is aimed at contribut-

ing to the ever-increasing need of developing Am-

haric NLP tools. Accordingly, the development of 

Amharic grammar checker using morphological 

features and n-gram probabilities is presented. In 

this work, we have systematically treated the mor-

phological features of the language where we 

represented grammar dependency rules extracted 

from the morphological structures of words.  

However, lack of error-free corpus and effective 

morphological analyzer are observed to be affect-

ing the performance of the developed grammar 

checker. Thus, future works are recommended to 

be directed at improving linguistic resources and 

developing effective NLP tools such morphologi-

cal analyzer, parser, spell checker, etc. for Amhar-

ic. The efficiency of these components is crucial 

not only for Amharic grammar checking but also 

for many Amharic NLP applications. 

Error type Detection rate (%) 

Incorrect word order 73 

Number disagreement 80 

Person disagreement 52 

Gender disagreement 60 

Adjective-noun disagreement 55 

Adverb-verb disagreement 90 
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Abstract

In data-driven parsing with Linear Context-Free
Rewriting System (LCFRS), markovized gram-
mars are obtained through the annotation of bi-
narization non-terminals during grammar bina-
rization, as in the corresponding work on PCFG
parsing. Since there is indication that directional
parsing with a non-binary LCFRS can be faster
than parsing with a binary LCFRS, we present
a debinarization procedure with which we can
obtain a non-binary LCFRS from a previously
binarized one. The resulting grammar retains
the markovization information. The algorithm
has been implemented and successfully applied
to the German NeGra treebank.

1 Introduction

Linear Context-Free Rewriting System (LCFRS), an
extension of CFG in which non-terminals can cover
more than a single span, can be used to model dis-
continuous constituents as well as non-projective de-
pendencies (Maier and Lichte, 2011). It has therefore
recently been exploited for direct data-driven pars-
ing of such structures. See, e.g., Maier and Søgaard
(2008), Maier and Kallmeyer (2010), van Cranen-
burgh (2011), van Cranenburgh et al. (2012), and
Kallmeyer and Maier (2013).

A major problem with data-driven probabilis-
tic LCFRS (PLCFRS) parsing is the high parsing
complexity. Given a binary grammar, CYK pars-
ing can be done inO(n3k) where k is the fan-
out of the grammar, that is, the maximum num-
ber of spans that a single non-terminal can cover
(Seki et al., 1991). While for PCFG parsing,k is
1, for PLCFRS,k will typically be ≈ 5. Sen-
tences with lengths around 23 to 25 words require

very high, unpractical parsing times (20 minutes and
more per sentence) (van Cranenburgh et al., 2011;
Kallmeyer and Maier, 2013).

One possibility to obtain faster parsing is to reduce
the fan-out of the grammar by reducing the number
of gaps in the trees from which the grammar is ex-
tracted. This has been done byMaier et al. (2012)
who transform the trees of the German TIGER tree-
bank such that a grammar fan-out of2 is guar-
anteed. For unrestricted PLCFRS parsing, other
solutions have been implemented. The parser of
Kallmeyer and Maier (2013)1 offers A∗ parsing with
outside estimates (Klein and Manning, 2003a). With
this technique the practical sentence length limit is
shifted upwards by 7 to 10 words. Kallmeyer and
Maier also propose non-admissible estimates which
provide a greater speed-up but also let the results de-
grade. The parser ofvan Cranenburgh (2012)2 also
does not maintain exact search. It implements a
coarse-to-fine strategy in a more general PCFG is cre-
ated from the treebank PLCFRS using the algorithm
of Barth́elemy et al. (2001). The PCFG chart is then
used to filter the PLCFRS chart. While this approach
in principle removes the limit3 on sentence length, it
also leads to degraded results.

Yet another solution for obtaining higher speeds
could be to turn to parsing strategies which allow for
the use of non-binary rules, such as directional CYK
parsing or Earley parsing. The reasoning behind this
assumption is as follows. Firstly, the longer the right-
hand side of a rule, the easier it is to check during pars-
ing on a symbolic basis if it is possible to use the rule

1Seehttp://phil.hhu.de/rparse.
2Seehttp://github.com/andreasvc/disco-dop.
3For very long sentences, i.e.> 60 words, the parser still has

extreme memory requirements.
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in a complete parse or not by checking the require-
ments of the rule with respect to the yet unparsed part
of the input such as it is done, e.g., in Kallmeyer and
Maier (2009).4 A comparable strategy, the F gram-
mar projection estimate (Klein and Manning, 2003a),
has been employed in PCFG parsing. Secondly, prac-
tical experience with Range Concatenation Gram-
mar (RCG) (Boullier, 1998) and Grammatical Frame-
work (GF) (Ranta, 2004) parsing points in the
same direction. Lazy computation of instantiations
in RCG parsing as done in the TuLiPA system
(Kallmeyer et al., 2009) and the SYNTAXE parser
(Boullier and Deschamp, 1988) (Boullier, p.c.) seem
to be less effective with shorter right-hand sides of
rules because less constraints can be collected at
once. Practical experiments with the GF5 parser
(Angelov, 2009), which implements an Earley strat-
egy, indicate that certain optimizations loose their ef-
fect with binary grammars (Angelov, p.c.).

So why not just do directional parsing with the un-
binarized treebank grammar? It is common knowl-
edge that vanilla treebank PCFGs do not perform well.
This also holds for PLCFRS. Markovization has been
proven to be an effective remedy for both PCFG and
PLCFRS parsing. It can be achieved through the prob-
ability model itself (Collins, 1999) or by annotating
the treebank grammar (Klein and Manning, 2003b;
Kallmeyer and Maier, 2013): Instead of using a
unique non-terminal as in deterministic binarization,
one uses a single non-terminal and adorns it with the
vertical (“parent annotation”, seeJohnson (1998)) and
horizontal context of the occurrence of the rule in the
treebank. This augments the coverage of the grammar
and helps to achieve better parsing results by adding a
possibly infinite number of implicit non-binary rules.

Our main contribution in this article is adebinariza-
tion algorithm with which a non-binary LCFRS can be
generated from a previously binarized LCFRS (which
fulfills certain conditions). Given a markovized bi-
narized grammar, the debinarized grammar contains
non-binary productions obtained through markoviza-
tion. We furthermore contribute a new compact nota-
tion for rules of atreebank LCFRS, i.e., of the variant
of LCFRS obtained by treebank grammar extraction,

4For such a check, it makes no difference if the rule is deter-
ministically binarized.

5http://grammaticalframework.org

and provide a formulation of deterministic binariza-
tion using this notation.

An implementation of the debinarization algorithm
has been tested on the German NeGra treebank
(Skut et al., 1997). First experimental results confirm
that in practice, the debinarized grammar can perform
better than than the plain treebank grammar.

The remainder of the article is structured as follows.
In the following section, we define treebank LCFRS
and introduce our new rule representation. We fur-
thermore introduce the binarization, resp. markoviza-
tion algorithm. In section3, we introduce our new
debinarization algorithm. Section4 presents the ex-
perimental evaluation and section5 closes the article.

2 LCFRS

2.1 Definition

In LCFRS (Vijay-Shanker et al., 1987), a single non-
terminal can spank ≥ 1 continuous blocks of a string.
A CFG is simply a special case of an LCFRS in which
k = 1. k is called thefan-outof the non-terminal. We
notate LCFRS with a syntax of Simple Range Con-
catenation Grammars (SRCG) (Boullier, 1998), a for-
malism equivalent to LCFRS. In the following we de-
fine treebank LCFRS, the variant of LCFRS which
is obtained by the grammar extraction algorithm of
Maier and Søgaard (2008).

A treebank LCFRSis a tupleG = (N, T, V, P, S)
where

1. N is a finite set of non-terminals with a function
dim: N → N determining thefan-outof each
A ∈ N ;

2. T andV are disjoint finite sets of terminals and
variables;

3. S ∈ N is the start symbol withdim(S) = 1;

4. P is a finite set of rewriting rules where allr ∈ P
are either

(a) rules with rankm ≥ 1 of the form

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)

dim(A1))

· · · Am(X
(m)
1 , . . . , X

(m)

dim(Am))

where

i. A, A1, . . . , Am ∈ N , X
(i)
j ∈ V for 1 ≤

i ≤ m, 1 ≤ j ≤ dim(Ai) and
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A(a) → ε (〈a〉 in yield of A)
B(b) → ε (〈b〉 in yield of B)
C(X, Y ) → A(X)A(Y ) (if 〈X〉 in the yield ofA

and 〈Y 〉 in the yield of
A, then〈X, Y 〉 in yield
of C)

S(XZY ) → C(X, Y )B(Z) (if 〈X, Y 〉 in yield of C
and 〈Z〉 in the yield of
B, then〈XZY 〉 in yield
of S)

L = {anban | n > 0}

Figure 1: Yield example

ii. αi ∈ V + for 1 ≤ i ≤ dim(A) (we write
αi.j, 1 ≤ j ≤ |αi| for the jth variable
in αi), or

(b) rules of rank0 of the formA(t) → ε where
A ∈ N , t ∈ T .

For all r ∈ P , every variableX that occurs inr
occurs exactly once in the left-hand side (LHS) and
exactly once in the right-hand side (RHS). Further-
more, if for two variablesX1, X2 ∈ V , it holds that
X1 ≺ X2 on the RHS, then alsoX1 ≺ X2 on the
LHS.6

A rewriting rule describes how to compute the yield
of the LHS non-terminal from the yields of the RHS
non-terminals. The yield ofS is the language of the
grammar. See figure1 for an example.

The rank of G is the maximal rank of any of its
rules, itsfan-out is the maximal fan-out of any of its
non-terminals.

The properties which distinguish a treebank
LCFRS from a regular LCFRS are the requirements
that

1. all non-terminal arguments are variables except
in terminating lexical rules in which the only ar-
gument of the LHS consists of a single terminal,
and

2. the ordering property.

These properties allows us to notate rules in a more
compact way. Let(N, T, V, P, S) be an LCFRS. A
rule r ∈ P

A(α1, . . . , αdim(A)) → A1(X
(1)
1 , . . . , X

(1)

dim(A1))

· · · Am(X
(m)
1 , . . . , X

(m)

dim(Am))

6This is theorderingproperty which Villemonte de la Clerg-
erie (2002) defines for RCGs. LCFRSs with this property
are calledmonotone(Michaelis, 2001), MCFGs non-permuting
(Kracht, 2003).

can be represented as a tuple(A → A1 · · · Am, ~ϕ),
where~ϕ is a linearization vectorwhich is defined as
follows. For all 1 ≤ i ≤ dim(A), 1 ≤ j ≤ |αi|,
~ϕ[i] is a subvectorof ~ϕ with |~ϕ[i]| = |αi| and it
holds that~ϕ[i][j] = x iff αi.j occurs in the argu-
ments ofAx. Let us consider an example: The rule
A(X1X2, X3X4) → B(X1, X3)C(X2, X4) can be
fully specified by (A → BC, [[1, 2], [1, 2]]).

We introduce additional notation for operations on
a linearization vector~ϕ.

1. We write ~ϕ/(x, x′) for somex, x′ ∈ N for the
substitution of all occurrences ofx in ~ϕ by x′.
~ϕ/s(x, x′) denotes the same substitution proce-
dure with the addition that after the substitution,
all occurrences ofx′+ in ~ϕ are replaced byx′.

2. We write ~ϕ \ x for somex ∈ N for the dele-
tion of all occurrences ofx in ~ϕ, followed by the
deletion of subvectors which become empty.

3. ~ϕ ↓x for somex ∈ N denotes the splitting of
all subvectors of~ϕ such that a vector boundary
is introduced between all~ϕ[i][j] and~ϕ[i][j + 1],
1 ≤ i ≤ |~ϕ|, 1 ≤ j ≤ |~ϕ[i]| − 1 iff ~ϕ[i][j] = x.

Note that for every LCFRS, there is an equivalent
LCFRS which fulfills the treebank LCFRS conditions
(Kallmeyer, 2010).

A probabilistic (treebank) LCFRS(PLCFRS) is a
tuple 〈N, T, V, P, S, p〉 such that〈N, T, V, P, S〉 is a
(treebank) LCFRS andp : P → [0..1] a function such
that for all A ∈ N : ΣA(~x)→~Φ∈P p(A(~x) → ~Φ) =
1. The necessary counts for a Maximum Likelihood
estimation can easily be obtained from the treebank
(Kallmeyer and Maier, 2013).

2.2 Binarization and Markovization

Using the linearization vector notation, deterministic
left-to-right binarization of treebank LCFRS can be
accomplished as in algorithm1. The algorithm cre-
ates binary top and bottom rules but can easily be ex-
tended to create unary rules in these places. Note that
the algorithm behaves identically to other determin-
istic binarization algorithms such as, e.g., the one in
Kallmeyer (2010).

The algorithm works as follows. We start with the
linearization vector~ϕ of the original rule. In each
binarization step, we “check off” from~ϕ the infor-
mation which was used in the previous step. The
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Algorithm 1 LCFRS binarization
Let (N, T, V, P, S) be a treebank LCFRS
P ′ = ∅
for all (A → A1 . . . Am, ~ϕr) in P with m > 2 do

pick new non-terminalsC1, . . . , Cm−2

let ~ϕ = ~ϕr

let ~ϕg = ~ϕr/
s(x, 2) for all x > 1

add the ruleA → A1C1, ~ϕg to P ′

for all i, 1 ≤ i < m − 2 do
let ~ϕ = ~ϕ/(x, x − 1) for all x
let ~ϕ = (~ϕ ↓0) \ 0
let ~ϕg = ~ϕ/s(x, 2) for all x > 1
add the rule(Ci → Ai+1Ci+1, ~ϕg) to P ′

let ~ϕ = ~ϕ/(x, x − 1) for all x
let ~ϕ = (~ϕ ↓0) \ 0
add the rule(Cm−2 → Am−1Am, ~ϕ) to P ′

setP to P ′

linearization vectors of the binary rules are obtained
from the respective current state of~ϕ by attributing
all information which will covered by the new bina-
rization non-terminal to exactly this non-terminal.

As an example, consider the binariza-
tion of the rule A(X1X2, X3X4, X5X6) →
B(X1, X3)C(X2, X4)D(X5)E(X6). The com-
pact representation of the rule is(A → BCDE,
[[1, 2][1, 2][3, 4]]). The first step yields the rule
(A → BC1, [[1, 2], [1, 2], [2]]). ~ϕ is set to the
linearization vector of the original rule. Subse-
quently, we remove from~ϕ the information which
has already been used by subtracting one from all
integers in~ϕ, splitting the vector at occurrences of
0 (i.e., new argument boundaries are introduced at
positions which have been covered by the previous
binarization step), and then removing all occurrences
of 0. From the resulting vector[[1], [1], [2, 3]], we
create the linearization vector for the second binary
rule (C1 → CC2, [[1], [1], [2]]) by attributing all
material covered byC2 to C2. In other words, the
last subvector can be reduced from[2, 3] to [2] since
only in the next and last binarization step we will
distinguish between2 and3. In the subsequent last
step, we again check off the already used material
from ~ϕ and end up with(C2 → DE, [[1, 2]]).

During binarization, a grammar can be markovized
by changing the choice of binarization non-terminals.
Instead of unique non-terminalsC1, . . . , Cm−2, we

pick a single non-terminal@. At each binarization
step, to this non-terminal, we append the vertical oc-
currence context from the treebank, i.e., we perform
parent annotation (Johnson, 1998), and we append the
horizontal context. More precisely, the markoviza-
tion information for the binarization non-terminal that
comprises original RHS elementsAi . . . Am are the
first v elements of path fromAi to root vertically and
the firsth elements ofAi . . . A0 horizontally.

3 Debinarization

The goal of the debinarization procedure is to obtain
a grammar with non-binary rules from a previously
binarized one. Algorithm2 accomplishes the debina-
rization. It consists of a functiondebin, which, assum-
ing a treebank LCFRS(N, T, V, P, S) binarized with
algorithm 1, is called on allA ∈ N . During debi-
narization, linearization vectors must be recombined.
This is notated as functionlin.

Called on some non-terminalA ∈ N , the algorithm
recursively substitutes all binarization non-terminals
on the right-hand sides of all binaryA rules with the
right-hand sides of rules which have the same bina-
rization non-terminal on its LHS. The base case of
this recursion are rules which do not have binarization
non-terminals on their right-hand side. At each sub-
stitution, we recombine the corresponding lineariza-
tion vectors: When substituting the binarization non-
terminalC on the right-hand side of a binary produc-
tion by the RHS of a debinarized ruler with C on its
LHS, roughly, we replace theith occurrence of2 in
the linearization vector by theith subvector of the lin-
earization vector ofr, adding1 to all of its elements.7

The probability of a rule in which a binarization
non-terminal on the RHS is substituted by the RHS of
a rule with this binarization non-terminal on its LHS
is simply the product of both probabilities.

As an example, consider the debinarization of the
non-terminalA given the binarized rules from our pre-
vious example. We have a singleA rule, in which
we would recursively substitute theC1 on the right-
hand side withC C2 and in the following as base case
C2 with D E. In the base case,lin is not called, be-

7The algorithm would be slightly more complex if, during bi-
narization, we would permit that binarization non-terminals end
up on the left corner of the right-hand side of a binary produc-
tion. Algorithm 1 guarantees that binarization non-terminals oc-
cur only on the right corner.
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cause no linearization vector recombination is neces-
sary. For the substitution ofC2, we combine the lin-
earization vectors of theC1 andC2 rules. For this,
we first add1 to all elements of theC2 vector, which
gets us[[2, 3]]. We then replace the only occurrence
of 2 in theC1 vector by[2, 3]. The result is the vec-
tor [[1], [1], [2, 3]]. For the substitution ofC1 in the
A rule, we recombine our result vector with the vec-
tor of theA rule. For this, we first add1 to all ele-
ments of the result of the vector recombination, which
gets us[[2], [2], [3, 4]]. We then replace all three oc-
currences of2 in the vector[[1, 2], [1, 2], [2]] of the
binary A rule with the corresponding subvectors of
[[2], [2], [3, 4]]. This give us[[1, 2], [1, 2], [3, 4]], which
is the linearization vector of the original unbinarized
A rule.

In the case of deterministic binarization, the algo-
rithm yields a grammar which is equivalent to the
grammar before the binarization. With markovization,
i.e., with non-deterministic binarization, it is more dif-
ficult. Since we do not choose our binarization non-
terminals in a unique way, it is possible that a chain
of substitutions can lead us in a cycle, i.e., that we
reach the same binarization non-terminal again. A cy-
cle corresponds to an infinite number of implicit non-
binary rules. The smaller the binarization context, the
more likely it is that such a cycle occurs.

Several strategies are possible to avoid an infi-
nite loop of substitutions. The most obvious one is
to use a cache which contains all binarization non-
terminals seen during debinarization. If a substitu-
tion introduces a binarization non-terminal which is in
the cache, the corresponding production is discarded.
Another strategy is to discard rules with a probability
lower than a certain threshold.

4 Experiments

We have implemented the grammar extraction algo-
rithm from Maier and Søgaard (2008), as well as the
binarization and the debinarization algorithm. We im-
plement the debinarization algorithm with a probabil-
ity filter: A substitution of a binarization non-terminal
will not take place if the probability of the resulting
production falls under a certain threshold. We fur-
thermore implement a filter which excludes rules with
right-hand sides that exceed a certain length.

In order to experimentally test the debinarization al-

Algorithm 2 LCFRS debinarization
functiondebin(A ∈ N)
let R = ∅
for all (A → A1A2, ~ϕ) in P do

if A1, A2 are not bin. non-terminalsthen
add(A → A1A2, ~ϕ) to R

else
let D = debin(A2)
for all (D → D0 · · · Dm, ~ϕD) ∈ D do

add(A → A1D0 · · · Dm, lin(~ϕ, ~ϕD, 2)) to
R

return R

functionlin(~ϕ, ~ϕD, s)
let c = 0
let ~ϕD = ~ϕD/(x, x + 1) for all x
for all occurrences ofs in ~ϕ do

replace occ. ofs with the content of~ϕD[c]
c = c + 1

return ~ϕ

gorithm, we perform experiments on the NeGra tree-
bank (Skut et al., 1997) using rparse.8 In a first step,
we apply the algorithm for re-attaching elements to
the virtual root node described in (Maier et al., 2012).
All sentences longer than 20 words are excluded. For
parsing, we split the data and use the first 90% of all
sentences for training and the remainder for parsing.
We then extract the grammar from the training part
(results in 10,482 rules) and binarize them, using de-
terministic binarization and using markovization with
vertical and horizontal histories of1, resp.2. The
markovized grammar is debinarized, with an exper-
imentally determined logarithmic rule weight of15
for the filtering and a limit of15 on the lengths of
rule right-hand sides. This results in a grammar with
175,751 rules.

We then parse with the deterministically binarized
treebank grammar, with the markovized binary gram-
mar, and with debinarized grammar. Note that rparse
currently offers no directional parser. Therefore we
rebinarize the debinarized grammar using determinis-
tic binarization. Using bracket scoring (evalb)9, we
obtain the 75.49 F1 for the plain treebank grammar,

8Seehttp://phil.hhu.de/rparse.
9Seehttp://github.com/wmaier/evalb-lcfrs.
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77.10 for the markovized grammar and 76.37 for the
debinarized grammar. This shows that the debina-
rized markovized grammar can perform better than
the plain treebank grammar. However, the large num-
ber of productions in the debinarized grammar indi-
cates that the possibilities of filtering must be investi-
gated more closely. This is left for future work.

5 Conclusion

We have presented a new compact representation for
grammar rules of a treebank LCFRS together with
a formulation of a binarization algorithm. Further-
more, we have presented a procedure for debinarizing
a previously binarized LCFRS. The resulting gram-
mar maintains the markovization information intro-
duced during binarization and can be used with di-
rectional parsing strategies. Experiments have shown
that the grammar can perform better than the plain
treebank grammar. There remains potential for op-
timization.

We are currently working on the integration of the
algorithm into a directional parsing strategy within a
data-driven PLCFRS parser.
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Abstract

We propose a Korean dependency parsing sys-
tem that can learn the relationships between Ko-
rean words from the Treebank corpus and a
large raw corpus. We first refine the training
dataset to better represent the relationship using
a different POS tagging granularity type. We
also introduce lexical information and propose
an almost fully lexicalized probabilistic model
with case frames automatically extracted from a
very large raw corpus. We evaluate and com-
pare systems with and without POS granularity
refinement and case frames. The proposed lexi-
calized method outperforms not only the base-
line systems but also a state-of-the-art super-
vised dependency parser.

1 Introduction

Korean dependency parsing has been studied more
in comparison with constituent parsing owing to its
relatively free word order in Korean (Chung, 2004;
Lee and Lee, 2008; Oh and Cha, 2010). A depen-
dency structure is less restricted by the word order be-
cause it does not require that one constituent is fol-
lowed by another. Statistical parsing trained from
an annotated dataset has been widespread. However,
while there are manually annotated several Korean
Treebank corpora such as the Sejong Treebank cor-
pus (SJTree), only a few works on statistical Korean
parsing have been conducted. For constituent pars-
ing, (Sarkar and Han, 2002) used a very early ver-
sion of the Korean Penn Treebank (KTB) to train
lexicalized Tree Adjoining Grammars (TAG). (Chung
et al., 2010) used context-free grammars and tree-
substitution grammars trained on data from the KTB.
Most recently, (Choi et al., 2012) proposed a method

to transform the word-based SJTree into an entity-
based Korean Treebank corpus to improve the pars-
ing accuracy. For dependency parsing, (Chung, 2004)
presented a model for dependency parsing using sur-
face contextual information. (Oh and Cha, 2010) de-
veloped a parsing model with cascaded chunking by
means of conditional random fields learning. (Choi
and Palmer, 2011) used the Korean dependency Tree-
bank converted automatically from the SJTree.

In this paper, we start with an unlexicalized Ko-
rean dependency parsing system as a baseline sys-
tem that can learn the relationship between Korean
words from the Treebank corpus. Then, we try to
improve the parsing accuracy using internal and ex-
ternal resources. For internal resources, we can re-
fine the training dataset for a better representation of
the relationship by means of POS tagging granular-
ity. For external resources, we introduce lexical infor-
mation and propose a lexicalized probabilistic model
with case frames. We automatically extract predicate-
argument structures from a large raw corpus outside
of the training dataset and collect them as case frames
to improve parsing performance.

2 Dependency grammars

Converting phrase-structure grammars from the Tree-
bank corpus into dependency grammars is not a trivial
task (Wang, 2003; Gelbukh et al., 2005; Candito et
al., 2010). We implement a word-to-word conversion
algorithm for the Sejong Treebank corpus. Firstly, we
assign an anchor for nonterminal nodes using bottom-
up breadth-first search. An anchor is the terminal node
where each nonterminal node can have as a lexical
head node. We use lexical head rules described in
(Park, 2006). It assigns only the lexical head for non-
terminal nodes at the moment and finds dependencies
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프랑스/NNP���
+의/JKG	


‘France+GEN’	

	

1 	


세계/NNG+적/XSN���
+이/VCP+ㄴ/ETM	


‘world-class’	

	

2	


의상���
/NNG 	


‘fashion’	

	

3	


디자이너���
/NNG	


‘designer’ 	

	

4	


엠마누엘���
/NNP	


‘Emmanuel’	

	

5 	


웅가로/NNP���
+가/JKS	


‘Ungaro+NOM’	

	

6 	


실내���
/NNG 	


‘interior’	

	

7	


장식/NNG���
+용/XSN 	


‘decoration’	

	

8	


디자이너���
/NNG+로/JKB 	

‘designer+AS’	


	

10	


나서/VV+었/EP���
+다/EF+./SF	


‘work as’	

	

11	


NP:3	


직물���
/NNG	


‘textile’ 	

	

9	


NP:4	
 NP:5	
 NP-SBJ:6	
 NP:7	
 NP:8	
 NP:9	
 NP-AJT:10	
NP-MOD:1	
 VNP-MOD:2	
 VP:11	


NP:8	
NP:4	


NP:9	


S:11	


NP-SBJ:6	


NP:4	


NP:4	


NP-SBJ:6	


NP-AJT:10	


VP:11	


Figure 1: Example of the original SJTree (above) and its dependency representation (below) for the example sentence
‘The world-class French fashion designer Emanuel Ungaro worked as an interior textile designer.’: The address of terminal
nodes (underneath) and the anchor of nonterminal node (on its right) are assigned using lexical head rules. The head of the
terminal node 1 is the node 4, which is the anchor of the parent of the parent node (NP:4). The head of the terminal node 4
is the node 6 where the anchor of its ancestor node is changed from itself (NP-SBJ:6). The head of the terminal node 11 is
itself where the anchor of the root node and itself are same (S:11).

would be in the next step. Lexical head rules give pri-
orities to the rightmost child node, which inherits in
general the same phrase tag. On the other hand, in the
case of VP VP for the construction of the main predi-
cate and the auxiliary verb, the leftmost child node is
exceptionally assigned as an anchor.

Then, we can find dependency relations between
terminal nodes using the anchor information. The
head is the anchor of the parent of the parent node of
the current node (For example, terminal nodes 1, 2, 3,
5 and 7 in Figure 1). If the anchor of the parent of the
parent node is the current node and if the parent of the
parent node does not have the right sibling, the head is
itself (the anchor of the root node and itself are same)
(Terminal node 11), or the head is the anchor of its
ancestor node where the anchor is changed from itself
to other node (Terminal nodes 4, 6, 8 and 10). If the
anchor of the parent of the parent node is the current
node and if the parent of the parent node has another
right sibling, the head is the anchor of the right sibling.
The last condition is for the case of an auxiliary verb
construction where the leftmost child node is assigned
as an anchor. Assigning the lexical anchor and finding
dependencies at the separated step enables arguments
for the verb to be correctly dependent on the main

verb and the main verb to be dependent on the aux-
iliary verb in the ambiguous annotation scheme in the
SJTree.1 Figure 1 shows the original SJTree phrase
structure and its corresponding converted representa-
tion in dependency grammars.

3 Parsing Model

Our parsing model gives a probability to each possible
dependency tree T for a sentence S = e1, e2, ..., en,
where ei is a Korean word. The model finally selects
the dependency tree T ∗ that maximizes P (T |S) as
follows:

T ∗ = argmax
T

P (T |S). (1)

1(Oh and Cha, 2010; Choi and Palmer, 2011) also introduced
an conversion algorithm of dependency grammars for the SJTree.
(Choi and Palmer, 2011) proposed head percolation rules for the
SJTREE. However, we found some errors such as S related rules,
where it gives lower priority to S than VP. It would fail to assign
a head node correctly for S→ VP S. Moreover, they did not con-
sider auxiliary verb constructions annotated as VP in the SJTREE.
According to their head rules, arguments for the main verb are de-
pendent on the auxiliary verb instead of the main verb because of
the annotation of the corpus (in general, VP→ VP VP where the
former VP in RHS is for the main verb and the latter VP is for the
auxiliary verb). (Oh and Cha, 2010) corrected such ambiguities as
a post-processing step (personal communication, August 2012).
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We use the CKY algorithm to decode the dependency
trees by employing bottom-up parsing and dynamic
programming. P (T |S) is defined as the product of
probabilities as follows:

P (T |S) =
∏

Epa∈T
P (Epa, dist|eh), (2)

where Epa represents a clause dominated by a pred-
icate or a genitive nominal phrase, eh represents the
head Korean word of Epa, and dist is the distance be-
tweenEpa and eh. Instead of specifying the actual dis-
tance, it is classified into three bins: 1, 2 – 5, and 6 –.
If the dependent Korean word appears right next to the
head, the distance is 1. If it appears between 2 and 5,
the distance is 2. If it appears past 6, the distance is
6. P (T |S) is calculated in the similar way as (Kawa-
hara and Kurohashi, 2006a). We describe the outline
of this model below. Each probability in equation (2)
is decomposed into two ways according to the type
of Epa. If Epa is a clause dominated by a predicate,
it is decomposed into a predicate-argument structure
(content part) PAm and a function part fm. eh is also
decomposed into a content part ch and a function part
fh.

P (Epa, dist|eh) = P (PAm, fm, dist|ch, fh)
= P (PAm|fm, dist, ch, fh)× P (fm, dist|ch, fh)

≈ P (PAm|fm, ch)× P (fm, dist|fh) (3)

The first term in the last equation represents a fully-
lexicalized generative probability of the predicate-
argument structure. This probability is calculated
based on automatically compiled case frames in the
same way as (Kawahara and Kurohashi, 2006a). The
second term of the last equation is a generative prob-
ability of function morphemes, in which fm and fh
are defined as the POS patterns of morphemes for the
predicate of Epa and the head Korean word eh, re-
spectively. This probability is estimated from training
data using maximum likelihood estimation. IfEpa is a
genitive nominal phrase, it consists of a Korean word
that is decomposed into cm and fm. Its probability is
defined similarly as follows:

P (Epa, dist|eh) = P (cm, fm, dist|ch, fh).
= P (cm|fm, dist, ch, fh)× P (fm, dist|ch, fh).

≈ P (cm|ch)× P (fm, dist|fh). (4)

The first term in the last equation represents a fully-
lexicalized generative probability of the genitive nom-
inal phrase. This probability is calculated from the
constructed database of N1 ui N2 (N2 of N1) struc-
tures. The second term is the same as the second
term in equation (3). In our experiments, we use an
unlexicalized parsing model as a baseline. This un-
lexicalized model regards the above lexicalized prob-
abilities as uniform and actually calculates the prod-
uct of generative probabilities of function morphemes,
P (fm, dist|fh).

4 POS Sequence Granularity

Given that Korean is an agglutinative language, a
combination of Korean words is very productive and
exponential. Actually, a larger dataset would not al-
leviate this issue. The number of POS patterns would
not converge even with a corpus of 10 million words
in the Sejong morphologically analyzed corpus. The
wide range of POS patterns in words is mainly due to
the fine-grained morphological analysis results, where
they show all possible segmentations divided into lex-
ical and functional morphemes. For example, most
Korean language resources to represent Korean mor-
phological analyses including the SJTree would an-
alyze the word kimkyosunim (‘Professor Kim+HON’)
as kim/NNP + kyosu/NNG + nim/XSN (‘Kim + pro-
fessor + Hon’). Instead of keeping the fine-grained
morphological analysis results, we simplify POS se-
quences as much as possible using the linguistically
motivated method. It would be helpful if we can refine
the dataset for a better representation of the relation-
ship. We introduce four level POS granularity: PUNC,
MERG, CONT and FUNC.

PUNC: Punctuation marks (denoted as SF for pe-
riods, question marks and exclamation points, SP
for commas and SE for ellipsis) and non-punctuation
marks (for example, a period in the number is equally
denoted as SF such as 3/SN + ./SF + 14/SN) are distin-
guished. Recurrent punctuation marks such as .../SE
+ .../SE in the word are also merged into a single sym-
bol.

MERG: Special characters such as mathematical
characters denoted as SW are merged into an entity
with adjacent morphemes. Other non-Korean charac-
ters such as SL (Roman letters), SH (Chinese char-
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acters) and SN (cardinal numbers) are either merged
into an entity with adjacent morphemes or are consid-
ered as nouns when they appear alone. Secondly, all
suffixes are merged with adjacent morphemes. Func-
tional morpheme-related refining rules are described
as follows with the number of occurrences in the
SJTree.

The nominal prefix (XPN) and suffix (XSN) with
adjacent morphemes are merged into the POS of the
corresponding morphemes (17,955 cases). The noun
derivational suffix (ETN) with precedent morphemes
is merged into the noun (5,186 cases). The non-
autonomous lexical root (XR) is merged into the fol-
lowing POS (5,322 cases). The verb and adjective
derivational suffix (XSV and XSA) with precedent
morphemes are merged into the verb and adjective
(20,178 and 9,096 cases, respectively). The adjective
and the adverbial derivation gey/EC are merged into
the adverb (2,643 cases). Refinement rules are applied
recursively to all POS tags until there are no rules to
apply. For example, soljk/XR + ha/XSA + gey/EC
is applied both according to the XR rule and the ad-
verbial derivation rule to become soljikhagey/MAG
(‘frankly’).

CONT: All content morphemes in the word are
merged together. For example, the sequence of the
different type of nouns in a word is merged as a sin-
gle noun with the priority of proper noun (NNP) >
common noun (NNG) > dependent noun (NNB). For
example, the sequence of NNP and NNG such as
masan/NNP + yek/NNG (‘Masan station’), is merged
into an NNP. The sequence of the different type of
verbs in a word is also merged as a single verb. The
difference between MERG and CONT is the nature of
merged morphemes. MERG concerns about merging
functional morphemes and CONT about merging lexi-
cal morphemes.

FUNC: All functional morphemes are merged
together. For example, eoss/EP (PAST) + da/EF
(‘DECL’) is merged into a single verbal ending
eossda/EF.

5 Exploiting Lexical Information

This section aims at exploiting lexical information and
proposes a lexicalized probabilistic model with case
frames aggregated from predicate-argument structures
and the database of N of N structures to improve the

parsing system.

5.1 Constructing case frames

It is difficult to make wide-coverage predicate-
argument structures manually. Therefore, it is neces-
sary to compile them automatically from a large cor-
pus for our purpose. We introduce two methods us-
ing POS patterns and parsed corpora to extract case
frames automatically from a raw corpus. We then
apply clustering to the extracted predicate-argument
structures to produce case frames.

Firstly, we use POS patterns to select predicate-
argument structures after automatically assigning
POS tags to a raw corpus. The key criteria for deter-
mining the predicate-argument structures are the ap-
pearance of the final or conjunctive verbal endings
(denoted as EC and EF, respectively). Using func-
tional morphemes, we are able to detect the end of
predicate-argument structures in the sentence. In Fig-
ure 1, we can find two case markers agglutinated
to NPs for the predicate naseo+ss+da: -ga and -
ro for nominative and adverbial case markers (JKS
and JKB). Therefore, we can select the predicate-
argument structure composed of ungaro+ga (‘Un-
garo+NOM’) and designer+ro (‘designer+AS’) as ar-
guments for the verb naseo (‘work as’). Our algo-
rithm for selecting predicate-argument structures us-
ing POS patterns is described below. All arguments
with case markers except JKG (genitive) and JC (con-
nective postpositions) are extracted as a predicate-
argument structure. JX (auxiliary postpositions) are
not extracted because they can be interpreted either
nominative or accusative and it becomes ambiguous.

var pa
while wi in the sentence do

if wi ends with case markers then
pa += wi;

else if wi contains final or conjunctive verbal
endings && pa is not NULL then

print and initialize pa;
else if wi contains other verbal endings then

initialize pa;
else

do nothing;
end

end

Secondly, to use parsed corpora, we employ
the method proposed in (Kawahara and Kurohashi,
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2006b) and re-implement it to extract case frames. A
large corpus is automatically parsed and case frames
are constructed from modifier-head examples in the
resulting parsed corpus. Then we extract dependency
lists depending on their head as follows. Dependency
lists consist of modifier1 ... modifiern head where
n >= 1. Then, we select dependency lists only if the
head is a predicate such as unggaroga 6 dijaineoro 10
naseoeossda 11.

Thereafter, predicate-argument structures are clus-
tered to merge similar ones, as described in (Kawa-
hara, 2005). We distinguish predicate-argument struc-
tures by the predicate and its closest case instance
to the predicate as described in Figure 22: In order
to merge predicate-argument structures we introduce
similarities between two structures calculated by the
production of the similarities between arguments and
the ratio of common instances.

Similartycase frames = simcf · ratioci (5)

We use the semantic hierarchy of nouns from Ko-
rean CoreNet (Choi, 2003) for the similarities be-
tween two instances of arguments. CoreNet is com-
posed of 2,937 concepts represented by kortermnum
(knum). A cipher of knum tells a hierarchy depth. For
instance, COUNTRY (knum: 11125) has ORGANIZA-
TION (1112) as a parent concept (hypernym). hanguk
(11125, ‘Korea) and namhan (11125, ‘South Korea)
share COUNTRY (11125) as a concept. Therefore,
similarity between two instances is obtained as fol-
lows. common is the shared length of knum for i1
and i23:

siminst =
lenknum(common ∗ 2)

lenknum(i1) + lenknum(i2)
(6)

Then, we calculate similarities between arguments
of the same case marker in two predicate-argument
structure as follows:

simarg =

∑
x=1

∑
y=1 siminst ·

√
|ex||ey|

∑
x=1

∑
y=1

√
|ex||ey|

(7)

where ex and ey are the number of the occurrences of
the instance example e of the same case maker. The
ratio of common instances is calculated as follows:

2{inbu3} (‘worker’) means that the instance inbu has 3 occur-
rences.

3common = 0 if either i1 or i2 is not included in CoreNet.

ratioci =

∑
i=1

√
|ex|∑

j=1

√
|ey|

(8)

where i is the number of the occurrences of the in-
stance examples of the same case marker and j is the
number of the occurrences of the instance examples
of the all case marker.

5.2 Constructing the database of N1 ui N2

structures

We also integrate lexical information on Korean noun
phrases of the form N1 ui N2, which roughly corre-
sponds to N2 of N1 in English. Even though Ko-
rean genitive marker ui does not have a broad usage
as much as no in Japanese as described in (Kuro-
hashi and Sakai, 1999), it sometime does not modify
the immediate constituent such as Kyungjiui meylon-
hyang binwuleul (‘Melon-flavored soap of Kyungji’)
where Kyungjiui modifies binwuleul instead of mey-
lonhyang. The N1 ui N2 structure is very useful to
recognize the meaning of natural language text can
improve head-modifier relationships between genitive
nouns.

6 Experiment and Results

6.1 Parsing results

We use the Sejong Treebank corpus (SJTree) in our
experiment.4 We use standard dataset split for train-
ing, development and testing. We report here final
evaluation results on the baseline unlexicalized pars-
ing and different POS granularities. We crawl news
articles published in 2007 from the website of Chosun
Ilbo5 (literally, ‘Korea Daily News’), which is one of
the major newspapers in Korea to integrate lexical in-
formation. We collect 212,401 pages and extract Ko-
rean sentences. We acquire a raw corpus with over
three million sentences. Then, we use the Espresso
POS Tagger and Dependency Parser for Korean to as-
sign POS and parse sentences to extract POS patterned
and parsed case frames.6 We extract the database of

4Differently from other Korean Treebank corpora, the SJTree
contains non-sentences such as noun phrases. We select only
complete sentences. We also remove erroneous sentences in the
SJTree using heuristics such as non-defined POS tags and not-
well-formed morpheme and POS tag pairs.

5http://www.chosun.com
6http://air.changwon.ac.kr/research/

software
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CF1: {inbu3}:i {cha2,teuleok1}:ey {gabang5}:eul silneunda.
{worker}:NOM {car,truck}:LOC {bag}:ACC load

CF2: {teuleok2}:ey {jim3}:eul silneunda.
{truck}:LOC {baggage}:ACC load

Figure 2: Predicate-argument structures distinguished by the predicate and its closest case instance

UAS
Baseline system 71.735%

PUNC 73.714%
POS granularity MERG 76.993%

CONT 81.515%
FUNC 82.702%

Table 1: Evaluation results on unlexicalized parsing

UAS
Lexical CF-parsed + NoN 86.037%

information CF-pos + NoN 86.433%

Table 2: Evaluation results on lexicalized parsing with
FUNC

N1 ui N2 structures from the same corpus. During
building case frame structures, we ignore JX postpo-
sitions (mostly for topic markers) which can be inter-
preted as either NOM or ACC. Instead, we explicitly
specify this ambiguity in the input to let the parser
consider both cases to select the correct one. For
case frame structures extracted without the subject,
we intentionally insert the dummy subject to represent
the complete construction of the sentence without any
missing constituents.

6.2 Discussion

The basic parsing model is directly based on the POS
patterns of words. If some sentences have POS pat-
terns that are not seen in the training dataset, our base-
line system cannot handle them. By introducing POS
sequence granularity we can increase recall and even-
tually it makes the dataset more parsable with less un-
trained POS sequences. Integrating lexical informa-
tion is prominent. We can increase precision and it
can fix many predicate-argument dependency errors
in unlexicalized parsing. Results with case frames
extracted from the automatically parsed corpus are
slightly lower than results with POS patterned case
frames because the nature of the corpus. The automat-
ically parsed corpus contains inevitably much more
errors than the POS tagged corpus. Moreover, the sim-

pler method using POS patterns can guarantee less er-
rors contained case frames. Filtering out erroneously
parsed sentences and building case frame structures
only using reliable sentences would yield better re-
sults.

Only small numbers of research projects about sta-
tistical parsing have been conducted using the same
Treebank corpus. (Oh and Cha, 2010; Choi and
Palmer, 2011) used the early version of the Sejong
Treebank and obtained up to 86.01% F1 score and
85.47% UAS, respectively. (Choi et al., 2012) ob-
tained 78.74% F1 score for phrase structure parsing.
Our current results outperform previous work. We
also test MaltParser7 on the same dataset and we ob-
tain 85.41% for UAS. It still shows the better perfor-
mance of our proposed method. The advantage of our
proposed system is the capability of adding lexical-
ized information from external corpora.

7 Conclusion

In this paper, we improved Korean dependency pars-
ing accuracy using various factors, including POS
granularity changes and lexical information. We re-
fined the training dataset for a better representation
of the relationship between words. We also intro-
duced the use of lexical information. The accuracy
was improved and it shows promising factors. The
lexical knowledge extracted from a much bigger cor-
pus would be interesting to pursue when seeking fur-
ther improvement opportunities pertaining to the deep
processing of Korean sentences.
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Abstract

In this work we take a view of syntactic anal-
ysis as processing ‘raw’, running text instead
of idealised, pre-segmented inputs—a task we
dub document parsing. We observe the state of
the art in sentence boundary detection and to-
kenisation, and their effects on syntactic parsing
(for English), observing that common evalua-
tion metrics are ill-suited for the comparison of
an ‘end-to-end’ syntactic analysis pipeline. To
provide a more informative assessment of per-
formance levels and error propagation through-
out the full pipeline, we propose a unified eval-
uation framework and gauge document parsing
accuracies for common processors and data sets.

1 Introduction

The term parsing is used somewhat ambiguously in
Natural Language Processing. In its ‘pure’, iso-
lated interpretation, parsing maps from a sequence (or
maybe a lattice) of token objects to syntactic analy-
ses, say trees; from a more ‘practical’ point of view,
however, parsing is also used to refer to a complete
pipeline for syntactic analysis, starting with just run-
ning text (i.e. a string of characters) as its input. The
two interpretations are of course closely related, but
the underlying difference of perspective seems closely
correlated with the distinction between parser devel-
opers vs. parser users. The parsing research literature
and most contrastive benchmarking have their focus
on parsing in isolation; at the same time, parsing soft-
ware is most commonly applied to ‘raw’ string inputs.
In this work, we take the practical, document parsing
point of view and seek to inform parser users about
configuration choices in a complete syntactic analy-
sis pipeline, as well as about what they can expect in
terms of end-to-end performance.

Parser evaluation, complementary to its utility in
system development and scholarly comparison, has as

one of its central purposes an aim of providing an indi-
cation of how a specific system or configuration might
be expected to perform on unseen text. Genre and do-
main variation have been observed as important fac-
tors in predicting parser performance (Gildea, 2001;
Zhang & Wang, 2009; Petrov & McDonald, 2012),
but more fundamental issues related to pre-processing
of parser inputs have largely been ignored.1 That is,
parser evaluation so far has been predominantly per-
formed on perfectly segmented inputs. Indeed, the de-
facto standard for evaluating phrase structure parsers
is the PARSEVAL metric (Black et al., 1991, as imple-
mented in the evalb tool), which assumes that both
the gold standard and the parser output use the same
tokenisation—an unrealistic idealisation from the user
point of view.

Recent research (Dridan & Oepen, 2012; Read et
al., 2012) has shown that many standard NLP systems,
and even tools specialised for sentence and token seg-
mentation perform well below 100% on these funda-
mental tasks. However, the effects of errors so early
in the pipeline on end-to-end parser accuracy are cur-
rently unexplored. The goal of this paper is to dis-
cover and document these effects, and also to pro-
mote a complementary tradition of parsing real doc-
uments, rather than the idealised, pre-segmented to-
ken sequences used in parser development. For these
purposes, we propose a unified evaluation perspec-
tive applicable across all sub-tasks of syntactic anal-
ysis (§ 2) and contrast it with earlier work on parser
evaluation under ambiguous tokenisation (§ 3). In § 4
and § 5 we apply this framework to a number of pars-
ing pipelines built from state-of-the-art components
and demonstrate that differences in pre-processing can
yield large differences in parser performance, varying
across domains and parsers—larger in fact than incre-

1Until recently, it was in fact difficult to obtain raw, unseg-
mented text for the most widely used English parser evaluation
data, Wall Street Journal articles from 1989.
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〈0, 12, TOP 〉 〈0, 12, S 〉 〈0, 4, NP 〉
〈5, 11, VP 〉 〈11, 11, VP 〉

Figure 1: Parse tree and span labels for They didn’t.

mental PARSEVAL improvements frequently reported
for ‘pure’ statistical parsing in the past decade.

2 Robust Evaluation of Syntactic Analysis

Parsing gold-standard token sequences into trees,
common training and testing data, and a standard eval-
uation method have given the research community a
well-defined and stable task over the past two decades
that has enabled great advances in statistical parsing.
In order to evaluate document parsing, however, we
need to generalise the evaluation method somewhat.

PARSEVAL evaluates spans of text defined by token
index. If the tokens are no longer considered as given,
this definition is invalid. We take the obvious step and
opt for character-based span indexing, with the slight
twist of using inter-character positions from the raw
text, rather than character counts. This allows greater
flexibility and precision in describing spans. Figure 1
shows a parse tree and the phrase structure spans ex-
tracted from it, assuming this sentence started at char-
acter position 0 in the document.

While character-based token indexing is a simple
concept, it is complicated by the fact that both tree-
banks and parsers ‘normalise’ raw text in a variety
of ways, including Unicode/ASCII mappings, quote
disambiguation and bracket escaping. In order to cal-
culate the character spans for a token and be able to
match to a system output that might use a different
normalisation, we have implemented a tool that aligns
between the tokens of an analysis and the raw input
to the parsing process. Since we are not assuming
gold sentence segmentation, this requires aligning full

documents, making a simple implementation of string
edit distance, for example, intractable. Instead, we
have implemented the space-efficient longest common
subsequence algorithm of Myers (1986), and calculate
the shortest edit script with consideration of the most
commonly accepted mappings. This enables an effi-
cient alignment that is even robust to occasional miss-
ing analyses (due to parse failure).

Phrase structure is not the only annotation that can
be represented as a labelled span. Many standard NLP
tasks, including part-of-speech (PoS) tagging, tokeni-
sation, and sentence segmentation can also be viewed
this way. For PoS tagging, the parallel is obvious.
Tokenisation and sentence segmentation have previ-
ously been evaluated in a variety of manners (Palmer
& Hearst, 1997; Kiss & Strunk, 2006; Read et al.,
2012), but are also amenable to being seen as span
labelling, allowing us to use a consistent generalised
evaluation framework. Thus, we represent each an-
notation as a triple consisting of span start and end
positions, together with a label. This is particularly
useful for our present purpose of evaluating the ef-
fect of these pre-processing tasks on phrase structure
parsing. Figure 2 shows all such triples that can be
extracted from our running example.2

3 Previous Work

A character-based version of evalb, dubbed SPar-
seval, was earlier used for parser evaluation over the
output from speech recognisers, which cannot be ex-
pected (or easily forced) to adhere to gold standard
sentence and token segmentation (Roark et al., 2006).
As word recognition errors can lead to very different
parse yields, this approach required a separate, exter-
nal word alignment step, far more complicated than
our in-built alignment stage.

Parsing morphologically rich languages is another
area where expecting gold standard parse yields is
unrealistic. In this case, parse yields are often mor-
pheme sequences, ambiguously derived from the in-
put strings. Tsarfaty et al. (2012) propose an eval-

2Note that, at this point, we include several elements of the
gold-standard annotation of Figure 1 that are commonly sup-
pressed in parser evaluation, notably the root category TOP, the
empty node at position 〈11, 11〉, and the final punctuation mark.
In § 4 below, we return to some of these and reflect on the com-
mon practice of ignoring parts of the gold standard, against our
goal of ‘realistic’ parser evaluation.
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1: 〈0, 4, POS:PRP 〉 2: 〈0, 4, TOK 〉
3: 〈5, 8, POS:VBD 〉 4: 〈5, 8, TOK 〉
5: 〈8, 11, POS:RB 〉 6: 〈8, 11, TOK 〉
7: 〈11, 11, POS:-NONE- 〉 8: 〈11, 11, TOK 〉
9: 〈11, 12, POS:. 〉 10: 〈11, 12, TOK 〉

11: 〈0, 12, TOP 〉 12: 〈0, 12, S 〉
13: 〈0, 4, NP-SBJ 〉 14: 〈5, 11, VP 〉
15: 〈11, 11, VP 〉 16: 〈0, 12, SENT 〉

Figure 2: All triples from the tree in Figure 1.

uation metric (TEDEVAL) based on tree edit distance
for Hebrew, rejecting character-based evalb as in-
sufficient because it cannot (a) evaluate morphemes
unrealised in the surface form; or (b) enforce only
yields that break at whitespace and correspond to a
path through the lattice of the morphological analyser.
For languages like English, where the raw string is
conventionally a concatenation of the parse yield, ob-
servation (a) is not an issue. However, we note that
zero-length spans, made possible by our decision to
record spans in terms of inter-character positions, can
preserve linear precedence without requiring explicit
realisation in the raw text. As for the second objec-
tion of Tsarfaty et al. (2012), that is specific to their
situation of allowing ambiguous morphological seg-
mentation only within pre-segmented tokens. In our
more general case, we consider enumerating all pos-
sible tokenisations of a sentence (or document) neither
practical or desirable, nor do we wish to enforce token
breaks at whitespace, since different tokenisation con-
ventions such as those described by Fares et al. (2013)
allow mid-token spaces.

4 Experimental Setup

To evaluate end-to-end parsing, we selected three
commonly used phrase structure parsers: the Char-
niak and Johnson reranking parser (C&J; Charniak
& Johnson, 2005), the Berkeley parser (Petrov, Bar-
rett, Thibaux, & Klein, 2006), and the Stanford parser
(Klein & Manning, 2003). For each parser, we used
the recommended pre-trained English model, and
mostly default settings.3 All parsers tokenise their in-

3We used the -accurate setting for the Berkeley parser, to
improve coverage on our out-of-domain data. Full configuration
details and other background, including an open-source imple-
mentation of our evaluation framework will be distributed through
a companion website.

put by default and the Stanford parser also includes a
sentence splitting component. Since both the C&J and
Berkeley parsers require sentence-segmented text, we
pre-segmented for those parsers using tokenizer,
the top-performing, lightweight, rule-based segmenter
in the recent survey of Read et al. (2012).

For parser evaluation, the standard test data is Sec-
tion 23 of the venerable WSJ portion of the Penn
Treebank (PTB, Marcus et al., 1993). In addition to
this data, we also use the full Brown portion of the
PTB (often used for experiments in domain variation)
and the relatively new English Web Treebank (EWTB,
LDC #2012T13), which comprises several web gen-
res. To evaluate document parsing, we start from the
raw, running text. In the case of the EWTB this was
provided with the treebank; for the other corpora, we
use the raw texts distributed by Read et al. (2012).
Corpora sizes are included in Table 1.

Our reference implementation for evaluation in-
stantiates the triple-based framework outlined in § 2
above. For compatibility with much previous work,
our tool supports the same configuration options as
evalb, to discard tree nodes or consider different
labels as equivalent. Somewhat ambivalently (since
we experience these ‘tweaks’ as obstacles to trans-
parency and replicability), we mimic the standard
practice of discarding triples labelled TOP (the root
category) and -NONE- (empty elements, absent in
most parser outputs), as well as truncating labels at
the first hyphen (i.e. ignoring function tags); further-
more, we allow the commonly accepted equivalence
of ADVP and PRT, even though we have been unable to
trace the origins of this convention. However, we do
not follow the convention of ignoring tokens tagged
as punctuation, for two reasons. First, Black et al.
(1991) suggested ignoring punctuation for indepen-
dently developed, hand-built parsers, to reduce varia-
tion across linguistic theories; in evaluating statistical
parsers trained directly on PTB structures, however,
it is natural to include syntactic information related
to punctuation in the evaluation—as is common prac-
tice in data-driven dependency parsing since the 2007
CoNLL Shared Task. Second, the evalb technique
of identifying punctuation nodes merely by PoS tags
is problematic in the face of tagging errors; and even
if one were to ‘project’ gold-standard PoS tags onto
parser outputs, there would be ambiguity about how to
count erroneous labels involving punctuation spans.
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# Gold # Gold C&J Berkeley StanfordCorpus
Sentences Tokens Gold Auto Gold Auto Gold Auto

Brown 13919 234375 82.7 81.2 82.2 82.3 77.1 77.7
EWTB 16622 254830 78.3 74.8 76.2 76.5 73.6 71.6
WSJ23 2416 56684 90.9 86.4 89.8 88.4 85.4 83.8

Table 1: Phrase structure accuracy (labelled F1) for three parsers (Charniak and Johnson, Berkeley and Stanford) over three
different data sets, first using gold sentence segmentation and tokenisation, and then in the default string-input mode for
each parser. Since only the Stanford parser performs sentence segmentation, the tokenizer sentence splitter was used
to pre-process running text for the other two parsers.

Sentences Tokens
Corpus Tokenizer Stanford C&J Berkeley Stanford REPP

F1 F1 F1 SA F1 SA F1 SA F1 SA
Brown 96.0 95.7 98.3 77.0 99.5 85.8 99.5 86.1 99.6 86.5
EWTB 85.2 70.3 96.9 77.8 97.3 83.1 97.8 85.9 97.3 81.4
WSJ23 94.4 93.5 99.1 86.8 99.6 94.8 99.6 94.9 99.9 98.0

Table 2: Preprocessing accuracy: Sentence segmentation is evaluated as the F1 over sentence spans for tokenizer and
the Stanford parser. Token accuracy is reported both as F1 and sentence accuracy (SA), the percentage of sentences with
completely correct tokenisation, for each of the parser-internal tokenisers, plus the stand-alone tokeniser REPP.

5 Experimental Results

End-to-end results of our first attempt at document
parsing for each parser are shown in Table 1 (Auto
columns), alongside the results of parsing idealised
inputs with gold sentence and token segmentation
(Gold). Accuracy is in terms of F1 over phrase struc-
ture triples. The drop in F1 from earlier published re-
sults on WSJ23 with gold tokens is due to our inclu-
sion of punctuation and evaluation of all sentences,
regardless of length.

We see a wide variation in how automatic pre-
processing affects parser accuracy for the different
parsers and domains. Focussing on WSJ23, the in-
domain set for all parser models, we see a drop in
parser accuracy for all parsers when moving away
from gold tokenisation. However, the size of the drop
varies across parsers, with the C&J parser particularly
affected. Indeed, with automatic pre-processing the
Berkeley parser is now the more accurate for this data
set. Over the out-of-domain sets, the C&J parser again
loses accuracy switching from gold tokens, but the
drop is not so severe, even though we would expect
more pre-processing errors in, for example, the web
text of EWTB.

For the Brown data set, the numbers show a slight
increase in accuracy for both Berkeley and Stanford
parsers when using automatically processed input, an

unexpected effect. Berkeley again out-performs the
C&J parser when not using gold tokens.

The low scores on EWTB are not surprising, since
none of the parsers were tuned to this quite differ-
ent genre, but the relative difference between idealised
and document parsing is unexpected, giving how dif-
ficult one might expect this text to be for sentence
segmentation and tokenisation. Again, we see that
the Berkeley parser has actually improved in accuracy
with automatic pre-processing, but the Stanford parser
shows a similar drop to that it produced over WSJ23.

In order to drill down to the reasons behind some
of these variations, Table 2 shows the accuracy of the
sentence segmentation and tokenisation used in the
automatic configurations above.

Looking at sentence segmentation in Table 2, we
see that accuracy is much lower over EWTB, reflect-
ing the more informal nature of these texts, particu-
larly with regards to capitalisation and punctuation.
Our numbers are lower than in Read et al. (2012), due
to differences in the evaluation method,4 but we also
see that tokenizer is the more accurate sentence
splitter. The Stanford sentence segmentation is mod-

4While they evaluated only boundary points (i.e. sentence end
points), we are interested in the effect of incorrect sentence seg-
mentation on parsing and so evaluate the full sentence span (i.e.
start and end points jointly). Thus, one incorrect sentence bound-
ary point can lead to two incorrect sentence spans.
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erately less accurate for the edited text, but radically
under-segments the messier web text, returning 12914
sentences, compared to 14954 from tokenizer.

For tokenisation accuracy, there’s very little differ-
ence between Berkeley and Stanford, which is not
surprising, since the Berkeley parser tokeniser was
built using the Stanford code. The in-built tokeniser
in the C&J parser however is significantly less accu-
rate. While the drop in F1 doesn’t seem too large,
examining the sentence accuracy shows a much big-
ger effect. This echoes the findings of Dridan and
Oepen (2012) which demonstrate that the built-in to-
keniser of the C&J parser is well below state-of-
the-art. For completeness, we also looked at their
best performing tokeniser (REPP) on tokenizer-
segmented sentences, adding those token accuracy
numbers to Table 2. Here we see that relative perfor-
mance of the better tokenisers varies with domain. As
Dridan and Oepen (2012) found, REPP outperforms
Stanford over Wall Street Journal text, but the perfor-
mance difference over Brown is slight, and on EWTB,
the advantage is to the Stanford tokeniser.

We re-parsed using the best tokeniser and sen-
tence segmenter for each domain, with the results
shown in Table 3. By comparing back to Table 1,
we can see that there are a few times that the best
pre-processing accuracy doesn’t lead to the best pars-
ing results, but the differences are slight. While the
tokenizer+REPP combination gave the best per-
formance for all parsers on WSJ23, the results over
Brown are surprising. The best input for each parser
was the default, except for the C&J parser, where
tokenizer+REPP led to the best results. The auto-
matic tokenisers led to equal or better parse accuracy
than using gold tokens. Our hypothesis to explain this
phenomenon is that subtle differences in the tokenisa-
tion of the Brown corpus and the EWTB, compared
to the WSJ portion of the PTB, confuse the parsers,
which have been tuned not just to the WSJ text type,
but also to the idiosyncrasies of its annotation. Giv-
ing the parsers ‘more familiar’ inputs can thus lead to
more accurately bracketed analyses.

Sentence segmentation is still a major impact on
the comparatively low parse accuracies on EWTB.
Switching to tokenizer improved Stanford parser
accuracy by almost 1 point, but further experiments
using gold sentence boundaries with automatic to-
kenisation showed a boost of 2–4 points F1, leaving

C&J Berkeley StanfordCorpus
Gold Auto Gold Auto Gold Auto

Brown 82.7 82.7 82.2 82.2 77.1 77.6
EWTB 78.3 77.7 76.2 76.3 73.6 72.4
WSJ23 90.9 89.9 89.8 88.8 85.4 84.5

Table 3: Final document parsing phrase structure accura-
cies, showing the results of using the best combination of
sentence segmentation and tokenisation for each domain.
Gold tokenisation F1numbers are repeated for easy com-
parison.

further room for improvement there.
Overall, our results show that document parsing is a

viable task, leading to parser accuracies only slightly
below the state of the art over gold tokens for the (po-
tentially overfitted) WSJ23, given the right preproces-
sors. Furthermore, by actually evaluating the end-to-
end pipeline, as well as the performance, in-situ, of the
various preprocessors we have discovered that parser
accuracy can actually be improved by matching the to-
kenisation to the expectations of the parser, rather than
merely using the tokenisation of the treebank. This
subtle tuning of annotation style, rather than domain
could even help explain previous cross-domain results
(McClosky, Charniak, & Johnson, 2006) that showed
better accuracy from not using labelled Brown data
for parser training.

6 Conclusions and Outlook

Through this work, we hope to call the syntactic anal-
ysis research community to arms and initiate a shift
of emphasis towards practical use cases and docu-
ment parsing—with the aim of mitigating the risks of
overestimating parser performance and over-tuning to
individual treebank idiosyncrasies. Our triple-based
proposal for Robust Evaluation of Syntactic Analy-
sis synthesises earlier work and existing metrics into a
uniform framework that (a) encompasses the complete
analysis pipeline; (b) enables comparison between
analyses that use different normalisation conventions
of the same text; and (c) allows one to quantify per-
formance levels of individual sub-tasks as well as de-
grees of error propagation. Furthermore, we demon-
strate how this setup supports ‘mixing and matching’
of gold-standard and system outputs, to isolate the
effects of individual sub-tasks on end-to-end perfor-
mance, which can bring to light unexpected effects.
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Our evaluation framework is supported by an open-
source reference implementation, with configuration
options very similar to evalb, that can be used as
a plug-in replacement too for evaluation of the com-
plete syntactic analysis pipeline.5 Immediate future
work on this tool is planned to also allow evaluation
of dependency analysis under ambiguous tokenisation
by also evaluating tuples consisting of two character-
defined sub-spans, plus a dependency label.
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Abstract

We present a method of semantic parsing
within lexicalized grammars that generates neo-
Davidsonian logical forms. We augment an ex-
isting LFG grammar with predicate logic formu-
lae in the lexicon and logical annotations in the
context-free rules to obtain logical forms of a se-
quence of sentences that can be used to construct
a model, i.e., formulae with resolved anaphoric
and indexical expressions, by skolemization and
discourse resolution based on salience.

1 Introduction

Semantic parsing is important for many
NLP applications. We present results of
experiments with semantic parsing within
the framework of Lexical-Functional Gram-
mar (LFG), a well-researched unification-
based formalism (Kaplan and Bresnan, 1982;
Dalrymple et al., 1995a; Butt et al., 1999;
Bresnan, 2001; Dalrymple, 2001;
Nordlinger and Bresnan, 2011) for which wide-
coverage grammars for a variety of typologically
different languages are available.

The method we have developed can be used with
any semantic formalism that can be expressed in
first-order logic with equality (FOL). The approach
of Parsons (1990) is usually called “neo-Davidsonian”
because it is a variation of the event-based formal
representation of Davidson (1967). The formalism
used in this paper is a combination of that of Par-
sons and Hobbs (1985; 2003) who extends David-
son’s approach to all predications. We show how sim-
ple and complex predicates are represented, how se-
mantic representations can be incrementally created in
LFG via codescription and how discourse and context

(anaphoric and indexical expressions) can be treated.
While we used LFG in the experiments, the method
is flexible enough to be used in any rule-based gram-
mar formalism based on context-free or categorial
grammars such as (Uszkoreit, 1986) or (Kay, 1979;
Kay, 1984).

In the next section we survey recent approaches to
semantics in LFG. In Section 3 the neo-Davidsonian
approach to semantics is presented. Section 4 ex-
pounds the way how neo-Davidsonian logical forms
can be incrementally built up using LFG machinery.
Section 5 focuses on how discourse models can be
constructed from logical forms by resolving anaphoric
and indexical expressions. Finally, we conclude in
Section 6.

2 Related Work

Virtually all approaches to formal semantics assume
the Principle of Compositionality, formally formu-
lated by Partee (1995) as follows: “The meaning of
a whole is a function of the meanings of the parts
and of the way they are syntactically combined.” This
means that semantic representation can be incremen-
tally built up when constituents are put together dur-
ing parsing. Since c(onstituent)-structure expresses
sentence topology rather than grammatical relations,
the rules that combine the meanings of subphrases
frequently refer to the underlying syntactic struc-
ture, that is, f(unctional)-structure in LFG. Indeed,
Halvorsen and Kaplan (1995) in their account of se-
mantics within LFG define the s(emantic)-structure
as a projection of the c-structure (through the corre-
spondence function σ) but they refer to grammatical
functions (GFs) by means of the compound function
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σφ´1,1 as in the following example:

(1) John ran slowly.

The corresponding lexical entry for the verb is

(2)
pσM ˚ RELq “ ran
pσM ˚ARG1q “ σφ´1pÒ SUBJq
pσM ˚ARG2q “ σφ´1pÒ OBJq

and the resulting correspondence between the c-
structure and the s-structure is

(3)

S

NP

John

VP

V

ran

AdvP

slowly
»

—

—

–

PRED

«

REL ran
MOD slowly

ff

ARG1 John

fi

ffi

ffi

fl

Note that Halvorsen and Kaplan (1995) represent s-
structures as feature structures (since they use func-
tional annotations to construct them). (3) can be more
conventionally expressed as slowlypranqpJohnq.

Recent approaches to semantics in LFG
are based on the so-called “glue semantics”
(Dalrymple et al., 1993; Dalrymple et al., 1995b;
Dalrymple, 2001). Consider the sentence

(4) Bill obviously kissed Hillary

Its semantic form is, accord-
ing to Dalrymple et al. (1993),
obviouslypkisspBill,Hillaryqq. Glue seman-
tics uses linear logic; lexical entries are assigned
“meaning constructors” that consist of a logical
expression and instructions for how the meaning is
put together. For to kiss, for example, we have

(5)
@X,Y.pf SUBJqσ ; X b pf OBJqσ ; Y

⊸ fσ ; kisspX,Y q

In words, (5) means that if the meaning of pf SUBJqσ
is X and the meaning of pf OBJqσ is Y , then the

1φ is the correspondence function from c-structures to f-
structures.

meaning of fσ is kisspX,Y q. For brevity, mean-
ing constructors are sometimes written as JwordK.
For (4), then, we get

(6)
JBillKb JobviouslyK
bJkissedKb JHillaryK

$ fσ ; obviouslypkisspBill,Hillaryqq

The idea behind glue semantics is that the lexicon and
the rules for syntactic assembly provide meaning con-
structors that are interpreted as soon as all expressions
on the left-hand side of the linear implication (⊸) are
available.2

Note that both Halvorsen and Kaplan (1995) and
glue semantics use higher-order logic. In the next sec-
tion we go on to outline an account of semantics that,
while using codescription, relies on pure FOL for rep-
resentation and on conjunction as the means of mean-
ing assembly, as advocated on Minimalist grounds by
Pietroski (2005).

3 Neo-Davidsonian Logical Representation

The sentence John loves Mary can be logically ex-
pressed (disregarding tense for the sake of simplicity)
using a binary predicate for the verb and constants for
its arguments:

(7) lovepJohn,Maryq

Davidson (1967) has introduced “events” into the
description of logical forms of sentences to be able to
refer to “actions” by means of FOL (i.e., events are
treated as individuals). We use the notation and ter-
minology of Hobbs (1985; 2003) who introduced the
“nominalization operator” and the term “eventuality”
to refer to “possible events”. The predicate love in (7)
can be “nominalized” and we assume that the follow-
ing equivalence holds:

(8) lovepx, yq ” De.love1pe, x, yq ^Rexistpeq

The newly introduced variable e is the eventuality
of John’s loving Mary and Hobbs’ predicate Rexist

2More recent work on glue semantics uses a slightly different
notation. (5) would be written as

λX.λY.kisspX, Y q : pÒ SUBJqσ ⊸ rpÒ OBJqσ ⊸Òσs
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expresses that the eventuality is realized (this predi-
cate is discussed in (Hobbs, 1985; Hobbs, 2003), we
do not use it in the remainder of the paper).

Parsons (1990), too, uses events but he proposes
unary predicates for actions and special predicates for
their arguments. In this spirit, we use the following
notation:

(9)
love1pe, x, yq ”
” love2peq ^ actorpe, xq ^ patientpe, yq

Rather than θ-roles, we use what is called
“protoroles” (Dowty, 1991), “tectogrammatical
roles” (Sgall et al., 1986) or “roles on the action
tier” (Jackendoff, 1990) in the literature on for-
mal semantic analysis of natural languages. Thus
actorpe, xq means that x has the role “actor” in the
eventuality e.

In the remainder of the paper, we refer to “neo-
Davidsonian” formulae (with actions denoted by
double-primed predicates) as logical forms (LF).3

4 Logical Forms in LFG

In LFG, parsing is driven by a context-free grammar
that conforms to the X1-theory (Jackendoff, 1977).
In this section we show how LFs can be incor-
porated formally within LFG. Notationally, we fol-
low Kaplan (1995).4

In the formal architecture of LFG, N is the set of
nodes, F is the set of f-structures, by Φ we denote
the set of formulae (LFs) and V denotes the set of
variables that may occur in LFs. In standard LFG, the
mapping M : N Ñ N maps nodes to their mother
node and φ : N Ñ F maps nodes to f-structures. We
introduce ξ : N Ñ Φ that maps nodes to formulae
and τ : N Ñ V that maps nodes to variables.

For terminal nodes, ξ and τ are defined in the lex-
icon. For example, the morpholexical entry for the

3We could go even further and reify the double-primed predi-
cates along the scheme

P peq ” actpp, eq

where p is an “action constant” that corresponds to the predicate
P . While such a notation would surely be useful in formulating
an axiomatic theory for reasoning, the difference between the no-
tations has no impact on the presently described compositional
mechanism.

4In the remainder of the paper we assume that we have a LFG
grammar that produces c- and f-structures and rules out ill-formed
sentences.

proper name John contains, besides the usual infor-
mation, i.e., its category (N) and f-structure [PRED

‘John’], a formula (ξpnq df
“ x “ John) and a des-

ignated variable (τpnq df
“ x where x is the variable

from ξpnq). For a noun, such as dog, we have ξpnq df
“

dogpxq and τpnq df
“ x. Likewise, the morpholexical

entry for the finite form of the verb to see contains
its category, its f-structure [PRED ‘seexpÒ SUBJq, pÒ

OBJqy’, . . . ], a formula (ξpnq df
“ see2peq) and a desig-

nated variable (τpnq df
“ e where e is the variable from

ξpnq).
The formula of a nonterminal node is composed

from the formulae of its daughter nodes. In LFG,
context-free rules are augmented with functional an-
notations. Likewise, we augment them with logi-
cal annotations. Since Hobbs’ (1985; 2003) “onto-
logically promiscuous” formulae are conjunctions of
atomic formulae, we combine the formulae of the
daughter nodes using the logical connective ^.

In (10), ni are the daughter nodes of n and εpniq
are the corresponding logical annotations. Note that
tn1, . . . , nku “M´1pnq.

(10) n

εpn1q
n1

εpn2q
n2

. . . εpnk´1q
nk´1

εpnkq
nk

Obviously, M´1pnq ‰ H holds for n, for it is a
nonterminal node. We define ξpnq for nonterminal
nodes as follows:

(11) ξpnq “
ľ

mPM´1pnq

ξpmq ^ εpmq

We also introduce a new variable, τpnq. For ease
of exposition, we give all formulae in an equivalent
prenex normal form, i.e., Q1x1 . . .Qnxn.ϕ where Qi

are quantifiers over variables xi and ϕ is open (i.e., it
contains no quantifiers).

To refer to terms in the formulae associated with
nodes in the subtree induced by a rule, we use two
metavariables in the logical annotations defined in the
context of εpniq as follows:

(12)
△ “ τpMpniqq
▽ “ τpniq
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S

NP

a boy

VP

V

built

NP

a boat

ψ “ De, x, y.boypxq^actorpe,xq^build2peq^Pastpeq^boatpyq^patientpe,yq

ϕ “ De1, e2, e3, x, y.boypxq^actorpe3,xq^build
2pe1q^Pastpe1q^boatpyq^patientpe2,yq^e1=e2^e2=e3

Figure 1: Logical form of A boy built a boat.

Thus △ and ▽ are to logical annotations what Ò and Ó
are to functional annotations.

Let us consider the sentence A boy built a boat
(slightly adapted from (Hobbs, 1985)). The logical
part of the lexicon, used to build up the LF of the sen-
tece, is given in (13).

(13)

word ξ τ

a J z
boy boypxq x
boat boatpyq y
built build2pe1q ^ Pastpe1q e1

Because of the definition (11) of ξ for nonterminal
nodes, every node must have a formula (i.e., ξ is de-
fined for all nodes), thus we use J as the formula of
the article a.

The context-free rules and the corresponding func-
tional and logical annotations are given in (14) (we
omit the rule ‘NP Ñ Det N’ as it is irrelevant for the
present discussion).

(14)

S Ñ NP VP
pÒ SUBJq “Ó Ò“Ó
actorp△,▽q △“ ▽

VP Ñ V NP
Ò“Ó pÒ OBJq “Ó
△“ ▽ patientp△,▽q

The c-structure and the corresponding formula in-
duced by the logical annotations (more precisely, its
existential closure) are given in Figure 1. The prenex
normal form we obtain is the formula ϕ but since e1 “

e2 and e2 “ e3, we can use ψ “ ϕre1{e, e2{e, e3{es
where e is a newly introduced variable that embraces
the eventualities e1, e2, e3.

4.1 Complex Predicates
Complex predicates have been subject to re-
search within LFG since the 1990s (Alsina, 1996;
Alsina, 1997; Alsina et al., 1997; Broadwell, 2003).
Consider the sentence John made Mary cry with a
syntactically formed causative. The sentence is repre-
sented by one f-structure (i.e., the f-structures of made
and cry are unified and the corresponding nodes are
coheads) with a complex (hierarchically organized)
PRED value:

(15) causex(ÒSUBJ),cryx(ÒOBJ)yy

The f-structure of John made Mary cry is syntactically
monoclausal:

(16)
»

—

–

PRED causex(ÒSUBJ),cryx(ÒOBJ)yy
SUBJ [“John”]
OBJ [“Mary”]

fi

ffi

fl

The LF of John made Mary cry is given in (17). Note
that two eventualities are introduced (e1, e2) as the
expression, although syntactically monoclausal, is se-
mantically complex.

(17)
De1, e2.cause

2pe1q ^ cry
2pe2q^

^actorpe1, Johnq ^ patientpe1, e2q^
^actorpe2,Maryq

Alsina (1997) proposes the creation of com-
plex PRED values using the so-called restric-
tion operator (Kaplan and Wedekind, 1991;
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Kaplan and Wedekind, 1993;
Wedekind and Kaplan, 1993). Note that as for
LFs, no special machinery is needed, syntactically
formed complex predicates can by modelled by rules
using ordinary logical annotations.

4.2 Syntactic Pivots
The sentences

(18)
a. John sold a car to Paul.
b. Paul bought a car from John.

have the same content if interpreted according to a the-
ory that models the common relationship between to
sell and to buy. However

(19)
a. I made John sell a car to Paul.
b. I made Paul buy a car from John.

differ in their content although both entail (18a) and
(18b). To express the different perspectives of (18a)
and (18b) we use the predicate Pivot that distin-
guishes the individual around which a clause revolves
syntactically (Pivotpe, Johnq and Pivotpe, Paulq in
(18a) and (18b), respectively).5

Similarly, adverbial modifiers are pivot-sensitive.
Consider the following two sentences:

(20)
a. John painted Mary.
b. Mary was painted by John.

Using the approach sketched above, we arrive at the
following LF:

(21)
De.paint2peq ^ Pastpeq^
^actorpe, Johnq ^ patientpe,Maryq

While (21) represents the meaning of both (20a)
and (20b), note that the meanings of the two sentences
differ if we add the phrase with great pleasure because
the corresponding predicate with_great_pleasure
modifies not only the eventuality but also the entity
which is the syntactic pivot of the sentence. In En-
glish, the syntactic pivot is the subject, i.e., John
in (20a) and Mary in (20b). To express the differ-
ence between the two sentences, we add the conjunc-
tion Pivotpe, xq^x “ y to the formulae where x is a
newly introduced variable and y is the variable asso-
ciated with the subject.6

5For a description of pivots at the level of f-structure see
(Falk, 1998; Falk, 2000).

6Note that LFs need not be purely semantic (for this reason we

5 From Logical Forms to Models

To obtain a model from a sequence of LFs, we have
to resolve all anaphoric and indexical expressions and
replace all existentially quantified variables with con-
stants. In contrast to parsing, the conversion of LFs
into a model was implemented procedurally in our ex-
periments.

Anaphoric expressions refer to an entity in the
same sentence or in a preceding one. Anaphora
resolution uses morphological (agreement), syntac-
tic (switch-reference), semantic (logical acceptabil-
ity) or pragmatic (topic/focus articulation) informa-
tion provided by c-structures, f-structures and i-
structures (King, 1997).

According to Kaplan (1979; 1989), the character
(linguistic meaning) of an indexical expression is a
function from contexts that delivers the expression’s
content at each context. We assume that the informa-
tion about the current speaker, hearer, time, and place
is available to the system and this contextual informa-
tion is used to resolve expressions such as I, you, my,
here, now, Past, etc.

Consider the following two sentences that represent
a simple mini-discourse (a coherent sequence of utter-
ances):

(22)
a. I saw a dog.
b. The dog barked.

The corresponding LFs, without any intersentential
relations, are given in (23).

(23)

a. De1, x.see
2pe1q ^ Pastpe1q^

^actorpe1, Iq ^ patientpe1, xq^
^dogpxq

b. De2, y.bark
2pe2q ^ Pastpe2q^

^actorpe2, yq ^ dogpyq

To convert the LFs to a model, we instantiate the
existentially bound variables with constants that sat-
isfy the LFs using the information provided by f-
structures (morphological, syntactic, semantic, and
pragmatic). For e1 and e2, we introduce constants
ce1 and ce2 . The constant I represents the indexi-
cal pronoun I. We use contextual information to re-

called them logical rather then semantic). Pivots are a syntactic
notion but they affect semantic interpretation. This is consonant
with the approach of Hobbs (2003) who uses, for example, a syn-
tactic predicate (nn) to represent noun-noun compounds in LFs.
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place it with a proper name, say Peter. The pred-
icate Past is indexical, too. We replace Pastpceiq
with Timepointpcei , tiq ^ Beforepti, nq where ti is
a newly introduced constant which represents a time
point, and n is the constant for “now” (taken from the
context). x is replaced with cx, a newly introduced
constant.

In the second sentence, y is recognized as referen-
tially anchored (we sketch the algorithm for anaphora
resolution in the following subsection) and replaced
by cx. The resolved formulae are given in (24) and the
situation described in (22) is their conjunction. Since
Hobbs (1985; 2003) does not use the connective  ,
the formulae are always satisfiable, i.e., a model al-
ways exists.

(24)

a. see2pce1q ^ Timepointpce1 , t1q^
Beforept1, nq ^ actorpce1 , Peterq^
^patientpce1 , cxq ^ dogpcxq

b. bark2pce2q ^ Timepointpce2 , t2q^
^Beforept2, nq ^ actorpce2 , cxq^
^dogpcxq

5.1 Anaphora Resolution

The parser operates on isolated sentences, disregard-
ing intersentential coreferences. To resolve intrasen-
tential and intersentential anaphora in coherent se-
quences of utterances, we formalize salience of en-
tities at the level of pragmatics.

For the purposes of this subsection we assume
that we have a discourse that consists of sentences
s1, . . . , sn and the corresponding feature structures
f1, . . . , fn. An entity is a feature structure that repre-
sents a person, an object or an event. Every entity has
a special attribute, INDEX, to represent coreferences.

The discourse context is formally a list of indices
(values of the INDEX attribute) C “ xi1, . . . , imy.
The sentences are processed one by one. We start with
C “ H. For every f-structure fi, we proceed as fol-
lows:

1. For every entity in fi, we try to find its referent in
C (using available morphological, syntactic, se-
mantic, and pragmatic information). If a referent
was found for an entity, its index in C is moved
to the front of the list. Otherwise, a new index is
assigned to the entity and prepended to the list.

2. The indices of entities that belong to the focus
are moved to the front of C because of their high
salience.7

6 Conclusions

The paper presents a method of integrating neo-
Davidsonian event semantics within the formal frame-
work of LFG. We showed how logical forms can be
obtained from LFG rules augmented with logical an-
notations. Further, we showed how anaphoric and in-
dexical expressions can be resolved so that we can
construct a (possibly partial) model of the processed
text.

Our approach differs from glue semantics in using
conjunction instead of linear logic for meaning assem-
bly. Moreover, unlike glue semantics we do not use
higher-order logic in semantic forms for practical rea-
sons (mainly in order to be able to use FOL-based the-
orem provers and model builders for reasoning over
LFs).

In further work we will extend our grammar to ac-
count for more phenomena and in the next step we
will focus on inferential entailment in models.
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Abstract

In this paper, we present our efforts towards
identifying probable incorrect edges and then
suggesting k-best alternates for the same in a
typed-dependency framework. Such a setup is
beneficial in human aided NLP systems where
the decisions are largely automated with min-
imal human intervention. Minimizing the hu-
man intervention calls for automatic identifica-
tion of ambiguous cases. We have employed an
entropy based confusion measure to capture un-
certainty exerted by the parser oracle and later
flag the highly uncertain predictions. To fur-
ther assist human decisions, k-best alternatives
are supplied in the order of their likelihood. Our
experiments, conducted for Hindi, establish the
effectiveness of the proposed approach towards
increasing the label accuracy with economically
viable manual intervention. This work leads to
new directions for parser development and also
in the human-aided NLP systems.

1 Introduction

Last decade has witnessed an increasing inter-
est in dependency-based syntactic analysis of sen-
tences (Tsarfaty et al., 2013). It is noticed that mor-
phologically rich and free word order languages are
better handled using the dependency based frame-
work than the constituency based one (Mel’čuk, 1988;
Bharati et al., 1995).

The fundamental notion of dependency is based
on the idea that the syntactic structure of a sen-
tence consists of binary asymmetrical relations be-
tween the words, termed as dependencies. In a typed
dependency framework, the relation between a pair of
words, is marked by a dependency label, where one
of the nodes is head and other is dependent (Tesnière

and Fourquet, 1959). Figure 1 shows an example sen-
tence from Hindi, along with syntactic relations and
dependency labels1 marked along the edges.

(( mohn n� )) (( lAl sAb� n s� )) (( ÜAn )) (( EkyA ))
Mohan Erg. red soap Inst. bath do

ROOT

lwg psp

pof

k3

k1

lwg pspnmod

Figure 1: Dependency Tree with Syntactic Relations
and Labels.

A major goal of dependency parsing research is to
develop quality parsers, which can provide reliable
syntactic analysis for various NLP applications such
as natural language generation (Koller and Striegnitz,
2002), machine translation (Ding and Palmer, 2004),
ontology construction (Snow et al., 2004), etc. De-
spite extensive advancements in parsing research, it is
observed that parsers perform clumsily when incorpo-
rated in NLP applications (Kolachina and Kolachina,
2012). The remedies addressing the shortcomings in
the past have adopted building further high quality
parsers with domain adaptations (Blitzer et al., 2006;
McClosky et al., 2006). However, it is practically im-
possible to account for all the domains and build an
ideal universal parser. This has been a major reason
for exploring Human Aided NLP systems which aims
at providing quality output with minimal human inter-
vention for crucial decisions.

The practical impact of parsing errors, at applica-
1k1: Doer, k3: Instrument, k7p: Place, pof: Part-of (complex

predicate), ccof: co-ordination and sub-ordination, nmod: Noun
Modifier, lwg psp: Local-word-group post-position
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tion’s end, may be more severe as depicted by the ac-
curacy of a parser. Popel (2011), in the context of ma-
chine translation, pointed out that an acutely incorrect
parse can degrade the quality of output.

In this paper, we explore human assisted automated
parsing, with human intervention limited to only those
cases which are difficult for the statistical model (ora-
cle) to disambiguate. Our focus has been to minimize
human intervention in terms of effort and time. The
scheme involves running a data driven dependency
parser and later involving a human validation step for
the probably incorrect decisions which are also iden-
tified and flagged by the system.

Minimizing the human intervention calls for auto-
matic identification of ambiguous cases. We have em-
ployed an entropy based confusion measure to capture
uncertainty exerted by the parser oracle and later flag
the highly uncertain predictions. To further assist hu-
man decision, we also provide k probable alternatives
in the order of their likelihood. In all, the approach
comprises of the following two steps:-

• Identification of probable incorrect predictions.
• Selection of k-best alternates.

2 Background and Motivation

We have worked with Hindi, a relatively free-word-
order and morphologically rich, Indo-Aryan lan-
guage. In previous attempts to parse Hindi(Ambati
et al., 2010), it has been observed that UAS2 is greater
than LS3 by ∼ 6%, which is reconfirmed by our base-
line parser (later described in Section 5) where UAS is
6.22% more than LS. The UAS in our baseline is well
above 90% (92.44%) while the LS is still 86.21%.
This drives us to focus on improving LS, to boost the
overall accuracy(LA4) of the parser.

Dependency annotation scheme followed in Hindi
Dependency Treebank (Bhatt et al., 2009) consists
tag-set of ∼ 95 dependency labels which is compar-
atively larger than the tag-set for other languages5,
like Arabic(∼ 10), English(∼ 55), German(∼ 45) etc.
This apparently is a major reason behind the observed
gap between LS and UAS for Hindi parsing. One of

2UAS = Unlabeled Attachment Score
3LS = Label Accuracy Score
4LA = Labeled Attachment Score
5As observed on the CoNLL-X and CoNLL2007 data for the

shared tasks on dependency parsing.

the frequent labeling errors that the parser makes is
observed to be between closely related dependency
tags, for eg. k7 (abstract location) and k7p (physical
location) are often interchangeably marked (Singla et
al., 2012). We have reasons to believe that such a deci-
sion is comparatively tougher for an automatic parser
to disambiguate than a human validator.

In the past, annotation process has benefited
from techniques like Active Learning(Osborne and
Baldridge, 2004) where unannotated instances ex-
hibiting high confusions can be prioritized for manual
annotation. However, in Active Learning, the anno-
tators or validators generally have no information
about the potentially wrong sub-parts of a parse and
thus full parse needs to be validated. Even if the the
annotators are guided to smaller components (as in
Sassano and Kurohashi (2010)), the potentially cor-
rect alternates are not endowed. In our approach the
validator is informed about the edges which are likely
to be incorrect and to further assist the correction k
best potential label-replacements are also furnished.
So, effectively just partial corrections are required
and only in worst case (when a correction triggers
correction for other nodes also) a full sentence needs
to be analyzed. The efforts saved in our process are
tough to be quantified, but the following example
provides a fair idea of efficacy of our proposition. In
figure 2, second parse has information of the probable
incorrect label and also has 2 options to correct the
incorrect label to guide a human validator.

(1) ...
...

j�lo\
prisons

m�\
in

sm-yA
problems

hl
solve

krn�
do

...

...
... solve problems in prisons ...

krn�
‘do’

j�lo\
‘prisons’

ccof

sm-yA
‘problems’

k1

hl
‘solve’

pof

=⇒ krn�

j�lo\

#ccof(ccof,k7p)

sm-yA

k1

hl

pof

Figure 2: Example showing output from conventional
parser v/s output from our approach. Arc-label with
‘#’ represents incorrect arc label (confusion score >
θ) along with 2-best probable arc labels.
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3 Methodology

Recently there has been focus on the confidence esti-
mation of attachments and arc-labels of a dependency
parse. Mejer and Crammer (2012) have worked with
MSTParser (McDonald et al., 2005) to give confi-
dence scores for attachments while Jain and Agrawal
(2013) have worked with MaltParser (Nivre et al.,
2007) to render the confusion scores for arc-labels.
Since our focus is on arc-labels we follow the ap-
proach proposed in Jain and Agrawal (2013). They
captured the confusion exerted on the parser’s oracle
while predicting a parser action and propagated it to
the arc-label of the dependency tree. The quantifica-
tion of confusion is done by calculating entropy with
the class membership probabilities of the parser ac-
tions.

We obtained the confusion score for each arc-label
in our data. Next, we obtained a threshold (θ =
0.137) for which the maximum F1-score is observed
for incorrect label identification on the development
set(Figure 3). In figure 2, the edge with the label
‘ccof’ has been flagged (#) because the confusion
score is greater than θ, which signifies that it is proba-
bly incorrect. The proposition is indeed correct as the
correct label is ‘k7p’ instead of ‘ccof’.

The additional details about the correctness of an
arc-label, can duly indicate the cases where the prob-
ability of the arc-label to be incorrect is high. In our
efforts to minimize the human intervention, we pro-
pose to subject the reviewer only to the cases where
the confusion score is above θ. At this stage the re-
viewer will be required to judge if the flagged label
is indeed incorrect and if it is, then choose the corre-
sponding correct label among all the remaining labels.

To further assist human decision, we also provide
k probable alternatives in the order of their likelihood
as proposed by the oracle. The reason behind this hy-
pothesis is that it is likely that the correct label exists
among the top label candidates. This, potentially, can
give quick alternates to the reviewer for choosing the
correct label and thereby speedup the review process.

4 k-Best Dependency Labels for the Flagged
Arc-Labels

The likelihood of the arc-labels is obtained and ranked
using the following three strategies:-

• V oting: The list of predicted labels, using vot-
ing mechanism, is sorted in decreasing order of
number of votes, obtained during classification.
The label with maximum number of votes is
emitted as the resultant dependency label in the
output parse. Broadly, this can be viewed as pre-
dicting 1-best label using voting strategy which
can easily be extended to predict k-best labels.

• Probability: The calculation of confusion
scores demand for class membership probabili-
ties for arc-label (refer section 3). The posterior
probabilities for the candidate labels can also be
alternatively used to emit out the resultant depen-
dency label. Similar to voting scheme, the labels
are sorted in decreasing order of their probabili-
ties. The sorted list of predicated labels may dif-
fer from that of voting mechanism, which moti-
vate us to consider probability for choosing the
k-best dependency labels.

• V oting + Probability: A tie can occur be-
tween two or more labels in the list of k-best can-
didate labels if their votes/posterior probabilities
are same. However, the phenomenon is unlikely
in case of probabilities due to the real valued
nature calculated up-to 10 decimal places. On
the other hand votes are integer-values ({0, ...,
nC2}, where n is number of labels) and are much
more susceptible to ties. The tie in voting can
be resolved using complement information from
probabilities (and vice-versa).

5 Experiments

In our experiments, we focus on correctly establish-
ing dependency relations between the chunk6 heads
which we henceforth refer as inter-chunk parsing. The
relations between the tokens of a chunk (intra-chunk
dependencies) are not considered for experimentation.
The decision is driven by the fact that the intra-chunk
dependencies can easily be predicated automatically
using a finite set of rules (Kosaraju et al., 2012).
Moreover we also observed the high learnability of
intra-chunk relations from a pilot experiment. We
found the accuracies of intra-chunk dependencies to

6A chunk is a set of adjacent words which are in dependency
relation with each other, and are connected to the rest of the words
by a single incoming arc.
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Figure 3: Precision, Recall and F1-score for vari-
ous values of confusion score on ‘Hindi’ development
set.

be more than 99.00% for both LA and UAS.

Each experiment assumes the availability of a hu-
man expert for validation of the machine parsed data,
who, when queried for a potential incorrect edge label,
responds with the correct edge label. The experiments
aim to measure the assistance provided to human ex-
pert by our approach. We varied the list of k-best la-
bels from k=1 to k=5.

We setup a baseline parser on the lines of Singla et
al. (2012) with minor modifications in the parser fea-
ture model. We employ MaltParser version-1.7 and
Nivre’s Arc Eager algorithm for all our experiments
reported in this work. All the results reported for over-
all parsing accuracy are evaluated using eval07.pl7.
We use MTPIL (Sharma et al., 2012) dependency
parsing shared task data. Among the features avail-
able in the FEATS column of the CoNLL format data,
we only consider Tense, Aspect, Modality (tam), post-
positions(vib) and chunkId while training the baseline
parser. Other columns like POS, LEMMA, etc. are
used as such.

In case of typed-dependency parsing, the accuracy
can be LA, UAS or LS. However, in our case, we are
focusing on the correct prediction of arc-labels, the
results are on LS. In terms of strategies mentioned in
Section 4, baseline system is generated using Voting
strategy with k = 1. The LS is 86.21% as shown in
Table 1.

7http://nextens.uvt.nl/depparse-wiki/SoftwarePage/#eval07.pl

6 Evaluation and Discussion

The evaluation of an interactive parse correction is a
complicated task due to intricate cognitive, physical
and conditional factors associated with a human anno-
tator. Since a human may not match the consistency
of a machine, we have to resort to few compelling as-
sumptions which would give an idea of the approxi-
mate benefit from our proposed approach. We have
assumed a perfect human oracle who always identi-
fies incorrect label and picks the correct label from
the available k-best list, if correct label is present in
the list. The simulation of the perfect human oracle is
done using the gold annotation. It is also assumed that
the decision of the correct label can be taken with the
information of local context and the whole sentence
is not reviewed(which is not always true in case of a
human annotator). This gives the upper bound of the
accuracies that can be reached with our approach. The
validation of the results obtained by automatic evalu-
ation is done by performing a separate human evalua-
tion for 100 nodes with the highest confusion score.

In our dataset, we found ∼23% (4, 902 edges) of
total (21, 165) edges having confusion score above θ
and thus marked as potentially incorrect arc-labels.
Table 1 exhibits LS improved by perfect human or-
acle, for k-best experiments where k=1 to 5 on ∼23%
potentially incorrect identified arc-labels.

k Voting(%) Probability(%) Voting+Probability(%)
1 86.21 86.35 86.28
2 90.86 90.96 90.91
3 92.13 92.24 92.18
4 92.72 92.86 92.74
5 92.97 93.16 93.04

Table 1: k-Best improved LS on inspecting ∼23% (>
θ) edges.

Table 1 also depicts that as the value of k increases,
the label accuracy also increases. The best results are
obtained for Probability scheme. There is a substan-
tial increment in LS moving from 1-best to 2-best in
all the schemes. The amount of gain, however, de-
creases with increase in k.

Ideally to achieve maximum possible LS, all the
edges should be reviewed. Table 2 confirms that if all
the edges are reviewed, an LS of 93.18% to 96.57% is
achievable for k, ranging over 2 to 5. But practically
this would be too costly in terms of time and effort. In
order to economize, we wish to only review the cases
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k Voting(%) Probability(%) Voting+Probability(%)
1 86.21 86.35 86.28
2 93.19 93.18 93.26
3 95.10 95.11 95.14
4 95.94 96.06 95.97
5 96.41 96.57 96.49

Table 2: k-Best improved LS on inspecting 100% edges.

which are probable enough to be incorrect. Confusion
scores give a prioritized list of edges, which dictates
the cases that should be dispatched first for review.
To relate the review cost against LS gain we present a
metric AGIx defined as:-

AGIx :“Accuracy Gain on Inspecting top x%
edges” corresponds to the ratio of accuracy gain from
baseline by inspecting top x% of total edges, when
sorted in decreasing order of their confusion score.
The metric takes into account the human effort that
goes into validation or revision, and thus gives a bet-
ter overview of ROI(Return on Investment).

AGIx =
Accuracy after validating top x% edges − Baseline accuracy

x

From Table 1 and Table 2 we observe for k = 2 and
probability scheme that the improved LSs are 90.96%
and 93.18% on inspecting 23% and 100% edges re-
spectively. Although the latter is greater than former
by ∼ 2% but this additional increment requires an
extra inspection of additional ∼77% edges, which is
economically inviable. The fact is better captured in
Table 3, where AGI23 subdues AGI100 for different
values of k using different ‘schemes’.

Further to incorporate the fact that ‘larger the can-
didate list more will be the human efforts required to
pick the correct label’, we also present the results of
AGIx/k, which can govern the choice of k, best suited
in practice. While taking this into account, we assume
that the human efforts are inversely proportional to k.
Results for AGI23/k on improved LS, over all the ex-
periments are reported in Table 4.

As shown in Table 3, AGI23 increases with increase
in the value of k, but it is practically inefficient to keep
large value of k. Optimum choice of k is observed to
be 2 from the metric AGIx/k, as shown in Table 4,
where the maximum value for AGI23/k is ∼ 0.10 for
all the ‘schemes’, which corresponds k = 2.

Voting Probability Voting+Probability
k AGI23 AGI100 AGI23 AGI100 AGI23 AGI100
1 0.0000 0.0000 0.0060 0.0014 0.0030 0.0007
2 0.2008 0.0698 0.2051 0.0697 0.2029 0.0705
3 0.2556 0.0889 0.2604 0.0890 0.2578 0.0893
4 0.2811 0.0973 0.2871 0.0985 0.2820 0.0976
5 0.2919 0.1020 0.3001 0.1036 0.2949 0.1028

Table 3: AGI23 and AGI100 for k=1 to 5

AGI23/k AGI23/k AGI23/k
k (Voting) (Probability) (Voting+Probability)
1 0.0000 0.0060 0.0030
2 0.1004 0.1025 0.1015
3 0.0852 0.0868 0.0859
4 0.0703 0.0718 0.0705
5 0.0584 0.0600 0.0590

Table 4: AGI23/k for k=1 to 5

From the above analysis, we can establish that with
2 probable alternatives, a perfect human oracle can
increase the LS by 4.61%, inspecting top ∼ 23%
of total edges. The corresponding LA increase is
4.14%(earlier 83.39% to now 87.53%).

The validation of the observation is done by a hu-
man expert who confirmed of the assistance from the
above methodology over the default procedure. He
was given with 2-best alternatives for the top 100
edges that are obtained using probability scheme. The
LS gain on his evaluation is approximately 10% which
matches the expected gain.

7 Conclusion

In this paper we explored the possibility of human in-
tervention to achieve higher accuracies in parsing. A
major hurdle in the process is to effectively utilize the
valuable human resources. We employed an entropy
based confusion measure to capture uncertainty ex-
erted by the parser oracle and later flag the highly un-
certain labels. We further asserted that with 2 proba-
ble alternatives, a human expert can increase the label
accuracy by 4.61%, inspecting ∼ 23% of total edges.
In future we would also like to study the effectiveness
of our approach on attachment validation in parsing.
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Gülsen Eryigit, Sandra Kubler, Svetoslav Marinov,
and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency parsing.
Natural Language Engineering, 13(2):95.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Processing,
pages 120–128. Association for Computational Linguis-
tics.

Karan Singla, Aniruddha Tammewar, Naman Jain, and
Sambhav Jain. 2012. Two-stage approach for
hindi dependency parsing using maltparser. Training,
12041(268,093):22–27.

Lucien Tesnière and Jean Fourquet. 1959. Eléments de
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Nivre. 2013. Parsing Morphologically Rich Languages:
Introduction to the Special Issue. Computational Lin-
guistics, 39(1):15–22.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym dis-
covery. Advances in Neural Information Processing
Systems 17.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan
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