
Proceedings of the
19th Nordic Conference of Computational Linguistics

NODALIDA 2013
May 22-24, 2013 • Oslo, Norway

Linköping Electronic Conference Proceedings

Proceedings

Editors
Stephan Oepen
Kristin Hagen
Janne Bondi Johannessen

Northern European Association for Language Technology

Proceedings of the 19th

Nordic Conference of
Computational Linguistics

(NODALIDA 2013)

Stephan Oepen, Kristin Hagen, and
Janne Bondi Johannessen (Editors)

May 22–24, 2013

Oslo University (Norway)

Published by

Linköping University Electronic Press, Sweden

Linköping Electronic Conference Proceedings #85

(ISSN 1650-3740; ISBN 978-91-7519-589-6

Cover Design: Joel Pristley; Photograph: Arthur Sand

Preface

The tradition of bi-annual Nordic conferences in Computational Linguistics and related disci-
plines dates back to 1977, well before our professional organization—The Northern European
Association for Language Technology (NEALT; http://omilia.uio.no/nealt/)—was formally
established. With a sense of tradition as well as pride, this volume comprises the proceedings
of the 19th Nordic Conference on Computational Linguistics (NODALIDA 2013), held on the
campus of the University of Oslo, Norway, between May 22 and May 24, 2013. On the first day
of NODALIDA 2013, four topical worshops are held, each with its own set of organizers and
programme committee; these workshops have compiled their own proceedings volumes, which
are published in the same series and included on the media distributed at the conference.

NODALIDA addresses all aspects of speech recognition and synthesis, natural language process-
ing, and computational linguistics—including work in closely related neighbouring disciplines
(such as, for example, linguistics or psychology) that is sufficiently formalized or applied to
bear relevance to speech and language technologies. Following the pattern of previous years,
the Programme Committee invited paper submissions in four distinct tracks:

• regular papers on substantial, original, and unpublished research, including empirical
evaluation results, where appropriate;

• student papers on completed or ongoing work, where at least the first author is a Master-
or PhD-level student;

• short papers on smaller, focused contributions, work in progress, negative results, surveys,
or opinion pieces; and

• demonstration papers summarizing a software system or language resource, to be accom-
panied by a live demonstration at the conference.

The conference received 60 submissions from all over Europe (and one each from Mexico and
the US), of which 38 are collected in this volume and will be presented at the conference: 13
regular, 6 student, 12 short, and 7 demonstration papers. All submissions were reviewed by
at least three experts in the field (two for demonstration papers), and the final selection was
made by the Programme Committee. We are indebted to everyone who contributed to the
reviewing and selection process. The conference programme is complemented by three invited
keynotes by distinguished researchers from Denmark, Germany, and the US, as well as by a
special session on High-Performance Computing for Natural Language Processing.

NODALIDA 2013 is made possible by the joint work of many dedicated individuals, in particular
the Programme and Organizing Committees; we warmly acknowledge their enthusiasm and
community spirit. From the Organizing Committee, Kristin Hagen deserves a special note of
gratitude, as the untiring ‘heart and soul’ of the conference logistics. We are grateful to the
Department of Linguistics and Scandinavian Studies and the Department of Informatics at the
University of Oslo for generously making available infrastructure and staff time. The conference
is financially supported by organizations listed on the back cover, who thus make an important
contribution to keeping participation fees at quite reasonable leves (by Norwegian standards).

With just about two more weeks to go, we expect some 150 participants at the conference and
much look forward to welcoming our colleagues and peers to Oslo.

Stephan Oepen (Programme Chair), Janne Bondi Johannessen (Organizing Chair)
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page i of 474]

http://omilia.uio.no/nealt/

Programme Committee

• Lars Ahrenberg, Linköping University, Sweden

• Heiki-Jaan Kaalep, University of Tartu, Estonia

• Mikko Kurimo, Aalto University, Finland

• Stephan Oepen (Programme Chair), University of Oslo, Norway

• Eva Pettersson, Uppsala University, Sweden

• Bolette Sandford Pedersen, University of Copenhagen, Denmark

• Victoria Rosén, University of Bergen, Norway

Organizing Committee

• Ruth Vatvedt Fjeld

• Kristin Hagen

• Janne Bondi Johannessen (Organizing Chair)

• Anders Nøklestad

• Erik Velldal

• Lilja Øvrelid

Reviewers

• Szymon Acedański, Poland

• Tanel Alumäe, Estonia

• Miguel Ballesteros, Spain

• Emily M. Bender, USA

• Gosse Bouma, Netherlands

• Johan Boye, Sweden

• Aoife Cahill, USA

• Stefanie Dipper, Germany

• Helge Dyvik, Norway

• Jakob Elming, Denmark

• Tomaž Erjavec, Slovenia

• Peter Exner, Sweden
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page ii of 474]

• Mark Fishel, Estonia

• Victoria Fossum, USA

• Jennifer Foster, Irland

• Tatiana Gornostay, Latvia

• Gintarė Grigonytė, Switzerland

• Christian Hardmeier, Sweden

• Petter Haugereid, Norway

• Anna Hjalmarsson, Sweden

• Sofie Johansson Kokkinakis, Sweden

• Arne Jönsson, Sweden

• Reima Karhila, Finland

• Mare Koit, Estonia

• Jan Tore Lønning, Norway

• Bente Maegaard, Denmark

• Diana McCarthy, United Kingdom

• Beata Megyesi, Sweden

• Einar Meister, Estonia

• Magnus Merkel, Sweden

• Paul Meurer Norway

• Costanza Navarretta, Denmark

• Mattias Nilsson, Sweden

• Joakim Nivre, Sweden

• Pierre Nugues Lund, Sweden

• Petya Osenova, Bulgaria

• Patrizia Paggio, Denmark

• Barbara Plank, Italy

• Adam Przepiórkowsk, Poland

• Jonathon Read, Norway

• Trial Reviewer, Norway
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page iii of 474]

• Inguna Skadiņa, Latvia

• Anders Søgaard, Denmark

• Sara Stymne, Sweden

• Jörg Tiedemann, Sweden

• Andrius Utka, Lithuania

• Erik Velldal, Norway

• Sumithra Velupillai, Sweden

• Yi Zhang, Germany

• Heike Zinsmeister, Germany

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page iv of 474]

Table of Contents

Invited Keynotes

Ron Kaplan
The Conversational User Interface 1

Caroline Sporleder
Detecting and Processing Figurative Language in Discourse 3

Anders Søgaard
6,909 Reasons to Mess Up Your Data 5

Special Session on HPC for NLP

Gudmund Høst
The Nordic e-Infrastucture Collaboration: Opportunities for Synergy Across Borders 7

Stephan Oepen
Tidying up the Basement: A Tale of Large-Scale Parsing on National eInfrastructure 9

Jörg Tiedemann
Experiences in Building the Let’s MT! Portal on Amazon EC2 11

Regular Papers

Eckhard Bick
Using Constraint Grammar for Chunking 13

Johan Falkenjack, Katarina Heimann Mühlenbock, Arne Jönsson
Features Indicating Readability in Swedish Text 27

Katri Haverinen, Veronika Laippala, Samuel Kohonen, Anna Missilä, Jenna Nyblom,
Stina Ojala, Timo Viljanen, Tapio Salakoski, Filip Ginter

Towards a Dependency-Based PropBank of General Finnish 41

Ryan Johnson, Lene Antonsen, Trond Trosterud
Using Finite State Transducers for Making Efficient Reading Comprehension Dictionaries59

Jurgita Kapočiūtė-Dzikienė, Anders Nøklestad, Janne Bondi Johannessen, Algis
Krupavičius

Exploring Features for Named Entity Recognition in Lithuanian Text Corpus 73

Hrafn Loftsson
Tagging the Past: Experiments using the Saga Corpus 89

Hrafn Loftsson, Robert Östling
Tagging a Morphologically Complex Language Using an Averaged Perceptron Tagger: The

Case of Icelandic 105
Magnus Merkel, Jody Foo, Lars Ahrenberg

IPhraxtor: A Linguistically Informed System for Extraction of Term Candidates 121
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page v of 474]

Costanza Navarretta, Patrizia Paggio
Classifying Multimodal Turn Management in Danish Dyadic First Encounters 133

Bolette S. Pedersen, Lars Borin, Markus Forsberg, Neeme Kahusk, Krister Lindén, Jyrki
Niemi, Niklas Nisbeth, Lars Nygaard, Heili Orav, Eirikur Rögnvaldsson, Mitchell Seaton,
Kadri Vider, Kaarlo Voionmaa

Nordic and Baltic Wordnets Aligned and Compared through “WordTies” 147

Eva Pettersson, Beáta Megyesi, Joakim Nivre
Normalisation of Historical Text Using Context-Sensitive Weighted Levenshtein Distance and

Compound Splitting 163

Teemu Ruokolainen, Miikka Silfverberg
Modeling OOV Words With Letter N-Grams in Statistical Taggers: Preliminary Work in

Biomedical Entity Recognition 181

Inguna Skadiņa, Andrejs Vasiļjevs, Lars Borin, Krister Lindén, Gyri Losnegaard, Sussi
Olsen, Bolette S. Pedersen, Roberts Rozis, Koenraad De Smedt

Baltic and Nordic Parts of the European Linguistic Infrastructure 195

Student Papers

Liesbeth Augustinus, Peter Dirix
The IPP Effect in Afrikaans: A Corpus Analysis 213

Christopher Horn, Alisa Zhila, Alexander Gelbukh, Roman Kern, Elisabeth Lex
Using Factual Density to Measure Informativeness of Web Documents 227

Tapio Luostarinen, Oskar Kohonen
Using Topic Models in Content-Based News Recommender Systems 239

Bernd Opitz, Cäcilia Zirn
Bootstrapping an Unsupervised Approach for Classifying Agreement and Disagreement253

Pēteris Paikens, Laura Rituma, Lauma Pretkalniņa
Morphological Analysis with Limited Resources: Latvian Example 267

Lauma Pretkalniņa, Laura Rituma
Statistical Syntactic Parsing for Latvian 279

Short Papers

Filip Ginter, Jenna Nyblom, Veronika Laippala, Samuel Kohonen, Katri Haverinen, Simo
Vihjanen, Tapio Salakoski

Building a Large Automatically Parsed Corpus of Finnish 291

Lars Hellan, Tore Bruland
Constructing a Multilingual Database of Verb Valence 301

Jussi Karlgren
New Measures to Investigate Term Typology by Distributional Data 311

Andreas Søeborg Kirkedal
Analysis of Phonetic Transcription for Danish Automatic Speech Recognition 321

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page vi of 474]

Samuel Läubli, Mark Fishel, Martin Volk, Manuela Weibel
Combining Statistical Machine Translation and Translation Memories with Domain

Adaptation 331

Sjur N. Moshagen, Tommi A. Pirinen, Trond Trosterud
Building an Open-Source Development Infrastructure for Language Technology Projects343

Gailius Raškinis, Asta Kazlauskienė
From Speech Corpus to Intonation Corpus: Clustering Phrase Pitch Contours of

Lithuanian 353
Jonathon Read, Rebecca Dridan, Stephan Oepen

Simple and Accountable Segmentation of Marked-up Text 365

Sara Stymne, Jörg Tiedemann, Christian Hardmeier, Joakim Nivre
Statistical Machine Translation with Readability Constraints 375

Hideyuki Tanushi, Hercules Dalianis, Martin Duneld, Maria Kvist, Maria Skeppstedt,
Sumithra Velupillai

Negation Scope Delimitation in Clinical Text Using Three Approaches: NegEx,
PyConTextNLP and SynNeg 387

Marcus Uneson
Tone Restoration in Transcribed Kammu: Decision-List Word Sense Disambiguation for an

Unwritten Language 399

Nynke Van Der Vliet, Gosse Bouma, Gisela Redeker
The Automatic Identification of Discourse Units in Dutch Text 411

Demonstration Papers

Liesbeth Augustinus, Vincent Vandeghinste, Ineke Schuurman, Frank Van Eynde
Example-Based Treebank Querying with GrETEL - Now Also for Spoken Dutch 423

Malin Ahlberg, Lars Borin, Markus Forsberg, Martin Hammarstedt, Leif-Jöran Olsson,
Olof Olsson, Johan Roxendal, Jonatan Uppström

Korp and Karp – A Bestiary of Language Resources: The Research Infrastructure of
Språkbanken 429

Lars Hellan, Tore Bruland, Elias Aamot, Mads H. Sandøy
A Grammar Sparrer for Norwegian 435

Mans Hulden, Miikka Silfverberg, Jerid Francom
Finite State Applications with Javascript 441

Emanuele Lapponi, Erik Velldal, Nikolay A. Vazov, Stephan Oepen
HPC-ready Language Analysis for Human Beings 447

Paul Meurer, Helge Dyvik, Victoria Rosén, Koenraad De Smedt, Gunn Inger Lyse, Gyri
Smørdal Losnegaard, Martha Thunes

The INESS Treebanking Infrastructure 453

Per Erik Solberg
Building Gold-Standard Treebanks for Norwegian 459

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page vii of 474]

The Conversational User Interface

Ron Kaplan
Nuance Communications & Stanford University

ron.kaplan@nuance.com

ABSTRACT
Work on both the graphical user interface (GUI) and the conversational user interface (CUI)
started at about the same time, about 40 years ago. The GUI was a lot easier to implement, and
it made computing and information resources available to ordinary people—but over the years
it has lost much of its simplicity and charm. The CUI has taken many more years to develop,
requiring major scientific and engineering advances in speech, natural language processing,
user-modeling, and reasoning, not to mention increases in cost-effective computation. But
the infrastructure is now in place for the widespread distribution of conversational interfaces,
and we have begun to imagine and create sophisticated ways of exploiting this new mode of
interaction. This may well be the “killer app” for deep natural language processing and complex
reasoning.

KEYWORDS: Conversational User Interface, Deep Natural Language Processing, Reasoning.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 1 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 2 of 474]

Detecting and Processing Figurative Language in Discourse

Caroline Sporleder
Universität Trier

sporledc@uni-trier.de

ABSTRACT
Figurative language poses a serious challenge to NLP systems. The use of idiomatic and
metaphoric expressions is not only extremely widespread in natural language; many figurative
expressions, in particular idioms, also behave idiosyncratically. These idiosyncrasies are not
restricted to a non-compositional meaning but often also extend to syntactic properties, selec-
tional preferences etc. To deal appropriately with such expressions, NLP tools need to detect
figurative language and assign the correct analyses to non-literal expressions. While there has
been quite a bit of work on determining the general ‘idiomaticity’ of an expression (type-based
approaches), this only solves part of the problem as many expressions, such as break the ice or
play with fire, can also have a literal, perfectly compositional meaning (e.g. break the ice on the
duck pond). Such expressions have to be disambiguated in context (token-based approaches).
Token-based approaches have received increased attention recently. In this talk, I will present
an unsupervised method for token-based idiom detection. The method exploits the fact that
well-formed texts exhibit lexical cohesion, i.e. words are semantically related to other words
in the context. I will show how cohesion can be modelled and how the cohesive structure can
be used to distinguish literal and idiomatic usages and even detect newly coined figurative
expressions.

KEYWORDS: Discourse, Figurative Language, Token-Based Idiom Detection.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 3 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 4 of 474]

6,909 Reasons to Mess Up Your Data

Anders Søgaard
Københavns Universitet

soegaard@hum.ku.dk

ABSTRACT
In computational linguistics we develop tools and on-line services for everything from literature
to social media data, but our tools are often optimized to minimize expected error on a single
annotated dataset, typically newspaper articles—and evaluated on held-out data sampled
from the same dataset. Significance testing across data points randomly sampled from a
standard dataset only tells us how likely we are to see better performance on more data points
sampled this way, but says nothing about performance on other datasets. This talk discusses
how to modify learning algorithms to minimize expected error on future, unseen datasets,
with applications to PoS tagging and dependency parsing, including cross-language learning
problems. It also discusses the related issue of how to best evaluate NLP tools (intrinsically)
taking their possible out-of-domain applications into account.

KEYWORDS: Domain Variation, PoS Tagging, Dependency Parsing, Evaluation.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 5 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 6 of 474]

The Nordic e-Infrastucture Collaboration:
Opportunities for Synergy Without Borders

Gudmund Høst
NordForsk, Nordic e-Infrastructure Collaboration

gudmund.host@nordforsk.org

ABSTRACT
The Nordic e-Infrastructure Collaboration (NeIC) is a distributed organization of IT-experts
working at various national HPC centers throughout the Nordic region. The mission of NeIC
is to facilitate the development of high-quality e-Infrastructure solutions in areas of joint
Nordic interest. It is owned by the research councils and national e-Infrastructure provider
organisations from Denmark, Finland, Iceland, Norway, and Sweden. NeIC is hosted by
NordForsk in Oslo. Current collaboration areas include high-energy physics (CERN-related)
and life sciences. A call for Letters of Interest in 2012 elicited several opportunities within
the humanities, including fields such as computational analysis of language and semantic
annotation. This presentation will give an overview of the NeIC and its modus operandi, and
aims to provide a basis for discussions at NoDaLiDa on how NeIC may be put into use as a
vehicle for facilitating development of common e-Infrastructure services for linguistics and
related fields.

KEYWORDS: Nordic e-Infrastructure Collaboration, NeIC, Cross-Border HPC Collaboration.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 7 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 8 of 474]

Tidying up the Basement:
A Tale of Large-Scale Parsing on National eInfrastructure

Stephan Oepen
Universitetet i Oslo

oe@ifi.uio.no

ABSTRACT
Until about six years ago, our research group used non-trivial amounts of project funds and
researcher time on maintaining a dedicated server farm in the basement of our department.
Rack space and cooling (just as much as funds and time) were in short supply, and we never
quite got around to implementing automated load balancing across compute nodes, tuning the
Linux kernel and filesystem for optimum performance, or connecting to the uninterruptible
power supply. When pointed to the Norwegian National High-Performance Computing Initiative,
we were intially doubtful that Natural Language Processing should be among their target user
groups. Also, we were a tad hesitant to give up control of our own equipment and of course
worried we would miss what we thought were our fancy toys. Today, any member of the
group can access thousands of cpus simultaneously, we have about five terabytes of project data
on-line, and our research has scaled to dataset sizes and turn-around times that would be just
inconceivable on group-local hardware—at no charge to our project funds and no administrator
responsibilities. For example, ‘deep’ semantic parsing of the about 900 million words of the
English Wikipedia we can typically complete in less than one day (while expending what would
be about eight sequential years of computation). Or, when searching for the best-performing
features and hyper-parameters in a machine learning problem, we can explore a large ‘grid’
of possible configurations in parallel, without much need for a staged, partly manual, ‘coarse-
to-fine’ search strategy. Access to the very large-scale Norwegian National eInfrastructure and
its high-quality technical support have enabled a comparatively computation-heavy research
profile of our group and has thus contributed to its international competitiveness. In this
presentation, I will review some of our experiences in establishing a dialogue with the HPC
crowd and propose HPC for the Masses as a candidate vision in the on-going development trend
towards more and more large-scale computational sciences.

KEYWORDS: Parsing Wikipedia, HPC for the Masses, National eInfrastructure.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 9 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 10 of 474]

Experiences in Building the Let’s MT! Portal on Amazon EC2

Jörg Tiedemann
Uppsala Universitet

jorg.tiedemann@lingfil.uu.se

ABSTRACT
In this presentation I will discuss the design and implementation of Let’s MT!, a collaborative
platform for building statistical machine translation systems. The goal of this platform is to
make MT technology, that has been developed in academia, accessible for professional transla-
tors, freelancers and every-day users without requiring technical skills and deep background
knowledge of the approaches used in the backend of the translation engine. The main challenge
in this project was the development of a robust environment that can serve a growing commu-
nity and large numbers of user requests. The key for success is a distributed environment that
allows a maximum of scalability and robustness. With this in mind, we developed a modular
platform that can be scaled by adding new nodes to the different components of the system. We
opted for a cloud-based solution based on Amazon EC2 to create a cost-efficient environment
that can dynamically be adjusted to user needs and system load. In the presentation I will
explain our design of the distributed resource repository, the SMT training facilities and the
actual translation service. I will mention issues of data security and optimization of the training
procedures in order to fit our setup and the expected usage of the system.

KEYWORDS: Let’s MT!, Statistical Machine Translation, Distributed Computing.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 11 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 12 of 474]

Using Constraint Grammar for Chunking

Eckhard Bick
University of Southern Denmark, Odense

eckhard.bick@mail.dk

ABSTRACT

This paper presents and evaluates a novel and flexible chunking method using Constraint
Grammar (CG) rules to introduce chunk edges in corpus annotation. Our method exploits pre-
existing (non-constituent) morphosyntactic annotation such as part-of-speech or function tags,
but can also be made to work on raw text, integrated with other CG modules. The first version of
the chunker was developed for German CG-annotated interview data, with a parallel English
version derived from the German one, indicating a high degree of language-independence of the
rules in the presence of generalized syntactic-functional tags (e.g. subject, object, modifier). Two
different approaches are discussed, one for minimal, flat chunking, the other for deep, nested
chunking. The system has a reasonable performance and robustness for both, achieving F-scores
of 89.1 and 97.4 for nested and minimal chunking, respectively. Xml markup is supported, and
with a full set of rules, the tool can be used to convert CG annotation into complete constituent
trees in VISL or TIGER format.

KEYWORDS: Chunking, Constraint Grammar, Syntactic Constituent Trees

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 13 of 474]

1 Introduction and related research

In its simplest NLP meaning, chunking can be defined as a shallow parsing method where the
edges of syntactic groups are marked, but where the internal structure, head-dependent relations
and syntactic function is ignored. When defining the term, Abney (1991) cited psychological
(processing) evidence for the linguistic relevance of chunks and used the expression “a single
content word surrounded by a constellation of function words, matching a fixed template”. In the
original sense, chunks are minimal syntactic units with a recursivity restriction, and chunks of
different syntactic type will be shown as chained rather than layered - in particular, no (simple)
chunk type will be allowed to span across a (more complex) daughter chunk, and subclauses are
not made explicit as chunks. Thus, in minimal chunking np's will not contain postnominal pp's or
relative clauses. If a chunk does swallow another chunk, the latter will lose its edges. Depending
on linguistic design, this may occur in the handling of prepositions or quantifying adverbials.

Minimal chunking is often used as an intermediate step in NLP, after part-of-speech (POS)
tagging, and before deeper structural or functional analysis. Thus, Abney's chunk parser would
first create a stream of such minimal chunks, then use an "attacher" to link words within chunks,
and chunks to each other in order to create a complete parse tree. Kübler & Hinrichs (2001) use a
similar 2-step method, but focus on syntactic function assignment as a vehicle to extend non-
recursive chunks to full parse structures on the background of a treebank instance database. In
our own approach, we implement a third strategy, where (syntactic) function comes before
(syntactic) form, and links are created before chunks. Chunk edges are assigned based on
functional relations, and chunking depth becomes a design option rather than a clear,
methodologically desired, processing stage distinction. In the context of this paper, we will
therefore extend the meaning of chunking to include progressively layered chunking, where
nesting is allowed e.g. for np's or object clauses, and where a fully chunked sentence will
ultimately be structurally equivalent to a PSG constituent tree.

Chunking is useful for tasks such as term and name extraction (Carreras and Màrquez 2005),
information retrieval (Banko et al. 2007), topic screening and others. In such automatic analysis
applications, minimal chunking has the obvious advantage of being more robust than layered
chunking, being able to avoid complexity issues such as discontinuity, coordination and ellipsis,
as well as circumventing free-word-order problems, while still supporting most aspects of the
applicative tasks mentioned above. Unlike Abney's original system, the majority of automatic
chunkers today are based on machine learning (ML) and trained on manually revised gold
annotations such as treebanks. In a CoNLL shared task in 2000, the highest F-score for chunking
was 93.5 (Tjong Kim Sang and Buchholz 2000), with relatively little performance variation
across different ML techniques. There is evidence that with sufficient training data, similar
results can be achieved with ML techniques even without the use of POS information (van den
Bosch and Buchholz 2002), while finite state transducers (FST) have an upper bound F-score of
92 for the same task (Jurafsky and Martin 2009). The only rule-based systems in the CoNNL
evaluation performed at the bottom of the field, with F-scores of 85.8 and 87.2.

Contrary to these findings, we believe rule-based chunking to have a considerable potential, and
have chosen Constraint Grammar for the experiments reported here, a versatile and modular
methodology based entirely on linguist-written rules. It is reasonable to assume that differences
between rules sets, the expressive power of the rule formalism itself as well as its lexical support

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 14 of 474]

may amount to huge performance differences - maybe bigger differences than can be expected
from different machine learners using the same training data, and this will be further
compounded by the fact that rule-based approaches require a great deal of specialist labour and
hence may suffer from project time and manpower constraints. Thus, when writing a chunking
grammar, performance will crucially depend on the existence and quality of a morphosyntactic
tagger to provide annotated input. What we intend to show and evaluate in this paper is exactly
this - how rule-based chunking can mash with and exploit output from a CG tagger, in this case
the morphosyntactic stage of the EngGram parser (available online at http://beta.visl.sdu.dk/
visl/en/). Since it has already been shown that morphosyntactic CG tagging does support
syntactic trees, either through a PSG layer (Bick 2003, for English) or an added external
dependency grammar (Bick 2005, for Danish), it is not CG-based constituent bracketing as such
that is the focus here, but rather the efficiency of our method and the fact that we are exploiting a
novel CG feature (relational tags) to perform both dependency-linking and chunking within the
CG formalism itself rather than as a hybrid add-on technique. This way, all types of existing CG
annotation can be seamlessly exploited without loss of information, and with the full expressivity
of contextual CG rules.

2 Adding Chunk Edges

Both the output and input of our chunkers follow the verticalized, 1-token-per-line format
common in Constraint Grammar annotation. We have developed two different methods to add
chunking information to this format, with different methodological advantages, which can then
both be filtered into a common xml-style format. Both methods exploit recent improvements in
the open-source CG3 compiler (http://beta.visl.sdu.dk/cg3.html), allowing so-called cohort
insertion and named, bidirectional relational tags.

2.1 The Cohort Insertion Method

Constraint Grammar compilers traditionally use a fixed tokenization, where each token may have
several readings (a so-called cohort), but without the possibility of changing the number, order or
span of the tokens themselves. In our own implementation, however, we provide for the
possibility of adding, moving and removing tokens, exploiting this feature for the insertion of
chunk edges. In its simplest version, our insertion chunker uses 20 CG rules, first 12 rules (a,b) to
insert different types of chunk-opening brackets (named for phrase type), then 8 rules (c) to insert
matching chunk-closing brackets.

The first two examples open np chunks by adding a marker cohort before (left of) the first np
element. Rule (a) looks for prenominal modifiers (@>N) or potential np-heads, i.e. nouns or
pronouns/numbers provided that the latter do not have a function marking as prenominals (@>N)
or predicatives (@PRED, @SC, @OC) which would indicate an adjectival reading. In order to
make sure that the found np-element is in fact the np's left edge, there is a NOT condition
excluding further prenominals (@>N) to the left, as well as adverbial pre-adjects (@>A) that
might pre-modify the premodifiers themselves (e.g. 'very @>A high @>N taxes'). The NEGATE
condition, finally, provides for the exception of coordinated premodifiers1. Rule (b) addresses np-

1 In this version of the chunker, we follow the principle, applied in the CoNLL 2000 shared task on chunking, that lower
level coordination within a phrase is treated as chunk-internal, while coordination of phrase heads is treated as chunk-
external.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 15 of 474]

internal adverbial adjects (@>A) in a similar way, again taking into account possible
coordination of pre-modifiers.

(a) ADDCOHORT ("<$np>" "CHUNK" NP) BEFORE @>N OR N/PROP/PRON OR
DET/NUM/PERS - @>N - @PRED - @SC - @OC (NOT -1 @>A OR @>N) (NEGATE -1 IT
LINK -1 @>N) ;

(b) ADDCOHORT ("<$np>" "CHUNK" NP) BEFORE @>A (*1 @>N BARRIER NON-ADV -
KC) (NOT -1 @>A OR @>N) (NEGATE -1 IT LINK -1 @>A - PRP OR @>N) ;

Similar rules exist for the other chunk types: adjective phrase (adjp), adverbial phrase (advp),
prepositional phrase (pp), verb phrase (vp) and the minor classes of conjp (conjunction phrase),
prt (particles), intj (interjection) that usually contain only a single word. Once a chunk is opened,
a corresponding rule can insert an ENDCHUNK marker token after the last element in the chunk.
Thus, rule (c) looks for potential np-heads with a NOT condition against them functioning as pre-
modifiers (@>N) themselves (as would be the case in English noun chain compounds). To
ensure exact bracket matching and as a safety measure, there is a condition looking left (*-1) for
the corresponding chunk-opening token with a BARRIER condition for overlaps, i.e. other
CHUNK markers.

(c) ADDCOHORT ("<$/np>" "ENDCHUNK" NP) AFTER N/PROP/PRON OR N/PROP/PRON
OR DET/NUM/PERS - @>N - @PRED - @SC - @OC (NOT 0 @>N) (*-1 CHUNK-NP
BARRIER CHUNK) ;

2.2 The Relation-Adding Method

The cohort insertion method is a very simple method, and works well and robustly for minimal
chunking. However, in the face of more complex annotation needs, it has the shortcoming of not
marking chunk heads as opposed to other chunk elements, and it is less well-suited for layered
chunking, because of the risk of crossing brackets. The CG-compiler may lack sufficient
structural information simply because opening and closing brackets are only inserted and not
paired by links. Thus, in layered chunking, closing brackets in particular may accumulate after
the same token, and bracket order will simply be by (inverse) rule order, making it very difficult
for the grammarian to control this order, not least because CG rules can be reiterated if contexts
change from false to true due to other rules being applied, and because opening and closing
brackets have opposite ordering needs. To further complicate things, a more fine-grained, head-
marking chunking scheme may run into cases of discontinuity, with a need for partial closing and
re-opening bracket types raising ambiguity issues in complex cases.

All of these problems can be addressed simultaneously by exploiting another non-traditional CG
feature, named relations, which we originally added for the sake of anaphora treatment and
discourse structure. Using relational tags, chunk edges can either be linked to each other or to the
chunk head, and in principle carry all information needed to configure a complete, classical
constituent tree. In this approach, given sufficient structural information in the CG input
annotation, chunking provides a conversion method between different functional dependency
grammar on the one hand, and labeled constituent trees on the other. Users will be able to apply
standard xml tools to manipulate, search, evaluate or visualize the resulting chunk structures
because chunk brackets can be expressed as xml opening and closing markers.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 16 of 474]

We developed the relation chunker in the context of a joined annotation project for German and
English transcribed speech corpora, and some design options are therefore project-specific, such
as the decision to allow discontinuity (crossing branches), to provide for separate coordination
chunks, and to only mark multi-word chunks. However, it has to be borne in mind that in a rule-
based CG system, it is relatively easy to change such design parameters, without the need of
manual re-annotation of a training corpus. In particular, the chunk type of single-word
constituents is implicit in their word-class, and could be added with one rule per type.

The relations chunker uses 59 rules to establish relations between a constituent head and its
leftmost and rightmost descendents (dependents, dependents of dependents etc.). A typical rule
pair is shown below:

(a) ADDRELATIONS (np-head-l) (np-start) TARGET (*) (c @>N OR @N<&) TO (llScc (*)) ;

(b) ADDRELATIONS (np-head-r) (np-stop) TARGET (*) (c @>N OR @N<&) (r:np-head-l (*))
TO (rrScc (*)) ;

Rule (a) adds a left-edge relation between any (*) target word with a pre-nominal (@>N) or
postnominal (@N<) modifier child (c), and the leftmost (ll) of its descendents2 (cc - children &
children's children). The S (self) provision allows for the head itself forming the chunk's edge,
and the modifier condition prevents 1-word chunks. An ADDRELATIONS rule allows for two
asymmetric relation names, given in the first two brackets of the rule. Here, np-head-l (np-head-
leftlooking) is the relation name tagged on the head, and np-start is the name for the same
relation seen from, and tagged on, the leftmost dependent.

Rule (b) adds the corresponding right-edge relation to the rightmost (rr) descendents (cc) of np-
heads. Matching bracket counts are ensured by adding the condition that the target already has to
carry a pre-existing np-head-l tag.

2.2.1 Discontinuity

The rules described above will identify external chunk edges by locating leftmost and rightmost
descendents of a given head, but they cannot cope with internal edges caused by crossing
dependency branches (constituent discontinuity). Therefore, further rules are needed, like the np-
examples below. Rule (a) marks the end of a discontinuity "hole", with a head-edge relation
named np-head-ld (left-oriented discontinuity edge) on the head, and np-stop-d (discontinuity
stop edge) on the (right-located) internal edge dependent. The rule works by identifying existing,
ordinary right edges (r:np-head-r (*)) and looks left of these (LINK *-1) for arguments,
adverbials (@ARG/ADVL) or verbs (VV), implying that such function tags would break the
continuity of an np chunk if they are not explicitly marked as embedded, i.e. if neither the break
candidate itself (S) or any of its ancestors or parent (*p) is identical with the rule target (NOT
*pS _TARGET_). If a chunk-breaker is found, the rule backtracks (x) to the outer edge and from
there looks left (**-1xA) for the last word (**) that does have the rule target as parent-ancestor,
or is identical with it (*pS), and attaches (A) the relation here.

(a) ADDRELATIONS (np-head-ld) (np-stop-d) TARGET (*) (c @>N OR @N<&) (r:np-head-r
(*) LINK *-1 @ARG/ADVL OR VV LINK NOT *pS _TARGET_) TO (r:np-head-r (*) LINK
*-1X @ARG/ADVL OR VV LINK **-1xA ALL-ORD LINK *pS _TARGET_) ;

2 In principle, a leftmost ancestor dependency chain (llcc) can be quite complex because a right daughter dependent may
have crossing left granddaughter dependents that are further left than the head itself or its left daughters.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 17 of 474]

Correspondingly, rule (b) marks a relation between a head and a left-located internal edge, named
np-head-rd (right-oriented discontinuity edge) on the head, and np-start-d (discontinuity start
edge) on the edge dependent. Again, to ensure matching bracket counts, the rule checks if the
matching head-ld relation tag is already present on the head. This way, the head accumulates
information about all edges controlled by it, while the chunk edge tokens themselves carry only
one tag containing chunk type and head ID3.

(b) ADDRELATIONS (np-head-rd) (np-start-d) TARGET (*) (c @>N OR @N<&) TO (r:np-
head-ld (*) LINK **1A ALL LINK *pS _TARGET_) ;

2.3 Language independence

It is an interesting question to what degree a function-first, linking-before-chunking approach
will lead to a higher degree of language independence in a chunking grammar. We believe this
to be the case because the use of higher-level categories, at least if notationally unified, insulates
the chunking grammar from language specific differences such as agreement features and word
order. Though we do not yet have data for less related languages, our German and English
grammars provide empirical support for this assumption. Thus, the original German layered
chunker did work without rule modifications for English, and even the final, optimized English
grammar (59 rules) needed rule changes or additions almost exclusively in areas, where the
German grammar still had coverage problems, specifically coordination (10 rules) and vp
discontinuity (6 rules). Only one rule had to be amended in a truly language-specific way, to
account for discontinuous, fronted arguments of stranded prepositions in English, and 8 default
bracket closing rules were added to check for matching brackets. Most importantly, all of the
above English changes could be reexported into the German grammar almost as is, and even the
language-specific stranded-preposition rule would do no harm - rather, it would simply not apply.
As long as function tags and dependencies are defined in a unified way, this might be true for
many other language pairs, too: Unimpeded by morphological or topological constraints, a pure
function/relation reference in a chunking rule will either have the desired effect in the other
language, or none at all.

3 Format conversions

Because all information is encoded locally as tags on tokens, Constraint Grammar output is easy
to parse for format conversion programs, allowing such filters to extract information from several
levels of tagging at the same time, with only one regular expression match. This way information
can be made explicit that would otherwise be stated only implicitly, and html tags (for
visualization), sgml tags (for corpus segmentation) or xml tags (for external tools) can be inserted
before or after certain trigger tags or tag combinations. For the speech corpus annotation project,
xml-style encoding of chunking information was the desired target format. With the cohort
insertion method this amounted to simply turning chunk edge cohorts into <...> lines (Fig. 1),
while the filter program for the relation-adding method had to insert xml tags before or after
tokens carrying chunk edge labels (Fig. 3). Because this method was used to produce multi-
layered chunking, the filter program also had to keep track of the xml tag nesting, i.e. arrange
brackets in correct matching order, whereas the minimal chunks produced with the insertion

3 Of course, if a head is situated leftmost or rightmost in its chunk, it will carry both types of tags.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 18 of 474]

method were simply defined - following CoNLL conventions - as non-overlapping and non-
recursive, avoiding any bracketing complexities:

<chunk form="advp">
 So [so] <*> <aquant> ADV @ADVL>
<chunk form="/advp">
<chunk form="np">
 anyone [anyone] INDP S NOM @SUBJ>
<chunk form="/np">
<chunk form="np">
 who_ [who] <sam-> <rel> INDP S/P @SUBJ>
<chunk form="/np">
<chunk form="vp">
 _s [be] <-sam> <mv> V PR 3S @FS-N<
<chunk form="/vp">
<chunk form="adjp">
 familiar [familiar] ADJ POS @<SC
<chunk form="/adjp">
<chunk form="pp">
 with [with] PRP @A<
<chunk form="/pp">
<chunk form="vp">
 playing [play] <mv> V PCP1 @ICL-P<
<chunk form="/vp">

<chunk form="np">
 different [different] ADJ POS @>N
 types [type] <ac-cat> <idf> N P NOM @<ACC
<chunk form="/np">
<chunk form="pp">
 of [of] PRP @N<
<chunk form="/pp">
<chunk form="np">
 games [game] <game> <idf> N P NOM @P<
<chunk form="/np">
<chunk form="pp">
 through [through] PRP @<ADVL
<chunk form="/pp">
<chunk form="np">
 a [a] <indef> ART S @>N
 console [console] <tool> <idf> N S NOM @P<
<chunk form="/np">
<chunk form="vp">
 will [will] <aux> V PR @FS-STA
 be [be] <mv> V INF @ICL-AUX<
<chunk form="/vp">
...

FIGURE 1: Minimal chunks, insertion method, xml format

The format does not explicitly mark heads, but because we followed the CoNLL standard in only
allowing left dependents, this does not amount to any loss of information - the head is simply the
rightmost/last constituent of a multi-word minimal chunk.

For the sake of evaluation and comparability, we also provide a denser, non-xml format, with the
 (beginning-of) and <I> (inside-of) tags used in the CoNLL evaluation. This is achieved by a
couple of short CG rules, where (a) extracts the chunk type ("<.(.+)>"r) as a bracketed regular
expression variable from an immediately preceding (-1) CHUNK opening cohort and remaps it
as a tag (<C:B-$1>), while rule (b) adds <I> tags with chunk type-information extracted
from immediately preceding - or <I>-tagged words. A third rule (c) maps an <O> tag
(outside-of-chunk) to all remaining words. Since minimal chunking regards 1-word constituents
as chunks, and all word classes are mapped onto chunk types, all instances of <O> amount to
annotation errors in the CG input.

So <C:B-advp> ADV @ADVL>
you <C:B-np> PERS 2S/P NOM @SUBJ>
might <C:B-vp> V IMPF @FS-STA
*be <C:I-vp> V INF @ICL-AUX<
near <C:B-pp> PRP @<SA
some <C:B-np> DET S/P @>N
*universities <C:I-np> N P NOM @P<
but <C:B-conjp> KC @CO
you <C:B-np> PERS 2S/P NOM @SUBJ>

near <C:B-pp> PRP @<ADVL
completely <C:B-np> ADV @>A
*different <C:I-np> ADJ POS @>N
*things <C:I-np> N P NOM @P<
that <C:B-np> INDP P @SUBJ>
are <C:B-vp> V PR -1/3S @FS-N<
completely <C:B-adjp> ADV @>A
*unrelated <C:I-adjp> ADJ POS @<SC
to <C:B-pp> PRP @A<

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 19 of 474]

could <C:B-vp> V IMPF @FS-STA
*end <C:I-vp> V INF @ICL-AUX<
up <C:B-prt> ADV @MV<

you <C:B-np> PERS 2S/P ACC @P<
as=well <C:B-advp> ADV @<ADVL
.

FIGURE 2: Minimal chunks, insertion method, B/I/O format

Like most Constraint Grammars, our input CG marks a number of multi-word expressions
(MWEs) as tokens, in particular certain complex prepositions, conjunctions and adverbs, as well
as MWEs in the productive category of names. An example is the last word in Fig. 2 ('as well'),
which however could simply be expanded by splitting on space, letting the first part of the MWE
inherit the MWE tag, and adding <I> tags to all other MWE parts.

Fig. 3 shows a fully layered chunk tree for the same data used in Fig. 1, with layering depth
shown as indented dots (. . .), to improve readability. CG lemma, inflexion, pos, function and
dependency tags are retained, the latter employing a sentence-internal numbering scheme (#n->m
tags). The relational, chunk edge-linking CG tags would be redundant, and are not shown after
conversion into xml-format. In order to facilitate linguistic corpus searches, the xml chunk lines
carry explicit feature-attribute pairs for (chunk) form, (head) function and head ID. The latter are
- unlike dependency IDs - numbered across the whole corpus, because our CG compiler in
principle allows relations across sentence boundaries, allowing for co-referent resolution,
discourse annotation or text-level chunking.

<chunk form="fcl" function="STA" head="167">
. So [so] <*> <aquant> ADV @ADVL> #1->16 ID:153
. <chunk form="np" function="SUBJ" head="154">
. . anyone [anyone] INDP S NOM @SUBJ> #2->15 ID:154
. . <chunk form="fcl" function="N<" head="156">
. . . who_ [who] <clb> <sam-> <rel> INDP S/P @SUBJ> #3->4 ID:155
. . . _s [be] <-sam> <mv> V PR 3S @FS-N< #4->2 ID:156
. . . <chunk form="adjp" function="SC" head="157">
. . . . familiar [familiar] <close-2> <acquainted> ADJ POS @<SC #5->4 ID:157
. . . . <chunk form="pp" function="A<" head="158">
. with [with] PRP @A< #6->5 ID:158
. <chunk form="icl" function="P<" head="159">
. playing [play] <mv> V PCP1 @ICL-P< #7->6 ID:159
. <chunk form="np" function="ACC" head="161">
. different [different] ADJ POS @>N #8->9 ID:160
. types [type] <ac-cat> <idf> <nhead> N P NOM @<ACC #9->7 ID:161
. <chunk form="pp" function="N<" head="162">
. of [of] PRP @N< #10->9 ID:162
. games [game] <game> <idf> <nhead> N P NOM @P< #11->10 ID:163
. </chunk form="pp" function="N<" head="162">
. </chunk form="np" function="ACC" head="161">
. <chunk form="pp" function="ADVL" head="164">
. through [through] <advl-fs> PRP @<ADVL #12->7 ID:164
. <chunk form="np" function="P<" head="166">
. a [a] <indef> ART S @>N #13->14 ID:165
. console [console] <tool> <idf> <nhead> N S NOM @P< #14->12 ID:166
. </chunk form="np" function="P<" head="166">
. </chunk form="pp" function="ADVL" head="164">
. </chunk form="icl" function="P<" head="159">
. . . . </chunk form="pp" function="A<" head="158">

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 20 of 474]

. . . </chunk form="adjp" function="SC" head="157">

. . </chunk form="fcl" function="N<" head="156">

. </chunk form="np" function="SUBJ" head="154">

. <chunk form="vp" function="P" head="167">

. . will [will] <aux> <cjt-first> V PR @FS-STA #15->0 ID:167

. . be [be] <mv> V INF @ICL-AUX< #16->15 ID:168

. </chunk form="vp" function="P" head="167">

... (37 lines)
</chunk form="fcl" function="STA" head="167">

FIGURE 3: Layered "maximal" chunking, relational method, xml format

As can be seen from the example, this implementation of layered chunking does provide for right
branching (e.g. postnominal pp's), and it can also handle discontinuity, marking left and right
halves of a discontinuous chunk by adding right or left hyphens, respectively, to the chunk's form
attribute:

<chunk form="fcl" function="STA" headid="2" head="does">
. <chunk form="pp-" function="SA" headid="5" head="from">
. . Where [where] <clb> <*> <interr> <aloc> ADV @>>P #1->5 ID:1
. </chunk form="pp-" function="SA" head="5" head="from">
. <chunk form="vp-" function="STA" headid="2" head="does">
. . does [do] <chunk-head> <aux> V PR 3S @FS-STA #2->0 ID:2
. </chunk form="vp-" function="P" head="2" head="does">
. it [it] PERS NEU 3S NOM @<SUBJ #3->4 ID:3
. <chunk form="-vp" function="STA" headid="2" head="does">
. . come [come] <move> <mv> V INF @ICL-AUX< #4->2 ID:4
. </chunk form="-vp" function="STA" head="2" head="does">
. <chunk form="-pp" function="SA" headid="5" head="from">
. . from [from] <chunk-head> <prp-strand> PRP @<SA #5->4 ID:5
. </chunk form="-pp" function="SA" head="5" head="from">
</chunk form="fcl" function="STA" head="2" head="does">
$? [?] PU @PU #6->0 ID:6

FIGURE 4: Layered chunking, discontinuity

For the layered, maximal chunking we followed the VISL convention, avoiding non-branching
nodes and bracketing 1-word chunks only in the case of discontinuity
(http://beta.visl.sdu.dk/VTB-design.html). If, for instance for np extraction purposes, single
nouns were to be bracketed, this could be easily achieved by adding one simple rule applying to
all nouns without an np head relation tag, mimicking the behavior of the minimal chunker on this
point4. Because our layered bracketing de facto amounts to complete constituent trees, we were
able to build conversion filters for both the VISL and TIGER formats5 (figures 5 & 6), allowing
corpus users to take advantage of the numerous tools available for these formats, such as
visualizers, editors and search tools.

A1
STA:fcl

=======DN:adj("different" POS) different
=======H:n("type" <idf> P NOM) types

4 Likewise, all other word classes could of course be made to spawn 1-word chunks of a corresponding type.
5 For clarity, a number of secondary tags was removed from the VISL non-terminal brackets. Similarly, the lemma,
morphology and extra fields were removed from the TIGER non-terminal lines.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 21 of 474]

=fA:adv("so" <aquant>) So
=S:np
==H:pron-indef("anyone" S NOM) anyone
==DN:fcl
===S:pron-rel("who" <sam-> <rel> S) who_
===P:v-fin("be" <-sam> PR 3S) _s
===Cs:adjp
====H:adj("familiar" POS) familiar
====DA:pp
=====H:prp("with") with
=====DP:icl
======P:v-pcp1("play") playing
======Od:np

=======DN:pp
========H:prp("of") of
========DP:n("game" <idf> P NOM) games
======fA:pp
=======H:prp("through") through
=======DP:np
========DN:art("a" <indef> S) a
========H:n("console" <idf> S NOM) console
=,
=P:vp
==Vaux:v-fin("will" <cli> PR) will
==Vm:v-inf("be") be
=Cs:adj("content" POS) content

FIGURE 5: VISL constituent trees

<terminals>
 <t id="s1_1" word="So" pos="adv"/>
 <t id="s1_2" word="anyone" pos="pron-indef" />
 <t id="s1_3" word="who_" pos="pron-rel"/>
 <t id="s1_4" word="_s" pos="v-fin"/>
 <t id="s1_5" word="familiar" pos="adj"/>
 <t id="s1_6" word="with" pos="prp"/>
 <t id="s1_7" word="playing" pos="v-pcp1"/>
 <t id="s1_8" word="different" pos="adj"/>
 <t id="s1_9" word="types" pos="n"/>
 <t id="s1_10" word="of" pos="prp"/>
 <t id="s1_11" word="games" pos="n"/>
 <t id="s1_12" word="through" pos="prp"/>
 <t id="s1_13" word="a" pos="art"/>
 <t id="s1_14" word="console" pos="n"/>
 <t id="s1_15" word="," pos="pu"/>
 <t id="s1_16" word="will" pos="v-fin"/>
 <t id="s1_17" word="be" pos="v-inf"/>
 <t id="s1_18" word="content" pos="adj"/>
 <t id="s1_19" word="." pos="pu"/>
</terminals>

<nonterminals>
 <nt id="s1_500" cat="s">
 <edge label="STA" idref="s1_501"/></nt>
 <nt id="s1_501" cat="fcl">
 <edge label="PU" idref="s1_19"/></nt>
 <nt id="s1_502" cat="np">
 <edge label="H" idref="s1_2"/>
 <edge label="DN" idref="s1_503"/></nt>
 <nt id="s1_503" cat="fcl">
 <edge label="S" idref="s1_3"/>
 <edge label="P" idref="s1_4"/>
 <edge label="Cs" idref="s1_504"/></nt>
 <nt id="s1_504" cat="adjp">
 <edge label="H" idref="s1_5"/>
 <edge label="DA" idref="s1_505"/></nt>
 <nt id="s1_505" cat="pp">
 <edge label="H" idref="s1_6"/>
 <edge label="DP" idref="s1_506"/></nt>
 <nt id="s1_506" cat="icl">
 <edge label="P" idref="s1_7"/></nt>
</nonterminals>

FIGURE 6: TIGER treebank format

4 Evaluation

4.1 Minimal Chunker evaluation

There are several aspects in the evaluation of a CG-based chunker. First of all, in descriptive
terms, it is interesting to see how well a function-based medium-level CG annotation can be
converted into a constituent-based chunking parse which basically amounts to the task of
computing (syntactic) form from (syntactic) function. Second, because a CG rule set is malleable
and allows incremental improvements, it is important for development to identify specific error
patterns and error triggers. For minimal chunking in particular, which as a shallow parsing
technique will usually be performed on raw input rather than on corpora with linguist-revised

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 22 of 474]

grammatical tagging, it is important to evaluate the annotation chain as a whole, not just the
chunker as such, and to identify error triggers at all levels.

We therefore evaluated the minimal chunker together with a morphosyntactic (POS and function)
run of the underlying CG, on a 3563-word section of the English interview corpus, in the B/I/O
format. Since error inspection was important for us, and no funding was available to create a
multi-annotator gold standard, evaluation was done by output correction alone, with a
corresponding risk of parser-friendly bias. For the complete run, recall was 97.4% and precision
97.5%, the difference being due to 3 MWE tokenization errors and 5 <O> (out-of-chunk) errors.
While the latter are caused by the chunking grammar itself, the former is partly triggered by
transcription conventions in the corpus, where noun-verb contractions were not recognized
(persona's = persona is, who've = who have). Of the main body of errors, i.e. and <I> errors,
about 25% were pure chunking errors, where chunk form was correct, but segmentation faulty,
caused almost always by function tag errors in the underlying CG. In the remaining 75%, chunk
form was wrong, indicating underlying POS errors. Table 1 shows a confusion matrix for this
error type.

gold:
tagged:

np adjp advp vp pp conjp intj prt

np - 4 2 5 0 1 3 0

adjp 6 - 3 0 0 0 3 0

advp 5 8 - 0 0 1 0 0

vp 4 3 1 - 0 0 0 0

pp 0 0 3 0 - 1 0 0

conjp 3 0 1 0 1 - 0 0

intj 0 0 0 0 0 0 - 0

prt 0 0 0 0 0 0 0 -

sum/all 18/1630 15/101 10/254 5/956 1/316 3/236 6/50 0/21

relative 1.1% 14.9% 3.9% 0.5% 0.3% 1.3% 12.0% 0%

TABLE 1: Confusion table for chunk form types, minimal chunking

As can be seen, the most common form error was adjective phrases tagged as adverb phrases.
Across confusion types, as a class, np's had the highest error frequency, but in relative terms the
most error-prone classes were adjp's and interjections. Particles (verb-integrated adverbs) were
recognized 100%, and vp and pp errors were very rare.

4.2 Maximal Chunker evaluation

For the the maximal/layered chunker (constituent tree generator), two evaluation runs were
performed, one with a complete analysis chain, the other with a morphosyntactic gold corpus as
input, where PoS and function tags had been hand-corrected, and where only dependency links
had to be added automatically. For the former, the same (interview) data were used as for the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 23 of 474]

minimal chunking evaluation, the latter consisted of 102 random Journalese sentences (1817
words) from the Leipzig Corpora Collection (http://corpora.informatik.uni-
leipzig.de/download.html)6.

With errors in only 12 out of 1055 multi-word7 chunks (1,1%), the gold input run demonstrated
the effectiveness of the CG chunking method in isolation, especially when taking into account
that 3/4 of the errors were attachment errors directly attributable to (live) dependency grammar
rather than the chunker itself. The only chunk missing outright was a coordination chunk, and 2
of the 3 chunk bracketing errors that were not due to attachment problems, also involved
coordination chunks. In a certain sense, it can be concluded that CG chunking on top of syntactic
CG analysis is more a format conversion than an independent layer of annotation - in other
words, it is (almost) information-equivalent to CG dependency annotation, with most new
information being contained in the latter already, making performance a direct function of the
performance of the underlying morphosyntactic CG parser. Thus, the only chunk type in our
grammar that does not really "trust" its dependency input, is coordination, where rules work with
matching form and function tags rather than dependency links alone, taking into account the
relatively high dependency error rate for this category.

In the raw text run, the maximal chunker suffered from the accumulated error rate of all CG
analysis modules, and did not perform as well. A 1389 word section was used, containing 635
(multi-word) chunks. 17 chunks were not recognized, 4 chunks were in excess and 58 chunks had
wrong bracketing8. This amounts to a recall of 88.2%, a precision of 90.0% and a balanced F-
score9 of 89.1.

Because both the CG dependency grammar and the chunk form assignment relied on
morphosyntactic tags, erroneous head PoS or erroneous dependent function will lead to both
wrong attachment and wrong form assignment, so form tag errors in correctly bracketed chunks
were extremely rare, and category confusion was otherwise mainly triggered by wrong
morphosyntactic tagging. Again, coordination errors figured prominently, and over 50% of
undetected chunks were coordination chunks.

5 Conclusions

We have shown that Constraint Grammar rules constitute an efficient method for syntactic
chunking. In a full CG suite, together with a morphosyntactic annotation module, between 89%
and 97.5% of chunks will be correctly recovered for raw English text, representing the extremes
of minimal chunking (no right np-branching and no nesting) on the one hand, and full layered
constituent chunking on the other. While both chunking modules are quite rule-efficient (with 20
and 59 rules, respectively), only the minimal chunker works on morphosyntactic tags alone,
while the layered chunker (which in its deepest version is a constituent parser rather than a
chunker in the traditional sense of the word) uses an intermediate step of dependency attachment
(279 rules). Still, even the combined error percentage of dependency and chunker is very low

6 A direct comparison on the same data could have been interesting, but within the timeframe of the project, it was not
possible to create a CG gold corpus for the Interview data.
7 If single words were counted as chunks, no new error information would be added because all errors would constitute
integration into multi-word chunks and should thus already be marked as multi-word chunk errors.
8 For discontinuous chunks, both parts were counted as chunks, and the only discontinuity error was therefore counted as
two.
9 Defined as the harmonic mean of recall and precision.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 24 of 474]

(just over 1%) if seen in isolation, i.e. on correct function tag input, so the performance gap
between minimal and layered chunking seems to be caused not so much by the chunking rules
themselves, but rather by the fact that the deeper the nesting, the more morphosyntactic errors
will trigger bracketing errors.

We believe, from a grammar writer's perspective, that the chunkers - especially the minimal
chunker - are fairly language independent, because they run on an input level where syntactic
function categories provide a "language-insulating" level of abstraction (provided a common
notational system is used), but this assumption needs to be verified by future evaluation with
generic rules and a larger set of languages, including languages that are typologically more
different than English and German.

For practical reasons of availability, we tested gold input performance on a different genre
(news) than the raw input runs (interview data), but optimally both runs and both chunking levels
should be evaluated across different genre in a comparable way. This could also shed light on the
question whether rule-based chunking is either more or less genre-sensitive than machine
learning methods, and - if relevant - how much individual rules contribute to genre sensitivity,
allowing the use of limited, genre-specific grammar patches.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 25 of 474]

References

Abney, Steven (1991). Parsing by Chunks. In: Principle-Based Parsing. Kluwer Academic
Publishers, pp. 257-278

Banko, M., M.J. Cafarella, S. Soderland, M. Broadhead and O. Etzioni (2007). Open
Information Extraction from the Web. In: Proceedings of the 20th IJCAI, pp. 2670-2676

Bick, Eckhard (2003). A CG & PSG Hybrid Approach to Automatic Corpus Annotation. In:
Kiril Simow & Petya Osenova (eds.), Proceedings of SProLaC2003 (at Corpus Linguistics
2003, Lancaster), pp. 1-12

Bick, Eckhard (2005). Turning Constraint Grammar Data into Running Dependency Treebanks,
In: Civit, Montserrat & Kübler, Sandra & Martí, Ma. Antònia (red.), Proceedings of TLT 2005
(4th Workshop on Treebanks and Linguistic Theory, Barcelona, December 9th - 10th, 2005),
pp. 19-27

Carreras, X and L. Màrquez (2003). Phrase Recognition by Filtering and Ranking with
Perceptrons. In: Proceedings of RANLP-2003, pp. 78-85.

Jurafsky, D. and J. H. Martin (2009). Speech and Language Technology, Pearson Education, p.
490.

Kübler, Sandra and Erhard W. Hinrichs (2001). From chunks to function-argument structure: A
similarity- based approach. In Proceedings of ACL-EACL 2001 (Tolouse, France), pp. 338-345.

Tjong Kim Sang, E. and S. Buchholz. (2000). Introduction to the CoNLL-2000 shared task:
Chunking. In Proceedings of CoNLL-2000 and LLL-2000 (Lisbon, Portugal), pp. 127– 132.

Van den Bosch, Antal and Sabine Buchholz (2002). Shallow parsing on the basis of words only:
A case study . In Proceedings of the 40th Meeting of the Association for Computational
Linguistics (ACL'02), pp. 433-440.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 26 of 474]

Features indicating readability in Swedish text

Johan Falkenjack1, Katarina Heimann Mühlenbock2, Arne Jönsson3

(1) Department of Information and Computer Science, Linköping University, Linköping, Sweden
(2) Språkbanken, University of Gothenburg, Gothenburg

(3) SICS East Swedish ICT AB

johan.falkenjack@liu.se, katarina.heimann.muhlenbock@gu.se, arne.jonsson@liu.se

ABSTRACT
Studies have shown that modern methods of readability assessment, using automated linguistic
analysis and machine learning (ML), is a viable road forward for readability classification and
ranking. In this paper we present a study of different levels of analysis and a large number of
features and how they affect an ML-system’s accuracy when it comes to readability assessment.
We test a large number of features proposed for different languages (mainly English) and
evaluate their usefulness for readability assessment for Swedish as well as comparing their
performance to that of established metrics. We find that the best performing features are
language models based on part-of-speech and dependency type.

KEYWORDS: Readability assessment, Machine learning, Dependency parsing, Weka.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 27 of 474]

1 Introduction

The problem of readability assessment is the problem of mapping from a text to some unit
representing the text’s degree of readability. Measures of readability are mostly used to inform
a reader how difficult a text is to read, either to give them a hint that they may try to find
an easier to read text on the same topic or simply to inform them that a text may take some
time to comprehend. Readability measures are mainly used to inform persons with reading
disabilities on the complexity of a text, but can also be used to, for instance, assist teachers
with assessing the reading ability of a student. By measuring the reading abilities of a person, it
might also be possible to automatically find texts that fits that persons reading ability. It has
further been shown that readability is a useful measure for finding a corpus for training vector
space models (Smith et al., 2012).

Readability gives rise to a number of problems. For instance, readability is not a function of text
only but a function of both text and reader, as defined by Dale and Chall (1949): "[Readability
is] the sum total (including all the interactions) of all those elements within a given piece of
printed material that affect the success a group of readers have with it. The success is the extent
to which they understand it, read it at optimal speed, and find it interesting." However, in this
study we make the assumption that a function of text only can be a useful approximation. This
assumption is supported by and related to the practice of American researchers to normalize
their metrics to the U.S. grade level. Resources for such a normalisation for Swedish are not
yet readily available and until they are we focus on the problem of classifying texts as either
easy-to-read or not.

Readability assessment has been a field of interest for linguists since the 1920s but intensive
research begun in the U.S. in the late 1940s (Sjöholm, 2012). This research resulted in the
introduction of the first version of the Flesch Reading Ease test (Flesch, 1948) and the Dale-Chall
formula, versions of which are still used today.

A number of easily calculated readability metrics (consisting of a small number of easily counted
features such as average word length, lexical variation and frequency of "simple words") were
introduced for English during the following three decades. Some examples are the Coleman-
Liau index, which was specifically designed for automated assessment of readability (Coleman
and Liau, 1975), the SMOG formula (McLaughlin, 1969) and the Fry readability formula (Fry,
1968). All of these metrics were designed to output a score corresponding to the U.S. grade
level thought necessary for full comprehension of a text. In 1975 the Flesch Reading Ease test
was reinvented as the Flesch-Kincaid Grade Level with the same principle in mind (Kincaid
et al., 1975).

This way of constructing readability metrics was widely accepted as good enough for a long
time. However, in the 1980’s research questioning the performance of these traditional metrics
was being published (Davison and Kantor, 1982).

Readability assessment for Swedish has mostly been done using metrics similar to the ones
constructed for English. The most utilized readability metric for Swedish is LIX, Läsbarhetsindex
(Readability index) (Björnsson, 1968), which is formulated in a way similar to that of the
Flesch metric. Today the LIX metric is basically the standard metric for readability in Swedish.
However, in recent years new research has shown that the metric is not always sufficient
(Mühlenbock and Johansson Kokkinakis, 2009; Heimann Mühlenbock, 2013).

The OVIX Ordvariationsindex (Word variation index) and Nominal Ratio metrics (Hultman
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 28 of 474]

and Westman, 1977) have been used in research to complement LIX as they are assumed to
correlate with degree of readability viewed from other linguistic levels.

Since the early 2000s the speed and accuracy of text analysis tools such as lemmatizers, part-
of-speech taggers and syntax parsers have made new text features available for readability
assessment. By using machine learning a number of researchers have devised innovative ways
of assessing readability. For instance, phrase grammar parsing has been used to find the average
number of sub-clauses, verb phrases, noun phrases and average tree depth (Schwarm and
Ostendorf, 2005).

The use of language models to assess the degree of readability was also introduced in the early
2000s (Collins-Thompson and Callan, 2004) and later combined with classification algorithms
such as support vector machines to further increase accuracy (Petersen, 2007; Feng, 2010)

In this paper we present a study on the problem of finding and evaluating features relevant for
classification. Such classifiers have previously been experimented with for Italian (Dell’Orletta
et al., 2011). An extension of such a classifier has been proposed as an alternative to regression
or detectors when it comes to ordering documents based on degree of readability (Falkenjack
and Heimann Mühlenbock, 2012). The present approach is experimental in the sense that
several feature models, simple as well as complex, are tested and compared. The models are
based on text properties acting at various language levels, and the task is to identify the best-
performing feature model for readability assessment viewed from one or several specific aspects
of written language. An even more complex model where also the semantic aspect is taken into
account would demand language resources supplied with information on concepts and meaning
as for instance WordNet (Miller, 1995). Such an approach is presented in Heimann Mühlenbock
(2013), where readability is regarded as the totality of features acting at five different levels of
language representation, including the idea density level.

2 Study

In the study presented in this paper we evaluate a number of models for readability on a variety
of corpora to assess the models’ ability to classify a text as easy-to-read or not.

2.1 Corpora

To train and test our classifier we use one easy-to-read corpus and five corpora representing
ordinary language in different text genres. The latter corpora will further on be labeled as
non-easy-to-read. For each category we use 700 texts.

Our source of easy-to-read material is the LäSBarT corpus (Mühlenbock, 2008). LäSBarT
consists of manually created easy-to-read texts from a variety of sources and genres.

The non-easy-to-read material comprise texts from a variety of corpora to make sure that
what we are classifying is readability rather than genre. This material consists of 215 articles
from GP2007 (news text), 34 whole issues of Forskning och Framsteg (popular science), 214
articles from Läkartidningen 05 (professional news), 214 public information notices from
Smittskyddsinstitutet (government text) and 23 full novels from the Norstedts publishing house
(fiction).

By using a corpus with such a variety of documents we will get texts that have different degree
of readability which is important as we want to be able to use the same model on all types of
text.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 29 of 474]

The texts are preprocessed using the Korp corpus import tool (Borin et al., 2012). Steps in
the preprocessing chain relevant for this study are tokenization, lemmatisation, part-of-speech
tagging and dependency grammar parsing. The Korp tool is publicly available for testing.

2.2 Classification

We use the Waikato Environment for Knowledge Analysis (Weka) suite and its implementation
of the popular classification algorithm Support Vector Machine (SVM). Support Vector Machines
has been increasingly popular in Computational Linguistics in recent years and have, among
other uses, been used for readability assessment with good results (Petersen, 2007; Feng, 2010).

The SVM algorithm is an algebraic approach to the classification problem. Objects with a known
class are represented as points in an n-dimensional space, where n is the number of attributes.
An algorithm then attempts to find a maximum margin hyperplane separating the objects by
their class (Witten et al., 2011). New objects are classified by calculating on which side of this
hyperplane the object’s corresponding point occurs.

The version of SVM-learning (finding the separating hyperplane) we use is the SMO, Sequential
Minimal Optimization, algorithm (Platt, 1998). A Java implementation of a SMO-based SVM is
included in the standard Weka toolkit.

We chose the SVM-approach as prior research has shown that it is one of the best performing
algorithms for degree of readability classification using the full set, or subsets, of features we
evaluate in this study (Sjöholm, 2012).

2.3 Models

We have constructed a total of 34 models. First we have three models representing the
established Swedish metrics used to measure, or assumed to correlate with some aspect of
readability, namely LIX, OVIX and Nominal ratio (NR).

We also use 21 single feature models. These models represent features proposed for readability
assessment in prior research, mainly on English texts. As the primary aim of this study is to
evaluate these feature models’ ability to predict readability these models are the most important.

As many of the single feature models result from the same kind of preprocessing, we have
also decided to create ten compound models. We divide the features into four levels similar
to the four levels used by the READ-IT system for Italian (Dell’Orletta et al., 2011). These
levels are Shallow (requires tokenization), Lexical (requires lemmatisation), morpho-syntactic
(requires part-of-speech tagging) and Syntactic (requires parsing, in our case with a dependency
grammar parser).

Seven models based on these levels are constructed, four which covers only a single level each;
Shallow, Lexical, Morpho and Syntactic. Three models incrementally add levels to the analysis;
the LexicalInc model which consists of all features from the Lexical and Shallow models, the
MorphoInc model which consists of all features from the LexicalInc and Morpho models and the
SyntacticInc model which consists of all features from the MorphoInc and the Syntactic models.
These models are used to evaluate to what degree each level of linguistic analysis improves our
model’s ability to predict readability.

We also create three models combining the established metrics, LIX, OVIX and NR. The first,
called TradComb, comprise only the three established metrics. The other two combine TradComb

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 30 of 474]

with SyntacticInc (Total) and MorphoInc (NoDep) respectively.

2.3.1 Shallow features

The shallow text features are the main features traditionally used for simple readability metrics.
They occur in the "shallow" surface structure of the text and can be extracted after tokenization
by simply counting words and characters. They include:

AvgWordLengthChars Average word length calculated as the average number of characters
per word.

AvgWordLengthSylls Average word length calculated as the average number of syllables per
word. The number of syllables is approximated by counting the number of vowels.

AvgSentLength Average sentence length calculated as the average number of words per
sentence.

Longer sentences, as well as longer words, tend to predict a more difficult text as exemplified
by the performance of the LIX metric and related metrics for English. These types of features
have been used in a number of readability studies based on machine learning (Feng, 2010) and
as baseline when evaluating new features (Pitler and Nenkova, 2008).

2.3.2 Lexical features

Our lexical features are based on categorical word frequencies. The word frequencies are
extracted after lemmatization and are calculated using the basic Swedish vocabulary SweVoc
(Heimann Mühlenbock, 2013). SweVoc is comparable to the list used in the classic Dale-Chall
formula (Dale and Chall, 1949) for English and developed for similar purposes, however special
sub-categories have been added (of which three are specifically considered). The following
frequencies are calculated, based on different categories in SweVoc:

SweVocC SweVoc lemmas fundamental for communication (category C).

SweVocD SweVoc lemmas for everyday use (category D).

SweVocH SweVoc other highly frequent lemmas (category H).

SweVocTotal Unique, per lemma, SweVoc words (all categories, including some not mentioned
above) per sentence.

A high ratio of SweVoc words should indicate a more easy-to-read text. The Dale-Chall metric
(Chall and Dale, 1995) has been used as a similar feature in a number of machine learning
based studies of text readability for English (Feng, 2010; Pitler and Nenkova, 2008). The
SweVoc metrics are also related to the language model features used in a number of studies
(Schwarm and Ostendorf, 2005; Heilman et al., 2008).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 31 of 474]

2.3.3 Morpho-syntactic features

The morpho-syntactic features concern a morphology based analysis of text. For the purposes of
this study the analysis relies on previously part-of-speech annotated text, which is investigated
with regard to the following features:

UnigramPOS Unigram probabilities for 26 different parts-of-speech in the document, that is,
the ratio of each part-of-speech, on a per token basis, as individual attributes. Such a
unigram language model based on part-of-speech, and similar metrics, has shown to be a
relevant feature for readability assessment for English (Heilman et al., 2007; Petersen,
2007; Dell’Orletta et al., 2011).

RatioContent The ratio of content words (nouns, verbs, adjectives and adverbs), on a per
token basis, in the text. Such a metric has been used in a number of related studies
(Alusio et al., 2010).

2.3.4 Syntactic features

These features are estimable after syntactic parsing of the text. The syntactic feature set is
extracted after dependency parsing using the Maltparser (Nivre et al., 2006). Such parsers
has been used for preprocessing texts for readability assessment for Italian (Dell’Orletta et al.,
2011). The dependency based features consist of:

AvgDepDistDep The average dependency distance in the document on a per dependent basis.
A longer average dependency distance could indicate a more complex text (Liu, 2008).

AvgDepDistSent The average dependency distance in the document on a per sentence basis. A
longer average total dependency distance per sentence could indicate a more complex
text (Liu, 2008).

RightDeps The ratio of right dependencies to total number of dependencies in the document.
A high ratio of right dependencies could indicate a more complex text.

SentenceDepth The average sentence depth. Sentences with deeper dependency trees could
be indicative of a more complex text in the same way as phrase grammar trees has been
shown to be (Petersen and Ostendorf, 2009).

UnigramDepType Unigram probabilities for the 63 dependency types resulting from the depen-
dency parsing, on a per token basis. These features are comparable to the part-of-speech
unigram probabilities and to the phrase type rate based on phrase grammar parsing used
in earlier research (Nenkova et al., 2010).

VerbalRoots The ratio of sentences with a verbal root, that is, the ratio of sentences where the
root word is a verb to the total number of sentences (Dell’Orletta et al., 2011).

AvgVerbArity The average arity of verbs in the document, calculated as the average number of
dependents per verb (Dell’Orletta et al., 2011).

UnigramVerbArity The ratios of verbs with an arity of 0-7 as distinct features (Dell’Orletta
et al., 2011).
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 32 of 474]

We also propose the following four syntactic features:

TokensPerClause The average number of tokens per clause in the document. This is related to
the shallow feature average number of tokens per sentence.

PreModifiers The average number of nominal pre-modifiers per sentence.

PostModifiers The average number of nominal post-modifiers per sentence.

PrepComp The average number of prepositional complements per sentence in the document.

2.4 Evaluation

We evaluated the 21 single feature models presented above, three traditional metric models
and the ten compound models presented above. Some features, rendered in italics in Table 2,
consist of more than one concrete attribute and a few attributes are considered both as features
in themselves and as attributes in larger feature models.

To test our models we use 7-fold cross validation over a set of 1400 documents. Each chunk
consists of 100 easy-to-read texts and 100 non-easy-to-read texts. The corpora used to make
up the non-easy-to-read set are shuffled and might therefore not be evenly distributed among
the chunks (if this is a problem it should show up as a generally high standard deviation for all
accuracies).

The result of the evaluation represents each model’s ability to correctly identify easy-to-read
texts. The accuracy of a model represents the proportion of the documents which are correctly
classified as either easy-to-read or non-easy-to-read. A higher accuracy implies that the model,
and its underlying features, more strongly predict degree of readability. To complement the
accuracy we also provide precision and recall for the sets of easy-to-read texts and non-easy-
to-read texts respectively, this to better understand where low performing models might go
wrong.

In addition we present the standard deviation for each percentage based on the 7 folds of the
cross validation. A high standard deviation implies inconsistent performance.

3 Results and discussion

The results of our test runs are presented below. We present the average values for the 7-fold
cross validation in percent as well as the standard deviation in percentage points.

3.1 Traditional metrics

Among the traditional metrics (see Table 1) OVIX actually seems to perform about as well as
LIX. This is somewhat surprising as LIX is designed to directly measure readability while OVIX
is only assumed to indirectly measure readability. As OVIX considers totally different features
from LIX, it does, perhaps, strengthen the point that LIX, as the standard readability metric for
Swedish, might be overly simplistic.

Nominal ratio, NR, is the worst performing of the traditional metrics. It seems that the NR
model tend to over-classify documents as easy to read, demonstrated by high recall but low
precision for LäSBarT. As NR and ratio of content words, RatioContent, (see Table 2) both

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 33 of 474]

Table 1: Performance of the three traditional metrics. The accuracy represents the average
percentage of texts classified correctly, with the standard deviation within parentheses. Precision
and Recall are also provided, with standard deviations within parenthesis, for both easy-to-read
(LäSBarT) and non-easy-to-read (Other) sets.

LäSBarT Other
Model Accuracy Precision Recall Precision Recall

LIX 84.6 (1.9) 87.9 (2.9) 80.4 (2.8) 82.0 (2.1) 88.9 (3.0)
OVIX 85.6 (2.3) 86.8 (4.3) 84.4 (3.1) 84.9 (2.4) 86.9 (5.0)
NR 55.3 (9.1) 53.5 (6.8) 99.1 (1.9) 96.0 (7.7) 11.4 (20.1)

perform badly, it seems that only a more complex part-of-speech based feature, such as the
multi-attribute feature consisting of unigrams for all POS-types is sufficient. Further analysis of
single POS-type models might yield interesting results though.

3.2 Single feature models

Looking at Table 2 we see that most single feature models provide some indication on degree of
text readability. There are however some models which perform a lot worse than anticipated.

It seems that the average dependency distance per sentence, AvgDepDistSent, is more or less
useless, it might be that this is nothing more than a convoluted way to talk about sentence
length, AvgSentLength, which in itself appears to be a highly inconsistent feature. Both these
metrics over-classify documents as easy-to-read to a very high degree.

Also surprising is that the ratio of content words, RatioContent, does not seem to be a good
indicator of readability. However, this does not seem to be a problem of over-classification,
rather the model seems to be equally bad at classifying both sets, based on precision and recall
close to 50 % for both sets. It might be that a high ratio of content words indicate a higher
information density and therefore a more complex text while at the same time a low ratio might
instead indicate a syntactically complex text. In such cases a simple SVM classification is not
sufficient. Also, for an inflecting language like Swedish, the ratio of content words might yield
different results than for languages with a more modest morphology, as for instance English. As
with the nominal ratio metric, a closer inspection of single POS-type ratios might yield some
further clues.

The average number of tokens per clause, TokensPerClause, and the ratio of nominal post-
modifiers also seem to have a tendency to over-classify documents as easy-to-read having high
LäSBarT recall but relatively low precision. Nominal pre-modifiers, however, while still suffering
from slight easy-to-read over-classification, perform almost as well as LIX or OVIX when only
accuracy is considered.

Best performing of the single feature models are the unigram models for part-of-speech,
UnigramPOS, and dependency type, UnigramDepType. This is not surprising as these features
represent simple language models and language models are often very powerful when compared
to single attribute features.

It is only the unigram language models, UnigramPOS and UnigramDepType, and the average
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 34 of 474]

Table 2: Performance of the single feature models, italicised models consist of more than one
concrete attribute. The accuracy represents the average percentage of texts classified correctly,
with the standard deviation within parentheses. Precision and Recall are also provided, with
standard deviations within parenthesis, for both easy-to-read (LäSBarT) and non-easy-to-read
(Other) sets.

LäSBarT Other
Model Accuracy Precision Recall Precision Recall

AvgWordLengthChars 79.6 (2.6) 82.3 (5.0) 75.7 (1.4) 77.4 (1.3) 83.4 (5.5)
AvgWordLengthSylls 75.6 (2.6) 78.7 (4.0) 70.3 (2.8) 73.1 (2.1) 80.9 (4.4)

AvgSentLength 62.4 (8.1) 58.0 (7.5) 98.7 (3.0) 97.8 (4.0) 26.1 (19.2)
SweVocC 79.3 (0.8) 84.3 (1.1) 72.0 (2.1) 75.6 (1.2) 86.6 (1.3)
SweVocD 57.6 (3.8) 63.1 (7.4) 37.9 (5.2) 55.5 (2.7) 77.4 (6.3)
SweVocH 63.1 (4.5) 63.1 (4.6) 63.4 (5.1) 63.2 (4.5) 62.9 (5.4)

SweVocTotal 75.2 (1.4) 80.6 (3.4) 66.7 (2.3) 71.6 (0.8) 83.7 (4.2)
UnigramPOS 96.8 (1.6) 96.9 (2.5) 96.7 (1.1) 96.7 (1.1) 96.9 (2.6)
RatioContent 50.4 (1.8) 50.4 (1.7) 52.7 (3.1) 50.4 (1.9) 48.1 (3.6)

AvgDepDistDep 88.5 (2.0) 88.5 (2.3) 88.6 (2.2) 88.6 (2.1) 88.4 (2.4)
AvgDepDistSent 53.9 (10.2) 52.8 (7.2) 99.7 (0.8) 28.1 (48.0) 8.1 (21.1)

RightDeps 68.9 (2.1) 70.6 (3.2) 65.1 (4.0) 67.7 (2.1) 72.7 (4.6)
SentenceDepth 75.1 (3.5) 79.1 (4.3) 68.4 (4.6) 72.2 (3.4) 81.9 (4.2)

UnigramDepType 97.9 (0.8) 97.7 (1.1) 98.0 (1.3) 98.0 (1.3) 97.7 (1.1)
VerbalRoots 72.6 (2.0) 77.0 (3.4) 64.6 (3.3) 69.5 (1.7) 80.6 (4.3)
AvgVerbArity 63.4 (3.0) 64.9 (3.2) 58.4 (4.9) 62.3 (3.0) 68.4 (3.2)

UnigramVerbArity 68.6 (1.7) 70.2 (2.6) 65.0 (2.8) 67.4 (1.5) 72.3 (4.0)
TokensPerClause 71.4 (4.7) 64.2 (4.4) 98.6 (1.0) 97.0 (1.8) 44.3 (10.0)

PreModifiers 83.4 (2.9) 78.1 (3.1) 93.0 (2.2) 91.3 (2.6) 73.9 (4.5)
PostModifiers 57.4 (4.3) 54.1 (2.7) 99.9 (0.4) 98.4 (4.2) 15.0 (8.5)

PrepComp 83.5 (3.5) 80.1 (2.4) 89.1 (5.9) 88.1 (5.8) 77.9 (2.7)

dependency distance per dependency, AvgDepDistDep, that outperform the traditional metrics
OVIX and LIX. However, the average number of prepositional complements per sentence,
PrepComp, and nominal pre-modifiers per sentence, PreModifiers, respectively do come close.

3.3 Compound models

When we look at the compound models, Table 3 we can see highly improved performance. Not
surprisingly, we get the best performance from the Total model consisting of all features that
the system is able to extract.

All compound metrics except for the Shallow and Lexical models outperform the traditional
metrics. However, combining these two, the LexicalInc model, does outperform the traditional
metrics LIX, OVIX and NR.

Interestingly the UnigramPOS feature model seems to perform slightly better than the Morpho
model (which actually consists of UnigramPOS and RatioContent). The bad performance of the
ratio of content words model, RatioContent, might introduce some performance-decreasing

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 35 of 474]

Table 3: Performance of the ten compound models. The accuracy represents the average
percentage of texts classified correctly, with the standard deviation within parentheses. Precision
and Recall are also provided, with standard deviations within parenthesis, for both easy-to-read
(LäSBarT) and non-easy-to-read (Other) sets.

LäSBarT Other
Model Accuracy Precision Recall Precision Recall

TradComb 91.4 (3.0) 92.0 (4.6) 91.0 (2.1) 91.1 (2.2) 91.9 (4.9)
Shallow 81.6 (2.7) 83.3 (4.4) 79.4 (3.1) 80.3 (2.5) 83.9 (4.9)
Lexical 78.4 (2.2) 81.8 (2.9) 73.0 (2.9) 75.6 (2.1) 83.7 (3.0)
Morpho 96.7 (1.6) 96.8 (2.6) 96.7 (1.4) 96.7 (1.3) 96.7 (2.7)
Syntactic 98.0 (1.1) 97.9 (1.7) 98.1 (1.2) 98.1 (1.2) 97.9 (1.8)
LexicalInc 90.1 (2.9) 87.1 (4.1) 94.3 (2.6) 93.8 (2.7) 85.9 (4.9)
MorphoInc 97.3 (0.8) 96.9 (1.6) 97.7 (1.6) 97.7 (1.5) 96.9 (1.7)
SyntacticInc 98.4 (0.9) 98.3 (1.4) 98.6 (1.0) 98.6 (1.0) 98.3 (1.4)

NoDep 98.3 (1.0) 97.4 (1.9) 99.3 (1.3) 99.3 (1.2) 97.3 (2.0)
Total 98.9 (1.0) 98.9 (1.1) 98.9 (1.1) 98.9 (1.1) 98.9 (1.1)

confusion though.

The Morpho and Syntactic models both more or less equal the UnigramPOS and UnigramDep-
Type models respectively implying that these are by far the most important features in the
respective models.

4 Conclusions

In this study we have presented a large number of feature models proposed for readability
assessment. Most of these models have previously been shown to be useful for assessing
readability of English texts. Our results show that many of them are also relevant for Swedish,
however some models are less relevant, most notably the ratio of content words, RatioContent,
for which we have no simple explanation. Contrary to, for instance, NR which erroneously
classify many texts as readable and consequentially achieves avery low accuracy, RatioContent
does not have a high recall on any category in the corpora.

The best performing features seem to be part-of-speech or dependency type based language
models, especially the compound models that require parsing using a dependency parser;
Syntactic, SyntacticInc and Total. These models all have high Accuracy, more than 98% and a
fairly low standard deviation showing a stable performance.

We also show that a combination of the three established metrics outperform the standard LIX
metric but also that the use of the raw data necessary to calculate those metrics (the data in
the MorphoInc model) might possibly be put to even better use. Dependency grammar parsing
seems to provide very useful data for identifying easy-to-read texts but in an environment
where such heavy calculations are infeasible a very good result might be found without it as
demonstrated by the NoDep model.

We propose that future research look further into the language models represented by the
UnigramPOS and UnigramDepType models. It might be possible to construct relatively simple

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 36 of 474]

metrics based on only a few of the attributes in these models. It might also be possible to
construct even better performing models by looking at bigrams or trigrams instead of just
unigrams.

Acknowledgments

We would like to thank Santa Anna IT Research Institute AB for funding this research as well as
the staff members at Språkbanken who created and let us use the Korp corpus import tool.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 37 of 474]

References

Alusio, S., Specia, L., Gasperin, C., and Scarton, C. (2010). Readability assessment for text
simplification. In Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 1–9.

Björnsson, C. H. (1968). Läsbarhet. Liber, Stockholm.

Borin, L., Forsberg, M., and Roxendal, J. (2012). Korp – the corpus infrastructure of språk-
banken. In Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC’12).

Chall, J. S. and Dale, E. (1995). Readability revisited: The new Dale–Chall readability formula.
Brookline Books, Cambride, MA.

Coleman, M. and Liau, T. L. (1975). A computer readability formula designed for machine
scoring. Journal of Applied Psychology, 60:283–284.

Collins-Thompson, K. and Callan, J. (2004). A Language Modeling Approach to Predicting
Reading Difficulty. In Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics.

Dale, E. and Chall, J. S. (1949). The concept of readability. Elementary English, 26(23).

Davison, A. and Kantor, R. N. (1982). On the failure of readability formulas to define readable
texts: A case study from adaptations. Reading Research Quarterly, 17(2):187–209.

Dell’Orletta, F., Montemagni, S., and Venturi, G. (2011). READ-IT: Assessing Readability of
Italian Texts with a View to Text Simplification. In Proceedings of the 2nd Workshop on Speech
and Language Processing for Assistive Technologies, pages 73–83.

Falkenjack, J. and Heimann Mühlenbock, K. (2012). Readability as probability. In Proceedings
of The Fourth Swedish Language Technology Conference, pages 27–28.

Feng, L. (2010). Automatic Readability Assessment. PhD thesis, City University of New York.

Flesch, R. (1948). A new readibility yardstick. Journal of Applied Psychology, 32(3):221–233.

Fry, E. B. (1968). A readability formula that saves time. Journal of Reading, 11:513–516.

Heilman, M. J., Collins-Thompson, K., Callan, J., and Eskenazi, M. (2007). Combining Lexical
and Grammatical Features to Improve Readability Measures for First and Second Language
Texts. In Proceedings of NAACL HLT 2007, pages 460–467.

Heilman, M. J., Collins-Thompson, K., and Eskenazi, M. (2008). An Analysis of Statistical
Models and Features for Reading Difficulty Prediction. In Proceedings of the Third ACL Workshop
on Innovative Use of NLP for Building Educational Applications, pages 71–79.

Heimann Mühlenbock, K. (2013). I see what you mean. Assessing readability for specific target
groups. Dissertation, Språkbanken, Dept of Swedish, University of Gothenburg.

Hultman, T. G. and Westman, M. (1977). Gymnasistsvenska. LiberLäromedel, Lund.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 38 of 474]

Kincaid, J. P., Fishburne, R. P., Rogers, R. L., and Chissom, B. S. (1975). Derivation of new
readability formulas (Automated Readability Index, Fog Count, and Flesch Reading Ease
Formula) for Navy enlisted personnel. Technical report, U.S. Naval Air Station, Millington, TN.

Liu, H. (2008). Dependency distance as a metric of language comprehension difficulty. Journal
of Cognitive Science, 9(2):169–191.

McLaughlin, G. H. (1969). SMOG grading - a new readability formula. Journal of Reading,
22:639–646.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM,
38(11):39–41.

Mühlenbock, K. (2008). Readable, Legible or Plain Words – Presentation of an easy-to-read
Swedish corpus. In Saxena, A. and Viberg, Å., editors, Multilingualism: Proceedings of the
23rd Scandinavian Conference of Linguistics, volume 8 of Acta Universitatis Upsaliensis, pages
327–329, Uppsala, Sweden. Acta Universitatis Upsaliensis.

Mühlenbock, K. and Johansson Kokkinakis, S. (2009). LIX 68 revisited - An extended read-
ability measure. In Mahlberg, M., González-Díaz, V., and Smith, C., editors, Proceedings of the
Corpus Linguistics Conference CL2009, Liverpool, UK.

Nenkova, A., Chae, J., Louis, A., and Pitler, E. (2010). Structural Features for Predicting the
Linguistic Quality of Text Applications to Machine Translation, Automatic Summarization and
Human–Authored Text., pages 222–241. Empirical Methods in NLG. Springer-Verlag.

Nivre, J., Hall, J., and Nilsson, J. (2006). MaltParser: A Data-Driven Parser-Generator for
Dependency Parsing. In Proceedings of the fifth international conference on Language Resources
and Evaluation (LREC2006), pages 2216–2219.

Petersen, S. (2007). Natural language processing tools for reading level assessment and text
simplification for bilingual education. PhD thesis, University of Washington, Seattle, WA.

Petersen, S. and Ostendorf, M. (2009). A machine learning approach toreading level assess-
ment. Computer Speech and Language, 23:89–106.

Pitler, E. and Nenkova, A. (2008). Revisiting Readability: A Unified Framework for Predicting
Text Quality. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language
Processing, pages 186–195, Honolulu, HI.

Platt, J. C. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines. Technical Report MSR-TR-98-14, Microsoft Research.

Schwarm, S. E. and Ostendorf, M. (2005). Reading level assessment using support vector
machines and statistical language models. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics.

Sjöholm, J. (2012). Probability as readability: A new machine learning approach to readability
assessment for written Swedish. Master’s thesis, Linköping University.

Smith, C., Danielsson, H., and Jönsson, A. (2012). A good space: Lexical predictors in vector
space evaluation. In Proceedings of the eighth international conference on Language Resources
and Evaluation (LREC), Istanbul, Turkey.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 39 of 474]

Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools
and Techniques. The Morgan Kaufmann series in data management system. Morgan Kaufmann
Publishers, third edition.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 40 of 474]

Towards a Dependency-based PropBank of General Finnish

Katri Haverinen,1,2 Veronika Laippala,3 Samuel Kohonen,2 Anna Missilä,2

Jenna Nyblom,2 Stina Ojala,2 Timo Viljanen,2

Tapio Salakoski1,2 and Filip Ginter2

(1) Turku Centre for Computer Science (TUCS), Turku, Finland
(2) Department of Information Technology, University of Turku, Finland

(3) Department of Languages and Translation Studies, University of Turku, Finland

first.last@utu.fi

ABSTRACT
In this work, we present the first results of a project aiming at a Finnish Proposition Bank, an
annotated corpus of semantic roles. The annotation is based on an existing treebank of Finnish,
the Turku Dependency Treebank, annotated using the well-known Stanford Dependency scheme.
We describe the use of the dependency treebank for PropBanking purposes and show that both
annotation layers present in the treebank are highly useful for the annotation of semantic roles.
We also discuss the specific features of Finnish influencing the development of a PropBank as
well as the methods employed in the annotation, and finally, we present preliminary evaluation
of the annotation quality.

KEYWORDS: PropBank, Finnish, dependency.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 41 of 474]

1 Introduction

Semantic role labeling (SRL) is one of the fundamental tasks of natural language processing. In
a sense, it continues from where syntactic parsing ends: it identifies the events and participants,
such as agents and patients, present in a sentence, and therefore it is an essential step in
automatically processing the sentence semantics. SRL can be applied in, for example, text
generation, text understanding, machine translation and fact retrieval (Palmer et al., 2005).

There have been several different efforts to capture and annotate semantic roles, the best-known
projects being FrameNet (Baker et al., 1998), VerbNet (Dang et al., 1998) and PropBank (Palmer
et al., 2005), all built for the English language. Out of the three resources, FrameNet is the
most fine-grained one, defining roles for specific classes of verbs, such as Cook and Food for
verbs relating to cooking. PropBank, in contrast, uses very generic labels, and is the only one of
the three intended for corpus annotation rather than as a lexical resource. VerbNet, in turn, is
between FrameNet and PropBank in granularity, and somewhat like PropBank, has close ties to
syntactic structure. For a more thorough comparison of the three schemes, see the overview
by Palmer et al. (2010).

The PropBank scheme in particular has become popular for semantic role labeling resources:
after the initial effort on English, PropBanks for different languages have emerged, including,
among others, PropBanks for Chinese (Xue and Palmer, 2009), Arabic (Zaghouani et al., 2010),
Hindi (Palmer et al., 2009) and Brazilian Portuguese (Duran and Aluísio, 2011). As a PropBank
is intended for corpus annotation purposes, and as the annotation scheme is closely tied to
syntax, PropBanks are annotated on top of existing treebanks.

For Finnish, a freely available general language treebank has recently become available (Haver-
inen et al., 2010b, 2011), but no corpus annotated for semantic roles exists in the general
domain. Haverinen et al. (2010a) have previously made available a small-scale PropBank of clin-
ical Finnish, and thus shown that in principle, the PropBank scheme is suitable for Finnish and
combinable with the Stanford Dependency (SD) scheme (de Marneffe and Manning, 2008a,b),
the annotation scheme of both the clinical treebank and the general language treebank of
Haverinen et al.

In this work, we present the first results of a project that aims to create a general language
PropBank for Finnish, built on top of the existing Turku Dependency Treebank. This paper
describes the methodology used for constructing the PropBank in a dependency-based manner,
as well as shows the utility of the two different annotation layers present in the treebank. We
also discuss the ways in which the Finnish PropBank relates to the English PropBank, our efforts
to provide links between the two resources and the specific features of the Finnish language
that require attention in the annotation process. Finally, we discuss the employed annotation
methods and present preliminary evaluation.

2 PropBank Terminology

The purpose of a Proposition Bank or PropBank, as originally developed for English by Palmer
et al. (2005), is to provide running text annotation of semantic roles, that is, the participants of
the events described. For instance, the participants may include an agent who actively causes
the event, or a patient, someone to whom the event happens. As defining a single set of roles
that would cover all possible predicates is difficult, the PropBank annotation scheme defines
roles on a verb-by-verb basis. Each verb receives a number of framesets, which can be thought
of as coarse-grained senses for the verb. Each frameset consists of a roleset, which is a set of

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 42 of 474]

act.01: to play a role, to behave act.02: to do something
arg0 Player arg0 Actor
arg1 Role arg1 Grounds for action

Figure 1: Two framesets for the verb to act. The frameset act.01 is intended for usages such as
He acted as her trustee and the frameset act.02 for usages such as He acted on the knowledge that
she betrayed him.

semantic roles associated with this sense of the verb, and in addition, a set of syntactic frames
that describe the allowable syntactic variations.

The roles or arguments in each roleset are numbered from zero onwards. A verb can have up to
six numbered arguments, although according to Palmer et al. most verbs have two to four. The
arguments zero and one (Arg0 and Arg1) have specific, predefined meanings: Arg0 is reserved
for agents, causers and experiencers, and Arg1 is used for patients and themes. The arguments
Arg2 to Arg5 have no predefined meanings, but rather they are specified separately for each
verb. The original PropBank project makes an effort, however, to keep also these arguments
consistent within classes of verbs defined in VerbNet (Dang et al., 1998). Figure 1 illustrates
two framesets for the English verb to act.

In addition to numbered arguments, the PropBank scheme defines so called adjunct-like argu-
ments or ArgMs. These, unlike the numbered arguments, are not verb-specific, but rather can
be applied to any verb. The original PropBank defines a set of 11 different ArgMs: location
(LOC), extent (EXT), discourse (DIS), negation (NEG), modal verb (MOD), cause (CAU), time
(TMP), purpose (PNC), manner (MNR), direction (DIR) and general purpose adverbial (ADV). The
distinction between numbered arguments and ArgMs is made on the basis of frequency: roles
that occur frequently with a particular verb sense are given numbered argument status, and
less frequent roles are left as ArgMs.

PropBanks are constructed in a data-driven manner using an underlying treebank. For each
different verb present in the corpus, the verb senses observed are assigned framesets in a process
called framing, and after the framesets have been created, the occurrences in the treebank are
annotated accordingly. For each verb occurrence, the annotator must select the correct frameset
and mark the arguments as defined in this frameset as well as the ArgMs.

3 The Turku Dependency Treebank

This work builds on top of the previously established Turku Dependency Treebank (TDT) (Haver-
inen et al., 2010b, 2011), which consists of 204,399 tokens (15,126 sentences) from 10 different
genres of written Finnish. The text sources of the treebank are the Finnish Wikipedia and
Wikinews, popular blogs, a university online magazine, student magazines, the Finnish sections
of the Europarl and JRC-Acquis corpora, a financial newspaper, grammar examples from a
Finnish reference grammar and amateur fiction from various web-sources.

The syntax annotation scheme of the treebank is a Finnish-specific version of the well-known
Stanford Dependency (SD) scheme (de Marneffe and Manning, 2008a,b). The SD scheme
represents the syntactic structure of a sentence as a directed graph, where the nodes represent
the words of the sentence and the edges represent pairwise dependencies between them. Each
dependency has a direction, meaning that one of the two words connected is the head or
governor and the other is the dependent. Each dependency also has a type or label, which
describes the syntactic function of the dependent.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 43 of 474]

Actor
Näyttelijä

has
on

lived
asunut

earlier
aiemmin

in_Italy
Italiassa

and
ja

moved
muuttanut

from_there
sieltä

to_Germany
Saksaan

.

.

<aux advmod> advmod>
<nsubj nommod> nommod>

cc>
conj>

punct>

Figure 2: The SD scheme on a Finnish sentence. The example can be translated as The actor
has earlier lived in Italy, and moved from there to Germany.

old cars and bikes

<amod cc>
conj>

old cars and bikes

<amod cc>
conj>

<amod

Figure 3: Conjunct propagation and coordination scope ambiguity. Left: the reading where only
the cars are old. Right: The reading where both the cars and the bikes are old.

The original SD scheme contains 55 dependency types arranged in a hierarchy, where each type
is a direct or indirect subtype of the most general dependency type dependent (dep). The scheme
has four different variants, each using a different subset of the dependency types and giving
a different amount of information on the sentence structure. The basic variant of the scheme
restricts the sentence structures to trees, and the dependency types convey mostly syntactic
information. The other variants add further dependencies on top of the tree structure, making
the structures graphs rather than trees.

TDT uses a Finnish-specific version of the scheme, which defines a total of 53 dependency
types and is described in detail in the annotation manual by Haverinen (2012). The annotation
consists of two different layers of dependencies. The first annotation layer is grounded on the
basic variant of the SD scheme, and hence the structures of the sentences in this layer are trees.
The base layer of annotation is illustrated in Figure 2. The second annotation layer, termed
Conjunct propagation and additional dependencies, adds on top of the first layer additional
dependencies describing the following phenomena: propagation of conjunct dependencies,
external subjects and syntactic functions of relativizers.

Conjunct propagation in the SD scheme provides further information on coordinations. The basic
variant of the scheme considers the first coordinated element the head, and all other coordinated
elements and the coordinating conjunction depend on it. Therefore, if a phrase modifies the
first element of a coordination, it may in fact also modify all or some of the other conjuncts,
and it should be propagated to those conjuncts that it modifies. Similarly, it is possible that all
or some of the coordinated elements modify another sentence element. Conjunct propagation is
used to resolve some (not all) coordination scope ambiguities; for instance, whether the adjective
old modifies both cars and bikes or only cars in the phrase old cars and bikes (see Figure 3).

External subjects occur with open clausal complements, where a verb and its complement verb
share a subject (subject control). The fact that the subject of the first verb is also the subject
of the second verb cannot be marked in the first layer due to treeness restrictions, leaving it
part of the second layer. Relativizers, or the phrases containing the relative word, such as which
or who, are only marked as relativizers in the first layer of the treebank annotation, again in
order to preserve the treeness of the structure. However, they also always have a secondary
syntactic function, which in turn is annotated in the second layer of TDT. For instance, in The
man who stood at the door was tall, the pronoun who acts as the subject of the verb stood. All of
the phenomena addressed in the second layer of TDT are illustrated in Figure 4.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 44 of 474]

Man
Mies

,
,

who
joka

started_to
alkoi

run
juosta

and
ja

shout
huutaa

crazily
hurjasti

,
,

almost
melkein

collided
törmäsi

into_me
minuun

.

.

<rel xcomp> cc> advmod*> <advmod nommod>
<nsubj conj> punct>

<punct advmod>
<xsubj

rcmod>
<xsubj*

punct>
<nsubj

Figure 4: The second annotation layer of TDT. The example can be translated as The man, who
started to run and shout crazily, almost collided with me. All second layer dependencies are in
bold, and propagated dependencies are marked by an asterisk. The relative pronoun joka (who)
also acts as the subject of the relative clause, as well an external subject to an open clausal
complement. The external subject of the verb juosta (run) is also the external subject of the
second coordinated verb, huutaa (shout) and is therefore propagated to the second conjunct.
Similarly, the adverb modifier hurjasti (crazily) is shared between the two coordinated verbs.
None of these phenomena can be accounted for in the first layer of annotation due to the
treeness restriction.

Judges
Tuomaristo

disqualified
hylkäsi.2

competitor
kilpailijan

deceit
vilpin

due_to
vuoksi

and
ja

ordered
määräsi.2

punishment
rangaistuksen

.

.

<nsubj:0 dobj:1> adpos> dobj:1>
nommod:AM−cau>

cc>
conj>

<nsubj:0
punct>

Figure 5: PropBank annotation on top of the dependency treebank. Dependencies with an
associated PropBank argument are marked in bold. Note how one of the arguments (Arg0)
of the latter verb in the sentence is associated with a second-layer dependency. The example
sentence can be translated as The judges disqualified the competitor due to deceit and ordered a
punishment.

4 Dependency-based PropBanking

The PropBank annotation of this work is built on top of the dependency syntax annotation of
TDT, including both the first and second annotation layer. This is in contrast to the English
PropBank, which has been built on top of the constituency-based Penn Treebank (Marcus et al.,
1993). In the Finnish PropBank, each argument of a verb is associated with a dependency (be it
first or second layer) in the underlying treebank, which means that the subtree of the dependent
word, as defined by the dependencies of the first annotation layer, acts as the argument. For an
illustration of the dependency-based PropBank annotation, see Figure 5.

In contrast to the original PropBank (Palmer et al., 2005) where in theory any constituent could
be an argument, we make use of a heuristic: in most cases, the arguments of a verb will be
its direct dependents. However, unlike the clinical language pilot study of Haverinen et al.
(2010a), we do annotate all arguments, whether direct dependents of the verb or not. The
heuristic of direct dependents being the likeliest arguments is only used to increase the speed
of annotation by highlighting likely argument candidates for the annotator in the annotation
software. In cases where an argument is found outside the dependents of the verb, we allow an
extra dependency of the type xarg (external argument) to be added to any non-dependent word
at annotation time, so that the argument can be attached to this dependency. For an illustration
of external arguments, see Figure 6.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 45 of 474]

After_running
Juostuaan.1

kilometer
kilometrin

Jussi
Jussi

reached
saavutti.1

his_coat
takkinsa

took
vieneen.1

man
miehen

.

.

dobj:2> <nsubj:0 <dobj:1 <partmod
xarg:0>xarg:0>

<advcl:AM−tmp dobj:1>
punct>

Figure 6: Arguments that are not direct dependents of the verb. On the left, the third person
singular possessive suffix of the verb juostuaan (after running, after he ran) shows that it shares
the subject of saavutti (reached), although this is not marked in the syntax annotation as the
structure is not a case of subject control. On the right, semantically the noun miehen (man)
is an argument to the verb vieneen (took), although syntactically, the verb participle modifies
the noun. Note how by the assumption of whole subtrees forming arguments, the verb vieneen
itself is incorrectly included in its own argument (Arg0) in the rightmost case. The example can
be translated as After running a kilometer, Jussi reached the man who took his coat.

In the currently complete portion of the PropBank, 81.0% of all arguments, including both
numbered arguments and ArgMs, are associated with a dependency of the first syntactic layer.
If one takes into account dependencies of the second layer as well as the first, 93.1% of the
arguments are covered, leaving a portion of 6.9% as external arguments. This shows that while
the first layer of annotation does not suffice to cover an adequate proportion of the arguments,
the second layer, which was annotated exactly for the purpose of finding semantic arguments
falling outside the base-syntactic dependents of a verb, covers the majority of the remaining
arguments.

As Choi and Palmer (2010) have shown, when using a dependency treebank for constructing a
PropBank, in some cases the assumption that arguments are the dependents of the verb and
their full subtrees results in some missing arguments that are directly due to the dependency
structure of the sentence, as well as incorrect argument boundaries. In our work, the missing
arguments are remedied by the xarg strategy, for instance in the case of a participal modifier,
which is syntactically a dependent of the noun, although in fact the noun is its semantic
argument. This is illustrated in Figure 6. In the case of a participal modifier, however, the
addition of an xarg dependency leads to an incorrect argument boundary, as by the full subtree
assumption the verb itself becomes part of its own argument. It should be noted that using the
SD scheme already prevents some of the boundary issues mentioned by Choi and Palmer. For
instance, in their work, modal verbs are problematic, as they are marked as the head of the
main verb, whereas in the PropBank, the modal verb should be marked as an ArgM-mod for
the main verb. In SD, however, the main verb is made the head and the auxiliary depends on
it, which is unproblematic for PropBank annotation. A principled solution for the remaining
boundary issues is not proposed in this paper, but is left as future work — perhaps using a
rule-based approach, seeing that the boundary issues consist mostly of clear, regular cases.

5 Specific Features of Finnish Verbs

In the development of the Finnish PropBank, we have followed the same design principles as
were used in the original PropBank: the arguments are numbered similarly from zero onwards,
and the principles on which the framesets are created and distinguished are the same. We also
use the same set of adjunct-like arguments, ArgMs, only adding two new subtypes, consequence
(CSQ) and phrasal marker (PRT).

In order to expand the application potential of the Finnish PropBank to multilingual settings,
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 46 of 474]

erota.2: leave a job quit.01: leave a job
Arg0 Person quitting Arg0 Person quitting
Arg1 Job or position Arg1 Job or position

Figure 7: Finnish and English verbs with corresponding framesets. The Finnish verb erota can be
translated as to quit, and the framesets of this verb sense define identical argument structures.
Therefore, the Finnish frameset is assigned the English as its corresponding frameset.

we assign to the Finnish frameset a corresponding frameset from the English PropBank where
possible. Naturally, not all Finnish framesets have a corresponding English frameset, due to
differences between the two languages. In this section, we discuss the specific features of
the Finnish language influencing the creation of a PropBank, as well as the assignment of a
corresponding English frameset and cases where no such frameset exists.

5.1 Frameset Correspondences and Non-correspondences

A frameset is assigned a corresponding English PropBank frameset when two conditions apply.
The English verb must be a valid translation for the sense of the Finnish verb under consideration,
and the two framesets must have the same arguments present, with matching argument numbers
as well as argument descriptions. Occasionally, the argument descriptions of a corresponding
English frameset are slightly rephrased in order to maximize the internal consistency of the
Finnish PropBank.

As an example of corresponding framesets, one of the senses of the Finnish verb erota can be
translated as to quit and it is used in contexts such as quitting a job or a position. This sense
of the verb has its own frameset in the Finnish PropBank, and it is assigned a corresponding
frameset in the English PropBank. The two framesets are illustrated in Figure 7.

For some verbs, however, the specific features of Finnish and the usages of the verbs being
different to English do not allow assigning corresponding framesets. For instance, the frameset
for the Finnish verb korjata meaning to fix or to repair, corresponds to neither of the English
framesets, which, in turn, are also different from each other. The framesets for the three verbs
are illustrated in Figure 8.

The difference between the two English framesets lies in the Arg2 argument; to fix includes an
argument described as benefactive, which is absent in the description of to repair. The Finnish
frameset, in contrast, contains an Arg2 describing an instrument, which is absent in both of
the English framesets. Therefore it cannot be assigned either of them as the corresponding
frameset. The addition of the instrument argument was necessary, however, as it is frequently
found in the instances of the verb in the underlying treebank.

The corpus-based development of the framesets implies, naturally, that the non-correspondence
of framesets does not necessarily indicate a difference between the languages. As the framesets
are based on the treebank texts, they do not reflect all possible meanings and argument
structures that a verb can have. This means that a non-correspondence can be caused merely
by the limited and possibly different topics and text sources of the underlying treebanks. For
example, the non-correspondence of the verb korjata with its English equivalents may be, at
least partly, caused by contextual differences in the treebank texts.

A clear example of contextual differences causing non-correspondence of framesets is the Finnish
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 47 of 474]

fix.02: to repair korjata.1: to fix, to repair
arg0 Fixer arg0 Entity repairing something
arg1 Thing fixed arg1 Entity repaired
arg2 Benefactive arg2 Instrument, thing repaired with
repair.01: to restore after damage or injury
arg0 Repairer, agent
arg1 Entity repaired

Figure 8: Framesets of Finnish and English verbs with the meaning to repair. The Finnish
frameset contains an argument describing the instrument of fixing, which is not present in
either of the English framesets. Note that also the two English framesets differ in that the
frameset for to fix contains a benefactive argument, whereas the frameset for to repair does not.

run.02: walk quickly, course or contest juosta.1: move rapidly on foot
arg0 Runner arg0 Creature running, agent
arg1 Course, race, distance arg2 EXT, distance
arg2 Opponent arg3 Start point

arg4 End point

Figure 9: Framesets of Finnish and English verbs describing running, the rapid movement of an
agent on foot. The English frameset describes running a competition or a course, as in John
ran a marathon, and the Finnish frameset describes running from one location to another, as
in John ran from home to work. The abbreviation EXT on the Finnish frameset refers to extent,
which is one of the ArgM subtypes defined in the PropBank scheme.

verb juosta and its English counterpart, to run, both of which describe the rapid movement of an
agent. In the underlying Finnish treebank, the majority of examples describe an agent running
from one location to another. However, the English PropBank does not contain a frameset for
such a use of the verb to run, but rather only a frameset describing running a competition,
distance or course. This is presumably due to the Penn Treebank only containing such examples,
as the English to run can perfectly well be used for describing movement between two locations
(see for instance the Collins English dictionary (2009)). As the examples present in the Finnish
treebank require a frameset whose equivalent does not exist in the English PropBank, the
framesets for these two verbs are necessarily different, as illustrated in Figure 9.

5.2 Finnish Causative Verbs and Polysemous Verbs in English

In addition to verbs differing by virtue of different usages, a more systematic difference between
English and Finnish verbs is caused by the verb derivation system in Finnish. In English, many
verbs, especially those of movement, are polysemous and can be used in different syntactic
configurations. These verbs, also termed variable behavior verbs (see the work of Levin and
Hovav (1994) and Perlmutter (1978)), can take as their syntactic subject either an agent actively
causing an event or a patient merely undergoing it. For instance, the verb to move can have
both subject types, as in I move versus The chair moves. In addition, the verb can also be used
transitively, as in I move the chair, where the agent causes the event undergone by the patient.

In contrast, Finnish expresses the transitive meaning using a separate verb, typically formed by
adding a morpheme to the root verb. For example, from the verb liikkua (to move, intransitive),
it is possible to derive liikuttaa (to make something move), as illustrated in Figure 10. These
causative verbs can be formed both from originally transitive, such as syödä (to eat), the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 48 of 474]

(1) I move Minä liikun
(2) The chair moves Tuoli liikkuu
(3) I move the chair *Minä liikun tuolia

Minä liikutan tuolia

Figure 10: Verbs taking both agents and patients as subjects in English and in Finnish. In
English, the verb to move has three different uses: two intransitive uses and one transitive,
where the agent causes the event occurring to the patient. In Finnish, this last sense, the
transitive one, is expressed by a causative verb derived from the root verb.

liikkua.1: to move, be moved liikuttaa.1: to move something
arg0 Entity moving actively arg0 Entity moving arg1
arg1 Entity whose movement something causes arg1 Entity moved

if not arg0
arg2 Place arg2 Place
move.01: change location
arg0 Mover
arg1 Moved
arg2 Destination

Figure 11: Framesets of Finnish and English verbs with the meaning to move. Top left: Finnish,
intransitive verb that takes as its subject either an agent or a patient. Top right: Finnish,
transitive causative verb for moving. Bottom left: English, transitive and intransitive uses.
Despite appearances, the frameset liikuttaa.1 does not correspond to the frameset move.01, as
the English verb is allowed to take either an Arg0 or an Arg1 as its subject, whereas the Finnish
verb is not.

causative being syöttää (to feed), and intransitive verbs, such as nukkua (to sleep), where the
causative is nukuttaa (to make someone sleep) (Hakulinen et al., 2004, §311). For causatives
and causativity in general, see for instance the work of Shibatani (1976) and Itkonen (1996),
and the introduction by Paulsen (2011).

For the English PropBank, all three usages of the verb to move can be defined by a single
frameset that includes both argument zero and argument one. Depending on the arguments
present in a sentence, one or both arguments can be annotated, as PropBank does not require
that all arguments are present in all examples. The formulation of the Finnish framesets and
the assignment of corresponding framesets is, however, more challenging.

Because of its specific argument structure, the frameset for the Finnish causative derivation
liikuttaa (to make something move) cannot be assigned the English to move as its corresponding
frameset; to move can take either an Arg0 or an Arg1 as its subject, while liikuttaa can not.
Despite this, the verb can still have the same arguments as the English frameset. As the Finnish
intransitive liikkua (to move) is able to take either an agent or a patient as a subject, we assign
it a single frameset that contains both an Arg0 and an Arg1, and explicitly mark that these
arguments are mutually exclusive, meaning that only one of them should be annotated in any
given example. Figure 11 illustrates the framesets of the two Finnish verbs and for comparison,
the English verb to move.

It is also possible, although less common, for a Finnish verb taking alternatively an agent or a
patient as its subject to allow a transitive usage. An example of this is the verb lentää (to fly),

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 49 of 474]

where the intransitive with an agent (lintu lentää, the bird flies), the intransitive with a patient
(lentokone lentää, the plane flies) and the transitive (pilotti lentää lentokonetta, the pilot flies the
plane) all use the same verb. These verbs are treated similarly to the original PropBank as they
are not problematic in the same way as the verbs described above, but they are nevertheless
marked as variable behavior verbs in the frameset.

6 Annotation Protocol

The annotation of the Finnish PropBank, similarly to the English one, consists of two main
phases. In the first phase, each verb is given a number of framesets that describe the different
senses of the verb as they occur in the underlying corpus, and in the second phase, all the
occurrences of the verb are annotated according to the framesets given.

In order to recognize tokens that require PropBank annotation, we use the open source mor-
phological analyzer OMorFi (Pirinen, 2008; Lindén et al., 2009), which gives each token all of
its possible readings with no disambiguation between them. In order to ensure the annotation
of all verbs in the treebank, all tokens that receive a verbal reading, or a reading indicating
that the word can be a minen-derivation (resembles the English ing-participle), are selected
for annotation. Calculated in this manner, the Turku Dependency Treebank contains 49,727
potential verb tokens that require annotation, and 2,946 possible different verb lemmas. At this
stage, 335 lemmas have been fully annotated, resulting in a total of 9,051 annotated tokens.
This means that with respect to lemmas, approximately 11.4% of the work has been completed,
and with respect to tokens, the estimate is 18.2%. It should be noted that when advancing from
the common verbs towards verbs with less occurrences, the annotation becomes gradually more
laborious. As illustrated in Figure 12, the amount of verbs with a large amount of occurrences
is fairly small as compared to the amount of verbs with only few occurrences. The framing and
annotation in this project commenced not from the most common verbs but rather those with a
middle range occurrence rate, in order to settle the annotation scheme before moving to the
most common verbs. Thus at this stage, the verbs with the most occurrences are in fact not yet
annotated.

In total six different annotators, with different amounts of previous experience and different
backgrounds, contribute to the PropBank, and the same annotators also act as framers. The
verbs present in the treebank are framed and annotated one lemma at a time. In the beginning
of the annotation process, all occurrences of each lemma were double annotated, in order
to ensure high annotation quality even in the beginning phases of the project. As the work
has progressed, we have gradually moved towards single annotation; high-frequency lemmas
are partially double annotated, while low-frequency lemmas are single annotated. This is to
increase the annotation speed while still being able to measure and control the annotation
quality even after the initial learning phase.

In the case of double annotation, the two annotators assigned to a lemma create the framesets
jointly, after which both of them independently annotate all occurrences using these framesets.
At this stage, the annotator is required to mark both the numbered arguments and the adjunct-
like arguments present in each example. Afterwards, the two analyses of each example are
automatically merged, so that all disagreements can easily be seen, and in a meeting between
all annotators, a single correct analysis is decided upon. Partially double annotated lemmas are
framed in co-operation, and a portion of the occurrences is double annotated while the rest are
divided between the annotators. In single annotation, each lemma is given to one annotator,
and additionally, one annotator is assigned as a consultant, whom the annotator of the lemma

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 50 of 474]

 1

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 to

ke
ns

 (
lo

g
x)

Number of lemmas

Figure 12: Numbers of verb lemmas of different frequencies as sorted from the highest number
of occurrences to the lowest. High-frequency lemmas are relatively few, while many different
low-frequency lemmas occur in the treebank text.

can turn to if facing problems with the framing. If unsure in the annotation phase, be it double
or single annotation, an annotator can mark any argument as unsure. This function can also be
used to signal suspected syntax-level errors in the treebank, as annotators are not allowed to
alter the syntax at this stage.

In order to alleviate the labor-intensity of creating the framesets, batches of similar verbs are
given their framesets simultaneously. When creating a new frameset for a lemma, the annotator
is to consider whether there are other verbs that should also receive the same frameset, if
such verbs are easily found. (The opposite is also possible: when considering a lemma, if
the annotator finds that an existing frameset from another lemma can be re-used, they may
copy the desired frameset for the verb under consideration.) For instance, if an annotator is
considering the verb to like, possible other verbs that could receive the same frameset would be
to love, to care or other verbs expressing affection that may have the same arguments. However,
simply having the same arguments as in numbered arguments is not sufficient to be included in
the same batch: for instance, verbs of dislike, although they also receive arguments describing
the experiencer and the object of the feeling, should not be assigned to the same batch as the
verbs of affection. In order to be included in the same batch, the verbs must have the same
numbered arguments, and also the argument descriptions are required to be suitable for all
verbs included.

This strategy has two benefits: in addition to saving time by creating framesets practically with
no additional cost, it can enforce some consistency across the verbs. As a minor drawback,
it requires additional care, as annotators should always make sure that the lemma they are
considering does not already have the intended frameset as a side product of some other
lemma. Also, if making a frameset for several verbs at once, care should be taken that verbs
assigned simultaneously to other annotators do not receive framesets without these annotators’
knowledge.

The distinctions between different framesets are made according to guidelines similar to those
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 51 of 474]

used in the English PropBank, that is, the verb senses that the framesets correspond to are
fairly coarse-grained. The main criterion used is that if two potential framesets have the same
arguments (including the descriptions), or the arguments of one are a subset of the arguments
of the other, only one frameset should be created.

The annotation is done using a custom software (see Figure 13) that allows the annotator to
select a lemma to be annotated and then displays each occurrence as a separate case. The
annotator must first select the correct frameset for the occurrence under consideration, and
then assign the numbered arguments and adjunct-like arguments. All dependents of the verb
occurrence are highlighted as default options for arguments, except for certain dependency
types, such as punctuation, which never act as arguments. In case a dependency does not
correspond to an argument, it is possible to leave the dependency unmarked. In addition, it
is possible to mark a sentence element not depending on the verb as an argument using the
external argument dependency. In addition to choosing one of the framesets defined, it is also
possible to take one of the following actions. First, the annotator can mark an occurrence as not
a verb, where the token is not in fact a verb but rather another part-of-speech, despite having a
verbal reading assigned by OMorFi. Second, similarly it is possible mark the token to have a
wrong lemma, where the token is a verb, but not of the lemma currently under consideration.
Third, it is possible to mark the occurrence as an auxiliary, as in the PropBank scheme auxiliaries
do not receive framesets or arguments.

7 Evaluation

In order to evaluate the performance of the annotators, we measure their annotator accuracy
against the merged annotation. The accuracy is calculated using F1-score, which is defined
as F1 =

2PR
P+R

. Precision (P) is the percentage of arguments in the individual annotation that
are also present in the merged annotation, and recall (R) the percentage of arguments in the
merged annotation that are also present in the individual annotation. For an argument to
be considered correct, both its dependent word (the head word is the verb and thus always
correct) and the argument number or the ArgM type must be correct. If the frameset of a
verb is incorrect, then all numbered arguments of this verb token are considered incorrect as
well. An ArgM of the correct type is judged correct regardless of the frameset of the verb, as
ArgMs are verb-independent. For comparison, we also calculate inter-annotator agreement using
Cohen’s kappa, defined as κ= P(A)−P(E)

1−P(E)
, where P(A) is the observed agreement and P(E) is the

agreement expected by chance.

The overall annotator accuracy on the whole task is 94.1%, and the overall inter-annotator
agreement in Kappa is 89.7%. While the F1-score measures the accuracy of an annotator against
the merged gold-standard, the Kappa-score measures the agreement between the annotators.
It should also be noted that as the Kappa-score can only reasonably be calculated for labeling
tasks, the external arguments, that is, arguments that are not syntactically direct dependents
of the verb, are only taken into account in the F1-score and not in Kappa. The per-annotator
accuracies in F1-score are listed in Table 1. The Table lists both overall scores and scores on
numbered arguments and adjunct-like arguments separately, as well as the external arguments.
These results show that overall, the accuracy is high, and that the adjunct-like arguments
are more difficult to annotate than the numbered arguments, which is an expected result
based on the figures previously reported by Palmer et al. (2005). The external arguments also
seem to be more difficult than the numbered arguments in general. Some annotators show a
large difference between precision and recall on the external arguments, indicating that these

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 52 of 474]

Figure 13: The annotation tool. Top: occurrence annotation. Two occurrences to be annotated
are shown on the left, one marked as ready and one in mid-annotation. The direct dependents
of the verb are shown as default alternatives for the arguments, and the question mark in
the latter example indicates a dependency that has not been assigned with an argument. The
framesets that have been created for the verb currently being annotated are shown on the
right. Bottom: frameset editor. Each frameset has a number, a description, a field for the
corresponding English PropBank frameset (not set in this example), as well as a free comment
field. Similarly, each argument has a number, a description and a comment field. The comment
fields may be used, for instance, for case requirements or use examples.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 53 of 474]

Ann. 1 Ann. 2 Ann. 3 Ann. 4 Ann. 5 Ann. 6 All
Numbered (n=29,076)

Recall 98.1 96.5 96.5 94.9 97.8 95.6 96.9
Precision 98.5 98.0 98.0 95.1 98.1 94.5 97.4
F-score 98.3 97.2 97.3 95.0 97.9 95.1 97.1

ArgM (n=15,771)
Recall 92.5 86.6 87.3 83.7 90.1 82.8 87.8
Precision 92.9 87.3 86.6 85.2 92.6 82.0 88.2
F-score 92.7 86.9 87.0 84.4 91.3 82.4 88.0

xarg (n=3,118)
Recall 93.3 80.8 79.3 70.3 87.4 85.9 86.0
Precision 97.8 97.8 92.3 70.3 94.7 84.3 92.7
F-score 95.5 88.5 85.3 70.3 90.9 85.1 89.2

overall (n=44,847)
Recall 96.3 93.0 93.4 90.9 95.2 91.6 93.9
Precision 96.7 94.2 94.1 91.5 96.3 90.6 94.3
F-score 96.5 93.6 93.7 91.2 95.8 91.1 94.1

Table 1: Annotator accuracy results per annotator, both overall and separately for numbered
arguments and ArgMs. Also a separate evaluation of the external arguments (xarg) is given.
Note that for the F1-scores the external arguments are also included in the counts of numbered
arguments and ArgMs, seeing that each external argument is also one of these two argument
types.

annotators forget to mark an external argument more often than mark an extraneous one. In
addition to the possibility of overlooking an external argument, the task is made more difficult
by the fact that with xargs, unlike the other arguments, the annotator is required to identify the
correct token to act as the dependent.

Further, we evaluate the correctness of the frameset selections. Out of all frameset choices
(including the possible choices of not a verb, wrong lemma and auxiliary), 88.4% were correct
as measured against the final annotation result. Measured on only those instances where the
frameset was correctly selected, the overall F1-score was 94.6%.

8 Conclusions

In this work, we have presented the first results from a project aiming at a general Finnish
PropBank. This PropBank is built on top of the previously existing Turku Dependency Treebank
and utilizes both the first and second layers of syntax annotation present in the treebank, which
are annotated according to the Stanford Dependency scheme.

We confirm the preliminary finding of the clinical language pilot study by Haverinen et al.
(2010a) that the PropBank scheme can be used for Finnish and is compatible with the SD
scheme. We also find that a large number of arguments are covered by the simplifying
assumption that arguments are syntactic dependents of the verb; 81.0% of all arguments are
accounted for when only considering the first layer of syntax annotation in TDT, and 93.1% if
also the second layer is taken into consideration.

Regarding the quality of annotation, we find that the overall annotator accuracy of all six
different annotators is 94.1% in F1-score, and the accuracy on adjunct-like arguments (ArgMs)
alone is 88.0%. The inter-annotator agreement in Cohen’s kappa on the overall task disregarding

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 54 of 474]

external arguments is 89.7%. From these figures we conclude that overall the quality of
annotation is high, and that as expected, the adjunct-like arguments are more difficult to
annotate than the numbered arguments. External arguments, with an overall F1-score of
89.2%, are also more difficult than numbered arguments in general, due to the possibility of
overlooking an external argument as well as the fact that for these arguments, the annotator
also needs to identify the correct dependent word.

As future work, in addition to increasing the coverage of the PropBank, it would be beneficial
to build rules to treat cases where the full subtree assumption of arguments fails, as well as
enhance the annotation towards noun argument structures, that is, a NomBank (Meyers et al.,
2004). The annotation could also be enhanced in several ways in order to accommodate, for
instance, text generation, along the guidelines suggested by Wanner et al. (2012).

Acknowledgments

This work has been supported by the Academy of Finland and the Emil Aaltonen Foundation.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 55 of 474]

References

(2009). Collins English Dictionary — 30th Anniversary Edition. HarperCollins Publishers.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet project. In
Proceedings of COLING-ACL’98, pages 86–90.

Choi, J. and Palmer, M. (2010). Retrieving correct semantic boundaries in dependency
structure. In Proceedings of LAW IV, pages 91–99.

Dang, H. T., Kipper, K., Palmer, M., and Rosenzweig, J. (1998). Investigating regular sense
extensions based on intersective Levin classes. In Proceedings of COLING-ACL’98, pages 293–
299.

Duran, M. S. and Aluísio, S. M. (2011). Propbank-br: a Brazilian treebank annotated with
semantic role labels. In Proceedings of STIL’11, pages 1862–1867.

Hakulinen, A., Vilkuna, M., Korhonen, R., Koivisto, V., Heinonen, T.-R., and Alho, I. (2004). Iso
suomen kielioppi / Grammar of Finnish. Suomalaisen kirjallisuuden seura.

Haverinen, K. (2012). Syntax annotation guidelines for the Turku Dependency Treebank.
Technical Report 1034, Turku Centre for Computer Science.

Haverinen, K., Ginter, F., Laippala, V., Kohonen, S., Viljanen, T., Nyblom, J., and Salakoski,
T. (2011). A dependency-based analysis of treebank annotation errors. In Proceedings of
Depling’11, pages 115–124.

Haverinen, K., Ginter, F., Laippala, V., Viljanen, T., and Salakoski, T. (2010a). Dependency-based
propbanking of clinical Finnish. In Proceedings of LAW IV, pages 137–141.

Haverinen, K., Viljanen, T., Laippala, V., Kohonen, S., Ginter, F., and Salakoski, T. (2010b).
Treebanking Finnish. In Dickinson, M., Müürisep, K., and Passarotti, M., editors, Proceedings of
The ninth International Workshop on Treebanks and Linguistic Theories (TLT9), pages 79–90.

Itkonen, E. (1996). Maailman kielten erilaisuus ja samuus / Differences and Similarities of the
World Languages. Gaudeamus.

Levin, B. and Hovav, M. R. (1994). Unaccusativity: At the syntax–lexical semantics interface,
volume 26 of Linguistic Inquiry. MIT Press.

Lindén, K., Silfverberg, M., and Pirinen, T. (2009). HFST tools for morphology — an efficient
open-source package for construction of morphological analyzers. In State of the Art in
Computational Morphology, volume 41 of Communications in Computer and Information Science,
pages 28–47.

Marcus, M., Marcinkiwicz, M. A., and Santorini, B. (1993). Building a large annotated corpus
of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

de Marneffe, M.-C. and Manning, C. (2008a). Stanford typed dependencies manual. Technical
report, Stanford University.

de Marneffe, M.-C. and Manning, C. (2008b). Stanford typed dependencies representation. In
Proceedings of COLING’08, Workshop on Cross-Framework and Cross-Domain Parser Evaluation,
pages 1–8.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 56 of 474]

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V., Young, B., and Grishman,
R. (2004). The NomBank project: An interim report. In In Proceedings of the NAACL/HLT
Workshop on Frontiers in Corpus Annotation.

Palmer, M., Bhatt, R., Narasimhan, B., Rambow, O., Sharma, D. M., and Xia, F. (2009). Hindi
syntax: annotating dependency, lexical predicate–argument structure, and phrase structure.
In Proceedings of ICON’09.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The Proposition Bank: An annotated corpus
of semantic roles. Computational Linguistics, 31(1):71–106.

Palmer, M., Gildea, D., and Xue, N. (2010). Semantic Role Labeling. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool Publishers.

Paulsen, G. (2011). Causation and Dominance. PhD thesis.

Perlmutter, D. (1978). Impersonal passives and the unaccusative hypothesis. In Proceedings of
the Fourth Annual Meeting of the Berkeley Linguistic Society, pages 157–189.

Pirinen, T. (2008). Suomen kielen äärellistilainen automaattinen morfologinen jäsennin
avoimen lähdekoodin resurssein. Master’s thesis, University of Helsinki.

Shibatani, M., editor (1976). The Grammar of Causative Constructions, volume 6 of Syntax and
Semantics. Seminar Press.

Wanner, L., Mille, S., and Bohnet, B. (2012). Towards a surface realization-oriented corpus
annotation. In Proceedings of INLG ’12, pages 22–30.

Xue, N. and Palmer, M. (2009). Adding semantic roles to the Chinese treebank. Natural
Language Engineering, 15(Special issue 01):143–172.

Zaghouani, W., Diab, M., Mansouri, A., Pradhan, S., and Palmer, M. (2010). The revised Arabic
PropBank. In Proceedings of LAW IV, pages 222–226.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 57 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 58 of 474]

Using Finite State Transducers for Making Efficient Reading
Comprehension Dictionaries

Ryan Johnson, Lene Antonsen, Trond Trosterud
University of Tromsø, Norway

ryan.txanson@gmail.com, lene.antonsen@uit.no, trond.trosterud@uit.no

ABSTRACT
This article presents a novel way of combining finite-state transducers (FSTs) with electronic
dictionaries, thereby creating efficient reading comprehension dictionaries. We compare a North
Saami - Norwegian and a South Saami - Norwegian dictionary, both enriched with an FST, with
existing, available dictionaries containing pre-generated paradigms, and show the advantages
of our approach. Being more flexible, the FSTs may also adjust the dictionary to different
contexts. The finite state transducer analyses the word to be looked up, and the dictionary itself
conducts the actual lookup. The FST part is crucial for morphology-rich languages, where as
little as 10 % of the wordforms in running text actually consists of lemma forms. If a compound
or derived word, or a word with an enclitic particle is not found in the dictionary, the FST will
give the stems and derivation affixes of the wordform, and each of the stems will be given a
separate translation. In this way, the coverage of the FST-dictionary will be far larger than an
ordinary dictionary of the same size.

KEYWORDS: Lexicography, Computational Morphology, Orthographic Variation, Finite-state
Transducers, Electronic Dictionaries.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 59 of 474]

1 Introduction

The article presents work on enriching bilingual dictionaries with existing finite state transducers
(FST). There is a need for reading comprehension dictionaries of morphology-rich languages
like the Saami languages. They are also members of the North European Sprachbund, and
contain dynamic compounds.

All of the Saami languages are minority languages. An effective digital dictionary is a necessity
for language learners, but it is also important for Saami speakers: when they write in Saami,
they are often met with complaints from those who do not understand the language well
enough, and are asked to write in the majority language instead. This repeatedly appears in
discussions in the Facebook group of one of the Saami organisations in Norway (Facebook-group,
2012).

The paper is structured as follows: in Section 2, we look at why we need dictionaries with
morphology and dynamic compounding for highly inflected languages. Section 3 describes
how we produce dictionaries by combining lexical resources, finite-state transducers, and open-
source software. In Section 4, we evaluate the North Saami and South Saami FST-dictionaries
and compare their performance with wordform dictionaries. In Section 5, we look at more
possibilities that this gives us, by adjusting the FST for special needs. Our conclusion is presented
in Section 6.

2 Saami Lexicography and its Challenges

Saami lexicography boasts a history spanning over 250 years, and contains several multi-volume
works of high quality (for overview and discussion, see (Larsson, 1997) and (Magga, 2012)).
During the first 200 years, the goal in Saami lexicography was to present the Saami languages
to scientific audiences. In recent decades, an increasing use of Saami in writing has posed new
challenges for Saami lexicography. For a discussion on how to present Saami in dictionaries
with Saami as a target language, see (Trosterud, 2000); and for a discussion on the source
language vocabulary behind Norwegian - Saami dictionaries, see (Trosterud and Eskonsipo,
2012).

Electronic North Saami dictionaries are a fairly recent phenomenon. Apart from the work
presented here, there are two such dictionaries available offering lemma pairs: a small (5500
lemma) North Saami <-> English dictionary, by Renato B. Figueiredo1; and in 2013 a larger
dictionary between Norwegian and North Saami was released from the publisher Davvi girji2,
presenting the lemma pairs from their large paper dictionaries. Giellatekno, at the University of
Tromsø, has published wordform dictionaries for North and South Saami3. These are discussed
in Section 4 below.

The idea of using FSTs for making passive dictionaries is not new. One version similar to ours
is (Maxwell and Poser, 2004). It elaborates upon the idea of unifying dictionaries with FSTs,
but does not cite any actual implemetation. A simpler non-FST approach would be to create
a static list of every inflected form, combined with their respective lemmas, or articles in the
dictionary which these forms relate to. Commercial products rarely present their methodology,

1http://www.freelang.net/online/sami.php
2http://533.davvi.no/ordbok_samnor.php?lang=sam
3Vuosttaš Digisánit for North Saami in 2008 (http://giellatekno.uit.no/words/dicts/index.eng.

html) and Voestes Digibaakoeh (http://giellatekno.uit.no/words/dicts/index-sma.eng.html for
South Saami in 2010.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 60 of 474]

but this is probably the method underlying dictionaries for morphology-poor languages like
English and German.

The Saami languages are morphologically complex, suffixing languages with much non-
concatenative morphology. Most lemmas have large inflection paradigms: North Saami verbs
have about 55 different wordforms, with more than 40 of these being finite forms. Nouns have
about 80 different wordforms, 70 of which include possessive suffixes. Adjectives have about 30
wordforms. In addition, variants of these forms exist within the normative orthography. Many
of the word forms are transparent, but others are not. For example, the North Saami wordforms
gullái and bod̄ii are the first person singular past tense form of the verbs gullát ‘to start to wake
up’ and boahtit ‘to come’, the latter of which has a less obvious basic form, due to diphthong
simplification and consonant gradation, frequent phonological processes in the language.

The Saami languages also rely heavily on derivation. Lexical aspects like continuative and
inchoative, the causative, and even the passive voice are the result of derivation. North Saami
compounding causes vowel changes in the stem vowel, so it is not possible to split a compound
mechanically into two parts. For example, bargojoavku ‘work team’ is a compound of the nouns
bargu ‘work’ and joavku ‘team’, but a noun like *bargo does not exist. This is also very common:
in a corpus of 1.1 million words, 26.7% are noun compounds, comprising 7.0% of all of the
words (Antonsen et al., 2009). In addition, the Saami languages have clitic particles. In North
Saami for instance, there is a question enclitic and 11 focus enclitics which can be written as a
part of almost all words.

The conclusion is that we need comprehension dictionaries with inflectional word forms, as
well as dynamic derivation, compounding and enclitisation. Used as an electronic dictionary,
a dictionary containing only lemmas is simply not sufficient, particularly because only 7.9%
of the word forms in North Saami running text are identical to the lemma form, as in Table 2.
Another possibility would be to use stemming, but as shown in (Antonsen and Trosterud,
2010), a stemmer containing all North Saami inflectional suffixes still assigns the wrong stem to
31% of a large test corpus. The reason for this poor result is wide range of non-concatenative
morphological processes in North Saami: consonant gradation, and root and stem vowel
changes require an approach beyond concatenative affixation.

North Saami Finnish Norwegian
Wordforms in test material 252,461 45,144 64,994
Lemmata in automaton 99,071 94,111 38,983
Coverage 7.9 % 10.0 % 30.5%

Table 1: Coverage of dictionary without a morphological component, (Antonsen et al., 2009).

Our previous approach for a morphological dictionary was presented in (Antonsen et al., 2009)
and consists of lemmas and wordforms for each lemma. The last version for North Saami was
compiled in 2012 and contains 252,787 wordforms referring to 9,999 lemma articles, and the
South Saami dictionary contains 180,352 wordforms referring to 10,657 lemma articles. The
wordforms are generated ahead of time with the same FST as is used in the implementation in
this article. In Section 4, we will compare the performance of this wordform dictionary to the
FST dictionary described in 3.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 61 of 474]

Figure 1: The finite-state transducer produces the word forms bargu, barggu, barggus (‘work.N’)
and joavku, joavkku, joavkkus (‘team.N’) and it maps between the wordform and the grammati-
cal word. There is a compound path for both the genitive and the nominative form, so the FST
can produce e.g. boargojoavku, joavkobargu (‘work team, team work’) (cfr. Section 2). Changes
in the stem are carried out simultaneously in another transducer twolc by means of triggers.

3 Morphologically Sensitive Dictionaries

3.1 Building an FST-dictionary on Existing Resources

Our FST-dictionary, which we call Neahttadigisánit (http://sanit.oahpa.no) , takes exist-
ing lexical resources and morphological resources and combines them to produce a dictionary
which is able to look up a larger set of possible inputs, by analysing wordforms and finding
lemmas, but also by splitting up compound words to provide either lemmas that combine to
make the compound, or either the whole compound word if a translation is available. The
application also runs without need for relational databases, as linguistic resources are all
contained within static files and external command-line tools.

In this system, we use bilingual lexicons for different language pairs, which we will evaluate
later in this article. Currently, the dictionaries are built on a North Saami dictlexicon containing
9,999 lemmas, and a South Saami dictlexicon containing 10,657 lemmas. The lexicons are
stored in XML and combined with existing FSTs for these two languages.

Both the North Saami and South Saami FSTs consist of lexical transducers written in lexc
with respectively 110,000 and 85,000 entries, and phonological transducers implemented in
twolc for the suprasegmental processes (Koskenniemi, 1983) and (Moshagen et al., 2004).
They may be compiled with both the Xerox (Beesley and Karttunen, 2003) and HFST (Lindén
et al., 2009) compilers, and are available as open-source 4 under the terms of the GNU General
Public License.

Instead of compiling what is essentially a list of all word forms in a language, the FST approach
involves listing the stems and affixes separately, and combining them to individual word forms
by means of finite-state automata. A finite-state transducer is a finite-state automaton that
maps between two strings of characters: the word form itself and the grammatical word, as in
Figure 1: girjin (the lower level) and girji+N+Ess (the upper level). An FST can run both ways:
giving the grammatical word from a wordform, or generating a wordform from the grammatical
word.

Using an FST to generate paradigms for the dictionary demands some adaptations to make it

4https://victorio.uit.no/langtech/trunk/gt/
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 62 of 474]

possible to generate the correct paradigm for each lemma, because there are certain considera-
tions that are not present from the perspective of a morphological analyser, which may simply
accept any and all input in a descriptive manner. Instead, generation requires attention to lexi-
calisation of certain word forms as their own individual words. For example, some lemmas have
different meanings in singular or plural, such as gaskabeaivi ‘midday (sg.)’, and gaskabeaivvit
‘dinner (pl.)’. Some lemmas also have a homonymous basic form, but have different paradigms
and different translations. Some extra tags in the FST are used to keep these apart.

The FSTs already build the backbone to pedagogical systems for new beginners and heritage
speakers, spellchecking and grammar checking systems for text proofing, and machine transla-
tion systems. As such, some modifications are also required in order to mark certain words or
word forms for inclusion or exclusion from individual systems, to control for normative outputs,
or to compensate for specific kinds of input from second-language learners.

3.2 Software

3.2.1 User Interface

Thanks to the open-source community, there are numerous resources available which make
it easy to produce designs with good cross-browser compatibility. Previously, troubleshooting
these issues for each individual browser would take time, when one would rather focus on
implementation and basically, producing usable software.

In this case, we used Twitter Bootstrap5 to get the most for less, and it has resulted in an easy
to use and very minimal layout, see Figure 2. The layout works simultaneously on all the
major browsers for desktop operating systems, as well as the most popular mobile browsers,
see Figure 2. Thus, there is no real need to produce code specific to Apple’s iOS or the Android
operating system, or pay for the licensing setup involved with iOS development, and we get all
of these things for free.

Figure 2: The FST-dictionary on the mobile.

3.2.2 Server Architecture

Having to not worry about the design meant that there was more time left for developing
functionality. Our dictionary is based on Flask6, a light, and flexible web framework for Python.

5http://twitter.github.com/bootstrap/
6http://flask.pocoo.org/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 63 of 474]

As mentioned above, the lexical data used in this application is stored in an XML format, with
one file per language pair, per direction (thus making separate files for language 1 to language 2,
and language 2 to language 1). These files range in size from 2MB to 5MB, and are used in the
live site, without the need for a relational database to store the data. On our server, queries end
up being quite fast, but to ensure that this continues to be true for larger dictionaries, we have
also used one of the quickest XML libraries for Python currently available, lxml7 benchmarks8

This allows us to simply update the files, and restart the service, and any new lexical entries are
immediately available to users.

Our previous wordform dictionaries demanded installation in two steps: installing a separate
dictionary program (StarDict for Windows and Linux; and the preinstalled Dictionary.app for
Mac OS X), and then downloading and installing the linguistic files in the dictionary program.
New and updated dictionary versions demanded new downloading and installing. Our new,
web-based approach naturally avoids all of this, as users only require the URL. The web
dictionary may also be updated by the providers at any time, without the need for users to be
aware of and perform the updates themselves.

Compared to our web dictionary, the wordform dictionaries had one major advantage: they
could be used to click on words in any application running within the operating system in
order to get an analysis and definition, whereas the similar functionality provided in the web
dictionary only works on web pages within the browser. However, newer versions of Mac OSX
have lost a user-friendly means of installing additional dictionaries to the preinstalled dictionary
application, as such, this has become a point in favor of web-based solutions.

There is also an advantage for the providers of the dictionary, programmers and linguists alike.
With the previous wordform dictionaries, new versions of the software (such as with StarDict),
required adjustments in the format of the dictionary files, and we would often find ourselves
concerned over whether we should add more linguistic content, or aim for smaller file sizes. As
such, running the dictionary on a server with already existing lexicons is a big step forward.

Having a server-based system also allows us to pay attention to actual usage of the systems. As
such, we log all incoming queries along with their results, in order to detect areas where the
dictionary needs expansion, and these updates are then available to users as they are made.

3.3 Dictionary API

In addition to being searchable via a form in the web interface, we provide detailed lexical
entries in an easily linkable HTML format, and in a more bare-bones format, JSON (JavaScript
Object Notation). JSON is a widely adopted, and open standard for communication between
applications, specifically with a focus on web applications. The intent here is that data is
provided not just for our web-based dictionary via the interface that we provide, but that it may
also be used within external applications, on other websites, and even potentially in mobile
services.

The data is exposed in a couple of public-facing API endpoints or URL paths, more or less
following REST (Representational State Transfer) architecture. One of the endpoints, which pro-
vides detailed word entries with inflectional paradigms has already been included in MultiDict’s

7http://lxml.de/
8http://lxml.de/performance.html

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 64 of 474]

Wordlink9, a reading comprehension tool that includes many other languages and dictionaries.
WordLink is quite nice, but naturally, we had some of our own designs for how to use this API.

3.4 Example Applications

3.4.1 Wordpress Plugin and Cross-browser Bookmarklet

Two of the learning tools already constructed for North Saami are Kursa and Oahpa. Kursa is
a free, multimedia-rich set of online course materials in North Saami, containing lessons with
text, and audio recordings, which are implemented in WordPress10, a free and open-source
blogging tool. There is another version on the way for South Saami.

To go with these learning materials, we have created a plugin for WordPress written in
JavaScript, jQuery, and Twitter Bootstrap, which provides access to lemmatisation, compound
analysis and lexicon lookup. Users simply Alt/Opt+Double Click a word, and it is high-
lighted with a text-bubble appearing below that contains word translations and wordform
analysis 2. Users can quickly and easily look up as many words as they need to comprehend
a text, which erases one of the barriers to reading in a new language, namely: the need to
frequently look up words in a dictionary, while being unacquainted with potential "dictionary"
word forms.

The modular nature of the core library within the plugin allows it to be inserted into several
other potential situations with ease. For example, it could be included on a specific page or
website, or inserted via a web browser plugin in any page. We have ensured that the library
works in the most commonly used, and current web browsers, as such, this functionality is
available on Windows, Mac OS X and Linux; in Internet Explorer, Firefox, Chrome, Opera, and
Safari.

In addition to plugin for Kursa, we have produced a cross-browser solution which is similar to
a browser extension, but instead, is accessible via a bookmarklet, which is a bookmark providing
functionality, instead of a link to a website. As it turns out, this option has been much more
preferable to developing (and also convincing users to install) browser specific plugins, and
"installation" is simply a drag-and-drop affair. Thus, when on a page they wish to read, users
may simply click the bookmarklet, which downloads and includes the plugin source in the
HTML document structure facing the user. Now the world of news, blogs, or even Facebook, is
accessible in all of the language pairs that we support.

Figure 3: Reading a text with the FST-dictionary on the Saami news website site Avvir.no.

9http://multidict.net/multidict/
10http://www.wordpress.org/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 65 of 474]

4 Evaluation

The evaluation was run against two separate corpora, one North Saami corpus, containing
44,256 words, and one South Saami corpus, containing 60,037 words (excluding Arabic
numerals, punctuation, web-addresses, and proper nouns). Since the task was to evaluate web
dictionaries, the test corpora contain a balanced selection of the main text genres found online:
web sites of official institutions, news texts, and political blogs. Note that Saami text on the
Internet is poorly proofread, and 4.4 % of the North Saami corpus (Antonsen, 2013) are words
not written according to normative orthography. A part of them are misspellings, a part are
subforms which are included in the FST. This should be taken into account when evaluating the
data in Table 4.

The corpora were tested with both the FST-dictionary and the wordform dictionary in order
to compare performance. The wordform dictionary can only recognise whole words based on
sets of pre-generated word forms; while the FST-dictionary also recognises individual parts of
compound words, so these translations are categorised as partial translations in Table 4.

Translation Partly transl. No transl. 100 %
FST-dict: all wds 39,920 90.2% 549 1.2% 3787 8.6% 44,256
wf-dict: all wds 36,231 81.9% – – 8025 18.1 % 44,256
FST-dict: unique wds 10,862 79.7% 448 3.3% 2322 17.0 % 13,632
wf-dict: unique wds 7874 57.8% – – 5758 42.2 % 13,632

Table 2: Coverage of an North Saami FST-dictionary compared to a wordform-dictionary.

In Table 4, the coverage of the FST-dictionary is as high as 91.4% (90.2% + 1.2%)
for all words in the running text. The numbers for unique words in the corpus give
a more realistic picture of the usefulness of the dictionary for a language learner. The
FST-dictionary leaves 17% of the unique words without any translation, while the word-
form dictionary is unable to translate three times as many. If we look closer at the
words that are not translated by the wordform dictionary, there are derivations such as
bivnnutvuod̄a, which receives the analysis bivnnut+A+Der/vuohta+N+Sg+Acc. The FST-
dictionary finds the lemma bivnnut with ‘popular’, while the whole word together means
‘popularity’. There are also compounds which get all parts translated by the FST-dictionary,
such as sáhpánjagiid sáhpán+N+SgNomCmp+Cmp#jahki+N+Pl+Gen, translations: sáhpán
‘mouse’, jahki ‘year’. And, there are compounds with partial translations, such as divamávssu
diva+N+SgNomCmp+Cmp#máksu+N+Sg+Acc. Here, only one of the lemmas is translated:
máksu ‘payment, signification’.

The FST-dictionary also manages to translate words with an enclitic, like oidnoge oid-
not+V+Ind+Prs+ConNeg+Foc/ge. The lemma is translated: oidnot ‘to show’, ge is an enclitic.
And the FST-dictionary is more tolerant to non-normative forms, such as eandalit, which is
recognised by the FST as eandalii+Adv ‘absolutely’. Among the unique 2,322 words for which
the FST-dictionary does not give any translation to at all, 47.6% are unknown for the FST,
mostly misspellings, or even Norwegian or Finnish quotes. 52.4 % are missing in the dictionary.

In Table 4, a similar evaluation was performed with a South Saami corpus and dictionaries. The
South Saami wordform dictionary leaves more words without translation than the North Saami
wordform dictionary, which correlates to the fact that the South Saami dictionary has a smaller

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 66 of 474]

Translation Partly transl. No transl. 100%
FST-dict: all wds 53,295 88.8% 475 0.8% 6266 10.4 % 60,037
wf-dict: all wds 44,989 74.7% – – 15,268 25.3 % 60,257
FST-dict: unique wds 8039 67.0% 308 2.6% 3660 30.5 % 12,008
wf-dict: unique wds 4945 41.1% – – 7085 58.9 % 12,030

Table 3: Coverage of a South Saami FST-dictionary compared to a wordform-dictionary. Data
for partly translation is relevant only for the FST dictionary, the wordform dictionary is not able
to handle compounds.

amount of wordforms (180,352 vs. 252,787). The FST-dictionary leaves as much as 30.5 % of
the unique words without translation. Of these 3,660 words, 78.4 % are lacking in the FST. This
is due to the fact that the South Saami FST is not as good as the North Saami ones, and also
that there are even more misspellings in South Saami than in North Saami. Note that even
though the amount of lemmas in the South Saami dictionary is slightly higher than for North
Saami, they are not as relevant for the corpus as the lemmas in the North Saami dictionary are
for the corpus.

South Saami also has some additional orthographic challenges not present in North Saami:
namely, the orthography lacks a single norm that is used in the whole of the South Saami
speaking region. Generally, one can expect certain sounds to be represented with characters that
are found in each region’s majority language, such as Swedish ä and ö, compared to Norwegian
æ and ø, however these are often found mixed in single texts; thus the FSTs take into account
certain "spelling relaxations" to handle this. In addition, there is a character, ï, which does not
exist in either Norwegian or Swedish, and is not obligatory to write since its distribution is
phonologically predictable.

5 More FST possibilites

5.1 Modularising the North Saami FST-dictionary

Using finite state transducers makes it possible to make more flexible dictionaries. Many text
genres are written outside the written norm, or using input devices with keyboard restrictions.
A case in point is the North Saami Facebook group Ártegis ságat11. The group is open, and
has over 1800 registered members, a number equivalent to approximately 10% of the whole
speaker community. Many Facebook users read and write using smartphones. Smartphones
come without preinstalled Saami keyboards, and for iPhone and Nokia smartphones there also
are no such keyboards available at all. An investigation of the discussion during a three months’
period, measuring the 30 most frequent words containing North Saami characters, revealed
that almost 20 % of the text was written without a Saami keyboard. In a North Saami running
text, 38 % of the words contain North Saami characters, and are thus the remainder are outside
of the reach of electronic dictionaries.

Table 5.1 shows the performance of the dictionary combined with the ordinary FST and with
a Facebook-FST with spell relax, thus allowing it to accept letters without diacritics as North
Saami letters (e.g. the characters acdsz are accepted as representatives of áčd̄šž). The corpus

11https://www.facebook.com/groups/336300756303/?fref=ts
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 67 of 474]

is taken from Ártegis ságat during the period 24.10.2012 – 21.01.2013 and contains 67,265
words (excluding Arabic numerals, punctuation, web-addresses and proper nouns).

Translation Partly transl. No transl. 100%
Fb-FST: all wds 54,197 80.6% 315 0.5% 12,753 19.0% 67,265
ord. FST: all wds 50,263 76.3% 250 0.4% 15,364 23.3% 65,877
Fb-FST: unique wds 10,596 59.8% 286 1.6% 6825 38.5% 17,707
ord. FST: unique wds 8813 50.8% 224 1.3% 8326 48.0% 17,363

Table 4: Coverage of a North Saami FST-dictionary. The corpus is analysed with the ordinary
FST and an FST adapted to the Facebook orthography.

The overall results shown in Table 5.1 are worse than the results given in Table 4 above, but this
is due to the nature of the Facebook corpus, containing a higher amount of orthographic errors
and non-Saami text than is found in published text. The important point when reading Table
5.1 is the difference between the ordinary and the adjusted dictionaries. For unique words, the
adapted FST recognises 59.8 % of the words, as opposed to 50.8% with the ordinary FST.

Finite state transducers are flexible tools, not only for analysing wordforms, but also for
changing their shapes. In this way, we are able to adjust the dictionary to different types of
input. In an ordinary dictionary, the preference will still be to show the lexicalised words, while
filtering out other analyses, however in a student dictionary it would be useful to show all the
potential analyses. A Facebook-oriented dictionary will be like the ordinary dictionary, but in
addition be able to understand letters lacking the proper diacritics.

5.2 Flexible FSTs: Nynorsk and Bokmål in one

Most bilingual Norwegian-L1 dictionaries are made with Bokmål as the source language.
There are lexical differences between Bokmål and Nynorsk (ikke/ikkje ‘not’, forskjell/skilnad
‘difference’), but the main difference between Nynorsk and Bokmål is morphological. In the
nominal morphology, Nynorsk masculines have -ar, -ane, whereas Bokmål has -er, -ene. Similar
differences are to be found in other parts of speech. In order to deal with this, we have made a
special dictionary transducer. At the outset, it was an ordinary Bokmål transducer, but we added
the main lexical differences between Bokmål and Nynorsk, as well as the Nynorsk morphology.
Thus, rather than adding ikk je to the dictionary, we made ikke the lemma form of ikk je, which
is then used in lexicon lookups. Nynorsk forms like handlingar, diskus jonar, were recognised
as plural forms of handling ‘action’, diskus jon ‘discussion’ on par with Bokmål handlinger,
diskus joner. For a paper dictionary user, such plural forms do not pose problems, but the
electronic comprehension dictionary needs a mechanism for coping with it.

In Table 5.2, we analyse two corpora of 10,606,263 words from the Nynorsk and Bokmål
Wikipedia (excluding words containing capital letters or symbols outside of the Norwegian
alphabet). The reference Bokmål transducer is not of outstanding quality: it recognised only
93.36% of the Bokmål test corpus. Analysing the Nynorsk corpus with the same transducer
resulted in coverage of 79.34 % of the wordforms, but minor changes to the analyser (referred
to above) to include Nynorsk forms improves the coverage to 89.62 %, cf. 5.212.

12The dictionary coverage is poorer than the FST coverage, this reflects the size of the Norwegian - North Saami
dictionary, and is irrelevant to the discussion on FST flexibility.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 68 of 474]

Text FST coverage dictionary coverage
Nynorsk text Conservative Bokmål 2,191,428 79.34 % 3,504,733 66.96%

All Bokmål varieties 1,849,654 82.56 % 3,206,796 69.77%
Bokmål with Nynorsk 1,101,116 89.62 % 2,530,995 76.14%

Bokmål text All Bokmål varieties 703,950 93.36 % 1,644,286 84.50%

Table 5: Coverage of an Bokmål - North Saami FST-dictionary on Nynorsk text.

5.3 Reuse of FSTs for Reading Comprehension Dictionaries

FSTs are in use in many areas apart from lexicography, such as in parsing and spellchecking.
The demands on a FST when used for electronic dictionaries are very different from these other
usages, however. In order to be efficient for spellchecking and parsing, the FST must have an
accuracy rate very close to 100%. If it drops to, say 95 %, there will, on average, be one error
in almost every sentence. For sentence analysis and syntactic disambiguation, every error has
the potential of destroying larger parts of the sentence analysis, and for a spellchecker, one
false alarm in each sentence will make the spellchecker useless. For an e-dictionary, on the
other hand, 95% correct implies that 19 out of 20 words will have a relevant analysis. Since
the individual errors will not destroy the overall result, the dictionary is much more tolerant
to errors, and even an FST recognising two thirds of the wordforms would result in a great
improvement over an e-dictionary without any FST.

There are openly available finite state transducers for all Nordic languages, for all languages
taught as foreign languages in Nordic schools, for all official EU languages except for Greek,
and for most of the minority languages in Europe. With an increasing amount of parallel texts
online, the number of bilingual dictionary resources is increasing rapidly. Given the dictionary
setup described here, the missing link is a finite state transducer, which will turn a bilingual
dictionary into a useful comprehension dictionary for reading of online texts.

Although our example evaluations have shown high quality FSTs in use in comprehension
dictionaries, even a low quality FST would result in a drastic improvement for morphologically
complex languages, where a running text contains a relatively small percentage of word forms
that are also the lemma. Adding one more noun to such an FST system where each noun may
have upwards of 40 word forms would thus result in coverage of 40 additional tokens in a text,
as opposed to just one word form as with a non-morphologically sensitive dictionary. Gains to
text coverage by adding more frequent words to such a system would result in dramatic gains
to coverage. Thus, one does not need a high quality morphology or a high quality lexicon to
gain the benefits that come from connecting these two things.

5.4 FSTs for Vacillating Norms

Several literary languages have vacillating norms, for one reason or another. The reason may
be purely technical, as is the case for Romanian, where the Turkic ş (s with cedilla) is used more
often than the correct Romanian s, (s with comma below); or when users of minority languages
in Russia use Latin letters instead of modified Cyrillic ones. Writers may also lack access to
keyboard layouts for their language, as demonstrated with North Saami above, or alternatively
writers may just write without need or attention to detail.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 69 of 474]

In cases where there are several dialects competing for the status of being the written standard,
or where the standard is new or otherwise not yet firmly rooted in the language community,
the variation within written text may be considerable. To the extent that one may predict the
variation, it is a trivial matter to use an FST to reduce the varying forms to a common lemma,
thus increasing the coverage of a dictionary drastically.

6 Conclusion

The present article has focused upon the role that FSTs may play in coping with linguistic
variation of one type or another with the goal of building reading comprehension dictionaries.
Written language occurs in many varieties and in many contexts, and FSTs provide dictionaries
that are flexible enough to cope with this variation, while at the same time maintaining the
integrity of the dictionary itself. This article gave one example using a North Saami Facebook
corpus, but many other settings may be envisaged, and coped with in a similar way.

Here, we presented bilingual dictionaries combined with finite-state transducers for morphology-
rich languages. In our evaluation, we compared our existing wordform dictionaries with this
finite-state solution, and found that use of an FST improves the coverage of the dictionary
tremendously, from 57.8% to 83.3% for North Saami, and from 41.4% to 69.6% for South
Saami.

In addition, there are other ways of analysing the linguistic inputs. For instance, words do not
occur in isolation, but in sentences, so with morphological analysis as a starting point, one
might also disambiguate the word grammatically, syntactically, and lexically, in order to pick a
verbal reading rather than a nominal one, and to give word-sense disambiguation based upon
context. These perspectives are left to future research, but it is also worth note that given
the availability of FSTs in many other highly inflected languages, these possibilities are also
available for many more languages than just those presented here.

Running the dictionary on a server is also a far better user experience to providing users with a
dictionary to install on their computers, and has the added benefit of providing a mobile-friendly
dictionary for users on the go. The implementation has also resulted in a means for reading
running texts on any website without having to look away from the text itself, with a high
success rate for text coverage. Together, these solutions strike down one of the larger barriers to
text comprehension for language learners, who will no longer need to spend their time looking
up words in dictionaries, and can instead use it for reading more texts.

Acknowledgments

Our thanks go to Norway Open Universities for funding the project "Interactive Saami Instruction
on the Internet", which this work is a part of, to Berit Merete N. Eskonsipo and Inger Ellen
Márjá Eira for working on the North Saami dictionary content, and to our other collegues at
Giellatekno, Divvun and Aajege for participating in the project as a whole.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 70 of 474]

References

Antonsen, L. (2013). Čállinmeattáhusaid guorran. [English summary: Tracking misspellings.].
University of Tromsø.

Antonsen, L. and Trosterud, T. (2010). Manne dihtor galgá máhttit grammatihka? [English
summary: Why the computer should know its Sami grammar.]. Sámi died̄alaš áigečála, 1:3–28.

Antonsen, L., Trosterud, T., Gerstenberger, C.-V., and Moshagen, S. N. (2009). Ei intelligent
ordbok for samisk. LexicoNordica, 16:271–283.

Beesley, K. R. and Karttunen, L. (2003). Finite State Morphology. CSLI publications in
Computational Linguistics, USA.

Facebook-group (2012). Discussions in NSR – a Norwegian Saami Organisation’s facebook
group. https://www.facebook.com/groups/norskesamersriksforbund/?fref=
ts. [last visited on 25/01/2013].

Koskenniemi, K. (1983). Two-level morphology : a general computational model for word-form
recognition and production. Helsingin yliopisto, Helsinki.

Larsson, L.-G. (1997). Prästen och ordet. Ur den samiska lexikografins historia. LexicoNordica,
4:101–117.

Lindén, K., Silfverberg, M., and Pirinen, T. (2009). HFST tools for morphology – An Efficient
Open-Source Package for Construction of Morphological Analyzers. In Proceedings of the
Workshop on Systems and Frameworks for Computational Morphology, Zürich, Switzerland.

Magga, O. H. (2012). Lexicography and indigenous languages. In Fjeld, R. V. and Torjusen,
J. M., editors, Proceedings of the 15th EURALEX International Congress, pages 3–18, Oslo,
Norway. Department of Linguistics and Scandinavian Studies, University of Oslo.

Maxwell, M. and Poser, W. (2004). Morphological interfaces to dictionaries. In Zock, M., editor,
COLING 2004 Enhancing and using electronic dictionaries, pages 65–68, Geneva, Switzerland.
COLING.

Moshagen, S., Sammallahti, P., and Trosterud, T. (2004). Twol at work. In Arppe, A., Carlson,
L., Lindén, K., Piitulainen, J., Suominen, M., Vainio, M., Westerlund, H., and Yli-Jyrä, A.,
editors, Inquiries into Words, Constraints and Contexts, pages 94–105, Stanford, CA. CSLI.

Trosterud, T. (2000). Kåven, Brita E. (red) 2000: Stor norsk-samisk ordbok [book review].
LexicoNordica, 8:283–306.

Trosterud, T. and Eskonsipo, B. N. (2012). A North Sami translator’s mailing list seen as a
key to minority language lexicography. In Fjeld, R. V. and Torjusen, J. M., editors, Proceedings
of the 15th EURALEX International Congress, pages 250–256, Oslo, Norway. Department of
Linguistics and Scandinavian Studies, University of Oslo.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 71 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 72 of 474]

Exploring Features for Named Entity Recognition in
Lithuanian Text Corpus

Jurgita Kapočiūtė-Dzikienė
1
, Anders Nøklestad

2
,

Janne Bondi Johannessen
2
, Algis Krupavičius

1

(1) KAUNAS UNIVERSITY OF TECHNOLOGY, K. Donelaičio 73, LT-44249, Kaunas, Lithuania
(2) UNIVERSITY OF OSLO, P.O. Box 1102, Blindern, N-0317 Oslo, Norway

Jurgita.Kapociute-Dzikiene@ktu.lt, Anders.Noklestad@iln.uio.no,

J.B.Johannessen@iln.uio.no, pvai@ktu.lt

ABSTRACT

Despite the existence of effective methods that solve named entity recognition tasks for such

widely used languages as English, there is no clear answer which methods are the most suitable

for languages that are substantially different. In this paper we attempt to solve a named entity

recognition task for Lithuanian, using a supervised machine learning approach and exploring

different sets of features in terms of orthographic and grammatical information, different

windows, etc. Although the performance is significantly higher when language dependent

features based on gazetteer lookup and automatic grammatical tools (part-of-speech tagger,

lemmatizer or stemmer) are taken into account; we demonstrate that the performance does not

degrade when features based on grammatical tools are replaced with affix information only. The

best results (micro-averaged F-score=0.895) were obtained using all available features, but the

results decreased by only 0.002 when features based on grammatical tools were omitted.

KEYWORDS: Named entity recognition and classification, supervised machine learning,

Lithuanian.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 73 of 474]

1 Introduction

The objective of Named Entity Recognition (NER) is to allocate and classify tokens in texts into

predefined categories, such as person names, location names, organizations, etc. NER is a subtask

of many natural language processing applications, i.e. in information extraction, machine

translation, question answering, etc.

The methods used to solve NER task fall into three main categories: hand-crafted, machine

learning and hybrid. Hand-crafted approaches are based on an analysis of the application domain

and the manual construction of gazetteers and sets of patterns capable of taking named entity

recognition and classification decisions. Hand-crafted methods assure high accuracy, but at the

same time they have low portability to new domains: i.e. changing domains require expert

intervention and manual re-creation of rules. Thus, very often machine learning methods are

selected instead of the rule-based ones. For machine learning approaches NER is usually

interpreted as classification task, where tokens are classified into categories with non-named and

different named entity types. Rules (defined as the model) by these methods are built

automatically after observation and generalization over the characteristics extracted from the text.

Supervised machine learning methods for model creation use texts prepared by the domain

experts with manually assigned classes (identifying particular named entity type or not a named

entity) to all tokens. Semi-supervised machine learning methods for NER are usually based on a

bootstrapping learning scheme: an initial small set of tokens with predefined categories (types of

named entities) is used as the seed to build initial model, then all tokens in the texts are classified

using that seed model and the most confident classifications (recognized named entities) are

added to the training data and the process is iterated. Supervised machine learning methods

outperform semi-supervised methods in terms of accuracy, but the strongest point of semi-

supervised methods is that they do not require large annotated corpora. Hybrid methods usually

combine the strongest points of both hand-crafted and machine learning methods.

In this paper we are solving the named entity recognition task using a supervised machine

learning technique. Our focus is to find the most informative features for the Standard Lithuanian

language yielding the best named entity classification results for person, location and

organization names. Our experiments include different sets of language independent and

dependent features based on orthographic and grammatical information, different windows

(tokens before and after a current one), etc. We also assess whether it is possible to perform

named entity classification effectively without resorting to external grammatical tools such as

part-of-speech taggers, lemmatizers or stemmers, because they have limited availability, and are

slow and unreliable when identifying proper names in Lithuanian texts.

Section 2 contains an overview of related work. In Section 3, we describe the Lithuanian

language and its properties. We outline the methodology of our named entity classification

experiments in Section 4 and present the results in Section 5. We discuss these results in

Section 6 and conclude in Section 7.

2 Related work

The NER research for English started in early 1990s and this task was successfully solved (for a

review see Nadeu & Sekine, 2007), because NER achieved human annotation performance

(Sundheim, 1995) in terms of accuracy. Thus current works for English mostly focus on the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 74 of 474]

improvement of other important metrics, e.g. speed: i.e. Al-Rfou’ & Skiena (2012) demonstrated

that the speed of a NER tagger can be increased after improvement of tokenizer and part-of-

speech tagger that are used as the sub-modules in NER pipeline.

The reason why methods achieve very high accuracy on English texts is because they are based

on rich external resources (such as wide range of annotated corpora and gazetteers, accurate part-

of-speech taggers, etc.) that are not always available for the other languages. Besides, the English

language is not as complex as highly inflective, morphologically rich and ambiguous languages;

moreover it does not suffer from lack of capitalization problems for proper nouns. Thus, it can be

concluded that NER task for each language requires its detailed analysis and adaptation.

However, some generalizations can be made, e.g. language dependent features (based on

gazetteers or morphological information) always increase NER accuracy; morphological

information is inevitable for morphologically rich languages in order for the NER method to be

comparable to the state-of-the-art methods for English. The importance of accurate

morphological analyzers in NER task was revealed by Hasan et al. (2009): NER results for

Bengali were significantly improved by simple refining non-accurate part-of-speech tagger (the

part-of-speech tagger was improved during extraction of information from Wikipedia that in turn

improved recognizer). Morphological information in NER methods can be either incorporated

into rules or used as features (part-of-speech tags, lemmas). Examples of such methods are: rule-

based methods for Arabic (Elsebai et al., 2009), Danish and Norwegian (Johannessen et al.,

2005), Russian (Popov et al., 2004), and Urdu (Singh et al., 2012); supervised machine learning

methods for Bulgarian (Georgiev et al., 2009), Dutch (Desmet & Hoste, 2010), Norwegian

(Haaland, 2008; Nøklestad, 2009), and Polish (Marcinczuk et al., 2011; Marcinczuk & Janicki,

2012); hybrid method for Arabic (Mai & Khaled, 2012). Hasan et al. (2009) also proved that

affixes are very important in solving NER task for morphologically rich languages. Affixes

helped to increase NER results for Bengali, Bulgarian, Polish, etc.

NER task for Lithuanian was previously solved using two different methods: rule-based (for

person and location names, abbreviations, date and time) (Kapočiūtė & Raškinis, 2005) and semi-

supervised machine learning (bootstrapping) (for person, location and organization names,

product, date, time and money) (Pinnis, 2012). Unfortunately, we cannot give any examples of

experiments based on supervised machine learning techniques for NER. Consequently, this paper

will be the first attempt at finding an accurate supervised machine learning method (in terms of

the most informative features) for NER in Lithuanian texts.

3 Lithuanian language challenges

Of all living Indo-European languages, Lithuanian has the richest inflectional morphology,

making it more complex than even Latvian or Slavic languages (Savickienė et al., 2009).

Lithuanian nominal words (nouns or adjectives that are used as person, location or organization

names) can be inflected by 7 cases, 2 genders, and 2 numbers. Various inflection forms are

expressed by different endings. Person names can have either masculine or feminine gender and

are inflected by case and number. To exemplify: the possible inflection forms of masculine

person name Jonas (John) are: Jonas (singular nominative), Jono (singular genitive), Jonui

(singular dative), Joną (singular accusative), Jonu (singular ablative), Jone (singular locative),

Jonai (singular and plural vocative; plural nominative), Jonų (plural genitive), Jonams (plural

dative), Jonus (plural accusative), Jonais (plural ablative), Jonuose (plural locative). The location

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 75 of 474]

names or organizations can have either masculine or feminine gender and singular or plural

number, and are inflected by case. E.g. Lietuva (Lithuania) is singular feminine noun; Aukštieji

Tatrai (High Tatres) is composed of plural masculine adjective Aukštieji (High) and plural

masculine noun Tatrai (Tatres), where all words are inflected only by 7 cases. In the Lithuanian

language there are 12 inflection paradigms for nouns, and 9 inflection paradigms for adjectives.

The same inflection rules are used to inflect foreign person names in Standard Lithuanian texts.

Endings can either be directly attached to the end of the noun e.g. Tonis Blairas (Tony Blair) or

can be added after an apostrophe e.g. Tony’is Blair’as (Tony Blair).

In Lithuanian, male and female surnames are different; moreover, in the surnames of married and

unmarried women the suffixes are also different. For example, given the male surname Karalius,

the appropriate female surname of an unmarried woman is Karaliūtė, and of a married woman –

Karalienė. Besides, women can have surnames that do not reveal their marital status, e.g. Karalė,

or keep both surnames – typically written with a hyphen, e.g. Petraitytė-Karalienė or Petraitytė-

Karalė.

In Lithuanian organization names only the first word is capitalized in organization names (the

other words are capitalized only if they happen to be a person or location name). E.g. Lietuvos

mokslo taryba (Research Council of Lithuania), Kauno Maironio gimnazija (Kaunas Maironis

Gymnasium) Maironio is a person name that is capitalized. The names of the companies in

Lithuanian texts are written in quotation-marks. Despite the fact that the words in organization

names are written in lower case (starting from the second word); acronyms are written in upper

case, e.g. the acronym for Kauno technologijos universitetas (Kaunas University of Technology)

is abbreviated to KTU.

Lithuanian is a synthetic language; and the word order in the sentence is absolutely free. As in

ancient Indo-European languages, in Lithuanian the word order does not perform a grammatical,

but a notional, function: i.e., the same sentence will be grammatically correct regardless of word

order, but the meaning (things that have to be highlighted) will be a bit different. Thus, any

named entity can appear in any place of the sentence. Despite this, the words that act as triggers

(words that directly signal a named entity) or modifiers (words that limit or qualify the sense of

named entity) are located close to the named entity they describe. E.g. in dr. Jonas Basanavičius

(dr. Jonas Basanavičius) dr. is the trigger that identifies the following word as the person name;

in gyventi Lietuvoje or Lietuvoje gyventi (to live in Lithuania) gyventi (to live in) is the modifier

that qualifies the named entity Lietuvoje as a location name.

47% of Lithuanian words or word forms are ambiguous (Zinkevičius et al., 2005); named entities

are no exception. Ambiguities are often between common nouns/adjectives written at the

beginning of a sentence and person/location/organization names, e.g. Raudonoji (Red) can be

either a common word in Raudonoji arbata (Red tea) or a location name in Raudonoji jūra (Red

sea); Rūta can be either the name of the person or the common word “rue”. Ambiguities can also

emerge between person names and location names, e.g. Roma is the name of the person or

location name “Rome”). Depending on the meaning, named entities can change their type, e.g.

Maironis is a person name, but in Maironio gatvė (Maironis street) the word is treated as a

location; Vilnius is a location name, but in Vilniaus universitetas (Vilnius University) it is treated

as part of an organization name. This analysis reflects what is called “Function over Form” in

Johannessen et al. (2005).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 76 of 474]

4 Methodology

4.1 Feature extraction

Supervised machine learning systems cannot be directly trained on a corpus annotated with

named entities. The corpus has to be transformed into a collection of instances. Usually instances

are generated for consecutive tokens excluding punctuation marks (e.g. from string J. Petraitytė-

Karalienė would be generated three instances “J”, “Petraitytė”, and “Karalienė”), sometimes

punctuation marks are stored as part of tokens (e.g. from string J. Petraitytė-Karalienė would be

generated: “J.”, “Petraitytė-”, and “Karalienė”). Since punctuation marks carry a lot of

information about named entities in Lithuanian language and their loss would be harmful (e.g.

when recognizing classified named entities in plain text) in our experiments we treat punctuation

marks as tokens, too – i.e. as separate instances (thus, e.g. from string J. Petraitytė-Karalienė

would be generated five instances: “J”, “.”, “Petraitytė”, “-”, and “Karalienė”). During such

transformation the order of tokens and punctuation marks in the collection is not changed.

All instances that are used in the classification process are represented as vectors, each composed

of the class label (identifying none or a particular type of named entity) and the list of features

(where the first one describes original token – “J”, “Petraitytė”, “Karalė” or punctuation mark –

“.”, “-”). Considering Lithuanian language properties and available resources, we have made the

list of features that should be effective in solving named entity classification task. All features

can be grouped into two main categories: language independent and language dependent.

Language independent features are very general, based only on the orthographic information

directly available in the corpus; language dependent features resort to external resources such as

special purpose grammatical tools (part-of-speech tagger, lemmatizer, stemmer) or gazetteers

(gazetteer of person names, gazetteer of location names).

Below we present a list of all the features that were used in our experiments.

Language independent (basic and orthographic) features:

 t – the original token or punctuation mark.

 Lowercase (t) – t in lower case letters (e.g. Lowercase (Lietuva) = lietuva). The usage of this

feature decreases the number of tokens that can be treated differently because of case

sensitivity (especially relevant for common words at the beginning of the sentence).

 IsFirstUpper(t) – Boolean indicator that determines if the first character of t is capitalized

(e.g. IsFirstUpper(Lietuva) = true).

 Acronym(t) – Boolean indicator that determines if all characters in t are capitalized (e.g.

Acronym(KTU) = true). This feature should help to identify organizations abbreviated as

acronyms.

 Number(t) – Boolean indicator that determines if t is a number (e.g. Number(Sk1) = false).

 Length (t) – numeral indicator that determines the length of t.

 Prefix-n(t) – affix that determines the first n (in our experiments 3 n 5) characters of t in

lower case (e.g. Prefix-5(Šiauliai) = šiaul). This feature should help to extract stable parts

of tokens and thus get rid of inflectional Lithuanian endings.

 Suffix-n(t) – affix that determines the last n (in our experiments 3 n 5) characters of t in

lower case (e.g. Suffix-5(Šiauliuose) = iuose; Suffix-5(Šakiuose) = iuose). This feature

should help to extract inflectional Lithuanian endings. E.g. the roots in “Šiauliuose” and

“Šakiuose” are different, but they share the same ending in locative case “iuose”.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 77 of 474]

Language dependent features:

 Lemma(t) – the lemma of t (e.g. Lemma(Lietuvoje) = Lietuva). The lemmatizer transforms

recognized words into their major form (by replacing appropriate endings, but not

touching affixes); the common words also are transformed into lower-case letters.

 POS(t) – the part-of-speech tag of t (e.g. POS(Lietuvoje) = noun).

 Stem(t) – the stem of t (e.g. Stem(Lietuvoje) = Lietuv). The stemmer eliminates inflectional

ending (and some other suffixes) of the input word.

 IsPERGaz(t) – A Boolean indicator that determines if t is in the gazetteer of person names.

 IsLOCGaz(t) – A string indicator that determines if t is in the gazetteer of location names,

and if so, then if it is the beginning or any other word in the location name (e.g. for gyvenu

Didžiojoje Britanijoje (I live in Great Britain), IsLOCGaz(gyvenu) = no;

IsLOCGaz(Didžiojoje) = yesB; IsLOCGaz(Britanijoje) = yesI).

Class labels:

The corpus contains three types of named entities for person names, location names and

organizations. Class labels are represented in BIO notation, thus B-PER, B-LOC, B-ORG

indicate the first token in person, location, organization named entity, respectively; I-PER, I-

LOC, I-ORG indicate any other token (except the first one) in person, location, organization

named entity, respectively; O indicates any other token (not in named entities).

4.2 Dataset

All the texts for the NER task were taken from the Vytautas Magnus University corpus

(Marcinkevičienė, 2000). We aimed to avoid domain adaptation problem, thus texts were taken

from several domains (as it was done by Kitoogo et al. (2008)). The created dataset in total

contained ~ 0.5 million running words and was composed from the texts representing Standard

Lithuanian and taken from 5 different domains: popular periodic, local newspapers, republican

newspapers, parliamentary transcripts and legislative texts (the distribution of running words over

different domains is presented in FIGURE 1).

FIGURE 1 – The distribution of words (used in our NER experiments) over 5 different domains.

All texts used in our named entity classification experiments were manually annotated with

person, location and organization names (the distribution of words into named entities over

different domains is presented in FIGURE 2.). Named entities were annotated considering

“Function over Form” annotation manner, thus the same named entity could be tagged differently

Republican

newspapers

15%

Parlamentiary

transcripts

14%

Local newspapers

19%

Popular

periodicals

39%

Legislative texts

13%

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 78 of 474]

in different context, e.g. in Maironis skaito savo poeziją (Maironis reads his poetry) Maironis is

annotated as person name; in gyvenu Maironio gatvėje (live in Maironis street) Maironio is

annotated as location name; in Skaitau knygą “Apie Maironį” (I read the book “About Maironis”)

Maironį is not annotated as named entity because it is neither person, nor location, nor

organization name, but it is the title of the book. Besides, inner named entities were not annotated.

E.g. in Vilniaus universitetas (Vilnius University) inner location name Vilniaus was ignored;

instead of it both words were annotated as single organization name.

FIGURE 2 – The distribution of words into named entities (person names – in PER, location

names – in LOC, organization names – in ORG) over 5 different domains.

Annotated texts were transformed into collection of instances. Statistics about number of

instances (tokens/punctuation marks) belonging to their appropriate classes is presented in

TABLE 1.

Class label Number of instances

B-PER 10902

I-PER 13861

B-LOC 12152

I-LOC 1322

B-ORG 5937

I-ORG 10482

All NEs 54656

O 577771

Total 632427

TABLE 1 – Number of instances for all classes in the dataset used in our NER experiments.

4.3 Formal description of the task

The mathematical formulation of the named entity classification task we are attempting to solve

is given below.

4,9%
5,8%

4,4%
3,5%

1,2%

2,8% 0,6% 3,4%

3,0%

2,6%

3,1%

1,5%

3,1%

1,2%
8,3%

0,0

2,0

4,0

6,0

8,0

10,0

12,0

in ORG
in LOC
in PER

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 79 of 474]

Let D be our dataset containing instances I, where ID.

Let C be a finite set of classes: C = {c1, c2, …, cN}. In our case 2 < N << – i.e. we have a multi-

class classification problem, because C = {B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG, O}

and N=7.

Let I be the instance described by feature vector v with the appropriate class label c, thus all

instances in the dataset are represented as I=v, c. We do not consider inner named entities;

therefore our dataset contains single-labeled instances only: i.e. any instance cannot be attached

to more than one class c.

Let function be a classification function mapping instances to classes, : I C. Function

determines how I was labeled with c. In our dataset annotation of named entities was performed

by the domain expert.

Let denote a supervised learning method which given D as the input, could return a learned

classification function ’ (defined as a model) as the output: (D)’.

4.4 Experimental setup

In order to find the most informative features for the NER task on Lithuanian texts, we performed

experiments based on:

 Different windows [tx-m, tx+m]. E.g. window [tx=0] contains only one element – current

instance tx=0; window [tx-1, tx=0] contains current instance tx=0 and instance tx-1 that is before

tx=0; window [tx=0, tx+1] contains current instance tx=0 and instance tx+1 that is after tx=0, etc.

We restricted m to 3 and thus experimented with 12 different windows in total.

 9 different sets of features (see TABLE 2). The sets of features No. 1 and No. 5 contain only

language independent features; all other sets of features contain both language

independent and language dependent features.

Sets No. 2 and No. 6 – No. 9 also contain gazetteer lookup features. These feature values

were generated considering information stored in the gazetteers. To avoid redundancy

when storing named entities in all their inflectional forms as separate instances, distinct

named entities were represented by stem and their appropriate inflectional paradigm

identifier. Thus, the gazetteer of person names consists of ~7 thousand individual person

names (e.g. Jon:1 retains named entity in all its inflectional forms: Jonas, Jono, Jonui,

etc.); the gazetteer of location names consists of ~2.2 thousand location names: individual

(the same as for person names) or compound (e.g. Didži:2 Britanij: 3 retains this named

entity in all its inflectional forms: Didžioji Britanija, Didžiosios Britanijos, Didžiajai

Britanijai, etc.).

Sets No. 3, No. 6, and No. 9 also contain part-of-speech tags and lemmas as features. The

tokens were part-of-speech tagged and lemmatized using the dictionary-based

morphological analyzer-lemmatizer “Lemuoklis” (Zinkevičius, 2000; Daudaravičius et al.,

2007). “Lemuoklis” also solves morphological disambiguation problems and achieves

~95% accuracy on standard texts. Despite “Lemuoklis” being very accurate on common

words; its weakness is unknown proper names (Zinkevičius et al., 2005). In our

experiments “Lemuoklis” was unable to recognize 30.6% of the words as either named

entities or common words, and classified them as “unknown”; it recognized only 34.4% of

words as proper names, the rest 35% words it recognized as common words (for the

detailed statistics see FIGURE 3).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 80 of 474]

FIGURE 3 – The percentage distribution of words in named entities (person names – in PER,

location names – in LOC, organization names – in ORG) that were recognized by “Lemuoklis”

as proper names (proper), common words (common) or not recognized at all (unknown).

Feature sets

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9

F
ea

tu
re

s

t

Lowercase(t)

IsFirstUpper(t)

Acronym(t)

Number(t)

Length(t)

Prefix-3-5(t)

Suffix-3-5(t)

Lemma(t)

POS(t)

Stem(t)

IsPERGaz(t)

IsLOCGaz(t)

TABLE 2 – Different sets of features used in our NER experiments.

Sets No. 4, No. 7, and No. 9 also contain stems of tokens as features. The tokens were

stemmed using a Lithuanian stemmer (Krilavičius & Medelis, 2010) based on the Porter

stemming algorithm (Willet, 2006). The Lithuanian stemmer eliminates all endings and

also some suffixes (but do not touch prefixes). The stemmer is rule-based, thus it can cope

with proper names as well as with the other words. But in some cases stemming can cause

the loss of meaning and ambiguity, e.g. Lietuva (Lithuania), Lietuvis (Lithuanian) will

both be stemmed to the same Lietuv.

Sets No. 5, No. 8, and No. 9 contain affix features: the first and the last 3, 4 and 5

characters of each token.

As previously described, in our experiments we used 9 sets of features and 12 windows, that is

912=108 different experiments in total.

59,5%

13,2% 7,4%

20,7%

72,5%

17,4%

19,9% 14,3%

75,2%

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

in PER in LOC in ORG

common

proper

unknown

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 81 of 474]

Before the experiments we made two hypotheses.

Our first hypothesis is that language dependent features (morphological and gazetteer lookup)

should increase the accuracy of NER on Lithuanian texts (the same as for Bengali ((Hasan et al.,

2009), Polish (Marcinczuk & Janicki, 2012), and other languages). We expect that gazetteers

should solve the disambiguation problems between named entities and not named entities or

between different types of named entities; and grammatical tools (part-of-speech

tagger/lemmatizer and stemmer) will cope with the inflections of the Lithuanian language (that in

turn should reduce the sparseness of feature space and should lead to the construction of more

reliable model).

The grammatical tools seem necessary due to the importance of inflection in Lithuanian, but they

are unreliable when identifying proper names (Zinkevičius et al., 2005). Therefore, our second

hypothesis is that the stable parts of the words and the influence of inflection can be captured in a

different way – i.e. by affix information. We expect that with affix features (Prefix-3-5(t) and

Suffix-3-5(t)), the NER method will achieve similar accuracy as with features based on part-of-

speech information, lemmas or stems.

4.5 Classification

Our attempt was to find a method which could create the model ’ the best approximating .

Since a NER task using supervised machine learning approach has never been undertaken for

Lithuanian, we had no knowledge which method is the most appropriate. Therefore we selected

Conditional Random Fields (CRFs) method (a detailed description of CRFs is presented in

Lafferty et al., 2001) as , because it is one of the popular techniques utilized for the NER task

(Nadeau & Sekine, 2007) outperforming many other popular methods, such as Hidden Markov

Models (HMMs), Maximum Entropy Markov Models (MEMMs), and etc.

The implementation of CRFs we used in our experiments is CRF++ version 0.57
1
, which requires

a template file (with the determined features that are considered) and datasets for training and

testing.

5 Results

All results reported below are based on 10 fold cross-validation (the biggest class O for non-

named entities is treated as the negative class in all calculations).

The experiments with different windows revealed that the best results are obtained with window

[tx-2; tx+1], except for the feature sets No. 2 and No. 3, where the best results were obtained with

[tx-1; tx+1]. Despite that, the improvement on micro-averaged F-scores was less than 0.0006.

FIGURE 4 reports the results obtained using different windows with the feature set No. 1.

We experimented with different n values of Prefix-n(t) and Suffix-n(t) also, but the best results

were reported with 3 n 5: with feature set No. 5 micro-averaged F-score using n=3 was

0.8556, with 3 n 4 – 0.8614, the peak 0.8645 was with 3 n 5, the higher n values

degraded the results. Besides, using only Prefix-3-5(t) or only Suffix-3-5(t) was not effective also:

e.g. with the feature set No. 5 micro-averaged F-score when using only Prefix-3-5(t) was 0.8549,

when using only Suffix-3-5(t) – 0.8517, when using both – 0.8645.

1
 http://crfpp.sourceforge.net

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 82 of 474]

FIGURE 4 – Micro-averaged F-scores obtained with different windows when feature set No. 1.

The results obtained using window [tx-2; tx+1] and 3 n 5 for all 9 feature sets are reported in

TABLE 3.

Precision Recall F-score

micro avg macro avg micro avg macro avg micro avg macro avg

F
ea

tu
re

 s
et

s

No.1 0.8655 0.8648 0.8043 0.8061 0.8338 0.8342

No.2 0.9159 0.9174 0.8587 0.8643 0.8864 0.8897

No.3 0.8738 0.8745 0.8353 0.8380 0.8541 0.8556

No.4 0.8748 0.8744 0.8122 0.8141 0.8424 0.8429

No.5 0.8933 0.8923 0.8375 0.8391 0.8645 0.8647

No.6 0.9141 0.9169 0.8732 0.8785 0.8932 0.8970

No.7 0.9177 0.9195 0.8636 0.8691 0.8899 0.8933

No.8 0.9168 0.9176 0.8708 0.8754 0.8932 0.8957

No.9 0.9140 0.9161 0.8773 0.8817 0.8953 0.8984

TABLE 3 – Micro/macro averaged precision/recall/f-scores for all sets of features with window

[tx-2; tx+1] and 3 n 5.

To determine whether the performances of the classifier trained on different feature sets were

significantly different from each other, we performed approximate randomization testing (Yeh,

2000). In all approximate randomization testing experiments we used 1000 shuffles.

The differences between many experiments are statistically significant to a very high degree

(p = 0.00099) with some exceptions, presented in FIGURE 5: i.e. differences are statistically

significant to a high degree when 0.00099 < p 0.01; statistically significant when

0.01 < p 0.05; and not significant when p > 0.05.

0,78

0,79

0,80

0,81

0,82

0,83

0,84

[t
ₓ₌
₀]

[t
ₓ₋
₁;

 t
ₓ₌
₀]

[t
ₓ₌
₀;

 t
ₓ₊
₁]

[t
ₓ₋
₁;

 t
ₓ₊
₁]

[t
ₓ₋
₁;

 t
ₓ₊
₂]

[t
ₓ₋
₂;

 t
ₓ₊
₁]

[t
ₓ₋
₂;

 t
ₓ₊
₂]

[t
ₓ₋
₁;

 t
ₓ₊
₃]

[t
ₓ₋
₃;

 t
ₓ₊
₁]

[t
ₓ₋
₂;

 t
ₓ₊
₃]

[t
ₓ₋
₃;

 t
ₓ₊
₂]

[t
ₓ₋
₃;

 t
ₓ₊
₃]

M
ic

ro
 a

v
g

 F
-s

co
re

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 83 of 474]

FIGURE 5 – p scores indicating statistical differences between the results (micro/macro

precision (Pr)/recall (R)/F-score (F)) obtained on different feature sets.

6 Discussion

A glance at TABLE 3 in Section 5 shows that our first hypothesis is confirmed: language

independent features are easily beaten with language dependent features. These findings agree

with the findings obtained for other languages: Bengali (Hasan et al., 2009), Bulgarian (Georgiev

et al., 2009), etc.

As it is presented in TABLE 3, the usage of gazetteer lookup features in No. 2 increased the results

of No. 1 by 0.0526 in micro-averaged F-score, despite the fact that a gazetteer of organization

names is not available for Lithuanian (only of person and location names). The features obtained

using grammatical tools also increased NER results (compared with No. 1 which is based on

orthographic information only): the increment in micro-averaged F-score using part-of-speech

tagger/lemmatizer in No. 3 is 0.0203; whereas stemmer in No. 4 caused only a small boost in

performance – increment in micro-average F-score is only 0.0086. The lemmatizer and stemmer

cope with inflectional endings of Lithuanian language by reducing the number of distinct tokens.

Thus a reduced number of feature values leads to the construction of more reliable and, as it can

be concluded from the results, to more accurate models. The reason why part-of-speech

tagging/lemmatization improves performance over stemming is that the part-of-speech

tagger/lemmatizer is more accurate compared with stemmer, besides it preserves inflectional

information that is important in Lithuanian language (the ending is not lost during lemmatization,

only changed into the major form). The results obtained in No. 3 (with the part-of-speech

tagger/lemmatizer) are worse than in No. 2 (with the gazetteer lookup), because the part-of-

speech tagger/lemmatizer is not robust in recognizing proper names, as well as not being capable

of determining types of named entities.

Experiments with gazetteer lookup + part-of-speech tagging/lemmatizing in No. 6, or gazetteer

lookup + stemming in No. 7, yielded even better results compared with the results when they

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

N
o
.2

 &
 N

o
.7

N
o
.3

 &
 N

o
.4

N
o
.3

 &
 N

o
.5

N
o
.6

 &
 N

o
.7

N
o
.6

 &
 N

o
.8

N
o
.6

 &
 N

o
.9

N
o
.7

 &
 N

o
.8

N
o
.7

 &
 N

o
.9

N
o
.8

 &
 N

o
.9

micro-Pr

macro-Pr

micro-R

macro-R

micro-F

macro-F

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 84 of 474]

were used separately (as in No. 2, No. 3, No. 4). Despite the result in No. 6 exceeded No. 7 by

0.0033 in micro-average F-score, the difference was proved to be statistically significant.

More interestingly, the results also support our second hypothesis: grammatical tools (part-of-

speech tagger/lemmatizer and stemmer) can be replaced with affix information. The same effect

can be achieved by automatically slicing n characters from the beginning and the end of the token

as it is done with Prefix-3-5(t) and Suffix-3-5(t). Experiments with Prefix-3-5(t) and Suffix-3-5(t)

in No. 5 outperformed No. 4 (with stemming) by 0.0221 in micro-average F-score (the difference

was proved to be statistically significant to a very high degree for all measures). No. 5 yielded

similar results as No. 3 (with part-of-speech taggering/lemmatization): despite the increment in

No. 5 was by 0.0102 in micro-average F-score, but the difference was proved to be statistically

significant in terms of micro-precision and macro-recall only and not statistically significant for

all the other measures.

Experiments with gazetteer lookup + affixes as it is in No. 8 yielded even better results compared

with the results obtained separately (as in No. 2, No. 5) (all differences were proved to be

statistically significant to a very high degree), besides No. 8 outperformed gazetteer lookup +

stemming in No. 7 (the differences were proved to be statistically significant) and No. 8
yielded the same micro-average F-score as with gazetteer lookup + part-of-speech

tagging/lemmatization in No. 6 (the differences were proved to be statistically significant for all

measures, except for micro-recall). The best results were obtained using all available features in

No. 9. Despite that the difference between sets of features No. 8 and No. 9 was proved to be

statistically significant, the increment is only by 0.0021 in micro-averaged F-score.

The observations obtained from the experiments allow us to conclude that simple automatic

prefix and suffix information capture enough of the Lithuanian language inflection information;

therefore it can replace features generated by part-of-speech taggers, lemmatizers, and stemmers.

It is indeed very good news, because the Lithuanian part-of-speech tagger/lemmatizer has limited

availability, is not very convenient and slow to use; the Lithuanian stemmer is low in accuracy.

If we take a close look at the confusion matrix (see TABLE 4) obtained with feature set No. 9 and

window [tx-2; tx+1], we would notice the main errors made by named entity classifier. Below we

discuss main named entity classification error types (summarized by Nadeu & Sekine, 2007).

Predicted class

 B-PER I-PER B-LOC I-LOC B-ORG I-ORG O

A
ct

u
a

l
c
la

ss

B-PER 8,719 155 789 4 25 7 1,203

I-PER 63 13,354 14 15 17 25 373

B-LOC 263 169 10,192 23 234 36 1,235

I-LOC 8 138 24 939 17 97 99

B-ORG 82 31 557 6 3,762 157 1,342

I-ORG 29 171 33 48 54 6,674 3,473

O 449 709 547 47 475 1,551 57,3993

TABLE 4 – Confusion matrix obtained with the feature set No. 9 and window [tx-2; tx+1].

The amount of correct predictions (see TABLE 4) is presented in diagonal where the actual class

label is equal to predicted, thus from 632,427 instances, only 14,794 were predicted incorrectly:

3,788 times the classifier hypothesized as named entities where there was none; 7,725 times a

named entity was completely missed by the classifier; 2,444 times classifier correctly recognized

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 85 of 474]

the boundary of named entity, but got the wrong type; 476 times the classifier recognized the

type of named entity, but got its boundary wrong; 371 times the classifier recognized that it is a

named entity, but got wrong type and boundary.

The major problem is the 25.54% of all errors where the classifier determined named entity

where there was none and 52.22% of all errors where named entity was completely missed.

These problems arose because of different ambiguities in Lithuanian texts between proper and

common words: i.e. a lot of person and location names are ambiguous with common words

(especially at the beginning of the sentence), but the major problem is ambiguity between

organization names and common words (typically only the first word in an organization name is

capitalized and all other words are written in lower-case), because in our experiments we could

not use a gazetteer for organization names, because such gazetteer is not yet available.

The experiments with different windows revealed, that the best results for Lithuanian were

obtained using a rather small window [tx-2; tx+1] (compared with the results obtained e.g. for

Polish [tx-2, tx+2] (Marcinczuk & Janicki, 2012) or Turkish – [tx-3, tx+3] (Gokhan & Gulsen, 2012)):

i.e. two instances before and one after the current. Thus, we can conclude, that even if the word

order in the sentence in Lithuanian is free, the nearest information is more useful in NER process.

7 Conclusion and Outlook

In this paper we were solving NER task for Lithuanian language using supervised machine

learning approach: i.e. we explored different sets of features in terms of orthographic and

grammatical information, different windows, etc.

We have formulated and experimentally confirmed two hypotheses:

 The language dependent features (based on dictionaries, part-of-speech tagger, lemmatizer,

and stemmer) increase the NER results, especially due to the importance of inflection

information in Lithuanian language.

 The features based on external grammatical tools (part-of-speech tagger, lemmatizer, and

stemmer) can be replaced with affixes that can capture relevant patterns intrinsically.

The best results were obtained using all available features and the window [tx-2; tx+1]. The

decrease of micro-average F-score was only 0.0021 when features generated by the grammatical

tools were eliminated. This result should be promising for other resource-scarce languages with

similar properties as Lithuanian.

In future research, it would be interesting to experiment with different named entity types and

classification methods.

Acknowledgments

This research was funded by European Union Structural Funds project “Postdoctoral Fellowship

Implementation in Lithuania” (No. VP1-3.1-ŠMM-01) and initiated when the first author was

visiting the Department of Linguistics and Nordic Studies at the University of Oslo, Norway.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 86 of 474]

References

Al-Rfou’, R. and Skiena, S. (2012). SpeedRead: A Fast Named Entity Recognition Pipeline. In

Proceedings of the 24th International Conference on Computational Linguistics (COLING

2012), pages 51–66.

Daudaravičius, V., Rimkutė, E. and Utka, A. (2007). Morphological annotation of the

Lithuanian corpus. In Proceedings of the Workshop on Balto-Slavonic Natural Language

Processing: Information Extraction and Enabling Technologies (ACL’07), pages 94–99.

Desmet, B. and Hoste, V. (2010). Dutch named entity recognition using ensemble classifiers. In

Computational Linguistics in the Netherlands 2010: selected papers from the twentieth CLIN

meeting (CLIN 2010), pages 29–41.

Elsebai, A., Meziane, F. and Belkredim, F. Z. (2009). A Rule Based Persons Names Arabic

Extraction System. In Proceedings of the 11th International Conference on Innovation and

Business Management (IBIMA), pages 53–59.

Georgiev, G., Nakov, P., Ganchev, K., Osenova, P. and Simov, K. (2009). Feature-Rich

Named Entity Recognition for Bulgarian Using Conditional Random Fields. In Proceedings of

the International Conference on Recent Advances in Natural Language Processing (RANLP-

2009), pages 113–117.

Gokhan, A. S. and Gulsen, E. (2012). Initial Explorations on using CRFs for Turkish Named

Entity Recognition. In Proceedings of the 24th International Conference on Computational

Linguistics (COLING 2012), pages 2459–2474.

Haaland, Å. (2008). A Maximum Entropy Approach to Proper Name Classification for

Norwegian. PhD thesis, University of Oslo.

Hasan, K. S., Rahman, A., and Ng, V. (2009). Learning-based named entity recognition for

morphologically-rich, resource-scarce languages. In Proceedings of the 12th Conference of the

European Chapter of the Association for Computational Linguistics, pages 354–262.

Johannessen, J. B., Hagen, K., Haaland, Å., Nøklestad, A., Jónsdottir, A. B., Kokkinakis, D.,

Meurer, P., Bick, E. and Haltrup, D. (2005). Named Entity Recognition for the Mainland

Scandinavian Languages. Literary & Linguistic Computing, 20(1): 91–102.

Kapočiūtė, J. and Raškinis, G. (2005). Rule-based annotation of Lithuanian text corpora.

Information technology and control, Kaunas, Technologija, 34 (3): 290–296.

Kitoogo F. E., Baryamureeba, V, and De Pauw, G. (2008). Towards Domain Independent

Named Entity Recognition. International Journal of Computing and ICT Research, 2 (2): 84–

95.

Krilavičius, T. and Medelis, Ž. Lithuanian stemmer. (2010). May, 2012.

<https://github.com/tokenmill/ltlangpack/tree/master/snowball/>.

Lafferty, J. D., McCallum, A. and Pereira, F. (2001). Conditional Random Fields: Probabilistic

Models for Segmenting and Labeling Sequence Data. In Proceedings of the Eighteenth

International Conference on Machine Learning (ICML’01), pages 282–289.

Mai, M. O. and Khaled, S. (2012). A Pipeline Arabic Named Entity Recognition Using a Hybrid

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 87 of 474]

Approach. In Proceedings of the 24th International Conference on Computational Linguistics

(COLING 2012), pages 2159–2176.

Marcinczuk, M. and Janicki, M. (2012). Optimizing CRF-Based Model for Proper Name

Recognition in Polish Texts. In Proceedings of the 13th international conference on

Computational Linguistics and Intelligent Text Processing (CICLing’12), (1): 258–269.

Marcinczuk, M., Stanek, M., Piasecki, M. and Musial, A. (2011). Rich Set of Features for

Proper Name Recognition in Polish Texts. SIIS, Lecture Notes in Computer Science, 7053:

332–344.

Marcinkevičienė, R. (2000). Tekstynų lingvistika (teorija ir paktika) [Corpus linguistics (theory

and practice)]. Darbai ir dienos, 24: 7–63. (in Lithuanian).

Nadeau, D. and Sekine, S. (2007). A survey of named entity recognition and classification.

Linguisticae Investigationes, 30 (1): 3–26.

Nøklestad A. (2009). A Machine Learning Approach to Anaphora Resolution Including Named

Entity Recognition, PP Attachment Disambiguation, and Animacy Detection. PhD Thesis,

University of Oslo.

Pinnis, M. (2012). Latvian and Lithuanian Named Entity Recognition with TildeNER. In

Proceedings of the Eight International Conference on Language Resources and Evaluation

(LREC’12), pages 1258–1265.

Popov, B., Kirilov, A., Maynard, D. and Manov, D. (2004). Creation of Reusable Components

and Language Resources for Named Entity Recognition in Russian. In Proceedings of the 4th

International Conference on Language Resources and Evaluation (LREC 2004), pages 309–

312.

Savickienė, I., Kempe, V. and Brooks, P. J. (2009). Acquisition of gender agreement in

Lithuanian: exploring the effect of diminutive usage in an elicited production task. Journal of

Child Language, 36: 477–494.

Singh, U., Goyal, V. and Lehal, G. S. (2012). Named Entity Recognition System for Urdu. In

Proceedings of the 24th International Conference on Computational Linguistics (COLING

2012), pages 2507–2518.

Sundheim, B. (1995). Overview of results of the muc-6 evaluation. In Proceedings of the 6th

Conference on Message Understanding (MUC-6), pages 13–31.

Willett, P. (2006). The Porter stemming algorithm: then and now. Program: electronic library

and information systems, 40 (3): 219–223.

Yeh, A. (2000). More Accurate Tests for the Statistical Significance of Result Differences. In

Proceedings of the 18th International Conference on Computational Linguistics (COLING’00),

2, pages 947–953.

Zinkevičius, V. (2000). Lemuoklis – morfologinei analizei [Morphological analysis with

Lemuoklis]. In: Gudaitis, L. (ed.) Darbai ir Dienos, 24: 246–273. (in Lithuanian).

Zinkevičius, V., Daudaravičius, V. and Rimkutė, E. (2005). The Morphologically annotated

Lithuanian Corpus. In Proceedings of the Second Baltic Conference on Human Language

Technologies, pages 365–370.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 88 of 474]

Tagging the Past: Experiments using the Saga Corpus

Hrafn Loftsson
School of Computer Science, Reykjavik University, Iceland

hrafn@ru.is

ABSTRACT
There is an increasing interest in the NLP community in developing tools for annotating
historical data, for example, to facilitate research in the field of corpus linguistics. In this work,
we experiment with several PoS taggers using a sub-corpus of the Icelandic Saga Corpus. This
is carried out in three main steps. First, we evaluate taggers, which were trained on Modern
Icelandic, when tagging Old Icelandic. Second, we semi-automatically correct errors in the
training corpus using a bootstrapping method. Finally, we evaluate the taggers on the corrected
training corpus. The best performing single tagger is Stagger, a tagger based on the averaged
perceptron algorithm, obtaining an accuracy of 91.76%. By combining the output of three
taggers, using a simple voting scheme, the accuracy increases to 92.32%.

KEYWORDS: Historical Data, Icelandic Saga Corpus, Part-of-Speech Tagging.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 89 of 474]

1 Introduction

Most Natural Language Processing (NLP) tools, for various languages, have been developed
for processing and analyzing modern texts, as opposed to historical (cultural heritage) texts.
This is due to the abundance of modern texts in digital form, and, often, the lack of availability
of historical texts. Another reason is that when the first NLP tools are developed for a given
language, the emphasis is usually on producing tools for processing and analyzing the modern
language.

More and more historical texts are now gradually becoming available in digital form. Conse-
quently, there is an increasing interest in the NLP community in developing annotated historical
resources, and tools for analyzing historical texts.

Examples of recent annotated resources are: Penn Parsed Corpora of Historical English (Kroch
and Taylor, 2000), Icelandic Parsed Historical Corpus (Wallenberg et al., 2011), and Corpus of
Early Modern German (Scheible et al., 2011a). These three example resources are all tagged
with Part-of-Speech (PoS), while the first two are also syntactically annotated.

Examples of recent experiments with NLP tools for historical texts are: an identification of verb
constructions in Swedish (Pettersson et al., 2012), a study of the performance of basic NLP
tools for Italian (Pennacchiotti and Zanzotto, 2008), an adaptation of existing NLP tools for
Spanish (Sánchez-Marco et al., 2011), and an evaluation of an “off-the-shelf” PoS tagger for
German (Scheible et al., 2011b).

Recently, Rögnvaldsson and Helgadóttir (2011) developed the first tagger for Old Icelandic.
They bootstrapped a Hidden Markov Model (HMM) tagger by creating a tagged sub-corpus
(95,000 tokens) from the Saga Corpus (Old Icelandic Sagas).1 Hereafter, we refer to the tagged
sub-corpus as Saga-Gold.

The aim of our work is to complement the work of Rögnvaldsson and Helgadóttir (2011). The
overall goal is similar, i.e. developing a high accuracy tagger for Old Icelandic texts. We carry this
out in the following three main steps. First, we evaluate several PoS taggers, which were trained
on Modern Icelandic, on Saga-Gold produced by Rögnvaldsson and Helgadóttir (2011). Second,
we semi-automatically correct tagging errors in Saga-Gold, with a bootstrapping method using
the same taggers.2 Finally, we perform 10-fold cross-validation on the corrected corpus, again
using the same taggers and a combination method. All the PoS taggers and corpora used in our
work are freely available and open-source.

The best performing single tagger is Stagger (Östling, 2012), a tagger based on the averaged
perceptron algorithm, obtaining an accuracy of 91.76%. By combining the output of three
taggers using a simple voting scheme, the accuracy increases to 92.32%. We intend to use our
combination method to annotate the whole of the Saga Corpus.

The problem of domain adaptation has received increasing attention in recent years. The
problem arises in a variety of NLP applications where the distribution of the training data differs
in some way from that of the test data. Our work, as well as, for example, (Rögnvaldsson and
Helgadóttir, 2011; Sánchez-Marco et al., 2011), essentially deals with the issue of adapting
a PoS tagging model based on a modern language to a different domain, an older language.

1Available for download at http://www.malfong.is
2Although Saga-Gold is a gold corpus, we found that it contained many errors that needed to be corrected. The

corrected training corpus will be made available at http://www.malfong.is
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 90 of 474]

Several other experiments with domain adaptation within the field of PoS tagging have been
described in the literature, e.g. adapting a model based on finanical data to biomedical data
(Blitzer et al., 2006) and to dialogues (Kübler and Baucom, 2011), respectively.

This paper is structured as follows. In Section 2, we describe the individual PoS taggers used
in our experiments. We discuss previous work in tagging both Modern and Old Icelandic in
Section 3. Our development and evaluation work is described in Section 4. Error analysis is
performed in Section 5, and, finally, we draw conclusions and propose future work in Section 6.

2 PoS Taggers Used

We use four different PoS taggers for tagging Old Icelandic texts in Section 4: Stagger, TriTag-
ger, IceTagger and HMM+Ice+HMM. These taggers are freely available, open-source, and,
importantly, fast during training and testing.3

Stagger (Östling, 2012) is an implementation of the averaged perceptron algorithm by Collins
(2002). Stagger uses feature-vector representations commonly used in maximum entropy
taggers (Ratnaparkhi, 1996; Toutanova et al., 2003). The feature vectors represent “histories”,
the context in which a tagging decision is made. For every feature, the perceptron algorithm
calculates integer weight coefficients, which are updated for every training sentence. After the
final update, these coefficients are stored with the corresponding features. When tagging new
texts, the perceptron algorithm sums up all the coefficients of the features in a given context
and returns the highest scoring sequence of tags for an input sentence.

TriTagger is a HMM tagger, a re-implementation of the well-known TnT tagger (Brants, 2000).
TriTagger uses a trigram model to find the sequence of tags for words in a sentence, which
maximizes:

P(t1)P(t2|t1)
n∏

i=3

P(t i |t i−2, t i−1)
n∏

i=1

P(wi |t i) (1)

In equation 1, wi denotes word i in a sentence of length n (1 ≤ i ≤ n) and t i denotes the
tag for wi . The probabilities are derived using maximum likelihood estimation based on the
frequencies of tags found during training.

IceTagger (Loftsson, 2008) is a linguistic rule-based tagger. It is reductionistic in nature, i.e. it
removes inappropriate tags from the set of possible tags for a specific word in a given context.
IceTagger first applies local rules for initial disambiguation and then uses a set of heuristics for
further disambiguation. If a word is still ambiguous after the application of the heuristics, the
default heuristic is simply to choose the most frequent tag for the given word.

HMM+Ice+HMM (Loftsson et al., 2009) is a hybrid tagger, comprising both IceTagger and
TriTagger. It works as follows. First, TriTagger (the HMM) performs initial disambiguation
only with regard to the word class. Then, the rules of IceTagger are run. Finally, the HMM
disambiguates words that IceTagger is not able to fully disambiguate.

In addition to these four taggers, we use CombiTagger4 (Henrich et al., 2009), a system for
developing combined taggers. Tagger combination methods are a means of correcting for
the biases of individual taggers, and they are especially suitable when tagging a corpus, i.e.

3TriTagger, IceTagger and HMM+Ice+HMM are all part of the IceNLP toolkit, available for download at http:
//icenlp.sourceforge.net. Stagger is available for download at http://www.ling.su.se/stagger

4CombiTagger is open-source – available for download at http://combitagger.sourceforge.net
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 91 of 474]

when effectiveness (accuracy) is more important than efficiency (running time). It has been
shown that combining taggers will often result in a higher tagging accuracy than is achieved
by individual taggers (Brill and Wu, 1998; van Halteren et al., 2001; Loftsson, 2006). The
reason is that different taggers tend to produce different errors, and the differences can often
be exploited to yield better results.

3 Previous Work on Tagging Icelandic

The Icelandic language is one of the Nordic languages which comprise the North-Germanic
branch (Danish, Swedish, Norwegian, Icelandic, Faroese) of the Germanic language tree.
Linguistically, Icelandic is most closely related to Faroese and the dialects of Western Norway.

The Icelandic language is morphologically rich, mainly due to inflectional complexity. From a
syntactic point of view, Icelandic has a basic subject-verb-object (SVO) word order, but, in fact,
the word order is relatively flexible, because morphological endings carry a substantial amount
of syntactic information.

The main change in Modern Icelandic since Old Icelandic is in the phonological system.

On the other hand, the inflectional system and the morphology has in all relevant
respects remained unchanged from the earliest texts up to the present, although a
number of nouns have shifted inflectional class, a few strong verbs have become
weak, one inflectional class of nouns has been lost, and the dual in personal and
possessive pronoun has disappeared. The syntax is also basically the same, although
a number of changes have occurred. The changes mainly involve word order,
especially within the verb phrase, and the development of new modal constructions.
(Rögnvaldsson et al., 2012)

In this section, we describe previous work on tagging Iceland texts – first Modern Icelandic, and
then Old Icelandic.

3.1 Tagging Modern Icelandic

A few years ago, no PoS tagger existed for tagging Modern Icelandic. Now, however, various
PoS taggers have been developed, i.e. data-driven taggers (Helgadóttir, 2005; Dredze and
Wallenberg, 2008; Loftsson et al., 2009) and a rule-based tagger (Loftsson, 2008). All these
taggers have been trained and developed using the Icelandic Frequency Dictionary5 (IFD) (Pind
et al., 1991), a corpus of about 590,000 tokens of Modern Icelandic. The tagset used in the
compilation of the IFD has become the standard tagset for tagging Icelandic. It contains about
700 possible tags, of which 639 appear in the IFD. Thus, the tagset mirrors the morphological
complexity of the language.

The PoS tags in the IFD are character strings where each character has a particular function.
The first character denotes the word class. For each word class there is a predefined number of
additional characters (at most six), which describe morphological features, like gender, number
and case for nouns; degree and declension for adjectives; voice, mood and tense for verbs, etc. To
illustrate, consider the word form “markari” ‘tagger’. The corresponding tag is nken, denoting
noun (n), masculine (k), singular (e), and nominative (n) case.

5Available for download at http://www.malfong.is
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 92 of 474]

Tagger Unknown Known All
TriTagger 72.98 92.18 90.86
Stagger 63.77 93.02 91.04
IceTagger 77.02 93.07 91.98
HMM+Ice+HMM 77.47 93.84 92.73

Table 1: Average tagging accuracy (%) of four taggers when tagging the IFD corpus (Modern
Icelandic) using 10-fold cross-validation. Average unknown word rate (UWR) in testing is 6.8%.

In recent work on tagging Icelandic, the tagset has been reduced, by removing named-entity
classification for proper nouns and labeling all number constants with a single tag – resulting in
565 tags appearing in the changed version of the IFD (Loftsson et al., 2011). Nevertheless, the
PoS (morphosyntactic) tagging of modern Icelandic texts is a challenging task. The reason is,
for example, that the tagset is large in relation to the size of the available training corpus, and
the tagset makes very fine distinctions.

Table 1 shows the accuracy of the four taggers, described in Section 2, when tagging the IFD
corpus (565 tags) using 10-fold cross-validation. The accuracy figures for TriTagger, IceTagger,
and HMM+Ice+HMM are copied from (Loftsson et al., 2011), whereas we trained and tested
Stagger ourselves.6 All the four taggers were run using default options. A PoS tag predicted by
a tagger is correct only if it agrees in the whole tag string with the gold (correct) tag.

It is noteworthy that Stagger’s accuracy for known words is significantly higher than the
corresponding figure for the other purely data-driven tagger, i.e. TriTagger. This may be
explained by the fact that the HMM model used by TriTagger only conditions on the (already
assigned) tags to the left of the current word w when predicting the tag for w, whereas a model
based on the averaged perceptron algorithm (Stagger) can, in addition to the left hand tag
features, use word features to the right of w.

Note, however, that the accuracy of Stagger for unknown words is much lower than for
the other taggers. TriTagger’s handling of unknown words is based on an effective suffix
analysis algorithm proposed by Brants (2000). IceTagger (and thus HMM+Ice+HMM) uses a
morphologically-based guesser, IceMorphy (Loftsson, 2008), for providing the set of possible
tags for an unknown word.7

3.2 Tagging Old Icelandic

The Saga Corpus contains old Icelandic narrative texts in modern Icelandic spelling, assumed
to be written in the 13th and 14th centuries. It contains text from four different categories of
stories: “Íslendingasögur” (Family Sagas), “Sturlunga” (Sturlunga Saga), “Heimskringla” (Sagas
of the Kings of Norway), and “Landnámabók” (The Book of Settlement). In total, the Saga
Corpus contains about 1,650,000 tokens.

Using the TnT tagger, Rögnvaldsson and Helgadóttir (2011) have semi-automatically annotated
a third (about 95,000 tokens) of the 283,000 tokens from Sturlunga Saga. This annotated

6When training Stagger on the IFD, we used 12 iterations.
7The newest experiments using Stagger for tagging Modern Icelandic show that Stagger indeed obtains state-of-

the-art tagging accuracy when enriched with language-dependent linguistic features and given access to IceMorphy
(Loftsson and Östling, 2013).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 93 of 474]

sub-corpus is referred to as Saga-Gold and was used by Rögnvaldsson and Helgadóttir (2011)
as a training corpus for developing a tagger for Old Icelandic. For testing, they used 1,000
tokens from each of the four different texts in the Saga Corpus, i.e. 4,000 tokens in total.

Three tagging experiments using TnT were performed by Rögnvaldsson and Helgadóttir (2011).
First, training the tagger on the IFD, i.e. on modern texts only, resulted in an accuracy of 88.0%.
Second, training on Saga-Gold, i.e. on old texts only, resulted in an accuracy of 91.7%. Finally,
by training on the union of the IFD and Saga-Gold, the accuracy increased to 92.7%.

Note that the tagging accuracy increases substantially when training on Saga-Gold, a small
training corpus, compared to when only training on the IFD, a corpus whose size is more than
6 times larger. There are two reasons for this, as explained by Rögnvaldsson and Helgadóttir
(2011). First, many of the tagging errors made in the first experiment are due to constructions
found only in Old Icelandic, and by training on Saga-Gold the tagger learns the correct tagging
of these constructions. Second, the unknown word rate (UWR) was much lower in the second
experiment (9,6%) than in the first experiment (14.6%), reflecting the fact that many words in
Old Icelandic do not appear in Modern Icelandic.

The accuracy of 92.7%, obtained by training TnT on the union of the IFD and Saga-Gold, is high
compared with the accuracy of 90.4% obtained by the same tagger when tested on Modern
Icelandic only (Helgadóttir, 2005). Texts from the Saga Corpus are much less diversified and
simpler than the texts in the IFD corpus, and therefore, in principle, one should be able to
achieve higher accuracy on Old Icelandic texts compared to Modern Icelandic. It has to be noted,
however, that the test data of only 4,000 tokens, used for evaluating TnT on Old Icelandic, may
be too small for obtaining reliable tagging figures. In our experiments, we more than double
the size of the test data (see Section 4.4).

4 Development and Evaluation

Our main goal was to the develop a high accuracy tagger for Old Icelandic. We carried this
out in the following three main steps. First, we evaluated four PoS taggers trained on Modern
Icelandic on Saga-Gold (see Section 4.2). Second, we semi-automatically corrected tagging
errors in Saga-Gold, with a bootstrapping method using the same four taggers (see Section 4.3).
Finally, we performed 10-fold cross-validation on the corrected corpus, again using the same
taggers and a combination method (see Section 4.4).

Our work complements the work of Rögnvaldsson and Helgadóttir (2011), described in Section
3.2. Our work is different from (or extends) the previous work in that i) we correct errors in
the Saga-Gold corpus; ii) we evaluate many taggers, as opposed to a single one; iii) we perform
testing using cross-validation, as opposed to testing on a single (small) file; and iv) we present
results of error analysis.

4.1 The training corpora

We used two training corpora: the IFD corpus, described in Section 3.1, and the Saga-Gold
corpus, described in Section 3.2. For both corpora, we used a version in which the tagset has
been reduced as explained in Section 3.1. The number of unique tags appearing in Saga-Gold is
459, whereas 565 unique tags appear in the IFD.

In the IFD corpus, the first letter of the first word in each sentence is a lower case letter, except
for proper nouns. This is not the case in Saga-Gold. For the sake of consistency, we changed

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 94 of 474]

the first letter of the first word in each sentence to an upper case letter in the IFD corpus.
Henceforth, when referring to the IFD corpus, we mean this changed version.

4.2 Evaluation of taggers trained on Modern Icelandic

We started our evaluation work by testing PoS taggers, that had been trained or developed for
tagging Modern Icelandic (see Section 3.1), on Old Icelandic (Saga-Gold). We trained TriTagger
and Stagger on the IFD. IceTagger comes “off-the-shelf” with dictionaries derived from the
IFD, and thus does not need training. The HMM+Ice+HMM tagger uses the trained model
generated by TriTagger.

The results of the evaluation are shown in columns 2-4 in Table 2. The tagging accuracy is much
lower than shown in Table 1. The ordering of the taggers, from lowest accuracy to highest, is
also different. When tagging Modern Icelandic, TriTagger obtained the lowest accuracy of the
four taggers. In contrast, when tagging the Saga-Gold corpus, it obtains the highest accuracy
for all words. Nevertheless, its accuracy drops by 4.17 percentage points.

Original Saga-Gold Corrected Saga-Gold
Tagger Unknown Known All Unknown Known All Increase
IceTagger 63.99 85.88 83.55 65.47 87.03 84.74 1.19
Stagger 56.58 87.44 84.15 57.02 88.27 84.94 0.79
HMM+Ice+HMM 63.71 88.07 85.48 65.20 89.17 86.62 1.14
TriTagger 65.56 89.29 86.69 65.11 89.55 86.87 0.18

Table 2: Average tagging accuracy (%) of four taggers, trained on the IFD corpus (Modern
Icelandic), when tagging the original Saga-Gold corpus (Old Icelandic) and the corrected
version. Average UWR in testing is 10.7%.

IceTagger, which obtained the second highest accuracy for Modern Icelandic, performs badly
when tagging Saga-Gold. Its accuracy drops by 8.43 percentage points. This was to be expected,
because the hand-crafted rules of IceTagger have been developed to tag modern texts. This poor
performance of a rule-based tagger, developed for contemporary texts, when tagging historical
text is consistent with the results of (Pennacchiotti and Zanzotto, 2008) when tagging Italian
historical texts.

The HMM+Ice+HMM tagger benefits from using the HMM generated by TriTagger and therefore
performs much better than IceTagger alone. Stagger performs significantly worse than TriTagger,
partly due to much lower accuracy for unknown words.

The results of this experiment show that using taggers trained on Modern Icelandic is hardly
a viable option when tagging the whole of the Saga Corpus – the accuracy is simply not high
enough. The drop in accuracy is in line with results from related work on tagging historical data
with taggers trained on modern texts, e.g. (Rögnvaldsson and Helgadóttir, 2011; Pennacchiotti
and Zanzotto, 2008; Scheible et al., 2011b).

On the other hand, these results are better (i.e. not as bad) than found by Scheible et al. (2011b)
for German. When they used a tagger trained on Modern German to tag texts (58,000 tokens)
with normalized modern spelling from the period 1650-1800, the accuracy dropped from about
97%, for the modern texts, to 79.7% for the older texts. This may partly be explained by the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 95 of 474]

fact that the German experiment used a variety of genres for testing, while we use texts from
one genre, Sturlunga Saga. However, the main reason is probably the fact that “[...] Icelandic
is often claimed to have undergone relatively small changes from the oldest written sources up
to the present”, and “[the changes] have not affected the inflectional system, which has not
changed in any relevant respects” (Rögnvaldsson and Helgadóttir, 2011). Therefore, we do not
witness such a dramatic drop in tagging accuracy as found in the German experiment.

4.3 Correcting tagging errors

When we looked at the errors made by the taggers when tagging the Saga-Gold corpus, we
noticed that the gold tags in Saga-Gold were incorrect in many cases. In order to obtain more
reliable evaluation results, we thus corrected some of the errors in Saga-Gold. Instead of
inspecting each and every word-tag pair in the corpus (about 95,000 pairs), we only looked at
those pairs for which a tagger predicts a different tag compared to the gold. We inspected these
mismatches (error candidates) and manually corrected the true positives.

Correcting errors in corpora is a time consuming task, and therefore it is important to apply
methods that can speed up the process. We carried out the error correction based on a general
bootstrapping method, i.e. i) manually annotate/correct a small part of a corpus C; ii) train a
tagger T using the annotated/corrected training corpus; iii) use the resulting tagging model
to tag more (unannotated or uncorrected) data from C; iv) hand-correct the tagging of the
new data and add it to the training set; iv) repeat steps ii)-iv), until all the data of C has been
tagged by T and corrected (cf. (Zavrel and Daelemans, 2000; Forsbom, 2009)).

Step/Tagger Trained on Tokens tagged
in Saga-Gold

1. HMM+Ice+HMM IFD 1-30,000 = A
2. TriTagger IFD ∪ A 30,000-50,000 = B
3. Stagger IFD ∪ A ∪ B 50,000-70,000 = C
4. CombiTagger IFD ∪ A ∪ B ∪ C 70,000-95,000 = D

Table 3: The error correction bootstrapping method.

We devised an error correction bootstrapping method using several taggers. We define an error
candidate, produced by a tagger T , as a word-tag pair (w, t), such that T predicts the tag t,
which is different from the corresponding gold tag in the corpus.

Table 3 shows which taggers were used during each phase of the error correction, which
part of the corpus they were trained on, and the part they tagged.8 In step 1, we used the
HMM+Ice+HMM tagger, trained on the IFD corpus, to tag the first 30,000 tokens in Saga-
Gold, and then we inspected/corrected the error candidates generated by the tagger for these
tokens. In step 2, we used TriTagger, trained on the union of the IFD corpus and the first
30,000 corrected tokens from Saga-Gold, to tag tokens 30,000-50,000 in the corpus. Then we
inspected/corrected the error candidates generated by the tagger for these 20,000 tokens. In
step 3, we used Stagger, trained on the union of the IFD corpus and the first 50,000 corrected
tokens in Saga-Gold (corrected in steps 1 and 2), to tag tokens 50,000-70,000 in the corpus.
Then we inspected/corrected the error candidates generated by Stagger for these 20,000 tokens.

8The error correction phase took 40-50 hours.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 96 of 474]

In the last step, we trained TriTagger, Stagger and HMM+Ice+HMM on the union of the IFD
corpus and the first 70,000 corrected tokens in Saga-Gold (corrected in steps 1-3). Using the
resulting models, we tagged the last 25,000 tokens in Saga-Gold. Then, we applied CombiTagger
on the output of the three taggers in a simple voting scheme. If at least two taggers out of three
agree on a tag then the corresponding tag is selected. If all taggers disagree, then the tag of
the best performing tagger is selected. Finally, we inspected/corrected the error candidates
generated by the combined tagger, for the last 25,000 of the 95,000 tokens in Saga-Gold.

In total, we corrected the tags for 2,144 tokens in Saga-Gold, i.e. 2.3% of the total number of
tokens. Note that we used different taggers at different stages to point to error candidates. If
we had used a single tagger T , then the accuracy of T might have been overestimated when
testing on the corrected corpus. The reason is that we only look at those instances where T
predicts a tag which is different from the gold tag. This means that we miss those cases where
T agrees with the gold tag, but the gold tag is indeed incorrect!

Columns 5-7 in Table 2 show the accuracy of the four taggers when tested against the corrected
version of Saga-Gold. We can see that all the taggers obtain higher accuracy on all words when
tagging the corrected corpus.

The four taggers benefit differently from the error correction. Considering all words, the tagging
accuracy of IceTagger, HMM+Ice+HMM, Stagger and TriTagger increases by 1.19, 1.14, 0.79,
and 0.18 percentage points, respectively. The reason why IceTagger and HMM+Ice+HMM
benefit the most is probably that in many cases the rules of IceTagger had indeed predicted a
correct tag, but the taggers were “penalized” because of incorrect annotation in Saga-Gold (i.e.
before the correction was carried out).

4.4 Cross-validation using Saga-Gold

The previous section showed that using taggers trained on Modern Icelandic to tag Old Icelandic
resulted in accuracies below 87%. In the next experiment, we trained and tested the taggers on
the corrected Saga-Gold corpus only, using 10-fold cross-validation.9 We split Saga-Gold into
10 folds, such that the 1st sentence of Saga-Gold was put into the 1st fold, the 2nd sentence into
the 2nd fold, . . . , the 11th sentence into the 1st fold, the 12th sentence into the 2nd fold, etc.
The resulting test files have 9,520 tokens, on average. We only evaluated TriTagger and Stagger
in this experiment, since the dictionaries of IceTagger (and thus also of HMM+Ice+HMM) are
derived from the IFD corpus.

Tagger Unknown Known All
TriTagger 61.07 90.96 89.26
Stagger 52.67 92.53 90.29

Table 4: Average tagging accuracy (%) of two taggers when tagging the corrected Saga-Gold
using 10-fold cross-validation. Average UWR in testing is 5.7%.

In Table 4, we can see that TriTagger obtains 89.26% accuracy for all words, and that Stagger
performs better, i.e. it obtains an accuracy of 90.29%. The accuracies for both taggers increases
substantially compared to when trained on Modern Icelandic. Note also that the UWR in Table

9When training Stagger on Saga-Gold, we used 8 iterations.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 97 of 474]

4 is 5.7%, only about half of the UWR in Table 2. We had indeed expected that Stagger would
out-perform TriTagger, since this is what we found when the taggers were trained and tested
using modern texts only (see Table 1).

The accuracy of 90.29% obtained by Stagger is less than 1 percentage points lower than the
accuracy of the same tagger when trained and tested on Modern Icelandic (see Table 1), despite
a large difference in the size of the training material available in the two corpora, Saga-Gold
and the IFD. Note, however, that Saga-Gold only contains one genre, whereas the IFD contains
several genres. The tagging of the former corpus is thus, presumably, easier than the tagging of
the latter, given the same amount of training data.

In order to reduce the UWR of 5.7%, and to increase the training material, we, next, added
data from the IFD. We thus trained the three taggers, TriTagger, Stagger and HMM+Ice+HMM,
on the union of Saga-Gold and the IFD, i.e. we added the whole of the IFD corpus to each fold
from Saga-Gold. Furthermore, we used CombiTagger in a simple voting scheme on the output
of the three taggers.

The results are shown in Table 5. The UWR drops down to 3.6% by adding data from the IFD.
Stagger is the best performing single tagger, obtaining an accuracy of 91.76% for all words. By
combining the output of three taggers, the accuracy increases to 92.32% for all words.

Tagger Unknown Known All
TriTagger 71.50 90.96 90.26
HMM+Ice+HMM 70.91 91.29 90.58
Stagger 64.01 92.77 91.76
CombiTagger 72.38 93.09 92.32

Table 5: Average tagging accuracy (%) of three taggers, and a combination method, when
tagging the corrected Saga-Gold using 10-fold cross-validation. The IFD corpus is added to each
training fold. Average UWR in testing is 3.6%.

Even though the accuracy of 92.32% can likely be improved (see Section 5), we believe that it
is high enough for applying the combination method for tagging the whole of the Saga Corpus.
Recall from our discussion in Section 3.1, that the tagset is large and makes fine distinctions.
However, this level of detail in the tags might not be necessary for all research in corpus
linguistics.

In two additional experiments, we relaxed the condition that the whole tag string needs to be
correct. First, we allowed the gold tag and the tag of the combined tagger to differ in only one
of the morphological features, given that the word class was correct. This results in an accuracy
of 96.63%. Second, when only demanding that the word class is correct (thus ignoring all
morphological features), the accuracy increases to 97.55%.

5 Discussion and Error Analysis

Since research on tagging Old Icelandic is currently in its starting phase, the accuracy can most
likely be improved in future work. For the reason mentioned at the end of Section 3.2, one
should be able to achieve higher accuracy on Old Icelandic texts compared to Modern Icelandic.
Furthermore, since a tagger for Old Icelandic does not (necessarily) need to be able to handle

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 98 of 474]

modern texts, it should not need to be trained on large amount of the IFD corpus. In future
work, we would thus like to experiment with using only a part of the IFD for training our tagger.

In the remainder of this section, we discuss some of the most frequent tagging errors. We
performed error analysis on the output of Stagger, when trained on the union of Saga-Gold and
the IFD. We combined the tagging errors from the test sets of all of the 10 folds.

We define an error type as a pair (x , y), where x is the predicted tag and y is the gold tag.
Stagger makes 1876 different error types. 1121 of those, or 59.8%, appear only once. The 10
most frequent errors account for 18.5% of the total errors, as shown in Table 6.

Error type Rate Cumulative rate
(c,aa) 2.80 2.80
(aþ,ao) 2.70 5.50
(sfg3en,ct) 2.49 7.99
(ct,c) 1.81 9.80
(ao,aþ) 1.66 11.46
(c,ct) 1.49 12.95
(aa,aþ) 1.49 14.44
(sfg3en,c) 1.48 15.92
(nken-s,nkeo-s) 1.31 17.23
(aa,ao) 1.30 18.53

Table 6: The 10 most frequent error types and their rate of occurrence in % in the output of
Stagger. An error type is a pair (x , y): x is the predicted tag and y is the gold tag. aa=adverb;
ao/aþ=preposition governing accusative/dative case; c=conjunction; ct=relative particle;
nken-s/nkeo-s=noun, masculine, singular, nominative/accusative, proper noun; sfg3en=verb,
indicative mood, active voice, third person, singular, present tense.

The rate of the most frequent error type, (c,aa), is 2.80%. This error occurs when Stagger
predicts a conjunction (c), while an adverb (aa) is correct. The word “og” is to blame for this
error type. In Modern Icelandic it usually denotes the coordinating conjunction ‘and’, while in
Old Icelandic it often denotes the adverb ‘also’. Below, one such tagging error made by Stagger
is shown, when tagging the sentence “Þar var og Eyvindur prestur Þórarinsson” ‘There was also
Eiríkur priest Þórarinsson’:

Word Stagger Gold tag

Þar aa aa
var sfg3eþ sfg3eþ
og c aa
Eyvindur nken-s nken-s
prestur nken nken
Þórarinsson nken-s nken-s

The rate of the third most frequent error type, (sfg3en,ct), is 2.49%. The sfg3en tag denotes:
verb (s), indicative mood (f), active voice (g), third person (3), singular (e), and present tense
(n). The ct tag denotes a relative particle. This particular error type occurs with the word “er”.
In Modern Icelandic this word most often means ‘is, am’, while in Old Icelandic it is most often

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 99 of 474]

used as a temporal conjunction (‘when’) (tag c) or a relative particle (‘that, which, who’) (tag
ct) (Rögnvaldsson and Helgadóttir, 2011).

Below, one such tagging error made by Stagger is demonstrated, when tagging the sentence
part “Maður hét Haukur er kallaður var Víga-Haukur” ‘Man named Haukur who called was
Víga-Haukur’:

Word Stagger Gold tag

Maður nken nken
hét sfg3eþ sfg3eþ
Haukur nken-s nken-s
er sfg3en ct
kallaður sþgken sþgken
var sfg3eþ sfg3eþ
Víga-Haukur nken-s nken-s

When Stagger was trained on the IFD only and tagged Saga-Gold (see Section 4.2), the
aggregate rate of the error types (sfg3en,ct) and (sfg3en,c) was 5.67%. In contrast, when
Stagger is trained on the union of Saga-Gold and the IFD, the rate of the same two error types
is 2.49% + 1.48% = 3.97% (see Table 6). Thus, by adding training data from Saga-Gold, the
tagger learns to tag these constructions correctly in some instances, but still tags many of them
incorrectly, due to the large amount of training data coming from the IFD. In contrast, when
Stagger is trained on Saga-Gold only (no data from IFD), the rate of the same error types is
only 0.2%.

Finally, in Table 6, the following four error types appear: (aþ,ao), (ao,aþ), (aa,aþ), and (aa,ao).
The first two differentiate between a preposition governing the accusative (ao) or dative case
(aþ). The latter two differentiate between an adverb (aa) and a prepositions (ao/aþ). The
underlying constructions, from which these four error types originate, are difficult to annotate
correctly, even for humans.

6 Conclusion

In this paper, we first evaluated taggers, which were trained on Modern Icelandic, when tagging
Saga-Gold, a sub-corpus of the Icelandic Saga Corpus. Second, we described a bootstrapping
method used to correct 2.3% of the tokens in Saga-Gold. Third, we performed experiments
in using several taggers to tag the corrected corpus. Finally, we discussed the results of error
analysis.

Stagger is the best performing single tagger, obtaining an accuracy of 91.76% when trained on
the union of Saga-Gold and the IFD corpus. By combining the output of three different taggers
using a simple voting scheme, the accuracy increases to 92.32%.

In future work, we intend to: i) experiment with increasing the accuracy of Stagger for unknown
words; ii) find ways to tackle the most frequent error types; and iii) experiment with using only
a part of the IFD corpus as training material.

We would also like to find and correct more errors in Saga-Gold, using our combined tagger to
point to error candidates. We intend to use the combined tagger to tag the whole of the Saga
Corpus and make the results public – to facilitate corpus linguistics research on Old Icelandic.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 100 of 474]

Acknowledgments

We thank Sigrún Helgadóttir and Eiríkur Rögnvaldsson for making the training corpus, Saga-
Gold, available to us. We are also grateful to Robert Östling for his willingness in improving
Stagger’s functionality based on our suggestions.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 101 of 474]

References

Blitzer, J., McDonald, R., and Pereira, F. (2006). Domain adaptation with structural correspon-
dence learning. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, EMNLP, Sydney, Australia.

Brants, T. (2000). TnT: A statistical part-of-speech tagger. In Proceedings of the 6th Conference
on Applied Natural Language Processing, Seattle, WA, USA.

Brill, E. and Wu, J. (1998). Classifier Combination for Improved Lexical Disambiguation. In
Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, COLING-ACL, Montreal, Quebec,
Canada.

Collins, M. (2002). Discriminative Training Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In Proceedings of the ACL-02 Conference on Empirical
methods in Natural Language Processing, Philadelphia, PA, USA.

Dredze, M. and Wallenberg, J. (2008). Icelandic Data Driven Part of Speech Tagging. In
Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, ACL-HLT, Columbus, OH, USA.

Forsbom, E. (2009). Extending the View: Explorations in Bootstrapping a Swedish PoS Tagger.
In Proceedings of the 17th Nordic Conference of Computational Linguistics, NoDaLiDa, Odense,
Denmark.

van Halteren, H., Zavrel, J., and Daelemans, W. (2001). Improving Accuracy in Wordclass
Tagging through Combination of Machine Learning Systems. Computational Linguistics,
27(2):199–230.

Helgadóttir, S. (2005). Testing Data-Driven Learning Algorithms for PoS Tagging of Ice-
landic. In Holmboe, H., editor, Nordisk Sprogteknologi 2004. Museum Tusculanums Forlag,
Copenhagen.

Henrich, V., Reuter, T., and Loftsson, H. (2009). CombiTagger: A System for Developing
Combined Taggers. In Proceedings of the 22nd International FLAIRS Conference, Special Track:
Applied Natural Language Processing, Sanibel Island, Florida, USA.

Kroch, A. and Taylor, A. (2000). The Penn-Helsinki Parsed Corpus of Middle English (PPCME2).
Department of Linguistics, University of Pennsylvania. CD-ROM, second edition.

Kübler, S. and Baucom, E. (2011). Fast Domain Adaptation for Part of Speech Tagging for
Dialogues. In Proceedings of Recent Advances in Natural Language Processing, RANLP, Hissar,
Bulgaria.

Loftsson, H. (2006). Tagging Icelandic text: An experiment with integrations and combinations
of taggers. Language Resources and Evaluation, 40(2):175–181.

Loftsson, H. (2008). Tagging Icelandic text: A linguistic rule-based approach. Nordic Journal
of Linguistics, 31(1):47–72.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 102 of 474]

Loftsson, H., Helgadóttir, S., and Rögnvaldsson, E. (2011). Using a morphological database to
increase the accuracy in PoS tagging. In Proceedings of Recent Advances in Natural Language
Processing, RANLP, Hissar, Bulgaria.

Loftsson, H., Kramarczyk, I., Helgadóttir, S., and Rögnvaldsson, E. (2009). Improving the PoS
tagging accuracy of Icelandic text. In Proceedings of the 17th Nordic Conference of Computational
Linguistics, NoDaLiDa, Odense, Denmark.

Loftsson, H. and Östling, R. (2013). Tagging a Morphologically Complex Language Using an
Averaged Perceptron Tagger: The Case of Icelandic. In Proceedings of the 19th Nordic Conference
of Computational Linguistics, NoDaLiDa, Oslo, Norway.

Pennacchiotti, M. and Zanzotto, F. M. (2008). Natural Language Processing across time: an
empirical investigation on Italian. In Nordström, B. and Ranta, A., editors, Advances in Natural
Language Processing, 6th International Conference on NLP, GoTAL 2008, Proceedings. Springer,
Berlin.

Pettersson, E., Megyesi, B., and Nivre, J. (2012). Parsing the past – identification of verb
constructions in historical text. In EACL 2012 workshop on: Language Technology for Cultural
Heritage, Social Sciences, and Humanities, Avignon, France.

Pind, J., Magnússon, F., and Briem, S. (1991). Íslensk orðtíðnibók [The Icelandic Frequency
Dictionary]. The Institute of Lexicography, University of Iceland, Reykjavik, Iceland.

Ratnaparkhi, A. (1996). A Maximum Entropy Model for Part-Of-Speech Tagging. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, Philadelphia, PA, USA.

Rögnvaldsson, E. and Helgadóttir, S. (2011). Morphosyntactic Tagging of Old Icelandic Texts
and Its Use in Studying Syntactic Variation and Change. In Sporleder, C., van den Bosch, A.,
and Zervanou, K., editors, Language Technology for Cultural Heritage: Selected Papers from the
LaTeCH Workshop Series. Springer, Berlin.

Rögnvaldsson, E., Ingason, A. K., Sigurðsson, E. F., and Wallenberg, J. (2012). The Icelandic
Parsed Historical Corpus (IcePaHC). In Proceedings of the 8th International Conference on
Language Resources and Evaluation, LREC 2012, Istanbul, Turkey.

Sánchez-Marco, C., Boleda, G., and Padró, L. (2011). Extending the tool, or how to anno-
tate historical language varieties. In Proceedings of the 5th ACL-HLT Workshop on Language
Technology for Cultural Heritage, Social Sciences, and Humanities, Portland, OR, USA.

Scheible, S., Whitt, R. J., Durrell, M., and Bennett, P. (2011a). A Gold Standard Corpus of
Early Modern German. In Proceedings of the ACL-HLT 2011 Linguistic Annotation Workshop
(LAW V), Portland, OR, USA.

Scheible, S., Whitt, R. J., Durrell, M., and Bennett, P. (2011b). Evaluating an ’off-the-shelf’
POS-tagger on Early Modern German text. In Proceedings of the 5th ACL-HLT Workshop on
Language Technology for Cultural Heritage, Social Sciences, and Humanities, Portland, OR, USA.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Human Language
Technology, NAACL.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 103 of 474]

Wallenberg, J. C., Ingason, A. K., Sigurðsson, E. F., and Rögnvaldsson, E. (2011). Icelandic
Parsed Historical Corpus (IcePaHC). Version 0.9.

Zavrel, J. and Daelemans, W. (2000). Bootstrapping a Tagged Corpus through Combination of
Existing Heterogeneous Taggers. In Proceedings of the 2nd International Conference on Language
Resources and Evaluation, LREC, Athens, Greece.

Östling, R. (2012). Stagger: A modern POS tagger for Swedish. In Proceedings of the 4th

Swedish Language Technology Conference, SLTC, Lund, Sweden.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 104 of 474]

Tagging a Morphologically Complex Language Using
an Averaged Perceptron Tagger: The Case of Icelandic

Hrafn Loftsson1, Robert Östling2

(1) School of Computer Science, Reykjavik University, Iceland
(2) Department of Linguistics, Stockholm University, Sweden

hrafn@ru.is, robert@ling.su.se

ABSTRACT
In this paper, we experiment with using Stagger, an open-source implementation of an Averaged
Perceptron tagger, to tag Icelandic, a morphologically complex language. By adding language-
specific linguistic features and using IceMorphy, an unknown word guesser, we obtain state-
of-the-art tagging accuracy of 92.82%. Furthermore, by adding data from a morphological
database, and word embeddings induced from an unannotated corpus, the accuracy increases
to 93.84%. This is equivalent to an error reduction of 5.5%, compared to the previously best
tagger for Icelandic, consisting of linguistic rules and a Hidden Markov Model.

KEYWORDS: Averaged Perceptron, Part-of-Speech Tagging, Morphological Database, Linguistic
Features, Word Embeddings.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 105 of 474]

1 Introduction

Part-of-Speech (PoS) tagging is the task of assigning labels, denoting word classes and mor-
phosyntactic features, to words in running text.

The state-of-the-art tagging accuracy for English, using supervised methods, is above 97%,
e.g. (Collins, 2002; Toutanova et al., 2003; Giménez and Màrquez, 2004; Shen et al., 2007),
and newest results using semi-supervised methods are close to 97.5% (Spoustová et al., 2009;
Søgaard, 2011).

English is a morphologically simple language and most work on tagging English has used the
48 tags in the Penn TreeBank tagset (Marcus et al., 1993). Many morphologically complex
languages use much larger tagsets, which encode detailed morphosyntactic features, in addition
to the basic PoS categories. For example, 1100 tags appear in the Prague Dependency Treebank
2.0 (Spoustová et al., 2009), over 1000 tags appear in a Polish tagset (Radziszewski, 2013),
a tagset for Bulgarian contains 680 tags (Georgiev et al., 2012), and a reduced version of an
Icelandic tagset contains 565 tags (Loftsson et al., 2011).

The state-of-the-art for many morphologically complex languages is well below the 97+% figures
for English (Spoustová et al., 2009; Loftsson et al., 2011; Radziszewski, 2013). A notable
exception is the work of Georgiev et al. (2012) for Bulgarian, in which about 98% accuracy
was achieved, using bidirectional sequence classification (Shen et al., 2007), in combination
with linguistic rules and a morphological lexicon (which included all the words in the test set,
resulting in 0% unknown word rate).

In this paper, we experiment with using Stagger (Östling, 2012), an open-source implementation
of the Averaged Perceptron tagger by Collins (2002), to tag Icelandic. Our motivation for
applying Stagger to Icelandic is threefold. First, the training time in Stagger is relatively short
compared to other data-driven methods like (Lafferty et al., 2001; Giménez and Màrquez,
2004; Shen et al., 2007), when using a large tagset. Second, Stagger has been shown to obtain
state-of-the-art results for Swedish (Östling, 2012), a closely related language to Icelandic.
Third, Stagger is implemented in Java and thus allows easy integration to components in the
Java-based IceNLP toolkit (Loftsson and Rögnvaldsson, 2007).

By training and testing on the Icelandic Frequency Dictionary (IFD) corpus (Pind et al., 1991),
using a tagset of 565 tags, we obtain state-of-the-art tagging accuracy for Icelandic: i) 92.82%
by adding language-specific linguistic features to the base feature set of Stagger, and using
IceMorphy (Loftsson, 2008) as an unknown word guesser; and ii) 93.84%, by adding data
from a full form database of Icelandic inflections (Bjarnadóttir, 2012), and word embeddings
generated with a neural network language model (Collobert and Weston, 2008).

It is notable that our best tagging results using Stagger (93.84%) beat the previous best results
for Icelandic (93.48%), obtained by using a hybrid tagger based on a linguistic rule-based
method and a Hidden Markov Model (Loftsson et al., 2011). The increase in accuracy is
equivalent to an error reduction of 5.5%.

This paper is structured as follows. In Section 2, we describe Stagger. We discuss previous
work in tagging Icelandic in Section 3. Our development and evaluation work is described in
Section 4. Error analysis is carried out in Section 5, and we conclude in Section 6.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 106 of 474]

2 Stagger

Stagger was originally developed for Swedish, where it achieves the state-of-the-art accuracy
of 96.57%, using a tagset of size 150 (Östling, 2012). In this section, we give an overview of
Stagger, i.e. the underlying Averaged Perceptron algorithm, the base feature set, PoS filters, and
word embeddings.

2.1 Averaged Perceptron

The Averaged Perceptron algorithm of Collins (2002) uses a discriminative, feature-rich model
that can be trained efficiently. Recent research also shows that the algorithm, given a good
search method, can be used for PoS tagging with state-of-the-art accuracy (Shen et al., 2007;
Tsuruoka et al., 2011).

Features are modeled using feature functions of the form φ(hi , t i) for a history hi and a tag t i , in
the way pioneered by Maximum Entropy models (Berger et al., 1996; Ratnaparkhi, 1996). The
history hi is a complex object modeling different aspects of the sequence being tagged. It may
contain previously assigned tags in the sequence to be annotated, as well as other contextual
features such as the form of the current word, or whether the current sentence ends with a
question mark. Intuitively, the job of the training algorithm is to find out which feature functions
are good indicators that a certain tag t i is associated with a certain history hi .

A model consists of feature functions φs, each paired with a feature weight αs which is to be
estimated during training. The scoring function is defined over entire sequences, which in a
PoS tagging task typically means sentences. For a sequence of words w of length n in a model
with d feature functions, the scoring function is defined as:

score(w, t) =
n∑

i=1

d∑
s=1

αsφs(hi , t i)

The highest scoring sequence of tags:

t̄ = argmaxt score(w, t)

can be computed, for example, using the Viterbi algorithm or (as in in our case) a beam search
of width 8.

Training the model is done in an error-driven fashion: tagging each sequence in the training
data with the current model, and adding to the feature weights the difference between the
corresponding feature function for the correct tagging, and the model’s tagging.

Algorithm 1 shows one iteration of the perceptron training algorithm over the training set T of
sequences. The model is initialized to αs = 0 for all s. Collins (2002) shows that rather than
using the estimated model parameters αs directly when tagging data outside the training set,
both tagging accuracy and the speed of convergence can be improved by using values of αs
averaged during the training process. In our case, we average the weights after every 4096
training instances (sentences), which seems to strike a good balance between efficiency and
accuracy.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 107 of 474]

Algorithm 1 Perceptron training iteration.

for all h̃, t̃ ∈ T do
t̄ ← arg maxt score(w, t)
for i← 1..n do

for s← 1..d do
αs ← αs +φs(h̃i , t̃ i)−φs(h̄i , t̄ i)

end for
end for

end for

2.2 Features

Stagger uses a basic feature set similar to that of Ratnaparkhi (1996). All of the basic features
are binary, i.e. with the value 0 or 1.

Table 1 shows the templates on which the basic features used in Stagger are based. One instance
of the first template may be:

φs(h, t) =

¨
1 if t = c∧wi = og∧ i 6= n
0 otherwise

or in other words, 1 if the current tag is “c” (conjunction), the current word (wi) is “og” ‘and’,
and the current word is not the last in the sentence.

History-independent features
t i = x , wi = y, i = n
t i = x , wi = y, i = 1, c(i)
t i = x , wi−1 = y, wi = z
t i = x , wi = y, wi+1 = z
t i = x , wi−1 = y, wi = z, wi+1 = u
t i = x , wi−2 = y, wi−1 = z, wi = u
t i = x , wi = y, wi+1 = z, wi+2 = u
t i = x , wi+{−2,−1,1,2} = y
t i = x , prefix{1,2,3,4}(wi) = y, i = 1, c(i)
t i = x , suffix{1,2,3,4,5}(wi) = y, i = 1, c(i)
t i = x , k(i), “-” ∈ wi
t i = x , k(i), k(i+ 1)
History-dependent features
t i = x , t i−1 = y
t i−2 = x , t i−1 = y, t i = z
t i = x , t i−1 = y, wi = z
t i = x , t i−1 = y, wi = z, wi+1 = u

Table 1: Templates for the basic features of Stagger. t i is the tag at position i in the sequence (of
length n). wi is the lower-cased word at position i. k(i) is the type of token i (e.g. digits, Latin
letters, symbol). c(i) is the capitalization of token i (upper, lower, N/A). prefix/suffixk(wi) is
the k-letter prefix/suffix of word wi . x , y, z, u are constants, which in any given feature function
has a fixed value.Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 108 of 474]

The features can be divided into two categories: those who describe previously assigned tags in
the sequence (history-dependent features), and those who do not. Making this distinction can
lead to a large speed increase, since the history-independent feature functions only have to be
evaluated once for each tag and word sequence, while the history-dependent ones must also be
evaluated for every history.

In addition to the basic feature set detailed above, we also performed an experiment adding
Collobert and Weston (2008) embeddings through feature functions of the following form:

φx , j(hi , t i) =

¨
CW(wi) j if t i = x
0 if t i 6= x

where CW(wi) j is the j:th dimension of word wi ’s Collobert and Weston embedding. The
embeddings are described in Section 2.4.

2.3 PoS filter

Ratnaparkhi (1996) observed that both accuracy and speed can be improved by not considering
all tags for every word. We use the following basic method for determining which tags to
consider for a given word. If the word w is known, i.e. occurs in the training data, only the
tags found during training for w are considered (we refer to this set of possible tags as the tag
profile for w). Other words are limited to manually created tags from the set of open word
classes.

There is, however, one complication: during training, all words are known. Using the tag
filtering approach exactly as described above during training would give unrealistically good
accuracy on the training data, but since the perceptron algorithm learns from its errors, this
tends to lead to decreased accuracy on other data. To prevent this, words occurring between 1
and 3 times in the training data may be assigned tags from the union of the set of tags they
occur with in the training data, and the set of open word class tags.

In Section 4.3.1, we show how the PoS filter can be further improved using a morphological
analyzer, and in Section 4.3.2 using a lexicon.

2.4 Collobert and Weston embeddings

Neural network language models have been used to create word embeddings, vectors in Rd that
represent syntactic and semantic properties of words based on their distributional properties
(Collobert and Weston, 2008; Collobert et al., 2011). Collobert and Weston (C&W) embeddings
have been shown to improve accuracy when used as features in named entity recognition and
shallow parsing (Turian et al., 2010) as well as PoS tagging (Östling, 2012). This amounts to
a type of semi-supervised learning, since properties of words learned from an unannotated
text corpus are used to benefit a supervised learning task. In the case of PoS tagging, C&W
embeddings are useful because words of the same word class tend to receive similar embeddings
due to the similar syntactic contexts in which they occur.

Stagger can optionally be provided with word embeddings, for use during training.

3 Icelandic and Previous Tagging Work

The Icelandic language is morphologically rich, mainly due to inflectional complexity. Nouns
can appear in 16 inflectional forms, depending on number, case and the presence or absence of

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 109 of 474]

a suffixed definite article. Adjectives can have as many as 120 inflectional forms, depending
on gender, number, case, strong or weak declension, and degree. Verbs conjugate in person,
number, tense, mood and voice, and can have as many as 107 inflectional forms (Bjarnadóttir,
2012).

From a syntactic point of view, Icelandic has a basic subject-verb-object (SVO) word order, but,
in fact, the word order is fairly flexible, because morphological endings carry a substantial
amount of syntactic information. However, the word order in Icelandic is not as flexible as is
allowed in some Slavic languages. As pointed out by Dredze and Wallenberg (2008a), this
combination of morphological complexity and syntactic constraints makes Icelandic a good test
case for data-driven tagging methods.

3.1 Resources

All PoS taggers for Icelandic (see Section 3.2) have been trained/developed and tested using
the 10 pairs of training and test sets of the Icelandic Frequency Dictionary (IFD)1 (Pind et al.,
1991), a balanced corpus of about 590,000 tokens. All 100 text fragments in the IFD were
published for the first time in 1980–1989. The corpus comprises five categories of texts, i.e.
Icelandic fiction, translated fiction, biographies and memoirs, non-fiction and books for children
and youngsters. The tagset used in the compilation of the IFD has become the standard tagset
for tagging Icelandic. It contains about 700 possible tags, of which 639 appear in the IFD. Thus,
the tagset mirrors the morphological complexity of the language.

The PoS tags are character strings, in which each character has a particular function. The first
character denotes the word class. For each word class there is a predefined number of additional
characters (at most six), which describe morphological features. To illustrate, consider the word
form “fiskur” ‘fish’. The corresponding tag is nken, denoting noun (n), masculine (k), singular
(e), and nominative (n) case. Table 2 shows an example of the declension for the lemma “fiskur”
‘fish’, in singular and plural (without the definite article) and the corresponding PoS tags.

Singular Plural
Case Form Tag Form Tag
Nominative fiskur nken fiskar nkfn
Accusative fisk nkeo fiska nkfo
Dative fiski nkeþ fiskum nkfþ
Genitive fisks nkee fiska nkfe

Table 2: The declension for the noun lemma “fiskur” ‘fish’.
The other main resource used in the development of Icelandic taggers is the Database of
Icelandic Inflection1 (Bjarnadóttir, 2012). Its Icelandic abbreviation is BÍN and henceforth we
use that term. BÍN contains about 270,000 paradigms, with about 5.8 million inflectional forms.

3.2 Previous tagging work

A few years ago, no PoS tagger existed for tagging Icelandic. Now, however, various PoS
taggers have been developed, in particular data-driven taggers (Helgadóttir, 2005; Dredze and
Wallenberg, 2008b; Rögnvaldsson and Helgadóttir, 2011), a rule-based tagger (Loftsson, 2008),
and a hybrid tagger (Loftsson et al., 2009).

1Available at http://www.malfong.is
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 110 of 474]

In recent work on tagging Icelandic, the tagset has been reduced, by removing named-entity
classification for proper nouns and labeling all number constants with a single tag – resulting
in 565 tags appearing in the changed version of the IFD. Moreover, the newest evaluation has
been carried out on a corrected version of the IFD corpus (Loftsson et al., 2011). Nevertheless,
the PoS (morphosyntactic) tagging of Icelandic texts has turned out to be a challenging task.
The reason is, for example, that the tagset is large in relation to the size of the available training
corpus, and the tagset makes very fine distinctions.

Table 3 shows the accuracy of three taggers, TriTagger, IceTagger, and HMM+Ice+HMM2, used
by Loftsson et al. (2011), when tagging the (corrected version of the) IFD corpus (565 tags)
using 10-fold cross-validation. Tagging accuracy is shown both with and without using data
from BÍN. Loftsson et al. (2011) used the 10th fold of the IFD for development, and the figures
are thus based on the average of the first nine folds. Data from BÍN was used to extend the
dictionaries used by the taggers, thereby reducing the unknown word rate (UWR) from 6.8%
(when not using data from BÍN) down to 1.1%. According to Loftsson et al. (2011), when
adding data from BÍN, only “hard” unknown words remain – mostly proper nouns and foreign
words.

Without data from BÍN
Tagger Unknown Known All
TriTagger 72.98 92.18 90.86
IceTagger 77.02 93.07 91.98
HMM+Ice+HMM 77.47 93.84 92.73

With data from BÍN
Tagger Unknown Known All
TriTagger 65.84 92.22 91.93
IceTagger 63.47 93.11 92.78
HMM+Ice+HMM 60.50 93.85 93.48

Table 3: Average tagging accuracy (%) of three taggers when tagging the IFD corpus using
10-fold cross-validation. Average unknown word rate (UWR) in testing is 6.8% when not using
data from BÍN, compared to 1.1% when using data from BÍN.

Below, we briefly describe the three taggers used by Loftsson et al. (2011). The first tagger,
TriTagger, is a Hidden Markov Model (HMM) tagger, a re-implementation of the well-known
TnT tagger (Brants, 2000).

The second tagger, IceTagger (Loftsson, 2008), is a linguistic rule-based tagger, but it derives its
dictionaries from a training corpus. It is reductionistic in nature, i.e. it removes inappropriate
tags from the tag profile for a specific word in a given context. An important part of IceTagger is
its unknown word guesser, IceMorphy. It guesses the tag profile for unknown words by applying
morphological analysis and ending analysis. In addition, IceMorphy can fill in the tag profile
gaps3 in the dictionary for words belonging to certain morphological classes (Loftsson, 2008).

The third tagger, HMM+Ice+HMM (Loftsson et al., 2009), is a hybrid tagger, comprising both
IceTagger and TriTagger. It works as follows. First, TriTaggger (the HMM) performs initial

2These taggers are part of the open-source IceNLP toolkit, available at http://icenlp.sourceforge.net
3A tag profile gap for a word occurs when a tag is missing from the tag profile. This occurs, for example, if not all

possible tags for a given word are encountered during training.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 111 of 474]

disambiguation only with regard to the word class. Then, the rules of IceTagger are run. Finally,
the HMM disambiguates words that IceTagger is not able to fully disambiguate.

Before the work described in this paper (see Section 4), the HMM+Ice+HMM tagger was the
state-of-the-art tagger for Icelandic, obtaining an overall accuracy of 93.48% and 92.73%, with
and without using data from BÍN, respectively (see Table 3).

One additional tagger, Bidir (Dredze and Wallenberg, 2008b,a), is relevant to our work. It is
based on the bidirectional sequence classification method by Shen et al. (2007). In Bidir, the
learning phase is divided into separate learning problems. First, a word class (WC) tagger
classifies a word according to the word class. Then the tagger only considers and evaluates
tags that are consistent with the predicted word class. Secondly, a case tagger (CT) retags the
case of nouns, adjectives and pronouns, given the predicted tags from the WC tagger. This
combination resulted in an accuracy of 92.06%, when using the uncorrected version of the IFD
corpus and the full 639 tags. For comparison, the HMM+Ice+HMM tagger obtains an accuracy
of 92.31% when tagging the IFD corpus under these same settings (Loftsson et al., 2009).

4 Development and Evaluation

In this section, we describe various experiments carried out with the goal of obtaining state-
of-the-art tagging accuracy for Icelandic using Stagger.4 Following previous work, in all the
experiments we trained and tested on folds 1-9 of the IFD, whereas fold 10 was used for
development. Furthermore, following Loftsson et al. (2011), we used the corrected version
of the IFD corpus and the reduced tagset of 565 tags appearing in the IFD (see Section 3.2).
During training, we used 12 iterations.5

4.1 Generic Stagger

In the first experiment, we evaluated the generic version of Stagger, with only the addition of a
list of open word class tags from the IFD tagset.

When comparing the results of experiment no. 1, shown in Table 4, to the results without BÍN
data in Table 3, we can see that Stagger performs better than a pure HMM model (TriTagger).
Stagger obtains an accuracy of 91.29% for all words, whereas TriTagger obtains 90.86%.

On the other hand, Stagger’s accuracy is lower than both IceTagger (91.98%) and
HMM+Ice+HMM (92.73%). It is notable, however, that Stagger’s accuracy for known words
(93.11%) is higher than the corresponding accuracy in both TriTagger (92.18%) and IceTagger
(93.07%). This is already a promising result, given the fact that IceTagger is developed using
linguistic knowledge.

In contrast, Stagger’s accuracy for unknown words (66.29%) is much lower compared to the
other three taggers. In Section 4.3, we experiment with increasing the accuracy of unknown
words, and with reducing the UWR.

4.2 Adding linguistic features

The base features of Stagger are language-independent. In the second experiment, we added
language-specific linguistic features (LF), that use particular properties of Icelandic.

4The additions we made to the generic version of Stagger are available at http://www.ling.su.se/stagger
5For each fold of about 530,000 tokens, training time on an Intel i5, 2.50GHz system, with 8G RAM, is 45-90

minutes, depending on the type of experiment carried out in the subsections below.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 112 of 474]

Exp. Tagger Unknown Known All Error Error
words words words ∆a ∆b

1 Stagger 66.29 93.11 91.29
2 Stagger+LF 66.06 93.26 91.42 1.5 1.5
3 Stagger+LF+IceMorphy 77.03 93.97 92.82 16.3 17.7
4 Stagger+LF+IceMorphy+BÍN 61.45 94.02 93.70 12.3 27.7
5 Stagger+LF+IceMorphy+BÍN+WE 61.99 94.15 93.84 2.2 29.3

aError reduction with regard to the previous experiment.
bError reduction with regard to the 1st experiment.

Table 4: Average tagging accuracy (%) of Stagger, for different experiments, when tagging the
IFD corpus using 10-fold cross-validation. Error reduction is shown for all words. State-of-the-
art results are shown in bold font. Average UWR in testing is 6.8% without using data from BÍN,
compared to 1.0% when using BÍN. LF=Linguistic features; WE=Word embeddings. Differences
in all-word accuracy are significant at p < 0.001, using McNemar’s test.

Previous research on tagging Icelandic has revealed that many tagging errors are due to case
confusion for nominals (Helgadóttir, 2005; Dredze and Wallenberg, 2008a; Loftsson et al.,
2009). In order to more accurately select the case of nominals, Dredze and Wallenberg (2008a),
in their Bidir tagger (see Section 3.2), use a separate case tagger which is essentially a second-
pass PoS tagger that is only permitted to change the case and gender selections of the first-pass
tagger, whose output the case tagger has access to.

We first implemented a separate case tagger following Dredze and Wallenberg (2008a), although
using only their Feature Group 1 (which they reported to be by far the most useful one), and
could confirm their finding that the overall tagging accuracy is improved by the case tagger.

However, since their Feature Group 1 only uses previously assigned tags to the left of the current
tag, and we use a left-to-right beam search, we were able to add the case tagger features to
the PoS tagger and perform the tagging in only one pass. This led to a small improvement in
accuracy over the separate case tagger, but, perhaps more importantly, eliminated much of the
overhead in performance and code complexity caused by re-tagging all sentences with the case
tagger.

The result of this experiment no. 2, with Stagger+LF, is shown in Table 4. We obtain an accuracy
of 91.42% for all words, which corresponds to a 1.5% error reduction compared to the basic
feature set. Dredze and Wallenberg (2008a) obtained an error reduction of 4.6% when adding
their case tagger to their base tagger. It is not clear to us why we do not achieve similar gains,
even though we use very similar features.

4.3 Handling unknown words

As mentioned in Section 4.1, Stagger’s accuracy for unknown words (66.06% in experiment no.
2) is significantly lower than the corresponding accuracy of the three taggers shown in Table 3
(e.g. 77.47% by the HMM+Ice+HMM tagger). The competition in this category is indeed tough.
First, TriTagger uses an effective suffix algorithm, based on probability distributions for suffixes
of various lengths (Brants, 2000), which has worked well for various languages. Second, both
IceTagger and HMM+Ice+HMM use IceMorphy for guessing the tag profile for unknown words.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 113 of 474]

Nevertheless, Stagger’s accuracy for unknown words is higher than the corresponding accuracy
in various other data-driven taggers tested by Helgadóttir (2005).

The next logical step was thus trying to increase the accuracy for unknown words and minimizing
the UWR. We carried this out in two ways. First, in Section 4.3.1, by integrating IceMorphy
with Stagger, and, second, in Section 4.3.2, by providing Stagger with data from BÍN.

Note that unknown word guessers (like IceMorphy) exist for various languages (Mikheev,
1997; Nakov et al., 2003; Nakagawa and Yuji, 2006), whereas large comprehensive inflectional
databases like BÍN are rare.

4.3.1 Stagger with IceMorphy

As mentioned in Section 3.2, IceMorphy is an unknown word guesser and a “filler” for tag profile
gaps for known words. Since both IceMorphy and Stagger are open-source, and implemented
in Java, we could easily integrate the two components.

We did so, in the following manner. During testing, we look up a word w in the dictionary
derived by Stagger during training. If w is known, then the tag gap filling method of IceMorphy
is used to guess missing tags in the profile for w.6 If w is unknown, then IceMorphy is used
to guess the whole tag profile for w. The dictionaries used by IceMorphy are generated from
the IFD corpus (Loftsson, 2008). When we evaluate each test fold F , using the integration of
Stagger and IceMorphy, we thus only make IceMorphy have access to the dictionaries generated
from fold F .

The results for this tagger, Stagger+LF+IceMorphy (generic Stagger, in addition to linguistic
features and IceMorphy), are shown as experiment no. 3 in Table 4. We obtain a large increase
in tagging accuracy for all words, from 91.42% to 92.82%, which is equivalent to an error
reduction of 16.3%. By integrating IceMorphy with Stagger, accuracy for unknown words
increases from 66.06% to 77.03% (error reduction of 32.3%), and for known words from
93.26% to 93.97% (error reduction of 10.5%).

4.3.2 Adding data from BÍN

As discussed in Section 3.1, BÍN is a large morphological database. It has been used by Loftsson
et al. (2011) to extend the dictionaries of PoS taggers, thereby minimizing the UWR.

In our fourth experiment, we added data from BÍN to Stagger, which during training can be
provided with an optional lexicon. We used exactly the same data as used by Loftsson et al.
(2011), i.e. a file of about 5.3 million entries from BÍN, in which the PoS tags used in BÍN have
been mapped to the IFD tags (see Loftsson et al. (2011) for details on how the file is generated).
From this file, we generated the entries for the optional lexicon, i.e. a 4-tuple: <word, lemma,
tag, frequency>. The first three elements of this tuple come from BÍN, whereas the last element
is 0, in our case. During training, the provided lexicon is automatically extended by the training
set.

Since BÍN contains a very large amount of word forms, there is no need to use IceMorphy to fill
in tag profile gaps – adding the data from BÍN indeed means that most such gaps disappear.
Hence, in this experiment, we tested only using IceMorphy to guess the tag profile for unknown
words.

6We do not use tag profile gap filling for verbs, because IceMorphy overgenerates (recall is higher than precision
(Loftsson, 2008)) and testing on the development set resulted in higher accuracy by excluding the verbs.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 114 of 474]

The result of this experiment no. 4 is shown as the tagger Stagger+LF+IceMorphy+BÍN in
Table 4. For all words, we obtain a state-of-the-art accuracy of 93.70%, which is equivalent
to 3.4% error reduction compared to the previously best result of 93.48%, obtained by the
HMM+Ice+HMM tagger (see Table 3). Stagger’s accuracy for known words (94.02%) is
somewhat higher than the corresponding accuracy of the HMM+Ice+HMM tagger (93.85%),
and for unknown words Stagger’s accuracy (61.45%) also surpasses that of HMM+Ice+HMM
(60.50%).

4.4 Adding word embeddings
In our final experiment, no. 5, we added C&W word embeddings (WE), discussed in Section 2.4,
as features during training. We induced 48-dimensional C&W embeddings using the tool of
Robert Östling7 and 10 million sentences (ca. 170 million words) of Icelandic web texts from
the Wortschatz project.8 We limited the vocabulary to words occurring at least 100 times in
the data, in total 65 426 words. The embeddings were trained for 25 billion updates, or about
150 iterations through the entire corpus, which took about ten days on a 2.66 GHz Intel Core2
system.

As shown in Table 4, we obtain an overall accuracy of 93.84% for the Stag-
ger+LF+IceMorphy+BÍN+WE tagger, which is equivalent to 29.3% error reduction compared
to the first experiment (see Table 4), and 5.5% error reduction compared to the previous best
results.

5 Error analysis

We performed preliminary error analysis on the output of the Stagger+LF+IceMorphy+BÍN+WE
tagger. We combined the tagging errors made on the test sets of the first nine folds.

We define an error type as a pair (x , y), where x is the predicted tag and y is the gold tag.
Stagger makes 4,108 different error types. 1,796 of those, or 43.72%, appear only once. The 10
most frequent errors account for 14.60% of the total errors, as shown in Table 5. It is notable
that 6 of the 10 most frequent errors are due to mistakes in case assignments (errors no. 1-4
and 9-10 in Table 5).

The two most frequent error types (aþ,ao) and (ao,aþ) differentiate between a preposition
governing the accusative (ao) or dative case (aþ). The case marking in these tags “[...] do not
reflect any morphological distinctions in the words they are attached to, but only indicate the
effect (case government) that these words have on their complements” (Loftsson et al., 2009).

For example, for the prepositional phrase “með bók” ‘with book’, tagged as “ao nveo”, the fourth
letter (o) in the tag for the noun “bók” denotes accusative case and the corresponding case
marking on the preposition “með” is really redundant. In a way, a tagger is penalized twice for
such case tagging errors, because of the wrong case in the preposition in addition to the error
in the complement. If we do not make a distinction between the tags “ao” and “aþ”, the tagging
accuracy of the Stagger+LF+IceMorphy+BÍN+WE tagger increases from 93.84% to 94.17%.

6 Conclusion
We have applied Stagger, an open-source implementation of an Averaged Perceptron tagger, to
the morphologically complex Icelandic language, obtaining state-of-the-art tagging accuracy

7http://www.ling.su.se/english/nlp/tools/svek
8http://corpora.uni-leipzig.de/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 115 of 474]

No. Error type Rate Cumulative rate
1 (aþ,ao) 2.97 2.97
2 (ao,aþ) 2.35 5.32
3 (nveþ,nveo) 1.49 6.81
4 (nveo,nveþ) 1.33 8.14
5 (sng,sfg3fn) 1.24 9.37
6 (ao,aa) 1.21 10.58
7 (sfg3eþ,sfg1eþ) 1.18 11.76
8 (aa,ao) 1.01 12.77
9 (nheo,nhen) 0.93 13.70

10 (nhen,nheo) 0.90 14.60

Table 5: The 10 most frequent error types and their rate of occurrence in % in the output of the
Stagger+LF+IceMorphy+BÍN+WE tagger. An error type is a pair (x , y): x is the predicted tag
and y is the gold tag.

when using a version of the IFD corpus in which 565 different tags appear. Our best result, the
accuracy of 93.84%, is equivalent to 5.5% error reduction compared to the previous best results
on the same data.

Our largest gain in accuracy was obtained by integrating Stagger with IceMorphy, an open-
source unknown word guesser for Icelandic, for the purpose of guessing the tag profile for
unknown words, and to fill in gaps in the tag profile for known words. Nearly as much was
gained when we used data from a large morphological database to reduce the UWR. Small
increases in accuracy were obtained by adding some language-specific features, and by using
word embeddings induced from a large unannotated corpus.

For a morphologically complex language, where unknown word forms are particularly frequent,
we conclude that simple suffix features (as used in the generic version of Stagger) can not
compare to a good morphological analyzer (unknown word guesser) or a large morphological
database, and that the analyzer probably represents the best time investment when improving
a PoS tagger.

In future work, we would like to experiment further with semi-supervised training, and apply
the lessons learned from the Icelandic case to other morphologically complex languages. For
Icelandic in particular, we want to explore ways to reduce the most frequent errors based on
incorrect case assignments.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 116 of 474]

References

Berger, A. L., Pietra, V. J. D., and Pietra, S. A. D. (1996). A Maximum Entropy Approach to
Natural Language Processing. Computational Linguistics, 22:39–71.

Bjarnadóttir, K. (2012). The Database of Modern Icelandic Inflection. In Proceedings of the
workshop “Language Technology for Normalization of Less-Resourced Languages”, SaLTMiL 8 –
AfLaT, LREC, Istanbul, Turkey.

Brants, T. (2000). TnT: A statistical part-of-speech tagger. In Proceedings of the 6th Conference
on Applied Natural Language Processing, Seattle, WA, USA.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing, Philadelphia, PA, USA.

Collobert, R. and Weston, J. (2008). A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask learning. In Proceedings of the 25th International
Conference on Machine learning, ICML, Helsinki, Finland.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011).
Natural Language Processing (Almost) from Scratch. Journal of Machine Learning Research,
12:2493–2537.

Dredze, M. and Wallenberg, J. (2008a). Further Results and Analysis of Icelandic Part of Speech
Tagging. Technical report, Department of Computer and Information Science, University of
Pennsylvania.

Dredze, M. and Wallenberg, J. (2008b). Icelandic Data Driven Part of Speech Tagging. In
Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, ACL-HLT, Columbus, OH, USA.

Georgiev, G., Zhikov, V., Simov, K., Osenova, P., and Nakov, P. (2012). Feature-Rich Part-
of-speech Tagging for Morphologically Complex Languages: Application to Bulgarian. In
Proceedings of the 13th Conference of the European Chapter of the Association for Computational
Linguistics, EACL, Avignon, France.

Giménez, J. and Màrquez, L. (2004). SVMTool: A general POS tagger generator based on
Support Vector Machines. In Proceedings of the 4th International Conference on Language
Resources and Evaluation, LREC, Lisbon, Portugal.

Helgadóttir, S. (2005). Testing Data-Driven Learning Algorithms for PoS Tagging of Ice-
landic. In Holmboe, H., editor, Nordisk Sprogteknologi 2004. Museum Tusculanums Forlag,
Copenhagen.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data. In Proceedings of the 18th International
Conference on Machine Learning, ICML, Williamstown, MA, USA.

Loftsson, H. (2008). Tagging Icelandic text: A linguistic rule-based approach. Nordic Journal
of Linguistics, 31(1):47–72.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 117 of 474]

Loftsson, H., Helgadóttir, S., and Rögnvaldsson, E. (2011). Using a morphological database to
increase the accuracy in PoS tagging. In Proceedings of Recent Advances in Natural Language
Processing, RANLP, Hissar, Bulgaria.

Loftsson, H., Kramarczyk, I., Helgadóttir, S., and Rögnvaldsson, E. (2009). Improving the PoS
tagging accuracy of Icelandic text. In Proceedings of the 17th Nordic Conference of Computational
Linguistics, NoDaLiDa, Odense, Denmark.

Loftsson, H. and Rögnvaldsson, E. (2007). IceNLP: A Natural Language Processing Toolkit for
Icelandic. In Proceedings of Interspeech 2007, Special Session: “Speech and language technology
for less-resourced languages”, Interspeech, Antwerp, Belgium.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics, 19(20):313–330.

Mikheev, A. (1997). Automatic Rule Induction for Unknown Word Guessing. Computational
Linguistics, 21(4):543–565.

Nakagawa, T. and Yuji, M. (2006). Guessing parts-of-speech of unknown words using global
information. In Proceedings of the 21st International Conference on Computational Linguistics
and the 44th Annual meeting of the Association for Computational Linguistics, Sydney, Australia.

Nakov, P., Bonev, Y., Angelova, G., Cius, E., and Hahn, W. v. (2003). Guessing Morphological
Classes of Unknown German Nouns. In Proceedings of Recent Advances in Natural Language
Processing, RANLP, Borovets, Bulgaria.

Pind, J., Magnússon, F., and Briem, S. (1991). Íslensk orðtíðnibók [The Icelandic Frequency
Dictionary]. The Institute of Lexicography, University of Iceland, Reykjavik, Iceland.

Radziszewski, A. (2013). A tiered CRF tagger for Polish. In Bembenik, R., Skonieczny, Ł.,
Rybiński, H., Kryszkiewicz, M., and Niezgódka, M., editors, Intelligent Tools for Building a
Scientific Information Platform: Advanced Architectures and Solutions. Springer Verlag.

Ratnaparkhi, A. (1996). A Maximum Entropy Model for Part-Of-Speech Tagging. In Proceedings
of the Empirical Methods in Natural Language Processing Conference, Philadelphia, PA, USA.

Rögnvaldsson, E. and Helgadóttir, S. (2011). Morphosyntactic Tagging of Old Icelandic Texts
and Its Use in Studying Syntactic Variation and Change. In Sporleder, C., van den Bosch, A.,
and Zervanou, K., editors, Language Technology for Cultural Heritage: Selected Papers from the
LaTeCH Workshop Series. Springer, Berlin.

Shen, L., Satta, G., and Joshi, A. (2007). Guided Learning for Bidirectional Sequence Classifi-
cation. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,
ACL, Prague, Czech Republic.

Søgaard, A. (2011). Semi-supervised condensed nearest neighbor for part-of-speech tagging.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, ACL-HLT, Portland, Oregon.

Spoustová, D. j., Hajič, J., Raab, J., and Spousta, M. (2009). Semi-supervised Training for the
Averaged Perceptron POS Tagger. In Proceedings of the 12th Conference of the European Chapter
of the Association for Computational Linguistics, EACL, Athens, Greece.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 118 of 474]

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Human Language
Technology, NAACL, Edmonton, Canada.

Tsuruoka, Y., Miyao, Y., and Kazama, J. (2011). Learning with Lookahead: Can History-
Based Models Rival Globally Optimized Models? In Proceedings of the Fifteenth Conference on
Computational Natural Language Learning, CoNLL, Portland, Oregon, USA.

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: a simple and gen-
eral method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, ACL, Uppsala, Sweden.

Östling, R. (2012). Stagger: A modern POS tagger for Swedish. In Proceedings of the Swedish
Language Technology Conference, SLTC, Lund, Sweden.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 119 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 120 of 474]

IPhraxtor - A linguistically informed system for extraction
of term candidates

Magnus Merkel, Jody Foo, Lars Ahrenberg

Department of Computer and Information Science, Linköping University

magnus.merkel@liu.se, jody.foo@liu.se lars.ahrenberg.liu.se

ABSTRACT

In this paper a method and a flexible tool for performing monolingual term extraction is

presented, based on the use of syntactic analysis where information on parts-of-speech, syntactic

functions and surface syntax tags can be utilised. The standard approaches to evaluating term

extraction, namely by manual evaluation of the top n term candidates or by comparing to a gold

standard consisting of a list of terms from a specific domain can have its advantages, but in this

paper we try to realise a proposal by Bernier-Colborne (2012) where extracted terms are

compared to a gold standard consisting of a test corpus where terms have been annotated in

context. Apart from applying this evaluation to different configurations of the tool, practical

experiences from using the tool for real world situations are described.

KEYWORDS: computational terminology, term extraction, evaluation, terminological work.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 121 of 474]

1 Introduction

The task of creating domain-specific terminologies can be approached with different strategies.

The traditional terminological approach within terminology work, performed by terminologists,

often consisted of more or less manual term extractions from texts, in combination with concept-

oriented analysis of the domain. Today, much of the tedious term extraction can be replaced by

automatic approaches where a computer tool can harvest term candidates from large document

collections without human intervention for later processing. The results from the term candidate

extraction phase is then the starting point for further selection, filtering, categorizations before

the terms can be put into a term database and used by other applications, such as writing support

tools, translation tools, search engines, linguistic quality assurance systems, etc.

In this paper a background to the field of automatic term extraction is presented. The background

is followed by a presentation of a flexible tool for performing monolingual term extraction, based

on the use of syntactic analysis where information on syntactic function and surface syntax tags

can be utilised. The results from this tool can then be used in subsequent manual or automatic

phases, e.g. when building a terminology or an ontology. Standard approaches to evaluating term

extraction are then described and the setup for the evaluation method used in this work is

described. This section is followed by a description of the corpus used in the evaluation as well

as different configurations that were tested. Results for precision and recall are presented and

discussed. The final section before the conclusions contains a description of how the extraction

tool has been used in real world situations in the initial stages of creating term banks for Swedish

government agencies. The paper ends with conclusions and a discussion of the results.

1.1 Background

Automatic term extraction is a field within language technology that deals with “extraction of

technical terms from domain-specific language corpora” (Zhang et al., 2008). All approaches

within automatic term extraction involve some kind of text analysis, some method of selecting

and filtering term candidates. Typically the text analysis stages requires some kind of parts-of-

speech analysis and lemmatization of inflected word forms, but it could also involve more

complex analysis like dependency relations between tokens in the input text.

Term exctraction may have different applications in areas such as construction of ontologies,

document indexing, validation of translation memories, and even classical terminology work. All

the different applications share the constructive nature of the activity, and the need to distinguish

terms from non-terms, or, if we prefer domain-specific terms from general vocabulary (Justeson

& Katz, 1995).

The automatic term extraction process will usually be followed by a manual, sometimes

computer-aided, process of validation. For this reason, the outputs of a term extraction process

are better referred to as term candidates of which some, after the validation process, may be

elevated to term status.

Early work on term extraction focused on linguistic analysis and POS patterns (e.g. Bourigault,

1992; Ananiadou 1994) for identifying term patterns. Later, these methods have been

complemented by using more statistical measures, especially for ranking and filtering of the

results (e.g. Zhang 2008; Merkel & Foo 2007).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 122 of 474]

2 The term extraction tool (IPhraxtor)

The tool presented here is in a way a standard term extraction tool relying mainly on the

linguistic data. In this experiment the Connexor Machinese Syntax software (Tapanainen &

Järvinen, 1997) has been used, but in principle any linguistic analyzer for any language could be

used as long as the analysed texts conform to the xml dtd used. When texts are analyzed using

the Connexor Machinese Syntax framework, information on various levels are produced such as

base form, morpho-syntactic description (number, definiteness, case, etc.), syntactic function and

dependency relation. The output data from the text analysis could look something like the

following for the sentence “8. Increasing or decreasing the viscosity of the cement slurry.”:

Input sentence: 8. Increasing or decreasing the viscosity of the cement slurry.

XML representation after text analysis:

<s id="s25628":C04B|FILE_OR_GROUP:88303835.en.lwa|ID:38">

<w id="w637528" base="8" pos="NUM" msd="CARD" func="main" stag="NH" >8</w>

<w id="w637529" base="." pos="INTERP" msd="Period" func="" stag="INTERP" >.</w>

<w id="w637530" base="increase" pos="V" msd="" func="" stag="VA" >Increasing</w>

<w id="w637531" base="or" pos="CC" msd="" func="cc" fa="3" stag="CC" >or</w>

<w id="w637532" base="decrease" pos="V" msd="" func="cc" fa="3" stag="VA" >decreasing</w>

<w id="w637533" base="the" pos="DET" msd="" func="attr" fa="7" stag=">N" >the</w>

<w id="w637534" base="viscosity" pos="N" msd="NOM-SG" func="obj" fa="5" stag="NH" >viscosity</w>

<w id="w637535" base="of" pos="PREP" msd="" func="mod" fa="7" stag="N<" >of</w>

<w id="w637536" base="the" pos="DET" msd="" func="attr" fa="10" stag=">N" >the</w>

<w id="w637537" base="cement" pos="N" msd="NOM-SG" func="attr" fa="11" stag=">N" >cement</w>

<w id="w637538" base="slurry" pos="N" msd="NOM-SG" func="pcomp" fa="8" stag="NH" >slurry</w>

<w id="w637539" base="." pos="INTERP" msd="Period" func="" stag="INTERP" sem="" >.</w>

</s>

TABLE 1. Output from the text analysis.

The information from Machinese Syntax includes the base form of each text word (“base”),

morpho-syntactic features (“msd”) like number and case, dependency relations/syntactic function

(“func”), syntactic surface “stag”, which can be utilised by the term extraction tool in the next

step.

The analysed text is stored in xml format following the illustration in Table 1. The xml files are

then loaded into the term extraction tool, called IPhraxtor. IPhraxtor is implemented in java with

a graphical interface that can be used to test different strategies sentence by sentence from the

input. On the Rules tab in IPhraxtor (see Figure 1), the user can specify different configurations

that will govern the term extraction.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 123 of 474]

Figure 1. The Rules tab in IPhraxtor where configurations of

patterns and tags used can be tested.

By using the Rules tab, the user can test different regular expressions (on the POS level). In

Figure 1, only the simple pattern “(A|N)* N” is used for extraction. The active sentence of the

input text is shown in top left panel and below this panel the extracted term candidates, used by

only using the given regular expression pattern are shown. In this case the extracted term

candidates for the input sentence are “amino acid residue content”, “gum preparation” “amino

acid component” and “commercial gum”.

The other fields that could be used to restrict and change the way term candidates are extracted

are:

 Stags: Surface syntactic tags

 Funcs: Syntactic functions/dependency relations, such as subject, object, prepositional

complement, etc.

 Not POS: POS tags that should never occur inside a term candidate

 No POS start: POS tags that are ignored at the start of term candidates

 No POS end: POS tags that are ignored at the end of term candidates

 Regex pattern: regular expression containing POS tags

Apart from giving values to these fields in order to tune the term candidate extraction process, it

is also possible to specify files with stop words that will be used to trim the term candidates. The

stop word lists are of two types: 1) stop words that are used at the beginning of term candidates

(initial_stop_words); and 2) stopwords used at the end of term candidates (trailing_stop_words).

The reason for separating the stop word lists in this fashion is that there could be cases where it is

necessary to treat them differently, for example if a noun can be included in term candidate as a

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 124 of 474]

nominal modifier, but not as a head word. In that case, the noun in question would only be listed

in the trailing stop word file, but not in the initial stop word file.

Term candidates can be exported to a database including all available information such as base

forms, inflected forms, part-of-speech, frequency, and with the surrounding contexts, for later use

in the terminology validation process.

The hypothesis behind extending the extraction patterns to more than just POS patterns was that

some terms could actually be captured by syntactic functions (for example subjects and objects).

If we use the simple regular expression used in Figure 1, term candidates like “the Save As

command” will not be detected, but the candidate is indeed found if it was used as a syntactic

functional subject, object or prepositional complement, and SUBJ|OBJ|PCOMP was specified as

values in Funcs field.

2.1 Evaluation of terminology extraction and evaluation setup

Evaluation of term extraction systems can be done in different ways. One often used strategy is

to let the system rank the output of term candidates as n-best lists where the highest ranking term

candidates are at the top of the list. Then a human evaluator evaluates the top 100, 500 or 1000

term candidates with regards to whether term candidates are likely terms in the given domain.

This evaluation technique has its advantages, but it also fails to capture how good the system is to

capture the proportion of available terms (recall). The n-best evaluation strategy gives a good

picture of how well the ranking of term candidates are and an estimate of the precision of the

system, but does not provide any information on the recall of the system.

An alternative approach is to have a gold standard list of terms for a specific domain and let the

output from term extraction tools be evaluated against that gold standard. This strategy was for

example used in the CESART evaluation project (Mustafa el Hadi et al., 2006). In the Quæro

evaluation initiative (Mondary et al., 2012), the approach of using a domain-specific

terminological gold standard was further developed using the terminological precision, recall and

F-measure metrics first proposed by Nazarenko et al. (2009). In principle, the output of the term

extraction system is evaluated against the gold standard, thereby making it possible to compare

different systems and different versions of systems applied on a specific domain. Such a gold

standard should be based on the whole corpus from which terms are to be extracted. Having a

gold standard also means, in essence that we already have all terms contained in a specific

corpus. For practical applications, this kind of evaluation is impossible as extracting terminology

from a corpus is the actual goal.

A recent proposal by Bernier-Colborne (2012) is to annotate a corpus with information on where

terminological units occur in the text, “accounting for the wide variety of realizations of terms in

context”. Using an annotated corpus rather than a term list has several advantages. A term list

will measure precision and recall on the type level, and a gold standard consisting of an

annotated corpus can measure precision and recall on the token level. This is important for two

reasons: (1) a terminological unit can be composed of different linguistic objects (e.g. different

parts-of-speech) depending on context; and (2) linguistic tagging tools (e.g. POS taggers) are not

100 per cent accurate which can result in a decrease in either precision or recall. Having a handle

on all the term candidate instances in the gold standard, makes it possible to perform error

analysis and locate where the actual errors occur. Furthermore, with the right support tools,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 125 of 474]

creating an annotated gold standard from a sample from the target corpus is relatively feasible for

practical applications.

From a practical point of view, the Bernier-Colborne proposal, with the modification that the

gold standard is created on a subset of the full corpus, is a reasonable method in order to measure

the quality of a term candidate extraction system. In other words, a gold standard has to be

created where terms are marked up in the subset of the actual text collection and the performance

of the term candidate extraction system has to be evaluated against that gold standard. In this

way, measures like precision and recall can be used in exactly the same way as they are done in

for example the named entity extraction field.

The evaluation of how well different extraction strategies would work was set up in the following

way:

 Creating a corpus of patent texts from five different subject areas

 Separating the corpus into a training set and a test set

 The training sets for all different texts were used to find out general strategies, using the

interactive Rules tab in IPhraxtor (see Figure 1).

 Each test set consisted of 100 sentences which were marked up manually with instances

of term candidates in each sentence. The aim was to only extract term candidates that

were considered to be noun phrases, no attempts at catching verbs or independent

adjectives were made for the evaluation. Two independent evaluators were given

instructions to create the gold standards as uniformly as possible.

 Scripts for measuring precision and recall for each run against the gold standard was

created.

 In the first stage ten different strategies were tested, and in the second stage, three

strategies were evaluated in more detail.

The creation of the gold standard was made in a special environment where the annotator

reviewed the test section of the corpus and highlighted each term candidate in the 100 sentences:

The corpus used for the tests consisted of five patent application domains:

Corpus Name #words: en

Edible oils or fats A23D 705,764

Cocoa A23G 610,893

Hats: head coverings A42B 73,991

Non-metallic elements C01B 1,847,571

Lime, Magnesia, Slag,
Cements

C04B 2,075,622

FIGURE 2. Simple annotation of instances of terms in the gold standard. Five terms

are marked up as being terms.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 126 of 474]

TABLE 2. Corpus description of the five different patent domains.

Initially 10 configurations were tested ranging from using one simple regular only to various

setups where the use of combinations of stop words, no_start_POS, no_end_POS, Funcs, STAG

was evaluated, as well as using more complex regular expressions. After this stage, it was clear

that the regular expressions had contributed substantially to the overall result. Extending the

simplest regular expression to other NP regular expressions only had minor effects. However,

there was a clear improvement for the end result if we combined the use of stop word lists, filters

for start and end POS tags, as well as functional and syntactic surface tags with the regular

expression.

So if we compare the A, B and C strategies below (A using only a simple regular expression of

POS tags, B using stop word lists, syntactic functional and surface tags but no regular

expressions; and C using regular expression plus stopword lists)

A. Regex: (A|N)* N

B. No Regex
Func: SUBJ|OBJ|PCOMP
No_Start_POS: DET|NUM|CC|CS|PRON|PREP|ADV|INTERP
No_End_POS: DET|NUM|CC|CS|PRON|PREP|ADV|INTERP|V|A
Func: SUBJ|OBJ|PCOMP
Stag: NH|>N|N<
Stopword lists: Yes

C. Regex: “(A|N)* N”
Stopword lists: Yes

we get the following precision and recall figures for the different subcorpora
1
:

Corpus A23D A23G A42B C01B C014B

 P R P R P R P R P R

RegExp (A) 0.52 0.80 0.64 0.81 0.62 0.8 0.57 0,74 0,60 0,81

Synt. Tags (no

RegExp (B)

0.36 0.78 0.4 0.91 0.44 0.69 0.35 0.74 0.37 0.77

RegExp + stop

word lists (C)

0.63 0.84 0.72 0.84 0.68 0.82 0.6 0,76 0,67 0,82

TABLE 3. Precision (P) and recall (R) figures for the different strategies and subcorpora.

In all cases we get clear increases in both recall and precision when the C strategy is used, except

in A23G, where recall is actually higher for strategy B, but then with a substantially lower

precision score.

1 The scores are calculated as an average score for the two annotators of the gold standard.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 127 of 474]

We also tested several more elaborate regular expressions for catching more complex noun

phrases, including coordinated noun phrases, but this did not result in better scores. Recall was

slightly increased but always at the cost of lower precision. The one single factor that contributes

most is whether stop words are used or not. The use of syntactic functions and syntactic surface

tags does indeed lower recall in all except one of the corpora (A23G) and syntactic functions

result in lower precision. Parts-of-speech tagging is usually of a very high quality in syntactic

analyzers, and it could be expected that text analysers do not perform on the same level as POS

tagging when it comes to detecting dependency relations and syntactic functions. This could be a

factor that contributes to the poor precision rates of the B strategy, but we have no in-depth

analysis to support such a claim.

3 Practical use

The term candidate extraction tool presented above has also been applied in more real life

situations for making an inventory of terminology used at government agencies in Sweden. As a

starting point for creating a terminology bank for Försäkringskassan (The Swedish Social

Security Agency), IPhraxtor was used to explore what terminology was actually used on their

external web site
2
. The idea was to assist government agency in getting a picture of what their

terminology usage and combine this with a comparison of the existing term lists and other

resources available on the internet, such as the Swedish National Termbank, Rikstermbanken,

created by Terminologicentrum (2012).

All documents from the website was processed into text format and analyzed by the Machinese

Syntax tool described earlier. Then various tests were performed using the IPhraxtor tool for

extracting terminology. Because all the texts were in Swedish and the expected terminology

should cover verb and adjective constructions as well as noun phrases, modifications to the

strategies described above were made. The terminology that existed in old term lists from the

agency gave indications on what type of constructions they already used. This led to the decision

that we had to prioritize recall over precision, in order to be sure that no important term

candidates were missed. In Swedish it seems to be more common than in English to have

prepositional complements inside noun phrase terms, for example the term “barn med

funktionsnedsättning” (eng. children with disabilities). This meant that the use of the syntactic

tags inside IPhraxtor could be used better as all instances of terms of this form that functioned as

subjects and objects could be located, for example. The chosen strategy led to a loss of precision,

as expected, but by using different ways of filtering term candidates during the validation phase,

it did not cause extensive extra hours of manual work.

All in all, around 55,000 unique term candidates were extracted with the aid of IPhraxtor from

the 8 million words that formed the input data from the external web site. These term candidates

were then processed with a mixture of automatic, interactive and manual techniques into a

remaining set of around 17.000 term candidates. The filtering process removed misspellings,

term candidates in other languages than Swedish, non-words due to poor processing of PDF files

as well as term candidates that simply should not be considered to be terms later on (general

words that had not been filtered out by stop word lists, words that had been tagged incorrectly by

the tagger, etc.). After that the 17.000 term candidates were processed in order to see if they

occurred in the Swedish National Termbank (Rikstermbanken) or in any other term resource that

2 http://www.forsakringskassan.se

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 128 of 474]

already existed at the agency (e.g. Swedish English word lists). The output from this stage was

handed over to Terminologicentrum and the agency as an Excel file with the intention to further

categorize the term candidates into different categories and decide which term candidates that

should be evaluated to “real terms” in the domain.

Examples of the resulting term candidates are shown in Figure 2:

FIGURE 3. Term candidates from extraction using IPhraxtor with conceptual groupings as well as

information on use of term in other resources, inflectional variants and contexts where the term

candidate is used.

The term candidates shown in Figure 3 are grouped as possible synonyms using the same concept

ID (KonceptID), which is indicated by the fact that the term candidates “efterlevandestöd” and

“EL-stöd” share the concept ID. There are also information about whether the term candidate

occurs in any other resource (“efterlevandestöd” has the English translations “survivor’s support”

and “surviving children’s allowance” in column FKEN (Försäkringskassan’s English term list).

Also the term candidate “population” has also been located somewhere in the Swedish national

term bank (Rikstermbanken) in column H, RTB.

Another place where IPhraxtor has been used is at the Swedish Unemployment Insurance Board

(Inspektionen för arbetslöshetsförsäkringen – IAF). In the same way as with Försäkringskassan,

the external web site was used as input for the term extraction process. Due to a smaller volume

of text, the extraction stage resulted in around 12,000 term candidates which were reduced to

around 3,500 term candidates during the validation stage.

The top forty “surviving” term candidates for IAF were the following:

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 129 of 474]

Term candidate Freq.

arbetslöshetskassa 5338

IAF 4178

arbetsförmedling 2354

arbete 1740

ärende 1526

arbetslöshetsförsäkring 1403

underrättelse 1323

ersättning 1264

sökande 1100

arbetslöshetsersättning 1086

genomströmningstid 1050

uppgift 901

arbetssökande 839

beslut 805

uppdrag 760

myndighet 668

verksamhet 625

åtgärd 542

lag 508

söka 451

kassa 440

medlem 431

intyg 414

ALF 412

förordning 411

regelverk 405

arbetslös 399

arbetsförmedlare 387

arbetsgivare 383

handläggning 381

föreskrift 370

Inspektionen för arbetslöshetsförsäkringen 369

ersättningstagare 367

utbetalning 366

medarbetare 353

aktör 352

uppföljning 344

rutin 319

arbetsgivarintyg 318

arbeta 309

TABLE 4. The top 40 term candidates from IAF

The term candidates extracted for both the government agencies have turned out to be a vital step

towards creating standardized term banks. Not only did the extraction provide an insight to how

terminology actually is used on their web site, it also highlighted problems regarding inconsistent

usage of synonyms and acronyms as well as sets of spelling variants of terms. It was also a

showcase for claiming that IPhraxtor also works for Swedish.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 130 of 474]

4 Summary and conclusion

In this paper we have presented a tool for extracting term candidates based on linguistically

analyzed data, including POS, syntactic function, and surface syntax tags. The tool provides an

interactive environment where combinations of regular expressions for POS sequences and the

use of various linguistic tags and stop lists can be expressed and tested in a very flexible manner.

We have also investigated the use of an evaluation method where a test corpus is annotated with

instances of term candidates, i.e., terms in real context. This is an alternative to using

terminological gold standards consisting of lists of terms for a specific domain, and, we argue

that the presented approach gives another view of the quality of term extraction tools. Measuring

recall for term extraction has always been a bit complicated. Even when system results are

compared to a gold standard comprising of a list of validated terms for a specific domain, the

results are not taking into account the specific features of how terms are distributed in the tested

corpus. If the output of the system is designed to actually pinpoint each instance of a possible

term in the test corpus, then it is straightforward to measure precision and recall in the same way

as in, for example, named entity recognition. It could be argued that 100 sentences per

subcorpora is too small a size for making this kind of evaluation; the actual number of term

instances per gold standard varied between 300 and 500, but more elaborate testing would need

to be performed in order to establish what size the gold standard need to be.

The evaluation from running the extraction tool on five different corpora from the patent text

domain showed that the best strategy with the current tool is to use regular expressions of POS

tags and stop word lists. Adding information from syntactic tags for grammatical functions like

subject and object did lower the precision substantially. The most likely reason for this is that the

automatic linguistic analysis did not provide complete information. However, in certain

situations where more complex terms need to be captured, one might have to live with lower

precision to actually bring all relevant term candidates into the validation stage. Another obstacle

might be the quality of syntactic tags for grammatical functions; if linguistic analysers can

provide data for grammatical functions that are as good as for parts-of-speech, then the results

may be improved.

In experiences from practical applications of extracting terminology from web sites of Swedish

government agencies, the tool was shown to work for Swedish and proved to be very flexible in

that it provided a solid basis for further work on filtering, validating and standardizing

terminology, i.e. moving from term candidates to validated terms.

Acknowledgements

This work has been funded by the Swedish Research Council (Vetenskapsrådet). Many thanks

also go to Michael Petterstedt and Mikael Andersson for their help with work on software and

scripting.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 131 of 474]

References

Ananiadou, S. 1994. A methodology for automatic term recognition. In Proceedings of the 15th

conference on Computational linguistics, pages 1034–1038, Morristown, NJ, USA. Association

for Computational Linguistics.

Bernier-Colborne, G. (2012). Defining a Gold Standard for the evaluation of Term Extractors. In:

Proceedings of the colabTKR workshop Teminology and Knowledge Representation, Istanbul,

Turkey.

Justeson, J.S. & Katz S.M. 1995. Technical terminology: some linguistic properties and an

algorithm for identification in text. Natural Language Engineering 1:9-27. Bourigault, 1992;

Merkel, Foo. 2007. Terminology extraction and term ranking for standardizing term banks. In

Proceedings of NODALIDA’07, Tartu, Estonia.

Mustafa El Hadi, W., Timimi, I.. Dabadie, M., Choukri, K., Hamon, O., Chiao, Y.-C. (2006).

Terminological resources acquisition tools: Toward a user-oriented evaluation model. In

Proceedings of LREC’06, pp. 945-958, Genova, Italy.

Nazarenko, A. & Zargayouna, H. (2009). Evaluating term extraction. In: Proceedings of the

International Conference RANLO 2009, pp. 299-304, Borovets, Bulgaria.

Terminologicentrum (2012). Rikstermbanken. http:www.rikstermbanken.se.

Terminologicentrum, Stockholm.

Tapanainen, P., & Järvinen, T. (1997). A non-projective dependency parser. In Proceedings of

the fifth conference on Applied Natural Language Processing (pp. 64–71). Washington, DC,

USA. Stroudsburg, PA, USA: Association for Computational Linguistics.

Zhang, Z., Iria, J., Brewster, C. & Ciravegna, F. (2008). A comparative evaluation of term

recognition algorithms. In: Proceedings of LREC’08, pp. 2108-2113, Marrakech, Morocco.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 132 of 474]

Classifying Multimodal Turn Management in Danish
Dyadic First Encounters

Costanza Navarretta1 Patrizia Paggio1,2

(1) University of Copenhagen, Njalsgade 140 Buil. 25,4. Copenhagen Denmark
(2) University of Malta, Valletta Malta

costanza@hum.ku.dk, paggio@hum.ku.dk

ABSTRACT
This paper deals with multimodal turn management in an annotated Danish corpus of
video recorded dyadic conversations between young people who meet for the first time.
Conversation participants indicate whether they wish to give, take or keep the turn through
speech as well as body behaviours. In this study we present an analysis of turn manage-
ment body behaviours as well as classification experiments run on the annotated data in
order to investigate how far it is possible to distinguish between the different types of
turn management expressed by body behaviours using their shape and the co-occurring
speech expressions. Our study comprises body behaviours which have not been previously
investigated with respect to turn management, so that it not only confirms preceding studies
on turn management in English but also provides new insight on how speech and body
behaviours are used together in communication. The classification experiments indicate
that the shape annotations of all kinds of body behaviour together with information about
the gesturer’s co-occurring speech are useful to classify turn management types, and that
the various behaviours contribute to the expression of turn features in different ways. Thus,
knowledge of the different cues used by speakers in face-to-face communication to signal
different types of turn shift provides the basis for modelling turn management, which is in
turn key to implement natural conversation flow in multimodal dialogue systems.

KEYWORDS: Multimodal Communication, Turn Management, Multimodal Corpora, Ma-
chine Learning.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 133 of 474]

1 Introduction
This article deals with turn management in the Danish NOMCO first encounters corpus. Turn
management concerns the regulation of the conversation flow (Allwood et al., 2007) and is
achieved through verbal and non verbal behaviours. Determining these cues is important
for implementing conversational systems which can interact with users in a natural way.

Since conversations are social activities, they are influenced by many factors including the
communicative situation, the cultural, physical and social setting, the number and role
of the participants, their age, gender, and relation. These factors also play a role in the
conversation flow, which turn management is an important part of (Du-Babcock, 2003;
Allwood et al., 2007; Tanaka, 2008).

According to the Conversation Analysis (CA) tradition, starting with (Sacks et al., 1974),
the conversation flow is regulated according to a set of so-called turn-taking rules consisting
of a turn-construction and a turn-allocation component. According to these rules, the
conversation participants alternate their speech smoothly. The turn-taking system has been
criticised because it presupposes that the interaction flow is determined by pre-defined rules,
thus it does not account for the fact that turn management as conversations also depend on
social and cultural factors, inter alia (O’Connell et al., 1990; Cowley, 1998). Furthermore,
more analyses of conversations indicate that the ideal smooth turn-taking system described
by (Sacks et al., 1974) does not occur: in conversations participants often speak at the
same time. Also long pauses occur and are acceptable in many conversations (O’Connell
et al., 1990; Cowley, 1998; Campbell, 2008, 2009a). Recognising that many speech overlaps
can occur in conversations, (Schegloff, 2000) defines rules describing how overlaps are
managed. Furthermore, he distinguishes between non problematic and problematic overlap
cases. Only in the latter, overlap management is needed. Differing from this CA-related
view, other researchers suggest that co-occurring speech, and co-occurring body behaviours,
are a natural aspect of conversations, signalling that people communicate in synchrony
(Campbell, 2009b).

Independently of the research tradition, however, most studies point out that the interaction,
flow, comprising both sequential and overlapping behaviours, is regulated by multimodal
cues, thus involving both speech and non-verbal behaviours, inter alia (Kendon, 1967; Yngve,
1970; Ford and Thompson, 1996; Duncan, 1972; Allwood et al., 2007; Hadar et al., 1984b).

In this paper we present an analysis of how head movements, hand movements, facial
expressions and body postures relate to turn management in a corpus of dyadic Danish first
encounter conversations, and we compare these findings to results from preceding studies
of the same topic.

Furthermore, we investigate the relation between body behaviours and turn management
types by applying supervised machine learning to the annotated corpus data to test how far
the shape of the body behaviours and the co-occurring speech can be used to carry out auto-
matic classification of the turn management type of the behaviours. The focus in the paper is
on the investigation of the contribution of each type of behaviour to turn management, thus
both in the analysis and classification each behaviour type is considered separately. Although
the expression of a turn management behaviour is probably a combination of speech and
different gestural cues, at this stage of our research we wanted to find out to what degree
and in what way each channel (head, face, body) contributed to the phenomenon of turn
management. For each channel, however, we consider the whole range of movement types

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 134 of 474]

available in the corpus. The rest of the paper is organised as follows. In section 2 we discuss
relevant background literature while in section 3 we describe our data. Section 4 contains
the analysis of turn management in the data and in section 5 we describe and discuss the
classification experiments conducted on the corpus annotations. Finally, we conclude and
present future work in section 6.

2 Background Literature
Many researchers (Kendon, 1967; Argyle and Cook, 1976; Duncan and Fiske, 1977; Goodwin,
1981) recognise the importance of body behaviours, especially gaze, head movements and
hand gestures in turn management. (Kendon, 1967) and (Argyle and Cook, 1976) focus
on the role of gaze direction and of mutual gaze, respectively, while turn management
multimodal cues comprising intonation, syntax and hand gesture are described in (Duncan,
1972). In (Duncan and Fiske, 1977), also the behaviours of the listener are analysed, and
backchannelling signals by the listeners are distinguished from regular turns. (Hadar et al.,
1984b) find that linear movements of the head ("postural shifts") tended to occur after
"grammatical" pauses (between clauses or sentences) and towards the initiation of speech,
both between speaking turns and between syntactic boundaries inside speaking turns. Their
analysis is based on the automatically collected head movements of four subjects engaged
in conversations. The authors conclude that head movements are involved in regulating
turn taking and marking syntactic boundaries inside speaking turns. Smaller and quicker
movements tended to occur after dysfluencies inside grammatical boundaries, especially
after short pauses (Hadar et al., 1984a).

(Gravano and Hirschberg, 2009) examine the relation between particular acoustic and
prosodic turn-yielding cues and turn taking in a large corpus of task-oriented dialogues.

Machine learning has been applied to annotated multimodal data in numerous studies. For
example, feedback nods and shakes are successfully predicted from speech, prosody and
eye gaze in a multimodal corpus of conversations (Morency et al., 2005, 2007, 2009), while
(Jokinen and Ragni, 2007) train machine learning algorithms on manually annotated multi-
modal data in order to recognise some of the communicative functions of head movements
and facial expressions. They achieve promising results although their data is small.

In the rest of the paper, we discuss to what extent body behavioural cues are also present in
our data in connection to turn management and, in line with preceding machine learning
experiments we train classifiers on speech and body behaviours to predict the communicative
function of these behaviours, in this case their turn management function.

3 The Corpus
The corpus which we have used in our analysis is a Danish corpus of first encounter con-
versations which is freely available for research. The corpus was collected and annotated
during the NOrdic Multimodal Corpora (NOMCO) project, and it is part of a Nordic cor-
pus of comparable recorded conversations in Danish, Finnish and Swedish (Paggio et al.,
2010; Navarretta et al., 2011, 2012). The Danish first encounter dialogues comprise 12
five-minutes conversations between two young people who did not know each other in
advance. The participants are 6 female and 6 male university students or university educated
young people, aged 19-36 years. They were instructed to talk in order to get acquainted,
as if they met at a party. The interactions were recorded by three cameras in a studio at
the University of Copenhagen. Each person participated in two conversations, one with a

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 135 of 474]

female and one with a male. The two conversations were recorded on two different days
(Paggio and Navarretta, 2011). In Figure 1 and 2 snapshots from one of the recordings are
given.

Figure 1: Snapshot from the corpus: frontal camera views

Figure 2: Snapshot from the corpus: side camera view

3.1 The Annotations

The corpus is orthographically transcribed with time stamps at the word level, and the body
behaviours are annotated with pre-defined shape and function features according to the
MUMIN annotation scheme (Allwood et al., 2007). Body behaviours can be assigned more
functions at the same time, and they can be linked to speech segments produced by the
gesturer or the interlocutor if the coders judge that they are semantically related.

The data were annotated by a coder and than corrected by a second coder. Disagreement
cases were resolved by a third coder. An agreed upon version of the data was created.
The coders were instructed to take into account the whole context when annotating. This
comprises the multimodal behaviours of both speakers. With respect to turn management,
the coders were instructed to annotate signals of turn management by the participants. Note
that an actual turn change is not considered a necessary prerequisite for the assignment of
a turn management feature. For instance, a turn elicit or a turn take signal can be coded
independently of its success. Likewise, a turn hold signal can be coded if the speaker is
attempting to keep the turn even though the interlocutor may take it from them.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 136 of 474]

Inter-coder agreement tests on the annotations of facial expressions and head movements
resulted in kappa scores (Cohen, 1960) between 0.6-0.9 depending on the categories. The
scores comprise segmentation and classification. The lowest scores were due to differences
in the segmentation of facial expressions. The highest scores were achieved in the annotation
of head movements. Agreement on the classification of functional categories was 0.82. More
details about the corpus annotation and inter-coder agreement experiments are given in
(Paggio and Navarretta, 2011; Navarretta et al., 2011). In this study, we used the annotations
of head movements, facial expressions and body postures related to turn management.
The shape features describing these behaviours are in Table 1. Head movements are

Shape attribute Shape values
HeadMovement Nod, Jerk, HeadForward,

HeadBackward,Tilt, SideTurn,
Shake, Waggle, HeadOther

HeadRepetition Single, Repeated
General face Smile, Laugh, Scowl, FaceOther
Eyebrows Frown, Raise, BrowsOther
BodyDirection BodyForward,BodyBackward,

BodyUp, BodyDown, BodySide,
BodyTurn, BodyDirectionOther

BodyInterlocutor BodyToInterlocutor,
BodyAwayFromInterlocutor

Shoulders Shrug, ShouldersOther

Table 1: Shape attributes and values
annotated with features describing the form of the movement and an indication of whether
the movement is performed once or more times. A general face attribute is used to annotate
facial expressions together with the form of the eyebrows. Finally, body postures are
annotated with information on direction, whether the body is facing the interlocutor, and
what the movement of the shoulders is.

We distinguish six types of turn related behaviours:

• TurnTake: the speaker signals that she wants to take a turn that wasn’t offered, possibly
by interrupting;
• TurnHold: the speaker signals that she wishes to keep the turn;
• TurnAccept: the speaker signals that she is accepting a turn that is being offered;
• TurnYield: the speaker signals that she is releasing the turn under pressure;
• TurnElicit: the speaker signals that she is offering the turn to the interlocutor;
• TurnComplete: the speakers signals that she has completed the turn.

In the ANVIL tool, each modality is coded in a so called track, while links joining an annotation
from a track to the other indicate that the two annotations are semantically related.

4 The Analysis
The corpus consists of 18000 speech tokens, 3117 head movements, 1448 facial expressions
and 982 body postures. Out of these, 738 head movements, 247 facial expressions and
223 body postures have been labelled with a turn management function. Thus, 24% of the
head movements, 17% of the facial expressions and 23% of the body postures have a turn

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 137 of 474]

Figure 3: Most frequently occurring turn management behaviours

management function in the corpus. Table 2 shows, conversely, how the turn management
associated with body behaviours is distributed across the three different types.

Body behaviour %
Head movements 61
Facial expressions 20.5
Body postures 18.5

Table 2: Turn management distribution across body behaviours

Figure 3 shows the body behaviours which are most frequently related to a turn management
function in this corpus. It is interesting to notice that all three body parts are related to
turn management, and not only head movements, hand gestures and gaze which have
been studied in preceding studies. Furthermore, more types of head movement than those
indicated in the literature are relevant to turn management.

The most frequently assigned turn management categories are TurnHold, TurnAccept and
TurnElicit, while TurnYield is rare in the corpus. This is not surprising given the type of social
activity and the setting: people who meet for the first time and have to get acquainted are
in general both friendly and polite, and they avoid interrupting their interlocutor. Figure 4
shows the turn management categories which are assigned more frequently to the three
main types of body behaviour in the first encounter conversations.

The most common turn management functions of head movements are TurnHold, TurnAccept
and TurnElicit, while TurnElicit, TurnAccept and TurnTake are the most frequent turn
management functions of the facial expressions. Finally, TurnAccept, TurnElicit and TurnHold
are the functions must frequently assigned to body postures. It must be noted that here we
report each body part independently, but in conversations often several body behaviours
co-occur.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 138 of 474]

Figure 4: Turn management related types and body behaviours

4.1 Discussion

Our study of body behaviours and turn management indicates that not only head movements,
but also facial expressions and body postures are often used in turn management in the
Danish first encounter dialogues. The data show that the proportion of different turn
management features varies depending on the body part involved. Especially the proportion
of TurnHold changes a lot from being rather large in connection with head movements to
being low for face and body, whereas TurnElicit is the feature that has the largest proportion
only in connection with facial expressions. In the corpus, behaviours related to the three
body parts are not explicitly linked to each other. Therefore, in the present stage of our
research, we do not yet know whether the relations we see between body behaviours and
turn management are additive, as could be expected for features associated with all three
body parts, e.g. TurnAccept, or whether different body parts are associated with different
turn behaviours.

Another observation relates to the fact that various types of head movements are involved in
turn management. This finding is in line with other studies of Danish conversations which
have shown that the participants not only use nods and shakes to give or elicit feedback, but
also tilts, side movements and forward and backward movements (Paggio and Navarretta,
2011; Navarretta, 2011).

Approximately 20% of the communicative head movements, facial expressions and body
postures have a turn management function in the conversations. The frequency of the turn
management values assigned in the corpus, in particular the fact that very few occurrences of
turn release under pressure are found, reflect the type of social interaction. The participants
meet for the first time, thus they are kind and avoid interrupting each other.

5 Classification of Turn Management Types

In this section we describe classification experiments on the annotated corpus. We investigate
to which extent it is possible to carry out automatic classification of the turn management
types expressed by body behaviours on the basis of their shape, together with the co-occurring

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 139 of 474]

words. In these experiments we again consider each body part independently, thus the
features modelling the shape of each body behaviour and the words they are semantically
connected with were extracted and used as different datasets.

More specifically, we trained classifiers on datasets containing descriptions of the shape of
each body behaviour and its turn management function. Then we run the classifiers on
data where only shape values were considered, in order to predict the turn management
function of the behaviours. In succeeding experiments we also included the gesturer’s or
interlocutor’s words linked to each body behaviour with the purpose of investigating whether
the speech-related information improved the classification.

All experiments were run in WEKA (Witten and Frank, 2005). As baseline in each experiment,
we use the results from WEKA’s ZeroR algorithm which always chooses the most frequently
occurring nominal class in the dataset. The most frequently occurring nominal class is a
reasonable baseline for this data, given the fact that there are no other studies of multimodal
turn management involving the same types of behaviour which we could compare our
results with. An alternative possibility one could consider is taking actual turn change as
a baseline measure. However, since the assignment of turn management features, as was
explained earlier, does not necessarily imply a change of turn (or keeping the turn in the
case of a TurnHold feature), such a baseline would make little sense. The classifier run in all
experiments is WEKA’s SMO algorithm, which implements John Platt’s sequential minimal
optimization algorithm for training a support vector classifier. SMO was chosen because it
is the best performing algorithm on this type of data (Navarretta and Paggio, 2010)1. We
report the results of classification in term of Precision (P), Recall (R) and F-measure (F)
figures. The results were evaluated using ten-fold cross-validation.

Table 3 shows the results obtained for head movements, while Table 4 and Table 5 contain
the results for facial expressions and body postures, respectively. In all cases, the classifiers
are first trained on shape features for each body behaviours, then on shape features and the
related gesturer’s words (gest-words in the tables), on shape features and the related inter-
locutor’s words (interl-words) and, finally, on shape features and gesturer’s or interlocutor’s
words (all-words).

Algorithm Dataset P R F
ZeroR 0.09 0.29 0.13
SMO shape 0.36 0.43 0.39
SMO shape+gest-words 0.47 0.5 0.48
SMO shape+interl-words 0.36 0.43 0.39
SMO shape+all-words 0.46 0.5 0.46

Table 3: Identification and classification of turn management from head movements and
related speech
The shape features of the head movements, and especially shape information enriched with
the co-occurring gesturer’s words, considerably improve the identification of the relevant
turn management types of the head with respect to the baseline. In this case the improvement
in terms of F-score with respect to the baseline is of 0.35%.

1The performance of various algorithms on the data was tested according to the strategy proposed in (Daelemans
et al., 2003) and previously tested in (Navarretta, 2009). The other classifiers tested on these data are Naive Bayes,
KStar and BFTree.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 140 of 474]

a b c d e f <-- classified as
123 74 7 13 0 0 | a = TurnHold
41 137 2 16 0 0 | b = TurnElicit
40 53 2 17 0 0 | c = TurnTake
45 49 5 103 0 0 | d = TurnAccept
4 6 0 0 0 0 | e = TurnYield
0 1 0 0 0 0 | f = TurnComplete

Figure 5: Confusion matrix for head movement

As can be seen in the confusion matrix relevant to the third dataset, and shown in (Fig. 5),
the best results are obtained by the classifier on the three features TurnHold, TurnElicit and
TurnAccept, which are also the most represented in the data. Performance drops dramatically
with TurnTake, which is the fourth most represented category with 202 tokens. TurnYield
and TurnComplete are almost not represented, so the results for these two features are not
interesting.

Algorithm Dataset P R F
ZeroR 0.18 0.43 0.25
SMO shape 0.41 0.51 0.45
SMO shape+gest-words 0.42 0.51 0.46
SMO shape+interl-words 0.41 0.51 0.45
SMO shape+all-words 0.42 0.50 0.45

Table 4: Identification and classification of turn management from face and related speech

Turning now to facial expressions, we see again an improvement with respect to the baseline,
this time of 0.21%. However, it makes very little difference whether words are added to
the training. As it was to be expected given the distribution of the classes shown earlier in
Figure 4, the classifier does best at identifying TurnElicit and TurnAccept, whilst it cannot
recognise the other three turn behaviours.

Algorithm Dataset P R F
ZeroR 0.16 0.4 0.22
SMO shape 0.42 0.4 0.35
SMO shape+gest-words 0.42 0.44 0.39
SMO shape+interl-words 0.38 0.41 0.35
SMO shape+all-words 0.43 0.45 0.4

Table 5: Identification and classification of turn management from body postures and
related speech

Finally, for body postures, using shape information and all words (both the gesturer’s and
the interlocutor’s) gives the best classification results (F-measure improves with 18% with
respect to the baseline), although the contribution of words is not as important as it is for
head movements. Once again, TurnElicit and TurnAccept are the features that the classifier
identifies with the highest accuracy (both are classified correctly 63% of the time).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 141 of 474]

5.1 Discussion of experimental results

All our classification experiments show that the shape of body behaviours can be used for
the classification of the turn management type associated with the behaviours obtaining an
F-score of around 0.4. The best results are obtained for head movements and body postures
if also the gesturer’s co-occurring words are considered. The words of the interlocutor,
on the other hand, do not improve the results, but it must be noted that body behaviours
related to turn management are related to the gesturer’s own words more often than to the
interlocutor’s. As far as facial expressions are concerned, on the other hand, considering
the words that co-occur with the expression makes little difference to the results. This
is probably due to the fact that facial expressions are often quite long and may co-occur
with long stretches of speech, so that the word tokens provide rather diverse and therefore
potentially confusing information.

The best classification results are obtained using head movements. This is not uprising
since head movements provide for the largest number of body behaviours in the data.
However, not all classes are identified with the same accuracy. Whilst TurnHold, TurnElicit
and TurnAccept are classified with an accuracy in the 0.5-0.6 range, TurnTake, TakeYield
and TurnComplete seem very difficult to identify. It is somewhat puzzling that TurnTake
should perform so poorly, given its frequency. It remains to be seen whether turn taking
behaviour can be classified by means of different features, e.g. prosody patterns, or whether
more data are necessary to achieve higher accuracy.

Turning now to the results achieved with facial expressions and body posture, it is again not
surprising that TurnElicit and TurnAccept, the most frequent classes in this case, are those
for which the classification achieves reasonable accuracy. However, it is interesting to note
that TurnElicit performs a little better than TurnAccept in both sets of experiments, even
though it is less frequently represented in conjunction with body postures. Presumably, the
words associated with TurnElicit help optimise the classification.

In general, the results of these experiments are promising given the restricted size of the
corpus. However, the F-score we obtain is not really high enough to allow for automatic
annotation of the turn management of body behaviours. However, we believe there is scope
for improvement in that co-occurring body behaviours, as was explained earlier, were not
considered together in this study. Furthermore, additional cues, such as prosody patterns
or actual turn change, could be added to the datasets to improve classification accuracy
especially for the TurnTake class, which the classifiers we have trained in this study cannot
identify on the basis of body features and associated words.

6 Conclusions and Future Work

In this paper we have presented an analysis of turn management behaviours in the Danish
NOMCO first encounters corpus. Our study both confirms preceding studies on turn manage-
ment, and provides new insights. In particular, we found that all kinds of head movement,
facial expression and body posture are involved in turn management. Furthermore, the
turn management types frequently occurring in this corpus depend on the type of social
activity in which the participants are involved. Since a number of studies of multimodal
conversations have found that there is a relation between factors such as social activity,
cultural environment, number of participants and communicative body behaviours (Lu et al.,
2011; Maynard, 1987; Navarretta et al., 2012), we also plan to compare turn management

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 142 of 474]

behaviours in this corpus with corresponding behaviours in other types of corpora.

Acknowledgements

The collection and annotation of the NOMCO corpus was funded by the NORDCORP program
under the Nordic Research Councils for the Humanities and the Social Sciences (NOS-HS)
and by the Danish Research Council for the Humanities (FKK). We would like to thank
Anette Luff Studsgård, Sara Andersen, Bjørn Wessel-Tolvig and Magdalena Lis for their
codings. Special thanks also go to the NOMCO project’s partners, Elisabeth Ahlsén, Jens
Allwood and Kristiina Jokinen.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 143 of 474]

References

Allwood, J., Cerrato, L., Jokinen, K., Navarretta, C., and Paggio, P. (2007). The mumin
coding scheme for the annotation of feedback, turn management and sequencing. Multi-
modal Corpora for Modelling Human Multimodal Behaviour. Special Issue of the International
Journal of Language Resources and Evaluation, 41(3–4):273–287.

Argyle, M. and Cook, M. (1976). Gaze and mutual gaze. Cambridge University Press,
Cambridge, UK.

Campbell, N. (2008). Multimodal processing of discourse information; the effect of
synchrony. In Second International Symposium on Universal Communication, pages 12–14.

Campbell, N. (2009a). An audio-visual approach to measuring discourse synchrony in m
ultimodal conversation data. In Proceedings of Interspeech 2009, pages 12–14.

Campbell, N. (2009b). Multimodal Processing of Discourse Information; The Effect of
Synchrony. In ISUC - Second International Symposium on Universal Communication, pages
12–15, Osaka.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement, 20(1):37–46.

Cowley, S. J. (1998). Of Timing, Turn-Taking, and Conversations. Journal of Psycholinguistic
Research, 27(5):541–571.

Daelemans, W., Hoste, V., Meulder, F. D., and Naudts, B. (2003). Combined Optimization of
Feature Selection and Algorithm Parameter Interaction in Machine Learning of Language.
In Proceedings of the 14th European Conference on Machine Learning (ECML-2003), pages
84–95, Cavtat-Dubrovnik, Croatia.

Du-Babcock, B. (2003). A comparative analysis of individual communication processes in
small group behavior between homogeneous and heterogeneous groups. In Proceedings of
the 68th Association of Business Communication Convention, pages 1–16, Albuquerque, New
Mexico, USA.

Duncan, S. Junior (1972). Some Signals and Rules for Taking Speaking Turns in Conversa-
tions. Journal of Personality and Social Psychology, 23(2):283–292.

Duncan, S. Junior. and Fiske, D. (1977). Face-to-face interaction. Erlbaum, Hillsdale, NJ.

Ford, C. and Thompson, S. (1996). Interactional Units in Conversation: Syntactic, Intona-
tional, and Pragmatic Resources for the Management of Turns. In Ochs, E., Schegloff, E.,
and Thompson, S., editors, Interaction and Grammar, pages 134–184. Cambridge University
Press, Cambridge.

Goodwin, C. (1981). Conversational organization: Interaction between speakers and hearers.
Academic Press, New York.

Gravano, A. and Hirschberg, J. (2009). Turn-yielding cues in task-oriented dialogue.
In Proceedings of SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in
Discourse and Dialogue, September 2009, pages 253–261, Queen Mary University of London.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 144 of 474]

Hadar, U., Steiner, T., and Rose, F. C. (1984a). The Relationship Between Head Movements
and Speech Dysfluencies. Language and Speech, 27(4):333–342.

Hadar, U., Steiner, T., and Rose, F. C. (1984b). The timing of shifts of head postures during
conversation. Human Movement Science, 3(3):237–245.

Jokinen, K. and Ragni, A. (2007). Clustering experiments on the communicative prop-
erties of gaze and gestures. In Proceeding of the 3rd. Baltic Conference on Human Language
Technologies, Kaunas, Lithuania.

Kendon, A. (1967). Some functions of gaze-direction in social interaction. Acta Psychologica,
26:22–63.

Lu, J., Allwood, J., and Ahlsén, E. (2011). A study on cultural variations of smile based on
empirical recordings of Chinese and Swedish first encounters. In Heylen, D., Kipp, M., and
Paggio, P., editors, Proceedings of the workshop on Multimodal Corpora at ICMI-MLMI 2011,
Alicante, Spain.

Maynard, S. (1987). Interactional functions of a nonverbal sign: Head movement in
Japanese dyadic casual conversation. Journal of Pragmatics, 11:589–606.

Morency, L.-P., de Kok, I., and Gratch, J. (2009). A probabilistic multimodal approach for
predicting listener backchannels. Autonomous Agents and Multi-Agent Systems, 20:70–84.

Morency, L.-P., Sidner, C., Lee, C., and Darrell, T. (2005). Contextual recognition of head
gestures. In Proceedings of the International Conference on Multi-modal Interfaces.

Morency, L.-P., Sidner, C., Lee, C., and Darrell, T. (2007). Head gestures for perceptual
interfaces: The role of context in improving recognition. Artificial Intelligence, 171(8–
9):568–585.

Navarretta, C. (2009). Automatic recognition of the function of third-person singular
pronouns in texts and spoken data. In S. Lalitha Devi, A. B. and Mitkov, R., editors,
Anaphora Processing and Applications. 7th Discourse Anaphora and Anaphor Resolution
Colloquium - DAARC 2009, Goa, India Proceedings, volume 5847 of LNAI, pages 15–28.
Springer Verlag., Berlin/Heidelberg.

Navarretta, C. (2011). Annotating non-verbal behaviours in informal interactions. In
Esposito, A., Vinciarelli, A., Vicsi, K., Pelachaud, C., and Nijholt, A., editors, Analysis of
Verbal and Nonverbal Communication and Enactment: The Processing Issues, volume 6800
of LNCS, pages 317–324. Springer Verlag.

Navarretta, C., Ahlsén, E., Allwood, J., Jokinen, K., and Paggio, P. (2011). Creating
Comparable Multimodal Corpora for Nordic Languages. In Proceedings of the 18th Conference
Nordic Conference of Computational Linguistics, pages 153–160, Riga, Latvia.

Navarretta, C., Ahlsén, E., Allwood, J., Jokinen, K., and Paggio, P. (2012). Feedback in
nordic first-encounters: a comparative study. In Proceedings of LREC 2012, pages 2494–
2499, Istanbul Turkey.

Navarretta, C. and Paggio, P. (2010). Classification of feedback expressions in multimodal
data. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (ACL 2010), pages 318–324, Upssala, Sweden.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 145 of 474]

O’Connell, D., Kowal, S., and Kaltenbacher, E. (1990). Turn-Taking: A Critical Analysis of
the Research Tradition. Journal of Psycholinguistic Research, 19(6):345–373.

Paggio, P., Ahlsén, E., Allwood, J., Jokinen, K., and Navarretta, C. (2010). The NOMCO
multimodal Nordic resource - goals and characteristics. In Proceedings of LREC 2010, pages
2968–2973, Malta.

Paggio, P. and Navarretta, C. (2011). Head movements, facial expressions and feedback
in Danish first encounters interactions: a culture-specific analysis. In Stephanidis, C.,
editor, Universal Access in Human-Computer Interaction. Users Diversity. Proceedings of
6th International Conference, UAHCI 2011, Held as Part of HCI International 2011, pages
583–590, Orlando, FL, USA. Springer.

Sacks, H., Schegloff, E., and Jefferson, G. (1974). A simplest systematics for the organization
of turn-taking for conversation. Language, 50(4):696–735.

Schegloff, E. A. (2000). Overlapping talk and the organization of turn-taking for conversa-
tion. Language in Society, 29:1–63.

Tanaka, H. (2008). Communication strategies and cultural assumptions: An analysis of
French-Japanese business meetings. In Tietze, S., editor, International Management and
Language, pages 154–170. Routledge, New York, NY.

Witten, I. and Frank, E. (2005). Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, San Francisco, second edition.

Yngve, V. (1970). On getting a word in edgewise. In Papers from the sixth regional meeting
of the Chicago Linguistic Society, pages 567–578.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 146 of 474]

Nordic and Baltic wordnets aligned and compared through
“WordTies”

Bolette S. Pedersen
1
, Lars Borin

2
, Markus Forsberg

2
, Neeme Kahusk

3

Krister Lindén
4
, Jyrki Niemi

4
 Niklas Nisbeth

1
, Lars Nygaard

5

Heili Orav
3
, Eirikur Rögnvaldsson

6
, Mitchel Seaton

1,
 Kadri Vider

3
, Kaarlo Voionmaa

2

(1) University of Copenhagen, Njalsgade 140 2300 Copenhagen S
(2) University of Gothenburg, Box 200, 405 30 Gothenburg, Sweden (3)

University of Tartu, Ülikooli 18, 50090 Tartu, ESTONIA (4) University of Helsinki, P.O. Box 33
(Yliopistonkatu 4) (5) Kaldera Language Technology, Oslo, Norway

bspedersen@hum.ku.dk,lars.borin@svenska.gu.se,markus.forsberg@gu.se,

neeme.kahusk@ut.ee,krister.linden@helsinki.fi, Jyrki.Niemi@helsinki.fi,

niklas@nisbeth.dk, larsnyga@gmail.com, heili.orav@ut.ee, eirikur@hi.is,

seaton@hum.ku.dk, kadri.vider@ut.ee

ABSTRACT

During the last few years, extensive wordnets have been built locally for the Nordic and Baltic

languages applying very different compilation strategies. The aim of the present investigation is

to consolidate and examine these wordnets through an alignment via Princeton Core WordNet

and thereby compare them along the measures of taxonomical structure, synonym structure, and

assigned relations to approximate to a best practice. A common web interface and visualizer

“WordTies” is developed to facilitate this purpose. Four bilingual wordnets are automatically

processed and evaluated exposing interesting differences between the wordnets. Even if the

alignments are judged to be of a good quality, the precision of the translations vary due to

considerable differences in hyponymy depth and interpretation of the synset. All seven

monolingual and four bilingual wordnets as well as WordTies have been made available via

META-SHARE through the META-NORD project.

KEYWORDS: wordnets, multilingual links, wordnet web interface, Nordic and Baltic languages,

META-NORD.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 147 of 474]

1 Wordnets as a multilingual action in the Nordic and Baltic countries

Wordnets (cf. Fellbaum 1998, Vossen 1998) have emerged as one of the basic standard
lexical resources in the language technology (LT) field. They encode fundamental
semantic relations among words, relations that further in many cases have counterparts
in relations among concepts in formal ontologies. According to the BLARK (Basic
Language Resource Kit) scheme, wordnets along with treebanks, are central resources
when building language enabled applications. The semantic proximity metrics among
words and concepts defined by a wordnet are considered useful in applications such as
information access systems and authoring tools because in addition to identical words,
the occurrence of words with similar (more general or more specific) meanings
contribute to measuring of the similarity of content or context or recognizing the
meaning. Based on this impact, there is a crucial need for continuously comparing and
improving such lexical semantic resources in order to approximate to a best practice.
This is particularly relevant if we foresee an integration of them in cross-lingual LT.

For the Nordic and Baltic languages, an extensive development of wordnets has taken
place during the last five years, excluding here the Estonian wordnet, which has existed
for more than a decade as part of the EuroWordNet project. During the META-NORD
project (2011–2013) these wordnets have been further consolidated via extensions,
validations and documentation. Thus, the relevance of cross-lingual alignment and
comparison of wordnets in this region has emerged only recently. Wordnets or wordnet-
like resources of a considerable size exist now for the Finnish, Danish, Estonian,
Swedish, Icelandic and the Norwegian languages. They have not, like several previous
wordnet projects such as EuroWordNet, BalkaNet, Asian Wordnet, and IndoWordNet
(cf. Section 2) been built as part of collaborative projects, but have rather emerged
locally through national projects and initiatives. The META-NORD project thus poses a
unique opportunity for actually coordinating a Nordic-Baltic action on wordnets and
investigating the results of the very different compilation strategies that have been
applied.

The aim of this investigation can be expressed as threefold:

 To facilitate browsing, alignment and comparison of the Nordic and Baltic

wordnets through the development of an intuitive and easy-to-extend web

interface.

 To estimate the perspective of alignment via Princeton Core WordNet by

generating four bilingual wordnets and evaluating them.

 Via this alignment to perform a comparison of the involved wordnets along the

measures of taxonomical structure, synset structure, and relational structure.

The web interface, WordTies, is documented in Section 4. Four pilot bilingual wordnets
have been produced semi-automatically via established links to Princeton Core
Wordnet: Danish-Swedish, Danish-Finnish, Estonian-Finnish, Finnish-Swedish. An
evaluation of these linked resources is included in Section 5 and a further comparison of
a selected set of the wordnets is given in Section 6. All seven monolingual and four
bilingual wordnets as well as WordTies have been made available via META-SHARE:
www.meta-share.org under a variety of open source licenses.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 148 of 474]

2 Related work

Broadly speaking, wordnets can be compiled applying two different approaches: the
merge vs. the expand method (cf. Rigau & Agirre 2002). By an expand method is meant
that translations are made from Princeton WordNet and further customised to the target
language, by a merge approach is meant that the wordnet is built monlingually and then
(eventually) merged with Princeton WordNet.

The EuroWordNet project, which was concerned with the compilation of wordnets for a
series of European languages (Vossen 1998), launched the idea of compiling and
expanding wordnets via a so-called Inter Lingual Index (ILI) constituted by Princeton
WordNet 1.5, cf. Peters et al. 1998. A successor of EuroWordNet was the BalkaNet
project, where several wordnets were built in the Balkan area and aligned
simultaneously. These projects all provide valuable reference points for a best practice
within the expand approach, for example, BalkaNet uses a validation system based on
word sense disambiguation for pinpointing wrong interlingual alignments, incomplete or
missing synsets in one or another of the wordnets (Tufis, Ion & Ide 2004). Other works
included mapping algorithms for aligning, tuning and validating wordnets as presented
in Daudé, Padró & Rigau 1999, & Daudé, Padró & Rigau 2003 and several others. More
recent collaborative wordnet projects include MultiWordNet (http://multiwordnet.itc.it)
which relates Italian and Princeton wordnets, Asian WordNet which also applies the
expand method for several Asian languages through a common management interface
(Robkop et al. 2010), and IndoWordNet which include a series of Indian languages
(Bhattacharyya 2010). Last but not least should be mentioned a recent initiative, Open
Multilingual WordNet http://casta-net.jp/~kuribayashi/multi/ which aligns wordnets
available through the Global WordNet Association’s WordNet Grid
(http://www.globalwordnet.org/gwa/gwa_grid.html).

In contrast, several recent European wordnets that have typically been compiled on a
more local basis apply the merge technique (cf. Derwojedowa 2008, Borin & Forsberg
2010, Pedersen et al. 2009) applying monolingual language resources such as existing
dictionaries and corpora as the initial source.

There are obvious risks related to both approaches. An expand approach based on
Princeton WordNet runs the high risk of being biased towards the conceptual structure
of the English language. However, with thorough customizations to the target language
these risks can be reduced. A merge approach may reflect the target language better
since it is based on more linguistic grounds (corpora and existing lexica) for that
particular language. On the other hand, such wordnets typically differ so much from
Princeton WordNet in structure that a merge becomes indeed very hard and extremely
complex. These differences originate partly from different language cultures, partly from
different levels of specialization depending on the source material used. For instance, a
typical feature of wordnets based on monolingual lexica is that they adopt a perspective
which is more geared towards the layman and therefore typically not so deep in
taxonomical structure (cf. Pedersen et al. 2010).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 149 of 474]

3 Status of wordnets in the Nordic and Baltic countries

3.1 About META-NORD

During the last decade, linguistic resources have grown rapidly for all EU languages,

including lesser-resourced languages such as the Nordic and Baltic ones. However they

have typically been located in different places, have developed in different standards and

in many cases were not well documented. The META-NORD project has aimed to

establish an open linguistic infrastructure in the Baltic and Nordic countries to serve the

needs of the industry and research communities. The project, which was completed in

January 2013, has focused on 8 European languages – Danish, Estonian, Finnish,

Icelandic, Latvian, Lithuanian, Norwegian and Swedish – each with less than 10 million

speakers. The project has provided descriptions of the national landscapes in these

countries via the META-NET White Paper Series “Europe’s Languages in the Digital

Age” and has assembled, linked across languages, and made widely available close to

500 language resources and tools of different types via the common network META-

SHARE http://www.meta-share.org/. META-SHARE is a network of repositories of

language data, tools and related web services documented with metadata, aggregated in

central inventories allowing for uniform search and access to resources. The horizontal

action on wordnets constitutes one of several cross-language initiatives in the project. In

the following a brief status of each of the involved wordnets is given.

3.2 Estonian wordnet

The Estonian wordnet was built as part of the EuroWordNet project and thus used the

expand method as a starting point. Base concepts from English were translated into

Estonian as a first basis for a monolingual extension. The extensions have been

compiled manually from Estonian monolingual dictionaries and other monolingual

resources. In this sense, EstWN applies a hybrid method including both expand and

monolingual techniques. EstWN includes nouns, verbs, adjectives and adverbs; as well

as a set of multiword units, cf Kahusk et al. 2012. The database currently (Jan 2013)

contains approx. 59 000 concepts are interlinked by175,000 relations and work is still in

progress. The database is available under a CC-NY-NC license. The database can be

accessed partly via WordTies, partly at http://www.cl.ut.ee/teksaurus and

www.keeleveeb.ee.

3.3 Finnish wordnet

FinnWordNet is compiled using the expand method and supplemented with

monolingual localisations (see http://www.ling.helsinki.fi/cgi-bin/fiwn/search).

FinnWordNet contains nouns, verbs, adjectives and adverbs grouped by meaning into

synonym sets representing concepts. Version 1.0 of FinnWordNet was created by

translating the word senses in the Princeton WordNet 3.0 (Lindén & Carlson 2010). To

ensure quality, the word senses were translated by professional translators. This

approach allowed a very rapid and cost-efficient creation of an extensive Finnish

wordnet directly aligned with the Princeton WordNet providing a translation relation

between English and Finnish.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 150 of 474]

It is often claimed that translating a wordnet from English is somehow problematic,

so to dispel such doubts several rounds of evaluations were performed, only to discover

very few translation or concept problems (cf. Lindén et al. 2012). During the evaluation

some missing common Finnish words and concepts were added to FinnWordNet from a

large corpus of Finnish as well as from Wiktionary and Wikipedia. The resulting

FinnWordNet 2.0 has 120,449 concepts containing 208,645 word senses and linked to

each other with 265,690 relations. It thus surpasses Princeton WordNet in the number of

concepts and word senses. FinnWordNet is licensed under the Creative Commons

Attribution (CC-BY) 3.0 licence. As a derivative of the Princeton WordNet,

FinnWordNet is also subject to the Princeton WordNet licence.

3.4 Danish Wordnet

DanNet has been constructed using the merge approach where the wordnet is built on

monolingual grounds and thereafter merged with Princeton WordNet. It currently

contains 66,308 concepts which are interlinked by 326,564 relations (see also Pedersen

et al. 2009). The wordnet has been compiled as a collaboration between the University

of Copenhagen and the Danish Society for Language and Literature and is based on Den

Danske Ordbog (Hjorth & Kristensen 2003). Furthermore, the Danish version of the

SIMPLE lexicons (cf. Lenci et al. 2001) has influenced the construction of DanNet in

the sense that it includes also qualia information such as the telic and the agentive role

(purpose and origin). Qualia roles are encoded in DanNet in terms of relations such as

used_for and made_by as well as by means of features such as SEX and

CONNOTATION. DanNet is licensed under the Princeton WordNet licence.

3.5 Swedish wordnet (Swesaurus)

Swesaurus (Borin & Forsberg 2010, Borin & Forsberg 2011) is a Swedish wordnet

developed at Språkbanken, University of Gothenburg. It is being built by reusing

lexical-semantic relations collected from a number of pre-existing, freely available

lexical resources: SALDO (Borin & Forsberg 2009), SDB (Järborg 2001), Synlex (Kann

& Rosell 2006), and Swedish Wiktionary. A novel feature of Swesaurus is its fuzzy

synsets derived from the graded synonymy relations of Synlex. Swesaurus and several

other lexical resources are available for download and inspection at

http://spraakbanken.gu.se/karp. Swesaurus is an integral part of a large and diverse

lexical macroresource compiled in the Swedish FrameNet++ project (Borin et al. 2010).

It includes 13,724 senses and is licensed under a CC-BY license. Due to its slightly

different structure, Swesaurus is currently only partly visible through WordTies.

3.6 Norwegian Wordnet

A Norwegian Wordnet (NWN) has been developed as a part of The Norwegian Language
Bank (Språkbanken). It consists of around 50,000 synsets, for both Norwegian Nynorsk
and Norwegian Bokmål and covers more than 90 per cent of the senses of open word

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 151 of 474]

classes in running newspaper text. Both wordnets are available via META-SHARE
(http://www.nb.no/clarin/repository/search/?q=ordnett) under the Princeton WordNet
License. The compilation is based on the Danish wordnet (DanNet), and thus NWN

contains the same lexical relations and much of the same semantic analysis as DanNet.
The data format and licence are also identical.

Semantically, Danish and Norwegian are very closely related, and word senses are
mostly equivalent (though the frequency with which the senses are used often varies).
Some synsets are dropped: some are only relevant for Danish society, and do not have
natural equivalent in Norwegian. These synsets are almost exclusively infrequent and
“peripheral” in the DanNet (i.e. they are leaf nodes in the synset graph). A partial
semantic annotation of a Norwegian corpus has been developed to ensure that the most
frequent senses for Norwegian text are covered. Using this method, it has been possible
to create a very extensive wordnet for a fraction of the cost for development from
scratch, and without the quality problems associated with translation from for example
English.

3.7 Icelandic wordnet (MerkOr)

The semantic database MerkOr, which constitutes the Icelandic wordnet, has been

developed using a monolingual approach with automatic methods for the extraction of

semantic information from texts. Both pattern-based and statistical methods are used, as

well as a hybrid methodology.

The structure of the database is not based on hierarchies, like the Princeton WordNet,

but rather on clusters of strongly related words and semantic relations often describing

common sense knowledge and associations. The database contains about 110,000 words,

primarily nouns, but also a number of verbs and adjectives. About 2.93 million relations

between these words are listed in the database which also contains 305 semantic clusters

– lists of words that belong to the same semantic field. The database is distributed under

the GNU Lesser General Public License and can be queried online at

http://merkor.skerpa.com. This wordnet is not yet made available via WordTies.

4 WordTies: A common web interface for viewing aligned wordnets

WordTies (wordties.cst.dk) is a web interface developed to visualize monolingual

wordnets as well as their alignments with the other wordnets, cf. Figure 1. In this

browser the user can chose either of the (currently four) relevant wordnets as a source

language and see how a concept is linked to its sister wordnets.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 152 of 474]

Figure 1: Introductory screen of WordTies

WordTies builds on a monolingual browser, AndreOrd, which was built to browse

DanNet, cf. Johannsen & Pedersen (2011). In this browser, the semantic relations are

made available in a more graphical fashion compared to what is found in most other

wordnet browsers which tend to focus primarily on visualizing the hyponymy structure

of the wordnet. The particular choice of graph very compactly encodes large numbers of

relations – each represented by its own colour – and thus gives a good overview of the

general structure of the wordnet. In order to make room for all relations in the graph –

also the inherited ones –, only one representative sense is visualized per synset.

However, all senses are presented below the graph. By clicking on a related synset in the

graph the user can dynamically move around in the wordnet. For illustration, see Figure

2 where Danish has been chosen as the source and the Danish concept håb (‘hope’) has

been looked up and aligned with Estonian, Swedish and Finnish wordnets.

A click on either of these links will bring the users into these particular wordnets and

enable them to browse the wordnet and view the established relations as well as its

taxonomical structure, as seen in Figure 3 where we see that the Finnish wordnet has a

much deeper taxonomical structure (expert perspective) than the Danish (layman

perspective) of the concept tree. In this way, the web interface eases comparison and

evaluation of the wordnets.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 153 of 474]

Figure 2: A Danish synset look-up (håb (hope)) with multilingual alignments to English,
Finnish, Estonian and Swedish wordnets.

Figure 3: Graphical views of the taxonomical differences of the concept tree in the
Danish and Finnish wordnets, respectively. DanNet includes three major (layman)
subtypes of trees: deciduous trees, coniferous trees, and fruit trees, whereas the Finnish
wordnet includes further subtypes based on a specialist, botanical structuring.

Major changes to the AndreOrd source-code were model changes including the addition

of instance, source model classes and modification to alignment and its relations. These

three model classes handle the relational structure and data used to enable the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 154 of 474]

multilingual relations (connections), facilitating a link between application instances via

a wordnet’s imported Princeton Core WordNet relations.

Figure 4: Overview and scripts used in WordTies.

WordTies can be dynamically extended to include more wordnets. There are two

compulsory steps for import, firstly to calculate and update the hyponym count

for each synset record, and secondly to import alignments to Princeton Core

WordNet. Optionally, the import alignments script can be used to import

multilingual alignments, alignments to other wordnet synsets via Princeton Core

WordNet.

The application is able to have a customised locale, and language files.

Currently, Danish and English are supported languages with the application. An

index page is customisable based on the locale, and new language support can be

easily added with valid translation of labels. Currently multi-locale support is not

included with the application, a single locale is set for the application instance to

operate in. Other customisations available, include filter values and path names

(routes), and custom colour mappings for the relations graph.

5 Alignment and evaluation of bilingual wordnets

Four bilingual wordnets have been automatically processed on the basis of each

wordnet’s links to Princeton WordNet. In other words, English has functioned as an

interlingua in a triangulation method, and a central aim has been to examine to which

extent this strategy influenced the quality of the bilingual translations.

However, since the Nordic and Baltic wordnets were built locally using both the

expand and merge techniques as we have seen, they differ in the extent to which they

were bilingually linked before the META-NORD project was initiated. Therefore, a first

task was to ensure a common linked coverage of all the involved wordnets. To this end,

all wordnets were manually linked to Princeton Core WordNet containing 5,000 core

synsets.
1
 Princeton Core WordNet is a recent, semi-automatically compiled list of 5,000

1 http://wordnetcode.princeton.edu/standoff-files/core-wordnet.txt

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 155 of 474]

“core” word senses in WordNet corresponding approximately to the 5,000 most

frequently used word senses, followed by some manual filtering and adjustment. This

set of basic concepts is considered to be deduced on better statistical grounds than the

previously applied “base concepts” used in the EuroWordNet and SIMPLE projects.

Further, Princeton Core WordNet is characterized by being relatively coarse-grained

compared to the full Princeton WordNet and thus much better suited for alignment tasks.

For the evaluation, a top 1000 set of this 5,000 synset intersection with a POS ratio of

6:2:2 for nouns, verbs, and adjectives, respectively was generated. The extract was also

based on provided frequency data from Swedish and Finnish. Even if one-to-one synset

alignments are by far the most frequent ones, one-to-many and many-to-one synset

alignments occur as well. Valid relations to Princeton Core WordNet include

eq_synonym, which are by the most frequent one, eq_has_hyponym, as well as

eq_has_hyperonym, allowing thus in some cases for alignments to more or less specific

synsets. All in all, four linked wordnets were processed and evaluated. Table 1 sums up

the evaluation results.

 Slight

mismatches

Linking

errors

Danish-Swedish 2.3 2.4

Finnish-Swedish 2.6 1.1

Finnish-Danish 0.7 0

Estonian-Finnish 22.6 5.3

Table 1: Percentage of errors and mismatches in bilingual wordnets

As can be read, the semi-automatic alignments are judged to be of a relatively good

quality even if translations are in several cases not 100% precise. An average of 2.2%

errors and 7.0% slight mismatches is reported on. However, there are some clear

divergences to be commented on in Table 1: the evaluation of Estonian-Finnish reports

on 53 errors and 226 slight mismatches whereas no errors and only 7 mismatches are

reported on for Finnish-Danish. Since the evaluations are made by different partners

with the necessary bilingual language skills, part of this divergence is due to somewhat

different interpretations of the concepts ‘slight mismatches’. Furthermore, the different

nature of the wordnets seems to have influenced the evaluations to a certain extent.

Thus, some evaluators have focused on a good definition-to-definition match between

two synsets, whereas others have applied a somewhat stricter criterion by evaluating the

exact sense-to-sense correspondence.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 156 of 474]

WN synset ET FI

WN gloss Comment

album%1:06:

00::

Album_2 albumi;

valokuva-

albumi

a book of blank pages

with pockets or

envelopes; for

organizing

photographs or stamp

collections etc

 FinnWN synset member

'valokuva-albumi' is

more specific

(eq_has_hyponym)

apparatus%1:

06:00::

aparaat_1,

seadis_1

aparaatti;

koneisto;

laite;

laitteisto;

väline

equipment designed to

serve a specific

function

 EstWN synset members

are in singular, as one

particular piece of

equipment

gun%1:06:00

::

tulirelv_1 kivääri;

pistooli;

pyssy; tykki

a weapon that

discharges a missile at

high velocity

(especially from a

metal tube or barrel)

 FinnWN synset have

more specific members

Table 2: Estonian-Finnish translations that are considered to be slight mismatches.

For instance, the Estonian-Finnish evaluator has registered differences in synonyms

or differences in specificity as slight mismatches, influenced by the fact that not all

senses in two aligned synset represent fully precise translations of each other. See Table

2 for comments on particular alignments between Estonian and Finnish.

An additional explanation to the divergences is that since the Finnish and Estonian
languages are very close, the Estonian evaluator expected to see exact matches sense-to-
sense in the translations between Finnish and Estonian, irrespective of the fact that the
wordnets were built from more or less different starting points. The phenomenon with
very close words (and mismatching translations) could presumably also have been
observed between other close language pairs such as Swedish and Danish, but since
these two wordnet are characterized by having less senses per synset, synonym
mismatch is not observed to the same extent. The evaluator of the two “extremes” with
respect to senses per synset, Danish and Finnish wordnets, reports on few mismatches,
influenced by the fact that focus has here been more directed towards the definition-to-
definition alignment.

Not surprisingly, wordnets that have been compiled via translations from Princeton

WordNet have many senses per synsets (just as Princeton WordNet), whereas wordnets

that are monolingually compiled and rather based on synonymy registrations in

conventional dictionaries, have much less; (see also Section 5). As can be seen, it has

proven difficult to ‘neutralize’ such differences initial to the evaluations.

With regards to alignment errors, there does not appear to be a systematic bias, some

are due to false friends, others however, seem to be just random errors introduced during

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 157 of 474]

the linking to Princeton Core WordNet, as in the following, where the English synset

has been linked to a too specific sense of ‘waste’ in DanNet than what was actually

indicated by the English gloss, cf. Table 3.

WN

synset

DA SV

WN gloss Comment

waste%1:27:0

0::

{spildprodukt

_0}

avfall..1 any materials

unused and rejected

as worthless or

unwanted

 DArrefers to byproducts of

production; should be the more

general 'affald'.

Table 3: Example of Danish-Swedish link which is considered an error

6 Further comparison of selected wordnets

Via the evaluations presented in Section 5 and by browsing the wordnets in WordTies,

further insights have been achieved wrt. the very diverse characteristics of the selected

wordnets in terms of taxonomical differences, different understandings of the synset,

and differences in compiling semantic relations.

First of all, we can observe some differences in average hyponym depth, number of

senses per synset and average number of relations connected to a synset as shown in

Table 4.

DanNet FinnWordNet EstWN

Hyponym

depth/SynSet 4.38 7.49 5.93

Word Senses/SynSet 1.09 1.74 1.65

Relations/SynSet 4.97 2.21 2.91

Table 4: Hypnonym depth, word sense per synset and relations per synset for Danish,

Finnish and Estonian wordnets

FinnWordNet has the highest average of hyponymy depth, relating well to our

intuition of this wordnet being more expert oriented at least in the fields of botany and

zoology (see also Figure 3). In contrast, EstWN and DanNet which rely more on

monolingual dictionaries and the genus proximums given in the definitions of these,

have less depth. This fact can also be illustrated by extracting the path to the top from a

botanical concept like tree in Danish and Finnish, respectively:

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 158 of 474]

træ (tree) has 4 super-concepts (plante → organisme →fysisk genstand→entitet) (plant → organism →

physical entity→entity)

puu (tree) has 9 super-concepts (puumainen kasvi → putkilokasvi → kasvi → eliö → elävä olio →

kokonaisuus → esine → fyysinen entiteetti → entiteetti) (woody plant → vascular plant → plant →

organism → animate thing →whole → object → physical entity → entity)

Figure 5: Differences in number of relations in Finnish and Danish, respectively,
attached to the concept candle (kynttilä, stearinlys). For example, Danish includes
relations such as used_for=light and is_made_of=stearin whereas the Finnish wordnet
includes only hyponyms, parts and hyperonym.

The number and selection of relations in the wordnets also differ; some have included

only Princeton relations, others include EuroWordNet relations (i.e. Estonian, Danish,

Norwegian) and others again have adapted qualia-inspired (Pustejovsky 1995) relations

also from the SIMPLE project (Lenci et al. 2001), such as the used_for and made_by

relations in the Danish and Norwegian wordnets. This extension of the relation set to

include also purpose and origin is again influenced by sense definitions in conventional

dictionaries where it is typically expressed for which purpose a given artifact is made

and eventually how it is made (i.e. baked, grown, cooked, produced), see Figure 5 for

such differences in number of relations between Danish and Finnish wordnets.

7 Conclusion and further steps

Apart from consolidating, extending and providing richer documentation for the Nordic

and Baltic wordnets, the META-NORD multilingual wordnet initiative has ensured an

alignment and comparison of the most mature of these wordnets and have made them all

easily accessible through META-SHARE. Central aims have been to understand better

the different nature of the lexical-semantic resources in order to approximate to a best

practice, to test the perspective of linking them and to make them visible in an intuitive

way in a common web interface. Four core bilingual wordnets have been compiled,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 159 of 474]

made visible and evaluated with diverging, but still promising, results. The evaluations

and comparisons have exposed a considerable variety of the wordnets wrt. taxonomical

structure, structure of the synset (many or few senses per synset) and number of

relations attached to each synset, a variety which proves to originate from the different

compilation strategies used for the different Nordic and Baltic languages. As we have

shown, the two compilation strategies (expand versus merge) have considerable impact

on how the lexical-semantic information is represented and on the depth of the lexical

hierarchies. In spite of these differences, an alignment through Princeton Core WordNet

has proven feasible.

Three wordnets were not fully mature when the META-NORD project started and have

therefore not yet been aligned or made visible in WordTies, namely the Icelandic and

Norwegian wordnets; the plan is to include them during 2013.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 160 of 474]

References

Rigau, G. and Agirre, E. (2002). Semi-automatic Methods for WordNet Construction. Tutorial at

2002 International WordNet Conference, Mysore, India.

Bhattacharyya, P. (2010) IndoWordNet. Proceedings of LREC 2010. Valletta: ELRA.

Borin, L., Danélls, D., Forsberg, M., Kokkinakis, D. and Gronostaj, M.T. (2010). The past meets

the present in Swedish FrameNet++. In Proceedings of the 14th EURALEX International

Congress, pp. 269–281. Leeuwarden: EURALEX.

Borin, L. and Forsberg, M. (2009). All in the family: A comparison of SALDO and WordNet. In

Proceedings of the Nodalida 2009 Workshop on WordNets and other Lexical Semantic

Resources – between Lexical Semantics, Lexicography, Terminology and Formal Ontologies,

pp. 7–12. Odense: NEALT.

Borin, L. and Forsberg, M. (2010). Beyond the synset: Swesaurus – a fuzzy Swedish wordnet. In

Workshop on Re-thinking synonymy: Semantic sameness and similarity in languages and their

description. Helsinki.

Borin, L. and Forsberg, M. (2011). Swesaurus – ett svenskt ordnät med fria tyglar.

LexicoNordica vol. 18, pp. 17–39.

Borin, L., Forsberg, M. and Lönngren, L. (2008). The hunting of the BLARK – SALDO, a freely

available lexical database for Swedish language technology. Joakim Nivre, Mats Dahllöf and

Beáta Megyesi (eds.), Resourceful language technology. Festschrift in honor of Anna Sågvall

Hein, pp. 21–32. Acta Universitatis Upsaliensis: Studia Linguistica Upsaliensia 7. Uppsala:

Uppsala University.

Derwojedowa, M., Piasecki, M., Szpakowicz, S., Zawislawska, M. and Broda, B. (2008). Words,

concepts and relations in the construction of the polish WordNet. In Global WordNet

Conference 2008, pp. 162–177. Szeged, Hungary.

Daudé J., Padró L. and Rigau G. (2003). Validation and Tuning of Wordnet Mapping

Techniques. Proceedings of the International Conference on Recent Advances on Natural

Language Processing (RANLP'03). Borovets, Bulgaria.

Daudé J., Padró L. and Rigau G. (1999). Mapping Multilingual Hierarchies Using Relaxation

Labeling. Joint SIGDAT Conference on Empirical Methods in Natural Language Processing

and Very Large Corpora (EMNLP/VLC'99). Maryland, US.

Fellbaum, C. (ed) (1998). WordNet – An Electronic Lexical Database. Cambridge,

Massachusetts: The MIT Press.

Hjorth, E. and Kristensen, K. (2003). Den Danske Ordbog. Gyldendal, Denmark.

Järborg, J. (2001). Roller i Semantisk databas. Research Reports from the Department of

Swedish, No. GU-ISS-01-3. University of Gothenburg: Dept. of Swedish.

Johannsen, A. and Pedersen, B.S. (2011). “Andre ord” – a wordnet browser for the Danish

wordnet, DanNet. In Proceedings from 18th Nordic Conference of Computational Linguistics,

NODALIDA 2011, Riga, Latvia. Nothern Association for Language Technology, Vol. 11 pp.

295–298, University of Tartu.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 161 of 474]

Kann, V. and Rosell, M. (2006). Free construction of a free Swedish dictionary of synonyms In

Proceedings of the 15th NODALIDA conference, pp. 105–110. Joensuu: University of Eastern

Finland.

Martola, N. (2011). FinnWordNet och det finska samhället. In: Symposium om onomasiologiske

ordbøker i Norden. Schæffergården, Copenhagen.

Kahusk, N., Orav, H. and Vare, K. (2012). Cross-linking Experience of Estonian WordNet. In:

Human Language Technologies – The Baltic Perspective: The Fifth International Conference

on Human Language Technologies – The Baltic perspective. Tartu, Estonia, October 4-5,

2012. (Ed. Arvi, Tavast; Kadri Muischnek; Mare, Koit). IOS Press, pp. 96–102. Online access:

doi:10.3233/978-1-61499-133-5-96

Lenci, A., Bel, N., Busa, F., Calzolari, N., Gola, E., Monachini, M., Ogonowski, A., Peters, I.,

Peters, W., Ruimy, N., Villegas, M. and Zampolli, A. (2000). SIMPLE: A general framework

for the development of multilingual lexicons. International Journal of Lexicography, vol. 13,

pp. 249–263

Lindén, K. and Carlson, L. (2010). FinnWordNet – WordNet på finska via översättning.

LexicoNordica – Nordic Journal of Lexicography, vol. 17, pp. 119–140

Lindén, K., Niemi, J. and Hyvärinen, M. (2012) Extending and Updating the Finnish Wordnet. In

Diana Santos, Krister Lindén and Wanjiku Ng’ang’a (eds.), Shall We Play the Festschrift

Game? Essays on the Occasion of Lauri Carlson's 60th Birthday, pp. 67–98. Springer: Berlin,

Heidelberg. ISBN 978-3-642-30773-7.

Pedersen, B.S, Nimb, S., Asmussen, J., Sørensen, N., Trap-Jensen, L. and Lorentzen, H. (2009).

DanNet – the challenge of compiling a WordNet for Danish by reusing a monolingual

dictionary. Language Resources and Evaluation, Computational Linguistics Series, pp. 269–

299.

Pedersen, B.S., Nimb, S. and Braasch, A. (2010). Merging specialist taxonomies and folk

taxonomies in wordnets. - a case study of plants, animals and foods in the Danish wordnet In:

Proceedings from the Seventh International Conference on Language Resources and

Evaluation, pp. 3181–3186. Malta.

Peters, W., Vossen, P., Díes-Orzas, P. and Adriaens, G. (1998). Cross-lingual Alignment of

Wordnets with an Inter-Lingual-Index. In: EuroWordNet – A Multilingual Database with

Lexical Semantic Networks, pp. 149–179. Kluwer Academic Publishers.

Pustejovsky, J. (1995). The Generative Lexicon. Cambridge, Massachusetts: MIT Press.

Robkop, K., Thoongsup, S., Charoenpron, T., Sornlertlamvanich, V. and Isahara, H.. (2010).

WNMS: Connecting Distributed Wordnet in the Case of Asian WordNet. In: Proceedings of

the 5th International Conference of the Global WordNet Association (GWC 2010), Mumbai,

India.

Tufiş, D., Ion, R. and Ide, N. (2004). Word Sense Disambiguation as a Wordnets Validation

Method in BalkaNet. In Proceedings of the 4th International Conference on Language

Resources and Evaluation (LREC 2004), pp. 1071–1074. Lisbon: ELRA

Vossen, P. (ed.) (1998). EuroWordNet: A Multilingual Database with Lexical Semantic

Networks. Dordrecht: Kluwer Academic Publishers.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 162 of 474]

Normalisation of Historical Text Using Context-Sensitive
Weighted Levenshtein Distance and Compound Splitting

Eva Pettersson1,2, Beáta Megyesi1 and Joakim Nivre1

(1) Department of Linguistics and Philology, Uppsala University
(2) Swedish National Graduate School of Language Technology

firstname.lastname@lingfil.uu.se

ABSTRACT
Natural language processing for historical text imposes a variety of challenges, such as to deal
with a high degree of spelling variation. Furthermore, there is often not enough linguistically
annotated data available for training part-of-speech taggers and other tools aimed at handling
this specific kind of text. In this paper we present a Levenshtein-based approach to normalisation
of historical text to a modern spelling. This enables us to apply standard NLP tools trained
on contemporary corpora on the normalised version of the historical input text. In its basic
version, no annotated historical data is needed, since the only data used for the Levenshtein
comparisons are a contemporary dictionary or corpus. In addition, a (small) corpus of manually
normalised historical text can optionally be included to learn normalisation for frequent words
and weights for edit operations in a supervised fashion, which improves precision. We show
that this method is successful both in terms of normalisation accuracy, and by the performance
of a standard modern tagger applied to the historical text. We also compare our method to a
previously implemented approach using a set of hand-written normalisation rules, and we see
that the Levenshtein-based approach clearly outperforms the hand-crafted rules. Furthermore,
the experiments were carried out on Swedish data with promising results and we believe that
our method could be successfully applicable to analyse historical text for other languages,
including those with less resources.

KEYWORDS: Digital Humanities, Natural Language Processing, Historical Text, Normalisa-
tion, Levenshtein Edit Distance, Compound Splitting, Part-of-Speech Tagging, Underresourced
Languages, Less-Resource Languages.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 163 of 474]

1 Introduction

When working with natural language processing (NLP) for historical text, one problem is that
there are often not large enough amounts of annotated corpus data available for training NLP
tools specifically aimed at handling historical text. Nevertheless, using existing NLP tools as
they are is rarely an option, since these generally rely on dictionaries and/or statistics based on
certain word forms observed in the training data. Spelling in historical texts however differs
from contemporary spelling, and due to the lack of spelling conventions, spelling may also vary
between different authors, genres and time periods, and even within the same text written by
the same author.

Even though there are differences between old and modern text, there are also similarities, and
a native speaker of the language is often able to understand all or part of a historical text in
spite of the odd spelling. Bearing this in mind, one way to get around the lack of NLP tools for
historical text is to first normalise the input text to a more modern spelling, before applying
existing NLP tools trained on contemporary corpora. In this context, the normalisation process
may be viewed as a kind of spelling correction, where the historical word form is treated as a
misspelling, that should be corrected to the most probable modern spelling.

In this paper we describe an approach to normalisation of historical text based on Levenshtein
edit distance, where certain edits can be weighted to reflect common (and thus more likely)
spelling variation in texts from this time period. Apart from handling single edit operations,
we also include operations involving multiple characters. Another innovative feature of our
approach is the use of a compound splitter for normalising parts of a compound word individ-
ually. Finally, we explore the effect of using manually annotated historical data to learn the
normalisation of frequent words in a supervised fashion. We evaluate our results on historical
Swedish data, both regarding normalisation accuracy, and by running a modern tagger on the
historical text, before and after normalisation.

The outline of this paper is as follows. Section 2 describes related work on normalisation of
historical text. In Section 3, we present the data used in our experimental setup, whereas
our approach is described in detail in Section 4. In Section 5, we present the results. Finally,
conclusions and future work are discussed in Section 6.

2 Related Work

The use of NLP tools for analysing historical text is still largely unexplored, even though there is
a rapidly growing interest in this field. The idea of implementing spelling correction techniques
for normalising the input text to a more modern spelling before applying existing NLP tools
is a popular approach, and may be performed using rule-based or data-driven methods, or a
combination of both.

Rayson et al. (2005) tried a rule-based approach based on dictionary lookup. A large mapping
scheme from historical to modern spelling for 16th to 19th century English texts was manually
created. The resulting VARD tool (VARiant Detector) comprises 45,805 entries, and also
includes fuzzy matching techniques and context rules for normalisation of ambiguous words.
The performance of the normalisation tool was evaluated on a set of 17th century texts, and
compared to the performance of modern spell checkers (MS-Word and Aspell) on the same
text. The results showed that between a third and a half of all tokens (depending on which test
text was used) were correctly normalised by both VARD and MS Word, whereas approximately
one third of the tokens were correctly normalised only when using VARD. The comparison

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 164 of 474]

between VARD and Aspell showed similar results. VARD was later further developed into
VARD2, combining the original word list with data-driven techniques in the form of phonetic
matching against a modern dictionary, and letter replacement rules based on common spelling
variation patterns (Baron and Rayson, 2008).

Another rule-based method, based on pattern matching, was developed by Pettersson et al.
(2012). In this experiment, a relatively small set of 29 hand-crafted normalisation rules for
handling spelling variation in Early Modern Swedish texts (1550–1800) was produced, based
on a subset of a 17th century court records text. The resulting rule set was applied to a gold
standard corpus of 600 sentences (33,544 tokens) extracted from 15 documents within two
separate genres (court records and church documents), varying in time from 1527 to 1812.
Even though the rule set had been developed on a single 17th century court records text,
normalisation had a positive effect on texts from all centuries and for both genres within the
scope of the study. In fact, the largest error reduction was achieved for a 16th century church
document. On average, an error reduction of 22% was achieved, meaning that approximately
73% of the tokens were correctly normalised.

A third rule-based technique, referred to as conflation by phonetic form, was explored by
Jurish (2008) for normalisation of historical German text. In this approach, the similarity
between phonetic forms is computed, rather than comparing orthographic forms. The general
assumption is that since there were no orthographic conventions for writers of historical
text, spelling generally reflects the phonetic form of the word. Furthermore, it is assumed
that phonetic properties are less resistant to diachronic change than orthography. For the
grapheme-to-phoneme transition, they used the conversion module of the IMS German Festival
text-to-speech system (Black and Taylor, 1997), with a rule-set adapted to historical word forms.
The method was evaluated on a corpus of historical German verse quotations extracted from
Deutsches Wörterbuch, containing 5,491,982 tokens (318,383 types). Without normalisation,
approximately 84% of the tokens were known to their morphological analyser. After conflation
by phonetic form, coverage was extended to 92% of the tokens. When adding lemma-based
heuristics to this method, coverage increased further to 94% of the tokens.

As an extension to the work on conflation by phonetic form, Jurish (2010) further explored
the impact of taking the sentential context into consideration in the normalisation process. For
this purpose, a Hidden Markov Model (HMM) was developed for contextual disambiguation
of a set of normalisation candidates that were originally extracted on a token level using four
different normalisation techniques: string identity, transliteration, phonetization and rewrite
transduction. The resulting HMM produced precision scores of 99.7% and recall scores of
99.1% on a test corpus of 152,776 tokens from the time period 1780–1880, extracted from the
Deutsches Textarchiv.

A data-driven approach based on Levenshtein similarity was presented by Bollmann et al. (2011)
for normalisation of Early New High German (14th to 16th century). Normalisation rules were
automatically derived by means of the Levenshtein edit distance, based on a word-aligned
parallel corpus consisting of the Martin Luther bible in its 1545 edition and its 1892 version,
respectively. Since bible text is rather conservative in spelling and terminology, approximately
65% of the words in the old bible version already had an identical spelling to the one occurring
in the more modern version. For non-identical word forms, only word forms that could be
found in the modern version of the bible were accepted. Other word forms produced by the
Levenshtein-based rules were discarded, leaving the old spelling preserved. Using this method,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 165 of 474]

the proportion of words with an identical spelling in the normalised text as compared to the
“modern” text increased from 65% to 91%. Bollmann (2012) also tried a combination of
dictionary lookup and different modifications to the original Levenshtein distance measure,
improving normalisation accuracy further to 92.6% for the same training and test corpora.

3 Data

In this study, we make use of a 787,122 token corpus consisting of 15 Swedish texts, from the
genres of court records and church documents, ranging from 1527 to 1812. The texts have
been automatically digitized, and only parts of the corpus have been manually reviewed and
corrected with regard to OCR errors. For evaluation we use the same subset of this corpus as
was used for evaluation by Pettersson et al. (2012), i.e. 600 sentences extracted by randomly
selecting 40 sentences from each text in the entire data set. For training, i.e. for estimating
different parameters of our model, we extracted another 600 sentences out of the remaining
sentences in the corpus (40 randomly selected sentences from each text). The resulting token
distribution for training and evaluation is given in Table 1.

Court Records
Name Year Total Training Evaluation

Östra Härad 1602–1605 38,477 1,980 2,069
Vendel 1615–1645 64,977 1,583 2,509
Per Larsson 1638 12,864 2,848 2,987
Hammerdal 1649–1686 75,143 1,508 1,859
Revsund 1649–1689 113,395 2,275 2,328
Stora Malm 1728–1741 458,548 1,627 1,895
Vendel 1736–1737 61,664 3,032 3,450
Stora Malm 1742–1760 74,487 2,034 2,336
Stora Malm 1761–1783 66,236 1,905 1,825
Stora Malm 1784–1795 58,738 2,036 1,378
Stora Malm 1796–1812 47,671 2,345 1,683

Church Documents
Name Year Total Training Evaluation

Västerås 1527 14,149 2,831 3,709
Kyrkoordning 1571 60,354 2,093 2,246
Uppsala Möte 1593 34,877 1,070 1,184
Kyrkolag 1686 35,201 1,660 2,086

Total 1527–1812 787,122 30,827 33,544

Table 1: Corpus distribution, given in number of tokens in the documents. Total = Number of
tokens in the whole corpus. Training = Number of tokens in the training sample of the corpus.
Evaluation = Number of tokens in the evaluation sample of the corpus.

4 Method

This paper explores an approach to normalisation of historical text using the Levenshtein edit
distance measure for comparing the original word form to word forms listed in an electronically
available dictionary or corpus of contemporary language. Our approach is similar to the one
presented by Bollmann et al. (2011) in that Levenshtein similarity is used in the normalisation

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 166 of 474]

process. In the Bollmann approach, however, the Levenshtein weights are calculated on the
basis of aligned parallel data, consisting of the same text in an old spelling version and a modern
spelling version, respectively. Our approach does not presuppose access to such a corpus, since
the Levenshtein distance is solely computed by comparing the historical word forms to tokens
present in a contemporary dictionary or corpus.

Two steps are included in the normalisation process: generation of normalisation candidates and
candidate selection. As stated above, the generation of normalisation candidates is performed by
comparing the historical word form to the tokens present in a contemporary language resource.
In our experiments we use the SALDO dictionary (version 2.0) for this purpose. SALDO is an
electronically available lexical resource developed for present-day written Swedish, comprising
approximately 100,000 lexical entries (Borin et al., 2008). The dictionary entry/entries with the
smallest edit distance as compared to the original word form are stored as possible normalisation
candidates, given that certain requirements are met concerning string length and edit distance,
as further discussed in Section 4.1.

The generation of candidates may optionally be refined, to improve precision further. For
example, if there is a set of manually normalised historical tokens available, this corpus could
be included as a validated cache, mapping historical word forms to a manually validated
modern spelling. The validated cache is consulted before possible normalisation candidates
are generated based on Levenshtein distance. If the token is present in the validated cache,
the normalised form found in the cache is chosen, and no Levenshtein-based candidates are
generated.1 Such a corpus could also be used for optimisation of the Levenshtein calculations, as
described further in Section 4.1. Another optional refinement that we have experimented with
is the addition of a compound splitter (Stymne, 2008). In this case, the token is first matched
against the contemporary language resource as usual. If no normalisation candidates are found
by the Levenshtein comparisons, the word is split into its compound parts (provided that the
splitter regards the token as a compound) and each compound part is matched separately
against the contemporary language resource by means of Levenshtein calculations. Finally, the
resulting normalised parts are merged into a compound normalisation candidate.

When possible normalisation candidates have been extracted, one candidate is to be selected
as the final choice. In the default setting, a final candidate is randomly chosen from the list of
highest-ranked candidates. The candidate selection step can however be further refined, if there
is a corpus of modern language available. In this case, the candidate with the highest frequency
in the corpus is chosen. Only if none of the highest-ranked normalisation candidates are present
in the corpus, or if there are several candidates with the same frequency distribution, a final
candidate is randomly chosen. In our experiments, we use the Stockholm-Umeå corpus (SUC)
(Ejerhed and Källgren, 1997) for frequency calculations. SUC is a balanced corpus consisting of
approximately one million tokens extracted from a number of different text types representative
of the Swedish language in the 1990s.

The whole normalisation process, as described above, is illustrated in Figure 1, where optional
resources are marked by dotted lines and arrows.

1We also include unvalidated items in the cache, solely for reasons of efficiency. This means that normalisations
previously performed by the algorithm, as well as tokens present in the modern dictionary, are stored in the cache and
consulted as a first step in the normalisation process.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 167 of 474]

Figure 1: Overview of the normalisation workflow. Optional resources are dotted.

4.1 Parameter Optimisation

The Levenshtein distance gives an indication of the similarity between two strings (Levenshtein,
1966). Still, in the context of normalisation, it is not a trivial decision what string similarity
to regard as close enough for considering a normalisation candidate as valid. In a traditional
spelling correction context, it has been shown that for the majority of the human-generated
spelling errors, the misspelled word form is within one letter in length of the intended word
form, and that most errors constitute single instances of insertion, deletion, substitution or
transposition (Kukich, 1992). If no empirical data on the correlation between historical and
modern spelling is available, one could thus assume that a valid normalisation candidate should
be maximally one character shorter or longer than the original word form, with a maximum
Levenshtein distance of 1. In the following we explore the characteristics of our manually
normalised training data as regards edit distances and differences in string length between the
original word forms and their normalised counterparts. The aim is to find out whether the
traditional spelling correction assumptions hold also in the context of normalisation, or (if not)
what the optimal configuration would be. We also explore the inclusion of context-sensitive,
weighted edit operations, compound handling and supervised learning by means of manually
validated normalisations.

4.1.1 Observed String Length Differences

To decide what string length differences to consider in the normalisation process, we investi-
gated the differences in string length between the original word forms and their normalised
counterparts in the training corpus. As previously stated, the training corpus comprises in total
30,827 tokens (see further Section 3). Approximately 35% of these tokens (10,735) differ from
the manually normalised spelling. As shown in Table 2, the assumption that most errors do not
influence string length by more than one character may still be regarded as appropriate even in
the context of normalisation. However, the proportion of tokens meeting this requirement is
limited to approximately 86.9%. Instead, if we consider all cases where the normalised word
form is at most one character longer down to four characters shorter than the original word
form, approximately 99.5% of the tokens observed in the training corpus will be covered. We
will therefore focus on varying the valid difference in string length within this interval.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 168 of 474]

Length Difference Frequency Example Translation
−7 1 besluthninger/beslut ‘decisions’
−6 3 fadherbrodher/farbror ‘uncle’
−5 7 noghsambligha/nogsamma ‘careful’
−4 127 närvarellse/närvaro ‘presence’
−3 308 slechttenn/släkten ‘the relatives’
−2 918 kyrckian/kyrkan ‘the church’
−1 4804 aff/av ‘of/off’

0 3326 wara/vara ‘be’
+1 1201 til/till ‘to’
+2 35 sokn/socken ‘parish’
+3 2 tilbragte/tillbringade ‘spent’
+5 3 församhs/församlingens ‘the congregation’s’

Table 2: Observed differences in string length between the historical word form and the manually
normalised version in the training corpus. Grey rows illustrate string length differences with a
special focus in our experimental setup.

4.1.2 Observed Edit Distances

As illustrated in Table 3, we see that if we consider only normalisation candidates with a
maximum Levenshtein distance of 1 as compared to the original word form, we merely cover
approximately 55.8% of the tokens in the training corpus. Furthermore, we see that all edit
distances up to and including 4 have a high frequency in the training corpus. If we consider an
edit distance span where 4 is the maximum value, we cover 98.8% of the observed entities in
the training corpus. Hence, to broaden normalisation coverage, we will focus our experiments
on considering edit distances up to and including 4.

Edit Distance Frequency Example Translation
1 5986 sigh/sig ‘oneself/himself/herself/itself’
2 3008 dher/där ‘there’
3 1161 blefwe/blev ‘became’
4 455 afwachta/avvakta ‘await’
5 86 öfwertalter/övertalad ‘persuaded’
6 28 söllfuermynthe/silvermynt ‘silver coin’
7 10 sielffuer/själv ‘himself/herself/itself’
8 1 öffuergiffua/överge ‘abandon’

Table 3: Observed edit distance between the historical word form and the manually normalised
version in the training corpus. Grey rows illustrate edit distances with a special focus in our
experimental setup.

4.1.3 Weighted Edit Operations

When computing a traditional Levenshtein distance, all edit operations have a cost of one.
However, in the context of normalisation of historical text, some edits seem more likely than
others. For example, as historical texts to some degree are written in a spoken-language fashion,
substituting the letter c for a k is more likely than substituting for example a c for an r. For this

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 169 of 474]

reason, we have experimented on assigning weights lower than 1 for frequently occurring edits
in the training corpus.

Out of the 8,881 edits observed in the training corpus, we have assigned special weights to
edits occurring at least 50 times. The weights have been calculated by comparing the frequency
of each edit occurring in the training corpus to the frequency with which the specific source
characters are left unchanged, in accordance with the formula below:

1− FrequencyOfEdit
FrequencyOfEdit+FrequencyOfSourceCharacterLeftUnchanged

which could be further simplified into:

FrequencyOfSourceCharacterLeftUnchanged
FrequencyOfEdit+FrequencyOfSourceCharacterLeftUnchanged

To illustrate, the deletion of the letter h happens in 2,382 cases in the training corpus, when
comparing the historical spelling to the modernised spelling. In the rest of the 3,912 cases
where the letter h occurs, it is preserved in the modernised spelling. Thus, the weight for the
deletion of the letter h is calculated as: 3912

2382+3912
≈ 0.6215.

In some cases, the observed edits involve more than one character, for example when comparing
the historical spelling oförsichtigt to the modernised version oförsiktigt (“carelessly”). This
would intuitively be regarded as a substitution of ch for k, rather than first substituting the c for
a k, and then deleting the h. To deal with cases like this, we therefore included the following
context-sensitive edit operations, in addition to the standard single-character operations:

• double deletion
example: -fv, gifvvett→ givet

• double insertion
example: +es, orklöse→ orkeslöse

• single-to-double substitution
example: l/ll, tilbytt→ tillbytt

• double-to-single substitution
example: ss/s, frälsse→ frälse

For all strings in the training corpus that are not identical in the historical and the modern
spelling, all possible single-character edits as well as multi-character edits are counted. Hence,
the token pair oförsichtigt-oförsiktigt will yield weights for (i) single deletion of c, single
substitution of h→k; (ii) single deletion of h, single substitution of c→k; and (iii) double-to-
single substitution of ch→k.

4.1.4 Compound Handling

The Levenshtein method described in this paper is based on comparison of a historical word
form to similar word forms found in a modern dictionary. Since the Swedish language has a
high degree of compounds, some of the intended words will inevitably not be found in the
dictionary, even if the word could perfectly well be used in contemporary Swedish. Stymne and
Holmqvist (2008) showed that in their Swedish evaluation corpus, approximately 37% of all
the words with a length of 12 characters or longer were compounds (and approximately 5%
of the shorter words). This was calculated on modern Swedish European Parliament text, but
might still be indicative of the frequencies in historical Swedish texts as well. To deal with the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 170 of 474]

compounding issue, we included a compound splitter developed by Stymne (2008). When the
compound splitter is included, any word form for which no appropriate normalisation candidate
is found by the ordinary Levenshtein calculations, is run through the compound splitter. If the
splitter is able to split the word into compound parts, each part is processed separately by the
normalisation program, and the resulting normalisation candidates are merged into a final
normalisation candidate. For example a word like krigztienst will be split into krigz (normalised
as krigs “war”) and tienst (normalised as tjänst “duty”). The two normalised versions krigs and
tjänst will then be merged into the final normalisation candidate krigstjänst.

4.1.5 Manually Validated Normalisations

Even though historical texts present a high degree of spelling variation, some word forms
are frequently occurring in many of these texts. Incorrect normalisation of a few frequently
occurring word forms might result in poor NLP performance, even when a high proportion of
the remaining word forms has been normalised correctly. Therefore we will explore the effect of
adding a set of manually validated normalisation candidates for the most frequently occurring
word forms in the training corpus. When such a word form is encountered in a text, only the
manually validated set of normalisation candidates will be considered, and no Levenshtein
distance is computed for finding alternative candidates.

Since each token in the training corpus has been manually assigned its normalised counterpart,
we use this annotation for providing a cache with information on what manual normalisation(s)
that have been assigned for the word form in question. In order to avoid incorrect attempts at
normalisation, the caching procedure also involves word forms where the original spelling has
been preserved in the manual validation, as illustrated by the first entry in Table 4, where the
historical word form och is mapped to its identical modern spelling och (“and”). Furthermore,
if one word form has been manually normalised in several ways in the training corpus, all
candidates are stored in the cache, as illustrated by the second entry, where the historical
word form i is mapped both to the modern spelling i (“in”) and to ni (“you”). A sample from
the manually validated normalisations is given in Table 4. In order to explore the impact of
caching manually validated normalisations, we will consider different frequency thresholds in
our experimental setup.

Frequency Original form Normalised Form(s) Translation(s)
1,144 och och ‘and’

634 i i or ni ‘in’ or ‘you’
242 at att ‘to/that’
229 på på ‘on’
219 af av ‘of’
121 effter efter ‘after’
109 thet det ‘it’

92 ther där ‘there’
45 j i ‘in’
35 meth med ‘with’

Table 4: A sample from the manually validated normalisations observed in the training corpus.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 171 of 474]

5 Results

Evaluation of our proposed Levenshtein-based normalisation algorithm has been performed
on the basis of the evaluation corpus (see further Section 3). The results are presented below,
both in terms of actual normalisation accuracy and by measuring the performance of a modern
tagger on the historical text, before and after normalisation.

5.1 Normalisation

Normalisation results are evaluated using two different measures: normalisation accuracy and
error reduction. By normalisation accuracy we mean the percentage of tokens in the normalised
version of the text that are identical to the manually reviewed tokens in the gold standard,
whereas error reduction refers to the percentage of correctly normalised tokens that were not
originally identical to the gold standard spelling. Error reduction has been calculated by the
following formula:

CorrectAfterNormalisation−CorrectBeforeNormalisation
IncorrectBeforeNormalisation

where CorrectAfterNormalisation is the percentage of tokens with an identical spelling to
the gold standard version after normalisation, CorrectBeforeNormalisation is the percentage
of tokens with an identical spelling to the gold standard version before normalisation, and
IncorrectBeforeNormalisation is the percentage of tokens differing in spelling from the gold
standard version before normalisation.

Furthermore, we have experimented on different restrictions for the algorithm, regarding 1)
valid string length difference between the original word form and its normalisation candidate
(as described in Section 4.1.1), 2) valid edit distance between the original word form and
its normalisation candidate (as described in Section 4.1.2), 3) special weights for frequently
occurring edits (as described in Section 4.1.3), compound handling (see further Section 4.1.4,
and 4) a frequency threshold for inclusion of manually validated normalisation candidates in a
cache (as described in Section 4.1.5).

It could also be noted that in the following, normalisation accuracy and error reduction are
calculated on the evaluation corpus as a whole, without taking differences between genres
and age of the subtexts into account. For an investigation of the impact of age and genre on
normalisation performance, see further Pettersson et al. (2012).

5.1.1 String Length Restrictions

Table 5 shows the normalisation results when varying the threshold for valid difference in string
length between the original word form and its normalisation candidate. As shown in Section
4.1.1, 99.5% of the manually normalised word forms in the training corpus are within the
range of one character longer to four characters shorter compared to the original historical
word form. We experimented with different settings within this range. No manually validated
cache entries nor compound handling or weighted edits are included at this stage, and the
accepted edit distance for a normalisation candidate to be regarded as valid is set to 4, i.e. the
value needed to capture the majority of the instances in the training corpus.2 The results are
also compared to the baseline, i.e. the unnormalised version of the evaluation corpus, and to

2It would of course have been preferable to have no limit on the accepted edit distance in these experiments.
However, due to computational complexity, a threshold had to be included.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 172 of 474]

the approach of Pettersson et al. (2012) using hand-crafted rules. We see that approximately
64.6% of the original tokens already have a spelling identical to the manually normalised gold
standard spelling. The hand-written rules have a positive impact, improving accuracy to 72.7%.
This is however outperformed by the Levenshtein approach, for which accuracy is higher in all
settings. Furthermore, we see that the general spelling correction assumption that the original
string should not differ in length with more than one character from the intended word form
does not hold in this context, since we get better results if we increase the valid difference in
string length so that the normalised word form may be two or three characters shorter than the
original form. Increasing this range to four characters however does not have a noticeable effect
on the results. In the following we will therefore regard the +1 to −3 setting as the setting to
be used as a basis for further experiments.

Approach Accuracy Error Reduction
Baseline 64.6% n/a
Hand-written 72.7% 22.9%
Levenshtein stringdiff +1 to −1 76.2% 32.7%
Levenshtein stringdiff +1 to −2 76.9% 34.9%
Levenshtein stringdiff +1 to −3 77.0% 35.0%
Levenshtein stringdiff +1 to −4 77.0% 35.0%

Table 5: Normalisation accuracy and error reduction for different normalisation settings.
Baseline = Unnormalised version of the evaluation corpus. Hand-written = Normalisation
using a set of hand-crafted rules, as presented by Pettersson et al. (2012). Levenshtein = The
normalisation approach described in this paper. Stringdiff = Valid difference in string length
between the original word form and its normalisation candidate(s).

5.1.2 Edit Distance Restrictions

As presented in the previous section, normalisation results are influenced by what string length
differences we accept for a normalisation candidate to be considered valid. Another important
factor to take into consideration is the maximum edit distance allowed. We have experimented
on varying the accepted edit distance between 1 and 4. However, if we statically accept an edit
distance of for example 3, a three-letter word that is to be normalised may be transformed into
a completely different word, where each character in the original word has been substituted
by another character. To avoid such cases, we also experimented on a stringlength-based
measure for deciding the maximum edit distance allowed for a certain source word. First, we
calculated the average number of edits per character for all historical words in the training
corpus that were not identical to the modern spelling. This showed an average edit distance of
0.27/character. With a standard deviation of approximately 0.18, the valid edit distance is then
calculated as follows (where 1.96 times the standard deviation is added to cover 95% of the
cases):

distance ≤ 1 OR distance ≤ ((0.27 * wordlength) + (1.96 * 0.18))

The first condition is included to assure that one edit is always allowed, also in short words
consisting of only one or two characters. The above formula could be further simplified into:

distance ≤ max(1, ((0.27 * wordlength) + (1.96 * 0.18)))
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 173 of 474]

Table 6 presents our findings on varying the accepted edit distance between 1 and 4, as well as
including the stringlength-based method. For all settings in this experiment, the string length
restrictions are set to the best-performing settings as presented in the previous section, i.e.
letting the normalisation candidates differ in string length from the original word form by at
most +1 to −3 characters. Again, the results show that we may not rely on findings from
general spelling correction observations, stating that edit distance should not exceed a value
of 1. In our data, we get better results when increasing this threshold to 2, 3 or 4. We can
also see that the stringlength-based method is slightly less successful than the approach where
we always allow for an edit distance of 3 or 4. In the following we will therefore regard a
Levenshtein distance threshold of 4 as the setting to be used for further experiments.

A closer look at the results of the stringlength-based method as compared to the static Leven-
shtein method, shows that the stringlength-based method has a higher precision, but a lower
recall. The cases where a word form has been normalised in an incorrect way is substantially
lower in the stringlength-based method, whereas the proportion of word forms that have
incorrectly been left unnormalised is higher. This is particularly striking for words consisting
of 4–9 characters. Both shorter and longer words are more or less equally well handled by
both methods. Thus, in cases where precision is considerably more important than recall, the
stringlength-based method could be preferred.

Approach Accuracy Error Reduction
Baseline 64.6% n/a
Hand-written 72.7% 22.9%
Levenshtein max distance 1 74.7% 28.5%
Levenshtein max distance 2 76.7% 34.1%
Levenshtein max distance 3 77.0% 34.9%
Levenshtein max distance 4 77.0% 35.0%
Levenshtein stringlength-based 76.2% 32.9%

Table 6: Normalisation accuracy and error reduction for different normalisation settings.
Baseline = Unnormalised version of the evaluation corpus. Hand-written = Normalisation
using a set of hand-crafted rules, as presented by Pettersson et al. (2012). Levenshtein = The
normalisation approach described in this paper. Max distance = Maximum valid edit distance
between the original word form and its normalisation candidate(s).

5.1.3 Introducing Lower Weights for Frequently Occurring Edits

As stated in Section 4.1.3, some edits are more likely to occur than others. Table 7 presents
the results of adding weights lower than 1 to frequently occurring differences when comparing
the spelling of the original historical word form to the spelling of the corresponding manually
normalised form in the training corpus. For this experiment, the string length and edit distance
restrictions are set to the best-performing settings as presented in the previous sections, i.e.
letting the normalisation candidates differ in string length from the original word form by at
most +1 to −3 characters, with an allowed edit distance of maximally 4.

As seen from the results, the inclusion of context-free weights lower than 1 means that normali-
sation accuracy increases from 77.0% to 78.7% as compared to normalisation without special
weights. Including context-sensitive weights as well, the normalisation accuracy increases
further to 79.1%. The training corpus used in this experiment is however rather small (10,735

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 174 of 474]

tokens with a spelling that is different from the manually normalised spelling). It is likely that
the inclusion of weights would have a larger impact on normalisation accuracy if more training
data was available.

Approach Accuracy Error Reduction
Baseline 64.6% n/a
Hand-written 72.7% 22.9%
Levenshtein no weights 77.0% 35.0%
Levenshtein context-free weights 78.7% 39.9%
Levenshtein context-sensitive weights 79.1% 40.9%

Table 7: Normalisation accuracy and error reduction for different normalisation settings.
Baseline = Unnormalised version of the evaluation corpus. Hand-written = Normalisation
using a set of hand-crafted rules, as presented by Pettersson et al. (2012). Levenshtein no
weights = The normalisation approach described in this paper, with no special weights included.
Levenshtein weights = The normalisation approach described in this paper, with weights lower
than 1 for frequently occurring edits.

5.1.4 Compound Handling

For compound handling, we experimented on adding a compound splitter to the normalisation
process. In this setting, words that are not found in the modern dictionary by the ordinary
normalisation approach, are split into their compound parts, and Levenshtein distance is
calculated for each compound part separately. This feature has a small but positive effect on the
normalisation process. The normalisation accuracy is still 79.1%, as for the best Levenshtein
setting presented in the previous section. At a token level however, 26,997 tokens in the
normalised text are identical to the manually modernised spelling when no compound handling
is performed, as compared to 27,013 identically spelled tokens in the compound setting.

5.1.5 Varying the Threshold for Manually Validated Normalisations

As argued in Section 4.1.5, a small number of frequently occurring incorrectly normalised word
forms may have a large negative impact on the result of contemporary NLP tools when applied
to the normalised text. To avoid this, we created a cache function for manually validated
normalisations observed in the training corpus. As could be expected, the manually validated
cache boosts normalisation performance further. Table 8 summarises the results of varying the
frequency threshold for what words to include in the cache. In this table, cache100 means
that only word forms that occur 100 times or more in the training corpus are included in the
cache. Based on our training corpus, this means that the cache of manually validated word
forms holds 28 entries. In this setting, accuracy improves from 79.1% to 80.9%, increasing
error reduction from 40.9% to 46.0%. If the word forms in the training corpus are sorted by
frequency before manual normalisation is performed, this improvement is achieved by a rather
modest manual annotation effort, since only 28 word forms need to be normalised. Including
less frequent words in the cache improves accuracy as well as error reduction in all cases. When
including all tokens in the validated corpus, regardless of frequency, an overall accuracy of
86.9% is achieved, corresponding to an error reduction of 63.0%.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 175 of 474]

Approach Cache Entries Accuracy Error Reduction
Baseline n/a 64.6% n/a
Hand-written n/a 72.7% 22.9%
Levenshtein, no cache n/a 79.1% 40.9%
Levenshtein, cache100 28 80.9% 46.0%
Levenshtein, cache50 51 81.5% 47.7%
Levenshtein, cache40 71 81.8% 48.6%
Levenshtein, cache30 107 82.1% 49.4%
Levenshtein, cache20 156 82.5% 50.6%
Levenshtein, cache10 319 83.5% 53.4%
Levenshtein, cache1 8272 86.9% 63.0%

Table 8: Normalisation accuracy and error reduction for different normalisation settings.
Baseline = Unnormalised version of the evaluation corpus. Hand-written = Normalisation
using a set of hand-crafted rules, as presented by Pettersson et al. (2012). Levenshtein = The
normalisation approach described in this paper. Cache Entries = Number of entries in the
manually validated cache.

5.2 Tagging

The ultimate goal of the normalisation process is to improve the performance of contemporary
NLP tools when applied to historical texts. In the scope of this study, we do not have access to a
fully linguistically annotated data set for assessing for example tagger performance before and
after normalisation. However, the corpus used in our experiments has been created within the
Gender and Work project (Ågren et al., 2011), where there is a specific interest in the verbs
included in the text. Therefore, all verbs in the evaluation corpus have been manually annotated
as verbs, and we may indirectly evaluate the performance of the tagger based on precision and
recall measures regarding verb identification. In these experiments, part-of-speech tagging is
performed using HunPOS (Halácsy et al., 2007), a free and open source reimplementation of
the HMM-based TnT-tagger by Brants (2000). The tagger is used with a pre-trained language
model based on the Stockholm-Umeå Corpus (SUC).

Table 9 presents precision and recall measures for verb extraction, based on the best settings for
our Levenshtein approach as regards normalisation accuracy, i.e. 1) allowing for the normali-
sation candidates to differ in string length from the original word form by at most +1 to −3
characters, 2) with a valid edit distance of maximally 4, 3) with weights lower than 1 for fre-
quently occurring edits, 4) with compound handling, and 5) with a threshold of 1 for manually
validated normalisations in the cache. The results are also compared to verb extraction from
unnormalised text, as well as verb extraction based on normalisation using manually written
rules. The hand-crafted normalisation rules have a positive impact on the results, increasing
recall from 64.2% for unnormalised text to 78.0%. With the Levenshtein approach this figure is
increased further to 86.2%. At the same time, precision increases from 77.9% to 80.0% with
the rule-based approach, and increases further to 83.3% using the Levenshtein method. To get
an idea of the optimal performance on historical text, we also tried verb extraction based on
the manually normalised gold standard version of the test text. This resulted in a precision of
90.1% and a recall of 92.3%. This could be compared to the evaluation scores achieved for verb
extraction for contemporary text, in this case the SUC corpus, with a 99.1% precision and recall.
This indicates that even with perfect spelling normalisation, some differences in language such

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 176 of 474]

as vocabulary, morphology and syntax, still need to be handled to achieve the same results as
for modern language.

Approach Precision Recall F-score
Baseline 77.9% 64.2% 70.4%
Hand-written 80.0% 78.0% 79.0%
Levenshtein 83.3% 86.2% 84.7%
Gold Standard Normalisation 90.1% 92.3% 91.2%
Contemporary text (SUC) 99.1% 99.1% 99.1%

Table 9: Precision and recall measures for verb identification based on the approach of hand-
written rules (Pettersson et al., 2012) versus Levenshtein distance calculations. Baseline = Verb
identification results when no normalisation is performed.

6 Conclusion

In this paper, we have proposed an approach to normalisation of historical text based on string
similarity, using context-sensitive, weighted Levenshtein edit distance combined with compound
splitting. We have evaluated our method both with respect to normalisation accuracy and
regarding verb identification performance using a contemporary part-of-speech tagger on the
normalised version of the input text.

With the presented approach, the proportion of tokens with an identical spelling to the gold
standard spelling increased from a baseline of 64.6% (for unnormalised text) to 77.0%, using
no manually annotated data for training. When including Levenshtein weights and a validated
cache created on the basis of a small, manually normalised historical training corpus, normali-
sation accuracy increased further to 86.9% in the best setting. Furthermore, it is encouraging
that both precision and recall increase for verb identification based on tagging, since the ulti-
mate goal of the normalisation procedure is to enable the use of contemporary NLP tools for
analysing historical data. The results are indeed promising, since our approach requires little or
no manually annotated historical data, and is generalisable to similar (or somewhat distant)
normalisation tasks for historical or other low density languages.

Future work includes refinement of the Levenshtein approach to normalisation, as well as
exploring alternative techniques. One refinement could be to make the choice of normalisation
candidates context-sensitive. Currently, the final normalisation candidate is solely chosen on
a word-by-word basis, meaning that the same candidate will be chosen regardless of context.
As for alternative techniques, it would be interesting to experiment with a phonetically based
similarity measure for generating normalisation candidates. This seems reasonable since the
lack of spelling conventions probably made the texts more alike spoken language than today.

Finally, it would also be interesting to try our normalisation approach in a different setting, such
as other time periods and languages. This is enabled by the modularity and generalisability of
the appoach, only requiring access to an electronically available dictionary of contemporary
language. Modules such as the cache of manually validated normalisations could then be
discarded in case of limited resources.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 177 of 474]

References

Ågren, M., Fiebranz, R., Lindberg, E., and Lindström, J. (2011). Making verbs count. The
research project ’Gender and Work’ and its methodology. Scandinavian Economic History
Review, 59(3):271–291. Forthcoming.

Baron, A. and Rayson, P. (2008). Vard2: A tool for dealing with spelling variation in historical
corpora. In Postgraduate Conference in Corpus Linguistics, Aston University, Birmingham.

Black, A. W. and Taylor, P. (1997). Festival speech synthesis system: system documentation.
Technical report, University of Edinburgh, Centre for Speech Technology Research.

Bollmann, M. (2012). (semi-)Automatic Normalization of Historical Texts using Distance
Measures and the norma tool. In Proceedings of the Second Workshop on Annotation of Corpora
for Research in the Humanitites (ACRH-2).

Bollmann, M., Petran, F., and Dipper, S. (2011). Rule-based normalization of historical texts.
In Proceedings of the Workshop on Language Technologies for Digital Humanities and Cultural
Heritage, pages 34–42, Hissar, Bulgaria.

Borin, L., Forsberg, M., and Lönngren, L. (2008). Saldo 1.0 (svenskt associationslexikon
version 2). Språkbanken, University of Gothenburg.

Brants, T. (2000). TnT - a statistical part-of-speech tagger. In Proceedings of the 6th Applied
Natural Language Processing Conference (ANLP), Seattle, Washington, USA.

Ejerhed, E. and Källgren, G. (1997). Stockholm Umeå Corpus. Version 1.0. Produced
by Department of Linguistics, Umeå University and Department of Linguistics, Stockholm
University. ISBN 91-7191-348-3.

Halácsy, P., Kornai, A., and Oravecz, C. (2007). HunPos - an open source trigram tagger. In
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, pages
209–212, Prague, Czech Republic.

Jurish, B. (2008). Finding canonical forms for historical German text. In Storrer, A., Geyken,
A., Siebert, A., and Würzner, K.-M., editors, Text Resources and Lexical Knowledge: Selected
Papers from the 9th Conference on Natural Language Processing (KONVENS 2008), pages 27–37.
Mouton de Gruyter, Berlin.

Jurish, B. (2010). More Than Words: Using Token Context to Improve Canonicalization of
Historical German. Journal for Language Technology and Computational Linguistics, 25(1):23–
39.

Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Computing
Surveys (CSUR), 24(4):377–439.

Levenshtein, V. (1966). Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10(8):707–710.

Pettersson, E., Megyesi, B., and Nivre, J. (2012). Rule-based normalisation of historical text -
a diachronic study. In Proceedings of the First International Workshop on Language Technology
for Historical Text(s), Vienna, Austria.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 178 of 474]

Rayson, P., Archer, D., and Nicholas, S. (2005). VARD versus Word – A comparison of the
UCREL variant detector and modern spell checkers on English historical corpora. In Proceedings
from the Corpus Linguistics Conference Series on-line e-journal, volume 1, Birmingham, UK.

Stymne, S. (2008). German compounds in factored statistical machine translation. In
Ranta, A. and Nordström, B., editors, Proceedings of GoTAL, 6th International Conference on
Natural Language Processing, volume 5221, pages 464–475, Gothenburg, Sweden. Springer
LNCS/LNAI.

Stymne, S. and Holmqvist, M. (2008). Processing of Swedish Compounds for Phrase-Based
Statistical Machine Translation. In Proceedings of the 12th EAMT conference, Hamburg, Ger-
many.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 179 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 180 of 474]

Modeling OOV Words With Letter N-Grams in Statistical
Taggers: Preliminary Work in Biomedical Entity Recognition

Teemu Ruokolainen1 Miikka Silfverberg2

(1) Aalto University, Helsinki, Finland
(2) University of Helsinki, Helsinki, Finland

teemu.ruokolainen@aalto.fi, miikka.silfverberg@helsinki.fi

We discuss sequential tagging problems in natural language processing using statistical method-
ology. We propose an automatic and domain-independent approach to modeling out-of-
vocabulary (OOV) words, that is words that do not occur in training data. Our method is
based on using probabilistic letter n-gram models to model orthography of different tags. We
show how to combine the approach with two widely used statistical models Hidden Markov
Models and Conditional Random Fields. Instead of taking the common approach of directly
using sub-strings as features resulting in an explosion in the number of model parameters,
we compress orthographic information into a small number of parameters. Experiments in
biomedical entity recognition on the Genia corpus show that the approach can alleviate the
OOV problem resulting in improvement in overall model performance.

KEYWORDS: Biomedical Entity Recognition, CRF, HMM, Letter N-Grams, OOV, Tagging.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 181 of 474]

1 Introduction
We discuss sequential tagging problems in natural language processing (NLP) including tasks
such as part-of-speech (POS) tagging (Brants, 2000), shallow parsing (Tjong Kim Sang and
Buchholz, 2000), and named entity recognition (NER) (Tjong Kim Sang and De Meulder, 2003).
Modern NLP approaches rely on data-driven statistical models trained using manually tagged
training corpora. Commonly applied models include Hidden Markov Models (HMMs) (Brants,
2000), Maximum Entropy Markov Models (MEMMs) (McCallum et al., 2000), and Conditional
Random Fields (CRFs) (Lafferty et al., 2001). In this work, we present preliminary work on
an automatic, domain-independent approach for extracting orthographic features useful for
modeling rare words and out-of-vocabulary words, that is words which were not observed in
the training data.

All existing supervised statistical models utilize some form of feature functions, which extract
relevant information from training sentences. In sequential word tagging problems, the word
forms themselves and the words surrounding them are by default the most useful features.
Consider for example POS tagging given a relatively large training corpus. For words that are
frequently observed during training, it is reasonable to assume that all of the possible tags
of the words are present in the training data. For these words, tagging is thus reduced to
disambiguation between a limited set of known tags based on neighboring words and their tags.

Unfortunately, the word form itself is not a useful feature for out-of-vocabulary (OOV) words.
For OOV words essentially all tags are possible, which makes disambiguation based on word and
tag context more difficult. The OOV problem is typically most severe when only a small amount
of data is available for model training, and when dealing with languages with rich morphology.
The OOV problem is important, because manually tagging large amounts of training data is
resource intensive. In order to alleviate the OOV problem, it is beneficial to enrich the model
with sub-word features which model word orthography and morphology.

In some modeling problems, designing the sub-word features requires little knowledge about the
domain of the problem. For example in POS tagging, simple features describing capitalized let-
ters, presence of digits and suffixes of varying lengths, are sufficient for many languages (Brants,
2000). However, for morphologically complex languages and tasks such as NER this approach is
inadequate. Instead, domain-specific knowledge is required for manually writing a set of regular
expressions, which are then used in feature extraction. An alternative domain independent and
automatic approach is to utilize sub-strings as features. In this work, we discuss a modification
of this approach. In contrast to using a large amount of sub-string features, out approach is
based on a small number of features utilizing letter n-gram models, which are easy to employ
using existing efficient toolkits. We describe how to incorporate the features with HMM and
CRF models.

In order to evaluate our method, we present experiments in biomedical entity recognition,
a special case of NER, on the Genia corpus (Kim et al., 2004). Our results show, that the
letter n-gram features can improve the model performance with small training sets. The
improvements are more notable with CRFs, which as a discriminative log-linear model can
naturally incorporate complex, non-independent features. Although the present work focuses
on biomedical entity extraction, we believe that the approach could be beneficial in other
domains as well.

The rest of the paper is as follows. In Section 2, we briefly discuss previous, related research. In
Section 3, we describe the letter n-gram models and how to use them to extract orthographic

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 182 of 474]

features for the HMM and CRF models. Experiments conducted in biomedical entity recognition
are described In Section 4 along with a discussion. We provide conclusions in Section 5.

2 Related Work

In the experimental section of this work, we provide results on the Genia corpus, the data set
used in the shared task of biomedical entity recognition in the joint workshop of BioNLP/NLPBA
2004 (Kim et al., 2004). Among the participants of this task, the most commonly adopted
approach to modeling OOV words was to use manually constructed regular expressions and
affixes combined with gazetteers and POS features. This was the approach taken by the best
performing system described by (Zhou and Su, 2004). We compare our n-gram-based feature
extraction approach with the regular expression set used in their system, originally described
by (Shen et al., 2003), and show that our method performs better1.

The idea of constructing a domain-independent set of orthographic features utilizing letter
n-grams is not new. Probabilistic letter n-gram models have been used in term recognition.
For example (Vasserman, 2004) employed them as classifiers in chemical name recognition
in a similar manner they have been utilized in language identification (Vatanen et al., 2010).
Our use of the n-gram models to capture word orthography closely resembles theirs. However,
we investigate incorporating letter n-gram models as feature extractors in statistical taggers.
Also, plain letter n-grams (raw sub-strings of words) have been used extensively as features in
taggers, see for example (Rössler, 2004). However, this approach results in an explosion in the
number of model parameters, which could be avoided by using the feature extraction approach
presented in this work.

Automatic and domain-independent orthographic feature extraction was recently discussed
by (Fujii and Sakurai, 2012). The central idea in their work was to employ combined tag level
and character level language models based on a hierarchical Bayesian approach. They also
described experiments on the Genia corpus. However, our CRF model appears to outperforms
their model. Additionally, although orthographic features are used to combat the OOV problem
and have little effect on recognition of frequent words, the discussion provided by (Fujii and
Sakurai, 2012) lacks this aspect completely.

To our knowledge, the highest performance on the Genia corpus has been reported by (Vish-
wanathan et al., 2006). Our work is similar to theirs in that we use a CRF model. The key
differences are that their results were obtained using an extensive regular expression set and
manually prepared features. Unfortunately, the description of the features in the work was
severely underspecified and we could not reproduce their results. This made it impossible to
compare the system to our system. Additionally, their evaluation is non-standard in that they
fitted model parameters directly to the test set instead of using a development set. This results
in overly optimistic performance. The reason for the non-standard evaluation in their work was
that they focused on comparing time complexities of model optimization algorithms instead of
model performances.

3 Methods

In this section, we describe the methods. We first describe the letter n-gram models. Then, we
go on to describe how to utilize the n-grams in the lexical model of an HMM and for feature
extraction in CRFs.

1Note, however, that their system incorporates a wide variety of other contextual features thus achieving higher
overall performance.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 183 of 474]

3.1 Obtaining Tag-Specific Word Likelihoods Using Letter N-Grams

Letter-based language models are used to assign a probability for a word represented as a
sequence of letters (w1, w2, . . . , wm−1, wm). Given the sequential nature, a suitable approach
to obtaining the probability is to use a factorization

p(word) =
m∏

i=1

p(wi | w1, . . . , wi−1) , (1)

where p(wi | w1, . . . , wi−1) denotes the probability of letter wi given the context (w1, . . . , wi−1).
Due to sparsity, the context is usually approximated utilizing only the n− 1 previous letters
(Markov assumption) yielding the approximation

png(word)≈
m∏

i=1

png(wi | wi−n+1, . . . , wi−1) , (2)

where the distribution png(wi | wi−n+1, . . . , wi−1) is referred to as the letter n-gram model. The
individual probabilities png(wi | w1, . . . , wi−1) can be obtained using smoothed maximum
likelihood estimates (Chen and Goodman, 1999) or the maximum entropy model (Chen and
Rosenfeld, 2000).

The key idea of our approach for is to learn a separate letter n-gram model for each tag in the
tag set. This can be achieved by dividing the words observed in the training corpus into L sets,
where L is the number of tags, so that each set contains words that have been tagged at least
once with the corresponding tag. Then, a tag-specific n-gram model

png(wi | w1, . . . , wi−1, tag)

can be trained on each of the words sets. Hence, the likelihood of a word being generated by a
n-gram model corresponding to a particular tag can then be written as

png(word | tag) =
m∏

i=1

png(wi | wi−n+1, . . . , wi−1, tag) . (3)

3.2 Hidden Markov Models

Model. Hidden Markov Models (HMMs) are a well known generative statistical model suitable
for tagging and segmentation tasks (Brants, 2000). In this work, we employ a second degree
HMM. In a second degree HMM for sentence tagging, the estimate of the probability of a
sequence of tags y = (y1, . . . , yt , . . . , yT) given an input sentence x = (x1, . . . , x t , . . . , xT)
is

p(y | x) =
T∏

t=1

p(x t | yt)p(yt | yt−1, yt−2) . (4)

The estimates p(yt | yt−1, yt−2) are called transition probabilities and can be readily computed
from a training corpus. To deal with data sparseness, some form of smoothing is usually
necessary. We use deleted interpolation following (Brants, 2000).

Two extra tags y0 and y−1 are needed in formula (4) for the trigram estimates p(y2 | y1, y0)
and p(y1 | y0, y−1). These are so called buffer tags #, which are appended to tag sequence
boundaries.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 184 of 474]

Lexical modeling utilizing letter n-grams. The conditional probabilities p(x t | yt) are called
lexical emission probabilities. They are determined by a lexical model. Our HMM implementation
uses a lexical model, which estimates p(x t | yt) for known words based on smoothed ML
estimates computed from training data. It estimates the conditional probability p(x t | yt) for
an OOV word x t and a tag yt as the probability png(x t | yt) given by the letter n-gram model
for tag yt . The lexical emission probability is thus

p(x t | yt) =

¨
(C(x t , yt) +α)/(C(x t) + Nα) if x t is known.

png(x t | yt) if x t is OOV.
(5)

The term N in formula 5 denotes the number of unique word forms in the training data and its
smoothing coefficient α is determined by minimizing the tagging error on a development data
set.

3.3 Linear-chain Conditional Random Fields

Model. Linear-chain Conditional Random Fields (CRFs) are a discriminative, log-linear model
for tagging and segmentation presented originally by Lafferty et al. (2001). The central idea of
the linear-chain CRF is to exploit the dependencies between the output variables using a chain
structured undirected graph, also referred to as a Markov random field.

Formally, the model for input x (words in sentence) and output y (tags) is written as

p (y | x ; w)∝
T∏

t=1

exp
�

w> f (yt , x , t)
� T∏

t=2

exp
�

w> f (yt−1, yt , x , t)
�

, (6)

where t indexes the characters, T denotes sentence length, w the model parameter vector, f
the vector-valued feature extraction function, and w> f dot product between w and f . The
purpose of f is to capture the co-occurrence behavior of the output configurations (yt) and
(yt−1, yt) and a set of features describing the input x at word position t.

As a discriminative log-linear model, the CRFs can naturally incorporate arbitrary, overlapping
features which might be useful for the prediction. The downside of this freedom in feature
design is the larger computational cost of model training compared to the HMM models.

Enriching Orthographic Feature Extraction With Letter N-Grams. The performance of the
CRF model depends heavily on the quality of the features included in the feature vector. As
our default feature set, we use binary-valued features describing the input x at position t with
word identities in position t − 2, . . . , t + 2. This feature set performs well if there exists ample
training data, or generally, if the number of OOV words is small.

In order to alleviate the OOV problem, we propose modeling word orthography utilizing tag-
specific letter n-gram models, png(word|tag), presented in section 3.1. They key idea is to to
represent any arbitrary word using L features, where L is the number of tags in tag set. The
value of each of these features is the posterior probability of the corresponding tag given the
word, png(tag|word). Therefore, instead of using the likelihoods, the CRFs exploit the posterior
probabilities which directly hold the relevant information when choosing best tags for words.
The features are combined with different tag configurations in a standard manner. The aim of

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 185 of 474]

these features is simply to associate a high tag posterior value to a high probability of assigning
the word with that particular tag.

Formally, the posterior probability of a word given a tag is given by the standard Bayes’ rule as

png(tag|word) =
png(word|tag)p(tag)∑

tag ′ png(word|tag ′)p(tag ′)
(7)

where the likelihoods png(word|tag) are obtained as presented in Section 3.1. The tag priors
p(tag) are simply the counts of tags in the training data normalized to sum up to one.

Parameter estimation. In general, the CRF model parameters w are estimated using a train-
ing set of annotated text using, for example, the maximum likelihood criterion as in (Lafferty
et al., 2001). In this work, we estimate the parameters using the averaged structured perceptron
algorithm presented by Collins (2002). The perceptron algorithm proceeds one training instance
at a time by performing maximum a posteriori (MAP) inference, that is prediction of most likely
output configuration over the graph, using the standard Viterbi search, and by updating the
model parameters using a simple additive rule if an erroneous prediction occurs. Subsequent to
training, test instances are tagged again using the Viterbi search. The structured perceptron has
a single hyper-parameter, namely the number of passes over training data, which is optimized
using a separate development set.

4 Experiments

We present experiments conducted in biomedical entity recognition on the extended GENIA
(version 3) corpus (Kim et al., 2004). We compare three feature sets, namely word identities
for baseline, word identities combined with a set of regular expressions adapted from the ones
used by (Shen et al., 2003), and word identities combined with letter n-gram based features
using HMM and CRF models as described in Section 3. Appendix A contains the complete set of
regular expressions that we used.

4.1 Setup

Task and data. Bio-entity recognition is the task of finding and classifying biological entities
such as the protein CD28 surface receptor in the sentence fragment “Activation of the CD28
surface receptor provides...”. The task is viewed as tagging the words in a sentence using three
basic tag types: beginning of an entity (B) , inside an entity (I) and outside an entity (O) as
illustrated in Figure 1.

MTIIa mRNA level increased significantly .
B-RNA I-RNA I-RNA O O O

Figure 1: Biological entities X are chains B-X I-X ...

The GENIA corpus (Kim et al., 2004) consists of biomedical abstracts with a manually prepared
named entity annotation. Each word token in the corpus is annotated with a bio-entity tag or
an O tag if the word does not belong to a bio-entity. The tag set consists of 11 entity tags: the O
tag and {B, I} tags for five entity classes corresponding to DNA, RNA, protein, cell line and cell
type respectively. Additionally, we assume sentence start and end tags and markers.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 186 of 474]

Data Set Sentences Words
Train. 114 2798
Train. 229 5865
Train. 459 11667
Train. 918 23675
Train. 1836 48291
Train. 3672 97290
Train. 7345 194637
Train. 14690 390058
Devel. 3856 102493
Test 3856 101039

Table 1: Number of sentences and word tokens in training, development and test data sets.

By default, the corpus is divided into training (18,546 sentences, 492,551 tokens) and test
(3,856 sentences, 101,039 tokens) sets. We form a separate development set by extracting
the last 3,856 sentences (102,493 tokens) from the training set. In order to observe the effect
of training data set size on model performances, we form eight training sets by taking first n
sentences from the total 14,690 training instances for various values of n, see Table 1.

Model evaluation. The model performances are evaluated using the f-score. The f-score is
the geometric mean of micro-averaged precision (the percentage of correctly assigned entities
with respect to all assigned entities) and recall (the percentage of correctly assigned entities
with respect to the gold standard entities).

Feature extraction. We compare three different feature sets. The first set is the WORD set,
which includes only the current word to be tagged for HMMs and a five word window around
the current word for CRFs as described in Sections 3.2 and 3.3, respectively. The second set
is the REGEXP set, which additionally contains the regular expressions originally presented
by (Shen et al., 2003) (see Appendix A). The third set is the N-GRAM set, which consists of
the WORD features combined with letter n-gram features as described in Sections 3.2 and 3.3,
respectively.

N-gram model, CRF and HMM training. We trained the tag-specific letter n-gram models
on training sets of various sizes described in Table 1. We used the SRILM toolkit (Stolcke et al.,
2011) to implement the n-gram models. More specifically, we used n-grams of length 9 with
Witten-Bell smoothing, which appeared to work sufficiently well in preliminary experiments on
the development data set. The HMM and CRF models were trained on the training data sets
using three feature sets (WORD, REGEXP, N-GRAM) as described in Sections 3.2 and 3.3. As to
CRF model training, the perceptron algorithm is terminated when development set performance
has not improved during the last five passes over the training set.

Software. We used our own implementations of the CRF and HMM models. For training the
letter n-gram models, we used SRILM as described above.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 187 of 474]

Train. OOV WORD REGEXP N-GRAM
114 35.8 34.1 22.7 27.3 33.2 26.8 29.7 29.4 37.5 33.0
229 28.3 41.5 28.2 33.5 40.4 33.2 36.4 33.1 46.1 38.5
459 22.1 48.8 35.5 41.1 48.0 40.1 43.7 41.2 47.8 44.2
918 17.4 52.8 41.0 46.1 52.3 40.1 48.7 46.0 53.0 49.3

1836 13.5 56.7 44.3 49.8 56.8 49.2 52.7 52.4 56.8 54.5
3672 10.0 61.1 51.2 55.7 59.8 54.8 57.2 57.0 61.7 59.3
7345 7.2 64.2 58.7 61.3 63.6 61.0 62.2 61.9 65.4 63.6

14690 5.2 67.5 64.2 66.5 65.8 65.5 66.0 65.5 69.4 67.4

Table 2: Results for the CRF model using varying training data set sizes (in sentences) and
feature sets. For each feature set, the figures are recall, precision and f-score.

Train. OOV WORD REGEXP N-GRAM
114 35.8 22.0 35.6 27.2 20.5 34.5 25.7 16.5 7.7 10.5
229 28.3 27.2 37.0 31.4 26.3 35.7 30.3 27.1 15.1 19.4
459 22.1 33.4 42.3 37.3 32.5 40.8 36.2 34.6 32.4 33.5
918 17.4 37.0 44.8 40.6 39.1 44.7 41.7 41.5 40.3 40.0

1836 13.5 40.5 47.7 43.8 42.8 47.8 45.1 47.1 45.9 46.5
3672 10.0 46.7 51.0 48.7 49.0 50.5 49.7 53.4 50.9 52.1
7345 7.2 52.0 53.8 52.9 53.5 53.0 53.3 57.1 55.1 56.1

14690 5.2 56.5 56.6 56.6 57.8 56.3 57.0 60.4 57.4 58.9

Table 3: Results for HMMs using varying training data set sizes (in sentences) and feature sets.
For each feature set, the figures are recall, precision and f-score.

4.2 Results

The results for varying training data set sizes are presented in Tables 2 and 3 for the CRF and
HMM models, respectively. The columns titled OOV correspond to the percentages of OOV
word tokens in the test set. The performance values obtained using different feature sets are in
order recall, precision, and f-score.

Using the CRF model, the regular expression feature set provided modest, yet consistent,
improvement over the word identity context baseline. Utilizing the letter n-gram features
yielded performance gains compared to both the word identity context baseline and the regular
expression feature set. This improvement took place when small training sets were used.

The results for the HMM models using the different feature sets differ somewhat from the results
of the CRF models. Both the REGEXP and N-GRAM features initially perform worse than the
WORD features. Roughly the same performance for all features is achieved when there are 918
sentences of training data and in the next training set of 1836 sentences the N-GRAM features
outperform the other feature sets. The result for the complete training set of 14690 sentences
shows that the N-GRAM feature set is the best one achieving f-score 58.9 versus 57.0 for the
REGEXP features and 56.6 for the WORD features. Overall, the HMMs consistently resulted in
considerably worse performance compared to the CRF models for all training sets and features.
The improvement given by the N-GRAM features is comparable to the improvements for the
CRF model.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 188 of 474]

4.3 Discussion

For the complete data set, the letter n-gram features give the best results for both the HMM
and the CRF. However, the CRF model clearly outperforms the HMM for all training data set
sizes and all feature sets. The improvements given by the letter n-gram features are similar for
the CRF and HMM models. However the CRF model with letter n-gram features consistently
outperform the models with other feature sets for all training data set sizes. In contrast, the
HMM with letter n-gram features performs worse than the models with word and regex features
when the training set is smaller than 918 sentences.

Unfortunately, our baseline models are too weak to allow for a conclusive assessment of the
impact of our approach. A model trained on suffixes and prefixes or all sub-strings of words
should have been included in the evaluation. Such an approach could give higher performance,
but would also result in a substantially higher number of features implying a longer training
time and greater memory footprint.

The performance of the letter n-gram feature HMM clearly shows that the letter n-grams are
not very reliable on small training sets. Nevertheless the letter n-gram model of the CRF model
achieves improvements even for the smallest training set of 114 sentences. This is most likely a
direct result of the discriminative training of CRF models, which can successfully integrate the
uncertain information given by the letter n-grams.

The poor performance of the HMM compared to the CRF may partly be explained by the fact
that there are two useful information sources which the HMM cannot use, but the CRF can
utilize. Neighboring words cannot be used in the lexical model of the HMM. Our attempts to do
this in the development phase were unsuccessful.

Finally, direct comparison of our models with the hierarchical Bayesian approach reported
by (Fujii and Sakurai, 2012) is difficult because their model was trained using a semi-supervised
approach. In other words, when using small data set sizes, their model exploited the remainder
of the training corpus without the tagging information. Effectively, this means that compared
to our approaches, their model utilized more data in training. However, a fair comparison
can be made when all the models used the complete training data set of 18,546 sentences for
training and model development. Using this full data, our CRF model outperformed their model
regardless of the feature set. Additionally, the CRF model utilizing the letter n-gram features
appeared to yield at least comparable if not improved performance compared to their model on
smaller data sets.

5 Conclusions

We discussed biomedical entity recognition using statistical methodology. We proposed an
automatic and domain-independent approach to modeling OOV words utilizing probabilistic
letter n-gram models. We described how to combine the approach with Hidden Markov
Models and Conditional Random Fields. The motivation behind our approach was to compress
orthographic information captured by sub-strings in a small set of features. Experiments in
biomedical entity recognition showed that the approach did alleviate the OOV problem resulting
in improved overall model performance. Unfortunately, the true impact of the discussed
approach is left unclear due to the lack of strong baselines in this preliminary work.

In future work, we aim to extend the experimental results provided in this paper with additional
data sets, improved baseline models, and closer error analysis on OOV words.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 189 of 474]

Acknowledgments

This work was financially supported by the Academy of Finland under the grant no 251170
(Finnish Centre of Excellence Program (2012-2017)) and Langnet (Finnish doctoral programme
in language studies).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 190 of 474]

References

Brants, T. (2000). Tnt - a statistical part-of-speech tagger. In Proceedings of the Sixth Applied
Natural Language Processing (ANLP-2000), Seattle, WA.

Chen, S. and Goodman, J. (1999). An empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359–393.

Chen, S. and Rosenfeld, R. (2000). A survey of smoothing techniques for me models. Speech
and Audio Processing, IEEE Transactions on, 8(1):37–50.

Collins, M. (2002). Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the ACL-02 conference on Empirical
methods in natural language processing, volume 10, pages 1–8. Association for Computational
Linguistics.

Fujii, R. and Sakurai, A. (2012). Technical term recognition with semi-supervised learning
using hierarchical bayesian language models. Natural Language Processing and Information
Systems, pages 327–332.

Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., and Collier, N. (2004). Introduction to the
bio-entity recognition task at jnlpba. In Proceedings of the International Joint Workshop on
Natural Language Processing in Biomedicine and its Applications, JNLPBA ’04, pages 70–75,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML ’01, pages 282–289, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

McCallum, A., Freitag, D., and Pereira, F. (2000). Maximum entropy markov models for
information extraction and segmentation. In Proceedings of the Seventeenth International
Conference on Machine Learning, volume 951, pages 591–598.

Rössler, M. (2004). Adapting an ner-system for german to the biomedical domain. In Proceed-
ings of the International Joint Workshop on Natural Language Processing in Biomedicine and its
Applications, JNLPBA ’04, pages 92–95, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Shen, D., Zhang, J., Zhou, G., Su, J., and Tan, C. (2003). Effective adaptation of a hidden
markov model-based named entity recognizer for biomedical domain. In Proceedings of the
ACL 2003 workshop on Natural language processing in biomedicine-Volume 13, pages 49–56.
Association for Computational Linguistics.

Stolcke, A., Zheng, J., Wang, W., and Abrash, V. (2011). Srilm at sixteen: Update and outlook.
In Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop.

Tjong Kim Sang, E. F. and Buchholz, S. (2000). Introduction to the conll-2000 shared task:
chunking. In Proceedings of the 2nd workshop on Learning language in logic and the 4th
conference on Computational natural language learning - Volume 7, ConLL ’00, pages 127–132,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 191 of 474]

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the conll-2003 shared
task: language-independent named entity recognition. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 142–147,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Vasserman, A. (2004). Identifying chemical names in biomedical text: an investigation
of the substring co-occurrence based approaches. In Proceedings of the Student Research
Workshop at HLT-NAACL 2004, HLT-SRWS ’04, pages 7–12, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Vatanen, T., Väyrynen, J. J., and Virpioja, S. (2010). Language identification of short text
segments with n-gram models. In Chair), N. C. C., Choukri, K., Maegaard, B., Mariani, J.,
Odjik, J., Piperidis, S., Rosner, M., and Tapias, D., editors, Proceedings of the Seventh conference
on International Language Resources and Evaluation (LREC’10), Valletta, Malta. European
Language Resources Association (ELRA).

Vishwanathan, S. V. N., Schraudolph, N. N., Schmidt, M. W., and Murphy, K. P. (2006). Acceler-
ated training of conditional random fields with stochastic gradient methods. In Proceedings of
the 23rd international conference on Machine learning, ICML ’06, pages 969–976, New York,
NY, USA. ACM.

Zhou, G. and Su, J. (2004). Exploring deep knowledge resources in biomedical name recog-
nition. In Proceedings of the International Joint Workshop on Natural Language Processing in
Biomedicine and its Applications, JNLPBA ’04, pages 96–99, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 192 of 474]

A Regular expression features

The regular expression features in Python Re-syntax adapted from (Shen et al., 2003).

Feature name Regular expression
Comma ^[,]$
Dot ^[.]$
Left Paren. ^[(]$
Right Paren. ^[)]$
Left Square Bracket ^[\[]$
Right Square Bracket ^[\]]$
Roman Numeral ^[IVXCM]+$
Greek Letter ^(Alpha| ... |Omega|alpha| ... |omega)$
Stop Word ^(a|about|...)$
ATCG Sequence ^[ATCG]+$
Digit ^[0-9]$
All Digits ^[0-9]+$
Digit Comma Digit ^[0-9]+[,][0-9]+$
Digit Dot Digit ^[0-9]+[.][0-9]+$
Capital ^[A-Z]$
All Capitals ^[A-Z]+$
Capital Low Alpha ^[A-Z][a-z]+$
Capital Mix Alpha ^[A-Z]([A-Za-z]*[a-z][A-Za-z]*[A-Z][A-Za-z]*|$

[A-Za-z]*[A-Z][A-Za-z]*[a-z][A-Za-z]*)$
Low Mix Alpha ^[a-z]([A-Za-z]*[a-z][A-Za-z]*[A-Z][A-Za-z]*|$

[A-Za-z]*[A-Z][A-Za-z]*[a-z][A-Za-z]*)$
Alpha Digit Alpha ^[A-Za-z][0-9]+[A-Za-z]$
Alpha Digit ^[A-Za-z][0-9]+$
Digit Alpha Digit ^[0-9]+[A-Za-z][0-9]+$
Digit Alpha ^[0-9]+[A-Za-z]$

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 193 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 194 of 474]

Baltic and Nordic Parts of the European Linguistic
Infrastructure

Inguna Skadiņa1, Andrejs Vasiļjevs1, Lars Borin2,
Krister Lindén3, Gyri Losnegaard4, Sussi Olsen5, Bolette S. Pedersen5,

Roberts Rozis1, Koenraad De Smedt4

(1) Tilde, Vienibas gatve 75a, Riga, Latvia

(2) University or Gothenburg, Box 100, 405 30 Gothenburg, Sweden

(3) University of Helsinki, Unioninkatu 40, Helsinki, Finland

(4) University of Bergen, Postboks 7800, 5020 Bergen, Norway

(5) University of Copenhagen, CST, Njalsgade 140, 2300 Copenhagen S

metanord@tilde.lv

ABSTRACT

This paper describes scientific, technical, and legal work done on the creation of the linguistic

infrastructure for the Nordic and Baltic countries. The paper describes the research on assessment

of language technology support for the languages of the Baltic and Nordic countries, work on

establishing a language resource sharing infrastructure, and collection and description of linguistic

resources. We present improvements necessary to ensure usability and interoperability of language

resources, discuss issues related to intellectual property rights for complex resources, and describe

extension of infrastructure through integration of language-resource specific repositories. Work on

treebanks, wordnets, terminology resources, and finite-state technology is described in more detail.

Finally, our approach on ensuring the sustainability of infrastructure is discussed.

KEYWORDS: language resources and tools, linguistic infrastructure, under-resourced languages,

multilinguality, treebanks, wordnets, terminology banks.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 195 of 474]

1 Introduction

The previous decades of research in language technologies (LT) have produced numerous language

resources and tools for languages of the Nordic and Baltic countries. At the same time, not only

are there major gaps in availability of the key resources, but the existing ones are often hard to find

and difficult to use. Resources are dispersed among different institutions and local repositories, and

they are often coded in proprietary formats lacking interoperability and uniformity. There are also

restricted or unclear intellectual property rights. These factors are major stumbling blocks for the

development and research of language technology.

To overcome these difficulties, the Nordic and Baltic countries play a leading role in pan-European

activities regarding the creation of the European open linguistic infrastructure. Major progress is

achieved by the CLARIN 1 (Váradi et al., 2008) initiative creating a language resource

infrastructure for research in humanities. Another complementary infrastructure is under

development by the META-NET network2 focusing on the practical needs of developers, users,

and researchers of multilingual resources.

The Baltic and Nordic countries are active participants in both — CLARIN and META-NET —

networks. Official languages of these countries (Danish, Estonian, Finnish, Icelandic, Latvian,

Lithuanian, Norwegian, and Swedish), as well as other languages spoken in these countries, are

under-resourced in respect to availability of at least some of the key language technologies or

resources. Thus, such initiatives as CLARIN and META-NET are essential for identification,

documentation, and making widely available the language resources for these languages, and these

initiatives provide significant support in filling essential gaps in resources and technologies.

In the META-NET network, work on the creation of an open European linguistic infrastructure

and making language resources widely available was performed through four projects supported

by the European Commission: CESAR (Central and Eastern European countries), METANET4U

(Southern European countries and the United Kingdom), META-NORD (Baltic and Nordic

countries), and T4ME (initiator and coordinator of META-NET network). In this paper, we

describe our experience and work done on building the Baltic and Nordic parts of the European

linguistic infrastructure in the META-NORD project (Vasiļjevs et al., 2011; Skadiņa et al., 2011),

which included the following major tasks:

 Research on the language technology landscape in the Nordic and Baltic countries in terms

of language use, language technology and resources, and main actors.

 Work on identification and collection of language resources in the Baltic and Nordic

countries and documenting, processing, linking, and upgrading them to agreed standards

and guidelines.

 Research and practical work on consistent approaches, practices, and standards that ensure

wider accessibility, easier access, and reuse of quality language resources.

 Research and development work done on linking and validating the Nordic and Baltic

wordnets, harmonisation of multilingual Nordic and Baltic treebanks, consolidation of

multilingual terminology resources across European countries, and development of

mature and language independent tools.

 Issues related to intellectual property rights (IPR) for the sharing of language resources.

1 Common Language Resources and Technology Infrastructure, http://www.clarin.eu
2 http://www.meta-net.eu

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 196 of 474]

 Work on building and operating broad, non-commercial, community-driven, inter-

connected repositories, exchanges, and facilities that can be used by different categories

of user communities.

2 Language technology landscape

Important steps towards the creation of a linguistic infrastructure are an assessment of the state of

the art of the language technology field, identification of existing language resources, assessment

of resources, and understanding the needs of potential users. Reports on the national language

technology landscape3 for each official language spoken in the Nordic and Baltic geographical area

(Danish, Estonian, Finnish, Icelandic, Latvian, Lithuanian, both Norwegian varieties Nynorsk and

Bokmål, and Swedish) describe and analyse the situation of the language community and the

position of the language service and language technology industry. These reports also contain

general facts about the language (number of speakers, official status, dialects, etc.), particularities

of the language, recent developments in the language, language cultivation, language in education,

international aspects, as well as the role of the language on the Internet.

The reports also present assessment of language technology support and the core application areas

of language and speech technology (e.g., language checking, web search, speech interaction,

machine translation, etc.), and describe the situation with respect to these application areas. For

each language, language resources and tools (LRT) are assessed based on the following criteria:

quantity, availability, quality, coverage, maturity, sustainability, and adaptability. The results

indicate that only with respect to the most basic tools and resources, such as tokenisers, PoS

taggers, morphological analysers/generators, reference corpora, and lexicons/terminologies, the

status is reasonably positive for all languages. However, tools for information extraction, machine

translation, and speech recognition, as well as resources such as parallel corpora, speech corpora,

and grammar, are rather simple and have limited functionality for some of the languages. For the

most advanced tools and resources, such as discourse processing, dialogue management, semantics

and discourse corpora, and ontological resources, most of the languages either have nothing of the

kind, or their tools and resources have a quite limited scope.

This assessment of language technology support clearly demonstrates that for languages of the

Baltic and Nordic countries, where the community of language resource creators and users is small,

even a modest increase in the availability and quality of language resources is appreciable for

technology developers, researchers, and end users.

In addition, detailed analysis and comparison of language technologies and resources across

30 European languages was carried out within the framework of META-NET. The comparison

presents the situation for four key areas: machine translation, speech processing, text analysis, and

resources. This study puts three small languages of the Nordic and Baltic region – Icelandic,

Latvian, and Lithuanian – in the last cluster, defined as having major gaps for all of the four key

areas (see Table 1). The relative ranking of the remaining five languages is slightly higher, although

none of them comes close to the “larger” languages (English, French, Spanish, and German).

“Moderate” support is provided only for Finnish in speech technologies and for Swedish with

respect to language resources.

Besides objective limitations in the size of the LRT creator and user community, there are other

obstacles which put some languages in the “upper” cluster, while others remain in the “bottom”.

3 These reports, also called Language White Papers, are available at http://www.meta-net.eu/whitepapers.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 197 of 474]

Among them is a lack of continuity in research and development funding. For instance, due to

limited funding, Latvian language technology support does not reach the quality and coverage not

only of that for English, but also for many under-resourced languages of the Baltic and Nordic

region with a smaller number of speakers. In many cases, targeted national research and

development activities are urgently needed to fill LRT gaps.

Speech processing

Excellent Good Moderate Fragmentary Weak/None

 English Czech, Dutch,

Finnish, French,

German, Italian,

Portuguese,
Spanish

Basque, Bulgarian, Catalan,

Danish, Estonian, Galician,

Greek, Hungarian, Irish,

Norwegian, Polish, Serbian,
Slovak, Slovene, Swedish

Croatian, Icelandic, Latvian,

Lithuanian, Maltese, Romanian

Machine Translation

Excellent Good Moderate Fragmentary Weak/None

 English French, Spanish Catalan, Dutch, German,

Hungarian, Italian, Polish,
Romanian

Basque, Bulgarian, Croatian.,

Czech, Danish, Estonian,

Finnish, Galician, Icelandic,

Irish, Latvian, Lithuanian,

Maltese, Norwegian, Portuguese,
Serbian, Slovak, Slovene,

Swedish

Text Analysis

Excellent Good Moderate Fragmentary Weak/None

 English Dutch, French,

German, Italian,

Spanish

Basque, Bulgarian, Catalan,

Czech, Danish, Finnish,

Galician, Greek, Hungarian,
Norwegian, Polish,

Portuguese, Romanian, Slovak,

Slovene, Swedish

Croatian, Estonian, Icelandic,

Irish, Latvian, Lithuanian,

Maltese, Serbian

Resources

Excellent Good Moderate Fragmentary Weak/None

 English Czech, Dutch,

French, German,
Hungarian, Italian,

Polish, Spanish,

Swedish

Basque, Bulgarian, Catalan,

Croatian, Danish, Estonian,

Finnish, Galician, Greek,

Norwegian, Portuguese,

Romanian, Serbian, Slovak,
Slovene

Icelandic, Irish, Latvian,

Lithuanian, Maltese

TABLE 1: Availability of LRT for languages of the Baltic and Nordic countries4.

The need for large amounts of data and the complexity of language technology systems make it

vital to develop both an open infrastructure and a more coherent research cooperation in order to

spur greater sharing and reuse of language resources.

4 The table is also available at http://www.meta-net.eu/whitepapers/key-results-and-cross-language-comparison

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 198 of 474]

3 META-SHARE infrastructure in the Baltic and Nordic countries

For distribution and sharing of language resources, the distributed online platform META-SHARE

(Piperidis, 2012) is used. It consists of independent META-SHARE nodes set up in different

countries and interlinked into a federated repository. This freely accessible distributed online

infrastructure provides facilities for describing, storing, preserving of language resources, and

making them publicly available. Among various language data that can be considered useful for

different purposes, META-SHARE places a strong focus on language data that are important in

language technology development for building applications that are useful to EU citizens, primarily

in their everyday communication and information search needs. META-SHARE is intended for

providers and users of language resources and technologies such as LT developers, researchers,

students, translators, technical writers and others.

Currently, META-SHARE nodes are set at the following organisations in the Baltic and Nordic

countries: Tilde5 (Latvia), University of Gothenburg6 (Sweden), University of Helsinki7 (Finland),

Institute of Lithuanian Language8 (Lithuania), University of Copenhagen9 (Denmark), Norwegian

National Library10 (Norway), and University of Tartu11 (Estonia). According to the architecture of

META-SHARE, these nodes are networked, and the content of the individual LR repository is

harvested into the managing META-SHARE node, which for the META-NORD consortium is set

at Tilde. In a managing node, information about catalogued language resources is collected and

synchronised with other managing nodes across Europe, thus providing access to the full catalogue

of the pan-European infrastructure12.

Besides META-SHARE repositories, we have a natural interest to integrate into our infrastructure

several existing collections and databases of specific linguistic resources, such as term banks and

treebanks. These repositories are collections of language resources, where each individual resource

is a candidate to be listed in the META-SHARE catalogue. This could be done manually by

entering all resource descriptions in the META-SHARE editor or by exporting the metadata from

the respective repository, converting it into META-SHARE compliant schema (Gavrilidou et al.,

2012), and importing into META-SHARE node. However, such approaches are time-consuming

and need regular manual updates.

Our proposed and implemented solution for this infrastructure is to integrate complex linguistic

resources or repositories of resources by adapting them to relevant data access and sharing

specifications and interlinking them with META-SHARE. This means that a language resource-

specific repository could seamlessly become a part of the META-SHARE network by enabling the

harvesting of metadata through the META-SHARE communication protocol and ensuring the

mapping of the respective data categories.

For this approach to work the metadata model of the language resource-specific node must include

all the data categories that are mandatory in the META-SHARE repository, as well as include

additional attributes required for the synchronization, such as unique ID, creation and modification

date and revision number.

5 http://metashare.tilde.com/
6 http://spraakbanken.gu.se/metashare/
7 http://metashare.csc.fi/
8 http://meta-share.lki.lt/
9 http://metashare.cst.dk/
10 http://metashare.nb.no/
11 http://metashare.ut.ee/
12 META-SHARE described in details in Piperidis (2012).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 199 of 474]

The integration of a language resource-specific node with META-SHARE is implemented via

proxy: it connects to a META-SHARE managing node just like any other META-SHARE node –

the LR metadata provider is proxied to the rest of the META-SHARE network. Integration of a

language resource-specific node with META-SHARE allows users to access a specific resource

located on a remote repository directly via a link supplied to META-SHARE.

META-NORD project piloted extension of the META-SHARE infrastructure with resource-

specific nodes by integrating distributed terminology database EuroTermBank as described in the

Section 5.3.

4 Identification, collection, and description of language resources in META-
SHARE

During the last two years, more than 500 resources and tools have been identified and made

available by the META-NORD consortium. These include a broad range of different resources for

different languages and language pairs that are suitable for a range of different LT purposes.

Statistical breakdown of the language resources for META-NORD languages available from

META-SHARE platform is summarized in Table 2.

Danish Estonian Finnish Icelandic Latvian Lithuanian Norwegian Swedish

68 67 86 70 69 38 47 151

TABLE 2: Language resources and tools for META-NORD languages documented in

META-SHARE platform.

The criteria for the selection of resources included: availability, popularity, suitability of resources

for technology and product/application development, fitness for multilingual purposes, longevity,

quality, and extensibility.

Initially, the main focus has been on written resources, however, recently there has been an

increased effort to also include a certain number of audio/video resources and tools. Table 3 shows

the distribution of tools and resources available through META-SHARE for the Baltic and Nordic

languages.

Lexical resources (excl. wordnets & speech) 211
Corpora (excl. treebanks & speech) 182
Tools (excl. speech) 43

Language description (grammars) 2

Treebanks 31

Resources for speech 28
WordNets 12

 Total 509

Table 3: META-NORD tools and resources identified and made available through

META-SHARE.

Considerable work documenting, processing, linking, and upgrading these resources to agreed

standards and guidelines has been performed as described in sections 4.1 and 4.2 below.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 200 of 474]

Activities dealing with multilingual wordnets, treebanks, and terminology (cf. Sections 5.1–5.3)

provide examples of how these goals of interoperability in content have actually been achieved for

several of the provided resources.

4.1 Metadata model for the description of language resources

Bird and Simons (2003) have proposed a very useful taxonomy for discussing language

documentation and description. Although originally framed in the context of linguistic description,

their 'seven dimensions of portability' are quite useful also when discussing language resource

interoperability for language technology purposes. Here, language resource metadata and widely

accessible metadata repositories are absolutely essential, addressing – directly or indirectly – four

of their seven dimensions, namely discovery, access, citation, and rights.

All of the contributed language resources are consistently identified and described using a metadata

standard developed as a part of the META-SHARE initiative (Gavrilidou et al. 2011, 2012; Desipri

et al. 2012). The standard, which draws heavily on experiences from previous efforts – such as the

OLAC (Bird and Simons 2001) and CLARIN CMDI (Broeder et al. 2010) metadata schemas –

defines a minimal set of descriptors which must be specified for any resource, but also allows for

supplying much richer information if desired, including free-form narrative descriptions. It is

published in the form of an XML schema. Using the META-SHARE metadata editor makes it easy

to describe resources using the META-SHARE metadata schema, since the editor, for example,

provides listings of the controlled vocabularies of the metadata schema.

Uploading a large number of diverse language resources and tools and the concomitant creation or

conversion of the associated metadata by several large European projects have constituted a kind

of empirical acid test of the appropriateness and usefulness of the META-SHARE schema. We are

happy to report that it has passed this test successfully. For the ‘baseline’ cases, metadata creation

has on the whole been straightforward and unproblematic, and the META-SHARE community

online support13 has generally been able to help in many of the more non-obvious cases.

Of course, it has inevitably turned out that the schema does not cover everything. For instance, it

was discovered that it caters less well for complex multilingual resources, such as the mixed-

language variety text corpora collected in Norway (with articles written in the two official written

Norwegian varieties, Bokmål and Nynorsk, in the same newspaper), as well as for the multilingual

treebanks and linked wordnets (see section 5). This issue, in fact, touches on several design

decisions made for the META-SHARE metadata schema at the very beginning, having to do, for

example, with how language information is encoded and with the structuring of the metadata

records themselves. Because of the work in CESAR, METANET4U, META-NORD, and T4ME

projects, the issues arising in connection with the description of complex language resources have

been brought to the forefront and will be addressed in future releases of the META-SHARE

metadata schema.

4.2 Improving usability and interoperability of language resources

An important focus of our work has been on enhancing the interoperability of language resources

and tools by upgrading selected resources to agreed standards. The upgrading activities have

included the following:

13 http://www.meta-share.org/portal/ (Note that for some reason all issues listed there are labelled “unanswered”, although

most of them actually have answers which can be seen if you click on the heading of an issue to open the discussion

thread for that issue.)

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 201 of 474]

Improvement of resource documentation, both formally structured (as META-SHARE

metadata) and narrative documentation. For many resources, the narrative documentation has been

much improved; the partners have in several cases spent a considerable amount of time writing and

improving resource documentation, as well as – in practice, very important for wider

interoperability – on producing documentation in English. Also, for increased user-friendliness, an

XSL stylesheet (developed in the CESAR sister project) is routinely used to automatically convert

META-SHARE metadata into a more human-readable form - from XML into a more human-

readable textual rendering (which however does not add any information to that already present in

the XML metadata).

Technical format conversion, e.g., a proprietary corpus format into TEI (Text Encoding

Initiative14) or an idiosyncratic lexicon format into LMF 15 (Lexical Markup Framework; ISO

24613:2008; Francopoulo et al. 2006). Several partners have converted their lexical resources into

LMF, e.g., the STO Danish dictionary lexical database, the SweFN++ Swedish lexical macro

resource, the Norwegian SCARRIE lexicon, and the Lithuanian Standard language lexical

database. Terminology resources, such as the Icelandic Term Bank and UHR’s Termbase for

Norwegian higher education institutions, have been converted into TBX16 format (Term Base

eXchange; ISO 30042:2008; Melby 2012).

Most of the corpus resources uploaded are now available in TEI-compatible formats. A specific

example of how this format harmonisation has enhanced interoperability is the relative ease17 with

which the open-source Korp corpus processing and presentation platform, developed in Sweden at

the University of Gothenburg (Borin et al. 2012)18, has been deployed in Finland by the University

of Helsinki for their Finnish corpora19.

Content model conversion/mapping/linking, e.g., harmonising POS tagsets among corpora, or

linking word senses among lexical resources with different sense granularities. The Danish STO

lexicon, the Swedish lexicons developed at Språkbanken, University of Gothenburg, and Swedish

corpus annotations have been partly linked to the ISOCAT DCR (Data Category Registry; ISO

12620:2009; Windhouwer and Wright 2012), although no explicit attempt has been made to use

the same categories across the languages, except in the specific cases discussed below in sections

5.1–5.3. Several partners (e.g., the Icelandic and Swedish partners) have taken advantage of their

work on harmonising content and upgraded their corpus resources, adding consistent linguistic

annotations to corpora that previously were either unannotated or used several different annotation

schemes.

Ensuring that language resources and tools adhere to standard formats is a necessary prerequisite

for resource interoperability. As always, the proof of the pudding is in the eating, and the outcomes

of investing a limited, quite reasonable amount of time on horizontal action lines (see section 5

below) – where selected resources have been interlinked between languages of the Nordic and

Baltic countries – demonstrate clearly that the upgrading activities have successfully achieved their

objectives.

14 http://www.tei-c.org
15 http://www.lexicalmarkupframework.org/
16 http://www.ttt.org/oscarStandards/tbx/
17 The characterisation “relative ease” is impressionistic, based on a comparison with practical experience from earlier

attempts to deploy another piece of corpus software both at Gothenburg and Helsinki, for which obviously much less effort

had been spent on issues of interoperability and modularity during its development.
18 http://spraakbanken.gu.se/korp/#lang=eng
19 http://korp.csc.fi/#lang=en

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 202 of 474]

As a means to upgrade existing resources in the META-NORD consortium to agreed standards,

various lexical resources have been upgraded to the Lexical Markup Framework (LMF). One

example is University of Gothenburg’s 21 lexical resources which have all been upgraded to LMF.

As reported in Borin et al. 2012, this lexical infrastructure has one primary lexical resource SALDO

as a pivot to which all other resources are linked.

Upgrading some of the more semantically orientated resources to LMF turned out to be quite

complicated. The main obstacle being that, even though the framework contains mechanisms for

specifying semantic information, the model is based upon the assumption that lexical entries are

formal entities expressing one or more senses, not semantic entities having one or more formal

realisations. For example, the Swedish Framenet has the semantic frame as the natural conceptual

unit, but to be able to fit the information into LMF, the frame had to be split into several entries.

Searching these resources can be done from the web page http://spraakbanken.gu.se/karp, and all

of the resources can be downloaded from http://spraakbanken.gu.se/eng/resources/lexicon.

Another example is the multilingual dictionary ISLEX 20 with modern Icelandic as the source

language and Danish, Norwegian, and Swedish as target languages. ISLEX has been upgraded to

LMF in the META-NORD project by the Icelandic partner, University of Iceland (cf. Helgadóttir

& Rögnvaldsson forthcoming). When converting multilingual dictionaries into LMF format, a

special record would usually be made for each sense of every word in all the languages of the

dictionary. A so-called “Sense Axis” would then be used to link closely related senses in different

languages. For ISLEX, however, another course was taken: special records were made for each

sense of the words in the source language, Icelandic, which in turn had translations for that sense

in each of the target languages.

Finally, it should be mentioned that the upgrade of the Danish lexical database STO21 (built on

PAROLE22) has been completed by the University of Copenhagen. This database provides an

‘intensional’ morphological description meaning that each word form is not explicitly listed

anywhere but the lexical entry is associated with a morphological pattern. In other words, the word

forms are created on demand. Even if an intensional morphological description is possible in LMF,

an extensional description of the morphology, where all word forms are created when dumping

data from database to LMF, was chosen as the most user-friendly approach. In some aspects, the

predefined LMF schemata did not correspond with the structure of the linguistic information in the

STO, and various kinds of generalisation or nested information had to be expressed in new ways

by means of features which have made it easier to get an overview of the lexical entries.

Furthermore, the LMF nomenclature is much closer to general linguistic terminology. In LMF for

example, STO data categories such as ‘description’ and ‘construction’ are called ‘subcategorisation

frame’ and ‘syntactic argument’ respectively, concepts much easier for a user to comprehend.

4.3 Approach to intellectual property rights

Collecting Intellectual Property Rights (IPR) for a corpus often requires that permissions are

acquired from multiple parties in order to make copies of the copyrighted parts of the corpus.

Copies for personal use are often readily available from many sources but the right to distribute

20 The ISLEX dictionary can both be searched and downloaded from http://www.malfong.is/index.php?pg=islex&lang=en.

21 A Danish lexical database developed by the University of Copenhagen, Centre for language technology (Braasch et al.

2004). Samples and documentation of the STO-LMF lexicon can be found at http://cst.ku.dk/english/sto_ordbase/.
22 PAROLE was an EU project running from 1996-1998 with the aim of creating large, generic, and re-usable Written

Language Resources for all EU Languages.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 203 of 474]

such copies is not (see, e.g., Oksanen and Lindén (2012)). In this section, we look at a practical

solution for multilingual treebanks in META-SHARE created within the project.

The right to distribute linked multilingual treebanks requires a right to copy and distribute a

collective work, so the most practical solution is that one party collects the rights to copy and

distribute all parts of the work, after which that party can sign for all the others. This is not that

much different from collecting a corpus of several books and their annotations. In our case, the

multilingual corpora were open-source or the rights already allowed distribution via META-

SHARE, so the only work that needed to be given an explicit right to be copied and distributed

were the hand-made annotations and cross-lingual links. Since the cross-lingual linking of the

multilingual treebanks was done during the project, the ownership of the links belonged to the

project parties. Only the annotations that had been done before the project or with separate funding

needed to be provided with an explicit license for META-SHARE to distribute them. For the

treebanks, we chose CC-BY as the common license.

5 Horizontal action lines

Besides identification and description of linguistic resources in the Baltic and Nordic countries, a

particular focus in our work was on the following linguistic resources and tools: treebanks,

wordnets, terminology, and finite-state techniques. We call this work ‘horizontal action lines’, as

these activities focus on a particular resource type and aim to harmonise, link across languages,

and make these resources available through a common interface.

5.1 Treebanks

The horizontal action on treebanking has been aimed at improving the accessibility of treebanks

and harmonising and linking treebanks across languages. Special regard was taken to the Nordic

and Baltic languages which are under-resourced in this respect, but the action was also a truly open

initiative inclusive of other languages and addressing needs of other META-NET members.

Efforts were focused on the annotation, harmonisation, curation, documentation, and licensing of

treebanks. To reach these goals, we collaborated extensively with the INESS project, 23 which

provided state-of-the-art tools based on an advanced server-based solution and a user-friendly web

interface for browsing, search, visualisation, and download. The resources which were made

available by the action include a number of monolingual treebanks and two parallel treebanks based

on multiple alignments of monolingual treebanks.

One notable outcome was the Sofie Parallel Treebank, based on the Norwegian novel Sofies verden

(Gaarder 1991), which is linguistically rich and professionally translated in many languages. Some

monolingual treebanks previously existed for text selections from this material, but not all were

accessible. Annotations developed by the Nordic Treebank Network (NTN) were obtained from

Tekstlaboratoriet (University of Oslo), and those that were deemed suitable were integrated in

INESS. An additional new treebank was constructed for Norwegian. Annotations for the bigger

European languages — German and English (the latter from SMULTRON24) were included for

completeness, as well as a Georgian annotation by Paul Meurer. Intellectual property rights were

cleared for both source texts and annotations, but for Finnish no permission has been obtained.

Although the amount of annotated material varies between languages and is somewhat limited (52

23 http://iness.uib.no
24 http://www.cl.uzh.ch/research/paralleltreebanks/smultron_en.html

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 204 of 474]

to 1052 sentences), the number of pairwise alignments is high. The Sofie Parallel Treebank

currently consists of 26 aligned language pairs and is open to new languages.

A small parallel treebank was also constructed from a single document selected from the JRC

Acquis Multilingual Parallel Corpus of EU/EEA law texts,25 which provides materials from a

different genre in both the official EU languages and some non-official European languages. The

Acquis Parallel Treebank is also rather small (73 to 122 sentences depending on the language), but

it currently consists of 21 aligned language pairs. Even if the Sofie and Acquis treebanks are based

on relatively small texts, they demonstrate the potential of aligning treebanks across many

languages. These parallel treebanks are documented in META-SHARE and are available for

download on the INESS website.

Besides the monolingual treebanks which form the basis of the two parallel treebanks, the INESS

infrastructure provides access to other treebanks in several languages. Among treebanks in the

linguistic area of the Baltic and Nordic countries, we mention the Icelandic Parsed Historical

Corpus (73,014 sentences), FinnTreebank3 (170,000 tokens), Turku Dependency Treebank

(88,418 tokens), the Faroese Parsed Historical Corpus (3,713 sentences), and the INESS

Norwegian treebank (about 5000 analysed sentences and still expanding). Treebanks for other

languages outside this linguistic area include Abkhazian, Bulgarian, Georgian, Hungarian,

Northern Sami, Polish, Tamil, Turkish, Urdu, Wolof, and the classical languages (Ancient Greek,

Church Slavic, Classical Armenian, Latin, and Gothic).

The different types of treebanks (Lexical-Functional Grammar, Dependency Grammar,

Constituency Annotation) are accommodated in standard formats (TigerXML, CoNLL-X, CG3-

dependency, Penn Treebank II bracketing, and XLE prolog). Treebanks can be explored (searched,

browsed, and viewed), aligned with other treebanks, and downloaded, all from a uniform web

interface. A screenshot is presented in Figure 1.

Drawing on the obtained experience, INESS will sustain the treebanking action and continue to

pursue good practices for documentation and IPR clearance. We encourage treebank developers to

clear rights with rights holders of source texts prior to annotation and promote the use of explicit

licenses wherever possible.

The metadata description of treebanks remains problematic, in particular for parallel treebanks

which are complex resources, since META-SHARE does not provide for adequate description of

such resources. A more appropriate treatment of complex resources will need attention in future

work.

The mechanisms for linking external resource portals with META-SHARE (described in Section 3)

make it possible to dynamically list each specific resource in META-SHARE and can be applied

to other language resource-specific portals such as INESS.

25 http://ipsc.jrc.ec.europa.eu/index.php?id=198

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 205 of 474]

5.2 Wordnets

The multilingual wordnet initiative has dealt with the pilot linking and validation of wordnets

between the Nordic and Baltic languages. One central aim has been to perform a tentative

comparison and validation of the linked wordnets, a related aim being to make the mono- and

multilingual wordnets visible for further validation and comparison via a common web interface.

To this end, four pilot bilingual wordnets, each of 1,000 synsets, have been compiled using

Princeton Core WordNet26 as an Interlingua: Danish-Swedish, Danish-Finnish, Estonian-Finnish,

and Finnish-Swedish.

In general, the semi-automatically linked wordnets are judged to be of a rather good quality, even

if translations are not always 100% precise. An average of 2.2% errors and 7.0% slight mismatches

have been reported from the individual validations. There does not appear to be a systematic bias

to the errors. Though of course, some errors are systematically biased due to false friends, however,

others seem to be just random errors. Most of the slight mismatches derive from diverging opinions

on the understanding of what a synset should contain. Not surprisingly, wordnets that have been

compiled via translations from Princeton WordNet have many senses per synset (just as Princeton

WordNet), whereas wordnets that are monolingually compiled and based rather on synonymy

registrations in conventional dictionaries have much less. A majority of the reported mismatches

in the links are derived from exactly this discrepancy, since translations seem to be become more

imprecise when a synset contains many word senses (Pedersen et al., 2013).

Apart from compiling the bilingual wordnets, all of the involved wordnets have undergone

extensions and upgrades, including the Icelandic WordNet and the Norwegian WordNet, of which

the latter has been developed from scratch during the project period (based on the Danish wordnet

26 http://wordnetcode.princeton.edu/standoff-files/core-wordnet.txt

Figure 1: INESS web interface for treebanking, shown with the first sentence of the

Norwegian Sofie treebank annotated in LFG.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 206 of 474]

DanNet). All six monolingual wordnets and the four bilingual ones have been made available via

META-SHARE27, and the linked wordnets are viewable from the WordTies28 web interface.

Future work includes an extension of the web interface to include more wordnets, as well as the

generation of a broader comparison and validation of the wordnets included, i.e, broader than the

ones provided via the 1,000 common links. We plan to include multilingual links for the full Core

WordNet (5,000 synsets) for browsing and validation.

A broader comparison and validation of the wordnets would furthermore be fruitful and should be

made feasible when the web interface is extended to include multilingual links for the full Princeton

Core WordNet. Several discrepancies have been registered during the linking – other than the

aforementioned different approach to the interpretation of the synset – such as discrepancies in

taxonomical structure. Some have used an expert perspective, for example on animals, and thereby

compiled a relatively deep taxonomy (i.e., the Finnish WordNet), whereas others have used a

layman perspective adapted from a dictionary which is much more flat (i.e., the Danish wordnet).

The number and selection of relations in the wordnets also differ; some have included only

Princeton relations, others include EuroWordNet (Vossen, 1998) relations (i.e., Estonian and

Danish), and others have adapted relations from other lexical projects, including qualia relations

such as used_for and made_by relations (Danish and Norwegian WordNet).

5.3 Terminology resources

This task addressed a growing demand to consolidate distributed terminology resources across

languages and domains and thus, has extended an open linguistic infrastructure with multilingual

terminology resources.

Major progress in consolidating distributed terminology resources was accomplished by the

EuroTermBank platform (Vasiļjevs and Schmitz, 2006). Our intention was not to duplicate

resources stored on EuroTermBank, but to interconnect this content-specific Language Resource

repository with META-SHARE. Using the approach described in the Section 3, we enabled

harvesting of EuroTermBank metadata and integrated EuroTermBank within the META-SHARE

infrastructure. This interlinking yielded 99 additional terminology resources now listed in META-

SHARE. These resources themselves are available in EuroTermBank for online search.

As EuroTermBank provides specific facilities for searching, representing, and using terminology

data, we use this platform for depositing new resources identified and collected in our work. As a

result, EuroTermBank was extended from 2.3 to 2.8 million terms internally by adding

43 terminology collections to EuroTermBank – LKI (Lithuanian) terminology, EASTIN

terminology of Assistive Technology, and 41 collection from Icelandic Termbank. Three other

terminology collections remain in the negotiation stage. One external term base (BFT) was

connected to EuroTermBank during this activity, two other (STRUNA — Croatian term bank,

PIRARC – Multilingual database of Road Terms) remain in the negotiation stage. BFT is the Bank

of Finnish Terminology in Arts and Sciences provided to META-SHARE by the University of

Helsinki. This resource has been integrated for one-stop terminology search with EuroTermBank

and, through interconnection of EuroTermBank with META-SHARE, is also listed in the META-

SHARE catalogue.

The most outstanding result was achieved by Icelandic partners who succeeded at negotiating with

41 author whose work is contained in the Icelandic terminology bank. The rights to share for

27 Note, however, that Norwegian WordNet actually includes two wordnets, one for Bokmål and one for Nynorsk.
28 http://wordties.cst.dk

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 207 of 474]

download were negotiated through a long and exhaustive process of negotiations. The resulting

content was converted to the industry standard TBX format of terminology interchange, and both

were uploaded to the META-SHARE network, as well as imported for centralised online lookup

by users of the EuroTermBank terminology portal.

5.4 Finite-state techniques

To promote the development of language-independent natural language processing software,

HFST–Helsinki Finite-State Technology29 is included in CLARIN and META-NET. HFST is a

framework for compiling and applying linguistic descriptions with finite-state methods. HFST

currently collects some of the most important finite-state tools for creating morphologies and

spellcheckers into one open-source platform and supports extending and improving the

descriptions with weights to accommodate the modelling of statistical information. HFST offers a

path from language descriptions to efficient language applications. Here, we have focused on

making the HFST library available to the developers of new tools, new features in existing tools,

or new language applications.

HFST is primarily designed for creating and compiling morphologies, which have been

documented, for example, in Lindén et al. (2009; 2011; 2012). HFST contains open-source replicas

of xfst, lexc, and twolc, which are well-known and well-researched tools for morphology building

(see Beesley and Karttunen, 2003). The tools support both parallel and cascaded application of

transducers.

There are a number of tools for describing morphologies. Many of them start with the item-and-

arrangement approach in which an arrangement of sublexicons contains lists of items that may

continue in other sublexicons. A formula for compiling such lexical descriptions was documented

in Lindén et al. (2009). To realise the morphological processes, rules may be applied to the finite-

state lexicon. In addition, HFST also offers the capability to train and apply part-of-speech taggers

on top of the morphologies using parallel weighted finite-state transducers on text corpora (Lindén

et al., 2012).

Using compiled morphologies, a number of applications have been created, e.g., spellcheckers for

nearly 100 languages and hyphenators for approximately 40 different languages. The spellcheckers

were derived from open-source dictionaries and integrated with OpenOffice and LibreOffice, e.g.,

a full-fledged Greenlandic spellchecker, which is a polyagglutinative language, is currently

available for OpenOffice via HFST. By adding the tagger capability, we have also created an

improved spelling suggestion mechanism for words in context (Lindén et al., 2012).

Some additional applications, such as synonym and translation dictionaries as well as a framework

for recognising multi-word expressions for information extraction using HFST, have also been

developed.

6 Conclusions and continuing activities

As described in this paper, a fully functional LR infrastructure is established in the Nordic and

Baltic countries as a part of the pan-European META-NET network. This infrastructure will greatly

support researchers, developers, and users providing information and access to variety of

monolingual and multilingual resources for the languages of the Nordic and Baltic countries.

29 http://hfst.sf.net

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 208 of 474]

The cornerstone of the long-time viability of the developed infrastructure is the involvement of the

following main national and/or regional actors:

 Producers, i.e., 'competence centres', typically public research centres, language institutes

and academies, as well as private content owners like media companies and publishing

houses.

 Aggregators, i.e., 'data centres' (repositories), usually supported by national and/or regional

authorities.

 Sponsors, i.e., public authorities, research agencies, language councils, companies with

language resource needs.

 Individual and institutional users from the research and industry sectors.

The META-SHARE infrastructure relies on the operation of interlinked META-SHARE nodes that

are distributed and autonomously maintained by the participating institutions. As META-SHARE

is a distributed platform, its sustainability depends on the willingness and ability of participating

institutions to run META-SHARE nodes and to provide related services.

By signing letters of intent (indicating commitment, but not legally binding), we have committed

to sustain the infrastructure by hosting and making available the META-SHARE repository of LRs

through the META-SHARE network and providing technical and/or user support services for a

period of at least 2 years.

In addition, the clearinghouse concept (a service centre for collection, classification and

distribution of language resources) is considered for cooperation on long-term storage of resources

with other similar service centres in other European countries, using cost-sharing principles.

Inclusion of new actors and countries in the business model will be further elaborated in

cooperation with the best practices of other META-SHARE centres. In most of the Baltic and

Nordic countries, national centres promoting LR availability have already been established.

Specific plans for the curation of META-SHARE nodes and specific types of LRs are provided:

 Treebank resources are maintained and disseminated through the INESS project

coordinated by the University of Bergen.

 Terminology resources are taken care of by EuroTermBank, which is maintained and

supported by Tilde.

 The interlinked wordnet resources are maintained and disseminated nationally under

coordination of the University of Copenhagen.

 In Norway, the National Library has set up a META-SHARE node and will continue to

run it as a part of its efforts in CLARINO (the Norwegian CLARIN project).

 The University of Iceland is working on the formation of a national consortium, consisting

of the University of Iceland, the Árni Magnússon Institute, the Reykjavik University, the

National and University Library, and a few others, to maintain an Icelandic national

repository of language resources.

Acknowledgements

The META-NORD project has received funding from the European Commission through the ICT

PSP Programme, grant agreement no. 270899. Many thanks to colleagues in META-NORD partner

organizations: Jolanta Zabarskaitė from the Lithuanian language institute, Eiríkur Rögnvaldsson

and Sigrún Helgadóttir from the University of Iceland and Kadri Vider from the University of

Tartu.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 209 of 474]

References

Beesley, K. and Karttunen, K. (2003). Finite State Morphology, CSLI publications.

Bird, S. and Simons, G. (2001). The OLAC metadata set and controlled vocabularies. In

Proceedings of the ACL Workshop on Sharing Tools and Resources for Research and

Education, pages 7–18.

Bird, S. and Simons, G. (2003). Seven dimensions of portability for language documentation and

description. Language 79(3), pages 557–582.

Borin, L., Forsberg, M., Roxendal, J. (2012). Korp – the corpus infrastructure of Språkbanken. In

Proceedings of LREC 2012, pages 474–478.

Borin, L., Forsberg, M., Olsson. L., Uppström, J. (2012). The open lexical infrastructure of

Språkbanken. Proceedings of LREC 2012, pages 3598-3602.

Braasch, A. and Olsen, S. (2004). STO: A Danish Lexicon Resource - Ready for Applications. In

Fourth International Conference on Language Resources and Evaluation, Proceedings, Vol.

IV. Lisbon, pages 1079-1082.

Broeder, D., Kemps-Snijders, M., Van Uytvanck, D., Windhouwer, M., Withers, P., Wittenburg,

P., Zinn, C. (2010). A data category registry- and component-based metadata framework. In

Proceedings of LREC 2010, pages 43–47.

Desipri, E., Gavrilidou, M., Labropoulou, P., Piperidis, S., Frontini, F., Monachini, M., Arranz, V.,

Mapelli, V., Francopoulo, G., Declerck, T. (2012). Documentation and user manual of the

META-SHARE metadata model. http://www.meta-net.eu/meta-share/META-

SHARE%20%20documentationUserManual.pdf.

Francopoulo, G., George, M., Calzolari, N., Monachini, M., Bel, N., Pet, M., Soria, C. (2006).

Lexical Markup Framework (LMF). Proceedings of LREC 2006, pages 233–236.

Gavrilidou, M., Labropoulou, P., Piperidis, S., Speranza, M., Monachini, M., Arranz, V.,

Francopoulo, G. (2011). Specification of metadata-based descriptions for language resources

and technologies. T4ME deliverable D7.2.1. http://www.meta-net.eu/public_documents/t4me/

META-NET-D7.2.1-Final.pdf .

Gavrilidou, M., Labropoulou, P., Desipri, E., Piperidis, S., Papageorgiou, H., Monachini, M.,

Frontini, F., Declerck, T., Francopoulo, G., Arranz, V., Mapelli, V. (2012). The META-SHARE

metadata schema for the description of language resources. Proceedings of LREC 2012, pages

1090–1097.

Helgadóttir, S., Rögnvaldsson, E. (forthcoming). Language Resources for Icelandic, Workshop on

Nordic Language Research Infrastructure, NODALIDA 2013, Oslo.

Lindén, K., Silfverberg, M., Pirinen, T. (2009). HFST tool for morphology: An efficient open-

source package for construction of morphological analyzers. In State of the Art in Computational

Morphology, Mahlow, C. and Piotrowski, M. (eds.). Berlin, Heidelberg: Springer Berlin

Heidelberg, pages 28-47.

Lindén, K., Silfverberg, M., Axelson, E., Hardwick, S., Pirinen, T. (2011). HFST—Framework for

Compiling and Applying Morphologies. In Systems and Frameworks for Computational

Morphology. Mahlow, C. & Piotrowski, M. (eds.). Springer, Vol. 100, pages 67-85.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 210 of 474]

Lindén, K., Axelson, E., Drobac, S., Hardwick, S., Silfverberg, M., Pirinen, T. A. (2012). Using

HFST for Creating Computational Linguistic Applications. In Computational Linguistics

Applications, Piasecki, M., and Przepiórkowski, A., Springer-Verlag.

Melby, A.K. (2012). Terminology in the age of multilingual corpora. Journal of Specialized

Translation 18, pages 7–29.

Oksanen, V. and Lindén, K. (2012). Building shared language research environments inside the

European Union: How to optimize the system based on experiences from real life. In First

Thematic Conference on the Knowledge Commons. Louvain-la-Neuve, Belgium.

Pedersen, B. S., Borin, L., Forsberg, M., Kahusk, N., Lindén, K., Niemi, J., Nisbeth, N., Nygaard,

L., Orav, H., Rögnvaldsson, E., Seaton, M., Vider, K., Kaarlo, V. (2013) Nordic and Baltic

wordnets aligned and compared through “WordTies”. In Proceedings of Nodalida 2013 (in

press).

Piperidis, S. (2012). The META-SHARE Language Resources Sharing Infrastructure: Principles,

Challenges, Solutions. In Proceedings of the Eight International Conference on Language

Resources and Evaluation (LREC'12), Istanbul, Turkey, pages 36-42.

Skadiņa, I., Vasiljevs, A., Borin, L., de Smedt, K., Linden, K., Rognvaldsson, E. (2011). META-

NORD: Towards Sharing of Language Resources in Nordic and Baltic Countries. In

Proceedings of Workshop on Language Resources, Technology and Services in the Sharing

Paradigm (LRTS), Chiang Mai, Thailand, pages 107-114.

Váradi, T., Krauwer, S., Wittenburg P., Wynne, M., Koskenniemi, K. (2008). CLARIN: common

language resources and technology infrastructure. In Proceedings of the Sixth International

Language Resources and Evaluation Conference.

Vasiļjevs, A., Pedersen, B.S., de Smedt, K., Borin, L., Skadiņa, I. (2011). META-NORD: Baltic

and Nordic Branch of the European Open Linguistic Infrastructure. In NODALIDA 2011

workshop Visibility and Availability of LT Resources, NEALT Proceedings Series, Vol.13, pages

18-22.

Vasiļjevs, A. and Schmitz, K.D. (2006). Collection, harmonization and dissemination of dispersed

multilingual terminology resources in an online terminology databank. In Proceedings of TSTT

2006, Third International Conference on Terminology, Standardization and Technology

Transfer, pages 265-272.

Vossen, P. (ed.) (1998). EuroWordNet: A Multilingual Database with Lexical Semantic Networks.

Dordrecht: Kluwer Academic Publishers.

Windhouwer, M.A. and Wright, S.E. (2012). Linking to linguistic data categories in ISOcat. In

Chiarcos, C., Nordhoff, S., Hellmann, S. (eds), Linked Data in Linguistics, pages 99–107.

Berlin: Springer.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 211 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 212 of 474]

The IPP effect in Afrikaans: a corpus analysis

Liesbeth Augustinus1, Peter Dirix1,2

(1) Centre for Computational Linguistics, University of Leuven
(2) Nuance Communications, Inc.

{liesbeth,peter}@ccl.kuleuven.be

ABSTRACT
Compared to well-resourced languages such as English and Dutch, NLP tools for linguistic
analysis in Afrikaans are still not abundant. In order to facilitate corpus-based linguistic
research for Afrikaans, we are creating a treebank based on the Taalkommissie corpus. We
adapted a tokenizer and a shallow parser, while using a TnT tagger to do part-of-speech
annotation. A first linguistic phenomenon we are investigating is the occurrence of infinitivus
pro participio (IPP) in Afrikaans. IPP refers to constructions with a perfect auxiliary, in
which an infinitive appears instead of the expected past participle. The phenomenon has
been studied extensively in Dutch and German, but studies on Afrikaans IPP triggers are
sparse. In contrast to the former two languages, it is often mentioned in the literature that
in Afrikaans, IPP occurs optionally. We want to check this statement doing a corpus analysis.

KEYWORDS: Afrikaans, tokenizer, parser, chunker, corpus search tool, IPP.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 213 of 474]

1 Introduction

Afrikaans is a West Germanic language spoken as a first language by about 7 million people
in South Africa and Namibia and by many millions more as a second language. It can be
considered a daughter language of Dutch, as it originates in 17th-century Dutch dialects,
brought to southern Africa by settlers from the Netherlands. Although there are some
influences from Malay, Portuguese, Bantu, and Khoisan languages, Dutch and Afrikaans
are still more or less mutually comprehensible. One of the main features of Afrikaans is
a simplification of Dutch morphology, e.g. dropping the nominal gender distinction and
only keeping two verb forms for all but the most common verbs (present/infinitive and past
participle).

In recent years, several NLP tools were created for Afrikaans, cf. Grover et al. (2011) for
an overview of the available tools. Compared to well-resourced languages such as English
and Dutch, however, it seems that the tools which are available for Afrikaans are less
well-performing.

The purpose of our research is twofold. As a starting point, we describe the NLP tools that
were used to process and query the data, as well as the first step towards the creation of a
treebank based on an Afrikaans text corpus (the Taalkommissie corpus1) (cf. section 2).

In the second part of this paper we investigate whether and how the tools and resources
that are currently available can be used as a means for descriptive linguistics. As a case
study, we will look for the occurrence of infinitivus pro participio, a.k.a. the IPP effect, in
the Taalkommissie corpus. In this linguistic study we compare the IPP phenomenon as it is
described in the literature (cf. section 3) to its occurrence in the data (cf. section 4 and 5).

Besides improving the performance of the existing annotation tools, we intend to include the
parsed corpus into a user-friendly query engine in order to facilitate corpus-based linguistic
research for Afrikaans (cf. section 6).

2 Tools

In order to investigate the linguistic case study described in sections 3 to 5, we automatically
annotated the Taalkommissie corpus. This section describes the tools used to annotate and
query the corpus. We adapted a tokenizer and a shallow parser, while using a TnT tagger
(Brants, 2000) trained on Afrikaans to do part-of-speech (PoS) annotation. We furthermore
added a search engine to facilitate corpus exploitation.

2.1 Tokenizer

The Dutch tokenizer (Dirix et al., 2005) used in the METIS-II project is rule-based, using
regular expressions which model the finite-state characteristics of tokenization and gives
only one tokenization per sentence, so the output does not contain any ambiguities. The
tokenizer basically splits on white space and detaches punctuation marks from the adjacent
words. We adapted the Dutch rules to Afrikaans in order to deal with abbrevations that
include a period and the ones to deal with words containing apostrophes (e.g. the indefinite
article ’n).

1Taalkommissie van die Suid-Afrikaanse Akademie vir Wetenskap en Kuns (2011).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 214 of 474]

2.2 Tagger and tag set
We used the TnT Tagger (Brants, 2000), a Hidden Markov Model based n-gram tagger, which
was trained by CTexT2 to tag the corpus (further referred to as the CTexT tagger). The tag
set consists of 139 different tags, based mainly on morphosyntactic features (Pilon, 2005).

In the case of verbs, which is the most relevant PoS for our research (cf. sections 3 and
5), a distinction is made between transitive and intransitive verbs, between separable
and inseparable verbs, and also between main verbs, modal verbs, temporal auxiliaries
and passivizing auxiliaries. Marked forms (ge-marking or simple past in the case of a few
auxiliaries) and unmarked forms are also distinguished. Altogether, there are 17 verbal tags,
as shown in Table 1.

Tag Value
VTHOG inseparable transitive main verb, unmarked
VVHOG inseparable transitive main verb, marked
VTHOO inseparable intransitive main verb, unmarked
VVHOO inseparable intransitive main verb, marked
VTHOV inseparable intransitive main verb requiring preposition, unmarked
VVHOK inseparable intransitive main verb requiring preposition, marked
VTHOK copula, unmarked
VVHOK copula, marked
VTHSG separable transitive main verb, unmarked, marked
VTHSO separable intransitive main verb, unmarked
VTUOM modal auxiliary, present
VVUOM modal auxiliary, past
VTUOA aspectual auxiliary, present
VVUOA aspectual auxiliary, past
VTUOP passive auxiliary, present
VVUOA passive auxiliary, past
VUOT temporal auxiliary

Table 1: Verbal tags in the CTexT tagger.

The author of the tagger claims an accuracy of 85.87% on a small data set, which is rather
low compared to state-of-the-art PoS taggers for well-resourced languages.3 Although there
are some other taggers trained for Afrikaans, they did not seem to meet our research goals.
For example, Schlünz (2010) reports an accuracy of 94.64%, but with a tag set reduced to
only 17 different tags. The TiMBL-based tagger for Afrikaans (Puttkammer, 2006) is not
usable for our purpose, because it mainly identifies different categories of named entities
instead of the regular PoS tags.

2.3 Parser
We aim to create a treebank for Afrikaans. As a starting point for syntactic annotations, we
used ShaRPa, a shallow rule-based parser (Vandeghinste, 2008) coming with grammars for
English and Dutch. In order to parse the Taalkommissie corpus, we created an Afrikaans
grammar. The different steps can either be defined as context-free grammars, using the
PoS tags as preterminals or as Perl subroutines, defined in a Perl module. Note that the
grammars are not automatically processed in a recursive mode. The module allows the
application of rules which cannot be formulated in the context-free grammar formalism. An

2Centre for Text Technology, North-West University, Potchefstroom, South Africa.
3The low accuracy is probably due to the fact that the tagger is trained on only 20,000 tokens.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 215 of 474]

option file defines the application order of the different grammars and subroutines. Both
grammars and subroutines can be applied more than once.

Since this is a shallow parser, there is not much depth in the resulting parse tree. It uses
the tagged corpus as input, and returns the parsed structure, with marked NPs, PPs, verb
groups (VG), and some APs and VPs. The head of a phrase is also marked (/M). Each phrase
is presented on one line. Each line is divided into three columns: the phrase tokens, the
phrase name (assigned by ShaRPa), and the phrase structure, representing the parse building
history (containing the PoS tags assigned by the tagger).

An example parse for the sentence Dis haar handpalms wat begin sweet het, besef sy. (It is
the palms of her hands that had started to sweat, she noticed.):

<s>
dis NP NP[NSE0[NSE]]
haar handpalms NP NP[P00B[PDVEB] NSE0[NSE]/M]
wat PB PB
begin sweet het VG VG[VP[VTHOO] VP[VVHOO] VUOT/M]
, ZM ZM
besef NP NP[NA]
sy P00B P00B[PDHEB]
. ZE ZE
</s>

Note that dis, a shortened form of dit is (it is), is mistagged as the far more infrequent
homograph noun (a formal word for ‘table’) and that besef, which can be both a verb (to
notice) and a noun (notion), is mistagged as noun.

The verb groups, however, do not give more information than the sequence of tags. As
our shallow parser currently does not identify discontinuous verb groups, we will need to
introduce a full parse in order to be able to use this information. The quality of the tagging
also influences the quality of the parse, so we need to improve the tagger results in order to
achieve better results.

2.4 Corpus search tool

In order to look for linguistic constructions in the Taalkommissie corpus, we have created a
corpus search tool.
The preprocessing consisted of tokenizing and tagging the corpus with the tokenizer and PoS
tagger described in section 2.1 and 2.2 respectively. Next, we assigned a unique identifier to
each sentence. Then we stored the complete corpus into a PostgreSQL database.4 For each
sentence, we included the following information in the database:

ID | sentence | PoS string | token-PoS string

Since the Taalkommissie corpus is rather large, we used the (built-in) B-tree indexing aiming
to speed up corpus search.

In order to facilitate querying the corpus, we added a search interface on top of the database.
The interface is a combination of PHP scripts and HTML, resulting in a web-based search

4http://www.postgresql.org

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 216 of 474]

tool which allows users to query the corpus without any local installation of corpora and/or
software.

As input, the user provides a query which could be a string of tokens, e.g. het kom kuier
(lit. ‘have come visit’), a string of PoS tags, e.g. [VUOT] [VTUOA] [VTHOG] (base form of
temporal auxiliary, aspectual verb, main verb), or a combination of both tokens and tags,
e.g. het[VUOT] kom[VTUOA] kuier[VTHOG]. Note that PoS tags should be put between
square brackets. It is furthermore possible to use a wildcard for the PoS tags. For example, if
one wants to look for any verb form, [V*] can be used; if one want to differentiate between
base forms and inflected verb forms, [VT*] and [VV*] can be used respectively.

Furthermore, there is an option to include some context before and after the matching
sentences. This might be useful to disambiguate homonyms in the case of short sentences,
or if one is interested in discourse phenomena.

After querying the corpus, the results are presented to the user (see screenshot in Figure
1). At the top of the page, the search instruction is repeated. Below the query, a list of
matching sentences is displayed. The constructions matching the query are highlighted in
each sentence. It is also possible to view/save the results as plain text format (with and
without PoS tags).

Figure 1: Corpus search tool interface
At the bottom of the page, a grid with the corpus results is printed. It indicates how
many hits in how many matching sentences were found. Furthermore, the ratio (matching
sentences/sentences in the corpus) is given.

At the moment, it is not possible to query the corpus partially. It might be interesting to look
into specific parts of the corpus (e.g. newspaper texts only), but unfortunately the corpus
lay-out did not allow us to divide the corpus along those lines.

3 Infinitivus pro participio

3.1 IPP in double infinitive constructions
Infinitivus pro participio (IPP) or Ersatzinfinitiv is a linguistic phenomenon occurring in a
subset of the West Germanic languages, such as Dutch, German, and Afrikaans. IPP refers to
constructions with a perfect auxiliary, in which an infinitive appears instead of the expected
past participle. In Afrikaans, one expects the temporal auxiliary for the perfect tense to select

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 217 of 474]

a past participle, marked in various ways, most generally by a prefix ge- and sometimes
an ending (usually either -d/-t or -en), cf. gebly in example (1a).5 However, when a verb
occurring in the perfect tense selects another verb, it commonly occurs as an infinitive, cf.
bly in example (1b), instead of the expected past participle, as illustrated in example (1c).6

(1) (a) Hy
he

het
have:PRES

stil
silent

gebly.
stay:PP

‘He remained silent.’

(b) Hy
he

het
have:PRES

bly
stay:INF

praat.
talk:INF

‘He kept on talking.’

(c) Hy
he

het
have:PRES

gebly
stay:PP

praat.
talk:INF

‘He kept on talking.’

While Dutch and German grammars mention general types of verbs (e.g. modal verbs) for
which IPP is either required or optional, none of our Afrikaans sources do. Nevertheless,
Ponelis (1979), Zwart (2007), and De Vos (2001) report that the IPP effect appears option-
ally in Afrikaans. This contrasts with Dutch and German, as in those languages the IPP
phenomenon is obligatory for certain verbs, see amongst others Haeseryn et al. (1997), and
Dudenredaktion (2006). Donaldson (1993) mentions however that IPP is triggered in most
cases, such as in example (1b). Constructions with a past participle such as (1c) do occur,
but Donaldson considers them non-standard Afrikaans. A similar construction as (1c) in
Dutch is not possible, as the cognate verb blijven (stay) always triggers IPP.

De Vos (2001) also reports that some of the IPP triggers, esp. laat (let), tend to passivize
fairly productively (2). This phenomenon is ungrammatical in Dutch and German.

(2) Hierdie
This

huis
house

is
be:PRES

deur
by

my
my

oom
uncle

(ge)laat
let:PRES/PP

bou.
build:PRES

‘My uncle had this house built.’

3.2 IPP in progressive constructions

Apart from double infinitive constructions, there is a second construction in which IPP can
be triggered. Afrikaans has a serialization pattern using the conjunction en (and) in order
to express the continuous or progressive aspect of the verb, as in example (3a). Such
constructions also exist in English (e.g. He sits and reads), but not in Dutch nor German. In
the perfect of this construction, the first main verb has optional ge-marking, so it optionally
triggers IPP, while the second main verb always occurs in the infinitive, as shown for the verb
staan (stand) in examples (3b-c). Both forms are considered standard Afrikaans by Ponelis
(1979), Zwart (2007), Donaldson (1993), and Verdoolaege and Van Keymeulen (2010).

5Some verbs have no ge-prefix though, so the past participle might actually be the same as the infinitive, e.g.
bestuur (drive), begin (start, begin).

6Note that both examples (1b) and (1c) are grammatical in Afrikaans.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 218 of 474]

(3) (a) Ons
we

staan
stand:PRES

stil
still

en
and

luister.
listen:PRES

‘We are standing and listening.’

(b) Ons
we

het
have:PRES

stil
still

staan
stand:INF

en
and

luister.
listen:INF

‘We were standing and listening.’

(c) Ons
he

het
have:PRES

stil
still

gestaan
stand:PP

en
and

luister.
listen:INF

‘We were standing and listening.’

De Vos (2001) reports that, although speaker judgments might vary, it is generally difficult
to passivize indirect linking verbs (4), while Breed (2012) considers them grammatical.

(4) Die
The

appel
apple

word
become:PRES

deur
by

hom
him

gesit
sit:PP

en
and

eet.
eat:PRES

‘The apple was being eaten by him.’

This construction is also impossible in both Dutch and German.

4 Hypothesis, data, and methodology
Based on the literature, the hypothesis is that, in contrast to Dutch and German, IPP occurs
optionally in Afrikaans. We will test the hypothesis through a corpus-based study, using
a PoS-tagged version of the Taalkommissie corpus.7 The corpus, which is compiled by the
Afrikaans language committee of the South African Academy for Science and Arts, contains
about 58 million words of formal, written Afrikaans. It comprises many different text types,
including newspaper articles, magazines, Bible texts, scientific articles, and study guides.

In order to query the corpus, we have created a corpus search tool (cf. section 2.4), which
enables us to look for IPP constructions and their counterexamples with a past participle.
We aim to find out whether IPP is actually optional or required in both double infinitive
constructions and progressive constructions. Furthermore, we will investigate which verbs
occur as IPP triggers in Afrikaans. The results of the corpus study are presented in section 5.

5 Results and discussion

5.1 IPP in double infinitive constructions
In order to retrieve IPP in double infinitive constructions and counterexamples with past
participles in the Taalkommissie corpus, we extracted all combinations in which the verb
form het (have) was followed or preceded by two verbs.8 In addition, we also look at the
sequence where there is one other word between het and the two other verbs. Although it is
possible that more than one word occurs between het and the verbal group, we limited our
research to constructions with zero or one word between het and the two verb forms.9 This

7Taalkommissie van die Suid-Afrikaanse Akademie vir Wetenskap en Kuns (2011).
8We used the query het[VUOT] [VT*] [VT*] to retrieve double infinitive constructions. Discontinuous

constructions as well as counterexamples were found using variations of this query.
9Since we only have a ‘flat’ corpus, it is hard to retrieve discontinuous structures. Using a treebank should solve

this problem.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 219 of 474]

results in 9,880 hits, which were manually checked and categorized. We threw out the false
positives due to wrong tagging and cases that did not involve main verbs that are triggering
an infinitive. We also ignored the modal verbs kan (can), mag (could) and moet (must), as
in those cases it is often hard to distinguish the matrix verb from the embedded verb.

We retained 5,679 matches for the infinitive selecting verbs, of which 5,616 occur as IPP
triggers (98.89% of the constructions under consideration). The results are shown in Table 2.

Verb IPP No IPP Two PPs Total % IPP Translation
aanhou 45 6 0 51 88.24 keep on
begin 1,454 1 0 1,455 99.93 begin
bly 270 0 1 271 99.63 stay
doen 1 0 0 1 100.00 do, make
durf 35 1 0 36 97.22 dare
gaan 853 0 0 853 100.00 go
help 110 8 0 118 93.22 help
hoor 4 0 0 4 100.00 hear
kom 645 5 12 662 97.43 come
laat 1,458 2 0 1,460 99.86 let
leer 26 7 0 33 78.79 learn/teach
loop 0 1 0 1 0.00 walk, run
maak 1 5 0 6 16.67 make, do
ophou 16 6 0 22 72.73 stop, end
probeer 564 1 0 565 99.82 try
sien 130 5 2 137 94.89 see
wil 4 0 0 4 100.00 want
TOTAL 5,616 48 15 5,679 98.89

Table 2: IPP in double infinitive constructions.

Although some verbs are used rather infrequently in this construction, it is clear that in most
of the cases, IPP is actually applied. Only for maak and the separable verbs aanhou and
ophou, we see a slightly higher percentage of cases that do not have IPP. Verbs like begin,
bly, durf, gaan, help, hoor, kom, laat, probeer, and sien seem to require IPP, cf. examples (5)
and (7a), while we could consider it optional at least for leer, cf. example (6). We also see a
few cases, esp. for kom, in which both the main verb and the verb triggered by it appear as
past participles, cf. example (7b). This is not allowed by any of the Afrikaans grammars
we consulted (cf. section 3.1). In general, we can conclude that there is a clear tendency
for infinitive-selecting verbs to trigger IPP. We have only found 63 sentences in which the
selecting verb receives ge-marking, which might explain why Donaldson considers such
constructions substandard. De Vos (2001) links the optionality to the level of formality.

(5) My
my

maag
stomach

het
have:PRES

begin
begin:INF

draai.
turn:INF

‘My stomach has started to turn. [TKK, a00-2487]’

(6) (a) Hoe
how

ek
I

leer
learn:INF

lees
read:INF

het,
have:PRES

weet
know

ek
I

nie.
not

‘I do not know how I have learned to read.’ [TKK, a21-26482]
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 220 of 474]

(b) Dink
think

terug
back

hoe
how

jy
you

geleer
learned:PP

bestuur
drive:INF

het
have:PRES

(...)

‘Think about the time you learned to drive (...)’ [TKK, a16-20128]

(7) (a) (...) Ons
we

het
have:PRES

kom
come:INF

kuier.
visit:INF

‘(...) We came to visit.’ [TKK, a26-9964]

(b) ’n
a

Vragmotor
lorry

wat
which

in
in

die
the

teenoorgestelde
opposite

rigting
direction

aangery
drive-towards:PP

gekom
come:PP

het
have:PRES

(...)

‘A lorry which came from the opposite direction (...)’ [TKK, a44-12672]

As De Vos (2001) claimed, we found some passivized constructions with these selecting
verbs (see Table 3), but they are far less frequent than the active variant. We investigated
both the present form with word and the perfect form with is. Of the selecting verbs used in
the passive, laat is by far the most frequent. There is only one counterexample using a past
participle instead of the IPP construction.

Verb IPP
present

No IPP
present

IPP
perfect

No IPP
perfect

Total % IPP Translation

begin 2 0 5 0 7 100.00 begin
help 0 0 1 0 1 100.00 help
laat 11 1 43 0 55 98.18 let
probeer 8 0 3 0 11 100.00 try
TOTAL 21 1 52 0 74 98.65

Table 3: IPP in passive double infinitive constructions.

5.2 IPP in progressive constructions
In a second test, we looked at IPP triggers in the serialized form of progressive construc-
tions.10 We again selected cases with het, but now with the conjunction en (and) between
the two content verbs. This resulted in 1,743 hits, which were again categorized manually.
We only retained 244 positive examples, of which 50.82% appeared as IPP triggers. The
results are shown in Table 4.

It is clear that the construction as such is only frequent using lê, sit and staan as IPP triggers.
IPP occurs in slightly less than half of the cases for sit and staan, so we can agree with the
grammars that IPP is optionally triggered in progressive constructions, cf. example (8). For
lê however, there seems to be a clear preference for the IPP construction. The progressive
also occurs a few times with loop, but in that case the past participle seems to be preferred.
We encounter again a few cases of two past participles, cf. example (9b). Similar to the
constructions with double participles in section 5.1, such constructions seem less preferred.
If we compare the results with the frequencies of a verb being the trigger for the progressive
construction in this corpus (Breed, 2012), we see that verbs using the progressive frequently

10We used the query het[VUOT] [VT*] en[KN] [VT*] to retrieve double infinitive constructions. Discontin-
uous constructions as well as counterexamples were found using variations of this query.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 221 of 474]

(sit, staan, and lê) are more likely to apply IPP then loop, which is less likely to occur in this
construction.

Verb IPP No IPP Two PPs Total % IPP Translation
bly 0 0 1 1 0.00 stay, remain
bystaan 0 1 0 1 0.00 stand near
kom 0 0 1 1 0.00 come
lê 30 5 0 35 85.71 lie
loop 1 4 1 6 16.67 walk, run
rondstaan 0 1 0 1 0.00 stand around
sit 48 58 1 107 44.86 sit
staan 45 47 0 92 48.91 stand
TOTAL 124 116 4 244 50.82

Table 4: IPP in progressive/continuous constructions.

Note that most of the verbs that use this construction do not occur in the double infinitive
construction (cf. Table 2), while their Dutch cognates do (e.g. Afrikaans lê vs. Dutch liggen
(to lie)). We can conclude that both constructions are in general mutually exclusive.

(8) (a) (...) waar
where

hy
he

die
the

spul
stuf

onder
under

’n
a

soetdoring
sweet thorn tree

sit
sit:INF

en
and

dophou
watch:INF

het
have:PRES

(...)

‘ (...) where he was watching the stuff under a sweet thorn tree (...)’ [TKK, a25-14908]

(b) Ek
I

het
have:PRES

daar
there

gesit
sit:PP

en
and

wag
wait:INF

op
for

Brett
Brett

(...)

‘I was waiting there for Brett (...)’ [TKK, a34-8014]

(9) (a) Hy
he

vertel
tell:PRES

hoe
how

hy
he

(...) vir
for

die
the

hysbak
lift

staan
stand:INF

en
and

wag
wait:INF

het
have:PRES

(...)

‘He tells how he (...) waited in front of the lift (...)’ [TKK, a34-1063]

(b) (...) ’n
a

paar
couple

meter
metre

van
from

waar
where

ek
I

nog
still

so
so

rustig
quiet

gestaan
stand:PP

en
and

gesels
chat:INF

het.
have:PRES

‘(...) a couple of metres from where I was chatting (...)’ [TKK, a34-1086]

According to Breed (2012) passive constructions with indirect linking verbs are possible,
but she was, like us, not able to find any examples in the Taalkommissie corpus.

6 Conclusions and future work

The case study on IPP triggers in Afrikaans shows that a corpus-based study can shed a new
light on the descriptive research of a linguistic phenomenon. Based on the literature, we
assumed that IPP is optionally triggered in Afrikaans (both in double infinitive constructions

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 222 of 474]

and in progressive constructions). The corpus results, however, reveal that infinitive-selecting
verbs in double infinitive constructions trigger IPP in almost 99% of the constructions under
investigation. The results of the progressive constructions are more consistent with the
current literature, since the IPP phenomenon optionally occurs in such constructions (i.e. in
ca. 50% of the cases). Moreover, we can conclude that verbs that occur as IPP triggers in the
double infinitive construction, do not occur as IPP triggers in the progressive construction
and vice versa.

Although we obtained some nice results from the present study, we had to do a lot of
(semi-)manual filtering of the results. In order to reduce such tasks, as well as to improve
the quality of the annotated data, we will improve the output of the annotation tools in
future research. As the CTexT tagger still contains a lot of errors which could be corrected
by a simple rule-based extension, we will create a rule-based tag corrector based on the Brill
tagger (Brill, 1992).

We also want to extend the parser in order to have different options from the current shallow
parsing (including updating and improving the current grammars) to a full parse tree. The
parser will then be used to find constructions with more tokens intervening between the
relevant items (i.e. between the auxiliary het and the infinitives and past participles in
our case study). We will need to adapt the search tool to be able to search for chunks
as well. Of course, this includes dealing with issues like efficient querying, indexing, and
the representation of the trees in the tool. Besides improving existing tools, we will run a
lemmatizer on the data, in order to include lemmas in the search tool as well.

Finally, all of this will be integrated in an Afrikaans equivalent of GrETEL (Augustinus et al.,
2012), a query engine in which linguists can use a natural language example as a starting
point for searching a treebank with limited knowledge about tree representations and formal
query languages.

Using all these tools, we want to further investigate the IPP effect in Afrikaans. For example,
it would be interesting to investigate whether the number of tokens occurring between the
auxiliary and the other verb(s) have an influence on the construction used. Those results
can also be useful for a cross-linguistic comparison with similar work in Dutch and German.

Acknowledgments

We wish to thank the people of the Taalkommissie and CTexT for providing us with the
Taalkommissie corpus and the PoS tagger.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 223 of 474]

References

Augustinus, L., Vandeghinste, V., and Van Eynde, F. (2012). Example-Based Treebank
Querying. In Proceedings of the 8th International Conference on Language Resources and
Evaluation (LREC 2012), Istanbul.

Brants, T. (2000). TnT – A Statistical Part-of-Speech Tagger. In Proceedings of the Sixth
Applied Natural Language Processing Conference (ANLP-2000), pages 224–231, Seattle.

Breed, A. (2012). Die grammatikalisering van aspek in Afrikaans: semantiese studie van
perifrastiese progressiewe konstruksies. PhD thesis, North-West University, Potchefstroom.

Brill, E. (1992). A simple rule-based part of speech tagger. In Proceedings of the third
conference on Applied natural language processing (ANLC 42), pages 152–155, Stroudburg,
PA.

De Vos, M. (2001). Afrikaans Verb Clusters: A Functional-Head Analysis. Master’s thesis,
University of Tromsø, Tromsø.

Dirix, P., Vandeghinste, V., and Schuurman, I. (2005). METIS-II: Example-based machine
translation using monolingual corpora – System description. In Proceedings of MT Summit
X, Workshop on Example-Based Machine Translation, pages 43–50, Phuket.

Donaldson, B. C. (1993). A Grammar of Afrikaans. Mouton de Gruyter, Berlin/New York.

Dudenredaktion (2006). DUDEN. Die Grammatik. Unentbehrlich für richtiges Deutsch.
Dudenverlag, Mannheim/Leipzig/Vienna/Zürich.

Grover, A. S., van Huyssteen, G. B., and Pretorius, M. W. (2011). A Technology Audit:
The State of Human Language Technologies (HLT) R&D in South Africa. In Proceedings of
PICMET’11: Technology Management In The Energy-Smart World (PICMET), pages 1693–
1706.

Haeseryn, W., , Romijn, K., Geerts, G., de Rooij, J., and van den Toorn, M. (1997). Algemene
Nederlandse Spraakkunst. Martinus Nijhoff/Wolters Plantyn, Groningen/Deurne, second
edition.

Pilon, S. (2005). Outomatiese Afrikaanse woordsoortetikettering. Master’s thesis, North-
West University, Potchefstroom.

Ponelis, F. A. (1979). Afrikaanse Sintaksis. J.L. van Schaik, Pretoria.

Puttkammer, M. J. (2006). Outomatiese Afrikaanse tekseenheididentifisering. Master’s
thesis, North-West University, Potchefstroom.

Schlünz, G. I. (2010). The effects of part-of-speech tagging on text-to-speech synthesis for
resource-scarce languages. Master’s thesis, North-West University, Potchefstroom.

Taalkommissie van die Suid-Afrikaanse Akademie vir Wetenskap en Kuns (2011). Taalkom-
missiekorpus 1.1., CTexT, North West University, Potchefstroom.

Vandeghinste, V. (2008). A Hybrid Modular Machine Translation System. PhD thesis,
University of Leuven.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 224 of 474]

Verdoolaege, A. and Van Keymeulen, J. (2010). Grammatica van het Afrikaans. Academia
Press, Ghent.

Zwart, J.-W. (2007). Some notes on the origin and distribution of the IPP-effect. Groninger
Arbeiten zur Germanistischen Linguistik, 45:77–99.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 225 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 226 of 474]

Using Factual Density to Measure Informativeness
of Web Documents

Christopher Horn∗, Alisa Zhila†, Alexander Gelbukh†, Roman Kern∗, Elisabeth
Lex∗

∗Know-Center GmbH, Graz, Austria
{chorn,elex,rkern}@know-center.at

†Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City, Mexico
alisa.zhila@gmail.com, gelbukh@gelbukh.com

ABSTRACT
The information obtained from the Web is increasingly important for decision making and
for our everyday tasks. Due to the growth of uncertified sources, blogosphere, comments
in the social media and automatically generated texts, the need to measure the quality
of text information found on the Internet is becoming of crucial importance. It has been
suggested that factual density can be used to measure the informativeness of text documents.
However, this was only shown on very specific texts such as Wikipedia articles. In this
work we move to the sphere of the arbitrary Internet texts and show that factual density is
applicable to measure the informativeness of textual contents of arbitrary Web documents.
For this, we compiled a human-annotated reference corpus to be used as ground truth data
to measure the adequacy of automatic prediction of informativeness of documents. Our
corpus consists of 50 documents randomly selected from the Web, which were ranked by
13 human annotators using the MaxDiff technique. Then we ranked the same documents
automatically using ExtrHech, an open information extraction system. The two rankings
correlate, with Spearman’s coefficient ρ = 0.41 at significance level of 99.64%.

KEYWORDS: quality of texts, Web, fact extraction, open information extraction, informa-
tiveness, natural language processing.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 227 of 474]

1 Introduction

Assessment of information quality becomes increasingly important because nowadays deci-
sion making is based on information from various sources that are sometimes unknown or
of questionable reliability. Besides, a large part of the information found in the Internet has
low quality: the Internet is flooded with meaningless blog comments, computer-generated
spam, and documents created by copy-and-paste that convey no useful information.

As one might assume, talking about the quality of the Internet content on the whole is
too general and practically impossible, because the content on the Web is of an extremely
versatile form and serves to very different needs. It is unreasonable to compare the quality
of an online encyclopedia to the quality of a photo storing resource because the assessment
of the quality of any object depends on the purpose to which the object serves. Hence,
we restrict ourselves to the scope of text documents and assume that the general purpose
of a text document is to inform a reader about something. Therefore, the quality of a
text document can be related to its informativeness, i.e. the amount of useful information
contained in a document. (Lex et al., 2012) suggest that informativeness of a document can
be measured through factual density of a document, i.e. the number of facts contained in a
document, normalized by its length.

Due to the lack of a standard corpus, previous works on the estimation of Web quality
concidered only Wikipedia articles, in fact assessing their informativeness. No special
studies were performed about human judgement on text informativeness. Therefore, (Lex
et al., 2012; Blumenstock, 2008; Lex et al., 2010; Lipka and Stein, 2010) considered
Wikipedia editors’ choice of featured and good articles as a reasonable extrapolation of high
judgement on their informativeness. (Lex et al., 2012) showed the feasibility of factual
density application as measurement of informativeness on the base of automatic prediction
of the featured/good Wikipedia articles.

In this work we have conducted experiments to estimate the adequacy of application of
factual density to informativeness evaluation in the “real” Internet, i.e. not limited to
particular web-sites with a particular form of content but rather covering a wide variety of
web-sources, which a user could browse through while looking for information. For this
purpose we created a dataset of 50 randomly selected documents in Spanish language from
CommonCrawl corpus (Kirkpatrick, 2011), which is a large extraction of texts from the
Internet. We assessed factual density automatically using an open information extraction
system for Spanish language, ExtrHech (Zhila and Gelbukh, 2013), which is adequate for
Web-scale applications. Further, 13 human annotators ranked 50 documents according to
their informativeness using the MaxDiff (Louviere and Woodworth, 1991) technique. The
automatic ranking produced by ExtrHech system correlates with the ground truth ranking
by human annotators with Spearman’s ρ coefficient of 0.41 (coinciding rankings would
have 1, and the random baseline is 0.018).

The paper is organized as follows. In section 2 we review the related work on the Web text
quality evaluation as well as the open information extraction as a method for factual density
estimation. Section 3 describes the dataset created in this work and the human annotation
procedure. The method for automatic factual density estimation and a brief description of
the architecture of ExtrHech system is given in section 4. The experiment and its results are
presented in section 5. In section 6 we give a brief discussion of a possible expansion of our
text quality measuring method to other languages. Section 7 concludes this paper with an

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 228 of 474]

overview of the presented work and proposals for future work.

2 Related work
Evaluation of the quality of Web text content has been mainly performed with metrics
capturing content quality aspects like objectivity (Lex et al., 2010), content maturity, and
readability (Weber et al., 2009). These methods are based on selection of appropriate fea-
tures for document presentation. For example, in (Lex et al., 2010) stylometric features were
used to assess the content quality. Character trigram distributions were exploited in (Lipka
and Stein, 2010) to identify high quality featured/good articles in Wikipedia. (Blumenstock,
2008) considered simple word count as an indicator for the quality of Wikipedia articles.
(Lex et al., 2012) proposed factual density as a measure of document informativeness and
showed that it gives better results for Wikipedia articles than other methods. Wikipedia
articles were taken into consideration mainly due to the lack of a standard corpus in this
field of work. For evaluation purposes, those Wikipedia articles that have the featured article
or good article template in the wikitext were considered to be of a high quality or more
informative. No specially designed human annotation or evaluation was involved, and no
scale or ranking of informativeness was introduced.

To asses factual density of a text document, (Lex et al., 2012) apply the open information
extraction (Open IE) methods. Open IE is the task of extracting relational tuples representing
facts from text without requiring a pre-specified vocabulary or manually tagged training
corpora. A relational tuple in most current Open IE systems is a triplet consisting of two
arguments in the form of noun phrases and a relational phrase expressed as a verb phrase.
Consequently, a fact is presented as a triplet like f = (Mozart, was born in, Salzburg). The
abscence of a pre-specified vocabulary or a list of predetermined relations makes such
systems scalable to a broader set of relations and to a far larger corpora as the Web (Etzioni
et al., 2008).

Nevertheless, the output of the Open IE systems contains a large portion of uninformative and
incoherent extractions that can lead to overestimating of the factual density in a document.
(Fader et al., 2011) show that a part-of-speech based system like ReVerb with simple syntactic
and lexical constraints increases the precision of the output and needs no annotating or
training effort for its implementation compared to other Open IE systems like TextRunner
(Banko et al., 2007), WOEpos, and WOEparse (Wu and Weld, 2010), which all include a
relation learning step.

3 Building the Ground Truth Dataset
Since no special corpus for informativeness evaluation previously existed, we aimed at
creation of such a corpus of texts extracted from the Internet broader than Wikipedia.

3.1 The dataset
For the purpose of evaluation of the factual density as a measure of informativeness, we
needed to create a dataset that would be a reasonable projection of texts on the Web and
small enough to be able to conduct the experiment with available resources. To create our
dataset we performed the following steps:

• We used a 1 billion page subset from the CommonCrawl corpus (Kirkpatrick, 2011)
from 2012, which is a corpus of the web crawl data composed of over 5 billion web
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 229 of 474]

CommonCrawl	
Corpus	
•  1	 billion	 web	
documents	 	

•  crawled	 2012	

Processing:	
Text	 extraction	
•  Text	 extraction	
using	 Google	
Boilerpipe	

Filter:	 	
Spanish	 Texts	
•  Language	 detection	
with	 JLangDetect	

Filter:	 	
Text	 length	
•  Constraining	 length	
from	 500	 to700	
characters	

Filter:	 	
Random	
•  Select	 50	 random	
documents	

Spanish	 corpus	
•  50	 documents	

Figure 1: Process of corpus generation

pages, as an initial source of Web texts. From that corpus, we extracted textual content
of websites using Google’s Boilerpipe framework (Kohlschütter et al., 2010).

• For each article, the language was detected using JLangDetect (Nakatani, 2011).

• From this dataset, we randomly selected 50 documents in Spanish. In order to avoid
the length-based bias on the human annotation stage described in the next subsection
(e.g. users might tend to rate longer texts as more informative than shorter ones), we
constrained the text length to range from 500 to 700 characters.

In the end, we formed a corpus of 50 text documents in Spanish of similar length that
represent a random sample of the textual content from the Web. Figure 1 shows the process.

We would like to emphasize that not all textual content presented on the Web is coherent
text. The texts encountered on the Internet can consist of pure sequences of keywords,
or be elements of web-page menus, for example, “ For more options click here Leave your
comment CAPTCHA". Lists and instructions are another common form of texts, characterized
by incomplete sentences normally starting with a verb in the infinitive or imperative form,
e.g. “To open a file: – click the Microsoft Office button; – select Open". Texts can be sets of short
comments or tweets that also tend to be incomplete sentences often lacking grammatical
correctness. Commercials and announcements also typically consist of incomplete sentences,
e.g. “Information about the courses, dates, and prices", numbers, e.g. “$65 $75 $95 All prices
in US dollars", and telephone numbers and addresses. We manually performed a rough
classification of the texts from our dataset shown in Table 1. Since we used only short
documents for the experiment, each document mainly corresponded to only one text type.

In the current work we did not do any additional pre-processing for text type detection.
This was not done for several reasons. First, we want to keep the system as simple and fast
as possible for the purpose of scalability to large amounts of text. Next, we believe that the
factual density approach presented in the paper will be appropriate for automatic detection
of incoherent and uninformative texts. Consequently, there will be no need for additional
filtering.

3.2 Ground Truth Ranking by Human Annotators

To overcome the lack of a standard corpus in the field of web text informativeness assessment,
we formed a ground truth ranking of the documents based on inquiry of 13 human annotators.
All human annotators are natively Spanish speaking people with graduate level of education.
For the questionnaire, we opted for the MaxDiff (Maximum Difference Scaling) technique
(Louviere and Woodworth, 1991). According to MaxDiff technique, instead of ranking all
items at once, a participant is asked to choose the best and the worst item from a subset of
items at a time. This procedure is repeated until all items are covered.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 230 of 474]

Type of text # of docs Characteristics
keywords 2 sequence of nouns with no verbs
web page menu 1 short phrases, verbs
commercials, announcements 18 addresses, phone numbers,

prices, imperatives
coherent narrative: descriptions, news 13 full sentences with subjects,

verbs, and objects
comments, tweets 6 short sentences, lacking grammat-

ical correctness
instructions, lists 9 phrases starting with infinitives

or no verbs
incorrectly detected language 1 impossible to POS-tag for the sys-

tem and to read for human anno-
tators

Table 1: Classification of the documents in the dataset by the types of text content

MaxDiff is considered to be a strong alternative to standard rating scales (Almquist and Lee,
2009). The advantage of the MaxDiff technique is that it is easier for a human to select
the extremes of a scale rather than to produce a whole range of scaling. Consequently,
MaxDiff avoids the problems with scale biases and is more efficient for data gathering than
the simple pairwise comparison.

For this purpose, we created a set S of MaxDiff questions. Each question, which will
subsequently be called Q, contained 4 different documents d. Four items is few enough for
a participant to be able to concentrate and to make a decision, and large enough to be able
to cover all 50 documents in a reasonable number of questions.

The set S was created as follows:

• First, we calculated all possible combinations of how 4 documents can be chosen from
50 documents. This resulted in 230,300 possible combinations.

• Then, in a loop, we picked up one random question Q from the set of combinations
and added it to the resulting set S, until every document d was included three times
in the set S. This ensures that every document is compared at least three times with
other documents. Once finished, the resulting set S contained 103 questions Q, which
we used for the MaxDiff inquiry.

Further, we created a MaxDiff questionnaire system that displayed one question Q′ (=
4 documents d ′) at a time to a participant. A participant was asked to select the most
informative document and the least informative document from the set of 4 documents. The
interface of the questionnaire system is shown in Figure 2. In the experiment, the instructions
and the documents were given to the annotators in Spanish language. In Figure 2 they are
translated into English for convenience of the reader of this article. The selection of the
most and the least informative documents was based on the intuitive understanding of the
notion of “informativeness” by the participants. Each of the participants rated 25 questions
on average. The system ensured that each question Q is (i) rated three times in total and

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 231 of 474]

10.4.2013 11:30 Annotator GUI

Page 1 of 1http://192.168.111.127:8080/annotator/#

Log out

Rated documents: 7

Which is the most and the least informative document?

Continue

Hint: You can use the 's' key to continue

Digg Digg
A great loss for the financial
sector happened today with
the partial takeover of the
Anglo Irish Bank by the
government the existing Board
of Directors have all resigned.
Anne Heraty who is running
the largest Irish recruitment
agency CPL also resigned
today from her Directors role
in the Anglo Irish Bank.
I see it as a loss for the whole
financial industry, to lose
people like Anne Heraty. She
is a clear leader of the whole
recruitment industry in
Ireland, and actually quite
unique in her capacity and the
leading role in the industry in
general.
?

Fast virtual private servers with
full root access and dedicated
resources. Windows & Linux
available. Ideal for Resellers
and Developers.
From...
£8.49 per month
Daily.co.uk is one of the fastest
growing Web Hosting
companies in the UK. We
provide low cost domain name
registration combined with a
world class Web Hosting
platform that gives our
customers unparalleled control
of their web presence. Our
award winning VPS Hosting is
used by Web Designers and
Developers. Many opt for our
Linux VPS Hosting service, and
others prefer our Windows VPS
Hosting service.

more products
Fire Door Sign - This Staircase
Must Be Kept Clear of All
Obstructions
This fire door sign assists you
in conforming to the Building
Regulations 1991 act, which
advises that all doors designed
to be fire resistant should
display an appropriate
mandatory fire safety sign.
All signs comply to BS5499
Part 1 and 5, and are all
available in 1mm rigid plastic,
self adhesive vinyl, or rigid
plastic with self adhesive
backing.
We can also provide you with
custom fire doors signs with
your own text, click here .
All prices include VAT

Black Anodised Belly Bar
Here we have a superb quality
Bellybar.
This is made from full surgical
grade stainless steel which is
then anodised to give it its
black finish.
In this one we have bright,
sparkly synthetic Deep Red
stones - one at each end. the
smaller ball unscrews for
fitting.
The clip in the middle is not
part of it and is there just to
display it.
Note - The price for one is
£8:00 but if you want to order
any 3 from the £8 range please
phone Debs in the office as she
will arrange a discount for you.
3 for £20
Price: ?8.00

Figure 2: Screenshot of the MaxDiff questionnaire tool

(ii) rated by different users. This resulted in 309 ratings, with each question being answered
3 times.

We applied the MaxDiff technique to the answeres obtained from the user-study. The rank
for each document d was calculated proportionally to its MaxDiff scoring Scoremaxdiff(d),
which was calculated using the following formula:

Scoremaxdiff(d) = Rpos(d)− Rneg(d), (1)

where Rpos(d) is the number of positive answers and Rneg(d) is the number of negative
answers for the same document d.

After calculating the score for each document d, we formed a ground truth ranking of the
50 documents in our dataset.

4 Automatic Ranking
The aim of this work is to study the feasibility of automatic factual density estimation for
informativeness measurement for text documents on the Web. This section describes the
procedure for the automatic ranking.

4.1 Factual Density
In the factual density approach to web informativeness assessment, each text document is
charecterized by the factual density feature. To calculate the value of factual density, first,
the simple fact count is determined for each document d using the Open IE method. That
means that only direct information on the number of facts, i.e. fact count f c(d), obtained
from a text resource d is taken into account. It is obvious that the fact count in a document

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 232 of 474]

is correlated with its length, i.e. longer documents would tend to have more facts than
shorter ones. To overcome this dependency, factual density fd(d) is calculated as a fact
count in a document f c(d) divided by the document size size(d): fd(d) = f c(d)

size(d)
.

In this work we used the Open IE system for Spanish ExtrHech, which is described in the
next subsection, to determine the fact count in a document. The length of a document was
calculated as a number of characters including white spaces.

4.2 Fact Extraction

ExtrHech is a POS-tag based Open IE system for Spanish with simple syntactic and lexical
constraints (Zhila and Gelbukh, 2013). The system takes a POS-tagged text as an input. For
POS-tagging we used Freeling-2.2 (Padró et al., 2010). Then, it imposes syntactic constraints
in the form of regular expressions to each sentence. Since in our framework a fact is a
triplet of two arguments and a relation between them, the system requires a relation to be a
verb phrase that appears between two arguments expressed as noun phrases. Appropriate
syntactic constrains detect adequate verb phrases, resolve coordinating conjunctions for
relations and noun phrase arguments, correctly treat participle and relative clauses. In the
current version of ExtrHech system, lexical constraints limit the length of relational phrases
to prevent overspecifying of a relation. Specifically for Spanish language, the current version
is adjusted to EAGLES POS-tag set and properly treats reflexive pronouns for verb phrases.

At the current stage, ExtrHech system has various limitations. It does not resolve anaphora,
zero subject construction, and free word order that occur in Spanish. Yet despite of these
limitations, its precision and recall is comparable to that of ReVerb system for English
language, which was used in previous work on the text quality assessment for Wikipedia
articles (Lex et al., 2012).

It is also shown in (Fader et al., 2011) that, although deeper syntactic analysis would increase
the precision of syntactic and lexical constraint based Open IE systems, it would inevitably
slow down execution time that highly affects the overall time of processing for a Web-scale
corpus.

5 Experiment and Results

In this work we conducted an experiment to study the appropriateness of factual density
measure for assessment of web text informativeness. In order to prove the hypothesis,
we compared the ranking based on automatic factual density scoring to the ground truth
ranking based on the MaxDiff inquiry of human annotators.

To form the factual density based ranking, 50 documents were fed into a pipeline: Freeling-
2.2 POS-tagger, ExtrHech Open IE system, and a script for factual density calculation shown
in Figure 3.

Then, each document d was ranked according to its factual density scoring Scorefactdens(d):

Scorefactdens(d) = fc(d)/size(d), (2)

where f c(d) is the fact count for a document d, and size(d) is its length in characters
including white spaces.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 233 of 474]

Figure 3: Diagram of the factual density estimation

Human annotator ranking was formed as described in Section 3.2. The rankings are shown
in Table 2, where HA rank is the human annotator ranking and FD rank is the factual density
ranking.

Doc ID HA rank FD rank Doc ID HA rank FD rank
1 1 3 26 24.5 40
2 2.5 11 27 27 14
3 2.5 29.5 28 29.5 15
4 4.5 2 29 29.5 22
5 4.5 7 30 29.5 32
6 6 6 31 29.5 16
7 7 12 32 33 24
8 8.5 33 33 33 9
9 8.5 1 34 33 43

10 10 5 35 37 47
11 11.5 27 36 37 47
12 11.5 8 37 37 35
13 14.5 42 38 37 34
14 14.5 39 39 37 10
15 14.5 19.5 40 40 17
16 14.5 41 41 41.5 47
17 19 21 42 41.5 47
18 19 4 43 44 18
19 19 29.5 44 44 47
20 19 36 45 44 37
21 19 38 46 46 26
22 22 23 47 47 19.5
23 24.5 13 48 48 25
24 24.5 47 49 49 31
25 24.5 47 50 50 28

Table 2: Human annotator ranking and factual density ranking

Once the rankings were scored, we applied various statistical measures to calculate the corre-
lation between them. Table 3 shows the results of the statistical evaluation using Spearman’s
ρ coefficient, Pearson product-moment correlation r, and Kendall’s rank correlation τ with
the corresponding levels of significance. All these correlation coefficients may vary between
1 for coinciding rankings and −1 for completely opposite rankings. Random baseline for
Spearman’s ρ is 0.018. The coefficients should be significantly positive for the rankings to
be considered correlated.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 234 of 474]

In our work we obtained Spearman’s ρ as high as 0.41, Pearson’s r of 0.38, and Kendall’s
τ of 0.29. Since all measures give significantly positive correlations with the significance
level equal to or higher than 99.49%, we can conclude that medium correlation significantly
exists between the two rankings. Consequently, the obtained result show that the factual
density measure proves to be feasible as a measure of informativeness for text content on
the Web.

Method Value P-Value Significance Level
Spearman’s ρ 0.404 0.00365 99.636%
Pearson’s r 0.390 0.00514 99.486%
Kendall’s τ 0.293 0.00347 99.653%

Table 3: Result of correlation tests between factual density algorithm ranking and human
annotator ranking for 50 document dataset

6 Discussion: Applicability to Other Languages

In the current work we studied the adequacy of the factual density estimation as a quality
measure for arbitrary Web texts on the material of Spanish language. As mentioned in
Section 2, the text quality measuring through factual density estimation with an Open IE
system for English was shown to be adequate for English language Wikipedia articles (Lex
et al., 2012). Our future goal is to show the adequacy of the method for arbitrary English
texts as well, especially social media texts.

Moreover, the approach outlined in Sections 3 and 4 can be applied to texts in any languages,
to which the fact extraction paradigm described in Section 4.2 is applicable. To the best
of our knowledge, so far such Open IE methods have been elaborated and corresponding
fact extraction systems have been implemented only for English (Fader et al., 2011) and
Spanish (Zhila and Gelbukh, 2013). Generally, this approach to fact extraction requires
a POS-tagger and relies on the assumption of a single prevailing word order. Therefore,
this fact extraction technique can be similarly implemented for languages with a fixed or
dominating word order and for which reliable POS-taggers exist. This is the case for most
European languages, e.g. 97− 98% POS-tagging accuracy for the languages supported by
Freeling-3.0 package (Padró and Stanilovsky, 2012). However, currently POS-tagging in
other languages performs with lower accuracy, e.g. ~88% for Bengali (Dandapat et al.,
2007) or 94.33% for Chinese (Ma et al., 2012). The issue of how POS-tagging accuracy
affects performance of a fact extraction system and, consequently, what effect it has on the
text quality measuring is out of the scope of the paper and is an interesting direction for
future work.

Next, the sensitivity of the fact extraction method to the word order questions the feasibility
of text quality measuring using similar approach for languages with flexible word order, e.g.
Chinese. We believe that further research in this area will answer these questions.

7 Conclusions and Future Work

In this work we moved the research on informativeness of the Web from Wikipedia articles
to the arbitrary Web texts. We formed a dataset of 50 Spanish documents extracted from
the Web. Then, we presented a MaxDiff questionnaire to 13 human annotators to be able
to form a ground truth ranking of informativeness of Web text documents based on the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 235 of 474]

human judgements. Further, with the use of the open information extraction system Ex-
trHech, we calculated the factual density of the documents and estimated the corresponding
ranking. In the end, we showed that significant positive correlation exists between the
automatically generated ranking based on factual density and the ranking based on human
judgements (Spearman’s rank correlation of 0.404 at a significance level of 99.636%, n=50).
Consequently, we conclude that the factual density measure can be applied for adequate
assessment of the informativeness of textual content on the Web.

In future work, we plan to conduct similar experiments for other languages to analyze how
language affects factual density estimation. Next, we are going to analyze how a text form
of a document, i.e. lists, instructions, announcements, comments, news, etc., is related to
its informativeness. We also want to consider how a topic of a text document and human
annotator’s personal interests might change his or her judgements about the informativeness
of a document. For example, whether a person interested in sports would always choose
sport-related articles as more informative. Another branch of our research is dedicated to
the improvement of the fact extraction method and increase of the precision of the factual
density estimation.

Acknowledgements

This work has been funded by the European Commission as part of the WIQ-EI project
(project no. 269180) within the FP7 People Programme and Instituto Politécnico Nacional
grant SIP 20131702 .

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 236 of 474]

References
Almquist, E. and Lee, J. (2009). What do customers really want? http://hbr.org/
2009/04/what-do-customers-really-want/ar/1. [last visited on 09/04/2013].

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007). Open
information extraction from the web. In IN IJCAI, pages 2670–2676.

Blumenstock, J. E. (2008). Size matters: word count as a measure of quality on wikipedia.
In Proceedings of the 17th international conference on World Wide Web, WWW ’08, pages
1095–1096, New York, NY, USA. ACM.

Dandapat, S., Sarkar, S., and Basu, A. (2007). Automatic part-of-speech tagging for bengali:
an approach for morphologically rich languages in a poor resource scenario. In Proceedings
of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, ACL
’07, pages 221–224, Stroudsburg, PA, USA. Association for Computational Linguistics.

Etzioni, O., Banko, M., Soderland, S., and Weld, D. S. (2008). Open information extraction
from the web. Commun. ACM, 51(12):68–74.

Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying relations for open information
extraction. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, EMNLP ’11, pages 1535–1545, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Kirkpatrick, M. (2011). New 5 billion page web index with page rank now available for
free from common crawl foundation. http://readwrite.com/2011/11/07/common_
crawl_foundation_announces_5_billion_page_w. [last visited on 25/01/2013].

Kohlschütter, C., Fankhauser, P., and Nejdl, W. (2010). Boilerplate detection using shallow
text features. In Proceedings of the third ACM international conference on Web search and
data mining, WSDM ’10, pages 441–450, New York, NY, USA. ACM.

Lex, E., Juffinger, A., and Granitzer, M. (2010). Objectivity classification in online media.
In Proceedings of the 21st ACM conference on Hypertext and hypermedia, HT ’10, pages
293–294, New York, NY, USA. ACM.

Lex, E., Voelske, M., Errecalde, M., Ferretti, E., Cagnina, L., Horn, C., Stein, B., and
Granitzer, M. (2012). Measuring the quality of web content using factual information. In
Proceedings of the 2nd Joint WICOW/AIRWeb Workshop on Web Quality, WebQuality ’12,
pages 7–10, New York, NY, USA. ACM.

Lipka, N. and Stein, B. (2010). Identifying featured articles in wikipedia: writing style
matters. In Proceedings of the 19th international conference on World wide web, WWW ’10,
pages 1147–1148, New York, NY, USA. ACM.

Louviere, J. J. and Woodworth, G. (1991). Best-worst scaling: A model for the largest
difference judgments. Technical report, University of Alberta.

Ma, J., Xiao, T., Zhu, J. B., and Ren, F. L. (2012). Easy-first chinese pos tagging and
dependency parsing. In COLING 2012, 24th International Conference on Computational Lin-
guistics, Proceedings of the Conference: Technical Papers, pages 1731–1746. Indian Institute
of Technology Bombay.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 237 of 474]

Nakatani, S. (2011). Language detection library for java. http://code.google.com/p/
language-detection/. [last visited on 25/01/2013].

Padró, L., Reese, S., Agirre, E., and Soroa, A. (2010). Semantic services in freeling 2.1:
Wordnet and ukb. In Bhattacharyya, P., Fellbaum, C., and Vossen, P., editors, Principles,
Construction, and Application of Multilingual Wordnets, pages 99–105, Mumbai, India.
Global Wordnet Conference 2010, Narosa Publishing House.

Padró, L. and Stanilovsky, E. (2012). Freeling 3.0: Towards wider multilinguality. In Chair),
N. C. C., Choukri, K., Declerck, T., Doğan, M. U., Maegaard, B., Mariani, J., Odijk, J., and
Piperidis, S., editors, Proceedings of the Eight International Conference on Language Resources
and Evaluation (LREC’12), Istanbul, Turkey. European Language Resources Association
(ELRA).

Weber, N., Schoefegger, K., Bimrose, J., Ley, T., Lindstaedt, S., Brown, A., and Barnes, S.-A.
(2009). Knowledge maturing in the semantic mediawiki: A design study in career guidance.
In Proceedings of the 4th European Conference on Technology Enhanced Learning: Learning
in the Synergy of Multiple Disciplines, EC-TEL ’09, pages 700–705, Berlin, Heidelberg.
Springer-Verlag.

Wu, F. and Weld, D. S. (2010). Open information extraction using wikipedia. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, pages
118–127, Stroudsburg, PA, USA. Association for Computational Linguistics.

Zhila, A. and Gelbukh, A. (2013). Comparison of open information extraction for english
and spanish. In Accepted for Proceedings of the 19th International Computational Linguistics
Conference Dialogue, Dialogue 2013.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 238 of 474]

Using Topic Models in Content-Based News Recommender
Systems

Tapio Luostarinen1, Oskar Kohonen2

(1) Comtra Oy, Savonlinna, Finland
(2) Aalto University School of Science

Department of Information and Computer Science, Finland

tapio.luostarinen@comtra.fi, oskar.kohonen@aalto.fi

ABSTRACT
We study content-based recommendation of Finnish news in a system with a very small group
of users. We compare three standard methods, Naïve Bayes (NB), K-Nearest Neighbor (kNN)
Regression and Regulairized Linear Regression in a novel online simulation setting and in a cold-
start simulation. We also apply Latent Dirichlet Allocation (LDA) on the large corpus of news
and compare the learned features to those found by Singular Value Decomposition (SVD). Our
results indicate that Naïve Bayes is the worst of the three models. K-Nearest Neighbor performs
consistently well across input features. Regularized Linear Regression performs generally worse
than kNN, but reaches similar performance as kNN with some features. Regularized Linear
Regression gains statistically significant improvements over the word-features with LDA both
on the full data set and in the cold-start simulation. In the cold-start simulation we find that
LDA gives statistically significant improvements for all the methods.

KEYWORDS: Recommender Systems, Content-Based Recommendation, Topic Models, Latent
Dirichlet Allocation, Cold-start.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 239 of 474]

1 Introduction

With online news it is possible to read a large amount of different news sources on a large array
of topics, but since there are more articles available, finding interesting ones becomes more
difficult, as reading even just every headline becomes cumbersome. Consequently automatic
filtering with recommender systems, becomes attractive. We consider the specific problem of
how to build a news recommender system to find interesting news within a specific language
group, Finnish. We use content-based recommender systems, which is the less studied of the two
main paradigms of recommender systems (Adomavicius and Tuzhilin, 2005). The main benefit
of this content-based recommendation is that it allows others than large user communities and
their parent companies to build recommender systems for any material they want to, also any
niche content, be it by language, topic or anything else. By contrast, collaborative filtering
requires a large user community, since it bases its recommendation on how similar users have
rated the items. Another problem for news recommendation and collaborative filtering is that,
even if there is a sufficient number of similar users, the items need to have been rated by at
least some of these users, and in the case of news recommendation, it is the new items which
are most interesting, and these are the ones least likely to have been rated. Because of this,
news recommendation systems usually include content-based recommendation, where items
are recommended to users based on a profile of what kind of content the user has liked in the
past (Lang, 1995; Billsus and Pazzani, 2000).

Because our collected data is from a small community of users, we concentrate purely on
content-based recommendation. We consider the case where users provide explicit ratings
of how well they liked the content, rather than using the implicit feedback based on their
reading behavior. We compare three standard methods, Naïve Bayes (NB), K-Nearest Neighbor
Regression (kNN) and Regularized Linear Regression (Lin), which have all been suggested
earlier in the literature, but no comparison seems to be available.

Since we have comparatively few ratings, but a large corpus of news, a natural extension is to
apply unsupervised learning to the unrated news and discover features that reflect the statistical
structure of news items. These discovered features can then be used to improve performance of
the supervised recommender system. While this is a common approach in machine learning,
it has not been applied to content-based recommender systems. We apply Latent Dirichlet
Allocation (LDA) (Blei et al., 2003) and compare the learned features to those found by Latent
Semantic Indexing (Deerwester, 1988).

To motivate a user to keep using a recommender system, it needs to provide recommendations
already with very few rated items. This is known as the cold-start problem (see e.g. (Schein et al.,
2002; Rashid et al., 2008)), and we study how the amount of ratings affects recommendation
performance.

2 Related Work

Content-based news recommendation has been addressed in the literature by several authors.
Lang (1995) describes a method combining nearest neighbors and linear regression, using
a combination of TF-IDF features and features selected with Minimum Description Length
(MDL). Billsus and Pazzani (2000) used a combination of Nearest Neighbor Classification and
Naïve Bayes classification for explicit feedback in an interesting/not interesting classification.
In contrast to this work, we use the methods as straightforward predictors, rather than in
combinations, and we use a rating on the scale 1-5. Naïve Bayes has also been applied to

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 240 of 474]

content-based book recommendation (Mooney and Roy, 2000).

Topic models have not been used directly in content-based recommendation with explicit
feedback, but with implicit feedback, a method similar to probabilistic Latent Semantic Indexing
(Hofmann, 1999) has been applied by (Cleger-Tamayo et al., 2012). The topic model used
is adapted to user behavior. We don’t consider topic model adaptation, but rather use Latent
Dirichlet Allocation (Blei et al., 2003) as an unsupervised feature extraction procedure. We
argue, that while adaptation is likely to be useful for users with many rated items, lower
dimensional features from topic models are most interesting in the cold-start situation when it
is difficult for the methods to fit to a high-dimensional content vector.

Rashid et al. (2008) derive information theoretic strategies for how the first recommendations
for a new users should be made. In our work, we will merely measure the cold-start performance
of the methods, to assess how different methods work with very few rated items.

Recommender systems are increasingly seen as ranking problems, since we are trying to suggest
the most relevant items to the user (see e.g. (Takács and Tikk, 2012)). However, the methods
that we consider, reduce the recommendation problem to predicting the user ratings, since
this allows simpler methods. We do agree that ranking performance is more important than
prediction performance, and therefore we evaluate also ranking accuracy.

3 Methods

We implement the recommender systems separately for each user. For each user we have
a training set of documents di ∈ D that the user has assigned ratings r(di) ∈ {1,2,3,4,5}.
The documents are represented by feature vectors, where the feature set is denoted V . We
implement the recommender methods in two ways. Firstly, as a five class classification task,
where the classes correspond to the ratings 1-5 or, secondly, as a regression task, where the
rating is seen as a continuous value to be predicted. The former is used in combination with
Naïve Bayes, and the latter with K-Nearest Neighbors and Regularized Linear Regression. The
latter approach suffers from the problem that the method may assign scores outside the scale
1-5. This is however irrelevant when ranking documents.

3.1 Naïve Bayes classification

We implement the Naïve Bayes classifier following (McCallum and Nigam, 1998), where
documents are modeled as sequences of samples drawn from a multinomial distribution of
words, with as many independent draws as the number of words in the document, each class
having its own multinomial distribution. Here, as the class represents the rating, we denote it
r j , where j ∈ C = {1,2,3,4,5}. The word probability parameters can then be calculated from
the labeled data:

P(di,k|r j; θ̂) =

∑|D|
i=1 di,k P(r j |di)∑|V |

s=1

∑|D|
i=1 di,s P(r j |di)

(1)

Here di,k are the word counts in document di and P(r j |di) are known for the training data.
While doing classification, we assign the rating to a new document dnew by finding find the most
likely mixture component that could have generated the document, i.e. to find the mixture
component r ′ that has the maximum a posteriori probability, which can be done by applying

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 241 of 474]

Bayes’ rule.

r̂NB(dnew) = arg max
r ′∈C

P(r j |d) = arg max
r j∈C

P(r j)P(d|r j)

P(d)
= argmax

r j∈C
P(r j)P(d|r j) (2)

3.2 Nearest Neighbor Regression

Nearest neighbor methods are very simple to implement and they can be used for both classifica-
tion and regression. They simply store in memory all the training samples and the outcome for
a new sample is based solely on the nearest neighbor or k nearest neighbors in the training set.
The nearest neighbor is selected as the most similar sample:

d ′ = arg max
di∈D

sim(di , dnew) (3)

where sim(di , d j) is the similarity measure being used. The performance of the nearest neighbor
methods depends significantly on the similarity measure. We used cosine similarity as the
measure and it is defined as (Salton, 1989):

sim(di , d j) = cos(α) =

∑|V |
k=1(di,kd j,k)q∑|V |

k=1 d2
i,k

q∑|V |
k=1 d2

j,k

(4)

Let d j , j = 1, ..., k be the set of k nearest neighbors for the item dnew . We calculate the value for
a new item as a weighted average of the k nearest neighbors (Billsus and Pazzani, 2000):

r̂kNN (dnew) =

∑k
j=1 r(d j)× sim(dnew , d j)∑k

j=1 sim(dnew , d j)
(5)

3.3 Regularized Linear Regression

The basic idea of linear models is to find in some sense optimal coefficients βk for each variable
di,k in the linear equations:

r̂Lin(di) = β0 +
|V |∑
k=1

βkdi,k (6)

The recommender system we are building should be able to present some recommendations
even with just a few rated items, so we used a regularized least squares formulation, which
can be applied with only a few samples. We used elastic net, a combination of lasso and ridge
regressions. This model still minimizes the squared errors, but the coefficients are regularized
by both L1-norm and L2-norm. The regularization part of the expression can be stated with

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 242 of 474]

a scale parameter λ and a linear weight parameter α ∈ [0,1] to select between L1-norm and
L2-norm (Friedman et al., 2010):

β̂
elast ic

=arg min
|D|∑
i=1

r(di)− (β0 +
|V |∑
k=1

βkdi,k)

2

+λ
|D|∑
i=1

�
1

2
(1−α)β2

k +α|βk|
� (7)

Zou et al. (Zou and Hastie, 2005) have also shown that elastic net, in case of highly correlated
variables, tends to select all of them at once or leave them all out at once. Studies have shown
that this kind of grouping effect clearly improves the prediction accuracy of linear models
compared to lasso when there are correlated variables.

3.4 Topic models

Latent Dirichlet Allocation (LDA) is a fully generative probabilistic topic model initially intro-
duced by Blei et al. (Blei et al., 2003). It has been a widely applied method during the last few
years and there are several implemented variants of it. LDA assumes that the documents are
generated through the following process (Griffiths and Steyvers, 2004):

1. Generate topics by randomly choosing a word distribution φk ∼ Dir(β) for each K topics

2. Choose a number of words for the document: N ∼ Poisson(ξ)

3. Randomly choose a distribution of topics for the document θ ∼ Dir(α)

4. For each N words in the document:

(a) Randomly choose a topic index zn ∼ Mul tinomial(θ) to indicate from which topic
the word wn will be sampled

(b) Randomly choose a word wn by sampling a conditioned multinomial probability
P(wn|zn,φzn

)

The distributions for the model parameters are very hard to compute directly, but different
approximate inference algorithms, such as variational inference (Blei et al., 2003) or Gibbs
sampling (Griffiths and Steyvers, 2004), solve the problem efficiently.

4 Experiments

The data we used in our experiments were gathered with a news aggregator during a 10 month
period and during which, end users could read and rate the news on their own. The experiments
were then conducted offline without user iteraction.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 243 of 474]

4.1 Data Set

The news content we used was gathered by the news aggregator by automatically reading
RSS-feeds from Finnish online newspapers. The data from the feeds contains at least timestamp,
link and title fields, but these were extended by parsing out the news content from the linked
web pages using a java version of Readability 1. If Readability failed to find the content, the text
from the RSS-feed was used instead. In topic modeling we used all the pieces of news from the
time span of stored ratings yielding a set of 592 886 news articles.

The aggregator made it possible for the registered users to assign ratings for the news articles
on a scale from 1 to 5, where 5 means the user found it the most interesting. These ratings were
used in the experiment to express user preferences. The aggregator has only a few active users
and we selected from the database all users having more than 100 assigned ratings. There were
10 such users with a total of 10 401 ratings. The distribution of labels are shown in table 1.

4.2 Pre-processing

The preprocessing is illustrated in figure 1. The pieces of news were first concatenated into
a single string with the title joined to the content, and then tokenized into words. Then
morphological analysis was performed, using OmorFi2, a morphological analyzer for Finnish
(Lindén et al., 2011). If there were many possible lemmas, we used a simple heuristic to
select one, by preferring part of speech in the following order: numeral, adjective, verb, noun,
pronoun, adverb, conjunction, particle. When Omorfi recognized a word as a compound
word, we used as features both the whole compound and the separate components, to reduce
the sparsity of the data. This means, for example, that a compound word consisting of two
components will be used as three features: the first component, the second component and
their compound. After morphological analysis, we used a stop word list to remove the 100
most common words from the documents and also words occurring in only one document. This
process left us 395 343 distinctive words. Then the documents were transformed into vectors
of lemma counts. As Naïve Bayes requires this representation, these vectors were stored, but
also their TF-IDF transformation was calculated.

4.3 Experiment Setup

We created a novel way of simulating the normal recommender system usage by predicting
the ratings for previously unseen items in a stream fashion. First we took 20 articles from the
beginning of a chronologically ordered list of ratings and used them as training samples for
the model. After the training, the methods predict ratings for the next 20 items. After this, the
reference ratings were then added to the training set for predicting the next batch of 20 ratings.
This process was repeated separately for each user and until the end of the list was reached.
This produced lists of predictions where each prediction was made using only ratings given
before the one being predicted.

We could have used the simple division into training and evaluation sets, but that would not
mimic the real situation as well. When a recommender system is implemented online, it faces a
situation similar to the one described above. This is a way of simulating online evaluation in an
offline environment.

1http://www.readability.com/
2http://www.ling.helsinki.fi/kieliteknologia/tutkimus/omor/ newest Java version as of 23 May 2011

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 244 of 474]

Read
 RSS-feeds

Read
HTML-file

Filter with
Readability

Combine
content

Tokenize

Create word
count matrix

TF-IDF
transformationTopic modeling

Morphological
analysis

Remove
stop words

Figure 1: The data collection and preprocess-
ing

Rating
User 1 2 3 4 5 Total

1 629 393 783 912 1174 3891
2 297 310 487 823 960 2877
3 521 638 322 519 187 2187
4 100 197 259 341 204 1101
5 54 84 107 162 147 554
6 33 69 81 100 44 327
7 16 8 90 82 77 273
8 30 20 37 18 41 146
9 3 13 35 48 20 119
10 1 3 27 29 45 105

Table 1: The rating distributions
from each user.

We additionally simulated a simple cold-start situation where a new user starts to use the system.
We reserved the first 150 rated samples from each user to be used in the training phase and
the samples from indices 151 to 300 were used in the evaluation set. We evaluated the models
with different sizes of training sets by using only part of the training set at each iteration. In
other words, the evaluation set was kept fixed while the size of the training set was increased
in steps of 5. Since only users 1,2,3,4,5 and 6 had enough rated samples, the rest of the users
were excluded from this test.

The algorithms were trained on each training batch as explained above. For Naïve Bayes we
used Laplace smoothing. Hyperparameters for K-Nearest Neighbors and Regularized Linear
Regression were found by splitting each training batch in half into a training and test set. A grid
search was then performed, and best parameters were, for K-Nearest Neighbors k = 25, and
Regularized Linear Regression α= 0.2 and λ= 0.001. The parameters were then reestimated
for the full training batches with the selected hyperparameters. We also considered a random
baseline recommender that assigns the mean of the ratings from the training set for all the
evaluation items.

We computed four different topic models with LDA using Matlab Topic Modeling Toolbox (Griffiths
and Steyvers, 2004) and standard parameters recommended in the toolbox documentation:
α = 50/K ,β = 200/|V |. The models had 50, 100, 300 and 500 topics. When used as
input data for recommender models, the distributions θ = P(z|d) were used as features.
To assess how much the performance is affected by feature extraction and how much is
due to lower input dimension, we also tested the recommendation methods using SVD as a
dimensionality reduction method. Here the SVD is, in practice, the same as LSI (Deerwester,
1988). We projected the TF-IDF news data into three subspaces with 50, 100 and 300 dimensions
or features. The subspace with 500 dimensions was left out, because of its computational

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 245 of 474]

requirements. Because the SVD produces continuous values in the subspace, we did not find
any straightforward way to use them with the naïve Bayes method, and hence it was left out
from the comparison.

We evaluated the recommender system by using two different evaluation metrics. As a prediction
accuracy metric we used the root mean squared error (RMSE):

RMSE =

È
1

|D|
∑
i∈D
(r(di)− r̂(di))2 (8)

In many cases it is not important to predict the actual ratings accurately, but rather ordering the
items correctly. Also, some learning methods are not bound to give values in the same interval
as the given ratings or do not necessarily use the interval efficiently, but they can still order
the items accurately. To measure ranking performance we used the normalized distance-based
performance measure (NDPM) (Yao, 1995). NDPM is suitable for measuring two weakly ordered
rankings, because it will not penalize the system for placing two items in different order when
the given ratings for these items are equal. It is calculated as a pairwise comparison of ratings
and the value is the ratio of incorrectly ranked pairs and pairs that have a defined order. NDPM
is defined as follows:

N DPM =
2C− + Cu

2C
(9)

Here C is the maximum distance of two rankings, that is to say the total number of pairs where
the reference ranking defines an order. C− is the number of incorrectly ordered pairs in system
rankings and Cu is the number of pairs where the reference ranking defines an order but the
system does not. The NDPM is bounded between 0 and 1, where 0 means the list is ordered
perfectly and 1 means the list is ordered perfectly in reverse. When the ordering is completely
wrong, the NDPM is about 0.5.

We performed the experiments with all the three methods described above and with word
data and topic data. We ran the same test separately with each of the four topic models and
compared the results with our baseline settings, which was with the same methods, but with
word-based data.

The statistical significance of the results were estimated by using Wilcoxon signed-rank test
(Wilcoxon, 1945). The results from each user were considered as samples and we used the
significance level of 0.05. In the cold-start tests the significances were estimated when all the
150 training samples were used in training.

5 Results

The results for the full set are shown in Table 2. For the random baseline method, we can
see average NDPM value very close to 0.5, the expected value for a random ranking. It
can be seen that Naïve Bayes performs worse than the two other methods. Its RMSE is
worse than the random baseline, but the NDPM is better, which implies that Naïve Bayes is
performing very badly as a prediction algorithm, but is still ordering the items better than chance
levels. We verified that Naïve Bayes assigns the majority rating to most items. For K-Nearest

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 246 of 474]

Model Features
Accuracy Ranking

RMSE p-value num NDPM p-value num
RANDOM - 1.255 0.507

NB

Words 1.430 0.413
LDA (50) 1.332 0.625 5/10 0.328 0.006 9/10
LDA (100) 1.347 0.557 6/10 0.327 0.004 9/10
LDA (300) 1.398 0.922 5/10 0.329 0.002 10/10
LDA (500) 1.447 1.000 5/10 0.340 0.027 9/10

kNN 25

Words 1.087 0.307
LDA (50) 1.058 0.160 7/10 0.308 0.695 6/10
LDA (100) 1.058 0.131 7/10 0.308 0.922 5/10
LDA (300) 1.057 0.084 8/10 0.303 0.557 6/10
LDA (500) 1.077 0.625 5/10 0.314 0.846 6/10
SVD (50) 1.068 0.193 8/10 0.315 0.322 3/10
SVD (100) 1.059 0.084 8/10 0.310 0.695 4/10
SVD (300) 1.053 0.006 9/10 0.304 0.131 8/10

Lin

Words 1.160 0.360
LDA (50) 1.067 0.037 8/10 0.311 0.014 8/10
LDA (100) 1.072 0.048 7/10 0.316 0.006 9/10
LDA (300) 1.096 0.006 9/10 0.333 0.065 9/10
LDA (500) 1.118 0.027 8/10 0.344 0.084 6/10
SVD (50) 1.161 0.922 4/10 0.323 0.037 9/10
SVD (100) 1.107 0.322 5/10 0.316 0.027 9/10
SVD (300) 1.065 0.006 9/10 0.305 0.002 10/10

Table 2: Full data set performance results with random ordering (RANDOM), Naïve Bayes (NB),
K-Nearest Neighbor with k = 25 (kNN 25) and Regularized Linear regression (Lin). The p-value
column shows the result of a Wilcoxon signed-rank test compared to the words model and
statistically significant results at 0.05 are emphasized, and the num column indicates for how
many users the performance improved with a topic model

Neighbors we can see consistently good performance, which is not affected by topic-modeling
or dimensionality reduction, as the small differences are not statistically significant. Regularized
Linear Regression generally performs worse than kNN, except with LDA 50 and SVD 300, in
which cases the results are very close to kNN. Surprisingly, for all algorithms, performance
drops for LDA of higher dimension, sometimes starting at 100, sometimes at 500 features, while
performance using SVD improves with higher dimension.

Figure 2 shows the cold-start performance for the different methods when increasing the
amount of labeled data, and Table 3 shows the performance with 150 rated items. At this small
amount of labeled data we can see that LDA50 gives statistically significant improvements for
all methods and measures except Naïve Bayes and RMSE. We can see from figure 2, that LDA50
improves results already at much fewer than 150 ratings. At 10-20 ratings performance is better
than the word-based model, being similar before that. For SVD and K-Nearest Neighbors we get
improvements, but they are significant only at 300 features. In contrast, with Regularized Linear
Regression SVD gives either statistically significant reductions in performance, or statistically
insignificant improvements.

6 Discussion

The bad performance of Naïve Bayes may be partly due to our using the 1-5 rating as 5
separate classes, which leads to a higher number of parameters to estimate than for the
other methods. Better performance may be achieved if the ratings were converted into a
two-class interesting-uninteresting distinction, but doing so is not straightforward. The worse

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 247 of 474]

0 50 100 150
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Naïve Bayes (RMSE)

R
M

S
E

0 50 100 150
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Nearest Neighbor (RMSE)

R
M

S
E

0 50 100 150

0.3

0.35

0.4

0.45

0.5
Nearest Neighbor (NDPM)

N
D

P
M

Size of the training set

0 50 100 150
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Linear model (RMSE)

R
M

S
E

0 50 100 150

0.3

0.35

0.4

0.45

0.5
Linear model (NDPM)

N
D

P
M

0 50 100 150

0.3

0.35

0.4

0.45

0.5
Naïve Bayes (NDPM)

N
D

P
M

Words LDA (50) LDA (100) LDA (300) LDA (500)

Figure 2: Performances of different methods in a simple cold-start situation. On each figure
the results with LDA-models along with the results with word data are shown. The upper row
shows the results with RMSE and the lower row with NDPM.

Model Features Accuracy Ranking
RMSE p-value num NDPM p-value num

NB

Words 1.602 0.448
LDA (50) 1.386 0.438 4/6 0.337 0.031 6/6
LDA (100) 1.384 0.563 3/6 0.338 0.063 5/6
LDA (300) 1.389 0.438 4/6 0.338 0.031 6/6
LDA (500) 1.470 1.000 2/6 0.348 0.063 5/6

kNN 25

Words 1.257 0.325
LDA (50) 1.146 0.031 6/6 0.292 0.031 6/6
LDA (100) 1.143 0.031 6/6 0.299 0.094 5/6
LDA (300) 1.159 0.031 6/6 0.300 0.031 6/6
LDA (500) 1.199 0.156 4/6 0.326 1.000 3/6
SVD (50) 1.139 0.031 6/6 0.300 0.313 4/6
SVD (100) 1.147 0.031 6/6 0.302 0.094 5/6
SVD (300) 1.162 0.031 6/6 0.293 0.031 6/6

Lin

Words 1.239 0.332
LDA (50) 1.165 0.031 6/6 0.307 0.031 6/6
LDA (100) 1.186 0.438 4/6 0.332 0.688 2/6
LDA (300) 1.229 0.313 4/6 0.328 0.688 4/6
LDA (500) 1.241 1.000 3/6 0.356 0.031 0/6
SVD (50) 1.248 1.000 3/6 0.339 0.563 3/6
SVD (100) 1.367 0.313 2/6 0.367 0.031 0/6
SVD (300) 1.158 0.031 6/6 0.302 0.094 5/6

Table 3: Cold-start data set performance results for, Naïve Bayes (NB), K-Nearest Neighbor with
k = 25 (kNN 25) and Regularizes Linear Regression (Lin). The p-value column shows the result
of a Wilcoxon signed-rank test compared to the words model and statistically significant results
at 0.05 are emphasized, and the num column indicates for how many users the performance
improved with a topic model

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 248 of 474]

performance of Regularized Linear Regression in the cold-start setting, may be because we
adjust the hyperparameters for the full set. However, this can be seen as a weakness in the
method, since it is very computationally demanding to optimize the hyperparameters for each
data size (and user) separately. The Linear Regressor is very fast at recommendation time,
requiring only one dot-product per user for each new item. The Nearest Neighbor method, in
comparison, requires one dot-product calculation for each item the user has rated. However,
when the number of ratings is small this is not a serious downside.

7 Conclusions

We evaluated three standard content-based recommender algorithms for a task of Finnish news
recommendation. We used word counts, TF-IDF weighted word features both directly and after
dimensionality reduction with SVD, and topics learned with Latent Dirichlet Allocation. We
evaluated both a full data set where 10 users had 105–3891 labels each, and a cold-start data
set where 6 users had 5–150 rated news items. We found that Naïve Bayes was the worst of
the tested models, sometimes performing worse than a random baseline. Nearest Neighbors
worked consistently well regardless of input features. Regularized Linear Regression performed
well with some features, reaching similar performance as Nearest Neighbors on these features.

On the full data set LDA50 and SVD300 yielded statistically significant improvements over the
word features for Regularized Linear Regression, but for the other methods the improvements
were not statistically significant for both measures. In the cold start simulation, we found that
LDA50 yielded statistically significant improvements over the word-features for all methods. The
LDA models with more than 50 topics seem to perform increasingly worse with growing amounts
of topics. In contrast SVD performance improves with growing dimension, but SVD50 is worse
than LDA50. These results suggest that LDA can find good features with a smaller dimension
than what SVD requires, however LDA performance seems to decrease with additional topics,
which can be problematic. With the amount of rated samples we have in our experiments,
applying Nearest Neighbor regression is preferrable over applying Regularized Linear regression
for content-based recommendation, since Nearest Neighbors is more robust, and adjusting its
hyperparameter k is easier than adjusting the regularization parameters of Regularized Linear
Regression.

Acknowledgments

This paper is based on the Master’s Thesis work of the first author. The second author was
funded by the Academy of Finland project Multimodally grounded language technology. We are
grateful to Erkki Oja for valuable comments during the work.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 249 of 474]

References

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17(6):734–749.

Billsus, D. and Pazzani, M. J. (2000). User modeling for adaptive news access. User Modeling
and User-Adapted Interaction, 10:147–180.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine
Learning Research, 3:993–1022.

Cleger-Tamayo, S., Fernández-Luna, J. M., and Huete, J. F. (2012). Top-n news recommenda-
tions in digital newspapers. Knowledge-Based Systems, 27(0):180 – 189.

Deerwester, S. (1988). Improving Information Retrieval with Latent Semantic Indexing. In
Borgman, C. L. and Pai, E. Y. H., editors, Proceedings of the 51st ASIS Annual Meeting (ASIS
’88), volume 25, Atlanta, Georgia. American Society for Information Science.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.

Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences of the United States of America, 101(Suppl 1):5228–5235.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal
Problems. Technometrics, 12(1):55–67.

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information retrieval, SIGIR
’99, pages 50–57, New York, NY, USA. ACM.

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the 12th Interna-
tional Machine Learning Conference (ML95.

Lindén, K., Silfverberg, M., Axelson, E., Hardwick, S., and Pirinen, T. A. (2011). Hfst-framework
for compiling and applying morphologies. In Communications in Computer and Information
Science, volume 100 of Systems and Frameworks for Computational Morphology, pages 67–85.
Springer.

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive bayes text
classification. In AAAI-98 Workshop on Learning for Text Categorization, pages 41–48. AAAI
Press.

Mooney, R. J. and Roy, L. (2000). Content-based book recommending using learning for text
categorization. In Proceedings of the Fifth ACM Conference on Digital Libraries, pages 195–204.
ACM Press.

Rashid, A. M., Karypis, G., and Riedl, J. (2008). Learning preferences of new users in
recommender systems: an information theoretic approach. SIGKDD Explor. Newsl., 10(2):90–
100.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 250 of 474]

Salton, G. (1989). Automatic text processing: the transformation, analysis, and retrieval of
information by computer. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Schein, A. I., Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and metrics
for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’02, pages 253–260,
New York, NY, USA. ACM.

Takács, G. and Tikk, D. (2012). Alternating least squares for personalized ranking. In
Proceedings of the sixth ACM conference on Recommender systems, RecSys ’12, pages 83–90,
New York, NY, USA. ACM.

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin,
1(6):80–83.

Yao, Y. Y. (1995). Measuring retrieval effectiveness based on user preference of documents. J.
Am. Soc. Inf. Sci., 46(2):133–145.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the Elastic Net. Journal
of the Royal Statistical Society B, 67:301–320.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 251 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 252 of 474]

Bootstrapping an Unsupervised Approach for Classifying
Agreement and Disagreement

Bernd Opitz, Cäcilia Zirn
University of Mannheim

jopitz@mail.uni-mannheim.de, caecilia@informatik.uni-mannheim.de

ABSTRACT
People tend to have various opinions about topics. In discussions, they can either agree or
disagree with another person. The recognition of agreement and disagreement is a useful
prerequisite for many applications. It could be used by political scientists to measure how
controversial political issues are, or help a company to analyze how well people like their new
products. In this work, we develop an approach for recognizing agreement and disagreement.
However, this is a challenging task. While keyword-based approaches are only able to cover a
limited set of phrases, machine learning approaches require a large amount of training data. We
therefore combine advantages of both methods by using a bootstrapping approach. With our
completely unsupervised technique, we achieve an accuracy of 72.85%. Besides, we investigate
the limitations of a keyword based approach and a machine learning approach in addition to
comparing various sets of features.

KEYWORDS: Text Classification, Agreement, Disagreement, Opinion Mining.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 253 of 474]

1 Introduction

It is commonly known that humans do not always agree with each other. Where people
disagree, discussions emerge. Discussions are an important manner of communication. For
many purposes such as analyses in political sciences, it is relevant to have knowledge about
agreement and disagreement. For instance, by measuring the degree of disagreement in ongoing
discussions it can be compared how controversial different political issues are. To give another
example, detecting heated discussions in online conversations could signal the need for a
moderator or mediator to get involved. Knowledge about agreement and disagreement might
further be useful for identifying groups that support or oppose a given opinion. In the context of
business meetings, it might help to identify decisions and controversy. Furthermore, detecting
agreement and disagreement helps understanding social dynamics (Hillard et al., 2003) and
can generally aid summarizing conversations or discussions (Janin et al., 2003).

We intend to develop a method to recognize agreement and disagreement (referred to as A/D
from now on) automatically, which turns out to be a challenging task. The most intuitive
approach might be to watch out for indicating phrases like “I disagree” or “that’s wrong”. We
compiled lists of expressions for both agreement and disagreement based on existing research
and classified text snippets based on their occurrences. While this simple approach achieves
a high precision, it is not able to make informed choices on how to classify instances that
either do not contain any key phrase or even contain indicators for both classes. Another
straightforward approach is using machine learning. While this works quite well, the drawback
of this approach is that it requires a large amount of manually annotated training data. In
order to work around these problems we developed a bootstrapping approach combining the
advantages of both previous approaches, which is the main contribution of this paper. In the
bootstrapping approach, we first classify a part of the data set by using keywords only. We
then take these classified instances as the training data for machine learning and classify the
remaining instances with the resulting classifier. For comparison, we describe and evaluate
keyword based and machine learning approaches as well.

2 Related Work

Detection of A/D is quite a new research field and as such there is only limited work about
it. However, the interest seems to increase, as most of the publications we are aware of were
published in 2012.

The research of (Galley et al., 2004) is very close to our work. They applied machine learn-
ing techniques, more precisely Bayesian Networks, to the ICSI Meeting corpus (Janin et al.,
2003), a collection of human-to-human multi-party conversations, with the preliminary goal of
identifying A/D. To do so they used a wide-ranging set of global contextual features as well
as local features consisting of structural, durational and lexical features. Among the lexical
features, they used positive and negative polarity adjectives as known from sentiment analysis.
Their approach achieved an accuracy of 86.9%. Adjectives expressing polarity are commonly
used for sentiment analysis, as in the research of (Fahrni and Klenner, 2008) and (Moghaddam
and Popowich, 2010). Moghaddam et al. made use of adjective polarity to classify the opinion
expressed in a product review as positive, negative or neutral. Their approach reached an
accuracy of 73% and thus outperforms Naïve Bayes classifiers which usually achieve accuracies
of 58-64% in the same area.

Consistent with the insights outlined in the papers listed above, (Hillard et al., 2003) and (Galley
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 254 of 474]

et al., 2004) state that “lexical information make the most helpful local features”, so these were
also applied in analyses for our work. A wide range of the features we used, especially discourse
markers and repeated punctuation, were chosen based on the findings in (Abbott et al., 2011).
In their work they made use of word-based features, among others, to analyze online dialogic
discussions concerning subjects such as politics, society or religion in an attempt to recognize
A/D. Their approach was carried out using two different Machine Learning algorithms, namely
the NaiveBayes and JRip implementations in the Weka toolkit. The success of their approach
was an accuracy of 68% which is 5% higher than a simple unigram baseline.

(Yin et al., 2012) analyze online discussions for agreement and disagreement using machine
learning methods, among them SVMs which perform quite well. The features they use are
similar to our, in so far that they too use e.g. sentiment, emotional and durational features.
These features include keywords such as discourse markers as well as occurrences of special
characters such as question or exclamation marks, the sentiment polarity of posts, the length of
a post and foul words. They developed a multistage process for agreement and disagreement
detection, which first decides whether two posts in a discussion agree or disagree with each
other. In the second step, these results are aggregated and then in the third step the position
towards the initial post in the discussion is determined as the “global” position. The experiments
were carried out on two corpora and in the best case achieved an accuracy of 64% and an
F-measure of 77%.

(Mukherjee and Liu, 2012) analyze product reviews and comments on them. Agreement and
disagreement detection plays a role in their analyses because reviews that people agree with
may be more useful than those that a lot of people disagree with. One reason for that is that
fake reviews may receive a lot of disagreeing responses as fake reviews are often authored by
people who are not users of the product which commenters (as actual users) can usually detect.

Besides approaches to automatically identify agreement and disagreement, new corpora with
manual agreement/disagreement annotations were released. (Walker et al., 2012) extracted
discussions from 4forums.com and annotate the topic of the discussion as well as agreement
of the posts including additional information about the type of agreement (e.g. sarcasm) and
its degree. (Andreas et al., 2012) contains data of livejournal blogs and Wikipedia discussion
forums. Maintaining the discussion thread structure, they annotate agreement and disagreement
and the mode, i.e. either a direct/indirect response or a direct/indirect paraphrase.

3 Agreement and Disagreement

Agreement and disagreement as commonly understood can occur in various forms. Generally,
agreement is defined as “harmony of opinion, action, or character” (Merriam-Webster.com,
2012a) whereas disagreement is defined as “the state of being at variance” (Merriam-
Webster.com, 2012b). In a wider sense, agreement or disagreement are also present if a
person positively respectively negatively refers to another person’s statement. Beyond that,
agreement and disagreement can either be direct or indirect. Direct agreement or disagreement
is present if a speaker explicitly aligns with one or more other speakers (see Example 1 and
Example 2).

Example 1: Example of explicit and direct positive alignment.
“I agree.”, “Great idea”, “As you mentioned earlier”

Indirect alignment, such as a shared or contradictory opinion between two speakers can be
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 255 of 474]

Example 2: Example of explicit and direct negative alignment.
“That’s wrong.”, “That’s questionable.” , “That’s a terrible idea.”

seen in Example 3 and Example 4.

Example 3: Example of indirect alignment move: shared opinion.
Speaker1: I think we should elect John Kerry.
Speaker2: John Kerry should be elected as President of the United States.

Example 4: Example of indirect alignment move: Contradicting opinion (disagreement that should
not be coded).
Speaker1: So you don’t think we should use the [. . .] Iraqi government casualty number in this
section?
Speaker2: The number doesn’t come from the Iraqi government, it comes from the LA Times.

In this work, we restrict our experiments to recognizing direct and explicit A/D only, as the
corpus we are using is limited to these annotations.

3.1 Classifying Agreement and Disagreement

Our goal was to come up with an approach for identifying A/D that is independent of manually
annotated training data, yet able to identify sentences that do not contain an explicit, predefined
keyword. We hypothesized that classification based on keywords only would yield a high
precision but low recall, i.e. that it would be able to correctly classify instances containing
keywords, but failing to classify any of the others. We will show later that this intuition turned
out to be true (see subsection 4.4). A machine learning approach, on the other hand, requires
a large amount of training data, which is time and labor intensive to create. We therefore
developed a bootstrapping approach combining the keyword approach with machine learning.
In brief, the idea is the following: First, we pick those sentences from a corpus that contain
predefined key expressions that indicate either agreement or disagreement and classify them
accordingly. We then use the result as training data for a machine learning approach.

For the first part of the bootstrapping approach, the keyword based labeling process, we begin by
collecting keywords that indicate utterances of agreement and disagreement. In the following,
by keyword we refer to single terms as well as expressions or phrases consisting of more than
one word„ e.g. “conversely” and “on the contrary”. We then check the instances within the data
set for the occurrence of those keywords. The range of an instance, i.e. the unit that is classified,
depends on the data set, it could be defined as a sentence or a coherent sequence of sentences
that comprise a complete utterance of a speaker. In our case, an instance consists of a speaker’s
turn, which will be described in detail in subsection 4.1. If the instance contains more keywords
for agreement, we label it as agreement; in case we find more keywords for disagreement,
we label it as disagreement. For a more precise classification, we also consider negations. A
negation is an expression that negates the meaning of a phrase. We consider keywords directly
following a negation as an indicator for the opposite label. If an instance contains an even
number of cues for agreement and disagreement or if it does not contain any keywords at all, it
is not labeled in this step. It is important to point out that neither the handling of negations
nor the classification based on the key expressions for the instances are necessarily correct.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 256 of 474]

However, as we will show later in Table 1, the precision of this simple classifier achieves over
61% for Agreement and over 90% for Disagreement.

The resulting annotations derived by this keyword based approach will be used as training data
for machine learning. The remaining part of the corpus that could not be classified in the first
step - either because it did not contain any keywords or because it contained an equal number
of agreeing and disagreeing keywords - will then be classified by trained the machine learning
classifier. The features we used for machine learning are described below in 4.2.

After these two steps, all instances are classified as either Agreement or Disagreement. The
salient advantage of this approach is that it does not require any manual annotations and
thus represents an unsupervised approach. To evaluate the potential of this approach while
discovering its limitations, we compared it to two different baselines. On the one hand, we will
evaluate the results of using the keyword-based approach only. On the other hand, we explore
the performance of a standard machine learning scenario training on manually annotated labels.
Furthermore, we will experiment with different combination of features to find out how helpful
they are for the classification task of distinguishing between agreement and disagreement.

4 Evaluation

In the following, we will explain how we evaluate the different approaches for classifying
agreement and disagreement and which features we use. Furthermore, we describe the data in
more detail.

4.1 Corpus

For the experiments in this work we used the Authority and Alignment in Wikipedia Discussions
(AAWD) corpus by (Bender et al., 2011), which is a set of 365 discussions taken from 47
Wikipedia talk pages. The corpus contains annotations for alignment and authority claims by
three independent annotators and is available in multiple versions and languages. Experiments
are solely based on the merged alignment annotations – i.e. the combination of the three
annotators – from the English version. From this corpus, we take 3390 turns from 211
discussions that are annotated for alignment moves. Out of these 3390 instances, we take all
the sentences that have been annotated for either agreement or disagreement but not both. This
leaves us with 2302 sentences out of which 478 (roughly 21%) are annotated for agreement,
the remaining 1824 sentences are labeled as disagreement. All data files of the corpus are
supplied in extended tab-delimited format (xtdf).

4.2 Features

To distinguish between agreement and disagreement, we use various features that we selected
based on findings in existing research. All features’ values were calculated at the level of turns,
where a turn is defined as a “contiguous body of text on the [. . .] page that was modified as
part of a single revision” (Bender et al., 2011).

1. Keywords: Based on the findings of related work(Schourup, 1999; Anand et al., 2011)),
we made use of specific keywords to identify A/D. They serve as well for the keyword
based approach as for the machine learning. We compiled separate keyword lists for
different types of keywords. The keywords were collected by introspection and looking at
related work as well as the annotation guidelines of the corpus. It must be noted that
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 257 of 474]

expressions taken from the corpus itself would weaken the generality of our approach.
For that reason, we included only few expression from the annotation guidelines of the
corpus and only those, which we considered sufficiently generic.

As an indicator for agreement, we created distinctive lists:

• positive adjectives, such as “excellent” or “perfect”

• positive alignment cues, such as “i agree” or “that’s right” (Ali, 2011)

• positive discourse markers, such as “I think” or “I know” (Abbott et al., 2011)

• various additional agreement keywords, such as “agreement”

For disagreement, we compiled the following lists:

• negative adjectives, such as “questionable” or “unsatisfactory”

• negative alignment cues, such as “i doubt that” or “that’s irrelevant” (Ali, 2011)

• negative discourse markers, such as “actually” or “but” (Abbott et al., 2011)

• insults/swear words, such as “idiot” or “narrow-minded”

• various additional disagreement keywords, such as “disagreement”

For the machine learning approaches, we consider each of these lists as one separate
feature. If a term of the particular list is located in the text, the value of the feature is
increased by one. Please note that regarding the machine learning, we do not explicitly
connote the lists with agreement or disagreement, but the algorithm is supposed to learn
from the training data which label is indicated by a particular list. In subsection 4.3, we
will give more details about how we use the lists for the keyword based approach.

2. Unigrams: Most common in text analysis, the unigrams of the text - i.e. its words - are
used as features modeling a bag of words approach.

3. Word count: For this feature, the total amount of words in a turn is counted. According to
(Cohen, 2002), disagreeing statements are usually longer than agreeing statements.

4. Pronouns: The hypothesis is that there is a difference in the amount of usage in agreement
and disagreement. This is supported by (Anand et al., 2011) , who found that pronouns
such as you occurred more frequently in rebuttals. We treat them as distinct features.

5. Negations: In general, negations describe the concept of reversing the value of a state-
ment. For instance, “This is not true” obviously is the opposite of “This is true”. As for
disagreement, people tend to negate the utterances of the previous speaker, we expect
them to contain a higher amount of negations. For the experiments, we collect various
keywords for negations and use the sum of their negations as one feature.

6. Special characters: We counted special characters such as ? ! , . ; - _ each individually,
resulting in 7 distinct features.

7. Repeated punctuation: Repeated punctuation such as !! has a different meaning than
simple punctuation (Abbott et al., 2011). For example, if a person questions the utterance
of a previous speaker, he might indicate this by using “?!” marking a rhetorical question.
We implement the repeated punctuation feature by counting occurrences of more than one
question or exclamation mark in a row, i.e. any combination of question and exclamation
marks.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 258 of 474]

8. Formatting: Participants of written discussions tend to highlight certain points, such as
the strong points of their argument, using markup text to draw special attention to it.
It can be compared to raising the voice or emphasizing something using intonation in
spoken language. We capture this by counting the number of formatting instructions for
bold and italic markup each as an individual feature.

4.3 Experiments

As mentioned before, we compare our bootstrapping approach to straightforward baseline
approaches. In each case, the entities that we classify - thus the instances - consist of a speaker’s
turn as described in subsection 4.1. More precisely, we compare the following approaches:

1. Keywords baseline:
Keyword-based classification for a single instance works as follows: We first initialize a
score with 0. For each occurrence of a keyword indicating agreement, we add 1. For each
occurrence of a keyword for disagreement, we subtract 1. For a more precise classification,
we also consider negations, utilizing the same list we described in subsection 4.2: If
a negation, i.e. a keyword from the list of negations directly precedes an agreement
keyword, instead of adding 1 to the score, 1 is subtracted. The same applies analogously
for negated keywords for disagreement. If the final score is greater than 0, the instance is
considered to be agreement, if it is less than 0 it is considered to be disagreement. A score
of 0 indicates that this instance cannot be classified which may have two reasons: either
no keyword at all occurred in the instance or the amount of keywords for agreement and
disagreement was even. Therefore, we calculate the performance of the keyword baseline
in two ways:

• Containing keywords: We regard those instances only that could be classified and
calculate precision and recall relative to this number.

• Whole dataset: We calculate precision and recall for the whole dataset. Instances
that have a score of 0 are regarded as misclassified for agreement as well as for
disagreement.

2. Machine learning baseline
For the machine learning, we extract all features described in subsection 4.2 for each
instance. We compare different combinations of those features.

• Unigrams: To explore how efficient this task can be solved using a bag-of-words
approach, we consider unigrams only.

• Others: In this scenario, all features except for unigrams are used.

• Unigrams + others: Finally, all features are used. We want to point out that there
might be an overlap between some of the features, concerning unigrams, keywords,
pronouns and the number of negations.

Please note: For machine learning we only use the number of negation keywords and do
not consider their effect on any other features.

3. Bootstrapping:
The bootstrapping approach is implemented as described in 3.1. We first apply the
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 259 of 474]

keyword approach to the data. In a second step, we train an SVM on the data that could
be classified, and use the trained SVM to classify the data that had not been assigned a
class by the keyword approach. As for the machine learning baseline, we compare the
three combination of features:

• Unigrams

• Others

• Unigrams + others

For each of these three configurations, we separately calculate the performance for the
instances that were classified in the second step, i.e. by the SVM. In contrast to the
baseline, we do not apply cross-validation in the Bootstrapping approaches. The reason
for that is this is that the number of seeds is already quite low and cross-validating would
provide an even lower number of training instances for each run.

4. Bootstrapping upper bound:
For better comparison of the bootstrapping approach, we evaluate its upper bound: If the
label assigned by the keyword approach is wrong, we correct it for those instances. In this
way, we can evaluate how the performance of the bootstrapping approach is influenced
by the mistakes of the keyword approach.

All machine learning experiments were conducted using the tool Weka1. We used the SMO
implementation of a Support Vector Machine (SVM) which is available in Weka and evaluated
its performance using 10-fold cross-validation with stratified sampling.

4.4 Results

Table 1 shows the results for the keyword baseline. Out of 2302 instances, only 954 could be
classified (41% of the data). However, 80.29% of these classifications were correct. As can be
seen in the first line of the table (“containing keywords”), the approach achieves good results
for both classes with an F-measure of 68.49% for agreement and 85.67% for disagreement. It
even achieves a precision of 90.50% for disagreement. Due to the fact that more than half of
the data was not classified at all, however, the performance for the whole corpus is rather low,
with an F-measure of 20.99% and 42.26% respectively. As the input data was unbalanced, the
following tables always show measures for two cases: the Agreement part shows the measures
under the assumption that agreement was considered the positive class and disagreement was
considered the negative class, analogously for the Disagreement part.

Keyword baseline

Agreement Disagreement
P R F1 P R F1

containing keywords 61.26 77.57 68.46 90.50 81.33 85.67
whole dataset 13.92 42.68 20.99 67.22 30.81 42.26

Table 1: Precision, Recall and F-Measure for the keyword based approach.

1http://www.cs.waikato.ac.nz/ml/weka/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 260 of 474]

Machine learning baseline

Agreement Disagreement
P R F1 P R F1

unigrams 64.19 52.51 57.77 88.12 92.32 90.17
others 74.16 32.43 45.12 84.57 97.04 90.38
unigrams + others 66.92 56.28 61.14 89.00 92.71 90.82

Table 2: Precision, Recall and F-Measure for the machine learning approach.

The machine learning baseline surprised with comparably high results (table 2). Among the
three combinations of features, the best result was achieved using all features (unigrams
+ others). Especially for the classification of disagreement, it shows excellent results with
precision, recall and F-measure around 90%. For agreement, due to a low recall of 56.28%, it
results in an F-measure of 61.14%, which is still significantly better than the keyword baseline
on the complete data set. We assume that the reason for the higher results in the class of
disagreement is caused by the imbalanced data set of which about 80% of the instances are
labeled as disagreement. Comparing the three feature combinations, it is interesting to see that
for disagreement, both the unigrams and the other features alone achieve good results. For
agreement, which seems to be more difficult to classify, they supplement each other and their
combination boosts the results.

Bootstrapping

Agreement Disagreement
P R F1 P R F1

whole dataset 43.40 52.30 47.44 86.79 82.13 84.39
(2. step) 18.93 21.40 20.09 84.76 82.61 83.65

Bootstrapping - upper bound

(2. step) 37.84 19.53 25.77 86.01 93.91 89.79

Table 3: Precision, Recall and F-Measure for the bootstrapping approach using all features. (2.
step) gives the results for the subset of the data that was labeled in the second step, i.e. by the
SVM trained on the data labeled by keywords.

The bootstrapping approach was performed using the same sets of features for the machine
learning part as for the machine learning baseline. Again the combination of all features showed
better results than using unigrams and the other features separately, we therefore omit the
latter ones in the table for better readability. The results are shown in table 3. For the whole
data set, the bootstrapping approach yielded in an accuracy of 72.85% with an F-measure of
47.44% for agreement and 84.39% for disagreement. As expected, the results are not as high
as the machine learning baseline, but one has to keep in mind the fact that this approach is
completely unsupervised and does not require any labeled data. To explore whether the correct
classifications are mainly due to the labeling process in the first step, namely the keyword based
approach, and to get a better insight in the performance of the classifier that was trained on the
automatically acquired training data, we separately measure the correctness of the instances
labeled in the second step. We find that the results for disagreement are quite high (precision
and recall both above 80%), but very low for agreement (precision and recall around 20%).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 261 of 474]

This might be partly caused by the fact that the data set that is labeled in the second step
contains only 215 instances of agreement in contrast to 1133 instances of disagreement.

Given that the machine learning approach itself does not seem to be inefficient, as demonstrated
by the baseline, we further investigated whether the performance of the trained classifier in the
bootstrapping approach suffers from the misclassifications of the keyword based approach in
the first step, or whether some of the agreement instances are just very difficult to be classified
at all. This gives us an upper bound for the bootstrapping approach on the data set. For this
experiment, we correct all misclassifications produced by the keyword approach in the first
step and train the classifier on the true labels. The results are displayed in the last row of table
3. Although the performance is increased, it still achieves an F-measure of 25.77% only for
classifying agreement.

4.5 Error Analysis

We analyze some of the misclassified instances to figure out the problems of the particular
approaches. The following list shows some examples of misclassified instances. We come up
with explanations for the errors, though it cannot always be determined with certainty.

• Keyword: Good luck putting your pov [point of view] in the article.
This instance is misinterpreted as Agreement due to the occurrence of the word “good”.
The obvious deficiency of the keyword approach is its inability to detect irony.

• Bootstrapping(others):

– It’s obvious and disgusting POV.→ 6 words, 1 period

– I actually agree to an extent, in that at an article addressing past powerful Hurricanes
that have struck the U.S. could be relevant for perspective. → 26 words, 1 negative
discourse marker, 1 other positive keyword, 3 periods, 1 comma, 1 “I”

The first instance is misclassified as agreement which seems to be due to a lack of useful
information. Note that this instance also shows that the lists of adjectives used are far
from complete. The second instance is misclassified as disagreement which may be due
to the negative discourse marker, word count and punctuation, which the model may
have trained to be connected with disagreement.

• Bootstrapping(unigrams + others): Your edit is cool with me., 6 words, 1 period
This instance is misclassified as disagreement. The same instance is also misclassified by
the bootstrapping approach using unigrams. What is surprising, is that bootstrapping
using all features except for unigrams would label this instance as agreement (since its
non-unigram properties are: 6 words, 1 period).

These examples show that the combination of all features fixes some misclassifications but also
introduces errors. Thus, finding the right feature set is a balancing act.

5 Conclusion and Future Work

In a supervised scenario, we were able to achieve F-measures of 61.14% for classifying agree-
ment and 84.39% for disagreement. Combining a keyword based approach with machine

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 262 of 474]

learning, we implemented a completely unsupervised approach that is able to classify agree-
ment and disagreement with an accuracy of 72.85%, achieving an F-measure of 47.44% and
84.39% for the particular classes. In all experiments, we merely used local features, i.e. only
features that were extracted from the particular text unit that is assigned a label. Our ex-
periments show that while unigrams alone already seem to be able to distinguish between
agreement and disagreement statements, features like the length of an utterance, punctuation or
information about negations add to their performance. We see types of additional information
that might further improve the classification of agreement and disagreement. As shown in
(Galley et al., 2004), knowledge about the context could be included by extracting information
about surrounding pieces of the discussion, especially the utterances of previous speakers. On
the other hand, external sources could be used to derive knowledge about opposing opinions
for a topic. Furthermore, we assume that methods for detecting sarcasm and irony would
increase the performance of this task. Up to this point, we only considered explicit agreement
and disagreement. In the future, we also plan to investigate the limitations of recognizing
implicit agreement and disagreement. Another point for potential improvement is the way the
Bootstrapping approach was applied. In our experiments we did not modify the classifier once
it was trained. One could carry out classification iteratively, i.e. carry out classify instances
based on previous classifications.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 263 of 474]

References

(2011). Alignment annotation guidelines (version 14). [Online; accessed 05 March 2012].

Abbott, R., Walker, M., Anand, P., Fox Tree, J. E., Bowmani, R., and King, J. (2011). How
can you say such things?!?: Recognizing disagreement in informal political argument. In
Proceedings of the Workshop on Language in Social Media (LSM 2011), pages 2–11, Portland,
Oregon. Association for Computational Linguistics.

Anand, P., Walker, M., Abbott, R., Fox Tree, J. E., Bowmani, R., and Minor, M. (2011). Cats
rule and dogs drool!: Classifying stance in online debate. In Proceedings of the 2nd Workshop
on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA 2.011), pages 1–9,
Portland, Oregon. Association for Computational Linguistics.

Andreas, J., Rosenthal, S., and McKeown, K. (2012). Annotating agreement and disagreement
in threaded discussion. In Proceedings of the 8th International Conference on Language Resources
and Computation (LREC), Istanbul, Turkey, May.

Bender, E. M., Morgan, J. T., Oxley, M., Zachry, M., Hutchinson, B., Marin, A., Zhang, B.,
and Ostendorf, M. (2011). Annotating social acts: Authority claims and alignment moves in
wikipedia talk pages. In Proceedings of the Workshop on Language in Social Media (LSM 2011),
pages 48–57, Portland, Oregon. Association for Computational Linguistics.

Cohen, S. (2002). A computerized scale for monitoring levels of agreement during a conversa-
tion. In Proc. of the 26th Penn Linguistics Colloquium.

Fahrni, A. and Klenner, M. (2008). Old wine or warm beer: Target-specific sentiment analysis
of adjectives. In Proc. of the Symposium on Affective Language in Human and Machine, AISB,
pages 60–63.

Galley, M., McKeown, K., Hirschberg, J., and Shriberg, E. (2004). Identifying agreement
and disagreement in conversational speech: use of bayesian networks to model pragmatic
dependencies. In Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, ACL ’04, Stroudsburg, PA, USA. Association for Computational Linguistics.

Hillard, D., Ostendorf, M., and Shriberg, E. (2003). Detection of agreement vs. disagreement
in meetings: training with unlabeled data. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Linguistics on Human Language
Technology: companion volume of the Proceedings of HLT-NAACL 2003–short papers - Volume
2, NAACL-Short ’03, pages 34–36, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B., Pfau, T.,
Shriberg, E., Stolcke, A., et al. (2003). The icsi meeting corpus. In Acoustics, Speech, and Signal
Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE International Conference on, volume 1,
pages I–364. IEEE.

Merriam-Webster.com (2012a). "agreement". [Online; accessed 6 April 2012].

Merriam-Webster.com (2012b). "disagreement". [Online; accessed 6 April 2012].

Moghaddam, S. and Popowich, F. (2010). Opinion polarity identification through adjectives.
CoRR, abs/1011.4623.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 264 of 474]

Mukherjee, A. and Liu, B. (2012). Modeling review comments. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics: Long Papers - Volume 1, ACL
’12, pages 320–329, Stroudsburg, PA, USA. Association for Computational Linguistics.

Schourup, L. (1999). Discourse markers. Lingua, 107(3-4):227 – 265.

Walker, M., Anand, P., Tree, J. F., Abbott, R., and King, J. (2012). A corpus for research on
deliberation and debate. In Proceedings of the Eighth International Conference on Language
Resources and Evaluation, LREC, pages 23–25.

Yin, J., Thomas, P., Narang, N., and Paris, C. (2012). Unifying local and global agreement
and disagreement classification in online debates. In Proceedings of the 3rd Workshop in
Computational Approaches to Subjectivity and Sentiment Analysis, WASSA ’12, pages 61–69,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 265 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 266 of 474]

Morphological analysis with limited resources:
Latvian example

Pēteris PAIKENS, Laura RITUMA, Lauma PRETKALNIŅA
University of Latvia, Institute of Mathematics and Computer Science

peteris@ailab.lv, laura@ailab.lv, lauma@ailab.lv

ABSTRACT
We describe an approach for morphological analysis combining a rule-based word level
morphological analyzer with statistical tagging, detailing its application to Latvian
language. Latvian is a highly inflective Indo-European language with a rich
morphology.
The tools described here include an implementation of Latvian inflectional paradigms, a
morphological analysis tool with a guessing module for out-of-vocabulary words, and a
statistical POS/morphology tagger for disambiguation of multiple analysis possibilities.
Currently achieved accuracy with a training set of only ~40 000 words is 97.9% for
part of speech tagging and 93.6% for the full morphological feature tag set, which is
better than any previously publicly available taggers for Latvian.
We also describe the construction and methodology of the necessary linguistic resources
– a morphological dictionary and an annotated morphological corpus, and evaluate the
effect of resource size on analysis accuracy, showing what results can be achieved with
limited linguistic resources.

KEYWORDS : morphology, inflective language, POS tagging, Latvian language,
morphological corpus.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 267 of 474]

1 Introduction

For inflective languages, where a large part of grammatical meaning is expressed by the
morphological features of words, a wide variety of computational tasks require a way to
perform automated part of speech tagging and morphological analysis. It is needed both
in specialized use cases such as linguistic research, and also in end-user tasks such as
searching within documents or automated spelling correction.
Smaller languages usually have a limited amount of resources and effort available for
developing linguistic resources such as annotated corpora or dictionaries, so it is useful
to explore analysis methods that would work with smaller amount of resources and
allow reusing software tools developed for other, larger languages.
In this paper we describe the construction process of such a toolkit for Latvian
language, integrating word-level morphological analysis based on a formalization of
Latvian inflection paradigms with a statistical tagger to exploit sentence context. We
also provide an evaluation for the effect of resource (annotated corpora and lexicon)
size on analysis accuracy.

2 Latvian Morphology

Latvian is an Indo-European language with around 1.5 million native speakers. It is a
synthetic inflected language with rich morphology somewhat similar to the commonly
analyzed Czech morphology (Hajič, 2000).
Latvian nouns and pronouns have 6 cases in singular and plural in traditional grammar.
Nouns are traditionally divided in 6 declensions with different inflectional paradigms.
Adjectives, numerals and some participles have 6 cases in singular and plural, 2 genders
(masculine and feminine) and separate definite and indefinite forms. In verb
conjugation system are 2 numbers (singular and plural), 3 persons, 3 tenses (present,
future and past, both simple and compound) and 5 moods, as well as multiple types of
participles. Qualitative adjectives and adverbs formed from these adjectives have also
degrees of comparison noted in their word form.
The morphology creates more than 200 verb and participle forms derived from each
verb lexeme, and more than 100 forms for each adjective. Many of the endings are
overlapping, creating homoforms – for example, singular accusative and plural genitive
forms are identical for many words.

2.1 Related Work on Latvian Morphological Analysis
The earliest experiments with automated Latvian morphological analysis have been
performed in 1970s (Drīzule, 1978), implementing noun and adjective analysis. In
1990s, with the advent of personal computers, there have been multiple attempts to
create analysis systems for all parts of speech (Greitāne, 1994; Levāne & Spektors,
2000; Sarkans, 1996, Vasiļjevs, Ķikāne & Skadiņš, 2004) based on linguistic rules for
word endings and morphemes.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 268 of 474]

Systems currently being used in practice for Latvian morphology include lexicon based
analysis systems (Paikens, 2007; Skadiņa, 2004) – while requiring more computational
and dictionary resources, such systems provide better accuracy than earlier research.
Morphological analysis of Latvian is rather ambiguous – about half of words have
multiple valid interpretations if viewed without context, so disambiguation as analyzed
in this paper is an important open problem. There exists a recently developed
morphological tagger based on Maximum Entropy Model (Pinnis and Goba, 2011), but
it is not available to public1.

3 Development of a Morphologically Annotated Corpus

A morphologically annotated corpus is a key resource for all further work – even for
methods that do not require input from a large corpus, it is crucial to have at least a
small set of verified data that can be used for testing and evaluation.

3.1 Morphological Annotation Standard
The morphological feature annotation standard used for Latvian corpora was initially
(Levāne, 2000) derived from the annotation principles used for other languages in the
MULTEXT-East project (Erjavec, 2004). It is a way to represent word annotation with a
short tag, each character position representing a separate, independent feature. The
meaning of each character position depends on the part of speech (marked in the first
character) in order to keep the tag length short enough for human reading.
For an example, Figure 1 illustrates the morphological feature tag for noun draugam,
the singular dative form of draugs (a friend).

Tagset for
noun

part of
speech

type gender number case declension

 n c m s d 1
 noun common

noun
masculine singular dative first

FIGURE 1 – Example of a morphological tag for noun draugam (‘friend’) ncmsd1
It should be noted that in addition to purely morphological features, the annotation
includes also lexical properties (such as type and declension in Figure 1) necessary for
other research uses of the annotated corpora. The tag element names and values are
matched to the ISOcat standard as recommended by CLARIN project2.
The annotation process starts with generating the possible readings with an automatic
analyzer described in the next section, and then a manual review and entry of missing

1 The tagger is used in company Tilde proprietary tools - the training data and tagger are not available for
other research purposes.
2 http://www.clarin.eu

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 269 of 474]

features. The speed of annotation is around 300 words per hour for a skilled operator
with appropriate software tools.

3.2 Annotated Corpora
There have been multiple efforts on building morphologically annotated corpora of
Latvian. Currently publicly available corpora are shown in Table 1. As noted earlier, the
corpora were developed for projects of varying goals, and there are some differences
between exact annotation standards used.

Corpus Text source / domain Tokens Sentences
Balanced Latvian Balanced Corpus3 50 795 3 940

Legal EU documents4 23 359 1 038
Plāns Ledus A fiction book 16 708 1 314

Latvijas Vēstnesis A newspaper 28 956 2 035

TABLE 1 – Morphologically annotated Latvian corpora.
These corpora have been reviewed by a single annotator only. To ensure adequate data
quality we performed a second annotator review and correction of the balanced corpus
annotation to reduce the number of annotation errors, and serve as a valid ‘gold
standard’ data for analyzer training and evaluation in this paper.

4 Automated Morphological Analysis

Our basic morphological analysis – generation of all possible morphological
interpretations of a word form – is based on an earlier publicly available lexicon-based
morphological analyzer (Paikens, 2007), extending it with additional lexical data. It is
based on matching possible word form endings and the inflectional changes to stems as
described in classical linguistic research, and verifies the stem candidates against a
lexicon marked with declensions and conjugations of common nouns and verbs.
The currently used morphological lexicon has been assembled from multiple sources,
including an electronic version of an inverse dictionary (Soida, 1970), manual review of
the closed word classes and words with irregular inflection, scientific terminology data,
and updates based on . It is not properly balanced – the contents reflect what resources
were available, so coverage may vary depending on the text domain. The lexicon
contains 47 000 lexemes.
Even with such lexicon size, 5-6% of test data is still out of vocabulary. Most of these
words are formed according to Latvian grammatical rules, so it is still reasonable to
deduce morphological properties based on the word ending, and for these cases, a
‘guessing’ system is implemented that generates a large number of possible analysis

3 http://www.korpuss.lv
4 White Paper. Preparation of the Associated Countries of Central and Eastern Europe for Inte-gration into the
Internal Market of the Union.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 270 of 474]

options. This includes the correct reading for all except some 0.5-1% foreign words or
brand names that are used literally as inflexive nouns, but happen to have an ending
that matches a Latvian flexive form.

5 Statistical Disambiguation Methods

For many languages, pure morphological analysis will have a significant amount of
ambiguity. For Latvian, our current analyzer gives multiple interpretations for 50-55%
of words, with an average of 3.5-3.8 options for ambiguous words, depending on text
domain, and similar amount of ambiguity has been observed in other morphologically
rich languages (Yuret & Türe, 2006). The above ambiguity measurement includes
morphological features – part of speech, case, number, gender, etc., and also lemmas in
case of inflectional homonymity.
We examine two main use cases for disambiguation – choosing the most likely option
for a single token, or selecting the most likely morphological tags for a whole sentence,
looking at words in context. Single token analysis has less data for accurate
disambiguation, but can be used in analysis of incomplete text fragments such as search
queries, and is simpler to implement.

5.1 Baseline - Single Token Disambiguation
If there are multiple valid interpretations, clearly some of them are more frequent than
others – we can intuitively note that some inflective forms may be more commonly
used; or that one of theoretically possible lemmas is a rare, archaic word.
For this scenario, we can count the frequencies in a morphologically disambiguated
corpus for two main features – the inflectional paradigm that generated the option, and
the lexicon entry (if any) of the source lemma. This allows a quick estimation of the
likelihoods, choosing the analysis option with the most likely paradigm and lexeme.
While this method is naturally limited, it provides reasonable results with very tiny
resources, providing us with a baseline to evaluate more complex options described
later.
This is similar to the first stage of a Brill tagger if the surface form was seen in training
corpus, but this heuristic generalizes well also to cases where the exact form was not
seen before.

5.2 Morphological Tagging Within a Sentence
There are two main directions to use sentence context in disambiguation of homoforms
in order to appy the appropriate morphological tags. One approach would be to invoke
syntax rules, such as general syntactic analyzers (e.g. Bārzdiņš, Grūzītis, Nešpore &
Saulīte, 2007 or Deksne & Skadiņš, 2011) that could also be adapted for morphological
disambiguation. On the other hand, it is also possible to obtain these rules directly from
an annotated corpus with machine learning algorithms. Our initial experiments with
available Latvian syntactic analysers gave poor results due to limited syntactic
coverage, driving us to the machine learning direction – although other research (Hajic,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 271 of 474]

Krbec, Kveton, Oliva & Petkevic, 2001; Hulden & Francom, 2012) suggests that a
hybrid approach may bring further improvements.
Further in description we use our currently best performing solution, a conditional
Markov model (CMM) based morphological tagging module. We have also trained
various other systems, including hidden Markov model (HMM) and conditional random
field (CRF) based classifiers, but we achieved better results with CMM.
The CMM module software is a modified version of the Stanford NLP5 system CMM
classifier implementation (Toutanova, Klein, Manning & Singer, 2003). A major
difference between our solution and the original Stanford POS-tagger is the integration
of the classifier with a rule based morphological analyzer supplying multiple possible
analysis options to the classifier for disambiguation.
The standard approach for other languages (Hulden & Francom, 2012; Toutanova,
Klein, Manning & Singer, 2003; Gahbiche-Braham, Bonneau-Maynard, Lavergne &
Yvon, 2012) is to train a classifier on features directly derived from the word form
string, such as letter n-grams, capitalization features, etc. While this may be effective
for languages with a smaller range of word forms, this is not optimal for
morphologically rich languages, as suggested by research in other languages (Youret &
Türe, 2006). Word form specific features would greatly suffer from feature sparsity, as
even in a huge training corpus many rarer word forms would not be seen at all; and a
large part of word ending inflection rules cannot be adequately captured by letter n-
gram features.
However, this morphological knowledge can be exploited by adding as training features
the results from rule based morphological analysis described in section 4. That gives a
reasonably accurate (contains correct form in 98% cases) list of what tags seem possible
for each word. So in addition to the used classifier training features commonly used for
other languages, we also supply a list of possible part-of-speech and tag options for the
selected word and its closest neighbours. We also provide a ‘recommended’ POS and
tag, calculated as described in section 5.1, which gives ~1% additional boost in
accuracy. This change augments the machine learning of ending (letter n-gram)
relations with morphological features with the linguistic rules in analyser, and allows to
achieve good results with rather small training corpora.

6 Evaluation

6.1 Methodology
We used a morphologically annotated balanced corpus of 50 795 words, using 46 306
of it as training data (5 344 of it for tuning and developing the systems), and a separate
set of 4 489 words for evaluation in this paper. Text content is taken as-is from the
corpus, leaving intact any spelling issues or insertions of foreign words.
Lexical features such as declension, verb modality, semantic grouping, etc. are dis-
carded for both training and evaluation data, as they can be retrieved afterwards from

5 http://nlp.stanford.edu/software/tagger.shtml

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 272 of 474]

the lexicon when the lemma is determined. The following morphological features are
used for evaluation: part of speech, gender, number, case, person, verb mood, and
definiteness for adjectives and participles.

6.2 Rule-based analyzer module evaluation
On our test corpus, the rule-based morphological analysis module includes a correct
analysis option for 98.2% words, incorrect analysis for 1.3% words, and no analysis for
0.5% words (mostly insertions from other languages). Rule-based analysis results are
unambiguous for 46.6% words, and the ambiguous words have on average 3.8 options
each.

6.3 Statistical disambiguation methods
Comparing the results of automatic morphological disambiguation on the evaluation
data set shows a tag accuracy level of 87.0% for baseline single token analysis and
93.6% for the best performing CMM model.
Both methods are suitable for analysis of large text corpora, with single token analysis
being able to analyze approx. 100 000 words per second per core on a 2.8Ghz
processor, and the CMM tagger around 3 000 words per second.
Reviewing the distribution of disambiguation errors by feature category (break-down
shown in Table 2) indicates that the most common error is a combination of number
and case mismatch, confusing singular accusative and plural genitive forms of nouns or
whole noun phrases. These are homoforms for a large portion of Latvian nouns and
adjectives, and both accusative and dative may be syntactically reasonable after a verb,
indicating respectively the object or recipient of the action. We plan to reduce this class
of errors by integration of morphological disambiguation with deeper syntactic analysis
(statistical dependency parsers) that should be able to better resolve such ambiguities.

Part of speech 2.1 %
Gender 3.2 %
Number 4.5 %
Case 7.0 %
Verb mood 1.8 %
Person 0.8 %
Definiteness 1.4 %

TABLE 2 – CMM tagger error rates within feature categories.

6.4 Training data size effect on accuracy
Experiments on running the same disambiguation methods with limited training data,
illustrated in Figure 2, show that the naive single token disambiguation quickly reaches
its limit at around 10 000 words already. The CMM based model would likely provide

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 273 of 474]

better accuracy with additional training data, which is also supported by experiments of
Pinnis and Goba (2011) performed on a training set of 117 000 words, but it already
provides an improvement above the single-token baseline with even very small training
corpus such as 5 000 words.

FIGURE 2 – Effect of corpus size on CMM disambiguation accuracy compared to single-
token baseline

6.5 Effect of Lexicon Size on Accuracy
To evaluate the necessity of a morphological lexicon (a dictionary annotated with
declensions or inflectional paradigms), we performed a series of tests, training and
running the CMM classifier with an artificially reduced lexicon. The minimal dictionary
contains 5 000 lexemes for the closed word classes – pronouns, conjunctions,
prepositions, and irregular verbs, with further experiments measured by randomly
adding nouns and verbs from the full dictionary up to the indicated limit.
The evaluation results shown in Figure 3 indicate that a proper lexicon has a strong
impact in reducing error rate, however, when considering languages or dialects where
large dictionaries are unavailable (such as the Latgalian language closely related to
Latvian), it is not strictly necessary since our experiments show a practically usable
accuracy of 90.6% even with the minimal lexicon.

0 100 500 1 000 2 000 5 000 10 k 20 k 30 k 46 k
Single-token 72.4% 76.9% 82.1% 83.6% 85.0% 86.1% 86.7% 87.0% 87.0% 87.0%
CMM 78.8% 81.5% 87.1% 89.4% 91.6% 92.8% 93.7%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Ta
g a

cc
ur

ac
y

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 274 of 474]

FIGURE 3 – Effect of corpus size on CMM disambiguation accuracy compared to single-
token baseline

7 Conclusion and Outlook

We have developed a freely available morphological analysis and disambiguation
solution for Latvian language. The tools, resources and corpora are publicly available
under an open source licence.
We demonstrate that morphological analysis and disambiguation for languages with
rich morphology can be performed with small amounts of language-specific resources.
In particular, if the inflection rules can be formally defined, then a morphological
tagging module with a useful accuracy of 90% can be trained even with a small
annotated corpus of 10-20 thousand words and a limited dictionary.
We expect to further improve accuracy of the morphological tagger by extending the
training data up to 100 000 words and exploring options for integration with syntactic
parsers.
A future goal is to attempt to apply this methodology for Latgalian language – a
regional language with approx. 165 000 native speakers and very limited digital
resources. We also hope that this experience can inspire linguistic tool development for
other languages with limited size of corpora, noting that a practically useful accuracy
can be obtained with very limited language data.
Acknowledgments
We thank the University of Latvia for the financial support in preparing and presenting
this paper, and the anonymous reviewers for their improvement recommendations.

5 000 10 000 20 000 30 000 40 000 47 330
CMM 90.6% 90.8% 91.3% 91.9% 92.7% 93.7%

90.0%

90.5%

91.0%

91.5%

92.0%

92.5%

93.0%

93.5%

94.0%
Ta

g a
cc

ur
ac

y

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 275 of 474]

References
Bārzdiņš G., Grūzītis N., Nešpore G. and Saulīte B. (2007). Dependency-Based Hybrid
Model of Syntactic Analysis for the Languages with a Rather Free Word Order. In
Proceedings of the 16th Nordic Conference of Computational Linguistics, pages 13–20,
Tartu.
Erjavec, T. (2004). MULTEXT-East Version 3: Multilingual Morphosyntactic
Specifications, Lexicons and Corpora. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation (LREC’2004), pages 1535–1538, Paris.
Deksne, D. and Skadiņš, R. (2011). CFG Based Grammar Checker for Latvian. In
Proceedings of the 18th Nordic Conference of Computational Linguistics NODALIDA 2011,
Riga, Latvia.
Drīzule, V. (1978). Об автоматическом распознавании омонимии флексий
латышского языка [On automated recognition of flexive homonymy in Latvian
language]. In LZA Vēstis 1978, 10, pages 79–87, Rīga, LZA.
Gahbiche-Braham, S., Bonneau-Maynard, H., Lavergne, T. and Yvon, F. (2012). Joint
Segmentation and POS Tagging for Arabic Using a CRF-based Classifier. In Proceedings
of the Eight International Conference on Language Resources and Evaluation (LREC'12),
Istanbul, Turkey.
Greitāne I. (1994). Latviešu valodas lokāmo vārdšķiru locīšanas algoritmi. (Algorithms
for Latvian Form Generation) In LZA Vēstis 1994, 1, pages 32–39, Rīga, LZA.
Hajic, J., Krbec, P., Kveton, P., Oliva, K. and Petkevic, V. (2001). Serial combination of
rules and statistics: A case study in Czech tagging. In Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics, pages 268–275.
Hajič, J. (2000). Morphological Tagging: Data vs. Dictionaries. In: Proceedings of the
6th Applied Natural Language Processing and the 1st NAACL Conference, pages 94-101,
Seatle, Washington, U.S.A.
Hulden, M. and Francom, J. (2012). Boosting statistical tagger accuracy with simple
rule-based grammars. In Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC'12), Istanbul, Turkey.
Levāne, K. and Spektors A. (2000). Morphemic Analysis and Morphological Tagging of
Latvian Corpus. In Proceedings of the Second International Conference on Language
Resources and Evaluation, vol. 2, pages 1095–1098.
Levāne-Petrova K. (2011). Morfoloģiski marķēta valodas korpusa izmantošana valodas
izpētē. In "Vārds un tā pētīšanas aspekti": Rakstu krājums 15(1), pages 187–193, Liepāja,
LiePA.
Paikens, P. (2007). Lexicon-based morphological analysis of Latvian language. In
Proceedings of 3rd Baltic Conference on Human Language Technologies (HLT 2007), pages
235-240, Kaunas.
Pinnis, M. and Goba, K. (2011). Maximum Entropy Model for Disambiguation of Rich
Morphological Tags. In Systems and Frameworks for Computational Morphology,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 276 of 474]

Communications in Computer and Information Science, 1, Volume 100, The 2nd Workshop
on Systems and Frameworks for Computational Morphology (SFCM2011), pages 14-22,
Heidelberg, Springer.
Sarkans U. (1996). Morphemic and Morphological Analysis of the Latvian Language.
In Proceedings of the Forth conference on Computational Lexicography and Text Research,
pages 219–225, Budapest
Skadiņa I. (2004). Latviešu valodas morfoloģiskās analīzes sistēma – tās nozīme
teikuma pareizrakstības pārbaudē. In Vārds un tā pētīšanas aspekti 8, pages 282–290,
Liepāja.
Soida, E. and Kļaviņa, S. (1970). Latviešu valodas inversā vārdnīca, Rīga, LVU.
Toutanova K., Klein D., Manning C.D. and Singer Y. (2003). Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL
2003, pages 252–259.
Vasiļjevs, A., Ķikāne, J. and Skadiņš, R. (2004). Development of HLT for Baltic
languages in widely used applications. In Proceedings of First Baltic Conference „Human
Language Technologies – the Baltic Perspective”, pages 198-202, Riga.
Yuret, D. and Türe F. (2006). Learning morphological disambiguation rules for
Turkish. In Proceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Computational Linguistics
(HLT-NAACL '06), pages 328-334, Association for Computational Linguistics,
Stroudsburg, PA, USA.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 277 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 278 of 474]

Statistical syntactic parsing for Latvian

Lauma Pretkalniņa, Laura Rituma

Institute of Mathematics and Computer Science, University of Latvia
Raiņa 29, Rīga, LV–1459, Latvia

lauma@ailab.lv, laura@ailab.lv

ABSTRACT

Syntactic parsing is an important technique in the natural language processing, yet Latvian
is still lacking an efficient general coverage syntax parser. This paper reports on the first
experiments on statistical syntactic parsing for Latvian — a highly inflective Indo-European
language with a relatively free word order. We have induced a statistical parser from a
small, non-balanced Latvian Treebank using the MaltParser toolkit and measured the
unlabeled attachment score (UAS). As MaltParser is based on the dependency grammar
approach, we have also developed a convertor from the hybrid dependency-based
annotation model used in the Latvian Treebank to the pure dependency annotation model.
We have obtained a promising 74.63% UAS in 10-fold cross-validation using only ~2500
sentences. The results revealed that best results can be achieved using non-projective stack
parsing algorithm with lazy arc adding strategy, but comparably good results can be
achieved using projective parsing algorithms combined with appropriate projectiviziation
preprocessing.

KEYWORDS: Latvian, treebank, dependency parsing, statistical parsing, MaltParser.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 279 of 474]

1 Introduction and related work

Latvian is a highly inflective Indo-European language with a relatively free word order.
Even though several experiments on automatic syntax parsing for Latvian have been
carried out, it is still an open problem as no efficient general coverage parser is currently
available. The closest one is an experimental rule-based partial parser based on a hybrid
grammar model (Bārzdiņš, et al., 2007), however it uses hand-crafted rules that cover only
simple extended sentences and is already highly ambiguous. Others address specific use-
cases e.g. grammar checking (Deksne and Skadiņš, 2011) or the development of
multilingual controlled languages (Paikens and Grūzītis, 2011). The aim of our research is
to produce a general coverage statistical parser induced from currently available
syntactically annotated data.

We use the Latvian Treebank (Pretkalniņa et al., 2011b) as the data source. The treebank is
under active development, and it is still relatively small (approx. 2500 sentences) and by no
means balanced, therefore acquiring good results for a language with a free word order is
rather challenging. For current experiments we have chosen MaltParser as the parser
induction framework mainly for two reasons. First, we consider that the hybrid grammar
used in the Latvian Treebank is more in lines with the dependency formalism than with the
phrase structure approach. Second, MaltParser is distributed in a handy, well documented
implementation and can be trained in reasonable time. We plan to continue our
experiments, comparing these results with what can be obtained with other data-driven
approaches, e.g. (Koo and Collins, 2010).

The paper first gives an overview of the Latvian Treebank annotation model and
transformations to make the data compliant with MaltParser (Chapter 2). In Chapter 3 we
describe our experimental setup for MaltParser. In Chapter 4 we evaluate the results in
terms of unlabeled attachment score.

2 Latvian Treebank

The Latvian Treebank is being developed since 2010 (Pretkalniņa et al., 2011a). It features
multilayer annotations, containing both syntactical and morphological information. The
approach used in the Latvian Treebank is similar to Prague Dependency Treebank’s (Hajič
et al., 2000) multilayered approach. The main difference is that Latvian Treebank has no
tectogrammatical annotation layer yet, but some features of it are treated in the syntax
layer. TrEd toolkit (Hajič et al., 2001) is used for annotating the Latvian Treebank. The
annotation process is mainly done manually, and all the treebank data is human-verified.
The analytical or syntactic layer is annotated using the SemTi-Kamols grammar model
(Nešpore et al, 2010), further described in Chapter 2.1. The morphological layer is
annotated by adding a positional tag to every token. Apart from morphological features,
these tags represent also some lexical features like declension group. The tagset is derived
from the annotation principles used for other languages in the MULTEXT-East project
(Erjavec, 2010). Currently the Treebank contains 2519 sentences representing various
genres (e.g. news and fiction), however, the genres are by no means balanced. There is an
ongoing work on the corpus expansion and genre diversification. Up to our knowledge, it is
the biggest syntactically annotated corpus for Latvian.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 280 of 474]

FIGURE 1: Latvian Treebank centence counts per length; average length shown dashed

Latvian Treebank contains 29 398 tokens. Sentence length varies from 1 to 200 tokens with
average length on 11.67 tokens. 13.29% of all sentences are non-projective (measurement
done after converting Treebank to pure dependency annotation, see section 2.2). For
sentence length distribution see Figure 1.

2.1 Annotation model

The Latvian Treebank uses the hybrid dependency-based SemTi-Kamols annotation model
(Pretkalniņa et al., 2011b). In essence, SemTi-Kamols annotations can be described as
dependency trees that are augmented with phrase structure nodes (an example is given in
Figure 2). Each phrase node can act as a dependency head or as a dependant. Each
constituent in a phrase node can also act as a dependency head, but not as a dependant.
Each constituent in a phrase node can be either a word or a phrase node.

Zēns

subj

conj

un

crdPart

meitene

pred

gāja

prep

uz

adv

attr

veco

basElem

skolu

punct

.

crdParts

sent

xPrep

crdPart

PMC

X-word

Coordination

Dependencies

FIGURE 2: Latvian Treebank annotation example — Zēns un meitene gāja uz veco skolu. ‘A boy

and a girl went to the old school.’

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 281 of 474]

Dependency links are used to depict subordination relations in a sentence. Apart from
dependency relations, the Latvian Treebank has three types of phrase nodes: coordination,
punctuation mark constructs (PMC), and the so-called x-words. Coordination nodes consist
of coordinated parts of sentences, conjunctions, and punctuation marks that are used to
bind together coordinated parts of sentences. Coordinated clauses are annotated in the
same way. PMCs are introduced to annotate how punctuation marks in Latvian are used to
show the syntactical structure. A PMC consists of one base element, a word or a phrase, and
the punctuation marks whose usage are invoked by the base element, e.g. participle clauses
and subordinated clauses. The x-words are the closest units to the classical understanding
of phrases in the phrase structure grammars: they consist of several ordered words and are
used to annotate constructions where the word order is important, e.g. analytical verb
forms, multi-word numerals, named entities etc. For each type of a phrase node, several
subtypes are distinguished depending on different features that the particular type of
syntactic construction can represent. E.g. x-words are further divided in prepositional
constructions, complex predicates, etc., but coordination is further divided in coordinated
parts of sentence and coordinated clauses.

2.2 Transformation to pure dependency trees

In order to use the Latvian Treebank data for parser induction with MaltParser, we had to
develop procedures for converting the hybrid SemTi-Kamols annotations to pure
dependency annotations. Consulting with linguists, we have developed precise rules
detailing how each type and subtype of phrase nodes is converted to a fragment of a
dependency tree. Linking between constituents of phrase node is based on linguistic
considerations taking into account the intention to develop these rules so that the obtained
labelled dependency tree would contain as much from original information as possible, and
that the trees eventually returned by the parser could be converted back as close to original
model as possible. Currently, the SemTi-Kamols annotation scheme allows vast amount of
all kinds of nested phrase structures, e.g. coordination of coordination (of coordination,
etc.). As SemTi-Kamols also makes distinction between dependents of phrase (as whole)
and dependents of its constituents, it is more expressive than the pure dependency model.
In future we plan to use this information as additional features for parser training and to
explore other parsing algorithms to obtain parser for full annotation model. These rules are
implemented in a treebank conversion script.

According to the conversion rules (a transformation example is given in Figure 3), each
phrase is converted to a dependency tree fragment which is a valid dependency tree itself.
The constituents of a phrase structure node are each transformed to a single dependency
tree node, and all dependents of these constituents (in the original tree) remain as
dependents of the corresponding nodes in the dependency tree. Nodes connected to a
phrase node as a whole become connected to the root node1 of the subtree representing the
phrase node after the transformation. The constituent that becomes the root node of the
subtree is determined by the type, subtype and structure of the phrase. Whenever it is
possible, we choose a constituent that cannot have dependents itself, so that dependents of
a phrase node as a whole and dependents of the head constituent would not mix. In a
coordination phrase, the root node is a conjunction (or punctuation, if there is no

1 The head of the phrase structure.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 282 of 474]

conjunction). In punctuation mark constructs, the root node is a punctuation mark (the
first, if multiple occurs in the phrase). For x-words the root node differs depending on the
subtype of the x-word, e.g. the preposition in a prepositional construction, the last numeral
in a multi-word numeral, etc. All other constituents are either directly linked to the chosen
root, or chained in the order they occur in the sentence, and then linked to the chosen root.
The way in which other constituents are added to the root depends on the phrase type, e.g.
multi-word numerals are chained, but PMC constituents are linked directly to the root. If no
other considerations are available, all other constituents are added as dependents of the
last constituent.

crdParts:crdPart

Zēns

un

crdParts:crdPart

meitene

sent:pred

gāja

dep:adv-xPrep:prep

uz

dep:attr

veco

xPrep:basElem

skolu

ROOT-sent:punct

.

crdPart

Zēns

subj

conj

un

crdPart

meitene

pred

gāja

prep

uz

adv

attr

veco

basElem

skolu

punct

.

crdParts

sent

xPrep

dep:subj-crdParts:conj

FIGURE 3: Example of transforming a hybrid tree (on the left) to a pure dependency tree (on the

right). Corresponding showed with gray lines.

During the transformation, the syntactic roles of the obtained dependency tree can be
augmented to reveal the full information needed to convert the trees back to the hybrid
grammar representation, but this can lead to potentially infinite set of roles: when the
chosen root element for some phrase is a phrase itself, we need to add additional
information to the role labels, and, theoretically, phrases can stack infinitely. In practice, at
least three levels deep stacking has been observed in the treebank. Thus, we still need to
explore the linguistic background and the actual data to find the best way to define the set
of syntactic roles for the obtained dependency trees. As the original treebank data contain
annotations with sentence-scope ellipsis, appropriate roles for displaying this information
in dependency trees are also needed.

3 Experimental setup

Currently, state of the art parsers (Bohnet and Nivre, 2012) achieve up to 93% unlabeled
attachment score for English — a highly analytic language — and up to 88.8% for Czech
which is grammatically more similar to Latvian. Acquiring comparably good parsing results
for Latvian is highly challenging due to the very limited size of the available data set and

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 283 of 474]

due to the rich annotation model used in the treebank. The data set consists of 2519
manually annotated sentences (29496 tokens). To obtain a better understanding of what
parsing accuracy limitations are imposed by such corpus size, we use the treebank’s
original morphological tagging (manually verified) for accuracy testing. However, to get
small insight about errors caused by possible mistakes in statistical morphological tagging
we perform single experiment with POS tagged data, using statistical tagger, described by
Paikens et al. (2013).

For parser induction we use MaltParser, version 1.7.12. Following the advice given by Nivre
and Hall (2010) we use LIBSVM (Chang and Lin, 2011) as the learning agent to avoid
necessity of manual feature combination and cross-validation to evaluate our parsers, again
— due to the limited size of the data set. We use 10-fold cross-validation in terms of
sentence count and report the minimal, maximal and average score for each parsing
experiment. To obtain a more even distribution, we form the validation sets by selecting
approx. 10% of sentences of each document in treebank.

We have performed several experiments with various parsing algorithms and various
representations of morphological features. As the Latvian Treebank contains non-projective
annotations (e.g. parenthesis, direct speech), for the baseline we have performed a series of
experiments with the non-projective stack algorithm (Nivre, 2009; Nivre et al. 2009) with
MaltParser’s default feature configuration (tags and wordforms). First, we trained a parser
with the full morphological tag. To reduce the sparseness of the morphological tags (the full
tagset has approx. 500 different tags), we continued with an experiment with a dataset
where the lexical features are removed from the tags. Finally, we split the positional tags
into sets of multiple features representing each morphological feature separately to
increase the parser’s ability to learn regularities like “an adjective depending on a noun has
to agree on the number, case and gender”.

In the next step, we performed a series of experiments using various parsing algorithms
provided by the MaltParser toolkit and combining their settings to see how the algorithm
choice influences the parsing accuracy. We used the non-projective stack algorithm, both
eager and lazy versions, and several projective algorithms combined with different pseudo-
projective tree processing. We run both experiment series with no pseudo-projective
transformations and series where we used arc-eager, arc-standard (Nivre, 2003; Nivre,
2004) and the stack projective algorithms (Nivre, 2009; Nivre et al., 2009). We used head,
path and head+path marking strategies for pseudo-projective transformations (Nivre and
Nilsson, 2005). We also performed experiments with planar and 2-planar algorithms
(Gómez-Rodríguez and Nivre, 2010).

In the last step, we added additional features containing lemmas to the dataset and then run
best-performing algorithms from the previous experiment sessions.

For evaluating the parser performance, we used the unlabeled attachment score (UAS),
calculating it using the script provided in the CoNLL-07 shared task toolbox3.

2 Available at http://www.maltparser.org/ [last visited on 26/01/2013]
3 Available at http://nextens.uvt.nl/depparse-wiki/SoftwarePage [last visited on 26/01/2013]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 284 of 474]

4 Evaluation

The first series of experiments — with the non-projective stack parser using forms and
morphological tags as features — gave the following results: with no additional features,
the data set with smaller tag sparseness performs better. By adding additional features —
decoding each morphological tag into separate positions, the results get better, and the
difference between full or pruned tags usage becomes insignificant as LIBSVM does feature
combination itself. On these data, the stack-lazy algorithm tends to achieve slightly better
results. During these experiments we have achieved 74% UAS. The full results of the first
experiment series are shown in Table 1. Thus, the further experiments were done with a
dataset containing full morphological tags and decoded features.

Algorithm Stack eager Stack lazy

Feature decoding No Yes No Yes

Tag type Full Short Full Short Full Short Full Short

AVG % 69.24 71.95 73.78 73.47 69.77 72.55 74.15 74.04

MIN % 65.59 69.75 71.51 71.02 67.22 69.57 71.41 71.17

MAX % 72.53 73.79 77.72 77.9 73.79 75.91 77.77 78.68

TABLE 1: Non-projective stack parser training: 10-fold cross-validation results.

Algorithm Nivre’s arc-eager Nivre’s arc-standard Stack projective

Projecti-
vization

No Head Path
Head,
path

No Head Path
Head,
path

No Head Path
Head,
path

AVG % 71.96 73.66 73.78 73.78 70.77 73.71 73.47 73.47 71.89 74.03 73.74 73.74

MIN % 69.36 71.2 70.8 70.8 68.54 70.5 70.6 70.6 69.47 71.97 70.86 70.86

MAX % 76.34 77.38 77.85 77.85 75.56 77.12 76.86 76.86 76.3 76.38 76.95 76.95

TABLE 2: Pseudo-projective parser training: 10-fold cross-validation results. Full
morphological tags are used.

The next series of experiments compare different projective algorithms and different
pseudo-projective transformations. These results show that the pseudo-projective
approach gives equivalently good results compared to the non-projective stack algorithm.
The chosen algorithm and projectivization strategy does not matter much — less than 0.5%
points. Using the projectivization improves the UAS for 1–2% points over not using the
projectivization at all. The full results are shown in Table 2.

Algorithm Planar 2-planar Stack lazy
Stack projective

with head coding

AVG % 72.38 71.96 74.15 74.03

MIN % 69.57 70.26 71.41 71.97

MAX % 76.9 76.25 77.77 76.38

TABLE 3: Summary on parser training algorithms: 10-fold cross-validation results.

In the last step, to compare the different parsing algorithms, we have used the planar and 2-
planar algorithms on the same data, but they fail to repeat success of the stack parsing
algorithm. The comparison between these two algorithms, the best performing projective
algorithm and the best performing non-projective stack algorithm is given in Table 3.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 285 of 474]

Algorithm Stack eager Stack lazy
Stack projective

with head coding
Nivre’s arc-eager

with path encoding
Nivre’s arc-standard
with head encoding

AVG % 74.21 74.63 74.57 74.47 74.49

MIN % 71.22 71.51 71.86 71.44 72.16

MAX % 78.63 79.24 77.98 79.11 77.9

TABLE 4: Summary on the parser training with lemmas: 10-fold cross-validation results.

Finally, we have retrained five best performing parsers on data augmented with lemmas.
This gives UAS increase of approx. 1.5% point using stack-lazy algorithm, thus, giving the
best UAS achieved — 74.63%. This is achieved by non-projective stack algorithm with the
lazy swap strategy. The full results are shown in Table 4.

Algorithm Stack lazy on morpho-tagged data

AVG % 72.2

MIN % 69.39

MAX % 76.95

TABLE 5: Parser training with on automatically tagged data: 10-fold cross-validation results.

To get some insight about impact of the morphological tagger inaccuracies to the parsing
accuracy we redo experiment with best performing parser configuration (stack-lazy
algorithm, lemmas) with Treebank retagged with statistical morphological tagger (Paikens
et al., 2013). Morphological tagger also adds some lexical features not available in manual
tagging, e.g. source lemma for verbs derived with prefixes and deverbal nouns. Result is
given in Table 3. This gives UAS decrease by approx. 2.4%, but this should be viewed as
rather preliminary result.

5 Conclusion and future tasks

We have presented first general coverage statistical (data-driven) parser for Latvian. The
parser is induced from a small Latvian Treebank with the help of the MaltParser toolkit. The
parser achieves 74.63% unlabeled attachment score with gold standard morphological tags
and 72.2% UAS — with automatically tagged morphology, which we consider a good result
taking into account, that only 2500 annotated sentences were available for the parser
development and that Latvian has rich morphology and, thus, a relatively free word order.
We have also briefly described the current state of the Latvian Treebank and have laid out
our methodology for transforming the treebank from a hybrid annotation model to the pure
dependency trees.

Our experiments show that the best results can be obtained using the non-projective stack
algorithm with the lazy arc adding strategy. Almost as good results can be achieved
combining the projective stack algorithm with the head marking strategy for the
projectivization transformation, or Nivre’s arc-eager algorithm with path marking, or
Nivre’s arc-standard algorithm with head marking. By decoding morphological tags into
separate features and providing lemmas as additional features, it gave us significant
increase of UAS — 2% points total.

Our future work will include the use of dependency labels adapted to allow the
transformationing back to original hybrid annotation format and to do labelled parsing

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 286 of 474]

experiments. We also plan to compare the current results with what can be achieved with a
parser proposed by Koo and Collins (2010). The further work will include the estimation of
accuracy decrease when a statistical morphological tagger is used instead of human-
verified tags. We also plan to compare these results with the approach proposed by Bohnet
and Nivre (2012) to find out if it can improve the accuracy when a comparatively smaller
treebank is available. In the future we hope to expand our research beyond the pure
dependency parsers to use to the full extent the hybrid annotations that the Latvian
Treebank has. We also plan to work with lexicalization of our parsers, but this will require
more work on resource development.

6 Acknowledgements

This work is supported by ERDF project „Informācijas un komunikāciju tehnoloģiju
kompetences centrs” nr. KC/2.1.2.1.1/10/01/001, agreement L-KC-11-0003 research 2.7
"Teksta automātiskas datorlingvistikas analīzes pētījums jauna informācijas arhīva
produkta izstrādē". We thank the University of Latvia for the financial support in preparing
and presenting this paper and the anonymous reviewers for their improvement
recommendations.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 287 of 474]

References

Bārzdiņš, G., Grūzītis, N., Nešpore, G. and Saulīte, B. (2007). Dependency-Based Hybrid
Model of Syntactic Analysis for the Languages with a Rather Free Word Order. In:
Proceedings of the 16th Nordic Conference of Computational Linguistics, pages 13–20,
Tartu.

Bohnet, B. and Nivre, J. (2012) A Transition-Based System for Joint Part-of-Speech Tagging
and Labeled Non-Projective Dependency Parsing. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 1455–1465.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM : a library for support vector machines. In ACM
Transactions on Intelligent Systems and Technology, 27(2), pages 1–27.

Deksne, D. and Skadiņš, R. (2011). CFG Based Grammar Checker for Latvian. In
Proceedings of the 18th Nordic Conference of Computational Linguistics, pages 275–278
Riga.

Erjavec, T. (2010). MULTEXT-East Version 4: Multilingual Morphosyntactic Specifications,
Lexicons and Corpora. In Proceedings of the International Conference on Language
Resources and Evaluation (LREC’2010), pages 19–21, Malta.

Gómez-Rodríguez, C. and Nivre, J. (2010). A Transition-Based Parser for 2-Planar
Dependency Structures. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1492–1501

Hajič, J., Böhmová, A., Hajičová, E. and Vidová Hladká, B. (2000). The Prague Dependency
Treebank: A Three-Level Annotation Scenario. A. Abeillé (ed.): Treebanks: Building and
Using Parsed Corpora, pages 103–127, Amsterdam, Kluwer.

Hajič, J., Vidová Hladká, B. and Pajas, P. (2001). The Prague Dependency Treebank:
Annotation Structure and Support. In Proceedings of the IRCS Workshop on Linguistic
Databases, pages 105–114, Philadelphia.

Koo, T. and Collins, M. (2010). Efficient Third-order Dependency Parsers. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1–11,
Association for Computational Linguistics.

Nešpore G., Saulīte B., Bārzdiņš G. and Grūzītis N. (2010). Comparison of the SemTi-
Kamols and Tesnière’s Dependency Grammars. In Proceedings of the 4th International
Conference on Human Language Technologies — the Baltic Perspective. Frontiers in
Artificial Intelligence and Applications, Vol. 219, pages. 233–240, IOS Press.

Nivre, J. (2003). An Efficient Algorithm for Projective Dependency Parsing. In Proceedings
of the 8th International Workshop on Parsing Technologies (IWPT 03), pages 149–160,
Nancy.

Nivre, J. (2004). Incrementality in Deterministic Dependency Parsing. In Incremental
Parsing: Bringing Engineering and Cognition Together. Workshop at ACL-2004, Barcelona.

Nivre, J. (2009). Non-Projective Dependency Parsing in Expected Linear Time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 288 of 474]

International Joint Conference on Natural Language Processing of the AFNLP, pages 351–
359.

Nivre, J. and Nilsson, J. (2005). Pseudo-Projective Dependency Parsing. In Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), pages
99–106.

Nivre, J., Kuhlmann, M. and Hall, J. (2009). An Improved Oracle for Dependency Parsing
with Online Reordering. In Proceedings of the 11th International Conference on Parsing
Technologies (IWPT'09), pages 73–76.

Nivre J. and Hall J. (2010). A Quick Guide to MaltParser Optimization.
http://maltparser.org/guides/opt/quick-opt.pdf [last visited on 16/01/2013].

Paikens P., Grūzītis N. (2012). An implementation of a Latvian resource grammar in
Grammatical Framework. In Proceedings of the 8th International Conference on Language
Resources and Evaluation (LREC), pages 1680–1685, Istanbul.

Paikens P., Rituma L., and Pretkalniņa L. (2013). Morphological analysis with limited
resources: Latvian example. In Proceedings of 19th Nordic Conference of Computational
Linguistics, to be published, Oslo.

Pretkalniņa L., Nešpore G., Levāne-Petrova K., and Saulīte B. (2011a). A Prague Markup
Language Profile for the SemTi-Kamols Grammar Model. In Proceedings of the 18th Nordic
Conference of Computational Linguistics, pages 303–306, Riga.

Pretkalniņa L., Nešpore G., Levāne-Petrova K., and Saulīte B. (2011b). Towards a Latvian
Treebank. In Actas del 3 Congreso Internacional de Lingüística de Corpus. Tecnologias de
la Información y las Comunicaciones: Presente y Futuro en el Análisis de Corpus, pages
119–127, Valence.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 289 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 290 of 474]

Building a Large Automatically Parsed Corpus of Finnish

Filip Ginter1, Jenna Nyblom1, Veronika Laippala2, Samuel Kohonen1,
Katri Haverinen1,3, Simo Vihjanen4 and Tapio Salakoski1,3

(1) Department of IT, University of Turku, Finland
(2) Department of Languages and Translation Studies, University of Turku, Finland

(3) Turku Centre for Computer Science (TUCS), Turku, Finland
(4) Lingsoft, Inc., Turku, Finland

figint,jmnybl,mavela,sskoho,kahave,tapio.salakoski@utu.fi,

simo.vihjanen@lingsoft.fi

ABSTRACT
We describe the methods and resources used to build FinnTreeBank-3, a 76.4 million token
corpus of Finnish with automatically produced morphological and dependency syntax analyses.
Starting from a definition of the target dependency scheme, we show how existing resources are
transformed to conform to this definition and subsequently used to develop a parsing pipeline
capable of processing a large-scale corpus. An independent formal evaluation demonstrates
high accuracy of both morphological and syntactic annotation layers. The parsed corpus is
freely available within the FIN-CLARIN infrastructure project.

KEYWORDS: dependency parsing, Finnish, CLARIN, parsebank, treebank.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 291 of 474]

1 Introduction

In this paper, we describe the methods and resources used to build the FinnTreeBank-3 (FTB-3)
parsebank, a 76.4 million token corpus of Finnish with automatically produced morphological
and dependency syntax analyses. The corpus is a resource developed within the FIN-CLARIN
consortium, the Finnish member of the CLARIN infrastructure project1 and aims at supporting
research and language technology development requiring large-scale parsed corpora. Further, as
the underlying texts consist of the multilingual parallel corpora EuroParl (Koehn, 2005) and JRC-
Acquis (Steinberger et al., 2006), corresponding parsebanks can be constructed for a number
of other languages into which these two corpora have been translated as well. The larger
context of the FTB-3 parsebank is described by Voutilainen et al. (2012b); our involvement
in its development was through a public request for quotation issued by FIN-CLARIN, seeking
the development of a sufficiently accurate Finnish syntactic parser and its application to the
EuroParl and JRC-Acquis corpora. Our starting point for the development was thus untypical as
the corpus text, morphological tagset, as well as the dependency scheme were all defined by
FIN-CLARIN and not negotiable. Our sole task was to develop a parsing pipeline with sufficient
accuracy and produce the actual parsebank data, in a contract research setting. Therefore,
rather than being used as-is, all tools and resources at our disposal had to be adjusted so as to
conform to the specifications of the project.

In the following sections, we will summarize the tools and resources used when developing
FTB-3 as well as their adaptation to the target scheme and text corpus. Then, we will present
the parsing pipeline and the evaluation of the resulting parsebank.

2 Available tools and resources

The parsing process consists of two major steps: morphological tagging and dependency
parsing. Morphological tagging is carried out using an adapted version of FinCG, a commercial
morphological tagger by Lingsoft, Inc.2 The adaptations of FinCG specific to FTB-3 development
are described in Section 4.1. Unlike for tagging, no pre-existing tools were at our disposal for
dependency parsing. It was thus necessary to train a statistical dependency parser which, in
turn, requires a suitable treebank that is annotated in the target dependency scheme.

For Finnish, there are two manually annotated treebanks available: the Turku Dependency
Treebank (TDT) (Haverinen et al., 2010, 2011) and FinnTreeBank (FTB), in its first version
FTB-1 (Voutilainen et al., 2011) when this work was carried out. The treebanks are developed
for different purposes and are in many respects complementary. TDT has been specifically
developed to support statistical parser training and consists of texts from various genres and
text sources, aiming to serve as a representative selection of general Finnish. FTB-1, on the
other hand, was developed within FIN-CLARIN as a grammar definition treebank. Its underlying
corpus comprises all grammar examples from the Finnish grammar reference book of Hakulinen
et al. (2004), in total 162,312 tokens in 19,140 examples. Together with its accompanying
annotation manual (Voutilainen et al., 2012a), FTB-1 serves as the definition of the target
dependency scheme for FTB-3. While, by its nature, it exhibits a wide variety of grammatical
phenomena, this corpus of carefully selected grammar examples is not intended for statistical
parser training as it does not have the same distributional properties as general Finnish text.

We based the statistical parser used in this work on TDT, as the treebank is more suitable

1http://www.clarin.eu
2http://www.lingsoft.fi/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 292 of 474]

Dependency type Description
main main predicate of the sentence
aux auxiliary
subj subject
obj object
scomp predicative
advl adverbial
attr attribute
phrm phrase marker (conjunctions, adpositions etc.)
modal the nominal part of a verb chain
phrv phrasal verb
comp comparison structure
idiom idiom
conjunct conjunct, coordination
voc vocative
mod post-modifier

Table 1: Dependency types of the FTB scheme.

for statistical parser training. To further improve the applicability of the treebank to the
development of FTB-3, we manually annotated additional data from the EuroParl (19,964
tokens in 1,082 sentences) and JRC Acquis (24,909 tokens in 1,141 sentences) corpora, resulting
in the final training data size of 190,271 tokens in 13,997 sentences.

3 Dependency scheme transformation

TDT is annotated in a slightly modified version of the widely used Stanford Dependencies (SD)
scheme (de Marneffe and Manning, 2008b,a; Haverinen, 2012) which differs notably from
the target scheme of FTB-3. The annotation of the treebank thus needs to be transformed to
conform to the target scheme.

The two schemes differ both in the dependency types they define, as well as in the structure of
the dependency trees for a number of important phenomena. While the SD scheme, as used in
TDT, defines a total of 46 dependency types, the FTB scheme defines a considerably smaller
set of 15 types, listed in Table 1. The tree structures notably differ as well, with 19.8% of the
tokens in the target (FTB) trees being governed by a different token than in the source (SD)
trees. The transformation therefore involves both dependency type mapping and modification
of the governor–dependent relation. The transformation is carried out using a hybrid system
consisting of hand-written rules, followed by a machine learning component that finalizes the
trees by connecting islands resulting from incomplete rule coverage.

3.1 Transformation rules

Each transformation rule matches an arbitrarily complex pattern in the source tree and produces
a single dependency in the target tree. The rule definition syntax allows restrictions on token
text, lemmas and morphological tags, as well as dependency types and directions. Further, any
restriction can also be negated, requiring that it must not be met for the pattern to match.

A typical rule transforms one SD dependency into the FTB scheme. Multiple additional con-
straints limiting the rule application to the correct context are typical as the two schemes treat
differently several important structures. For instance, while in the SD scheme the subject in a

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 293 of 474]

Jonna's
Jonnan

year_as_beauty_queen
missivuosi

has
on

been
ollut

quite
varsinaista

bustling
häärinää

.

.

<ftb:subj
<ftb:attr <ftb:aux <ftb:attr

ftb:scomp>

<sd:poss <sd:aux <sd:amod sd:punct>

<sd:cop

<sd:nsubj-cop

Figure 1: Example trees in the SD and FTB scheme for copula constructs.

the_olympic_flame
olympiatuli

,
,

the_olympic_rings
olympiarenkaat

and
ja

the_olympic_flag
olympialippu

<ftb:phrm <ftb:phrm
ftb:conjunct>

ftb:conjunct>

sd:punct>
sd:conj>

sd:cc>
sd:conj>

Figure 2: Example trees in the SD and FTB scheme for coordination.

copula construct is governed by the predicative, in the FTB scheme the subject is governed by
the copular verb or, if present, the auxiliary (see Figure 1). Similarly, if a noun is preceded by
several modifiers, the SD scheme attaches them all to the noun whereas the FTB chains them
and only attaches the closest modifier to the noun. In addition, as the schemes often differ
in parts of speech assignment in borderline cases, every rule possibly concerning for instance
auxiliaries or adpositions must take into account the differences between the definitions of
these groups of words.

As an example, the rule

dep(amod,T1, T2) and not dep(amod|poss|num,T1, Tx)→ dep(attr,T1, T2)

describes the transformation of an adjectival modifier dependency (amod) to an attribute
dependency (attr), with the token T1 governing the token T2. The negated restriction indicates
that the rule should not be applied if T1 also has another dependent with the dependency type
amod, poss or num. This is because in such a case, the FTB scheme chains the modifiers and
only attaches the closest one to the noun.

As a second example, the rule

dep(xcomp,T1, T2) and is-ftb-aux(T2) and not dep(cop,T1, Tx)→ dep(aux,T2, T1)

describes the transformation of a clausal complement dependency xcomp between T1 and T2
to an aux dependency between T2 and T1, for a verb that is defined as an auxiliary in the FTB
scheme. For this, the rule is delimited to apply only when the T2 token belongs to a group of
lemmas including all the auxiliaries in the FTB scheme. The negation declares that the rule
should not be applied if T1 governs a cop dependency, meaning that it actually is a predicative.
In this case the FTB scheme assigns the copular verb as the head (see Figure 1).

A specific challenge is posed by the transformation of coordination structures, shown in Figure 2,
which can consist of arbitrarily many coordinated elements and are thus not easily addressed
by the rules. Coordination structures are therefore transformed separately, by a dedicated
program. A second case transformed by a dedicated program rather than by the rules are the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 294 of 474]

null tokens which in TDT represent the missing head token in gapping structures and fragments.
The target FTB scheme, on the other hand, does not allow null tokens. As the last step of the
transformation, we thus remove these tokens from TDT, selecting one of their dependents to
act as the new governor using a priority list of dependency types and re-attaching all other
dependents to the new governor.

3.2 Development of the transformation rules

To facilitate the development of the transformation rules, we have manually annotated the SD
scheme trees for 17,061 tokens (1,992 sentences) from FinnTreeBank-1. These nearly 2,000
sentences thus have their syntax available in both schemes and can serve as test data in rule
development.

The rules were developed iteratively in a GUI application designed for the purpose. The
application presents the source and target trees, using color-coding to distinguish correct,
missing, and extraneous dependencies in the transformation output. Further, the application
allows to search among all sentences for arbitrary patterns, with the same expressive power as
the rule pattern matching, both on the source and target side.

In total, the transformation ruleset consists of 305 rules. The rules are applied independently of
each other, that is, all rules are tested and applied to all matching positions in the tree. Out
of all trees, 83.3% are transformed in their entirety, resulting in a tree in the target scheme.
Further 10.0% are transformed partially, resulting in several disconnected islands which are
themselves trees. Such partial transformation results from the inevitable incomplete coverage
of the transformation rules. Finally, the transformation output for the remaining 6.8% of
trees contains a structure violating treeness: either a token with two governors or a cycle.
These erroneous structures can be attributed to rule conflicts. We therefore post-process the
transformation output using a machine learning component which connects the islands into
complete trees as well as corrects erroneous structures by removing extra dependencies. This
component is described in the following section.

3.3 Transformation post-processing using machine learning

The post-processing involves two distinct operations: removal of extraneous dependencies and
insertion of new dependencies so as to connect islands in the analysis. We approach both of
these subtasks using a classifier which, given any two tokens T1 and T2, returns the score of the
most likely dependency type for the hypothetical T1→ T2 dependency, and the score of there
being no dependency with T1 governing T2. As the underlying machine learning algorithm
for the classifier, we apply the regularized least squares ranker implemented in the RLScore
package of Pahikkala et al. (2007).

We use several distinct types of features in the classification. Token features are generated
separately for T1 and T2 and include the token itself, its lemma, and a binary feature for each of
its morphological tags. Target tree features are extracted separately for T1 and T2 from the target,
i.e. transformed, tree and consist of the governor type and all dependent types of the token in
question. If there is no governor, or there are no dependents, a binary feature encoding this
information is issued instead. Further, a binary feature encodes whether the token in question
is a left or right dependent in the linear order of the sentence. A final group of features are
the source tree features which capture the syntactic relationship between the two tokens in the
source (SD) tree. If there is a source-tree dependency between T1 and T2, concatenation of its

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 295 of 474]

type and direction (i.e. whether the dependency is T1→ T2 or T2→ T1 regardless of the linear
order of the tokens in the sentence) are given as a feature. If there is no such direct dependency,
a “middle man” token Tx is searched such that it links T1 and T2, regardless of dependency
directions. If found, features encoding the type and direction of the connection between Tx and
T1 and Tx and T2 are generated, as well as a feature encoding the entire path from T1 to T2 via
Tx . If no such interconnecting token is found, a feature is generated encoding this fact.

The classifier is trained on the treebank transformed using the 305 rules described previously. A
positive example is generated from every dependency in the target tree. We cannot, however,
assume that any dependency not present in the target tree constitutes a valid negative example.
First, these include dependencies that should have been generated by the rules and the ranker
thus should specifically not be given these cases among the negative examples. Second,
producing a negative example from any pair of tokens unconnected in the target tree would
result in a large number of irrelevant negative examples of tokens that are in no way related
to each other. Therefore, for every dependency T1 → T2 in the tree, we produce a negative
example from g(T1)→ T2 and every d(T1)→ T2 where g(T1) and d(T1) refer to the governor
and dependents of T1. In this way, more plausible negative examples are generated, between
tokens that are more closely, even though not directly, related.

The first step in the post-processing is the removal of extraneous dependencies. Whenever
a token has several governors, only the dependency with the highest score as given by the
classifier is preserved, all others are removed. Directed cycles are broken by removing the
dependency with the lowest score in the cycle.

In the second step, we connect islands in the analysis using a simple greedy algorithm. Note
that the first post-processing step guarantees that each of the islands is itself a tree. First, we
generate the set of all token pairs (T1, T2) such that T1 and T2 belong to different islands and T2
is the root of the island to which it belongs. These pairs represent all hypothetical dependencies
T1→ T2 that can be, individually, inserted into the analysis without violating its treeness. Then
we use the classifier to obtain the most likely dependency type and its score for each of these
token pairs, even in cases where the prediction of there being no dependency had a higher
score. Finally, progressing through the list of candidate dependencies ranked by their score, we
insert each dependency if and only if it would not violate the treeness constraints, taking into
account also the dependencies inserted so far.

This completes the description of the transformation of TDT into the target FTB dependency
scheme. We now turn to describe the dependency parsing pipeline, trained on the transformed
treebank.

4 Parsing pipeline

The dependency parsing pipeline comprises of a sentence splitter, tokenizer, morphological
tagger, and statistical dependency parser.

4.1 Morphological tagging

Tokenization, sentence splitting, and morphological tagging were carried out using the commer-
cial FinCG tagger and associated tools developed by Lingsoft, Inc.3 The target morphological
tagset was given as part of the FTB-3 specification, however, unlike for dependency syntax

3http://www.lingsoft.fi

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 296 of 474]

no specification was given regarding the preferred analysis of borderline wordforms which
can be analyzed in several equally plausible ways (Voutilainen et al., 2012b). Therefore,
adapting FinCG to the target scheme could be implemented via a mapping table from FinCG’s
morphological tagset to the target tagset and did not require adjustments to the lexicon.

The underlying text of the FTB-3 corpus is comprised of European Union legal and parliamentary
texts, and contains a number of domain-specific words not included in the general-purpose
FinCG lexicon. Such unrecognized words are not given any lexical analysis by FinCG and
their proportion in text must be kept to a minimum. The general-purpose FinCG lexicon was
therefore augmented with Lingsoft’s proprietary EU style checker lexicon and with a special
domain lexicon for commercial vocabulary. The lexicon was thereafter further extended with
a number of additional frequent unrecognized words found in the FTB-3 corpus. We also
created heuristic components to handle unrecognized proper names and abbreviations together
with their inflected forms, giving them an appropriate morphological analysis. Finally, a
transformation component was implemented to expand common contracted forms such as jollei
(if_not). An illustrative English example of this component would be the expansion of don’t to
do not. After the application of these techniques, only 2.2% of all tokens were left without a
morphological analysis.

4.2 Dependency parsing

Dependency parsing of the morphologically tagged input is carried out using the Mate-Tools4

parser of Bohnet (2010), a state-of-the-art graph-based statistical dependency parser. The
parser is trained on the entire Turku Dependency Treebank transformed to the FTB scheme,
as described in Section 3. The Mate-Tools parser was selected after a careful parsing accuracy
comparison with the transition-based MaltParser of Nivre et al. (2007).

An issue particularly apparent in the legal text of the JRC-Acquis corpus is the O(n2) complexity
of the dependency parser which makes parsing of long sentences exceeding 100 tokens im-
practical. In a large parsebank even a small proportion of such sentences becomes an issue
as, ultimately, every parallel parsing process will be stuck parsing a long sentence, impairing
the whole pipeline. Adopting a practical solution to the problem, we automatically split each
sentence longer than 120 tokens to approximately evenly sized sections of roughly 100 tokens
or less, and parse these sections separately. Candidate points to split the sentence are, in
order of preference, after a semicolon, between items of numbered lists and, finally, after a
comma or a colon. To reconstruct a full parse tree from the sections, we connect them using
the classifier discussed in Section 3.3, only this time for performance reasons we connect the
islands sequentially from left to right and only insert dependencies between the roots of the
islands. This step affects 0.37% of all sentences in the parsebank. The possibility of parsing
the long sentences with a transition-based parser was considered, however, we decided on
the abovementioned procedure as it allows the re-use of the classifier as well as simplifies the
software distribution of the final parsing pipeline.

Upon initial feedback from the FIN-CLARIN representatives, we have also implemented a
separate post-processing step to address the cases where the parser produces two subject
dependents of a verb (5.0% of all subjects). This is not a syntactically possible structure,
however the purely statistical parser has no hard constraint preventing its generation. Further,
double subject is an easily noticeable parsing error which we thus were specifically required to

4http://code.google.com/p/mate-tools/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 297 of 474]

address. Again relying on the classifier, in all multiple subject cases we preserve the subject
with the highest score and replace all other subject dependencies with the highest-scoring
non-subject dependency type.

4.3 Corpus text and parsing speed

The corpus to be parsed consists of 44.1M tokens from the JRC-Acquis corpus and 32.2M
tokens from the EuroParl corpus. Parsing the total 76.4M tokens in 4.37M sentences (for an
average sentence length of over 17 tokens) required approximately 900 CPU hours, using 4-core
CPUs. This corresponds to processing speed of roughly 0.7 seconds per sentence, or, 24 tokens
per second. The processing was split to 850 batches and parallelized on a cluster computer,
resulting in actual parsing time of approximately 10 hours.

5 Evaluation

Since the parsebank was developed in a contract research setting, a formal evaluation, fully
independent of us, was carried out by FIN-CLARIN and compared against pre-agreed acceptance
thresholds. We did not carry out a separate evaluation ourselves since we do not have at our
disposal the necessary gold-standard reference trees in the FTB scheme, and since there was
no need for such an evaluation, the FIN-CLARIN results being the sole acceptance criterion
of the output. The results of the evaluation are reported by Voutilainen et al. (2012b) and
summarized here in Table 2. The accuracy of morphological information is in the 97-98% range
while the dependency type accuracy (proportion of tokens whose dependency type is correct)
and dependency relation accuracy (proportion of tokens whose governor is correct, usually
referred to as unlabeled attachment score) are both in the 88-90% range. The commonly used
labeled attachment score (i.e. the proportion of tokens which have both their governor and
dependency type correctly assigned) is, unfortunately, not reported by Voutilainen et al. Overall,
we can conclude that the accuracy of the parsebank is high, and above the acceptance threshold
which was set to 95% for morphology accuracy, 85% for dependency type accuracy, and 87%
for dependency relation accuracy.

Metric Accuracy
Lemma 98%
Morphological analysis 97%
Dependency type 89–90%
Dependency relation 88–89%

Table 2: Official external evaluation results of the parsebank. The dependency type and
dependency relation accuracies are reported as two values by Voutilainen et al. (2012b), the
first value is obtained by directly inspecting the parsebank, while the second is obtained by
comparison with an independently annotated gold standard.
The accuracy of the dependency scheme transformation procedure can be estimated directly
on the 1,992 grammar examples from FTB-1 which we have annotated in the SD scheme and
used when developing the transformation rules. The first, rule-based step of the transformation
results in incomplete trees which we evaluate in terms of precision and recall of individual
dependencies. The post-processed transformation forms complete trees, and is thus evaluated
in terms of dependency type accuracy, dependency relation accuracy, and labeled attachment
score. The first step results in precision of 83.4% and recall of 80.7%. The final transformed
output after the machine learning based postprocessing, and after removing the null tokens,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 298 of 474]

has dependency type accuracy of 91.1%, dependency relation accuracy of 90.1%, and labeled
attachment score of 88.2%.

The FTB-1 grammar examples is the only data at our disposal which allows a direct evaluation
of the transformation. However, the grammar examples considerably differ in style from the
target legal and parliamentary domain and are not fully representative of the transformation of
the whole treebank. As a further, indirect evaluation we thus compare the FTB scheme parsing
results reported in Table 2 with parsing results in the SD scheme on the JRC-Acquis and EuroParl
sentences which we have annotated as in-domain data, as described in Section 2. Taking a
weighted average in the proportions of JRC-Acquis and EuroParl texts in FTB-3, the dependency
type and dependency relation accuracies for a parser trained on the SD scheme can be estimated
as 92.3% and 89.1%. These figures are closely comparable with the figures achieved after
transformation, as reported in Table 2. This suggests a successful transformation as the overall
performance of the parser has not deteriorated compared to that prior to transformation.

6 Conclusions

In this paper, we have introduced the methods and resources used to build a large-scale Finnish
dependency parsebank. Having started from an external, non-negotiable specification of the
text to parse and the target scheme, we have developed a parsing pipeline capable of processing
the 76.4 million token corpus, resulting in a parsebank with highly accurate morphological and
syntactic annotation. The accuracy of the morphological information in the parsebank is in the
97-98% range whereas the accuracy of the dependency types and relations is in the 88-90%
range, both figures being the result of an independent evaluation carried out by FIN-CLARIN.

We have applied several techniques to modify the existing resources to conform to the specifica-
tion of the parsebank. In particular, we have introduced a dependency scheme transformation
procedure with hand-written rules followed by a machine-learning based post-processing com-
ponent. This procedure was used to transform the Turku Dependency Treebank into the target
dependency scheme, enabling us to train a statistical dependency parser on this treebank.

The resulting parsebank is made freely available by FIN-CLARIN at
http://www.ling.helsinki.fi/kieliteknologia/tutkimus/treebank/.

Acknowledgments

Computational resources for the dependency parsing step of the pipeline were provided by CSC
— IT Center for Science, Espoo, Finland.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 299 of 474]

References

Bohnet, B. (2010). Top accuracy and fast dependency parsing is not a contradiction. In
Proceedings of COLING’10, pages 89–97.

de Marneffe, M.-C. and Manning, C. (2008a). Stanford typed dependencies manual. Technical
report, Stanford University. Revised for Stanford Parser v. 2.0.4 in November 2012.

de Marneffe, M.-C. and Manning, C. (2008b). Stanford typed dependencies representation. In
Proceedings of COLING’08, Workshop on Cross-Framework and Cross-Domain Parser Evaluation,
pages 1–8.

Hakulinen, A., Vilkuna, M., Korhonen, R., Koivisto, V., Heinonen, T.-R., and Alho, I. (2004). Iso
suomen kielioppi / Grammar of Finnish. Suomalaisen kirjallisuuden seura.

Haverinen, K. (2012). Syntax annotation guidelines for the Turku Dependency Treebank.
Technical Report 1034, Turku Centre for Computer Science.

Haverinen, K., Ginter, F., Laippala, V., Kohonen, S., Viljanen, T., Nyblom, J., and Salakoski,
T. (2011). A dependency-based analysis of treebank annotation errors. In Proceedings of
Depling’11, pages 115–124.

Haverinen, K., Viljanen, T., Laippala, V., Kohonen, S., Ginter, F., and Salakoski, T. (2010).
Treebanking Finnish. In Proceedings of TLT9, pages 79–90.

Koehn, P. (2005). Europarl: a parallel corpus for statistical machine translation. In Proceedings
of MT Summit X, pages 79–86.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryiǧit, G., Kübler, S., Marinov, S., and Marsi, E.
(2007). MaltParser: A language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(2):95–135.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., and Salakoski, T. (2007). Learning to rank
with pairwise regularized least-squares. In Joachims, T., Li, H., Liu, T.-Y., and Zhai, C., editors,
SIGIR 2007 Workshop on Learning to Rank for Information Retrieval, pages 27–33.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., and Varga, D. (2006).
The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In Proceedings of
LREC’06, pages 2142–2147.

Voutilainen, A., Lindén, K., and Purtonen, T. (2011). Designing a dependency representation
and grammar definition corpus for Finnish. In Las tecnologías de la información y las comu-
nicaciones: Presente y future en el análisis de córpora. Actas del III Congreso Internacional de
Lingüística de Corpus, pages 151–158.

Voutilainen, A., Purtonen, T., and Muhonen, K. (2012a). FinnTreeBank2 manual. Technical
report, University of Helsinki, Department of Modern Languages.

Voutilainen, A., Purtonen, T., and Muhonen, K. (2012b). Outsourcing parsebanking: The
FinnTreeBank project. In Shall We Play the Festschrift Game?, pages 117–132. Springer.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 300 of 474]

Constructing a Multilingual Database of Verb Valence

Lars Hellan1, Tore Bruland2

(1) Department of Language and Communication Studies, NTNU, N-7491 Trondheim
(2) Department of Informatics, NTNU, N-7491 Trondheim

lars.hellan@ntnu.no, torebrul@idi.ntnu.no

ABSTRACT

We show the initial stage of an incremental on-line multilingual valence pattern demo, presently
populated with two languages, Norwegian and Ga. The procedure for establishing the Norwegian
part of the valence database resides in reusing material available in the computational HPSG-
grammar Norsource, which has a rich array of lexical information, in part developed from earlier
existing lexical resources for Norwegian. The procedure used for Ga is based on a Toolbox
lexicon for Ga, with a first stage of processing enabling its data to join the conversion strategy
used for Norwegian. A common template is used for the valence information display, although
neither source fills in the template completely, reflecting their original differences in content.
Essential among these is the availability of example sentences illustrating each valence option for
each verb – this is available for Ga, but not for Norwegian. The results are implemented but not
yet widely published, serving at the moment partly for self-improvement through exhibiting
weaknesses in the resources from which they were derived, and partly for development of the
multilingual design.

KEYWORDS: Valence, Syntactic Argument Structure, Computational Grammar, Norwegian, Ga,
LKB, HPSG, Toolbox.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 301 of 474]

1 Introduction

We present the initial version of an on-line multilingual database, so far with two languages
represented – Norwegian and Ga (spoken in the Accra area of Ghana). Such a database is of
potential value for machine-aided translation, and for language comparison from both practical
and theoretical perspectives. No multilingual valence database exists yet, to our knowledge, thus
neither standards nor ‘good examples’ are available for reference for the present enterprise.
Monolingual valence databases do exist, including, for instance, the Erlangen Valence
Patternbank, 1 VerbNet, 2 and E-VALBU, 3

In the present demonstration, we make use of two pre-existing lexical resources: the verb-lexicon
of the Norwegian HPSG grammar Norsource,

 and standards set by those could be carried over to
the information provided by the partaking languages of a multilingual database. A requirement of
a multilingual database, though, is that the encoding of information must be uniform across the
languages involved, which means that (i) a ‘mechanical’ combination of existing monolingual
bases would not suffice; and (ii) the design of a common categorization and classification will be
a crucial challenge. Still, since assembling lexical material for a language, making a classification
system, and making consistent use of it in the construction of the database for the language, are
major tasks, the more one can make use of existing resources, the better.

4 based on the LKB platform, 5 and a Toolbox
lexicon of Ga6. The former consists of about 10,000 entries (for verbs), the latter nearly 2000 (for
verbs), both on what we may call a ‘full-frame’ basis, namely a design where alternative valence
frames for a given lemma are represented by different entries.7

2 The Norwegian valence lexicon

The Norsource lexicon has adopted and adapted resources from the TROLL project8 and the
NorKompLex project, conducted previously at NTNU. The format of an LKB type entry is
exemplified in (1) below from the Norwegian lexicon, with the lexical entry for regne ‘rain’, as in
det regner ‘it rains’; the lexical type of the entry - here v-intrImpers 9 - carries all aspects of
syntactic and semantic information reflected in the grammar: 10

(1) regne_impers := v-intrImpers &

 [INFLECTION nonfinstr,
 STEM < "regne" >,
 PRED "_regne_v_rel"].

1 http://www.patternbank.uni-erlangen.de/cgi-bin/patternbank.cgi?do=introtxt
2 http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
3 http://hypermedia2.ids-mannheim.de/evalbu/
4 http://typecraft.org/tc2wiki/Norwegian_HPSG_grammar_NorSource ; on HPSG, cf. Pollard and
Sag 1994.
5 Cf. (Copestake 2002).
6 See Dakubu 2009, 2010
7 This in contrast to approaches like (Levin 1993), and VerbNet, which rather identify as the main
unit a verb together with its cluster of possible frames (belonging to what is called a ‘verb class’).
8 Cf. (Hellan et al. 1989).
9 For the system of type labels used, cf. (Hellan and Dakubu 2009, 2010).
10 The expression in (1) reads : ‘regne-impers’ is a subtype of the type ‘v-intrImpers’, with the specifications for
inflection class, stem and predicate values indicated, following the tdl code used in LKB grammars.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 302 of 474]

A conversion list with members like (i), (ii) and (iii) in TABLE 1 below is then used to populate
the database; to the left of the arrow is the lexical type name, and the lines to the right provide
‘expansions’ of this type name, in the format chosen for the database:

(i) v-intrImpers => SAS: "EXPL"
SFP: impersonal-weatherProcess
Example of type: “det regner”

(ii) v-intrImpersPrtcl => SAS: "EXPL+adpos"

SFP: impersonal-weatherProcess
Example of type: “det klarner opp”

…
(iii) v-ditr => SAS: “NP+NP+NP”
 SFP: ternaryRel

…

TABLE 1: Sample from the conversion of valence-types to specifications used in the
database view.

‘SAS’ stands for ‘syntactic argument structure’. For Norwegian, the set of possible SAS
specifications is currently 158, which is close to being exhaustive at this level of specification,
based on so-called ‘formal’ categories – (2) is a snippet of the list:

(2) ….
 NP+INF

NP+INF:equiSBJ
NP+INF:raisingSBJ
NP+NP
NP+NP+APpred
…

‘SFP’ stands for ‘semantic and functional properties’, and is so far a more tentative and restricted
assembly of categories, but an area of further development. The total number of conversion rules
including those in TABLE 1 is currently 350.

Every entry of the grammar’s lexicon (i.e., entries like (1) above) is run through the conversion
list, and the expansions for each verb populate the database. In the user interface, the search for
any specific verb lemma can be combined with a menu of lexical types, and with a SAS or SFP
specification; see below.

3 Expansion to a bi- and multi-lingual valence lexicon

For the multilingual demo, the material also for Ga comes from verb lexicon files available in the
form of a TDL-formalism lexicon, based on a separate conversion from the Toolbox format to the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 303 of 474]

LKB lexicon format. 11

A conversion list as exemplified in TABLE 1 will convert the lexical types used in the Ga file
into the same general array of SAS and SFP labels as for Norwegian (with some labels specific to
Norwegian, and some to Ga, reflecting typological differences). The database for Ga will have
specification slots corresponding to all of the attributesexemplified in (3), along with those
induced by the conversion rules, just as the Norwegian database will have specifications for the
relevant parameters in (1) along with those induced by the conversion rules. Thus, the database is
created on a ‘pot-luck’ basis, each language contributing its own resources, on a common form.

 In the TDL-entries, exemplified in (3), each attribute corresponds to a
‘field’ in the Toolbox file:

FIGURE 1: Search result for ditransitive frame.

With these prerequisites, a search in the combined database will be able to define its targets by
SAS, or SFP, or Lexical Type, or any combination of these - see FIGURE 1 above and FIGURE 2
below for screen-shot examples of the two types of views available.12

11 See (Hirzel 2006, 2012) for earlier explorations of such conversions.

 The view in FIGURE 1

12 The demo website is http://regdili.idi.ntnu.no:8080/multilanguage_valence_demo/multivalence.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 304 of 474]

brings out, for the language(s) selected, the set of entry-IDs of verbs satisfying the criteria
indicated, viz. here the SAS frame “NP+NP+NP” (the formal pattern of a d-transitive or double-
object construction).

Each verb-ID in the list in FIGURE 1 is provided with a button ‘Show’, and FIGURE 2 is an
instance of what can be called up with this button, a view for the second lowest verb on the list in
FIGURE 1, stating all of the information directly or indirectly encoded in the entry in (3). This
information thus includes the attribute ‘Verb Type’, with a value v-ditr being the expression
explicitly entered behind the symbol ‘:=’, and a value for ‘Semantic and Functional Properties’,
which is not explicitly entered in (3), but induced from the Verb Type v-ditr in the conversion list
illustrated in TABLE 1, here the by item (iii) in that list.

FIGURE 2: Result for ‘Show’ for a verb displayed on the search result in FIGURE 1.

Having mentioned machine translation as a possible application of such a database, it is clear that
valence information by itself is not a carrier of translation, but together with information about
semantic equivalence of putative verb pairs in two languages, valence equivalence or similarity
will serve as an additional parameter to induce quality of translation. For the marking of semantic
equivalence there will be in principle two routes – ‘bridging’ through the availability of shared
English (or other language) glosses, and sameness of semantic representation in some formalism
rich and tractable enough to be readily searchable. Per this day, no system of the latter kind is

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 305 of 474]

available, 13

4 Logistic perspectives

 and the information located in the present slot ‘semantic and functional properties’
is too general to induce translation. For the option of going via English glosses, the Ga database
has the necessary information, but the Norwegian database not, hence the database at present
could not contribute substantively towards translation by itself, only offer valence information
supplementing translation hypotheses generated elsewhere.

The database architecture is open for the addition of further languages. The database and its
interface are independent of the data provenance – the data, when already acquired and
systematized, could come from lexically based grammars (of which HPSG grammars are only
one type), or from digital lexical resources generally. The classification systems can vary, as long
as correspondence rules like those suggested in TABLE 1 can map them to the system of SAS
and SFP here adopted. The conversion pipeline can be of any form whatsoever - in the present
case, they come for both languages from LKB files, but this is because one of the provenance
sources actually is formalized in LKB, and for Ga, there is indeed an LKB grammar also for this
language,14

The scalability of the approach nevertheless will depend on for how many languages a process as
here suggested can be fairly directly replicated. Since there are many languages for which LKB
grammars have been defined, the present process can in principle be used for many of these
languages;

 where the lexicon file is also used.

15

Another issue is that of incremental improvement of the database – what we have so far described
is a ‘once-and-for-all’ line of action, which is obviously insufficient for tasks of such complexity
as a valence database. LKB grammars, among others, typically lack specifications like the lower
lines in (3), and a question will be how to add such specifications, i.e., example sentences with
instructive glossing. Incremental improvement of any aspect of the database can in general be
done through the grammar/lexical resource, with uploading of the system to the database from
time to time; acquisition of examples from corpora, or by individual contribution, will constitute
a different path. Conceivably there could be a direct contribution interface to the database for
relevant examples; or one could use corpus and annotation tools to feed the relevant information
into the ‘source’ grammars,

 the same holds for other frameworks of ‘deep grammars’. Replicability of the
process from Toolbox projects is likewise conceivable, but since these are developed in much
less mutual concordance than the grammar types mentioned, they have to be considered more on
a one-by-one basis.

16

13 Initiatives that may lead towards such formats include FrameNet ((cf.

 from which the information could be further propagated to the
database using the established pipeline. This issue will be in focus in further design
developments, with Norwegian being first in line for testing.

https://framenet.icsi.berkeley.edu/fndrupal/), and the Leipzig Valency Classes Project
(http://www.eva.mpg.de/lingua/valency/index.php ; cf. Comrie and Malchukov, to appear).
14 Cf. Dakubu et al. 2007.
15 Aside from a conversion strategy from verb types as here illustrated, one can also induce SAS information from
the actual feature structure of the lexical entries, when run through the grammar unification mechanism; this has
been done for Norsource, but is not included in the current system.
16 For instance using TypeCraft (http://typecraft.org – cf. (Beermann and Mihaylov 2011)), as described in (Hellan
and Beermann 2011),

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 306 of 474]

5 Linguistic perspectives

There is general consensus that parameters like the following ought to be represented in an
account of valence types:17

(4) a. syntactic argument structure, i.e., whether there is a subject, an object, a
second/indirect object, etc., referred to as grammatical functions, and the formal
categories carrying them;

b. semantic argument structure, that is, how many participants are present in the situation
depicted, and which roles they play (such as ‘agent’, ‘patient’, etc.);

c. linkage between syntactic and semantic argument structure, i.e., which grammatical
functions express which roles; - identity relations, part-whole relations, etc., between
arguments;

d. aspect and Aktionsart, that is, properties of a situation expressed by a sentence with the
valence in question in terms of whether it is dynamic/stative, continuous/instantaneous,
completed/ongoing, etc.;

e. type of the situation expressed, in terms of some classificatory system.

The slot ‘SAS’ used presently may be said to represent the formal part of (4a), while the
functional part of (4a), the ‘–arity’ part of (4b), (4d), and to a small extent (4e), are included
under the current slot ‘semantic and functional properties’, a slot which may well become split up
according to these parameters in the future. ‘Type’ in the current demo represents the lexical type
label used in the input grammar; the array of such types relevant for Norwegian is described in
(Hellan 2008), and the general system of type labels in question is described in (Hellan and
Dakubu 2009, 2010). Other grammars or sources providing valence data may well use other type
or type label inventories, and we leave open at this point whether each provenance system should
be introduced as it is under ‘Type’, or some approach of standardization be attempted – counting
against the latter are the circumstances that the other slots will be fully standardized anyhow, and
that the ‘pot luck’ approach to acquisition will be easier the less conversion operations are called
for. What one may still strive for is that similar ranges of discriminants are included in the
classification systems used - thus, the type labels used presently cover the parameters already
mentioned, whereas inclusion of participant roles, for instance, or more fine-grained situation
type specifications, would increase the number of types considerably.

In general, it is given that valence frames will differ across languages and across language
typologies, Norwegian and Ga illustrating both. We may refer to a language’s valence type
inventory as its v(alence)-profile, and it will be a natural desideratum that a valence demo as here
constructed should display not only valence information for particular verbs of each language
involved, but also its v-profile generally. For the purpose of exposing such profiles, the online
database has a ‘select’ functionality whereby for a specific language chosen, its v-profile is
shown through the circumstance that only the Types and SAS options of relevance for the
language are displayed on the roll-down menu. The task of establishing v-profiles, on the other
hand, is a purely linguistic enterprise, aided through general descriptive work, corpus acquisition,
or any combination of strategies. As an instance of decisions to be made in the linguistic

17 See, for instance (Fillmore 2007), and other articles in (Herbst et al. 2007).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 307 of 474]

classification, a point brought out in the representation of the present pair of languages is that Ga,
as a typical Kwa language making extensive use of verb serialization, encodes through serial verb
constructions many of the contents for which Norwegian uses extended valence frames like those
involving secondary predicates18 and other complex relations.19 The question then arises whether
v-profiles should include constellations based on two verbs or more, or one should create a
related notion of c(onstruction)-profile where also constructs like the relevant serial verb
constructions are included. In the Ga lexical database, we have chosen the latter option, thereby
including labels like ‘ev-’ for ‘extended verb construction’, visible in the Ga Type inventory, and
‘pv-’ for ‘preverb’, and ‘SVC’ (as a placeholder for possible more detailed specifications) for
‘serial verb construction’, in the Ga SAS inventory.20

Both the Norwegian and the Ga underlying resources are in active development. In the case of
Ga, the Toolbox version indeed has a layer of fine-grained semantic information added to the
discriminants shown currently in the Type inventory of Ga, not included in the current LKB file
but included in another file not used yet. The inclusion of this information will be done at a later
point, and the SFP list for Ga will then be considerably richer than it is currently. For Norsource
there is also a background inventory of not-yet-employed semantic notions. In addition, some
valence frame specifications are employed on a try-out basis for a few verbs, which means that in
the Type inventory, whereas types like ‘v-intr’ and ‘v-tr’ have a large number of entries (2195
and 4668, respectively), some types have just 2 or 3 members. As the current import to the
valence database is based on the actual state of the lexicon, some instances of mal-proportions
thereby ensue, which might be eliminated at later points; on the other hand, the views offered by
the current demo are instructive to the grammar developers in these respects, and so are being
maintained for the present.

In general, the linguistic notions encoded in such a database have to be generally understood,
sufficiently that contributors can agree in the ways notions apply or correspond across
frameworks, and so that users can understand them fairly directly. When a large range of such
notions are put together in a comprehensive database, and with an in principle unlimited span of
typological linguistic variation, the enterprise of course faces profound challenges relating both
to the analytic understanding of phenomena and the terminologies and analytic systems applied
to them. Rather than perceiving such a situation as just a ‘challenge’, however, one could, from a
linguistic point of view, appreciate it for providing a space of investigation which is central to the
concerns of linguistics, namely arriving at cross-typological, cross-framework understanding of
phenomena and their analyses.

6 Concluding remarks

The architecture of a valence demo here described is fairly straightforward, computationally
speaking; the basic work sits in the previous development of resources like the underlying
grammar or lexicon, and in maintaining theoretical command of the linguistic issues involved.
The latter task has been facilitated through the prior close linguistic cooperation behind the

18 In the v-profile encoded in Norsource, no less than 40 valence frames include a secondary predicate (’small
clause predicate’).
19 We here have in mind constructions referred to as ’integrated’ serial verb constructions, as opposed to ‘chaining’
constructions, i.e., those linking together indefinite sequences of consecutive events.
20 For explanation of these notions, see (Hellan and Dakubu 2010), and (Dakubu et al. 2007).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 308 of 474]

contributing resources; bringing together resources with less of such a background is likely to be
more challenging, linguistically as well as computationally.

We hope to have identified an interesting avenue for re-utilization of linguistically rich resources,
to be confirmed through further developments of the current design, including the population of it
with more languages, and through further developments of the demo, both in its monolingual and
its bi-lingual capacities.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 309 of 474]

References
Beermann, D. and Mihaylov, P. (2011). e-Research for Linguists. Proceedings of the 5th ACL-
HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and
Humanities

Comrie, B. and Malchukov, A. (eds) (to appear) Handbook of Valency classes.

Copestake, A. (2002). Implementing Typed Feature Structure Grammars. CSLI.

Dakubu, M.E.K. (2009). Ga-English Dictionary with English-Ga Index. Accra: Black Mask
Publishers.

Dakubu, M.E.K. (2010) Toolbox project Ga, University of Ghana.

Dakubu, M.E.K., L. Hellan., and D. Beermann. (2007). Verb Sequencing Constraints in Ga:
Serial Verb Constructions and the Extended Verb Complex. In St. Müller (ed) Proceedings of
the 14th International Conference on Head-Driven Phrase Structure Grammar. CSLI
Publications, Stanford. (/http://csli-publications.stanford.edu/)

Fillmore, C. (2007): Valency issues in FrameNet. In: Herbst and Götz-Votteler (eds.).

Hellan, L. 2008. Enumerating Verb Constructions Cross-linguistically. COLING Workshop on
Grammar Engineering Across frameworks. Manchester. http://www.aclweb.org/anthology-
new/W/W08/#1700

Hellan, L., Johnsen, L. and A. Pitz. (1989) The TROLL Project. Ms., NTNU.

Hellan, L. and M.E.K. Dakubu. 2009. A methodology for enhancing argument structure
specification. Proceedings from the 4th Language Technology Conference (LTC 2009), Poznan.

Hellan, L. and Dakubu, M.E.K. (2010) Identifying Verb Constructions Cross-linguistically.
SLAVOB series 6.3, Univ. of Ghana.

Herbst, T and K. Götz-Votteler (eds.) (2007): Valency: Theoretical, Descriptive and Cognitive
Issues, Berlin/New York: Mouton de Gruyter.

Hirzel, H.. 2006. Deriving LKB lexicons from Toolbox. Talk given at Workshop on Grammar
Engineering, NTNU, June 2006.

Hirzel, H. 2012. Converting a Toolbox lexical database to LKB format.
http://typecraft.org/tc2wiki/Converting_a_Toolbox_lexical_database_to_LKB_format.

Levin, B. (1993) English Verb Classes and Alternations. Univ. of Chicago Press, Chicago, IL.

Pollard, C. and Sag, I. (1994). Head-Driven Phrase Structure Grammar. Univ. of Chicago
Press, Chicago, IL.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 310 of 474]

New Measures to Investigate Term Typology by
Distributional Data

Jussi Karlgren
from

Kungliga Tekniska Högskolan
and

Gavagai, Stockholm

jussi@kth.se

ABSTRACT
This report describes a series of exploratory experiments to establish whether terms of different
semantic type can be distinguished in useful ways in a semantic space constructed from
distributional data. The hypotheses explored in this paper are that some words are more variant
in their distribution than others; that the varying semantic character of words will be reflected in
their distribution; and this distributional difference is encoded in current distributional models,
but that the information is not accessible through the methods typically used in application of
them. This paper proposes some new measures to explore variation encoded in distributional
models but not usually put to use in understanding the character of words represented in them.
These exploratory findings show that some proposed measures show a wide range of variation
across words of various types.

KEYWORDS: Term typology, distributional semantics.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 311 of 474]

1 Words and terms in use — general requirements for a language model

For text analysis tasks such as information retrieval, terminology mining, or conceptual mod-
elling, words and terms naturally lend themselves as surrogates for documents or representa-
tions of concepts. A necessary component in any system for text analysis is a representation,
explicit or implicit in the text analysis process, for the concepts expressed in text by computation
over the terms that express them. Since the lexical variation is great, such a representation must
select or weight or consider the words, terms, and constructions judiciously, typically based on
observable characteristics of the items in the text collection under consideration, sometimes
consulting language resources compiled elsewhere such as lexica or ontologies.

Target notions for the usefulness of a word or term for some typical text analysis tasks are e.g.
representativeness for some topic, specificity in discriminating between documents of different
topics, and topicality in general, meaning how likely its appearance in a text is evidence of
it being a carrier of text topic. (Spärck Jones, 1972; Hisamitsu et al., 2000; Katz, 1996)
A representation or language model, whether probabilistic, geometric, or symbolic, should
obviously be designed to capture the target notions most relevant for the task at hand. The
three characteristics given above are not immediately observable in themselves — they are
derived from observed distributional behaviour of words and terms in text and discourse and
from an understanding of what topic is, extratextually.

But, aside from a word’s potential usefulness for a task, it will have semantic characteristics
which usually are acknowledged by the community of language users: terminological vagueness,
abstraction, indefiniteness, and change over time are obvious, ubiquitous, and salient character-
istics of words and terms in human language, but seldom afforded any place in computation.
Any language model, whether it addresses hands-on tasks in information access application,
machine translation, dialogue systems or other application area for human alnguage processing
or if it built to elucidate the workings of human communicative behaviour in the abstract should
be expected to address those semantic characteristics which are most obvious to human users
of language.

What character can words and terms then have, observably? An observable difference between
words and terms is their distribution over semantic neighbourhoods. Some words and terms
are focussed and specific; others are inspecific and spread over several usage patterns. In this
initial paper we propose some measures to explore this distributional variation.

2 Experiments on word distributions

These first experiments concern the behaviour of words. Terms are frequently composed of
several words in conventional fixed configurations (Smadja, 1993; Justeson and Katz, 1995)
and the arguments and experiments given here can be generalised to multi-word terms and even
constructions, but for practical reasons these initial experiments are performed on single-token
words. The distribution of words is here studied in two text collections — a collection of
newprint from Reuters comprising 200 million words in short news telegrams, and one month
of collected English-language blog text comprising 189 million words in short blog posts.

Our hypotheses are (1) that some words are more variant in their distribution than others — an
assumption that is not difficult to defend; (2) that the varying semantic character of words will
be reflected in their distribution; and (3) this distributional difference is encoded in current
distributional models, but that the information is not accessible through the methods typically
used in application of them.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 312 of 474]

abstract terms
ability adventure amazed anger anxious awe bad beauty belief brave brutal calm chaos charity childhood clarity comfort communication compassion confidence content courage crime

curious customer death deceit dedication defeat delight democracy despair determined dictatorship disappointment disbelief disquiet disturbance education ego elegance energy

enhancement enthusiasm envy evil excited failure faith faithful fascination fear forgive fragile frail free freedom friend friendship generous glitter good grace gracious grief happiness happy

hate hatred hearsay helpful helpless home honest hope hurt idea imagination impression improvement infatuation inflation insanity intelligence jealousy joy justice kindness knowledge

laughter law liberty life loss love loyal loyalty luck lucky luxury mature maturity memory mercy moral motivation move movement music need opinion opportunity pain patience peace

peculiar peculiarity pleasure poor poverty power pride principle real reality refreshment relief restoration rich rumour sacrifice sad sadness sanity satisfaction self-control sensitive service

shock silly skill sparkle speculation speed strength stupid success surprise sympathy talent thrill tired tolerance trust unemployment upset warm weak weakness wealth wisdom worth

Swadesh terms
i you we this that who what not all many one two big long small woman man person fish bird dog louse tree seed leaf root bark skin flesh blood bone grease egg horn tail feather hair head

ear eye nose mouth tooth tongue nail foot knee hand belly neck breast heart liver drink eat bite see hear know sleep die kill swim fly walk come lie sit stand give say sun moon star water

rain stone sand soil cloud smoke fire ashes burn path mountain red green yellow white black night hot cold full new good round dry name

Figure 1: Abstract and Swadesh terms used in the experiment

To test the hypotheses under consideration we established two word lists to provide a basis
for differentiating behaviour of different types of word. We initially took the 100 word list
by Swadesh with cross-linguistically translatable words as an example of concrete and fairly
invariant concept references. (Swadesh, 1971) We added a list of some 160 abstract terms
taken from various author guides.1 The terms used are given in Figure 1.

2.1 Simple distributional measures

For practical semantic tasks such as search engines, topic modelling, or text categorisation,
term usage is computed from their occurrence statistics. The typical search engine categorises
terms according to their potential information content inasmuch can be determined from its
distribution over a document collection, the target task being to separate documents from each
other using search terms as a criterion. This sort of computation serves well to distinguish
topical from non-topical words. Table 2.1 shows how the Okapi BM25 formula (Robertson and
Zaragoza, 2009), the base for many, or even most, practical search engines today weights terms
differentially depending on their topical qualities based on a combination of term frequency
within documents, the number of documents the term appears in often with a document length
factor added in to compensate for the effect of long documents on term frequency counts.

In general, formulæ such as BM25 do a good job of taking out words with a broad and
uninteresting distribution, as well as infrequent words. Words with a low BM25 tend to be
function words, misspellings, and unusual compounds. Words with a high BM25 score will be
trade marks, names, and technical terms. This serves the needs of a topical search engine well.

A more principled approach to modelling word distribution is the three-parameter burstiness
model formulated by Slava Katz (Katz, 1996). His model uses occurrence statistics to estimate α,
the likelihood of encountering a term, γ the likelihood of its being topical if encountered, and B,
the burstiness of the term, if established as topical. These estimates are handily calculated with
α being the observed relative frequency of the term, γ the observed number of documents where
the term occurs more than once, and B the average frequency of a term in those documents

1Author guidelines tend to issue blanket warnings to aspiring writers, discouraging abstract and vague vocabulary,
irrespective of if it would be warranted or not.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 313 of 474]

Newsprint
average t f id f BM25

and 4.29 2.92e-7 3.20
it 2.74 6.45e-7 5.61

...
food 1.72 2.09e-5 13.2
hunger 1.50 0.000453 14.8
eat 1.21 0.000653 12.3
beef 2.40 8.50e-5 10.56
seafood 1.43 0.00239 10.56
barbecue 1.19 0.0149 2.97
jerky 1.00 0.0454 0.841

Table 1: Search engine measures for some sample words for news text.

Newsprint
α γ B
p̂(occurrence) p̂(topical i t y) p̂(burst iness)

and 0.270 0.819 6.20
it 0.177 0.589 3.52

...
food 0.0123 0.347 3.09
hunger 0.000616 0.319 2.59
eat 0.0000545 0.159 2.3
beef 0.00236 0.613 3.29
seafood 0.000131 0.242 2.79
barbecue 0.0000239 0.121 2.57
jerky 0.00000907 0 0

Table 2: Katz measures for some sample words for news text.

where its frequency is over 1. Katz’ α is high for frequent and low for infrequent words; Katz’
γ is high for words that are likely to be repeated and thus likely to be topical in the contexts
where it is used; for Katz’ burstiness we find very high scores for function words, high scores
indicative of technical terms and trade marks and low burstiness scores for hapax legomena
and misspellings, as exemplifed in Table 2.1. A word such as music will has in our present data
set an observed likelihood of 0.38 of being repeated once seen in text, and thus, following Katz’
estimate, a relatively high probability of being a topical term in discourse; a word such as stupid
an observed repeat likelihood of 0.09 and a lower attendant estimated probability of being
topical.

2.2 Variation in local context size

As a first test we collected the variation in the immediate neighbourhood of the words under
consideration. For each word, we tabulated its occurrences and its immediately adjacent words

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 314 of 474]

#different words/#observations
blog text newsprint

eat 0.09 0.35
sun 0.18 0.58

...
talent 0.91 0.95
gossip 1.10 1.56

Table 3: Number of neighbours in local context

in a window of two words to the left and to the right. We find that function words such as
and it, vague terms such as good, and very general verbs such see have a more wide range of
neighbours than do more referentially specific terms such as frail soil or defeat.

Table 3 gives some examples of terms ranging from 0.09 to 1.56. The theoretical maximum
of this score is 4 for a completely dispersed neighbourhood: with two words collected to the
left and two to the right, if every observation has all those four words different the score will
be 4. The table of results is sorted by score, and subsequent rank sum tests show significant
differences between the Swadesh terms and the abstract and vague term list, with the former
having a more focussed and presumably semantically more constrained neighbourhood. (Mann
Whitney U, p> 0.95) This gives us reason to experiment further, to see how their neighbourhood
evaloves, related to the two different types of word and to their respective occurrence statistics
over a growing number of observations.

2.3 Variation in a semantic space

In the following experiments a distributional semantic space representation is used. Distri-
butional semantic models are based on the assumption that similarity in meaning between
entails similarity in usage and thus in the distribution of the words under consideration over
a text collection. This assumption holds, as shown in numerous word semantic evaluation
experiments. The model in these experiments is built from the two data sets given above using
a standard implementation of the random indexing framework (Kanerva et al., 2000) using
1000-dimensional ternary vectors of density 3. Each word encountered in the text is at time
of first observation accorded one randomly generated index vector. The distributional context
of a word is then represented with another 1000-dimensional context vector, into which, for
each occurrence of the word, are added the index vectors of adjacent words in the immediate
left and right contexts (Sahlgren et al., 2008). This context vector will over time, after a
number of observations, capture the close distributional neighbourhood of the word in all
occurrences encountered thus far. Words with similar contextual distributions will converge
towards similar context vectors. The context in these experiments are modelled by a 2+ 2
window which has been shown by previous work to best capture tight semantic relations such
as synonymy (Sahlgren, 2006). This setting is naturally an obvious one to vary in future
experiments — is the semantic variation more noticeable in the tight semantic relations or in
the broader more associative relations given by a broad window.

This context vector constitutes the basic data on which the following experiments are performed.
This model is a fairly general distributional model and is used not for its specific characteristics
but for processing convenience. It is reasonable to assume that most results would in the main

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 315 of 474]

honest 25
person 74

education 85
law 96

Table 4: Number of second-order neighbours for some selected words

translate to any more sophisticated semantic space or probabilistic language model.

2.3.1 Semantic tightness: Overlap

In a semantic space, the meaning of a word is determined by its neighbours. This first measure
computes the number of second order-neighbours by taking the ten nearest neigbours to a
word and then the ten nearest neighbours for each of those neighbours. If the ten closest
neighbours of the ten closest neighbours overlap well, the neighbourhood is semantically well
connected. If they do not, the neighbourhood is semantically diverse. The minimum score is
10, the maximum is 110, if all terms have ten different nearest neighbours. A graph of how
the number of neighbours evolves as text is being processed is shown in Figure 2 and some
example words are given in Table 4. The range of variation for words with a score starting to
flatten out is between about 20 and 90 and do so at about a hundred occurrences. Rank sum
tests show significant differences between the Swadesh terms and the abstract and vague term
list, with the former having a larger average number of second-order neighbours, in partial
contradiction to the above result of local neighbourhood size given in Table 3. (Mann Whitney
U, p > 0.95) Presumably this shows that the while the immediate distributional neighbourhood
of the concrete Swadesh words is close, the words used with it are of a general character.

Figure 2: Semantic tightness measured by the number of second order neighbours among the
ten nearest neighbours.

2.3.2 Semantic tightness: Angle-at-10

This measure is computed by taking cosine between the target word and its tenth nearest
neighbour in the word space. If the word has few semantically similar words, this measure
should remain close to 0; if this measure is closer to one, there is a tighter semantic context
around this word. A graph of how this measure evolves as text is processed is shown in Figure 3
and some example words are given in Table 5. The range of variation for words with a score

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 316 of 474]

Figure 3: Semantic tightness measured by the cosine to the tenth neighbour.

know→ f eel 0.37
bad → substandard 0.24
peace→ harmony 0.20

Table 5: Cosine to the tenth neighbour for some selected words

starting to flatten out is between about 0.15 and 0.5 — the latter is already a noteworthy score
of closeness in this type of model. Rank sum tests show significant differences between the
Swadesh terms and the abstract and vague term list, with the former having a lower cosine score
to the tenth neighbour, again in partial contradiction to the above result of local neighbourhood
size given in Table 3. (Mann Whitney U, p > 0.95) Presumably this shows that the constrained
neighbourhood may not extend to as many as ten neighbouring words.

2.3.3 Semantic wobble

The third measure we propose is how much the position of the word changes with additional
information as new observations of the word are encountered. This measure is computed
by taking the cosine between the position of the word in word space before and after each
observation. This measure thus captures the semantic impact of the latest observation. A graph
of how this measure evolves as text is processed is shown in Figure 4. The great majority of
words converge relatively rapidly towards values of over 0.9, indicating that their meaning
remains stable in this implementation. Some vary more: group, position, and break with rather
less specific semantics have lower scores than words such as election and university.

2.3.4 Converging to known synonym

For words with very obviously identifiable synonyms — a small minority of terms in human
language — a measure of convergence can be used to test the quality of the implementation
at hand. Semantically very similar words should be assumed to relatively rapidly converge
towards each other — meaning that their representations in this implementation should find
each other after not too many occurrences. As an example, words such as he and she as well as
man and woman should be expected to end up with similar representations. This assumption is
borne out by data from this experiment as shown in Table 6 with the notable exception of the
delay for man to match with woman as its closest synonym in blog text, where various names

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 317 of 474]

Figure 4: Semantic wobble measured by divergence from centroid.

blog text newsprint
first occurrence stable occurrence first occurrence stable occurrence

he→ she 12 37 216 384
she→ he 21 34 4 5

woman→ man 214 284 4 4
man→ woman 228 562 40 74

Table 6: Number of occurrences until most reasonable synonym is established

and synonyms such as guy confound the process.

3 Conclusion

This first — quite explorative — study is intended to provide a first basis for measures beyond
first-order term and document frequency as a measurement of terminological specificity. Some
of the proposed measures appear to give purchases to separate terminology quite broadly: the
range of variation shows promise for semantically useful distinctions to be made. A notable
observation is that by most measures, words appear to find their semantic position in but a few
mentions. Most words are fairly consistent in their meaning, even in the more fluid material
given by blog authors.

Acknowledgements

This work is supported by Vetenskapsrådet, the Swedish Research Council through a grant for
the project “Distributionally derived grammatical analysis models”.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 318 of 474]

References

Hisamitsu, T., Niwa, Y., and Tsujii, J.-i. (2000). A method of measuring term representativeness:
baseline method using co-occurrence distribution. In Proceedings of the 18th conference on
Computational linguistics, pages 320–326, Morristown, NJ, USA. Association for Computational
Linguistics.

Justeson, J. S. and Katz, S. M. (1995). Technical terminology: some linguistic properties and
an algorithm for identification in text. Natural Language Engineering, 1:9–27.

Kanerva, P., Kristofersson, J., and Holst, A. (2000). Random indexing of text samples for latent
semantic analysis. In Proceedings of the 22nd Annual Conference of the Cognitive Science Society,
CogSci’00, page 1036. Erlbaum.

Katz, S. (1996). Distribution of content words and phrases in text and language modelling.
Natural Language Engineering, 2(1):15–60.

Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and
beyond. Foundations and Trends in Information Retrieval, 3:333–389.

Sahlgren, M. (2006). The Word-Space Model: Using distributional analysis to represent syn-
tagmatic and paradigmatic relations between words in high-dimensional vector spaces. PhD
Dissertation, Department of Linguistics, Stockholm University.

Sahlgren, M., Holst, A., and Kanerva, P. (2008). Permutations as a means to encode order
in word space. In Proceedings of the 30th Annual Conference of the Cognitive Science Society,
CogSci’08, pages 1300–1305, Washington D.C., USA.

Smadja, F. (1993). Retrieving collocations from text: Xtract. Computational Linguistics,
19:143–177.

Spärck Jones, K. (1972). A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation, 28:11–21.

Swadesh, M. (1971). The origin and diversification of language. Aldine, Chicago. Edited by
Joel Sherzer post mortem.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 319 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 320 of 474]

Analysis of phonetic transcriptions for Danish automatic
speech recognition

Andreas Søeborg Kirkedal
Department of International Business Communication, CBS

Dalgas Have 15, DK-2000 Frederiksberg
Denmark

ask.ibc@cbs.dk

ABSTRACT
Automatic speech recognition (ASR) relies on three resources: audio, orthographic transcrip-
tions and a pronunciation dictionary. The dictionary or lexicon maps orthographic words to
sequences of phones or phonemes that represent the pronunciation of the corresponding word.
The quality of a speech recognition system depends heavily on the dictionary and the transcrip-
tions therein. This paper presents an analysis of phonetic/phonemic features that are salient
for current Danish ASR systems. This preliminary study consists of a series of experiments
using an ASR system trained on the DK-PAROLE corpus. The analysis indicates that transcribing
e.g. stress or vowel duration has a negative impact on performance. The best performance is
obtained with coarse phonetic annotation and improves performance 1% word error rate and
3.8% sentence error rate.

KEYWORDS: Automatic speech recognition, phonetics, phonology, speech, phonetic transcrip-
tion.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 321 of 474]

1 Introduction

Automatic speech recognition systems are seeing wider commercial use now more than ever
before. No longer are ASR systems restricted to rerouting scenarios in call centres with a small
and domain-specific vocabulary. The largest commercial experiment in Europe to date has
taken place in the Danish public sector in Odense municipality and entailed more than 500 case
workers dictating reports rather than typing them.

To be a practical alternative to manual transcriptions or typing in general, the recognition rate
must be high. Otherwise, the potential gain will be spent correcting the recognised output. Many
approaches to optimisation of ASR have been investigated including multiple pronunciation
variants, direct modelling of acoustic features and domain-specific language modelling. One
thing that seems to be missing is an investigation of what features of pronunciation are salient
for the ASR system. This is likely a result of the complexity of ASR systems, meaning that ASR
research is usually conducted by computer scientists or engineers, who can better understand
the intricacies of acoustic models, language models, acoustic feature extraction etc.

1.1 Related work

From a phonetic point of view, research into the importance of the transcription chosen for
the pronunciation dictionary and the phonetic features in the alphabet has not been carried
out extensively. The phonetic transcriptions available in corpora are usually not created for
computational modelling. In many cases, the description itself is the goal rather than what the
description can be used for. Therefore, the transcription contains symbols for phonetics and
prosody.

One related study investigates the effect of rate of speech (ROS) on Danish ASR (Brøndsted and
Madsen, 1997). The article shows that low and high ROS have a negative impact on recognition
accuracy and that e.g. long and short vowels should be modelled separately because long
vowels are more sensitive to ROS than short vowels are.

Modelling long and short vowels separately supports the observation that all vowels in Danish
have a short and a long version and this a distinctive lexical feature (Grønnum, 2005).

(Ljolje, 1994) introduced the use of Gaussian Mixture Models (GMMs) and probabilistic duration
modelling to distinguish between long and short vowels. Using duration modelling and GMMs
the word error rate (WER) on a 25000 word task was reduced by 10% and GMMs have been
part of standard ASR systems ever since.

Schwa assimilation in Danish has been investigated in (Schachtenhaufen, 2010, In Danish).
From a linguistic point of view the article describes a set of rules for schwa assimilation, schwa
elision and distinct schwa pronunciation based in part on sonority principles and on syllable
and word boundaries. This is further condensed into a single rule for the manifestation of
schwa assimilation. The linguistic investigation is conducted on the DanPASS corpus and is
mainly a qualitative study.

2 Speech recognition overview

An ASR system consists of an acoustic model, a language model and a pronunciation dictionary.
The acoustic model is a phone classifier. The input for an acoustic model is a vector of acoustic
parameters such as Mel Feature Cepstral Coefficients (MFCC). The feature vector is extracted
from 10-20 ms windows of the speech input. Each of the MFCC vectors are then classified as

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 322 of 474]

Figure 1: A triphone model.

a set of phones with an associated probability. Usually, there is a n-to-1 relationship between
MFCC vectors and phonetic symbols, because the phone duration will be longer than the
window a vector is derived from.

To take coarticulation effects into account and make the phone classification more context-
dependent, each phone is subdivided into three subphones: start, middle and end as shown
in Figure 1. The start state is the transition into the current phone and is dependent on the
previous phone, the middle state is the current phone, which is most context-independent
and the end state is the transition out of this phone, which is sensitive to the next phone and
affects the start of the next phone. These groups of subphones are called triphones. An n-to-1
relationship holds between MFCC vectors and subphones as well and is handled in a triphone
model by allowing transitions from a state back to the same state.

Sequences of triphones are compared to the pronunciation dictionary and a set of possible
orthographic sentences or phrases are created from the triphone sequences. They are then
weighted by the language model and ranked according to the acoustic model score and the
language model score. The highest scoring sentence is found using e.g. the Viterbi algorithm
and output by the decoder as the result. A toy example of the decoding process can be seen in
Figure 2.

Figure 2: A toy decoding example. Notice that in this example, a pronunciation variant of new
is allowed.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 323 of 474]

2.1 Training

ASR is data-driven and needs large amounts of data to train acoustic and language models. The
type of data is important for the performance of the ASR system and features such as voice,
domain, noise, volume and variation in the training data has an impact on the performance of an
ASR system. Recordings must be transcribed and a phonetic dictionary with a transcription for
each word must be created or acquired. The audio files and the transcriptions are fundamental
to train an ASR system. The audio files must be recorded in such a way that they are suitable
for training an ASR system. The audio files should preferably be in uncompressed format such
as MSWAV, a sampling rate of 16kHz, 16 bit and use only a single channel, i.e. mono, not stereo.
To train a recogniser for telephone speech, the sampling rate must be 8kHz. If you have audio
files, which have a higher sampling rate and/or is in stereo, it is possible to downsample and
convert into mono, but it is not possible to upsample your data.

3 Phonetic transcription

Several alphabets are used to create phonetic or phonemic transcriptions. They have been used
by researchers for decades and can be seen in almost any dictionary entry. Depending on the
researcher or the purpose of a transcription, the full expressive power of an alphabet can be
used or a subset thereof. Common for all the alphabets mentioned below are that they can also
express suprasegmentals such as stress or Danish stød.

3.1 International Phonetic Alphabet

Most known is IPA (International Phonetic Association, 1999), which is used extensively around
the world by researchers in and teachers of phonetics and phonology. The IPA alphabet contains
symbols for the pronunciation of vowels and consonants as well as symbols or diacritics for
different positions of speech organs, duration and prosodic features such as stress and tones.

3.2 Speech Assesment Methods Phonetic Alphabet

Speech Assesment Methods Phonetic Alphabet (Wells et al., 1997) (SAMPA) is a machine-
readable language specific phonetic alfabet. It is developed as a collaborative effort between
native speakers and phoneticians of all the languages it can be applied to. An extension - X-
SAMPA - is a recoding of IPA symbols in ASCII symbols to make the symbols machine-readable.

4 Experiment

The goal is to study the impact of transcription granularity and different phone sets on word
error rate (WER). To be able to conduct these experiments, a corpus or corpora suitable for
training an ASR system that contains high quality transcription is needed. In addition, a strategy
for converting phonetic/phonemic transcriptions to a machine-readable format and for filtering
the transcriptions must be chosen and finally, a toolkit for training the ASR systems must be
chosen.

4.1 Corpora

There are several Danish spoken language corpora. Some suitable corpora are listed here:

• LANCHART
• DanPASS

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 324 of 474]

• DK-Parole

LANCHART (Gregersen, 2007) contains more than 1000 hours of spontaneous speech. The cor-
pus is automatically transcribed, which means the transcription is generated from orthographic
transcription, and all annotations are encoded in PRAAT textgrids (Boersma, 2002). The corpus
is designed to monitor language change over time and is representative with respect to regional
dialects, age, gender, educational background etc. However, due to the highly overlapping
nature of the interviews, the recordings are not suitable for training ASR systems. It is likely
that a subcorpus would be suitable, but this kind of filtering is beyond the scope of the project
due to the size of the original corpus.

DanPASS (Grønnum, 2006) is a highly accurate, manually annotated speech corpus with time-
coded phonetic and phonemic transcriptions, POS, lemmata etc. It consists of two subcorpora
containing monologues and dialogues. The dialogues corpus contains recordings of experiments
with two participants. Each participant has a map and one participant must guide the other to
follow a route on the map. However, the two maps are not identical. When the participants
must explain to each other the differences in the maps, semi-spontaneous speech occurs during
the unscripted negotiation of the different maps. The monologues corpus contains recordings
where one participant is asked to describe a network of coloured geometric networks. Even
though the corpus contains dialogues, there are no overlapping speech. Speakers of different
age, gender and different dialects are represented. The annotation in the corpus is the most
fine-grained in all the corpora using most of the expressive power of IPA. DanPASS also uses
textgrids to encode annotations and transcriptions.

DK-Parole (Henrichsen, 2007) contain recordings of read-aloud speech of one speaker. The
annotation is not as fine-grained as DanPASS, but uses the same alphabet as LANCHART, is
manually annotated and easier to use for training data. In addition, the SAMPA alphabet is cre-
ated to be machine-readable and therefore does not require any conversion of the transcriptions
to be usable for training an ASR system.

4.2 Phonetic character conversion

Character encoding conversion is possible with existing methods. In the case of IPA symbols, the
character encoding must be changed to ASCII from Unicode and the best resource is conversion
with X-SAMPA1. In addition, ASR toolkits have reserved symbols such as underscore (”_”)
because they are used for e.g. segmentation during computation that also must be filtered in a
way that does not introduce unintended ambiguity. The symbols will be usable for the machine
learning algorithms, but may become unintelligible to linguists, which constitutes a problem for
debugging.

4.3 Transcription filtering

The phonetic and/or phonemic transcriptions in all the corpora from Section 4.1 contain
symbols and diacritics for segments and suprasegments. The classical phonological definition
of segments is the smallest discrete unit of speech that you can find (Grønnum, 2005). All
the phones in Figure 2 are segments. Suprasegments are phenomena in speech that cover a
larger time domain than segments. In general, suprasegmental features such as tone, stress,
stød and duration are related to prosody, which is related to syllables, words and phrases.

1See http://www.phon.ucl.ac.uk/home/sampa/x-sampa.htm.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 325 of 474]

Suprasegmental features are annotated with diacritics2.

In current ASR systems, there are no concepts of syllables, stress groups or prosody in general.
Due to transcription conventions, suprasegmental features are affixed to segments in phonetic
transcription and often used in the training procedure without criticism. This can lead to
data sparsity when training triphone models. The ASR system inventories the number of
phones/phonemes in the training data to determine the number of triphone models that should
be estimated. Supposing that a given phone can have up to 5 separate diacritics affixed, this
results in an upper bound of 120 different phone models for a single segment depending on the
occurrences in the training data. In DanPASS, the fine-grained transcription results in a phone
inventory of at least 400 distinct phones, which are different realisations of the segments. If
the difference between two models is very small, the system will not be able to discriminate
between the two realisations. Intuitively it seems an ASR systems would become more robust if
a model trained for a segment encompassed all the different realisations of that segment rather
than 120 models that describe the different realisations of one segment.

Transcription conventions for annotation of stress are also problematic in an ASR context. Stress
is annotated with a diacritic that is affixed to a syllable, i.e. a series of segments. In IPA, the
convention is to annotate stress as a prefix ("s i r k a) and in the Danish SAMPA alphabet, e.g.
in DK-PAROLE, the convention is to annotate stress as a suffix (s i r! g a). For an ASR
system, this will be interpreted as another phone symbol and result in different phone sets.

Duration and syllabification are two features of interest. Syllabification in Danish usually occurs
when a schwa is assimilated and a sonorant becomes syllabic. In Danish, syllabification most
often occur as the result of schwa-assimilation (SA) and happens when the sonorant is not part
of the onset (Schachtenhaufen, 2010). It is interesting to see what happens if the symbol is
treated as a segment. It is easier to annotate and altering this transcription convention will
decrease annotation time considerably. Schwa is the fourth most common segment in DanPASS
and the combination of sonorant+schwa in the coda is quite common because of the Danish
definite article suffix -en where assimilation is almost obligatory (Schachtenhaufen, 2010). An
example of syllabification with SA can be seen in Table 1 as well as the dictionary entry used
for the experiments.

No assimilation l E n g d @ n
Syllabification (SA) l E n g d n

"Dictionary entry l E N d - n

Table 1: Different phonetic transcriptions of the Danish word længden (the length).
Duration is of interest because, while it may or may not have prosodic information, it is affixed
and related to a single segment. However, this annotation overlaps with the functionality of
the transitions in Figure 1 which return to the same state and model the n-to-1 relationship
between vectors and phone symbols. Since duration is implicitly modelled, it is interesting to
see if filtering away duration can improve the WER and not introduce too much ambiguity.
Omitting annotation for duration will also decrease annotation time.

5 Results

For this setup, CMU Sphinx (Placeway et al., 1997) is used to train an ASR system with SphinxIII
as the decoder. SphinxIII is a C++ implementation and the main Large Vocabulary Continuous

2Note that not all diacritics are suprasegmental features, but all suprasegmental features are diacritics.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 326 of 474]

Speech Recognition (LVCSR) version. To ease reproducibility, the standard configuration of
SphinxIII is used in all experiments together with a trigram language model trained on the
orthographic material in DK-PAROLE. 3574 recordings or 80% of the corpus was used as
training data and the remaining 20% as test set. The experiments were setup with a set of
scripts from Henrichsen and Kirkedal (2011). Slight alterations were necessary to make the
scripts handle IPA characters and the different tier names in the textgrids. The changes will be
added to the github repository3 when ready. DK-Parole has been used for preliminary studies
due to the easy conversion from PRAAT textgrids to the sphinx training database layout, which
did not entail any phonetic character conversion, only filtering. Also, the audio was recorded
between 2006 and 2008 and the corpus contains the most recent speech recordings of standard
Danish available at the time.

Evaluation Metrics: WER Words Sentence Sentences
(3574) Error (894)

No diacritics 5.7% 691 34.3% 307
SA 5.6% 678 34.5% 308
Stød 5.9% 720 36.4% 325
+SA 5.7% 693 34.3% 307
Duration 5.9% 714 35.9% 321
+SA 5.8% 707 36.8% 329
Stress 6.0% 722 36.0% 322
+SA 5.9% 711 36.1% 323
Duration and stress 6.5% 791 38.0% 340
+SA 6.0% 734 36.7% 328
Stress and stød 6.5% 791 38.4% 343
+SA 6.3% 769 37.4% 334
Duration and stød 5.9% 719 36.4% 325
+SA 5.9% 720 36.4% 325
Duration, stress and stød 6.7% 808 38.0% 340
+SA 6.4% 775 38.1% 341

Table 2: Error rates for the DK-Parole ASR experiments. SA is short for schwa-assimmilation.

The WER and sentence error rates of 16 experiments were calculated using SClite (Fiscus,
1998) and are reported in Table 2. WER is the number of substitutions, deletions and insertions
normalised by the number of words in the reference:

W ER =
Subst i tut ions+ delet ions+ inser t ions

words
(1)

Sentence error rate is also reported. In a post-editing scenario, it is relevant to know how many
sentences needs to be edited. If a user of an ASR system needs to edit every sentence, the
potential gains in efficiency will not be realised, but editing many mistakes in few sentences are
not as time-consuming.

The experiments are grouped in pairs where the only difference in the paired experiments are
the annotation of SA. In the sets of paired experiments, the transcription in the dictionary was

3https://github.com/dresen/sphinx_setup

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 327 of 474]

Figure 3: WER significance tests.

changed so all combinations of annotations for stress, duration, stød and SA have been carried
out.

6 Discussion

Table 2 shows that including annotation for stress, stød, and duration increases the error rate.
In each set of experiments, adding SA annotation has either no impact or decreases the reported
error rates.

These preliminary results should be interpreted with caution. The training data is based on
recordings of a single speaker reading text aloud. It is possible that this configuration of the
pronunciation dictionary is only an improvement on this data set and does not generalise to
other speakers.

Treating SA as a segment decreases the WER in the ASR experiments. This is so far the only
case where the change from a diacritical to a segmental representation (from [n-] to [-] [n])
has improved the recognition rate. Adding a SA symbol and therefore an SA triphone model,
seems to make the systems more robust. This is clear when comparing the WER of experiments
including annotation for duration and stress with and without annotation for SA. Adding SA
increases the recognition rate in seven out of nine comparisons.

Filtering out duration annotation improves the recognition rate by up to 0.5% WER. This
indicates that the implicit modelling of time in triphone models are sufficient to model duration
and the lack of this annotation does not introduce unresolvable ambiguity. The amount of
ambiguity introduced and whether the ambiguity is resolved by the language model or elsewhere
has not been determined. This is interesting because vowel duration is a distinctive lexical
feature in Danish and all vowels in Danish exist in a long and short form (Grønnum, 2005). It
also conflicts with the conclusions of Brøndsted and Madsen (1997) and indicates that long and

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 328 of 474]

Figure 4: Number of correct words significance tests.

short versions of the same vowel symbol should be used to train a single model.

The changes in transcription give in small improvements. The combined improvement from the
worst performing system to the best is statistically significant in terms of correctly recognised
words and WER. The p-value and WER significance test can be seen in Figure 3.

A significance test for the number of correctly recognised words have been carried out as well.
The results and p-value can be seen in Figure 4.

Some of the most difficult perceptual features to annotate are not salient for ASR systems.
This conflicts with transcription conventions from the Danish phonetic community where these
suprasegmental features are considered salient for human listeners. This could indicate that
transcription can be handled by non-experts, e.g. via Amazon’s Mechanical Turk to either create
training data or acquire human evaluations (Novotney and Callison-Burch, 2010).

7 Conclusion and Outlook

Conventional speech transcription seems to be more fine-grained than necessary and annotation
of suprasegmental features and duration in pronunciation dictionaries for state-of-the-art ASR
systems did not improve the recognition rates. Currently, adding annotation for suprasegmental
features are counter-productive. These features are important for human listeners, but the
HMM and triphone structure of current ASR systems cannot take advantage of this information.

To verify these findings, it is important to repeat the experiments with a different corpus. With
the very fine-grained transcription, multiple speakers and semi-spontaneous speech, DanPASS
will make a good next step. The transcriptions in DanPASS will also make it possible to
experiment with additional annotation.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 329 of 474]

References

Boersma, P. (2002). Praat, a system for doing phonetics by computer. Glot international,
5(9/10):341–345.

Brøndsted, T. and Madsen, J. (1997). Fonemteori og talegenkendelse. Sprog og multimedier.
Aalborg Universitetsforlag.

Fiscus, J. (1998). Sclite scoring package version 1.5. US National Institute of Standard
Technology (NIST), URL http://www. itl. nist. gov/iaui/894.01/tools.

Gregersen, F. (2007). The lanchart corpus of spoken danish, report from a corpus in progress.
Current Trends in Research on Spoken Language in the Nordic Countries, 2:130–143.

Grønnum, N. (2005). Fonetik og fonologi, 3. udg. Akademisk Forlag, København.

Grønnum, N. (2006). Danpass-a danish phonetically annotated spontaneous speech corpus. In
Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC),
Genova, Italy, May.

Henrichsen, P. (2007). The danish parole corpus-a merge of speech and writing. Current
Trends in Research on Spoken Language in the Nordic Countries, 2:84–93.

Henrichsen, P. and Kirkedal, A. (2011). Founding a large-vocabulary speech recognizer for
danish. In Speech in Action, pages 175–193.

International Phonetic Association (1999). Handbook of the International Phonetic Association:
A guide to the use of the International Phonetic Alphabet. Cambridge University Press.

Ljolje, A. (1994). High accuracy phone recognition using context clustering and quasi-triphonic
models. Computer Speech & Language, 8:129–151.

Novotney, S. and Callison-Burch, C. (2010). Cheap, fast and good enough: Automatic speech
recognition with non-expert transcription. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational Linguistics, pages
207–215. Association for Computational Linguistics.

Placeway, P., Chen, S., Eskenazi, M., Jain, U., Parikh, V., Raj, B., Ravishankar, M., Rosenfeld,
R., Seymore, K., Siegler, M., et al. (1997). The 1996 hub-4 sphinx-3 system. In Proc. DARPA
Speech recognition workshop, pages 85–89. Citeseer.

Schachtenhaufen, R. (2010). Schwa-assimilation og stavelsesgrænser. NyS, (39):64–92.

Wells, J. et al. (1997). Sampa computer readable phonetic alphabet. Handbook of standards
and resources for spoken language systems, 4.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 330 of 474]

Combining Statistical Machine Translation
and Translation Memories with Domain Adaptation

Samuel Läubli1, Mark Fishel1, Martin Volk1, Manuela Weibel2

(1) Institute of Computational Linguistics, University of Zurich, Binzmühlestrasse 14, CH-8050 Zürich
(2) SemioticTransfer AG, Bruggerstrasse 37, CH-5400 Baden

{laeubli,fishel,volk}@cl.uzh.ch manuela.weibel@semiotictransfer.ch

ABSTRACT
Since the emergence of translation memory software, translation companies and freelance
translators have been accumulating translated text for various languages and domains. This
data has the potential of being used for training domain-specific machine translation systems
for corporate or even personal use. But while the resulting systems usually perform well in
translating domain-specific language, their out-of-domain vocabulary coverage is often insuffi-
cient due to the limited size of the translation memories. In this paper, we demonstrate that
small in-domain translation memories can be successfully complemented with freely available
general-domain parallel corpora such that (a) the number of out-of-vocabulary words (OOV)
is reduced while (b) the in-domain terminology is preserved. In our experiments, a German–
French and a German–Italian statistical machine translation system geared to marketing texts
of the automobile industry has been significantly improved using Europarl and OpenSubtitles
data, both in terms of automatic evaluation metrics and human judgement.

KEYWORDS: Machine Translation, Translation Memory, Domain Adaptation, Perplexity Mini-
mization.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 331 of 474]

1 Introduction

Technological advances in the field of automated translation have increased economic pressure
on translation companies and freelance translators. According to a recent study published by
the European Union (Pym et al., 2012), there is evidence that the per-word rate for professional
translations has decreased significantly in some western European countries.

On the other hand, computer-assisted translation tools such as translation memory (TM)
systems—allowing translators to store their translations in a personal or corporate database and
reuse them on future occasions—have become an integral part of state-of-the-art translation
workflows, even for freelancers.

More recently, there have been efforts to combine machine translation systems with translation
memories (Kanavos and Kartsaklis, 2010; Koehn and Senellart, 2010). As a result, major
commercial systems such as SDL TradosStudio1, Across LanguageServer2, and even open source
alternatives such as OmegaT3 now offer machine translation interfaces, allowing translators
to have segments automatically (pre-)translated in case there is no corresponding translation
available in their translation memory.

In a joint project between the UZH Institute of Computational Linguistics and SemioticTransfer
AG, we currently explore the potential of using domain-specific statistical machine translation
(SMT) systems in human-based translation workflows. We hypothesize that SMT systems
trained on SemioticTransfer’s translation memory data will enable their translators to work
more efficiently while preserving translation quality.

In our present paper, we report on training and evaluating statistical machine translation
systems for two language pairs on a relatively small amount of marketing texts related to the
automobile industry. In Section 2, we outline the foreseen translation scenario and introduce
means of compensating for the limited size of our in-domain training material. In Section 3,
we present SMT systems that are based on a combination of in-domain and out-of-domain
data. The combined systems are compared against an in-domain-only baseline. We discuss our
findings in Section 4, and lastly, we conclude and outline the further course of our project in
Section 5.

2 Background

In this section, we first describe the translation scenario that our domain-specific SMT systems
should be applied in. Second, we detail techniques for combining limited amounts of in-domain
with out-of-domain translation data.

2.1 Translation Scenario

In SemioticTransfer’s current translation workflow, new language material to be translated
is imported into a corporate translation memory system by specially trained staff termed
translation managers. Subsequently, the manager prepares one or several work packages, each
of which consists of a number of documents in the source language with an accompanying
empty document in the target language. Next, each source language segment is automatically
looked up in the translation memory, and exact matches are directly inserted into the target

1http://www.sdl.com/products/sdl-trados-studio/index-tab3.html
2http://www.across.net/en/across-machine-translation-integration.aspx
3http://www.omegat.org/en/howtos/google_translate.html

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 332 of 474]

language document. A specialist translator then translates all remaining segments one-by-one.
This process is again supported by the translation memory system: For each segment, the
translator is shown similar segments that are already stored in the TM—it is her or his decision
whether to take an existing segment and adapt it or translate the segment from scratch instead.

There are many ways to integrate machine translation in such a workflow. Kanavos and
Kartsaklis (2010) propose a pragmatic approach that uses a simple SMT model trained on all
available translation memory data. This model is used to translate segments for which no fuzzy
match with more than 80% similarity is available in the TM, which are subsequently post-edited
by specialist translators. The automatic translation is either invoked in an “on-demand” (the
translator requests an SMT hypothesis for a segment he is currently translating) or a “one
time” mode. We focus on the latter which automatically inserts SMT translations for segments
with fuzzy matches below 80% into the target language document before it is handed to the
translator, i.e., we produce a pre-translation which is then completed and post-edited inside the
translation memory system.

2.2 Domain Adaptation

Unlike Kanavos and Kartsaklis (2010), we focus on a specific text genre: marketing texts of the
automobile industry. For this reason, we cannot use large general-domain parallel corpora for
training our translation models as (a) many domain-specific terms are not contained in such
resources and (b) domain-specific terms would be prone to mistranslation because of domain
mismatches. For example, the German word Arten could be translated as espèces (species) in a
general-domain DE–FR translation system. While this translation could be used, for example, in
biological texts, it is not adequate in the automobile domain as cars are of certain types (types)
rather than species.

To counteract these problems, Koehn and Senellart (2010) have proposed to retrieve a fuzzy
match in the TM for each source segment to be translated, identify the mismatched parts, and
replace these parts by an SMT translation. Their approach relies on automatic word alignment
to find the target words that are affected by the mismatch.

In contrast to Koehn and Senellart (2010) we approach combining parallel texts from domain-
specific translation memories and general-domain corpora as a domain adaptation problem.
We use the approach of mixture-modeling, commonly used for language model adaptation and
extended to translation models by Foster and Kuhn (2007). The main distinctive feature of
this approach for both language and translation models is that instead of separating the data
and models into in-domain/out-of-domain in a binary setting, different domains are assigned
real-valued weights, reflecting their similarity to in-domain text material. Using these weights
the single domain models p= {pi}i=1...N are combined into a single adapted model:

p(x) =wp(x) =
N∑

i=1

wi pi(x).

The weights w are selected to optimize the performance of the adapted model on an in-domain
development set. Language model performance is estimated with its entropy on the said set.
Unlike Foster and Kuhn (2007) who use a monolingual performance measure for translation

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 333 of 474]

models we follow Sennrich (2012) and use the cross-entropy of the adapted translation model
on the development set, a bilingual performance measure:

p̂(x) = arg min
w

H(p), where H(p) =− ∑
x∈X(d)

p̃(x) log2 p(x)

Here H(p) is the cross-entropy of the adapted language or translation model p and X(d) is the
development set. The empirical probability distribution p̃ is based on the development set.
The nature of x ∈ X(d) depends on which models are handled: in case of language models, it
represents a single sentence; in case of translation models it stands for a 〈source, t ranslat ion〉
tuple. For more details see (Sennrich, 2012; Chen and Goodman, 1998).

3 Combining In-Domain with Out-of-Domain Data

In this section, we describe the statistical machine translation systems we have trained for
our experiments. We briefly describe the training data (Section 3.1) and the system setups
(Section 3.2), which we have evaluated by automatic means (Section 3.3.1) as well as with a
human evaluator (Section 3.3.2).

3.1 Training Data

3.1.1 In-Domain

The in-domain data has been extracted from SemioticTransfer’s translation memories for
German–French (DE–FR) and German–Italian (DE–IT). All texts are related to the automobile
industry; the translated segments stem from brochures, websites, and price lists. For this reason,
a segment may refer to a whole sentence, but also to smaller units such as short phrases or even
single words of table entries. After cleaning the memories, we were able to extract 166’957
segments for DE–FR and 112’166 segments for DE–IT, which corresponds to ∼2.0 and ∼1.5
million tokens, respectively. Please note that all segments are unique. Unlike text from a
corpus of running words, each segment from a translation memory occurs only once. The exact
numbers are shown in Table 1.

3.1.2 Out-of-Domain

As for out-of-domain data, we have chosen two freely available parallel corpora: Europarl v7
(EP7) (Koehn, 2005) and OpenSubtitles 2011 (OS11) (Tiedemann, 2009). We extracted the
DE–FR and DE–IT translations from each of them, resulting in ∼48.5 (EP7) and∼16.0 (OS11)
million tokens per language pair. See Table 1. We point out that these parallel corpora are not
thematically related to our in-domain data. Rather than that, they are much more extensive and
thus cover a broader vocabulary, which is missing in our in-domain data due to its limited size.

In-Domain Europarl OpenSubtitles

DE–FR DE–IT DE–FR DE–IT DE–FR DE–IT

Segments 166’957 112’166 1’903’628 1’805’792 2’852’474 2’131’004

Tokens F 2’011’872 1’413’452 48’405’406 48’419’389 16’858’070 15’642’379
Tokens E 2’632’256 1’731’219 56’372’702 50’689’987 16’370’845 15’458’666

Tokens/Segment F 12.05 12.60 25.43 26.81 5.91 7.34
Tokens/Segment E 15.77 15.43 29.61 28.07 5.74 7.25

Table 1: In-Domain and Out-of-Domain Training Data
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 334 of 474]

3.2 Domain-Specific SMT Systems

We have trained an in-domain-only baseline and three systems that combine in-domain and
out-of-domain data (see Section 3.1) in different weighting modes for each language pair.

3.2.1 Baseline Systems

Using only the in-domain data, we trained a standard phrase-based statistical machine trans-
lation system for DE–FR and DE–IT. 5-gram language models were trained using the IRST
Language Modeling Toolkit (Federico and Cettolo, 2007). Otherwise, we relied on the Moses
decoder (Koehn et al., 2007) and its dedicated scripts for training, tokenization, and truecasing.

3.2.2 Combined Systems

Additionally, we trained separate translation and language models using our out-of-domain
corpora. Apart from the training data, the setup was the same as for our baseline systems. This
left us with three phrase tables and language models per language pair: in-domain, EP7, and
OS11. All combined systems presented in this section comprise all of these models, but they are
differently weighted. The weighting modes are defined as follows.

Unweighted Combination (unweighted)

In the unweighted mode, we simply concatenated the in-domain, EP7, and OS11 language
material. On this basis, we trained a combined translation and language model for each
language pair.

Weighted Language Model (weighted LM)

In the weighted LM mode, we used an interpo-
lated language model alongside an unweighted
translation model for each language pair. We
employed interpolate-lm of the IRST Lan-
guage Modeling Toolkit (Federico and Cettolo,
2007) to estimate interpolation weights for
the in-domain, EP7, and OS 11 language mod-
els by minimizing their perplexity on a devel-
opment set of 2’000 in-domain segments (see
section 2.2).

DE–FR DE–IT

Corpus TM LM TM LM

In-Domain - 91.9 - 92.9

EP7 - 5.8 - 5.0

OS11 - 2.3 - 2.1

Interpolation weights for translation (TM) and lan-
guage (LM) models in %, weighted LM mode.

Weighted Translation Model (weighted TM)

DE–FR DE–IT

Corpus TM LM TM LM

In-Domain 92.3 - 93.7 -

EP7 6.2 - 5.1 -

OS11 1.5 - 1.2 -

Interpolation weights for translation (TM) and lan-
guage (LM) models in %, weighted TM mode.

In the weighted TM mode, we combined an
interpolated translation model with an un-
weighted language model for each language
pair. We applied Sennrich’s approach (Sen-
nrich, 2012) for estimating interpolation
weights for the in-domain, EP7, and OS11
translation models, again using a develop-
ment set of 2’000 in-domain segments (see
section 2.2).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 335 of 474]

Weighted Language and Translation Model (weighted LM+TM)

In the weighted LM+TM mode, we used both
interpolated language and translation models,
i.e., we combined the interpolated language
models of the weighted LM mode with the in-
terpolated translation models of the weighted
TM mode for each language pair.

DE–FR DE–IT

Corpus TM LM TM LM

In-Domain 92.3 91.9 93.7 92.9

EP7 6.2 5.8 5.1 5.0

OS11 1.5 2.3 1.2 2.1

Interpolation weights for translation (TM) and lan-
guage (LM) models in %, weighted LM+TM mode.

3.3 Evaluation

3.3.1 Automatic Evaluation

For evaluating the systems described in Section 3.2, we compiled a test set of 500 segments
for both language pairs. The segments were taken from a recent contract of SemioticTransfer:
the translation of an automobile company’s website from German to French and Italian. The
translation was carried out by two professional translators using SemioticTransfer’s translation
memories.

We used multeval (Clark et al., 2011) for evaluating our systems. As there is no full METEOR
support for Italian (Denkowski and Lavie, 2011), this score is only available for the DE–FR
system. Table 2 gives an overview on all metrics and the performance of the systems; a
discussion of these and other results is given in Section 4.

DE–FR DE–IT

Metric Mode Avg ssel sTest p-value Avg ssel sTest p-value

BLEU ↑
baseline 32.2 1.3 0.1 - 31.3 1.4 0.3 -
unweighted 31.3 1.3 0.1 0.00 30.8 1.4 0.2 0.12
weighted LM 31.8 1.3 0.2 0.15 32.9 1.5 0.3 0.00
weighted TM 32.8 1.3 0.3 0.00 31.9 1.4 0.0 0.02
weighted LM+TM 33.0 1.3 0.2 0.00 31.9 1.4 0.1 0.00

TER ↓
baseline 51.7 1.2 0.3 - 55.9 1.4 0.6 -
unweighted 52.9 1.2 0.1 0.00 54.3 1.3 0.5 0.00
weighted LM 51.7 1.2 0.4 0.99 51.9 1.3 0.6 0.00
weighted TM 50.9 1.2 0.6 0.00 54.7 1.4 0.0 0.00
weighted LM+TM 50.6 1.2 0.6 0.00 53.3 1.3 0.5 0.00

METEOR ↑
baseline 50.5 1.1 0.1 -
unweighted 50.1 1.1 0.2 0.12
weighted LM 50.8 1.1 0.2 0.10
weighted TM 51.6 1.1 0.3 0.00
weighted LM+TM 51.7 1.1 0.3 0.00

Table 2: Automatic Evaluation. Baseline and Combined Systems. p-values are relative to baseline and
indicate whether a difference of this magnitude (between the baseline and the system on that line) is likely
to be generated again by some random process (a randomized optimizer). Metric scores are averages over
5 MERT runs (Och, 2003; Bertoldi et al., 2009). ssel indicates the variance due to test set selection and has
nothing to do with optimizer instability.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 336 of 474]

DE–FR DE–IT

Mode baseline eq. weighted TM baseline eq. weighted TM

general 15.3 48.7 36.0 15.3 30.7 54.0

terminology 14.7 48.7 36.7 15.3 30.7 54.0

Table 3: Human Evaluation. Subjective preference for 150 Segments translated by the baseline and
weighted TM systems in terms of general and terminological accuracy in %. “eq.” indicates that both
translation hypotheses were considered equally well.

3.3.2 Human Evaluation

In order to reinforce our automatic evaluation, we conducted a further experiment with a
human evaluator who is familiar with SemioticTransfer’s automobile domain terminology. We
wanted to assess whether and to which extent the difference between the baseline’s and a
combined system’s scores was perceptible for an actual human translator. We chose the weighted
TM systems for the comparison as preliminary results suggested negligible differences between
weighted TM and weighted LM+TM scores. At the time, we concluded that weighting the
language model in addition to the translation model is not worth the additional effort.

We provided our subject with a source segment (DE) alongside a reference translation (FR/IT)
and two translation hypotheses for 150 randomly selected segments. One hypothesis was
produced by the baseline, the other by the weighted TM system. The subject’s task was to rate
which hypothesis was better, (a) in general and (b) with regard to domain technology, with ties
allowed. This evaluation setup, known as pairwise system comparison, has lately been favored
by the MT community for it is simpler and better reproducible than, e.g., fluency/adequacy
judgements on a five-point scale (Callison-Burch et al., 2012). Furthermore, genuine differences
between two systems can easily be quantified using the Sign Test for paired observations.

The results, shown in Table 3, reveal the evaluator’s clear preference towards the weighted TM
system’s translations. This holds especially for DE–IT. Statistically, the weighted TM systems
outperform the baseline in all regards at p ≤ 0.001, except for the adequacy of domain
terminology in the DE–FR systems (p ≤ 0.01).

4 Discusson

Our evaluation (see Section 3.3) shows that adding large amounts of out-of-domain data without
adequate weights is no suitable means of improving our in-domain-only baseline systems (see
Table 2, unweighted mode). An unweighted combination with the out-of-domain models lowers
the scores for DE–FR compared to the baseline. The difference is statistically significant for BLEU
(p≤0.01) and TER (p≤0.01), but not for METEOR. For DE–IT, TER improves (p≤0.01), but at
the same time, BLEU decreases slightly (though not significantly). Insights into corresponding
translations reveal that the added material reduces the number of out-of-vocabulary (OOV)
words, but this effect is by far outclassed by the number of domain-specific terms and phrases
that get translated in an inadequate way in the unweighted mode (see Table 5).

The weighted LM mode has opposing effects on the two language pairs. On one hand, the
language model adaptation highly affects DE–IT. Weighted LM performs best out of all modes for
this language pair and outperforms the baseline significantly, both in terms of BLEU (p≤0.01)
and TER (p≤0.01). This improvement is in line with the finding of Foster and Kuhn (2007) that
language model adaptation works well. Conversely, an interpolated language model has no
positive effect on the DE–FR language pair.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 337 of 474]

DE–FR DE–IT

Set Feature Hunweighted Hweighted Hunweighted Hweighted

DEV

inverse phrase translation probability 2.21 2.18 1.90 1.88
inverse lexical weighting 6.91 5.85 – 7.19 5.75 ––

direct phrase translation probability 2.64 2.59 2.14 2.06
direct lexical weighting 7.35 6.13 – 7.66 5.92 ––

TEST

inverse phrase translation probability 2.91 3.32 + 3.39 3.78 +

inverse lexical weighting 5.24 5.22 5.53 5.55
direct phrase translation probability 3.63 3.88 3.37 3.77 +

direct lexical weighting 6.38 5.81 5.82 5.49

Table 4: Cross entropies H between the DEV and TEST sets and the unweighted and weighted phrase
tables. Plus and minus signs denote changes of ≥10% (+/−) and ≥20% (++ /−−).

In contrast, weighting the translation models (weighted TM mode) leads to a significant im-
provement of all scores in both language pairs (all at p ≤ 0.01, except p ≤ 0.05 for BLEU
in DE–IT). Here, it turns out that using Sennrich’s approach (Sennrich, 2012) to estimate
weights for in-domain and out-of-domain translation models is a promising way for improving
our systems. The high weights given to the in-domain models ensure that translations in
the domain-specific phrase tables are normally preferred over identical source segments with
different translations in the out-of-domain data (see Table 5). At the same time, the added
out-of-domain translations lower the OOV rate in the weighted TM systems, no matter how
small their translation probabilities become due to the weighted combination. In our DE–FR
test set, this corresponds to a reduction from 194 to 124 OOV types (-36.1%) .

Using both a weighted language and translation model results in no further improvement. For
DE–FR, there is a small increase in BLEU and TER, as well as a slight decrease in METEOR, but
neither of these changes is significant. For DE–IT however, adding the weighted translation
models on top of the weighted language models significantly decreases BLEU and TER (both
at p ≤ 0.01). This can only happen if the development set is too far apart from the test set –
in other words, the development set is a poor generalization over the in-domain material, as
a result of which the weighting overfits to it. Comparison of the unoptimized and optimized
cross-entropies (presented in Table 4) confirms this conclusion: the cross-entropies naturally
decrease on the development set both in case of DE–FR and DE–IT as the result of optimization;
however, optimization also leads to increased cross-entropy of the combined model on the
DE–IT test set.

Further experiments are needed to clarify the influence of interpolated language and translation
models, as well as their interplay, on translation quality. Our evaluation of the combined DE–FR
systems stands in contrast to the claim by Foster and Kuhn (2007) that “LM adaptation works
well, and adding an adapted TM yields no improvement”—rather than that, TM combination
works well, and adding an adapted LM yields no significant improvement in our case. However,
we cannot generalize this finding to the combined DE–IT systems.

Apart from that, it is remarkable that the estimated interpolation weights of all in-domain
models clearly exceed 90%, both in the DE–FR and DE–IT systems (see Section 3.2.2). The
high percentages confirm that the marketing texts we look at are very different from our out-
of-domain language material, which justifies the development of domain-specific SMT models
instead of using out-of-the-box systems that are mostly trained on general-domain resources.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 338 of 474]

f arg max
e
ϕ(e| f)unweighted argmax

e
ϕ(e| f)weighted

Abgasemissionen émissions de gaz émissions de gaz d’échappement
Arten espèces types
Decke couverture plafond
Kiste boîte caisse
Klappe ferme clapet
Linksverkehr conduite conduite à gauche
PKW voitures voiture particulière
Tempo rythme vitesse
Unterbodenverkleidung caisse garnitures du dessous de caisse
Werke œuvres usines
Zulassungen autorisations immatriculations
Zünder détonateur amorce

Table 5: French terms e that maximize the translation probabilities in the unweighted (unweighted mode)
and weighted (weighted TM and weighted LM+TM modes) translation models of the DE–FR systems, given
a selection of German terms f .

5 Conclusion and Future Work

In our present study on using domain-specific translation memories for training machine
translation systems, we have shown that very limited amounts of in-domain data can be
successfully complemented with general-domain parallel corpora for improving translation
performance. Our experiments demonstrate that assigning adequate weights to the in-domain
and out-of-domain language and translation models is crucial for successful combinations.
Our evaluations confirm that while the number of OOV types decreases through adding large
amounts of out-of-domain data, the in-domain terminology prevails over alternative translations
due to the weighting. In our German–French and German–Italian systems, using both an
interpolated language and translation model has resulted in significant BLEU, METEOR and
TER increases. These performance gains have been confirmed by a human evaluator who is
familiar with the domain terminology.

In the further course of our project, we would like to give particular attention to German
compounds, which constitute approximately 65% of the remaining OOV words in our combined
systems, depending on test set and target language. We would like to assess in a systematic
way which of the numerous approaches to decompounding such as (Koehn and Knight, 2003;
Dyer, 2009; Stymne, 2009; Hardmeier et al., 2010) is suitable for our data and translation
scenario. Ultimately, we plan to conduct targeted in-situ experiments in order to measure the
impact of using our domain-adapted SMT systems in their designated human-based translation
workflows.

Acknowledgements

We would like to thank Rico Sennrich as well as our anonymous reviewers for their valuable
feedback and support. This work was supported by Grant No. 11926.2 PFES-ES from the Swiss
Federal Commission for Technology and Innovation CTI.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 339 of 474]

References

Bertoldi, N., Haddow, B., and Fouet, J.-B. (2009). Improved minimum error rate training in
moses. The Prague Bulletin of Mathematical Linguistics, 91(1):7–16.

Callison-Burch, C., Koehn, P., Monz, C., Post, M., Soricut, R., and Specia, L. (2012). Findings of
the 2012 workshop on statistical machine translation. In Proceedings of the Seventh Workshop on
Statistical Machine Translation, pages 10–51, Montréal, Canada. Association for Computational
Linguistics.

Chen, S. F. and Goodman, J. (1998). An empirical study of smoothing techniques for language
modeling. omputer Speech & Language, 13:359–393.

Clark, J. H., Dyer, C., Lavie, A., and Smith, N. A. (2011). Better hypothesis testing for
statistical machine translation: Controlling for optimizer instability. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language Technologies:
short papers - Volume 2, HLT ’11, pages 176–181, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Denkowski, M. and Lavie, A. (2011). Meteor 1.3: automatic metric for reliable optimization
and evaluation of machine translation systems. In Proceedings of the Sixth Workshop on
Statistical Machine Translation, WMT ’11, pages 85–91, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Dyer, C. (2009). Using a maximum entropy model to build segmentation lattices for MT.
In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, NAACL ’09, pages 406–414,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Federico, M. and Cettolo, M. (2007). Efficient handling of n-gram language models for
statistical machine translation. In Proceedings of the Second Workshop on Statistical Machine
Translation, StatMT ’07, pages 88–95, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Foster, G. and Kuhn, R. (2007). Mixture-model adaptation for SMT. In Proceedings of the
Second Workshop on Statistical Machine Translation, StatMT ’07, pages 128–135, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Hardmeier, C., Bisazza, A., and Federico, M. (2010). FBK at WMT 2010: word lattices for
morphological reduction and chunk-based reordering. In Proceedings of the Joint Fifth Workshop
on Statistical Machine Translation and MetricsMATR, WMT ’10, pages 88–92, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Kanavos, P. and Kartsaklis, D. (2010). Integrating machine translation with translation memory:
A practical approach. In JEC 2010: Second joint EM+/CNGL Workshop “Bringing MT to the
user: research on integrating MT in the translation industry”, pages 11–20.

Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation. In Machine
Translation Summit X, pages 79–86, Phuket, Thailand.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 340 of 474]

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen,
W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: open
source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of
the ACL on Interactive Poster and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Koehn, P. and Knight, K. (2003). Empirical methods for compound splitting. In Proceedings
of the tenth conference on European chapter of the Association for Computational Linguistics -
Volume 1, EACL ’03, pages 187–193, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Koehn, P. and Senellart, J. (2010). Convergence of translation memory and statistical machine
translation. In JEC 2010: Second joint EM+/CNGL Workshop “Bringing MT to the user: research
on integrating MT in the translation industry”, pages 21–31.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings
of the 41st Annual Meeting on Association for Computational Linguistics - Volume 1, ACL ’03,
pages 160–167, Stroudsburg, PA, USA. Association for Computational Linguistics.

Pym, A., Grin, F., Sfreddo, C., and Chan, A. L. J. (2012). The Status of the Translation
Profession in the European Union, volume 7/2012 of Studies on translation and multilingualism.
Publications Office of the European Union.

Sennrich, R. (2012). Perplexity Minimization for Translation Model Domain Adaptation in
Statistical Machine Translation. In Proceedings of the 13th Conference of the European Chapter
of the Association for Computational Linguistics, EACL ’12, pages 539–549, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Stymne, S. (2009). Compound processing for phrase-based statistical machine translation.
Master’s thesis, Linköping University, Sweden.

Tiedemann, J. (2009). News from OPUS - A Collection of Multilingual Parallel Corpora with
Tools and Interfaces. In Nicolov, N., Bontcheva, K., Angelova, G., and Mitkov, R., editors,
Recent Advances in Natural Language Processing, volume V, pages 237–248, Borovets, Bulgaria.
John Benjamins, Amsterdam/Philadelphia.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 341 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 342 of 474]

Building an open-source development infrastructure for
language technology projects

Sjur N. Moshagen1, Tommi A Pirinen2, Trond Trosterud1

(1) University of Tromsø, Norway
(2) Helsinki university, Finland

sjur.n.moshagen@uit.no, tommi.pirinen@helsinki.fi, trond.trosterud@uit.no

ABSTRACT
The article presents the Giellatekno & Divvun language technology resources, more specifically
the effort to utilise open-source tools to improve the build infrastructure, and the solutions to
help adapt to best practices for software development. The article especially discusses how
the infrastructure has been remade to cope with an increasing number of languages without
incurring extra overhead for the maintainers, and at the same time let the linguists concentrate
on the linguistic work. Finally, the article discusses how a uniform infrastructure like the one
presented can be used to easily compare languages in terms of morphological or computational
complexity, coverage or for cross-lingual applications.

KEYWORDS: NoDaLiDa 2013, Infrastructure, Computational linguistics, Finite-state transduc-
ers, Language resources, Multilinguality.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 343 of 474]

1 Introduction

There are about 7000 languages in the world, according to Ethnologue. According to the same
source, about 2200 of them have a standardised orthography1. Of these, roughly 100-150 have
keyboard layouts preinstalled on major operating systems (Trosterud, 2012), and only ~50 are
available as a user interface language. The languages with good, continuous speech recognition
can be counted on one hand (domain-specific speech recognition on a couple of hands).

The infrastructure described in this article is targeted at languages with limited textual resources:
a small literary body, often no PC keyboard layout standard (and thus not delivered as part of
any OS), quite often a limited grammatical description. The goal of the work done for these
languages is to develop a grammatical description in the form of a morphological grammar and
lexicon, and use the lexicon and morphology as the basis for NLP tools and end user tools such
as proofing tools and electronic dictionaries. Most of the targeted languages worked on so far
are morphologically rich, and the chosen technology is well suited for this type of languages.

Language technology infrastructure is a fairly broad concept, and is covered in many papers and
on-going projects (see a.o. (Broda et al., 2010), (Loper and Bird, 2002)).

Many projects could be seen as resource infrastructure projects making resources and tools
available to developers (e.g. META-SHARE (Federmann et al., 2012), CLARIN (Váradi et al.,
2008)), our work could instead be characterised as a development environment infrastructure
project, where the goal is to improve the language processing. This is close to the objectives of
environments such as GATE ((Cunningham et al., 1997), (Cunningham et al., 2011)), NLTK2

and UIMA/OpenNLP3. These are language-independent statistically based toolkits, where the
linguistic analysis is left to the annotator. Such tools are less feasible for languages with rich
morphology and little text, and they are also not able to do language generation. Another type
of language processing tools is HPSG4 and LFG XLE5. These tools are also grammar-based, but
their focus is on syntactic analysis and not on end-user applications.

The technology presented here has been developed for morphology-rich languages. It offers a
framework for building language-specific analysers, and directly turn them into a wide range of
useful programs. It shares

2 Infrastructure requirements

The infrastructure presented here meets the following requirements: it separates between
language-independent and language-specific data and constructs; it works the same for all
languages, thereby letting the linguists focus on the actual linguistics, and ease comparison and
cooperation across languages; it uses standard and widely available tools as far as possible;
it uses and depends on open-source LT tools, either exclusively or as an alternative; it is
platform neutral (but requires un*x for compilation); it supports building a large number of
scientific and end-user tools, both normative and descriptive; it supports dialect variation in
a standardised way; it integrates with or exports end-user tools for different platforms (e.g.
spellers, hyphenators, grammar checkers, for both open-source and closed-source host systems
and applications); and finally: it supports reuse of code as much as possible.

1http://www.ethnologue.com/statistics/status - the sum of languages with an EGIDS value 0-5: 2216.
2http://nltk.org/
3http://opennlp.apache.org/
4http://moin.delph-in.net/
5http://www2.parc.com/isl/groups/nltt/xle/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 344 of 474]

This is a tall order. While everything is not yet implemented, most of the items on the list are
already in place and working well.

3 Technical details

In this section we will present the strategy employed to handle a large number of languages in
a consistent way, while at the same time allowing language-specific flexibility — and all of it
hopefully without increasing the maintenance burden regarding the infrastructure.

Although many of the points mentioned below are standard good practice of software de-
velopment, it bears repeating. And to our knowledge nothing like this has been done for
morphology-rich minority languages before, targeting both the scientific community and the
language communities to the extend and breadth done here. The importance of good software
design and an infrastructure supporting code reuse is crucial for language communities with
limited resources which can not afford to support several different language technology projects
and competing technologies. The choices are made on the ground that it gives double return of
the investments: both grammars and tools for linguistic analysis, and software products for the
end user community.

3.1 Layout and design

The basic model for the build and configuration infrastructure consists of two parts:

• a central core, containing resources shared by all languages
• a templating system, by which new functionality and new resources are propagated to all

languages

The template contains both build files (automake files) and language resource template files.
The language resources are copied once, either when a new language is initialised, or the first
time a new language resource is made available in the template. The build files, on the other
hand, are merged from the template whenever requested. A schematic view of the infrastructure
can be seen in figure 1.

Figure 1: A schematic view of the new Giellatekno/Divvun infrastructure.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 345 of 474]

3.2 Software

The software used in the infrastructure can also be grouped in two. The first category contains
the build tools — the tools used to configure, test, enable and create the build environment.
The second category covers the language technology tools — the tools used to build analysers,
proofing tools and more, using the linguistic resources and source code.

3.2.1 Build software

One goal with the infrastructure is to use a standard set of build tools combined with established
practises for source code layout and organisation. This gives several benefits. It makes it easy
for any other open-source project to include our resources, since the build system follows a
known pattern. It makes it easier for newcomers, even those who have never seen a software
project before - the source code is clearly organised in logical units, and the commands to build
and test the tools are few, and the same for all languages.

We base the infrastructure build system on the GNU Autotools6: automake and autoconf and
their supporting tools. The tool set is well established in the open-source community, has broad
support and handles most cross-platform issues quite well.

3.2.2 Language-technology software

From the very beginning most of the work has been done on languages with rich morphology,
and it has been important that the linguistic resources should be usable for as many purposes
as possible. Another aspect has been that all the initial languages were minority languages
with very little available corpus data. All this is to say that statistical methods and tools have
not been seen as alternatives. Instead morphological analysis and disambiguation, as well as
syntactic analysis, has been rule-based. The basic observation is that there is little corpus data,
but as long as there are speakers there is also a grammar and a lexicon — and that is (almost)
all that is needed for a rule-based approach.

Initially all work on morphological analysis were done using Xerox’ finite state transducer tools,
and still today they dominate our daily work. But the Xerox FST tools are closed source, fixing
bugs depends on others, the licensing terms have changed and might change again, and who
knows what may happen in the future.

During the last years there has been a continuous effort at the Helsinki university to develop
a source-code compatible, open-source alternative to the Xerox tools, the HFST tools (Lindén
et al., 2011)7. These tools are now quite stable and well suited as an alternative, and at the
same time they provide more features than the Xerox tools, most notably weighted transducers.

The infrastructure uses the Xerox tools as the default tool set, but has a parallel build system
made for hfst. Turning off Xerox and on HFST is just two options away at configuration time.
It is even possible to have both tool sets enabled at the same time - this will cause the build
system to produce double sets of transducers, one set for each technology. This gives the added
benefit of double error checking of the source code — and it also makes it possible to compare
the two tool sets side by side (more on this further down).

For morphological disambiguation and higher level analysis we use Constraint Grammar

6http://en.wikipedia.org/wiki/GNU_build_system
7http://hfst.sf.net/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 346 of 474]

((Karlsson, 1990) as implemented by the VislCG3 project8). VislCG3 is open source as well,
and together with HFST this gives a complete open-source tool chain from source code to
high-quality analysers including dependency analysis.

3.3 Support for best practices: in-source documentation and unit testing

One of the problems with large software projects (which the development of a complete
morphological and syntactic description and a large-scale lexicon is) is that the system becomes
so complex that no-one can overview it in full and with all details. This is true both for the
linguistic source code and for the infrastructure.

The infrastructure supports a simple system for writing documenting comments as part of the
source code. The system is inspired by numerous systems for other programming languages,
many of which goes back to (Knuth, 1984). The generated documentation is converted to html,
and viewable online.

In addition to in-source documentation, the infrastructure also supports specifying test data as
part of the source code. This becomes essentially a unit-test-like setup (Huizinga and Kolawa,
2007): when you write a new inflectional lexicon for a new inflectional class, you can start by
spelling out the wanted behaviour in the form of test cases. This also helps with refactoring the
code.

The morphological testing is done using a tool developed as part of the Apertium9 Quality
Assurance project10, but further developed to fit the needs of this infrastructure. The test tool
supports bidirectional testing of the morphologies (both generation and analysis), and is thus
well suited to test for overgeneration and errors in the morphology and morphophonology. The
test tool is integrated with the generic testing facilities in Autotools.

3.4 Availability and sustainability

Going open-source is not only a generally good principle, it is a prerequisite for long-term
sustainability and control over the language technology resources developed for minority and
lesser resourced languages. To that end, all the required tools for the infrastructure are open
source — or an open-source alternative is available via a configuration option — and all the
linguistic resources themselves are of course open source11. Each language can set its own
licence policy, but we encourage everybody involved to choose as open a license as possible.

As far as possible, we also try to support and develop end-user tools for open-source applications
and solutions. While established tool sets that are taken for granted, like spellers, can be
integrated system-wide on most platforms, newer or more advanced language technology
solutions like speech recognition or grammar checkers are blocked12.

The target audience for the infrastructure is first and foremost linguists and computation
linguists. The tools are accessed and used from a Unix command line, and basic familiarity with

8http://beta.visl.sdu.dk/cg3.html
9http://www.apertium.org

10http://wiki.apertium.eu/index.php?title=Session_7:_Data_consistency_and_
quality&oldid=2173

11http://divvun.no/doc/infra/GettingStarted.html
12On some new platforms it isn’t even possible to install keyboards for your own language, if you want to follow the

license of the platform.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 347 of 474]

Development status keyword Explanation
started some initial work has been done, but the lexical content is very limited
developed the morphological description is well on its way, the lexicon is substantial
large the morphological description is more or less done, the lexicon is big
production good coverage, complete grammatical description, used for end user tools

Table 1: Brief explanation of the development status categorisation.

unix systems is assumed. Furthermore, as has probably become clear, the main focus is on text
processing applications, although new applications and data types will certainly be added in
the future.

4 Language coverage

Here we list the languages presently in our infrastructure, along with their development status.
(briefly described in table 1).

Production: Finnish, Lule Sami, Northern Sámi, Kalaallisut, Southern Sami,
Large: Erzya, Faroese, Norwegian Bokmål
Developed: Cornish, Eastern Mari, Komi-Zyrian, Kven Finnish, Iñupiaq, Old Norse, Somali
Started: Amharic, Buriat, Guaraní, Inari Sami, Ingrian, Inuktitut, Karelian, Kildin Sami, Kin-

yarwanda, Komi-Permyak, Livonian, Livvi, Moksha, Nenets, Ojibwe, Pite Sami, Romanian,
Skolt Sami, Tagalog, Tigrinya, Udmurt, Ume Sami, Veps, Võro, Western Mari

5 The tools produced by the infrastructure

The infrastructure will build a number of tools for all the covered languages (the quality of the
tools varies a lot depending on the development stage of each language).

The most important compiled resources are morphological analysers and generators, both
normative and descriptive ones. In addition to being at the core of the textual analysis pipeline,
these are also used as parts of electronic dictionaries, language learning tools, online services
such as paradigm and word-form generation, and as important blocks in machine translation.

The infrastructure will compile any CG3 rules file into syntactic analysers, possibly with
dependency analysis if the source file exists (for many of the languages covered, it is quite
possible to reuse the dependency analysis (Antonsen et al., 2010)).

A classic application (Oflazer, 1996)) of transducers is as proofing tools - spellers and hy-
phenators. At the time of writing, spellers based on a combination of HFST and Voikko13 are
produced by the infrastructure. For most of the languages listed in table 3 this is a first, and the
value for the user community is very real and direct.

The proofing tool example also illustrates the double benefit of working rule-based: grammatical
models are developed, which often means new insight into the language, or that knowledge
that earlier was only indirectly described needs to be made explicit. That is, the grammatical
description of the language often becomes better and more explicit, one gets a large lexicon
usable as a starting point for many different projects and research efforts, and at the same time
— literally — one can give back to the language community in the form of usable and valuable
tools. This is a great inspiration for the work described in this paper.

13http://voikko.sf.net/
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 348 of 474]

System: HFST Xerox
Language
Greenlandic 1 h 11 min 37 min 12 s
Faroese 6 min 25 s 3 min 55 s
Lule Sámi 2 min 44 s 30.9 s
South Sámi 2 min 4 s 11.1 s
Finnish 18.7 s 16.4 s
Komi-Zyrian 59.3 s 4.6 s
Moksha 39.9 s 2.7 s
Eastern Mari 36.8 s 2.7 s
Western Mari 36.7 s 2.7 s
Udmurt 29.3 s 0.9 s
Erzya 26.7 s 2.1 s
Skolt Sámi 26.2 s 3.0 s
Voru 22.7 s 1.5 s
Ingrian 21,6 s 1,5 s
Livvi 21.1 s 1.6 s
Inari Sámi 18.8 s 1.3 s
Pite Sámi 16.0 s 3.6 s
Kildin Sámi 8.1 s 1.4 s
Kven 7,8 s 1,1 s
Livonian 4.6 s 0.8 s
Veps 4.3 s 0.9 s
Nenets 4.3 s 0.9 s
Khanty 3.7 s 0.9 s
Nganasan 3.4 s 0.8 s

Table 2: The compilation speed of the languages in the system (times given in seconds unless
otherwise noted)

6 Some interesting figures for comparative computational linguistics

One of the interesting features we gain from a uniform, standardised suite for building and
using computational linguistic descriptions is easy access to comparable evaluations of the
implementations. We can measure the quality of the analysers by coverage, by the ambiguity
potential of the languages, we can compare features like morphological complexity of the
languages by measuring the morpheme to word ratios. We can measure the computational
complexity of languages in terms of used processing power, the physical sizes of the models
built and so forth. In the following we lay out and present a few of such measurements that can
be attained by very simple testing leveraging the strength of the standard build suites we have
created.

The computational complexity of the models can be measured using two very practical figures:
build time of the language models and the physical size. In figure 2 we show the build times of
the systems in our repository, both using commercial tools and open source ones. In that table,
the horizontal lines separate the systems on basis of completeness: the first set of languages is
considered stable and widely usable, and the second set work in progress. Other than that, the
languages are in alphabetical order of ISO 639-3 language codes.

These need to be contrasted with the initial, linguistic sizes of the models from table 3. In this
table we show how big the dictionaries are in terms of words in the dictionary and in terms of
approximate14 suffix morphemes. In table 3 we show the actual sizes of the language models
as resulting computational objects, measured both in bytes and in components of the data
structure holding the data.

One rough figure to measure readiness of a linguistic description is coverage, which tells how
much of a given text would be recognised as something using the given language model,
without taking correctness into consideration. Formally it is given as Cov= Analysed

tokens
. In table 3

we measure each language’s coverage against up to the first 10,000,000 tokens in the native
language Wikipedia, where one exists.

14The actual number is not apparent from the count of morpheme-like elements as the formalism may require to
treat combinatorical branching as zero-morpheme

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 349 of 474]

Units Roots Affixes States Edges On-Disk Corpus Missing Coverage
Language Size
Greenlandic 398,622 13,018,901 170 MiB 27674 7650 72.4 %
South Sámi 88,239 3,090 92,191 215,501 6 MiB
Faroese 87,567 1,460 80,969 1,282,798 32 MiB 81.5 %
Lule Sámi 73,101 2,943 103,504 260,401 7 MiB
Finnish 71,761 55,895 179,891 403,944 9.6 MiB 85.1 %
Erzya 106,550 2,860 65,571 174,427 5.8 MiB 63028 10379 83.5 %
Komi-Zyrian 88,734 1,336 56,146 147,618 4.4 MiB 98573 17286 82.5 %
Moksha 59,377 311 35,013 86,086 2.9 MiB 52803 28883 45.3 %
Eastern Mari 56,684 180 35,139 87,578 2.8 MiB 212393 59371 72.0 %
Western Mari 53,236 180 28,734 70,890 2.2 MiB 219337 105857 51.7 %
Udmurt 37,101 84 35,986 65,296 1.8 MiB 107453 63096 41.3 %
Livvi 10,936 173 9,476 19,476 533 KiB
Voru 15,799 56 10,204 23,855 642 KiB
Inari Sámi 3,560 280 7,930 12,595 349 KiB
Ingrian 2,032 1,641 7,922 16,349 377 KiB
Kildin Sámi 1,840 139 2,951 5,089 157 KiB
Pite Sámi 1,470 318 3,184 6,281 174 KiB
Kven 662 131
Skolt Sámi 583 426 2,761 4,718 120 KiB

Table 3: Three aspects of the automata: number of relevant morphs and affixes, graph properties,
and corpus coverage measured on a Wikipedia corpus, where available

6.1 Platform for linguistically oriented comparisons

One of the potential use cases for a standardised repository of closely related languages would
be for diachronic and comparative linguistics. It would not be difficult to formulate finite-state
models to verify theories and similarities of related languages, e.g. in style of (Wettig et al.,
2011).

Another immediate advance for a standardised structure like this is that we can build rule-based
machine-translation systems easier. In shallow-transfer systems like Apertium (Forcada et al.,
2011), when building closely related languages like in the Uralic family, we may get quite
far by only writing transfer code between lemmas, with no other rules, or very minimal case
mappings.

7 Conclusion

In this article we have presented our work with the Divvun and Giellatekno new infrastructure.
It is in daily use for roughly half the languages being worked on, and for many of the production
languages. Both our experience and the feedback from linguists and other users have shown
that it is a definite improvement over the old one. It is based on open-source tools, and contain
almost only open-source resources. We welcome many more languages, and we are confident
we can handle them.

Acknowledgments

Thanks to our colleagues, especially Jack Rueter, for very valuable feedback and comments.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 350 of 474]

References

Antonsen, L., Trosterud, T., and Wiechetek, L. (2010). Reusing Grammatical Resources for
New Languages. In Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis,
S., Rosner, M., and Tapias, D., editors, Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10), Valletta, Malta. European Language Resources
Association (ELRA).

Broda, B., Marcińczuk, M., and Piasecki, M. (2010). Building a Node of the Accessible
Language Technology Infrastructure. In Proceedings of the Seventh conference on International
Language Resources and Evaluation (LREC’10).

Cunningham, H., Humphreys, K., Gaizauskas, R., and Wilks, Y. (1997). Software infras-
tructure for natural language processing. In Proceedings of the fifth conference on Applied
natural language processing, ANLC ’97, pages 237–244, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G.,
Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li,
Y., and Peters, W. (2011). Text Processing with GATE (Version 6). Gate.

Federmann, C., Giannopoulou, I., Girardi, C., Hamon, O., Mavroeidis, D., Minutoli, S., and
Schröder, M. (2012). META-SHARE v2: An Open Network of Repositories for Language
Resources including Data and Tools. In Calzolari, N., Choukri, K., Declerck, T., Doğan,
M. U., Maegaard, B., Mariani, J., Odijk, J., and Piperidis, S., editors, Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey.
European Language Resources Association (ELRA).

Forcada, M. L., Ginestí-Rosell, M., Nordfalk, J., O’Regan, J., Ortiz-Rojas, S., Pérez-Ortiz,
J. A., Sánchez-Martínez, F., Ramírez-Sánchez, G., and Tyers, F. M. (2011). Apertium: a
free/open-source platform for rule-based machine translation. Machine Translation.

Huizinga, D. and Kolawa, A. (2007). Automated Defect Prevention: Best Practices in Software
Management. Wiley.

Karlsson, F. (1990). Constraint Grammar As A Framework For Parsing Running Text. Proceed-
ings of the 13th International Conference on Computational Linguistics, pages 168–173.

Knuth, D. E. (1984). Literate Programming. The Computer Journal, 27(2):97–111.

Lindén, K., Axelson, E., Hardwick, S., Pirinen, T., and Silfverberg, M. (2011). Hfst—framework
for compiling and applying morphologies. Systems and Frameworks for Computational Mor-
phology, pages 67–85.

Loper, E. and Bird, S. (2002). NLTK: the Natural Language Toolkit. In Proceedings of the
ACL-02 Workshop on Effective tools and methodologies for teaching natural language processing
and computational linguistics - Volume 1, ETMTNLP ’02, pages 63–70, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Oflazer, K. (1996). Error-tolerant finite state recognition with applications to morphological
analysis and spelling correction. COMPUTATIONAL LINGUISTICS, 22:73–89.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 351 of 474]

Trosterud, T. (2012). A restricted freedom of choice: Linguistic diversity in the digital
landscape. Nordlyd, 39(2):89–104.

Váradi, T., Krauwer, S., Wittenburg, P., Wynne, M., and Koskenniemi, K. (2008). CLARIN:
Common Language Resources and Technology Infrastructure. In Calzolari, N., Choukri,
K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., and Tapias, D., editors, Proceed-
ings of the Sixth International Conference on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2008/.

Wettig, H., Hiltunen, S., and Yangarber, R. (2011). MDL-based Models for Alignment of
Etymological Data. In Proceedings of RANLP: the 8th Conference on Recent Advances in Natural
Language Processing, Hissar, Bulgaria.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 352 of 474]

From speech corpus to intonation corpus:
clustering phrase pitch contours of Lithuanian

Gailius Raškinis, Asta Kazlauskienė

Vytautas Magnus University, K. Donelaičio g. 58, 44248, Kaunas, Lithuania

g.raskinis@if.vdu.lt, a.kazlauskiene@hmf.vdu.lt

ABSTRACT

This paper presents our research in preparation to compile a Lithuanian intonation
corpus. The main objective of this research was to discover characteristic patterns of
Lithuanian intonation through clustering of pitch contours of intermediate intonation
phrases. The paper covers the set of procedures that were used to extend an ordinary
speech corpus to make it suitable for intonation analysis. The process of intonation
analysis included pitch extraction, pitch normalization, estimation of the representative
frequency of a syllable, measurement of an inter-phrase similarity, k-means phrase
clustering, and visualisation of clustering results. These computational procedures were
applied to 23 hours of read speech containing 41417 phrases. The clustering results
revealed some interesting intonation patterns of Lithuanian that could be related to the
well known linguistic-prosodic phenomena. Language-independence is an important
feature of computational procedures covered by this paper. If speech waveforms and
the knowledge of phone and phrase boundaries are given, these procedures can be used
for the analysis of intonation of other languages.

KEYWORDS: corpus, prosody, intonation, pitch, syllable, dynamic time warping, k-means
clustering, Lithuanian.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 353 of 474]

1 Introduction

Intonation corpus can be thought of as a speech corpus that has its orthographic /
phonetic annotations complemented with prosodic labels. Prosodic labels may
characterize both prosodic phenomena themselves (e.g. pitch accents and boundary
tones) and features that affect prosody (e.g. logical stress). Some prosodic labels may be
associated to a precise timing in speech.

Fuelled by the needs of the text-to-speech synthesis, corpus-based intonation research
has been an active research field for more than two decades. Automatic prosodic
labelling is among its main topics of interest. Prosodic labels such as word boundary
strength (Wightman and Ostendorf, 1994; Vereecken et al., 1998, Heggtveit and Natvig,
2004), stress (Heggtveit and Natvig, 2004), syllable prominence (Wightman and
Ostendorf, 1994), word prominence (Vereecken et al., 1998), and pitch accent type
(Levow, 2008; Escudero-Mancebo et al, 2012) have been predicted using a variety of
supervised machine learning techniques. These techniques included decision trees
(Wightman and Ostendorf, 1994), artificial neural nets (Vereecken et al., 1998),
classification and regression trees (Heggtveit and Natvig, 2004) sometimes coupled
with probabilistic sequential smoothing methods such as Markov models (Wightman
and Ostendorf, 1994) and Conditional Random Fields (Levow, 2008).

Supervised machine learning techniques must be trained on a carefully hand-labelled
intonation corpora. Manual labelling is usually done by domain experts and represents
a tedious and time consuming task. It comes as no surprise that Lithuanian has not any
intonation corpus available.

Consequently, corpus-based research of Lithuanian intonation has not received much
attention. It has been suggested that Lithuanian is characterized by 7 distinct intonation
patterns (Kundrotas, 2008), this suggestion being based on the hypothesis-driven
investigative approach inspired by the Lithuanian-Russian intonation parallels
(Kundrotas, 2009). Those few audio recordings that have been made during these
investigations represent cases illustrating the preliminary set of hypotheses.

Our ultimate research objective is to compile a Lithuanian intonation corpus which
could be further explored via supervised machine learning techniques. The main
objective of this research is limited in scope and aims to discover characteristic patterns
of Lithuanian intonation. In contrast to the abovementioned investigation, we follow a
data-driven approach. It assumes that reliable discoveries about intonation patterns of a
given language can be made through the computer-aided analysis of a real world
intonation phenomena. It would be of a great help to a human expert if similar
intonation patterns are collected together and presented to him/her in a user-friendly
way. Then, he/she could assign these collections to particular intonation categories,
construct “an inventory” of intonation patterns, easily detect and eliminate “false”
members out of these collections, mark pitch accents and boundary tones in a more
uniform way.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 354 of 474]

This paper describes computational procedures that allow to find clusters of pitch1
contours of spoken phrases2 in a speech corpus consisting of audio records and their
orthographic transcriptions. The whole process consists of the following steps:

• manually complementing speech corpus with the word ”break indices” that show
the strength of the boundary between two orthographic words.

• automatic alignment of speech waveforms and phonetic symbols (phone level)
resulting in the knowledge of both phone boundaries and phrase boundaries.

• estimation of pitch contours of speech waveforms.
• chunking pitch contours to segments corresponding to phrases, and estimating a

“representative” pitch for every syllable nucleus of a phrase.
• estimating distances between all possible phrase pairs (on the basis of a pitch).
• grouping phrases by their distances using the k-means clustering technique.
• concatenating clustered data into one audio and one annotation file per cluster.

The steps above are described in more detail in the following sections.

2 Extending speech corpus

We started from the speech corpus that had been used for speech recognition research
of Lithuanian (Vaičiūnas, 2006). This corpus consists of audio recordings produced by
50 speakers (25 males, 25 females), each of them speaking for 1 hour. The speech is
stored as a collection of 2 min. audio files. The orthographic word-level transcriptions
had been prepared to describe the content of audio recordings as accurately as possible.

2.1 Extending speech corpus with word “break indices”

Word “break indices”, representing the strength of the boundary between two
orthographic words, were assigned to each pair of contiguous words and were inserted
at the “orthographic” level of a text (see fig 1) by a human expert. Our set of indices
followed the standard of the ToBI transcription framework (Beckman et. al., 2005).

<file name="SIR_A001"> devyni4 kieti4 / plieni4niai skam3balo sm ū3giai /

paža3dino liu4d ą vasa3r į iš_mie3go // kr ū9ptel ÷j ęs jis_atme9rk ÷ aki4s /

ir_valand ÷3l ę negal ÷9jo susivo9kti kame4 / <accent correct="e3s ąs">es ą3s</accent>

// bu4vo ly9giai penkta4 valanda4 ša9lto ruden3s ry 9to </file>

FIGURE 1: An excerpt of the “extended” orthographic transcription associated to an
audio file. Both “ortographic” and “break index” levels of the ToBI framework are
mixed together. The symbols / and // indicate an intermediate and a full intonation
phrase boundary respectively. The symbol _ indicates the absence of a word boundary

(with evidence of cliticisation).

1 Though the term “pitch“ is a perceptual characteristics, we use it in the sense of fundamental frequency.
2 We use the short term “phrase” to denote the speech segment within intermediate phrase boundaries.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 355 of 474]

2.2 Automatic alignment of speech waveforms and phonetic symbols

The process of automatic alignment of speech waveforms and phonetic symbols (phone
level) had the objective of identifying timings of phone and phrase boundaries within
speech waveforms. The extended orthographic transcription was submitted to the
Lithuanian grapheme-to-phoneme converter (Norkevičius et al, 2005) which output the
corresponding sequence of phones. Within this sequence, full intonation phrase
boundaries were replaced by the “silence” phone, and the optional “short pause” phone
was allowed between words.

Given speech waveforms and their corresponding phone sequences the stochastic
alignment approach was used. First, speaker-specific (trained on 1 hour of speech)
acoustic models were constructed closely following the sequence of processing steps
suggested by the HTK book (Young et al., 2000). Thereafter automatic alignment of
speech waveforms and phonetic symbols was realized by the Viterbi algorithm which
makes part of the same HTK toolkit. Phone and phrase boundaries were identified with
the time resolution of 5 ms.

The results of automatic alignment were inspected manually and were found to be
satisfactory. Phone boundaries resulting from an automatic alignment procedure are
illustrated in fig. 4 (top tier out of three tiers)

3 Intonation analysis and clustering

3.1 Pitch extraction

The following processing steps were used for pitch extraction out of speech waveforms:

• low-pass filtering speech files at cut-off frequency of 1837.5 Hz and downsampling
them to 3675 Hz3.

• estimating the average pitch period avgp per speech file on the basis of the
downsampled speech in order to define the pitch analysis range of 3 octaves from
1/(4*avgp) to 2/avgp

• low-pass filtering the original speech waveform at a cut-off frequency of
2/avgp+200 Hz.

• finding pitch period candidates in this filtered waveform using a cross-correlation
technique and time resolution of 2.5 ms (400 Hz sampling rate).

• smoothing pitch contour (selecting one candidate per frame) using the “islands of
confidence” approach (Raškinis, 2000)

3.2 Grouping phrases into similarity clusters

3.2.1 Estimating the representative pitch of a syllable

In order to minimize the inter-talker variability (males, females), pitch contours were
converted to logarithmic scale (semitones) and zero-centred by subtracting the pitch
average of an entire audio file.

3 The frequency of 3675 Hz was selected for its integer ratios with the common sampling frequencies of

11025Hz, 22050Hz and 44100Hz.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 356 of 474]

In order to make the intonation description of a phrase more compact the pitch contour
of a phrase (sampled at 400 Hz) was replaced by the sequence of syllable pitches of that
phrase. The pitch of a syllable varies over time. Thus, every syllable was assigned a
“representative” pitch on the basis of the pitch contour over a syllable nucleus
(vowel/diphthong). Because of the assumption that the pitch target is best
approximated in the later portion of the syllable (Xu, 2004), the representative pitch
was calculated by linearly weighting pitch contour values. Pitch contour values at the
beginning and the end of a syllable nucleus were de-emphasized and emphasized
respectively. Let f0[i] denote the normalized pitch value of the i

th frame, and let [tbeg tend]
be the boundaries of a syllable nucleus, then the frequency representative sf of the
syllable was estimated as follows:

Unvoiced frames (undefined f0[i] values) were skipped when iterating through pitch
contour values. Unvoiced syllables, i.e. syllables for which the pitch detection failed for
every frame, were omitted from further consideration.

3.2.2 Defining distance between two phrases

One of the main problems in estimating the similarity of intonation between two
phrases was the large variation in their syllable numbers (see fig. 2). Let F1 = {sf1,1,
sf1,2, ..., sf1,n1} and F2 = {sf2,1, sf2,2, ..., sf2,n2} be two phrases consisting of sequences of
representative syllable pitches, where n1 and n2 denote the number of syllables in the
phrases F1 and F2 respectively. Let d(i, j) denote the distance between truncated
sequences {sf1,1, sf1,2, ..., sf1,i} and {sf2,1, sf2,2, ..., sf2,j} both corresponding to initial
segments of F1 and F2 respectively. Then the similarity between F1 and F2 d(F1, F2) =
d(n1, n2) was defined by the recursive formula below:

This formula means that the sequences F1 and F2 can be matched by "warping" them
non-linearly in the time dimension. One syllable from the first sequence can be matched
up to three syllables from the second sequence and vice versa.

∑

∑

=

=

−

−

−

−
⋅

=
end

beg

end

beg

t

ti begend

beg

t

ti begend

beg
o

tt

ti

tt

ti
if

sf

)][(

−+−+−⋅+−−

−+−⋅+−−

−+−+−⋅+−−

−+−⋅+−−

−+−−

=

−−

−

−−

−

|)||||(|
3
2

)1,3(

|)||(|
4
3

)1,2(

|)||||(|
3
2

)3,1(

|)||(|
4

3
)2,1(

||)1,1(

min),(

,2,1,21,1,22,1

,2,1,21,1

,2,11,2,12,2,1

,2,11,2,1

,2,1

jijijii

jiji

jijiji

jiji

ji

sfsfsfsfsfsfjid

sfsfsfsfjid

sfsfsfsfsfsfjid

sfsfsfsfjid

sfsfjid

jid

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 357 of 474]

Distances between all possible pairs of phrases in the corpus need to be calculated using
this formula. For this purpose an efficient dynamic time warping procedure (Vintsyuk,
1968) was implemented that estimates phrase-to-phrase distances in polynomial time
O(n1*n2)

3.2.3 K-means based clustering

Having obtained distances among all possible pairs of phrases, k-means clustering can
be applied to them. The clustering consists of iterating through every phrase, removing
it from its current cluster and placing it into the nearest cluster (it may also be the same
cluster). The distance between the phrase F and the cluster C is estimated by:

The initial assignment of phrases to clusters is randomized. However the assignment
process forbids placing or later moving a phrase into a cluster if there exists at least one
other phrase in that cluster that is incompatible with the phrase under scrutiny (the
distance between the two might not be calculated due to the required extension/
contraction exceeding the factor of 3). This prevents the formation of mutually
incompatible sub-clusters within a single cluster. The k-means algorithm stops when
either there’s no phrase changing its cluster through the entire iteration or the
maximum number of allowed iterations is reached.

4 Experimental evaluation

Human experts have selected 14 male and 9 female speakers (23 hours of speech) out
of our 50 hour speech corpus. They selected speakers whose reading intonation was as
expressive as possible as well as the accuracy of time aligned transcriptions. There were
41417 spoken phrases in the selected part of the corpus. Spoken phrases had a wide
variety of durations.

FIGURE 2: The histogram of phrase durations in syllables.

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
u

m
b

e
r

o
f

p
h

ra
se

s

Phrase length in syllables

∑
∈

=
CF

i
i

FFd
C

CFd),(
||

1
),(

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 358 of 474]

The set of 41417 phrases was divided into two subsets of “short” (15417 items) and
“long” (26000 items) phrases4. A phrase was considered to be short if it had 6 syllables
or less. Otherwise it was considered to be long. The number of clusters k was set to 40
and 80 for the sets of short and long phrases respectively. The clustering algorithm was
run for a maximum of 100 iterations, though 10 iterations were generally enough for
the convergence (see fig. 3).

FIGURE 3: The convergence of the k-means clustering algoritm while processing the long
phrase set.

Once the clustering process was finished the clustered data was concatenated into one
audio and one annotation file per cluster, so that clusters could be visualised (see fig. 4)
by Praat software (Boersma and Weenink, 2006).

Human experts complained about clusters being denoted by integer numbers, so we had
to look for a more comprehensive naming approach. The decision was taken to find the
most “central” phrase of a cluster, i.e. the phrase which has the least average distance
to every other phrase in that same cluster, and to use it as the basis for naming the
cluster. Every syllable of such “central” phrase was assigned an integer number
denoting its pitch in semitones either below (L) or above (H) the normalized pitch
average. For instance, the cluster name H5_L5_H1 signifies that the “central” phrase of
this cluster is characterized by pitch movements of the high-low-high type that are 5
semitones above, 5 semitones below, and 1 semitone above the normalized pitch
average respectively.

4 This division was due to the limitations in computer memory. It would have been necessary to store 857

mln. distances between all possible pairs of 41417 phrases. We assume that this division is not significant

because many phrases from the “short” set and from the “long” set cannot belong to the same cluster

simultaneously due to the maximum allowed warping factor of 3.

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
is

ta
n

ce

Iterations

Average inter-cluster distance

Average intra-cluster distance

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 359 of 474]

FIGURE 4: An excerpt of the clustering results (cluster H5_L5_H1) visualised by Praat
software. Concatenated speech waveform is shown on the top, pitch contours are shown
in the middle, and concatenated annotations (phone, word, phrase levels) are at the

bottom.

Clustering results are presently being examined by professional phoneticians. Though
the evaluation is still in progress, the following remarks can already be made:

• Clustering procedure is efficient in revealing annotation errors (misplaced phrase
boundaries). Such phrases tend to form their own clusters.

• Some clusters are dominated by phrases of a few particular speakers. This
observation needs further investigation as it may indicate that either pitch
normalization is still imperfect or speaker-specific intonation patterns are
discovered (e.g. dialect).

• Some clusters contain phrases that should be placed to different clusters from the
perceptual point of view. This is mainly due to the emphasis put on different
words. This suggests reviewing our present inter-phrase distance metrics and
probably including other physical characteristics of speech such as intensity and
duration.

• Some clusters appear to be related to certain phenomena of spoken language.
There are clusters characterized by the imitation of emotions (not natural for
read speech) by the enumerative intonation, by ellipses indicating an unfinished
thought at the end of a phrase, etc.

5 Discussion and future work

Language-independence is an important feature of our computational approach. Though
computation steps covered by the section 2 are language-specific, all computation steps
covered by the section 3 (intonation analysis and clustering) are language-independent.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 360 of 474]

If speech waveforms and the knowledge of phone and phrase boundaries is available for
some language, the set of abovementioned computation steps could be applied.

Computations have been implemented in C++and optimized for speed. The most
costly computational procedure is the step of inter-phrase distance estimation. It has
the worst case complexity of O(N2*n2), where N denotes the number of phrases in the
corpus and n denotes the average phrase length in syllables.

Processing N n Computation time, hours

Short phrases 15417 4.11 1.68

Long phrases 26000 11.87 12.74

TABLE 1: Computation time on a computer with Intel Core 2 Duo T7300 2.00 GHz
processor and 3 GB of memory.

The table 1 shows that despite speed optimizations scaling this procedure to larger
intonation corpora may be problematic. However, we believe that the discovery of
intonation patterns proper to a given language could be made within smaller but more
carefully selected intonation corpora.

Our future research will be mostly driven by the feedback received from human
experts. In addition to those few research issues that have been mentioned in the
section 4.2, our future research may focus on the optimization of the number of
clusters, on different methods of estimating the representative frequency of a syllable,
on the normalization of this frequency with respect to the intrinsic vowel pitch.

Acknowledgements

This research has been supported by a grant from the Research Council of Lithuania
under the National Lithuanian studies development programme for 2009-2015. through
the project A unified approach to Lithuanian prosody: the intonation, rhythm, and
stress (reg. no. LIT-12020).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 361 of 474]

References

Beckman, M. E., Hirschberg, J., and Shattuck-Hufnagel, S. (2005). The original ToBI
system and the evolution of the ToBI framework. In S.-A. Jun (ed.) Prosodic Typology --
The Phonology of Intonation and Phrasing.

Boersma, P., and Weenink, D. (2006). Praat: doing phonetics by computer [Computer
program]. Version 4.4.26, retrieved 24 July 2006 from http://www.praat.org/

Hartigan, J. A.; Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering
Algorithm. Journal of the Royal Statistical Society, Series C (Applied Statistics)
28(1):100–108.

Kundrotas, G. (2008). Lietuvių kalbos intonacinių kontūrų fonetiniai požymiai
(Phonetic features of Lithuanian intonation contours). Žmogus ir žodis. Didaktinė
lingvistika. Mokslo darbai, Vilnius, 10(1): 43-55.

Kundrotas, G. (2009). Lyginamoji lietuvių ir rusų kalbų intonacinių sistemų analizė (A
comparative analysis of intonation systems of Lithuanian and Russian), Vilnius
Pedagogical University.

Levow, G.-A. (2008). Automatic Prosodic Labeling with Conditional Random Fields and
Rich Acoustic Features. In Proceedings of International Joint Conference on Natural
Language Processing (IJCNLP), pages. 217-224.

Heggtveit, P. O., Natvig, J. E. (2004). Automatic prosody labelling of read Norwegian.
In Proceedings of the International Conference on Spoken Language Processing (ICSLP), vol.
4, pages 2741-2744.

Escudero-Mancebo, D., Vizcaíno-Ortega, F., González-Ferreras, C., Vivaracho-Pascual,
C., Cabrera-Abreu, M., Estebas-Vilaplana, E., and Valenítn Cardeñoso-Payo, V. (2012).
Multiclass Pitch Accent Classification for Assisting Manual Prosodic Labeling. In
Proceedings of IberSPEECH 2012, pages 73-82.

Norkevičius, G., Raškinis, G., and Kazlauskienė, A. (2005). Knowledge-based grapheme-
to-phoneme conversion of Lithuanian words. In Proceedings of the 10th International
Conference on Speech and Computer – Specom, Patras, Greece. pages 235–238.

Raškinis, G. (2000). Lietuvių liaudies dainų užrašymas muzikos simbolių sekomis
(Automatic transcription of Lithuanian folk songs), Phd Thesis, Vytautas Magnus
University.

Vaičiūnas, A. (2006). Lietuvių kalbos statistinių modelių ir jų taikymo šnekos
atpažinimui tyrimas, kai naudojami labai dideli žodynai (Investigation of Lithuanian
statistic language models and of their application to speech recognition in case of very
large vocabularies), Phd Thesis, Vytautas Magnus University.

Vereecken, H., Martens, J.-P., Grover, C., Fackrell, J., and Van Coile, B. (1998).
Automatic prosodic labeling of 6 languages. In Proceedings of the 5th International
Conference on Spoken Language Processing, Sidney Australia.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 362 of 474]

Vintsyuk, T. K. (1968). Speech discrimination by dynamic programming. Kibernetika,
4:81-88.

Young, S., Evermann, G., Kershaw, D., Moore, G., Odell, J., Ollason, D., Povey, D.,
Valtchev, V., and Woodland, P. (2002). The HTK Book (for HTK Version 3.2), Microsoft
Corporation, Cambridge University Engineering Department, pages 22-44.

Xu, Y. (2004). Transmitting tone and intonation simultaneously - the parallel encoding
and target approximation (PENTA) model. In Proceedings of the International Symposium
on Tonal Aspects of Languages (TAL) - 2004, pages 215–220.

Wightman, C., and Ostendorf, M. (1994) Automatic labeling of prosodic patterns, IEEE
Transactions on Speech and Audio Processing, 2(4):469–481.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 363 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 364 of 474]

Simple and Accountable Segmentation of Marked-up Text

Jonathon Read,∗ ♠ Rebecca Dridan,♣ Stephan Oepen♣
♠ School of Computing, Teesside University, UK

♣ Department of Informatics, University of Oslo, Norway

j.read@tees.ac.uk, {rdridan,oe}@ifi.uio.no

Abstract
Segmenting documents into discrete, sentence-like units is usually a first step in any natural language
processing pipeline. However, current segmentation tools perform poorly on text that contains
markup. While stripping markup is a simple solution, we argue for the utility of the extra-linguistic
information encoded by markup and present a scheme for normalising markup across disparate
formats. We further argue for the need to maintain accountability when preprocessing text, such
that a record of modifications to source documents is maintained. Such records are necessary in
order to augment documents with information derived from subsequent processing. To facilitate
adoption of these principles we present a novel tool for segmenting text that contains inline markup.
By converting to plain text and tracking alignment, the tool is capable of state-of-the-art sentence
boundary detection using any external segmenter, while producing segments containing normalised
markup, with an account of how to recreate the original form.

Keywords: Accountability, Markup, Normalisation, Sentence Boundary Detection, Traceability.

∗Work carried out at the University of Oslo.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 365 of 474]

1 Introduction
Attention in Natural Language Processing (NLP) research increasingly focuses on text from the
World Wide Web, the so-called ‘Web as Corpus’ (Kilgarriff and Grefenstette, 2003). This fertile
source of language use has enriched the field by greatly expanding the genres and styles of text
being analysed by standard NLP techniques, including much information available as user-generated
content. One outcome of this recent attention is a host of research showing the degradation of
performance on web text when using tools trained on, for example, the venerable Penn Treebank
(Marcus et al., 1993). Techniques such as domain adaptation (Foster et al., 2011) and normalisation
(Gimpel et al., 2011) have been shown to reduce the impact on performance of tools such as
statistical parsers and part-of-speech taggers. One particular aspect that has not had much attention
in this regard is sentence segmentation, frequently a fundamental piece of any NLP pipeline, from
corpus building to machine translation. In the following sections, we look at a different technique
for handling issues at this often-overlooked stage.

While the differences in style and register can have an effect on sentence segmentation, the major
impact is from the markup (such as HTML or WikiText) that is present in web-sourced text. Reuse
of standard tools is generally desirable, since we can take advantage of previous tuning on plain
text, but using tools designed for plain text on text with markup can result in a major loss in recall
of sentence boundaries. This occurs when markup elements obscure sentence-ending punctuation
(Read et al., 2012b). For instance, in the example given in Figure 1 the sentence terminating full-stop
is attached to the closing tag. Thus, any tool that operates under the assumption that full-stops must
have whitespace to the right will fail to detect this boundary.

To avoid this problem, markup could be—and often is—stripped and discarded during processing.
However, another frequently ignored aspect of preprocessing is accountability: the recording of
actions taken that alter the text, in order to preserve the link to the original data. Many applications
of NLP augment the original document with new information. For example, the ACL Anthology
Searchbench (Schäfer et al., 2011) highlights search hits in text from scientific papers—such
annotations would also be useful in HTML and other source documents. When unilaterally throwing
away markup, it becomes difficult to trace back to the original source and hence one loses some
of the utility of the annotations from downstream processing. Alternatively, in corpus creation,
discarding information without record can unnecessarily limit future unforeseen uses of the corpus,
whereas full accountability leaves open possibilities that cannot be predicted at creation time.

To facilitate the accountability of preprocessing when building corpora from marked-up documents,
in Section 2 we present a novel tool1 for sentence boundary detection of text with inline markup.
By tracking alignment while creating a plain text version, the tool is able to utilise any third-party
software for sentence segmentation. Our tool then recovers sentence positions in the original, and
produces one sentence per line along with an account of how the text corresponds to the original
document. While exemplified in application to sentence boundary detection here, this general
technique is applicable of course to other processing downstream as well, where it is deemed
desirable to invoke off-the-shelf tools that lack support for markup processing (tokenisation, for
example).

Another issue with simply stripping markup is that it can be of relevance for natural language
processing tasks. For instance, some markup (e.g. block elements such as paragraphs, quotes and
list elements) strongly influences sentence segmentation (Read et al., 2012a). Other elements are of

1The tool is open-source and available to download from www.delph-in.net/deler/.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 366 of 474]

<p>The name Clanfield is derived from the <a>Old English
and means “field clean of weeds”.</p><p>Clanfield was historically
a small <a>farming community.</p>

Figure 1: A passage illustrating how HTML markup can obscure sentence-ending punctuation.

relevance to part-of-speech tagging and parsing (e.g. italics may indicate foreign language words
and links may offer clues to constituent structure). However, exactly which markup elements are
relevant for which tasks in natural language processing remains to be explored. In order to answer
comprehensively, it is important to normalise the disparate types of markup (such as LATEX, WikiText,
or XML) so that they can be treated generally. For such normalisation we provide options that
allow a user to specify how different elements of markup should be treated, including a configurable
mapping option. Following previous work (Flickinger et al., 2010; Solberg, 2012), we have used
this option to map certain source elements into an abstraction of these markup languages dubbed the
Grammar Markup Language (described in Section 3).

In Section 4 we evaluate the tool using two collections of text from blogs, and provide an error
analysis. We then summarise our work and outline the future directions for improvements in
Section 5.

2 A Generic Approach to Segmenting Text with Inline Markup
In this section we describe our generic approach to sentence boundary detection in text with inline
markup. The approach is generic in that it is (a) applicable across other markup formats, (b) operates
independently of the strategy for sentence boundary detection, and (c) could conceivably be applied
to segmentation at other levels (e.g. tokenisation). The approach is based on the notion that, in order
to achieve optimum performance, extant tools for sentence boundary detection must be presented
with text that is free from markup. However, as described above, our goal is to obtain sentences
with original markup preserved.

A naïve approach one might consider is to conceal markup with whitespace. Then, using a tool
which produces character offsets, it would be possible to use such offsets to point back into the
original text with markup. However, this is inadvisable because the superfluous whitespace could
confound the model employed by the tool. Furthermore, many segmentation tools do not output
character offsets, making it difficult to recover sentence positions in the original document.

Instead, our approach (depicted in Figure 2) involves creating a reduced form of the raw original
text that is free from markup (q1A) but replicates the appearance of the rendered document in terms
of hard line breaks and paragraph breaks (as represented by double new lines). Since certain markup
elements (such as paragraphs, headings and list items) can inform sentence boundary detection, at
this stage we force segmentation by inserting paragraph breaks in place of certain sentence-forcing
elements.2 In the case of XML, some characters may be encoded as entities. These can also inform
sentence segmentation, so we convert entities into their Unicode equivalents (for example, both
&8230; and &hellips; are transformed to ‘...’). While making the reduction, we record a
character-by-character alignment from the reduced form back to the raw (q1B).

2As not all tools enforce sentence breaks at the end of paragraphs (Read et al., 2012a) we provide an optional paragraph-
mode, wherein documents are split into paragraphs (as delimited by double new lines), which are presented separately to the
external tool.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 367 of 474]

♦0 Raw HTML
< p > A . < b r / B . < / p >>

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

♦1A Reduction
A . B .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
⏎ ⏎ ⏎

S
1
=“<p>A.
”

S
2
=“B.</p>”

♦5 Raw Segments

S
1
= (0-1) S

2
= (3-4)

♦3 Reduction Offsets

S
1
= (3-4) S

2
= (10-11)

♦4 Raw Offsets

0 3 1 4 2 5 3 10 4 11 5 12 6 12‣ ‣ ‣ ‣ ‣ ‣ ‣

♦1B Pointers

S
1
= “A.” S

2
= “B.”

♦2 External Segmenter

Figure 2: A generic approach for segmenting text with inline markup, with an HTML example.

In the next stage (q2) one is free to run any tool for sentence boundary detection (assuming its output
is mapped to our expectations of a single sentence on each new line). We then find the character
offsets of the segments produced by the external tool (q3), from which we obtain offsets in the raw
form (q4) by following the pointers collected in q1B.

Segments in the raw form can be easily obtained using these offsets. However the segments are not
yet complete, because it is necessary to recover tags at beginning and end of each (q5). In the case
of HTML we achieve this heuristically—only opening tags should occur at the start of a segment
and, conversely, only closing tags should occur at the end of a segment. Thus we expand to the
left of a segment until we observe either text or a closing element, and expand to the right until we
observe either text or an opening element.

With segmentation complete we can now carry out various normalising actions. As stated above,
there is evidence that some elements of markup can be useful to downstream processing tools. For
this reason, we provide the mechanism to re-incorporate the markup (optionally in a normalised
form) that a user considers potentially relevant. Our intent is to provide a tool that is easily
configurable according to the preferences of the user; thus we present a set of normalisation actions
but do not make any assertions about how they should be applied:

Map For selected elements, we map the concrete markup element to a normalised equivalent. Gram-
mar Markup Language (GML), described in Section 3, provides one means of normalisation
and is the method we use in experimentation.

Strip In other cases one may be certain that the tag is not useful in downstream processing, hence
we remove the tag but leave its contents in place.

Mask The textual contents of some markup elements are not easily obtainable or have little
linguistic meaning. However, their presence still plays a structural role in the sentence (for
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 368 of 474]

The name b*Clanfield*c is derived from the b>Old English>c and means
“field clean of weeds”.
Clanfield was historically a small b>farming>c community.

Figure 3: Our running example annotated using the Grammar Markup Language (GML), with new
line characters to delimit sentences.

example, code containing a variable name). We propose replacing such elements with a
placeholder (i.e. an empty element) in order to preserve sentence structure.

Purge For some applications one might be confident that certain elements are not useful for
downstream processing (tables, for example). For such instances we provide a function to
remove the elements and their contents. Note that for efficiency this function is carried out
at q1A in Figure 2, as it would be wasted effort to attempt to segment content that is only
removed later.

Finally we output an account of the segmentation process—a list of sentences with (optionally)
normalised markup, each with a series of offsets and lengths that represent deletions and insertions
made to the original document.

Note that all the behaviour described above is configurable. For instance, some websites use
paragraph elements to force formatting rather than to indicate paragraphs, hence turning off this
heuristic for paragraph elements could prevent the generation of spurious sentences.

3 Markup Normalisation
As mentioned previously, the properties of markup can significantly affect subsequent processing.
For instance, (Flickinger et al., 2010) observe that italicisation frequently functions like quotation
(for example, to indicate use – mention distinctions or foreign language text). To explore the interface
between markup and grammar they proposed a Grammar Markup Language (GML) which abstracts
away from concrete markup (Flickinger et al., 2010; Solberg, 2012). In this section, we embrace
this general idea but propose a refined and extended scheme for this purpose, dubbed GML 2.0.

GML is designed to be a low-impact markup language that promotes compactness and human
readability (particularly by those who are unfamiliar with rich mark-up languages such as XML).
As such, elements are named with a single character, often using ‘unusual’ characters,3 with names
selected from Unicode’s extended sets in order to promote distinctiveness from the surrounding text.
Figure 3 shows our running example with sentences delimited by new line characters, and contains
instances of links (>) and bold text (*) as GML annotations. There are only three meta-characters:
b (LEFT FLOOR, U+230A), c (RIGHT FLOOR, U+230B) and ¦ (BROKEN BAR, U+00A6), respec-
tively serving as left, right and middle delimiters. A GML opening tag is composed of the left
delimiter followed by the element name. Conversely the closing tag is the element name followed
by the right delimiter. Empty elements are formed of the left delimiter, the element name and the
right delimiter (e.g. an image is represented as b.c). Attributes of elements are separated using

3Using unusual characters means that GML does not require escaping of common ASCII characters (as is the case in, for
example, XML), but good Unicode capabilities are a prerequisite for humans to author GML; however, we anticipate that
GML texts will typically be produced automatically.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 369 of 474]

Linux NLP
Prec Rec F1 Prec Rec F1

(1) Markup in place 97.6 91.7 94.6 99.1 91.3 95.1
(2) Markup reduced 98.5 91.4 94.8 98.9 96.3 97.6

Table 1: The performance of two strategies for segmenting marked-up text; (1) segmenting with
markup in place and (2), the approach described in this paper, reducing markup to plain text and
reintroducing it through character alignment. Note that the gold-standard was derived by manually
correcting the segmentation produced by strategy (1), potential biasing the evaluation in its favour.

the middle delimiter and are attached to the closing tag (e.g. second-level headings are specified as
b=Title¦2=c).
4 Evaluation and Error Analysis
To evaluate our approach we use text from the WeSearch Data Collection, a freely-available corpus
of user-generated content (Read et al., 2012b). In this corpus, text was automatically segmented
using the sentence splitter from the Stanford CoreNLP Tools, with the HTML-based sentence
forcing heuristics described above, but with text being processed by the sentence splitter with HTML
in place. Specifically, we use the two mixed source test sections from the blog domain, which are
drawn from blogs about Linux (WLB03) and natural language processing (WNB03). The sentence
segmentation in these sections was corrected by hand to create a gold-standard resulting in 1,130
sentences in WLB03 and 1,073 sentences in WNB03.

To measure segmentation performance we employ the evaluation script provided by Read et al.
(2012a), which calculates precision, recall and F1 by considering every character4 in the text as a
potential sentence boundary. Table 1 shows the performance of two methods when segmenting the
raw HTML used to generate WLB03 and WNB03; row (1) gives the results of the original automatic
procedure, while row (2) gives the results of the reduction approach described in this paper (when
coupled with the Stanford CoreNLP sentence splitter). Note that the gold-standard was derived by
manually-correcting the original automatic segmentation; this potentially biases the evaluation in
favour of the original procedure.

We find that, for Linux blogs, the new approach results in a small improvement in precision and
a minor loss in recall. The effect is quite different for natural language processing blogs. There
is a strong improvement in segmentation, with a gain of 5% points in recall, with only a minor
loss in precision. We performed an analysis of errors made by our approach, in order to acquire an
understanding of how to improve the tool.

False negatives account for the largest proportion of the errors. Within these we note two dominating
trends: non-standard lists, and non-standard typography—both of which could be considered issues
of robustness when dealing with user-generated content. Over half the false negatives relate to
character-based list conventions, where list items are not indicated with HTML but instead delimited
with characters as bullets (e.g., ‘*’, ‘-’ or ‘o’), or ‘Q:’ or ‘A:’. Another quarter of the false negatives
could more generally be considered aspects of informal English or author error. These include
the lack of end-of-sentence punctuation, sentence-initial capitals or whitespace between sentences.
While the list conventions could potentially be handled heuristically by our tool, more general

4Evaluation of sentence segmentation is often carried out using a small set of potential sentence boundaries (e.g. ‘!’, ‘.’ or
‘?’), but Read et al. (2012a) argue that this is an oversimplification, with these characters only appearing at the end of 92% of
sentences in edited text such as The Wall Street Journal portion of the Penn Treebank.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 370 of 474]

robustness issues arise from the fact that the splitter appears to be optimised towards edited text.
This is a well-known issue that is being dealt with in other tools (Foster et al., 2011). Similar
techniques could be applied to sentence splitters, but that is not the focus of this tool.

A smaller proportion of the false negative errors do arise from markup-related issues. In particular,
we note a few instances where placement of masked elements (e.g. <code/>) from repeated
occurrences hide the end of a sentence. While some of these are obvious errors, others point to
possible inconsistencies in the gold standard.

Of the smaller number of false positives, we again find that list conventions account for about
half the erroneous instances. One regular pattern was enumerated lists where a full-stop is used to
delimit the item from its number (e.g. 1.) which incorrectly led to segmentation after the number.
Another trend related to the use of full-stops in bibliographic entries, which was specific to the
natural language processing dataset and possibly needs specific handling.

Of greater concern from the perspective of our tool was that there were a few instances where the
decision to introduce hard sentence breaks at paragraph and list elements led to false positives.
While formally an incorrect use of HTML, occasionally authors will use these elements for their
layout properties, rather than their abstract meaning. This could suggest that we should introduce
a more nuanced handling of these elements, using heuristics to decide when to enforce breaks.
However, in these datasets containing just over 2,000 sentences, this type of error only accounts for
four false positives, indicating that the improvement this change would bring could well be offset by
the false negatives that would likely occur.

5 Conclusions and Future Work
We have produced a simple tool that, by producing a plain text version that is aligned character-
by-character, allows users to make use of previous plain text segmentation research and tools,
while also using the advantages of the markup. Further, by maintaining accountability of any
normalisation actions, this tool facilitates the projection of downstream processing back to the
original source, enabling inline annotation in a browser, for example. In addition, by including
different handling mechanisms for various aspects of the markup, we provide the option of passing
on relevant normalised markup to downstream tools, and present Grammar Markup Language
(GML) as a way of abstracting from various different concrete markup schemes.

Our main use of this tool to date has been for sentence segmentation of HTML documents, however
it was deliberately designed to be suitable for generic text segmentation of multiple markup styles.
Most of the markup handling specifics are defined in a simple external configuration file, but the
heuristics for expanding segments to include enclosing markup are handled by a HTML-specific
module. Ideally, one would learn the markup conventions that influence sentence segmentation.
However, the lack of appropriate training data (and the likelihood of needing data for each new
website or content management system) makes a statistical approach impractical. As our previous
survey (Read et al., 2012a) indicated that rule-based systems perform best at this task, we have
opted for that method in our wrapper.

The error analysis has revealed a number of interesting possibilities for improving the tool. Most
significantly, almost half of the false negative errors made on the datasets were due to the use
of character-based list conventions, without HTML markup. Such errors could perhaps be fixed
simply by forcing breaks when observing sequences of newlines, whitespace and a bullet-like
characters, potentially greatly improving the recall of sentence boundaries. Similarly, precision
could be improved with a heuristic to remove sentence breaks after the item number of enumerated

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 371 of 474]

lists. As mentioned above, there is also potential for improving precision by using soft constraints to
decide when to introduce forced breaks at paragraph or list items, however the possibility of missing
more sentence breaks in this fashion is a concern that should be tested empirically.

In other future work, we anticipate creating variants of this module for WikiText, and possibly for
LATEX. We intend to run experiments on tokenisation, and possibly other forms of pre-processing
where markup could be distracting to off-the-shelf tools, to evaluate the impact of this form of
normalisation more generally.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 372 of 474]

References
Flickinger, D., Oepen, S., and Ytrestøl, G. (2010). Wikiwoods: Syntacto-semantic annotation for
English Wikipedia. In Proceedings of the 7th Conference on International Language Resources
and Evaluation, Valletta, Malta.

Foster, J., Cetinoglu, O., Wagner, J., Le Roux, J., Nivre, J., Hogan, D., and van Genabith, J. (2011).
From news to comment: Resources and benchmarks for parsing the language of Web 2.0. In
Proceedings of the 2011 International Joint Conference on Natural Language Processing, page
893 – 901, Chiang Mai, Thailand.

Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama,
D., Flanigan, J., and Smith, N. A. (2011). Part-of-speech tagging for Twitter: Annotation, features,
and experiments. In Proceedings of the 49th Meeting of the Association for Computational
Linguistics, page 42 – 47, Portland, OR, USA.

Kilgarriff, A. and Grefenstette, G. (2003). Introduction to the special issue on the web as corpus.
Computational Linguistics, 29(3):333 – 347.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated corpora
of English: The Penn Treebank. Computational Linguistics, 19:313 – 330.

Read, J., Dridan, R., Oepen, S., and Solberg, L. J. (2012a). Sentence boundary detection: A
long solved problem? In Proceedings of the 24th International Conference on Computational
Linguistics, Mumbai, India.

Read, J., Flickinger, D., Dridan, R., Oepen, S., and Øvrelid, L. (2012b). The WeSearch Corpus,
Treebank, and Treecache. A comprehensive sample of user-generated content. In Proceedings of
the 8th International Conference on Language Resources and Evaluation, Istanbul, Turkey.

Schäfer, U., Kiefer, B., Spurk, C., Steffen, J., and Wang, R. (2011). The ACL Anthology
Searchbench. In Proceedings of the 49th Meeting of the Association for Computational Linguistics
System Demonstrations, page 7 – 13, Portland, OR, USA.

Solberg, L. J. (2012). A corpus builder for Wikipedia. Master’s thesis, University of Oslo, Norway.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 373 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 374 of 474]

Statistical Machine Translation with Readability Constraints

Sara Stymne, Jörg Tiedemann, Christian Hardmeier and Joakim Nivre
Uppsala University

Department of Linguistics and Philology
Box 635, 751 26 Uppsala, Sweden

firstname.lastname@lingfil.uu.se

ABSTRACT
This paper presents experiments with document-level machine translation with readability
constraints. We describe the task of producing simplified translations from a given source with
the aim to optimize machine translation for specific target users such as language learners. In
our approach, we introduce global features that are known to affect readability into a document-
level SMT decoding framework. We show that the decoder is capable of incorporating those
features and that we can influence the readability of the output as measured by common
metrics. This study presents the first attempt of jointly performing machine translation and text
simplification, which is demonstrated through the case of translating parliamentary texts from
English to Swedish.

KEYWORDS: Machine Translation, Text Simplification, Readability.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 375 of 474]

1 Introduction

Typically, statistical machine translation (SMT) focuses on the translation of isolated sentences.
However, humans usually emphasize the translation of coherent texts into equally coherent
translations targeted at a specific audience. In this paper, we address the problem of includ-
ing document-wide features into statistical MT that may influence the style of the generated
documents in the target language. For this, we adopt the task of producing simplified transla-
tions that could be useful, for example, for language learners, dyslectic people or simply for
non-experts who want to grasp the major content in highly domain-specific documents written
in a foreign language. An example for the latter could be legal texts that often use a very
domain-specific terminology and jargon.

Readability and text simplification has been widely studied in the field of computational lin-
guistics and several metrics and approaches have been proposed in the literature. Common
readability metrics make use of global text properties such as type/token ratios, lexical consis-
tency, and the proportion of long versus short words as indicators. Our goal is to incorporate
these features in machine translation in order to combine text simplification and adequate
translation in one system. To the best of our knowledge, this has not been attempted before
and represents a novel and challenging idea in the field of MT research.

Global features such as the ones mentioned above require new approaches to the general
problem of decoding in SMT. Fortunately, we have recently presented a new document-level
decoder, which, contrary to standard SMT decoders, translates documents as a unit instead
of sentences in isolation (Hardmeier et al., 2012). This allows us to define document-wide
features in the target language to test our ideas. Our application is also a good test case for
the capabilities of the decoder and we would like to use our findings in future developments of
general user-targeted machine translation.

The contributions of this paper are thus two-fold: (1) We show that document-wide decoding
can effectively use global features and (2) we demonstrate that readability features can be used
in SMT to produce simplified text translations. The remainder of the paper is organized as
follows: First, we introduce important background on document-level decoding and readability.
Thereafter, we present our experiments using a set of global features. Finally, we add some
information about related work, summarize our findings and give ideas about future work.

2 Document-wide SMT

Most current SMT systems translate sentences individually, assuming independence between
the sentences in a text. This independence assumption is exploited in the most popular SMT
decoding algorithms, which efficiently explore a very large search space by using dynamic
programming (Och et al., 2001). Integrating discourse-wide information into traditional
SMT decoders is difficult because of these dynamic programming assumptions. We therefore
implement our document-level readability models in the recently published document-level
SMT decoder Docent (Hardmeier et al., 2012), which does not have these limitations.

The model implemented by Docent is phrase-based SMT (Koehn et al., 2003). The decoder uses
a local search approach whose state consists of a complete translation of an entire document at
any time. The initial state is improved by applying a series of operations using a hill climbing
strategy to find a (local) maximum of the score function. The three operations used are to
change the translation of phrases, to swap the position of two phrases , and to resegment
phrases. This setup is not limited by dynamic programming constraints, so we can define

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 376 of 474]

scoring functions over the entire document. By initializing the decoder state with the output of
a Moses run, which makes it possible to include all models except the ones with document-level
dependencies, we ensure that the final hypothesis is no worse than what would have been
found by Moses alone.

3 Readability – Metrics and Features

Readability is a complex notion that is related both to properties of texts, and to individual
readers and their skills. Chall (1958) defines four elements that she considers significant for
a readability criterion: vocabulary load, sentence structure, idea density, and human interest.
Mühlenbock and Kokkinakis (2009) map these categories to metrics for readability that can
be used in combination in order to capture several readability aspects. Vocabulary load can
be measured as word-frequency ratios, or based on the proportion or number of long words.
For Swedish, they suggest the commonly used metric LIX (Björnsson, 1968), which measures
sentence length and proportion of long words and in addition the proportion of extra long words
(XLW). For sentence structure, parsed text can be used to calculate the proportion of simple
versus complex sentences. Such calculations are relatively costly, however, and dependent
on the availability of parsers and definitions of sentence types, and they suggest that average
sentence length (ASL) can be used as a proxy. Idea density can be measured based on lexical
variation and the proportion of function vs content words. A common density measure for
Swedish is the Word variation index (OVIX), a reformulation of type token ratio (TTR) that is
less sensitive to text length. Another one is nominal ratio (NR), which is a ratio based on parts
of speech. Finally, human interest can be captured for instance by the proportion of proper
names (PN). To cover the four readability aspects, we use all these metrics for evaluation. Their
definitions are shown in Eq. 1–6, where C(x) is the count of x .

ASL=
C(tokens)

C(sentences)
(1)

LIX= ASL+ 100 ∗ C(tokens> 6 chars)
C(tokens)

(2)

XLW= 100 ∗ C(tokens>= 14 chars)
C(tokens)

(3)

OVIX=
log(C(tokens))

log
�

2− log(C(types))
log(C(tokens))

� (4)

NR=
C(nouns) + C(prepositions) + C(participles)

C(pronouns) + C(adverbs) + C(verbs)
(5)

PN=
C(proper names)

C(tokens)
(6)

In order to couple text simplification with SMT we also need to include features that can
capture some aspects of readability into the decoder. While our main focus is on document-level
features, we also include some basic sentence level count features used in readability metrics.
On the document-level we use features for type token ratio and for lexical consistency. Table 1
gives an overview of the readability features.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 377 of 474]

Document-level Sentence-level
OVIX Word variation index (Eq. 4) SL Sentence length in words
TTR Type token ratio (Eq. 7) nLW Number of long words (> 6 chars)
Qw Q-value, word level (Eq. 8) nXLW Number of extra long words (>= 14 chars)
Qp Q-value, phrase level (Eq. 8)

Table 1: Readability features used in the decoder

Lexical consistency has not typically been used as a readability indicator as such, but consistent
vocabulary can be considered likely to improve readability. To measure it we chose the Q-value
metric, which has been proposed for measuring bilingual term quality (Deléger et al., 2006). It
is based on the frequency and consistency in translation of term candidates, as shown in Eq. 8
where f (st) is the frequency of the term pair and n(s) and n(t) are the numbers of different
term pairs in which the source and target terms occur respectively. We include a Q-value feature
both on word level and on phrase level. On the phrase level we consider the phrases used
by the SMT decoder, and on the word level we consider individual source words, and their
alignment to 0− N target words.

TTR=
C(tokens)
C(types)

(7)

Q-value=
f (st)

n(s) + n(t)
(8)

4 Experiments
In the following, we show results for our experiments with the Docent decoder that include
readability features and compare them to runs without them. The systems are evaluated using
both MT and readability metrics.

4.1 Experimental Setup
We evaluate our models on parliamentary texts from Europarl (Koehn, 2005), which contain
both complex sentences and a lot of domain-specific terminology. All tests are performed for
English–Swedish translation. Our system is trained on 1,488,322 sentences. For evaluation,
we extracted 20 documents with a total of 690 sentences from a separate part of Europarl.
A document is defined as a complete contiguous sequence of utterances of one speaker. We
excluded documents that are shorter than 20 sentences and longer than 79 sentences.

Moses (Koehn et al., 2007) was used for training the translation model and SRILM (Stolcke,
2002) for training the language model. We initialized our experiments with a Moses model that
uses standard features of a phrase-based system: a 5-gram language model, five translation
model features, a distance-based reordering penalty, and a word counter. These features were
optimized using minimum error-rate training (Och, 2003) and the same weights were then
used in Docent. Currently, we are developing the optimization procedure in Docent and could
not use it in this work. We thus used a grid search approach for choosing weights for the
readability-based features with low, medium, and high impact relative to the standard features.

We performed automatic evaluations using a set of common metrics for MT quality and
readability. For MT quality we used BLEU (Papineni et al., 2002) and NIST (Doddington, 2002),

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 378 of 474]

Feature Weight BLEU↑ NIST↑ LIX↓ ASL↓ OVIX↓ XLW↓ NR↓ PN↑
Reference – – – 50.47 24.65 57.73 3.08 1.055 0.013
Baseline – 0.243 6.12 51.17 25.01 56.88 2.63 1.062 0.015
OVIX low 0.243 6.11 51.00 25.09 54.65 2.60 1.069 0.015

medium 0.228 5.83 49.33 25.45 44.43 2.53 1.063 0.015
high 0.144 4.41 46.59 29.09 31.65 1.82 0.941 0.013

TTR low 0.243 6.12 51.04 25.11 55.25 2.60 1.070 0.015
medium 0.225 5.75 49.86 26.19 45.31 2.44 1.080 0.014
high 0.150 4.48 48.30 30.54 32.95 1.77 0.975 0.012

Qw low 0.242 6.10 51.16 25.07 57.16 2.62 1.064 0.015
medium 0.231 5.90 51.28 25.32 58.90 2.62 1.074 0.015
high 0.165 4.93 50.92 26.14 60.61 2.63 1.101 0.016

Qp low 0.243 6.12 51.16 24.99 56.94 2.65 1.061 0.015
medium 0.229 5.99 49.79 24.14 54.75 2.62 1.060 0.015
high 0.097 3.90 41.45 21.99 39.22 2.39 1.129 0.015

nLW low 0.244 6.14 50.96 24.98 56.73 2.63 1.065 0.015
medium 0.225 5.96 46.72 24.21 55.39 2.72 1.080 0.018
high 0.106 4.11 30.27 22.18 45.41 1.78 0.899 0.023

nXLW low 0.241 6.10 51.03 24.96 56.69 1.85 1.060 0.015
medium 0.225 5.85 50.92 25.09 56.56 0.19 1.070 0.016
high 0.224 5.84 50.97 25.12 56.55 0.19 1.068 0.016

SL low 0.242 6.21 51.07 24.22 57.79 2.71 1.058 0.016
medium 0.211 5.94 50.77 21.61 60.93 3.15 1.040 0.018
high 0.150 4.38 50.77 18.46 65.37 3.72 1.072 0.021

Table 2: Results of systems with single readability features, compared to the reference and
baseline. Arrows indicate the direction of metrics (better MT/more readable). For definitions of
metrics and features see Eq. 1–6 and Table 1.

and for readability we used LIX, ASL, OVIX, XLW, NR and PN, explained in section 3. Since we
lack a customized evaluation set, the MT metrics were computed against a standard reference
set of normal Europarl translations that are not simplified. We can thus expect that simplification
leads to a decrease in MT metrics. To further investigate the effects on adequacy and readability,
we performed a small human evaluation. We leave more principled optimization and evaluation
to future work, where we also plan to use simple dev and test sets.

4.2 Results

In this section we present results on metrics and a small human evaluation. We also exemplify
the types of simplifications we can achieve in our setup.

Metrics

Table 2 shows the results when we activate one readability feature at a time using low, medium,
and high weights for each feature. We can see that the baseline and reference are quite similar
with respect to readability with some interesting differences, for example for extra long words.
As expected, giving a high weight to a readability feature usually results in a dramatic decrease
in MT quality (with respect to the unsimplified reference translation), but also affects the
corresponding readability feature(s) much, in some cases with unreasonably low scores (see
e.g., LIX for the nLW feature). Using low or medium weights, on the other hand, can give
reasonable MT scores as well as some improvements on several readability metrics. Obviously,
the features corresponding directly to a metric affects that metric, such as LIX for nLW and
OVIX for OVIX and TTR. Several features also affects other readability metrics, though. For

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 379 of 474]

BLEU↑ NIST↑ LIX↓ ASL↓ OVIX↓ XLW↓ NR↓ PN↑
Baseline 0.243 6.12 51.17 25.01 56.88 2.63 1.062 0.015
LIX (nLW+SL) 0.214 5.96 46.09 23.02 56.27 2.90 1.061 0.018
OVIX+SL 0.229 5.94 48.86 24.34 44.53 2.63 1.046 0.015
Qp+OVIX+nLW+SL 0.225 5.93 47.77 24.08 43.77 2.65 1.045 0.016
All features 0.235 6.04 49.29 24.34 47.80 1.98 1.046 0.015

Table 3: Results for systems with combinations of readability features (medium weights)

Preferred system
Baseline Equal Readability (All)

Adequacy 51 33 16
Readability 33 29 38

Table 4: Preferred system with regard to adequacy and redability in the human evaluation

instance, OVIX and TTR decrease several metrics, but give an increase in sentence length, which
is unwanted. For the Q-value, the effect is very different when used on phrase and word level.
On the phrase level it decreases most metrics, except NR, which increases, while the effect
is small on the readability metrics when used on the word level. We need to analyze these
outcomes in more detail in the future.

In Table 3 we show results for some of the possible feature combinations, using medium weights.
As expected, the effect on the readability metrics is more balanced in these cases. For the system
with all features there are improvements on all readability metrics, except for PN, which is on
par with the baseline. The other systems that use some global feature also have a positive effect
on most readability metrics, while the LIX system that uses only local features has little effect on
OVIX and a negative effect on extra long words. All these systems show only a modest decrease
in MT quality, though. We can thus show that the decoder, with global features, managed to
simplify translations on aspects corresponding to vocabulary load, idea density, and sentence
structure while maintaining a reasonable translation quality.

Human Evaluation

We also performed a small human evaluation of 100 random non-identical sentences from
the baseline and the system using all readability features.1 For each sentence we ranked the
output on adequacy, how well the content is translated, and readability, how easy to read the
translations are. For annotation we used the Blast interface (Stymne, 2011), which also showed
the overlap between the two translations. The evaluation was performed by the four authors,
who are either native Swedish speakers, or have a good command of Swedish.

The results are shown in Table 4. It shows that the baseline produces a higher number of
adequate translations than the system with readability features, but adequacy is also equal
often. For readability there is a small advantage for the system with readability features, which
is consistent with the improvement on readability metrics. Overall the output was often very
similar, with only few words differing. In several of the cases where the baseline was judged
as having better adequacy the cause is a single changed word, which can be more common
or shorter, but has the wrong form or part of speech, which means it does not fit into the
context. In other cases some non-essential information is removed from the sentence, which

1177 out of 690 sentences were identical.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 380 of 474]

while making the translation less adequate, is actually what we want to achieve. There were
several cases where essential words have disappeared from the translation as well, though.

This evaluation was small scale, with course-grained judgments, and for only one possible
system with readability features. In the future we want to look at several systems in some more
detail. We can still see a tendency though, that we can gain a little bit in readability, but we’re
currently paying a cost as concerns adequacy.

Translation Examples

In Table 5 we show sample translations, in order to exemplify the types of operations our
current system is able to perform. One type of successful simplification is to remove words
that are not crucial for the main content. In many of the systems with readability constraints,
the phrase the honourable Members has been simplified, either by removing the adjective and
giving only ledamöterna (’the members’), or even by using the pronoun ni (’you’). Another
positive simplification is that of in such a way that, which is translated quite literally in the
baseline, but simplified into så att (’so that’) in several of the systems. There are also instances,
however, where the changes lead to a loss of information, especially for the shorter translation
options. Examples are handlingsplan (’action plan’), which is reduced to plan (’plan’) in the
nLW system, and 2003 which is missing in the OVIX and Qp systems. There are several cases
where different translations have been chosen for a word or phrase. Sometimes this can lead
to a simplification, as in the nLW system where the everyday expression bli klar (’finish’) is
used instead of the more formal avsluta (’finish’). In other cases the translation options are of
a relatively similar degree of difficulty, such as vissa/en del/några (’some’). In some cases a
change of translation also lead to a change of part of speech, as for uppmärksamhet (’attention’)
which is often translated as the adjective uppmärksam (’attentive’), which unfortunately have
led to syntactic problems in these translations. In general, as can be expected of SMT, there are
some problems with fluency in all translations, but they tend to get worse in the systems with
high-weight readability features.

There are also other types of changes, which are not shown in Table 5. Using the feature
for extra long words tend to break long compounds, sometimes successfully, for example,
translating the long compound gemenskapslagstiftningen (’the community legislation’) into the
genitive construction gemenskapens lagstiftning (’the community’s legislation’), which is done in
the XLW and All systems. Sometimes this is less successful, however, e.g., when not translating
World Trade Organisation at all or giving the English-based abbreviation WTO instead. There
are also cases where the readability features lead to changes in syntactic structure, such as the
translation of the excellent work he has done into hans utmärkta arbete (’his excellent work’) in
some systems with the Qw feature, instead of a literal translation in the baseline.

5 Related Work

As far as we are aware this is the first work presenting joint machine translation and text
simplification. Aziz et al. (2012) investigate the task of translating subtitles where time and
space constraints are important, which leads to the task of sentence compression, which is
related to our work on simplifying translated texts. They introduce dynamic length penalties
which they integrate in a standard SMT decoder. Their model successfully compresses subtitles
on three data sets. However, they also show that a similar compression can be achieved with
appropriate tuning data that meets the length constraints. There are also a number of studies
that use SMT techniques for monolingual paraphrasing (e.g., Ganitkevitch et al., 2011) and

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 381 of 474]

Source As the honourable Members know - some speakers have mentioned it - the European
Council at Lisbon paid particular attention to promoting our efforts to implement risk
capital in such a way that the action plan will be finished in 2003.

Baseline Som de ärade ledamöterna vet - vissa talare har nämnt det - som Europeiska rådet i
Lissabon ägnat särskild uppmärksamhet åt att främja våra ansträngningar att genomföra
riskkapital på ett sådant sätt att handlingsplanen kommer att vara avslutat år 2003.

All
(medium)

Som ledamöterna vet - vissa talare har nämnt det - som Europeiska rådet i Lissabon
särskilt uppmärksam på att främja våra insatser för att genomföra riskkapital så att
handlingsplanen kommer att vara avslutat 2003.

LIX
(medium)

Som ledamöterna vet - vissa talare har nämnt det - Europeiska rådet i Lissabon lagt
särskild vikt vid att främja våra ansträngningar att genomföra riskkapital så att han-
dlingsplanen kommer att vara avslutat år 2003.

OVIX+SL
(medium)

Som ni vet - vissa talare har nämnt det - som Europeiska rådet i Lissabon särskilt uppmärk-
sam på att främja våra ansträngningar att genomföra riskkapital så att handlingsplanen
kommer att avslutas under 2003.

OVIX
(high)

Som ledamöter - en del talare har nämnt det - som Europeiska rådet i Lissabon särskilt
uppmärksam på att stödja våra insatser för att genomföra av riskkapital, på så sätt att
handlingsplanen kommer att vara avslutat i.

Qp
(high)

Som de ärade ledamöterna vet, som några talare har nämnt det rådet i Lissabon, ägnat
särskild uppmärksamhet åt att vi för att genomföra riskerna i det att handlingsplanen
kommer att avslutas med.

nLW
(high)

Som ni vet - vissa har sagt det - EU:s möte i Lissabon lagt särskild vikt vid vår för att
genomföra risk i så att den plan att bli klar under 2003.

SL
(high)

Som ledamöterna vet vissa talare har nämnt - Europeiska rådet i Lissabon särskilt
uppmärksammat främja våra ansträngningar att genomföra riskkapital så att handlings-
planen avslutas 2003.

Table 5: Examples of translation output from a sample of systems

sentence compression (e.g., Knight and Marcu, 2000; Specia, 2010). Furthermore, there is a
wide range of publications using other methods for monolingual sentence compression and text
simplification, (e.g., Daelemans et al., 2004; Cohn and Lapata, 2009).

Readability has also been investigated as an effect of text summarization, as measured by user
studies (Margarido et al., 2008) and automatic metrics (Smith and Jönsson, 2011). In these
studies the readability was generally better in the summarized texts than in the original texts.
Stymne and Smith (2012) showed that SMT is affected by summarization, but found no relation
between readability and SMT quality measured by standard evaluation metrics.

There is also related work concerned with the integration of wide contextual features in
machine translation, such as lexical consistency. The effect of lexical consistency in translation
has been studied by Carpuat (2009) and Carpuat and Simard (2012). Tiedemann (2010)
proposed cached models to push consistent translation with some success in the case of domain
adaptation. The use of word sense disambiguation in SMT is another example where wide
contextual information can be incorporated on the source side (Carpuat and Wu, 2007; Chan
et al., 2007)

Another study related to ours is Genzel et al. (2010), who study poetry translation and perform
joint translation and poetry creation of news text as well as translation of poems that keep the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 382 of 474]

poetic form. They use features in the decoder such as rhyme and meter. They also introduce
constraints over the target language output in order to adapt to the task-specific properties.
However, they do not work on the document level, which would be an interesting direction for
future work.

6 Conclusion and Future Work

In this article we explore a few readability related features in statistical machine translation.
We have shown that these global features can successfully be integrated in a document-level
decoder. We have evaluated a test case for English and Swedish using parliamentary texts which
illustrates the effect of adding readability constraints. Our results demonstrate that the decoder
can easily be influenced in terms of several aspects of readability of its output and that the
approach can lead to a number of different types of simplifications. As expected, the translation
quality goes down to some extent as measured by MT metrics as the one and only reference
translation is not aimed at simplifying the text compared to its original version. The human
evaluation also showed that we suffered on adequacy. So far we did not formally evaluate
the effect on fluency, but the inspection of sentences showed that there were problems in this
respect, which we plan to address in the future, for instance by the use of sequence models
based on parts of speech or morphology.

Further directions for future work include the incorporation of additional features. So far, we
only use surface features but we could complement them with features based on linguistic
annotation such as POS labels and syntactic information. We could capture aspects measured by
readability metrics such as NR and PN, or apply features like Q-value only for content words, but
also could help to eliminate complex structures such as relative clauses. Another direction could
be the task of splitting sentences into simpler ones if necessary. This however, would involve
substantial developments in the decoder framework and would require appropriate training
data that cover such cases. Finally, we are currently working on the optimization of feature
weights within the document-level decoder. In our current experiments, no automatic tuning
procedure has been applied for document-level features. We expect that proper weighting will
be crucial to optimize the interaction between feature functions.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 383 of 474]

References

Aziz, W., de Sousa, S. C. M., and Specia, L. (2012). Cross-lingual sentence compression for
subtitles. In Proceedings of the 16th Annual Conference of the European Association for Machine
Translation, pages 103–110, Trento, Italy.

Björnsson, C. H. (1968). Läsbarhet. Liber, Stockholm.

Carpuat, M. (2009). One translation per discourse. In Proceedings of the Workshop on Semantic
Evaluations: Recent Achievements and Future Directions (SEW-2009), pages 19–27, Boulder,
Colorado.

Carpuat, M. and Simard, M. (2012). The trouble with SMT consistency. In Proceedings of the
Seventh Workshop on Statistical Machine Translation, pages 442–449, Montréal, Canada.

Carpuat, M. and Wu, D. (2007). Improving statistical machine translation using word sense
disambiguation. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages 61–72, Prague,
Czech Republic.

Chall, J. S. (1958). Readability: An appraisal of research and application. Columbus : Bureau
of Educational Research, Columbus, Ohio, USA.

Chan, Y. S., Ng, H. T., and Chiang, D. (2007). Word sense disambiguation improves statistical
machine translation. In Proceedings of the 45th Annual Meeting of the ACL, pages 33–40, Prague,
Czech Republic.

Cohn, T. and Lapata, M. (2009). Sentence compression as tree transduction. Journal of
Artificial Intelligence Research, 34:637–674.

Daelemans, W., Höthker, A., and Sang, E. T. K. (2004). Automatic sentence simplification for
subtitling in Dutch and English. In Proceedings of the 4th International Conference on Language
Resources and Evaluation (LREC’04), pages 1045–1048, Lisbon, Portugal.

Deléger, L., Merkel, M., and Zweigenbaum, P. (2006). Enriching medical terminologies: an
approach based on aligned corpora. In International Congress of the European Federation for
Medical Informatics, pages 747–752, Maastricht, The Netherlands.

Doddington, G. (2002). Automatic evaluation of machine translation quality using n-gram co-
occurence statistics. In Proceedings of the Second International Conference on Human Language
Technology, pages 228–231, San Diego, California, USA.

Ganitkevitch, J., Callison-Burch, C., Napoles, C., and Durme, B. V. (2011). Learning sentential
paraphrases from bilingual parallel corpora for text-to-text generation. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, pages 1168–1179,
Edinburgh, Scotland.

Genzel, D., Uszkoreit, J., and Och, F. (2010). "Poetic" statistical machine translation: Rhyme
and meter. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 158–166, Cambridge, Massachusetts, USA.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 384 of 474]

Hardmeier, C., Nivre, J., and Tiedemann, J. (2012). Document-wide decoding for phrase-
based statistical machine translation. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning, pages
1179–1190, Jeju Island, Korea.

Knight, K. and Marcu, D. (2000). Statistics-based summarization — Step one: Sentence
compression. In National Conference on Artificial Intelligence (AAAI), pages 703–710, Austin,
Texas, USA.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In Proceedings
of MT Summit X, pages 79–86, Phuket, Thailand.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen,
W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open
source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of
the ACL, Demo and Poster Sessions, pages 177–180, Prague, Czech Republic.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Conference of the NAACL, pages 48–54, Edmonton,
Alberta, Canada.

Margarido, P., Pardo, T., Antonio, G., Fuentes, V., Aluísio, S., and Fortes, R. (2008). Automatic
summarization for text simplification: Evaluating text understanding by poor readers. In Anais
do VI Workshop em Tecnologia da Informação e da Linguagem Humana, pages 310–315, Vila
Velha, Brazil.

Mühlenbock, K. and Kokkinakis, S. J. (2009). LIX 68 revisited – an extended readability. In
Proceedings of the Corpus Linguistics Conference, Liverpool, UK.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings
of the 42nd Annual Meeting of the ACL, pages 160–167, Sapporo, Japan.

Och, F. J., Ueffing, N., and Ney, H. (2001). An efficient A* search algorithm for Statistical
Machine Translation. In Proceedings of the ACL 2001 Workshop on Data-Driven Machine
Translation, pages 55–62, Toulouse, France.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the ACL, pages
311–318, Philadelphia, Pennsylvania, USA.

Smith, C. and Jönsson, A. (2011). Automatic summarization as means of simplifying texts,
an evaluation for Swedish. In Proceedings of the 18th Nordic Conference on Computational
Linguistics (NODALIDA’11), Riga, Latvia.

Specia, L. (2010). Translating from complex to simplified sentences. In Proceedings of the
9th International Conference on Computational Processing of the Portuguese Language, 9th
International Conference (PROPOR’10), pages 30–39, Porto Alegre, Brazil.

Stolcke, A. (2002). SRILM – an extensible language modeling toolkit. In Proceedings of
the Seventh International Conference on Spoken Language Processing, pages 901–904, Denver,
Colorado, USA.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 385 of 474]

Stymne, S. (2011). Blast: A tool for error analysis of machine translation output. In Proceedings
of the 49th Annual Meeting of the ACL: Human Language Technologies, Demonstration session,
Portland, Oregon, USA.

Stymne, S. and Smith, C. (2012). On the interplay between readability, summarization and
MTranslatability. In Proceedings of the 4th Swedish Language Technology Conference, pages
71–72, Lund, Sweden.

Tiedemann, J. (2010). Context adaptation in statistical machine translation using models with
exponentially decaying cache. In Proceedings of the ACL 2010 Workshop on Domain Adaptation
for Natural Language Processing (DANLP), pages 8–15, Uppsala, Sweden.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 386 of 474]

Negation Scope Delimitation in Clinical Text Using Three
Approaches: NegEx, PyConTextNLP and SynNeg

Hideyuki Tanushi1, Hercules Dalianis1, Martin Duneld1, Maria Kvist1,2,
Maria Skeppstedt1, Sumithra Velupillai1

(1) Dept. of Computer and Systems Sciences (DSV), Stockholm University
Forum 100, 164 40 Kista, Sweden

(2) Dept. of clinical immunology and transfusion medicine, Karolinska University Hospital
171 76 Stockholm, Sweden

hide-tan@dsv.su.se, hercules@dsv.su.se, xmartin@dsv.su.se,

maria.kvist@karolinska.se, mariask@dsv.su.se, sumithra@dsv.su.se

ABSTRACT
Negation detection is a key component in clinical information extraction systems, as health
record text contains reasonings in which the physician excludes different diagnoses by negating
them. Many systems for negation detection rely on negation cues (e.g. not), but only few
studies have investigated if the syntactic structure of the sentences can be used for determining
the scope of these cues. We have in this paper compared three different systems for negation
detection in Swedish clinical text (NegEx, PyConTextNLP and SynNeg), which have different
approaches for determining the scope of negation cues. NegEx uses the distance between the
cue and the disease, PyConTextNLP relies on a list of conjunctions limiting the scope of a cue,
and in SynNeg the boundaries of the sentence units, provided by a syntactic parser, limit the
scope of the cues. The three systems produced similar results, detecting negation with an
F-score of around 80%, but using a parser had advantages when handling longer, complex
sentences or short sentences with contradictory statements.

KEYWORDS: clinical text, negation detection, syntactic analysis.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 387 of 474]

1 Introduction

Clinical text is written by physicians and nurses in patient records. Most of these notes are
noisy, written in telegraphic style, containing e.g. incomplete sentences with missing subjects.
Moreover clinical text contains much more spelling errors than ordinary text. All this together
makes it difficult for ordinary text processing tools to work properly.

In a clinical setting, it is important to record the symptoms and signs of diseases that the patient
reports as a base for the following reasoning and speculation of possible diagnoses. Possible
diseases that can be ruled out, as well as symptoms that the patient does not experience,
are therefore frequently mentioned in the health record narrative. In one study, some of
the most frequently used clinical observations were found to be negated the majority of the
time (Chapman et al., 2001a). Negation detection in a clinical setting is essential for, e.g.,
text summarisation of clinical text, or for information retrieval of symptoms and diagnoses.
Such systems would be very valuable for clinical decision support, knowledge extraction and
supporting clinicians in their daily work.

The aim of this study is to determine if syntactic information is useful for negation scope
detection in clinical text, compared to fixed or flexible rule-based scope detection.

Some of the problems with negation detection and determining the scope of what is negated,
particularly in clinical texts, are linked with the characteristics mentioned above: the texts are
often telegraphic and may contain information dense sentences where negated and affirmed
diagnostic expressions are in close proximity, long enumerations, and complex sentences, where
current negation detection approaches produce errors. Such problems may be better handled if
syntactic information is used.

We therefore compared three different approaches for determining negation delimitation scope
of diagnostic expressions:

1. Using the heuristic that the scope of a negation cue is six tokens, that is, if a diagnostic
expression is mentioned in the proximity of six tokens from a negation cue it is considered as
negated. This heuristic has previously been used for Swedish (Skeppstedt 2011).

2. Using the sentence as the scope for the negation cues, but limiting the scope if a conjunction
is present in the sentence. This approach has previously been used for Swedish (Velupillai et al.,
2013)

3. Using morphological and syntactic labels provided by a syntactic parser for determining the
scope of a negation trigger.

2 Related Research

There are several studies on negation detection in English clinical text, both rule-based methods
(e.g. Chapman et al., 2001b, Mutalik et al., 2001) and machine learning based methods (e.g.
Rokach et al., 2010). The rule-based studies use a cue phrase that indicates negation, e.g. not,
no, rule out. The most simple approaches use a heuristically determined scope, negating all
symptoms and diseases that occur in close proximity to a cue phrase (Chapman et al., 2001b),
whereas there are also approaches using other cue words, such as conjunctions, for limiting
the scope of a negation cue phrase (Elkin et al., 2005, Chapman et al., 2011). Morante and
Daelemans (2009) have studied the span of the scope to the left and to the right of the negated
term in the BioScope Clinical Corpus and found that over 97 percent of the scopes are to the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 388 of 474]

right of the negation and are on average 6.33 tokens long, while the ones to the left are only
4.84 tokens long. Aronow et al. (1999) describe a negation detection system, NegExpander,
where they checked the scope of conjunctions to decide scope of negations, i.e. a sort of
basic syntactic analysis. In Goryachev et al. (2006) this approach was compared with other
approaches such as NegEx (see below) and machine learning based approaches (SVM and Naïve
Bayes).

There are also studies in which parsers have been used for detecting the scope of negation cues.
The *SEM shared task (Morante and Blanco, 2012) provided a phrase structure parsed literary
corpus, annotated for negation cues and their scope, and had as one of the tasks to detect this
scope. Most participating groups based the scope detection on machine learning, and the two
most successful both used conditional random fields, one with features from the syntactic tree
and the other also using lexical features.

In the clinical domain, Huang and Lowe (2007) categorized negation cues, based on their
syntactic category and on typical phrase patterns they occur in, and constructed a grammar
for how negation is expressed for each category, using phrase structures given by the Stanford
syntactic parser. This resulted in a precision of 98.6% and a recall of 92.6% for detecting
negated noun phrases in radiology reports.

Another rule-based system, using the dependency parser Minipar, was constructed by Ballesteros
et al. (2012). This system determines scope by traversing the dependency graph towards the
terminals, starting from the negation cue, if the cue is a verb, and otherwise with the verb that
is affected by the negation cue. This system detected negation cues and their scope with a
precision of 95.8% and a recall of 90.6% on the clinical part of the BioScope corpus.

Zhu et al. (2010) also used the BioScope corpus and employed techniques developed for shallow
semantic parsing for detecting scope. The negation cue was regarded as a predicate and its
constituents, i.e. words included in its scope, were found by a machine learning system among
candidates given by a phrase structure parser. This approach resulted in a precision of 82.2%
and a recall of 80.6% for determining negation scope in the clinical part of BioScope, when
using automatic cue and parse tree detection.

Velldal et al. (2012) combined the output of one rule-based and one machine-learning system
for detecting scope of negation in the BioScope corpus. For the rule-based system, rules were
constructed for determining the scope of the cue, given the output of the dependency parser
MaltParser, trained on the Penn Tree-bank. Separate rules were constructed for each cue
part-of-speech category, with a special rule for the word none. For the machine learning system,
a phrase structure grammar was adapted to identify phrase structure constituents identical to
those in the annotated scopes. For the scientific texts in the BioScope corpus, this method gave
substantially improved results compared to a baseline of using the entire sentence as the scope.
For the clinical texts in the corpus, however, the baseline scope detection gave slightly better
results with an F-score of 91.4, compared to 90.7 (using gold standard cues). It was found that
40% of the scope errors in the clinical domain were due to parse errors.

3 Method

We here compare three approaches – fixed size context window, lexical cues and syntactic tags
– to determine the scope of a negated diagnostic expression in a Swedish clinical corpus. All
approaches rely on predefined trigger lists of negation cues. In order to study the effect of scope
delimitation in negation detection we have used the same trigger lists for all systems.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 389 of 474]

3.1 NegEx

NegEx (Chapman et al., 2001b) is a widely used system for negation detection in clinical
text that is built on three different lists of cue phrases that trigger negation; pre-negations,
post-negations and pseudo-negations. The pre-negation list consists of cue phrases indicating
that a clinical condition, i.e. a disease or a symptom, following the cue is negated, whereas
the post-negation list consists of cue phrases indicating that a clinical condition preceding
them is negated. Pseudo-negation phrases, on the other hand, are phrases that should not
trigger a negation of a clinical condition, even though they contain a negation cue, e.g. not
only. The first version of NegEx uses a heuristically determined number of tokens for the scope
of a negation cue. A clinical condition is thus here negated if it is in the range of one to six
tokens from a post- or pre-negation trigger. This version of NegEx has been adapted to Swedish,
through a translation of English negation cues into Swedish1, and through retaining the six
token heuristics for determining the scope of the triggers used in the English study (Skeppstedt,
2011). Later versions of NegEx for English use a list of termination terms, e.g. conjunctions, to
limit the scope of what clinical conditions a negation cue negates.

3.2 PyConTextNLP

PyConTextNLP (Chapman et al. 2011) is an extension of the NegEx algorithm that includes
modifications of the scoping rules, how lexical triggers are matched, and more functionalities
for defining user- and task-specific rules. It works on a sentence level and takes as input a
database containing the texts or sentences to be analyzed, user-defined targets (here: diagnostic
expressions) and user-defined lexical triggers. These triggers are represented as four-tuples: a
literal (the lexical cue/trigger), a category (what the trigger represents), a regular expression
(to capture variants of the trigger) and a rule that defines the direction a trigger modifies
a target (forward, backward or bidirectional). For handling scopes, instead of a six-token
window, the algorithm operates on the whole sentence, unless it finds user-defined conjunctions.
PyConTextNLP has been ported to Swedish (Velupillai et al., 2013).

3.3 SynNeg

SynNeg is a negation scoping tool that uses morphological and syntactic information provided
by the MaltParser (Nivre et al., 2007). The MaltParser is a language-independent and data-
driven dependency parsing system which relies on inductive learning from treebank data for
the analysis of new sentences. In Hassel et al. (2011) it was shown that the MaltParser trained
on general Swedish text worked sufficiently on Swedish clinical text (92.4% accuracy for
part-of-speech tagging and a labeled attachment score of 76.6% for the syntactic dependency
parsing). Therefore, it is likely that the information provided by a parser trained on general
Swedish text can be useful also for negation detection in clinical text.

The basic idea of SynNeg is that a negation scope does not cross the boundary of a sentence
unit (i.e. subject + verb phrase). It uses a list of negation triggers in order to identify negative
expressions in a sentence and tries to delimit a sentence unit to which a negation cue belongs,
through finding another sentence unit in the sentence. The MaltParser assigns the ES (= logical
subject), FS (= dummy subject) or SS (=other subject) DEPREL (Dependency Relation) tag
to a subject of a sentence unit. When a negation cue is found, SynNeg checks the DEPREL

1This trigger list is used for all three systems. It contains a total of 42 negation cues: five post-negations, nine
pseudo-negations and the remaining are pre-negations.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 390 of 474]

tags of either the following token (pre-negation) or the preceding token (post-negation) from
the negation cue to find a subject DEPREL tag. It also checks the part-of-speech (POS) tag
for coordinating conjunction (KN), minor delimiter, e.g. comma (MID), and subordinating
conjunction (SN) in order to set the negation span boundary position. Every time one of these
POS tags is found, the position of the token is stored as a boundary candidate. Once a subject
DEPREL tag is found, the nearest boundary candidate from the subject DEPREL tag is set as the
negation span boundary.

3.4 Data

A Swedish clinical corpus2 annotated for uncertainty and negation on a diagnostic expression
level was used in these experiments. The corpus consists of assessment entries from a medical
emergency ward in a Swedish hospital (Velupillai et al., 2011) and was annotated by a physician.
The annotations, originally for six levels of uncertainty and negation, were collapsed into two
annotation classes: negated and non-negated. The data set consists of 8874 sentences (average
sentence length 9.56 tokens), of which 2189 sentences contain diagnostic expressions (one
sentence contains the same diagnostic expression mentioned twice). 421 of these diagnostic
expressions were tagged as negated during the annotation of this data set, while 1769 were
tagged as non-negated. The distribution of negation cues in the data set is shown in table 1.

Pre-negation
Negation cue n Percentage
ingen (no, common gender) 363 21.25%
ej (not) 344 20.14%
inga (no, plural) 240 14.05%
inte (not) 209 12.24%
utan (without) 120 7.03%
utesluta (rule out) 87 5.09%
inga tecken (no signs of) 76 4.45%
inget (no, neuter gender) 69 4.04%
uteslutas (be ruled out) 27 1.58%
inte har
(not have, reversed word order)

20 1.17%

kan inte (cannot) 17 1.00%
aldrig (never) 13 0.76%
har inte (not have) 13 0.76%
icke (non-, not) 13 0.76%
inte kan (cannot, reversed word order) 13 0.76%
inget som (nothing that) 12 0.70%
utan tecken (without sign of) 10 0.59%
förnekar (denies) 7 0.41%
inte visar (not demonstrate) 6 0.35%
avsaknad av (absence of) 4 0.23%
kunde inte (cannot, past tense) 1 0.06%
utan några (with no) 1 0.06%

Post-negation
Negation cue n Percentage
negativt (negative for) 13 0.76%
osannolikt (unlikely) 9 0.53%
inget avvikande
(no abnormal)

6 0.35%

saknas (absence of) 1 0.06%
Pseudo-negation

Negation cue n Percentage
kan inte uteslutas
(cannot be ruled out)

7 0.41%

inte utesluta
(not rule out)

3 0.18%

ingen förändring
(no change)

2 0.12%

vet inte (do not know) 2 0.12%

Table 1: Frequency and percentage of negation cues in the data set. n is the number of instances of each
cue. The total number of cues in the data was 1708.

2This research has been approved by the Regional Ethical Review Board in Stockholm (Etikprövningsnämnden i
Stockholm), permission number 2012/1838-31/3.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 391 of 474]

The MaltParser was used to parse the texts and used directly as input for the SynNeg algorithm.
This parsed data was also used to construct data in the input formats used by NegEx and
PyConTextNLP, respectively. As the MaltParser requires POS tagged data as input, we first
tagged the clinical text with the Granska tagger (Knutsson et al., 2003).

4 Results

Table 2 summarizes the result of negation detection for the three systems. As the data was
annotated on a diagnostic expression level, the figures show precision and recall for detecting
whether these diagnostic expressions are negated or not. Overall results are very similar for
NegEx, PyConTextNLP and SynNeg. NegEx produces slightly higher precision results for negated
(79.6), while SynNeg results in slightly higher recall (82.9) and F-Score (79.9).

NegEx PyConTextNLP SynNeg
Precision 79.6 78.1 77.0
Recall 79.6 81.2 82.9
F-Score 79.6 79.6 79.9

Table 2: Results of negation detection for NegEx, PyConTextNLP and SynNeg.

Some examples of how diagnostic expressions are classified by the three systems are presented
in figures 1 and 2 and table 3. Figure 1 shows an example where a non-negated instance is
within 6 tokens from a negation cue and a conjunction is missing. A sentence with a negated
instance beyond a 6-token window is presented in figure 2. Table 3 demonstrates a long
sentence containing an adversative expression and a subordinate conjunction.

Figure 1: Sentence with non-negated instance within 6 tokens and lack of conjunction. Negated instances
and non-negated instances are illustrated with red-colored italic and green-colored bold, respectively.
DEPREL (Dependency Relation) and POS-tag as given by MaltParser and Granska, respectively.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 392 of 474]

Figure 2: Sentence with negated instance beyond a 6-token window. Negated instances and non-negated
instances are illustrated with red-colored italic and green-colored bold, respectively. DEPREL (Dependency
Relation) and POS-tag as given by MaltParser and Granska, respectively.

Vid ankomst opåv, ingen astma, inga hållpunkter för lunginflammation, dock UVI och

anamnestisk klåda utan att man kan se urticharia eller annan dermatit.
(At arrival unaff, no asthma, no signs of pneumonia, but UTI and anamnestical itching
without any visible urticharia or other dermatitis.)

Swedish English Annotation NegEx PyConTextNLP SynNeg
astma asthma negated negated negated negated

lunginflammation pneumonia negated negated negated negated
UVI UTI non-neg negated non-neg negated

urticharia urticharia negated negated negated non-neg
dermatit dermatitis negated non-neg negated non-neg

Table 3: Sentence with an adversative expression and a subordinate conjunction. Negation cue, negated
instance and non-negated instance are illustrated with underlined, red-colored italic and green-colored
bold, respectively.

5 Discussion

Given the relatively small sample size, the differences in results between the three systems
are difficult to draw conclusions from. Employing a simple, rule-based approach with a small
amount of negation triggers and a fixed context window for determining scope is very efficient
and useful, if results around 80% F-score are sufficient for a given purpose.

However, to better handle sentences such as the examples in figures 1 and 2 and table 3, other
approaches are necessary. In the example in figure 1, (Has no heart attack, his angina has
increased.), the lack of a conjunction makes it difficult to specify a cue phrase for delimiting
the scope in PyConTextNLP, while this can be captured through the syntactic rules employed
in SynNeg. On the other hand, table 3, (At arrival unaff, no asthma, no signs of pneumonia,
but UTI and anamnestical itching without any visible urticharia or other dermatitis.), shows an

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 393 of 474]

example where PyConTextNLP correctly classifies all instances, while the other two systems
produce errors. The scoping window of six tokens in NegEx is problematic (UTI incorrectly
classified as negated and dermatitis incorrectly classified as non-negated), and SynNeg produces
an error due to the subordinating conjunction att following utan (without) (UTI, urthicaria and
dermatitis).

Both PyConTextNLP and SynNeg can correctly classify more complex cases, such as sentences
with enumerations beyond the 6-token window (see figure 2) and short sentences with con-
junctions that contradict instances. For improving the results of PyConTextNLP, it is essential to
define lexical cue phrases, such as conjunctions, that delimit the scope of the negation trigger.
For SynNeg, on the other hand, no lexical information is needed, only correct Part-of-Speech
tags and syntactic labels. The advantage of the latter approach is that it generalizes over lexical
terms.

The current version of SynNeg does not utilize the dependency tree produced by the parser, i.e.
no traversal is done as in e.g. Ballesteros et al. (2012). This could be useful and will be studied
further in the development of SynNeg.

The results for all three systems are in line with previous studies on negation detection for
Swedish, e.g. Skeppstedt (2011). The results for most English studies are higher, e.g. Huang and
Lowe (2007), but it is difficult to directly compare the findings, for instance given differences in
used data.

One limitation in this study is that no evaluation on the performance of the MaltParser on this
data has been conducted. A previous study shows that applying the MaltParser on Swedish
clinical text yields promising results (Hassel et al., 2011), but that the parser produces errors
in sentences with complicated conjunctional, conditional and prepositional constructions. As
these are important factors for the correct identification of negation scope, this needs to be
studied further.

The fixed context window approach (NegEx) is efficient and simple, but limited in its approach
and will not be able to handle longer, complex sentences or short sentences with contradictory
statements. With the more flexible approach employed in PyConTextNLP, it is possible to
improve results if lexical phrases that define boundaries for the negation scope are defined.
However, this approach will be problematic for cases that are ambiguous. Moreover, finding
these lexical phrases may be time-consuming, and there is a risk of overfitting. Using syntactic
information (SynNeg) instead may prove fruitful, as it is more generalizable. Also, with such an
approach, it will be easier to port the system to another domain or language. However, it is
crucial that the syntactic parser produces correct labels, and, of course, that a syntactic parser
is available for that domain and language.

We plan to further develop SynNeg and evaluate it on larger datasets. In particular, we intend to
incorporate information from traversing the dependency tree, in order to handle cases where the
current heuristics are limited (double negation is, for example, currently not handled by any of
the systems). Ongoing studies on automatically generating trigger terms both for negation and
conjunctions for improving PyConTextNLP for Swedish clinical texts will also be of importance,
and we will continue to compare the two approaches in order to further understand how well
these types of systems can perform, along with comparisons of current state-of-the-art machine
learning based approaches. We hypothesize that a combination of lexical- and syntactic-based
systems may be very powerful, as they may complement each other.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 394 of 474]

6 Concluding Remarks

In this study we compare three different approaches for determining negation delimitation
scope in Swedish clinical text. The approaches are rule-based, one of them relying on a fixed
context window (NegEx) and one relying on full sentences or predefined lexical cue phrases for
delimitation (PyConTextNLP). The third approach utilizes Part-of-Speech and syntactic labels
(SynNeg). All three systems depend on the same trigger list of negation cues. Results show that
although we are at the initial stages of developing SynNeg we achieve similar results compared
to established lexical rule-based negation detection approaches: around 80% F-score. Using
syntactic information may also prove more generalizable, facilitating porting to other domains
or languages.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 395 of 474]

References

Aronow, D. B., Fangfang, F., and Croft, W. B. (1999). Ad Hoc Classification of Radiology
Reports. J Am Med Inform Assoc, 5(6):393–411.

Ballesteros, M., Francisco, V., Díaz, A., Herrera, J., and Gervás, P. (2012). Inferring the scope
of negation in biomedical documents. In 13th International Conference on Intelligent Text
Processing and Computational Linguistics (CICLING 2012), New Delhi. Springer, Springer.

Chapman, B., Lee, S., Kang, H., and Chapman, W. (2011). Document-level classification of CT
pulmonary angiography reports based on an extension of the ConText algorithm. J Biomed
Inform, 44(5):728–737.

Chapman, W., Bridewell, W., Hanbury, P., Cooper, G., and Buchanan, B. (2001a). Evaluation of
negation phrases in narrative clinical reports. In Proceedings AMIA, pages 105–109.

Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, G. F., and Buchanan, B. G. (2001b). A
simple algorithm for identifying negated findings and diseases in discharge summaries. J
Biomed Inform, pages 34–301.

Elkin, P. L., Brown, S. H., Bauer, B. A., Husser, C. S., Carruth, W., Bergstrom, L. R., , and
Wahner-Roedler, D. L. (2005). A controlled trial of automated classification of negation from
clinical notes. BMC Med Inform Decis Mak, 13(5).

Goryachev, A., Sordo, M., Ngo, L., and Zeng, Q. (2006). Implementation and evaluation of
four different methods of negation detection. Technical report, DSG.

Harkema, H., Dowling, J. N., Thornblade, T., and Chapman, W. W. (2009). Context: An
algorithm for determining negation, experiencer, and temporal status from clinical reports. J.
of Biomedical Informatics, 42(5):839–851.

Hassel, M., Henriksson, A., and Velupillai, S. (2011). Something Old, Something New –
Applying a Pre-trained Parsing Model to Clinical Swedish. In Proc. 18th Nordic Conf. on Comp.
Ling. - NODALIDA ’11.

Huang, Y. and Lowe, H. J. (2007). A Novel Hybrid Approach to Automated Negation Detection
in Clinical Radiology Reports. JAMIA, 3(14):304–311.

Knutsson, O., Bigert, J., and Kann, V. (2003). A robust shallow parser for Swedish. In Proc.
14th Nordic Conf. on Comp. Ling. – NODALIDA ’03.

Morante, R. and Blanco, E. (2012). *sem 2012 shared task: resolving the scope and focus of
negation. In Proceedings of the First Joint Conference on Lexical and Computational Semantics -
Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings
of the Sixth International Workshop on Semantic Evaluation, SemEval ’12, pages 265–274,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Morante, R. and Daelemans, W. (2009). Learning the scope of hedge cues in biomedical texts.
In Proceedings of the Workshop on BioNLP, pages 28–36.

Mutalik, P., Deshpande, A., and Nadkarni, P. (2001). Use of general-purpose negation detection
to augment concept indexing of medical documents a quantitative study using the umls. JAMIA,
8(6):598–609.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 396 of 474]

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi, E.
(2007). MaltParser: A language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(2):95–135.

Rokach, L., Romano, R., and Maimon, O. (2010). Negation recognition in medical narrative
reports. Information Retrieval, 11(6):499–538.

Skeppstedt, M. (2011). Negation detection in Swedish clinical text: An adaption of NegEx to
Swedish. Journal of Biomedical Semantics, 2(Suppl 3):S3.

Velldal, E., Øvrelid, L., Read, J., and Oepen, S. (2012). Speculation and negation: Rules,
rankers, and the role of syntax. Comput. Linguist., 38(2):369–410.

Velupillai, S., Dalianis, H., and Kvist, M. (2011). Factuality Levels of Diagnoses in Swedish
Clinical Text. In Moen, A., Andersen, S. K., Aarts, J., and Hurlen, P., editors, Proc. XXIII
International Conference of the European Federation for Medical Informatics – User Centred
Networked Health Care, pages 559 – 563, Oslo. IOS Press.

Velupillai, S., Skeppstedt, M., Kvist, M., Mowery, D., Chapman, B., Dalianis, H., and Chapman,
W. (2013). Porting a rule-based assertion classifier for clinical text from English to Swedish. In
Proc. 4th Louhi 2013, Sydney, Australia.

Zhu, Q., Li, J., Wang, H., and Zhou, G. (2010). A unified framework for scope learning
via simplified shallow semantic parsing. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP ’10, pages 714–724, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 397 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 398 of 474]

Tone restoration in transcribed Kammu:
Decision-list word sense disambiguation

for an unwritten language

Marcus Uneson
Centre for Languages and Literature, Lund University

marcus.uneson@ling.lu.se

Abstract
The RWAAI (Repository and Workspace for Austroasiatic Intangible heritage) project
aims at building a digital archive out of existing legacy data from the Austroasiatic lan-
guage family. One aspect of the project is the preservation of analogue legacy data. In this
context, we have at our hands a large number of mostly-phonemic transcriptions of nar-
rative monologues, often with accompanying sound recordings, in the unwritten Kammu
language of northern Laos. Some of the transcriptions, however, lack tone marks, which
for a tonal language such as Kammumakes them substantially less useful. The problem of
restoring tones can be recast as one of word sense disambiguation, or, more generally, lex-
ical ambiguity resolution. We attack it by decision lists, along the lines of Yarowsky (1994),
using the tone-marked part of the corpus (120kW) as training data. The performance ceil-
ing of this corpus is uncertain: the stories were all annotated, primarily for human rather
thanmachine consumption, by a single person during almost 40 years, with slowly emerg-
ing idiosyncratic conventions. Thus, both inter-annotator and intra-annotator agreement
figures are unknown. Nevertheless, with the data from this one annotator as a gold stan-
dard, we improve from an already-high baseline accuracy of 95.7% to 97.2% (by 10-fold
cross-validation).

Keywords: word sense disambiguation, Kammu, decision lists, lexical ambiguity resolu-
tion, tone restoration, legacy data.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 399 of 474]

1 Introduction

The RWAAI (Repository and Workspace for Austroasiatic Intangible heritage) project
aims at building a digital archive out of existing legacy data from theAustroasiatic language
family, not only linguistic but also encompassing general cultural heritage (musicological,
anthropological, etc). This goal involves digitizing analogue data, converting existing dig-
ital formats into modern, non-proprietary if necessary, and providing machine-readable
metadata descriptions.

A major part of the project’s digitization efforts concerns a large collection on Kammu, an
Austroasiatic language spoken in northern Laos. The collection, gathered from the early
70’s and on, among other things spots what is for an unwritten language a very sizeable
text corpus: a large number of mostly-phonemic transcriptions of spontaneous, narra-
tive monologue, often with the original recording intact. A problem, however, is that four
decades of data handling, even by a single person, will inevitably witness varying practices.
For instance, there are different spelling conventions; preferably, these should be harmo-
nized. More crucially, the early transcriptions, in contrast to later ones, do not have tones
marked, which for a tonal language such as Kammu is essential (especially for computa-
tional applications). The present paper deals with inference of the missing tones by word
sense disambiguation (WSD), similar to what Yarowsky (1994) applied to restoration of
accents in Spanish and French.

The paper is organized as follows. Section 2 describes the data. Thus, we present Kammu
in some detail: a few words on the typological properties of the language (2.1); on the
work which has produced the data we use (2.2); and finally on the particular content of
the transcriptions – namely folk tales in narrative, self-paced monologue (2.3). Section 3
presents the problem as an instance of WSD, the experimental setup, and the outlines of
the algorithm; and motivates the choice of decision lists as machine learning approach.
Section 4 comments the results and Section 5 concludes with a general discussion of the
context of the task, including variant applications of the algorithm.

2 Background

2.1 On Kammu

The following summary is based on Svantesson (1983). The Kammu (or Khmu; ISO 693-3
kjg) is the largest minority language of Laos, spoken by half a million people in the north-
ern regions of the country, as well as in adjacent parts of Vietnam, Thailand and China. It
belongs to the Khmuic subgroup of the Austroasiatic languages.

Kammu is predominantly analytic, exhibiting no inflectional morphology. Derivational
morphology is productive through reduplication, prefixation and infixation. New words
are also coined by compounding. Kammu has no practical orthography; however, practi-
cally all Kammu speakers also know Lao, and the younger generation is literate in it.

Kammu is a tonal language. With only slight simplifications1 every lexical entry is mono-
syllabic and can be assigned either high or low tone. At type level, the tones are about

1The simplifications are operationally motivated and phonologically rather than phonetically based. First, we
assume that functionwords carry tone, which is true in a lexical sense butmay not be obvious in connected speech
(and the transcriber may or may not have marked tones in such cases). Second, we assume that all words are
monosyllabic, whereas in reality there are many sesquisyllabic (“one-and-a-half-syllables”) words, where a full
tonic syllable is preceded by a reduced, “minor” one. In some cases, the minor syllable may carry tone, although

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 400 of 474]

equally common. However, among the most common types (many of them function
words), low tone is much more frequent (e.g. 19 out of the 20 most frequent types in our
data), and thus low tone is significantly more common at token level (about 71% in our
data). In a recent Kammu dictionary (Svantesson et al., in press), there are on the order of
a thousand minimal word form pairs with respect to tone.

2.2 The Lindell-Raw Kammu collection

Most of the RWAAI Kammu material was collected by Kristina Lindell (1928-2005) and
her most important consultant, transcriber, translator, and general assistant, the native
Kammu Kam Raw (1938-2011). Kam Raw moved to Sweden in 1974, where he became a
researcher in his own right (then usually known under his Thai name, Damrong Tayanin);
he continued documentation of the Kammu language and culture until his death.

The Lindell-Raw collection is very large. It is also somewhat physically dispersed and, in
the lamentable absence of its creators, confusingly organized. The collection is very varied
with respect to content (linguistic, ethnographical, anthropological, musicological, botan-
ical) as well as physical format (thousands of drawings, figures and photos; thousands of
notes, translations, transcriptions written by hand, on typewriter, and on printers of the
80’s; hundreds of reel-to-reel tapes and audio cassettes; hundreds of VHS cassettes and
super-8 movies; hundreds of floppy disks and zip drives; hundreds of GB of content on
portable drives). Before the start of the RWAAI project, only a small fraction of the data
had been previously digitized, leaving plenty of excavation sites for the data archaeologist.

2.3 Kammu folk tales

From the point of view of a linguist, including the computational type, the most interest-
ing part of the Lindell-Raw collection is perhaps the many sound recordings of folk tales,
ranging from about 1 to 20 minutes in length. The conversational setting is monologic,
spontaneous, narrative: the speakers know the general content, but the actual phrasing is
mostly improvised. At least 700 such stories are known to have been recorded, by dozens
of speakers (although it is not clear at this point that all of the recordings have survived).
A sizeable subset (between 300 and 350 have been identified at the time of writing) was
transcribed by Raw over the years. English translations of many of these, but by no means
all, have been published in six volumes (Lindell et al., 1977, 1980, 1984, 1989, 1995, 1998),
with a seventh, unpublished one close to being finished at the time of Raw’s death. A small
number of the transcriptions also have accompanying interlinear glossings (Figure 1).

As noted above, Kammu is an unwritten language. The transcriptions are in principle
phonemic, using IPA, except for common use of capitalization and punctuation. However,
as is natural, they also bear some hallmarks of an idiosyncratic, increasingly conventional-
ized orthography – for instance, when transcribing the Eastern Kammu dialect, where the
tonal distinction is missing and instead corresponds to a contrast in voicing (Svantesson,
1989), Raw still marks tone as for the cognate of his native Northern variety.

We currently have amachine-readable corpus of around 175 stories thus transcribed, com-
prising≈120kW in total (Section 3.2). This may be tiny for written languages, but it is very

it is usually predictable. Third, the parts of a compound each independently carry tone – here, we consider
compounds as strings of independent, monosyllabic words.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 401 of 474]

Yèm
Time

yə̀
old

húal
bear

snáa
those-two

kɔɔ̀y
squirrel

prɔɔ̀m
together

yɔ̀ tèe.
each-other

Once upon a time the bear and the squirrel were close friends.

Yəh̀,
Well,

tnì
there

prɔɔ̀m
together

yɔ̀ tèe
each-other

yɔh̀
go

əh̀
make

crɔ́,
weir,

Well, there they went together to make weirs

kɔɔ̀y
squirrel

ləə̀
then

əh̀
make

crɔ́
weir

òm
water

nɛ̀,
small,

The squirrel built a weir in a small brook

húal
bear

ləə̀
then

əh̀
make

crɔ́
weir

òm
water

nám.
big.

but the bear built his weir in a big river.

Figure 1: First lines of a (tone-marking) transcription of a recording of the Kammu folktale
Lɨàŋ húal kaṕ kɔɔ̀y “The story of the bear and the squirrel”, with interlinear glossing.

sizeable as far as unwritten ones go. Although Raw originally intended this corpus as doc-
umentation, not as a computational resource, we have already used it (in conjunction with
the Kammu dictionary mentioned above) for some basic computational applications, such
as simple context-dependent spell checking and interlinear glossing.

Nevertheless, for documentation and computation alike, it is highly desirable to extend
the corpus with the remaining transcriptions (after digitization). The main problem in so
doing is that the early transcriptions, although well matched in terms of style and genre,
are incomplete: they do not mark tones, which makes them significantly less useful for
many practical purposes. In the following, we usemethods for word sense disambiguation
to supply the missing tones with good accuracy, substantially reducing the errors of an
already-high baseline.

3 Experiment

3.1 Tone restoration throughWSD

Word sense disambiguation (WSD) aims at automatically assigning the most appropriate
meaning (ormeanings, but usually only one is preferred) to a homonymous or polysemous
word, given its context. Earlywork often targeted a lexical sample, with a small, predefined
set of ambiguous words, like interest or bank. Later, the “all-words” task has becomemore
common, where systems simultaneously disambiguate every single word of an input text,
given the different possible senses for each (see Navigli (2009) for an extensive survey, or
Agirre and Edmonds (2006) for a monograph). This standard problem phrasing is rea-
sonably accurate also for tone restoration in Kammu, with a few notes:

All-words task Kammu tone restoration ismore “all-words” thanmost: every single lex-
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 402 of 474]

ical entry is associated with either high or low tone; if tone is unmarked in transcrip-
tion, the word form is usually ambiguous (for instance, in our 120kW corpus, about
70% of word tokens also occur with the other possible tone). Thus, the task also
targets function words, which are of less interest to most WSD applications.

Easy supervision and evaluation As noted by Yarowsky (1994) for the similar case
of accent restoration in French and Spanish, by stripping the accents (or tones, in
our case) from existing transcriptions, we get a gold standard and a fully supervised
task, with convenient and objective evaluation. By contrast, in traditional WSD, an-
notating new training data is expensive, and human inter-annotator agreement is
relatively poor even for well-known resources.

Word form required For typological reasons, there is no reasonable way to predict the
tone of a Kammu word from its context only. This is different from, say, the accent
restoration case, where we sometimes may know the accent of a word without actu-
ally knowing the word itself (for instance, in French, wemay for syntactic reasons be
sure that an omitted word is a participle, and thus has acute accent).

Minimal resources available Compared tomostWSD settings, the computational re-
sources for Kammu are few (a small corpus and a dictionary; see next section) – no
lemmatizers, thesauri, taggers, parsers, etc. Furthermore, as pointed out above, the
few resources there are were produced for the purposes of language and cultural her-
itage documentation – if they also turn useful for computational applications, this is
more of a fortunate but unintended side effect. Just as importantly, qualified tran-
scribers and/or proofreaders of Kammu are very hard to find.2

3.2 Resources

The Kammu folktale corpus we have used in the experiments below comprises 119999
words, divided into 10526 sentences and 174 stories. We should note upfront that it does
contain a significant number of transcription errors and, in particular, inconsistencies –
the transcriptions were never intended primarily for machines. The relatively high error
rate unfortunately makes the corpus less useful as a gold standard; among other things,
the performance ceiling is unknown. Thus, even if we use the term “accuracy” below, the
figures reported are rather agreement rates with respect to corpus annotations (just like
they are for Yarowsky (1994)). That is, they can be compared to each other, but do not cor-
respond perfectly to accuracy in an absolute sense andwould very likely improve if the gold
standard would contain no errors. Similarly, a phrase such as “35% error rate reduction”
is really a lower bound – the true figure may well be much higher.

We prepared the corpus as follows. Case was normalized and sentences (or rather utter-
ances) split up at punctuation end marks ([:!.?…]). We used 10-fold cross-validation:
from the training data every tenth sentence, starting at sentence 1, 2, . . . 10 in the different
runs, was removed and added to the test corpus. The reported results are the average of
these 10 runs. Words with no tone or more than one (typically function words with tone
unmarked, and compounds written without separator, respectively; about 3000 tokens,

2Jan-Olof Svantesson (p.c.) estimates that there are less than 20 people in the world with experience of tran-
scribing Kammu.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 403 of 474]

or 2.5%) do not conform to either the target classifier’s output, nor to current transcrip-
tion conventions; thesewere excluded from classifications (although permitted, with tones
stripped, in the contexts of other words).

3.3 A tonal classifier

As inmost approaches to traditional supervisedWSD, our classifier computes, represents,
and stores the context for homographs with known classes. When encountering unclassi-
fied, ambiguous words, representations for these are similarly computed, and compared
to the stored contexts of the training data. In our case, we based the classifier on decision
lists (Rivest, 1987; Yarowsky, 1994, 1996). Very briefly, in decision lists, each feature-value
pair implies a test (like a line in a case statement); as soon as a single test is true, the asso-
ciated classification is output. We will use the term rule for the combination of a test and
its associated classification. Crucially, at training time the rules are arranged, and at ap-
plication time the associated tests are run, in (automatically estimated) descending order
of discrimination power – a measure of how cleanly a feature assigns an ambiguous item
into a single target class, given the item’s context.

Decision lists are easy to implement, conceptually simple, and flexible. In particular, they
readily accommodate different kinds of information, bypassing the difficult modelling of
dependencies between heterogeneous feature sets. Also potentially irrelevant features can
be specified, with little performance loss (except training time) – the relevant features float
to the top of the ranking anyway.

To be sure, there aremanymore recentmachine learning approaches toWSD, and any one
of them would also have been a reasonable choice. However, although we will not pursue
the issue very far in this paper, decision lists by design have an additional property which
make them well suited for working with a noisy gold standard: every single decision can
be attributed to a specific, human-interpretable feature-value pair. This property of “clas-
sification accountability” is useful when we wish to trace the reasoning behind a surprising
(mis)classification – it may be due to an error in the target class of the training data; but it
may also be caused by, say, a spelling error in the feature description. If we are interested
in decreasing the noise of the gold standard, both possibilities are worth following up.

We implemented a decision list classifier similar to that of Yarowsky (1994) for binary
homonym discrimination with main specifications as follows below (we refer to Yarowsky
(1994) for the algorithmic details).3 An excerpt of a decision list thus learned is given in
Fig 1.

Notation We use w for a word with some unspecified tone; w↑ (w↓) for one with known
high (low) tone; w? for a word whose tone we wish to find out. We write c(w) for
the number of occurrences of w in the entire corpus, and similarly c(w, fi) for the
occurrences with feature fi.

Baseline We used the most-common sense baseline: w? = w↑ if c(w↑) > c(w↓), else w↓.
This baseline is very high (>95%) and can be implemented in few lines of code (for a

3As a variant, we also applied interpolated decision lists to the problem, using the mechanism suggested
in Yarowsky (1994). However, as we observed no performance gain whatsoever over ordinary uninterpolated
decision lists, for reasons of space we restrict the following report to our experiments with the uninterpolated
version, conceptually (and implementationally) much simpler.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 404 of 474]

score feature value output
5.99 coll+1 pɨan màan
5.63 coll-1 ləə màan
5.08 coll-1 priaŋ máan
5.08 bow cəə máan
5.08 coll-1 ma màan
4.79 coll-1 kɔɔ màan
…

Table 1: Beginning of a decision list for theminimal pairmáan ’to bury; to fade’/màan ’preg-
nant; Burmese’ (irrelevant duplicate rules omitted). For instance, if the first test which
returns true is the third (that is, maan neither has pɨan to the right (coll+1) nor ləə to the
left (coll-1); but does indeed have priaŋ to the left), then classifier output is máan.

comparison, as noted above, the much cruder baseline of always choosing the glob-
ally most common low tone will only score about 70.5%). In addition, we can take
max(c(w↑), c(w↓))/c(w) as a basic measure of confidence in the baseline decision.

Features We used single-word fixed-width features up to k = 2, for which we let ’coll-1’
denote the neighbour one step to the left (and similarly: ’coll-2’, ’coll+1’, ’coll+2’);
and single-word non-positional context features (’bag-of-words’) up to window-size
n; for which we write ’bow-n’ (i.e. {w|w ∈ w−n, . . . , w−1, w1, . . . , wn}). As a less off-
the-shelf item, we encode a little bit of linguistic insight in a third feature ’onset’:
certain onsets determine tone unequivocally (Svantesson, 1983). For instance, an
empty onset (initial vowel) occurs only with low tone, whereas onsets /d, ˀw, ˀj/ occur
only with high. Of course, for words which do occur in the training corpus, we have
access to more reliable global frequencies and onsets will add nothing new; but they
can be useful for unseen words.

Discrimination power Weused the log-likelihood ratiowith simple laplace (add-delta)
smoothing (δ = 0.05; e.g. Jurafsky and Martin, 2008, p. 134) applied to P :

dp(w, fi) =
∣∣∣∣log(

P (w↑|fi)
P (w↓|fi)

)∣∣∣∣
4 Results

The results are given in Table 2. The decision list-based classifier significantly improves on
the baseline (0.9722 vs 0.9572, p ≪ 0.001, paired t-test), an error rate reduction of around
35%. We note that features coll+2 and coll-2 are hardly ever selected, and that the width
of the bag-of-words window for our tiny corpus reaches maximum already at 3 words.

The log-likelihood discrimination scores can be used for other purposes than rule ranking.
For every word in the test corpus, if present in the training data, some rule will be the first
tomatch, and it will have an associated log-likelihood. We can treat this score as ameasure
of classifier confidence and rank all classifications accordingly. Figure 2 shows a graph of
cumulative accuracy versus algorithm confidence, thus operationalized.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 405 of 474]

bow-n↓ coll±k→ 0 1 2
1 0.9572 0.9654 0.9623
2 0.9690 0.9719 0.9715
3 0.9700 0.9722 0.9705
4 0.9686 0.9705 0.9701
5 0.9670 0.9693 0.9691

Table 2: Decision list tone restoration, accuracy. 10-fold cross-validation. Baseline 0.9572

0 20000 40000 60000 80000 100000 120000
Estimated confidence rank

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu
ra
cy

Accuracy vs. algorithm confidence

decision lists
baseline

Figure 2: Cumulative accuracy per classification sites ranked after descending classifier
confidence (summed results from all cross-validation runs). Decision lists (blue) and
most-common baseline (green; see text for definition).

A strategy that lies close at hand is to apply the rules immediately and iteratively – con-
ceptually (if not in implementation) only the most confident decision is applied in each
iteration, and its result is allowed to influence future classifications. If the two members
of a minimal pair with respect to tone occur in the same (tone-unmarked) context, then
it is conceivable that classification accuracy for the pair may be improved if we first can
assign tones to that context. As it turns out, this variation made no significant difference
at all to our current setup, but we note the possibility for other tasks in the future.

5 Discussion

Onemight wonder if beating a good baseline with a percentage point or two is worth all the
classifier hassle. It is, however. As noted, the Kammu corpus contains a certain amount of
errors – typos, omissions, misinterpretations, competing conventions, etc – and qualified
Kammu transcribers are in extremely short supply. Fortunately, a few of them are indeed
tied to the RWAAI project. However, their time is valuable and needed for many things
other than proofreading. In this context a single percentage point may mean 1000 errors
less to worry about.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 406 of 474]

Actually, raw performance aside, the classifier may be even more useful from the more
general perspective of managing human resources. If, as may well be the case, proofread-
ing the entire corpus turns out infeasible, then an algorithm which can rank its decisions
according to confidence may be used to point out where manual effort is likely to pay off
best, in a process somewhat analogous to active learning (Settles, 2009). For instance,
when checking automatically tone-annotated data, rather than traversing the corpus lin-
early, the transcriber/proofreader may check the nodes in ascending order of classifier
confidence, as estimated by log-likelihood (cf. Figure 2). If desired, proofreading can be
interrupted when the error rate falls below some threshold.

Similarly, it is easy to extract a ranked list over suspected mistakes in the training cor-
pus: predict all tones by cross-validation, identify the miclassifications and sort them by
descending order of confidence. With what we termed the accountability of decision lists
(Section 3.3), this should be an efficient way of improving the gold standard, finding errors
both in targets and in contexts.

On a final note, it should be pointed out that there is a recent Kammu-English dictionary
(Svantesson et al., in press). We are currently converting it from presentationally oriented
MS Word format into structured XML. Once this (rather painful) conversion is finished,
the dictionary will certainly be an important resource. However, for the task at hand, its
obvious usage (as a Kammu wordlist, disregarding the definitions) is less helpful than one
might expect; its use is mainly restricted to word forms unseen in the corpus. For these,
the wordlist can tell us whether they are unambiguous or not: in the former happy (but
rare) case, it can output a classification; in the latter, it can at least provide better-coverage
statistics on tones conditioned on word features such as onset. Also, for forms which are
observed in the corpus with one tone only, the wordlist can possibly tell us that a minimal
pair exists; this will not influence the system’s guess, but may affect its confidence.

To be sure, there aremore ambitious ways of using the dictionary, e.g. exploiting semantic
overlap in the English definitions via Wordnet (Miller et al., 1990). Moreover, notwith-
standing the desirable properties of decision lists (Section 3.3) for the task at hand, there
are several other machine learning methods that could be tried. However, our next step
should be to arrange proofreading of a large enough subset of the corpus to estimate the
error rate of the gold standard. Any more ambitious attempts to extend the current sys-
tem make little sense before this has been done, as it may well be the case that 97.2% is
approaching the ceiling.

6 Acknowledgement

This work was carried out as part of the infrastructural project ’DigitalMultimedia Archive
of Austroasiatic Intangible Heritage’, funded by the Riksbankens Jubileumsfond (project
ID In11-0066:1). We are grateful to Jan-Olof Svantesson, Nicole Kruspe, and three anony-
mous reviewers for useful comments.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 407 of 474]

References

Agirre, E. and Edmonds, P. (2006).Word sense disambiguation: Algorithms and appli-
cations, volume 33. Springer Science+ Business Media.

Jurafsky, D. andMartin, J. H. (2008). An Introduction toNatural Language Processing,
Computational Linguistics, and Speech Recognition. Prentice-Hall, 2 edition.

Lindell, K., Öjvind Swahn, J., and Tayanin, D. (1977). A Kammu story-listener’s tales.
Number 33 in Scandinavian Institute of Asian Studies Monograph Series. Curzon Press,
London.

Lindell, K., Öjvind Swahn, J., and Tayanin, D. (1980). Folk Tales from Kammu II: A
Story-teller’s Tales, volume 40 of Scandinavian Institute of Asian Studies Monograph
Series. Curzon Press, London.

Lindell, K., Öjvind Swahn, J., and Tayanin, D. (1984). Folk Tales fromKammu III: Pearls
of Kammu Literature. Number 51 in Scandinavian Institute of Asian Studies Monograph
Series. Curzon Press, London.

Lindell, K., Öjvind Swahn, J., and Tayanin, D. (1989). Folk Tales from Kammu IV: A
Master-Teller’s Tales. Number 56 in Scandinavian Institute of Asian StudiesMonograph
Series. Curzon Press, London.

Lindell, K., Öjvind Swahn, J., and Tayanin, D. (1995). Folk Tales from Kammu V: A
Young Story-Teller’s Tales. Number 66 in Nordic Institute of Asian Studies Monograph
series. Curzon Press, London.

Lindell, K., Öjvind Swahn, J., and Tayanin, D. (1998). Folk Tales from Kammu VI: A
Teller’s Last Tales, volume 77 of Nordic Institute of Asian Studies Monograph series.
Curzon Press, London.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. (1990). Five papers on
WordNet. International Journal of Lexicography, 3(4):235–244.

Navigli, R. (2009). Word sense disambiguation: a survey. ACM Computing Surveys,
41(2):1–69.

Rivest, R. (1987). Learning decision lists. Machine learning, 2(3):229–246.

Settles, B. (2009). Active learning literature survey. Technical Report Computer Sciences
Technical Report 1648, University of Wisconsin–Madison.

Svantesson, J.-O. (1983). Kammu Phonology and Morphology. PhD thesis, Lund Uni-
versity. Travaux de l’Institut de linguistique de Lund, 18.

Svantesson, J.-O. (1989). Tonogenetic mechanisms in northern mon-khmer. Phonetica,
46(1-3):60–79.

Svantesson, J.-O., Tayanin, D., Lindell, K., and Lundström, H. (in press). Kammu yùan-
english dictionary.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 408 of 474]

Yarowsky, D. (1994). Decision lists for lexical ambiguity resolution: Application to ac-
cent restoration in spanish and french. In Proceedings of the 32nd annual meeting on
Association for Computational Linguistics, pages 88–95. Association for Computational
Linguistics.

Yarowsky, D. (1996). Homograph disambiguation in text-to-speech synthesis. pages
157–172.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 409 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 410 of 474]

The automatic identification of discourse units in Dutch text

Nynke van der Vliet, Gosse Bouma, Gisela Redeker
University of Groningen, The Netherlands

n.h.van.der.vliet@rug.nl, g.bouma@rug.nl, g.redeker@rug.nl

ABSTRACT
The identification of discourse units is an essential step in discourse parsing, the automatic
construction of a discourse structure from a text. We present a rule-based algorithm to identify
elementary discourse units (EDUs) in Dutch written text. Contrary to approaches that focus
on the determination of segment boundaries, we identify complete discourse units, which is
especially helpful for the recognition of interrupted EDUs that contain embedded discourse units.
We use syntactic and lexical information to decompose sentences into EDUs. Experimental
results show that our algorithm for EDU identification performs well on texts of various genres.

KEYWORDS: discourse analysis, elementary discourse units, segmentation.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 411 of 474]

1 Introduction

Discourse structures can be useful as input for several other tasks, such as automatic summariza-
tion (Marcu, 2000; Thione et al., 2004; Bosma, 2008; Louis et al., 2010), question answering
(Verberne et al., 2007) and information extraction (Maslennikov and Chua, 2007). However, the
manual analysis of discourse relations in a text is a time-consuming task. The use of discourse
relations for other applications thus presupposes that these relations can be added to a text
automatically with relatively high accuracy.

This paper addresses the first step in automatic discourse analysis, namely the identification of
suitable Elementary Discourse Units (EDUs) in a text. This process involves segmenting the text
into sentences, and decomposing complex sentences into smaller units (typically clauses) that
express states of affairs and form the basis for discourse analysis. The task thus concerns fine-
grained discourse segmentation, not to be confused with segmenting a text into paragraph-size
chunks reflecting the topic structure (e.g. Hearst (1997) and Eisenstein (2009)), which is also
sometimes called discourse segmentation.

We describe a rule-based approach to identify EDUs in Dutch sentences using syntactic and
lexical information, and present the results of applying the algorithm to an annotated corpus
that contains texts from four different genres.

2 Related work

Several successful segmentation systems have been developed for English (e.g. Tofiloski et al.
(2009), Subba and Di Eugenio (2007) and Bach et al. (2012)), German (Lüngen et al., 2006)
and French (Afantenos et al., 2010) written text. Tofiloski et al. (2009) show for their English
data that good segmentation results can be obtained by a rule-based approach. For English, the
RST Discourse Treebank (Carlson et al., 2002), a substantial corpus segmented and manually
annotated for discourse structure, has been widely used for the development of machine
learning approaches to discourse segmentation for English text (Soricut and Marcu, 2003;
Sporleder and Lapata, 2005; Fisher and Roark, 2007; Subba and Di Eugenio, 2007; Sagae,
2009; Hernault et al., 2010; Bach et al., 2012).

For Dutch, there is insufficient annotated data to apply machine learning techniques. In van der
Vliet (2010) we present a basic rule-based segmenter that makes use of syntactic information
and punctuation for the automatic identification of segment boundaries in Dutch text. This
automatic discourse segmentation algorithm uses the common approach of identifying EDUs by
determining the segment boundaries in sentences. A well-known complication for this type of
approach is the occurrence of embedded discourse units that interrupt an ongoing EDU, as in
sentence (1).

(1) [Echter gedurende de nacht, [die op Mercurius maanden lang kan duren,] daalt de
temperatuur tot zo’n -185 graden Celsius,][wat weer tot de laagste in ons zonnestelsel
mag worden gerekend.]
[However during the night, [which can last for months on Mercury,] the temperature drops
to about -185 degrees Celsius,][which in turn can be counted among the lowest in our solar
system.]

In this case the non-restrictive relative clause ‘which can last for months on Mercury’ is an
embedded discourse unit, and the sentence parts before and after this clause together form

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 412 of 474]

another discourse unit. As Afantenos et al. (2010) point out, a segmenter that is only able to
identify whether there is a boundary or not in the text cannot distinguish between an embedded
discourse unit within another discourse unit and three separate subsequent EDUs. Afantenos et
al. solve this problem by identifying three types of segment boundaries: boundaries that only
start a segment, boundaries that only end a segment and boundaries that do both.

In the segmentation of the RST Discourse Treebank the two parts of an EDU that is split by
an embedded EDU are kept as separate units. In the discourse relation annotation process
that follows, the two parts of the EDU are linked by the pseudo-relation SAME-UNIT that was
introduced by Carlson and Marcu (2001) for this purpose. Carlson and Marcu’s approach thus
relegates the problem of embedded units to the relational level, which we consider undesirable.1

In our corpus, discontinuous EDUs are represented as complete EDUs in the segmentation. As
explained above, a binary classification algorithm that identifies for each text position whether
there is a boundary or not is not sufficient for our purpose. In this paper, we therefore improve
on van der Vliet (2010). We identify the EDUs that form the starting point for discourse
relation annotation that uses the established set of Rhetorical Structure Theory (RST) relations
(originally introduced by Mann and Thompson (1988); see www.sfu.ca/rst). In addition, we
add lexical features and apply the algorithm to two more genres, namely popular scientific
news texts and advertisements.

3 Principles of segmentation

Our definition of an elementary discourse unit is guided by the question of whether a discourse
relation could hold between the unit and another segment. We identify independent clauses,
adverbial clauses and non-restrictive relative clauses (separated by a comma) as EDUs. Sentence
fragments (subclausal expressions ending with a period and (sub)headings in the text) are also
treated as EDUs. If forward conjunction reduction (see (2)) or gapping occurs in clause-level
coordination, we consider both parts of the coordination as EDUs. If VP coordination occurs as
in (3) we consider this as two separate propositions about the subject and thus distinguish two
EDUs.

(2) [De planeet draait in 58.6 dagen om haar as][en in 88.0 dagen om de zon.]
[The planet turns around its axis in 58.6 days][and around the sun in 88.0 days.] (EE02)

(3) [Dankzij een project van Dark & Light Blind Care is deze aandoening vroegtijdig
ontdekt][en behandeld.]
[Thanks to a project of Dark & Light Blind Care this disorder was discovered in time][and
treated.] (FL14)

We do not treat restrictive relative clauses, appositives, and complement clauses as separate
EDUs. In line with Tofiloski et al. (2009) we do not consider speech parentheticals (e.g. "...",
he said) as EDUs. For more details about our segmentation principles, see van der Vliet et al.
(2011).

4 Implementation

The input for the EDU identification algorithm is a text file containing the text that needs to be
segmented. Before applying our segmentation rules we use Alpino (Van Noord et al., 2006), a

1Borisova and Redeker (2010) show that the identification of SAME-UNIT pseudo-relations in a boundary-segmented
corpus can be problematic.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 413 of 474]

Dutch dependency parser, to segment the input text into sentences and to create a syntactic
tree for each sentence of the text.

We then use the syntactic analysis of the sentences to identify the EDUs for each sentence
and produce a text file containing all the EDUs of all sentences. For each sentence we start
to identify possible EDUs by applying a set of EDU identification rules. We use two types of
rules in our system: EDU rules (see below) that are used to recognize the basis for an EDU, and
combination rules that are used to build the complete EDU from the basis by combining it for
example with punctuation or prepositional phrases.

EDU rules

1. Main clauses are identified by the syntactic category tag @cat=‘smain’. The tag @cat=‘sv1’ is used
for imperatives and yes/no questions. Text parts with these two tags are identified as EDUs, unless
they start with a verb of reported speech.2 If they do, they are identified as speech parentheticals
(which we do not consider as an EDU on its own in our segmentation) and later combined with the
preceding EDU using a combination rule.

2. Infinitival clauses are only identified as EDUs if they do not function as a complement. The tag
@cat=‘oti’ is used for om te (‘to’) - clauses. Only if an om te-clause is classified as a modifier with
the tag @rel= ‘mod’ is it taken as a separate EDU.

3. Phrases that start with a subordinating conjunction are identified by the Alpino tag @cat= ‘cp’. They
are only identified as an EDU if they contain a verb and if they are classified as a modifier with the
tag @rel=‘mod’.

4. Relative clauses are identified in Alpino with the tags @cat= ‘rel’ and @cat= ‘whrel’. Text parts with
these tags are only identified as an EDU if they are preceded by a comma.3

5. Clauses between parentheses or hyphens are identified as EDUs.

6. Complement clauses are not identified as EDUs. The construction zo..dat and zodanig..dat (both
can be translated as ‘so..that’) forms an exception to this rule. If the text part that precedes the
dat-clause contains the word zo or zodanig, the dat-clause is identified as a separate EDU.

7. Verb-final clauses are identified with the tag @cat=‘ssub’. These clauses often function as comple-
ments and are not identified as EDUs. Only when a sentence contains two conjoined verb-final
clauses as in (4), the second clause is identified as an EDU.

(4) [Het probleem is echter wel dat Phobos zich onder het minimum van de geschikte
synchronisatiehoogte bevindt][en elke eeuw 1.8 meter dichter bij Mars komt te liggen.]
[The problem however is that Phobos is situated under the minimum of appropriate
synchronisation hight][and ends up 1.8 meters closer to Mars each century. (EE02)

The combination rules are used to create complete EDUs by combining the identified EDUs
with tokens that directly precede or follow the EDU and should be part of it. For example,
punctuation symbols are assigned to the top of the syntactic trees by Alpino; so we use a
punctuation rule to combine a punctuation symbol that immediately precedes an EDU with the
EDU, and another rule to combine a punctuation symbol that immediately follows an EDU with

2We used the following list of verbs of reported speech: zeggen (to say), uitleggen (to explain), vinden(to think,
find), vertellen (to tell), beweren (to claim), denken (to think), vermoeden (to suspect), concluderen (to conclude),
melden (to report). Note that Dutch requires subject-verb inversion in postposed tags.

3In our segmentation we only identify non-restrictive relative clauses as EDUs, which Dutch punctuation rules require
to be preceded by a comma.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 414 of 474]

the EDU. In the same way, complementizers and any remaining prepositional phrases and noun
phrases in a sentence are incorporated into an adjacent EDU. A separate combination rule is
used to combine speech parentheticals with a preceding EDU.

In the next step the possible EDUs, which are strings of tokens (e.g. words, punctuation), are
used to determine the EDUs of the sentence. This is done with a straightforward method:

1. An EDU that spans the whole sentence is added to the list of possible EDUs to make sure that there
are no sentence parts left out in the identified EDUs of a sentence.

2. If overlapping EDUs (i.e. two EDUs of which the second EDU starts before the end of the first EDU
and ends after the end of the first EDU) or duplicate EDUs occur in the list of possible EDUs, the
second EDU is removed from the list.

3. Textual overlap in the EDUs in the list is eliminated by removing tokens from the longer EDUs. For
each EDU in the list of EDUs, we check if there are EDUs in the list that fall within the boundaries
of the EDU under consideration, i.e. EDUs that start at the same word but end earlier, EDUs that
start later but end at the same word, and EDUs that start later and end earlier than the EDU under
consideration. We then remove the text tokens of those EDUs from the string of tokens of the longer
EDU. For example, if the EDU list consists of the EDUs [1 2 3] and [1 2 3 4 5 6], the list will be
transformed in this step to a list containing the EDUs [1 2 3] and [4 5 6].

4. The list of EDUs is sorted by the start positions of the EDUs in the sentence.

The final step is to make the output suitable for discourse relation annotation within the RST
framework. The output of the algoritm is a text file containing one EDU per line. The text files
can be opened with the O’Donnell’s RSTTool3 (O’Donnell, 1997) for annotating the discourse
structure. One issue in the production of the text file containing the EDUs is the handling
of embedded EDUs. Note that the sorting procedure in step 4 above solves the problem of
embedded EDUs by placing the embedded EDU after the EDU inside which it occurs in the text.

5 Data

Our corpus consists of 80 Dutch texts varying in length between a minimum of approximately
190 words and a maximum of approximately 400 words. The corpus consists of 40 expository
texts and 40 persuasive texts. The expository subcorpus contains 20 texts from online encyclo-
pedias on astronomy and 20 astronomy news texts from a popular-scientific news website. The
persuasive texts are 20 fundraising letters from humanitarian organizations and 20 commercial
advertisements from lifestyle and news magazines. Table 1 shows the total number of sentences,
EDUs and embedded EDUs in each genre. For more details about the corpus, see van der Vliet
et al. (2011) and Redeker et al. (2012)).

Text type sentences EDUs embedded EDUs
Encyclopedia texts 395 618 17
Popular Scientific News 435 585 5
Fundraising letters 467 597 2
Advertisements 410 545 3
Total 1707 2345 27

Table 1: Number of sentences, segments and embedded segments per genre

The texts were segmented by two trained annotators following the segmentation principles
established in the project. A kappa value of 0.97 shows a high level of inter-annotator agreement.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 415 of 474]

6 Evaluation

The performance of a discourse segmentation algorithm can be measured by comparing the
output of the system with the manual segmentation of the text. The most widely used evaluation
measures for automatic discourse segmentation are precision, recall and F-score. Precision is
the number of correct units divided by the total number of units given by the system. Recall is
the number of correct units divided by the total number of units in the manual segmentation.
F-score is the harmonic mean of precision and recall: F = (2 * precision * recall)/(precision +
recall).

When comparing the algorithm’s performance with other approaches, it is important to note
that automatic segmentation approaches differ in the unit that is used for the computation of
these evaluation measures. Some approaches (e.g. Subba and Di Eugenio (2007), Tofiloski
et al. (2009) and Sagae (2009)) use sentence-internal discourse boundaries, while others
(e.g. Le Thanh et al. (2004),Lüngen et al. (2006), Afantenos et al. (2010)) use elementary
discourse units. This leads to differences in the scores. For example, sentence (5) consists of
three EDUs that are distinguished by two sentence-internal segment boundaries. Consider the
segmentation in sentence (6) as the output of the segmentation algorithm. The precision based
on sentence-internal boundaries is then 1/1= 1 and the precision based on EDUs 1/2= 0.5.
Recall is 1/2= 0.5 based on inside-sentence boundaries and 1/3= 0.33 based on EDUs. The
F-score is 0.667 based on sentence-internal boundaries and 0.4 based on EDUs.

(5) [Als dat te strak wordt,][breekt het magneetveld los van het gas][en krijgt een nieuwe
structuur.][If that becomes too tight,][the magnetic field breaks from the gas][and gets a
new structure.]

(6) [Als dat te strak wordt, breekt het magneetveld los van het gas][en krijgt een nieuwe
structuur.][If that becomes too tight, the magnetic field breaks from the gas][and gets a
new structure.]

The evaluation based on sentence-internal boundaries is problematic for the evaluation of
embedded discourse units, because an evaluation based on boundaries cannot distinguish
between an EDU that is interrupted by an embedded EDU and three subsequent EDUs. We will
thus present our results using precision, recall and F-score based on EDUs.

7 Results

For the development of the segmenter we used a training set of 20 texts from our corpus: 5
texts from each of the four genres. We used the remaining 60 texts (15 texts per genre) for the
evaluation of the segmenter. We used precision, recall and F-score based on EDUs as evaluation
measures. Table 2 shows the segmentation results on our test set per genre. Although the
nature and structure of the text types is quite different, the performance of the segmenter is
stable across genres and the results show a reasonable agreement with the manually annotated
texts.

Our segmenter makes use of the syntactic parser Alpino to segment the input text into sentences
and to produce syntactic trees of the sentences in the text. However, both the tokenization
component and the dependency parser can make errors, which could influence the results of
the segmentation algorithm. We therefore compared the performance of the segmenter in three
different settings. In the first setting (SEG1) we used the Alpino tokenizer and dependency

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 416 of 474]

Genre EDUs Precision Recall F-score
EE 454 0.832 0.784 0.807

PSN 436 0.814 0.823 0.818
FL 453 0.870 0.859 0.864
AD 383 0.831 0.757 0.792

Total 1726 0.837 0.808 0.822

Table 2: Segmentation results in Encyclopedia Entries (EE), Popular Scientific News (PSN),
Fundraising Letters (FL) and Advertisements (AD)

parser for EDU identification. In the second setting (SEG2) we used gold standard sentence
tokenization and automatically generated syntactic trees. In the third setting (SEG3) we used
gold standard tokenization and gold standard syntactic trees as the input for EDU identification.
Table 3 shows the results for EDU identification on a subset of the test set of 20 texts (5 texts
per genre) for which we manually corrected the Alpino parse trees. For comparison, the table
also contains two baselines. BASE 1 takes every comma in a sentence as the end of an EDU and
the start of a new EDU. BASE2 uses only EDU rules 1, 3 and 4 and the combination rules (see
section 4) for segmentation.

Segmenter GS tok. GS synt. EDUs Precision Recall F-score
BASE1 X 563 0.654 0.604 0.628
BASE2 563 0.839 0.776 0.806
SEG1 563 0.858 0.826 0.842
SEG2 X 563 0.860 0.831 0.845
SEG3 X X 563 0.895 0.865 0.880

Table 3: Segmentation results based on EDUs

As can be seen in table 3 our EDU identification algorithm performs better than the two
baselines. The EDU identification results are only marginally better when using gold standard
tokenization (SEG2) compared to the automatic tokenizer (SEG1). When compared to the
results using automatically identified syntactic trees (SEG2), using gold standard syntactic trees
(SEG3) leads to an improvement of the results for EDU identification of about 3.5%.

In table 4 we compare the EDU identification algorithm with our earlier work on automatic
segmentation (see van der Vliet (2010)). Our previous segmenter inserts segment boundaries
but is not able to identify EDUs, so in our comparison we evaluate the segmentation results
based on sentence-internal segment boundaries. When applied to our test set of 60 texts (using
gold standard tokenization), our new segmenter (SEG2013) performs better than the old one
(SEG2010) on each of the evaluation measures.

Segmenter GS tok. Boundaries Precision Recall F-score
SEG2010 X 480 0.68 0.66 0.67
SEG2013 X 480 0.77 0.73 0.75

Table 4: Segmentation results based on EDU boundaries

Our EDU identification algorithm performs reasonably well compared to that of segmenters for
English. Bach et al. (2012) report an F-score of 0.86 based on EDUs using the Stanford parse
trees. Subba and Di Eugenio (2007), Sagae (2009) and Tofiloski et al. (2009) use an evaluation
based on sentence-internal boundaries and report F-scores of respectively 0.85, 0.87 and 0.83.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 417 of 474]

Note however that when we compare the results of these systems we should be aware of the
differences in segmentation guidelines that are implemented in these systems.

7.1 A qualitative evaluation

The evaluation measures presented above show only quantitative evaluation results. In this
section we present a qualitative evaluation and study the kinds of mistakes that occur when
applying our EDU identification algorithm. We analyzed the EDU identification results (using
gold standard tokenization and gold standard syntactic analysis) in the test set of 20 texts
(5 per genre) and categorized the mistakes. We distinguish three different types of errors:
errors concerning breaks in the manual segmentation that are not recognized by the system
and lead to EDUs that are too long (34 errors), errors concerning extra breaks inserted by the
segmentation algorithm that lead to EDUs that are too short (14 errors), and errors concerning
an EDU break by the algorithm that is inserted at the wrong place in the sentence (3 errors).

The majority of errors of the first type occur in conjunction constructions. For example, in (7)
there is forward conjunction reduction at clause-level coordination: the subject is elided in the
second clause. In the syntactic analysis Alpino assigns the category ‘prepositional phrase’to
the second part. Generally, ouur EDU identification algorithm should not treat prepositional
phrases as EDUs. A more specific rule is needed for a correct EDU identification in sentences
like (7).

(7) [Tijdens de explosie is de kern van de ster in elkaar gestort][en in de snel ronddraaiende
pulsar veranderd].
[During the explosion the core of the star was collapsed][and changed into the fast-spinning
pulsar]. (PSN08)

Other errors of the first type concern the recognition of non-restrictive relative clauses. Our
algorithm only inserts segment boundaries when non-restrictive relative clauses are preceded
by a comma, so it does not recognize other non-restrictive relative clauses as in (8).

(8) [De Oortwolk is een grote wolk met miljarden kometen rondom ons zonnestelsel
(inclusief de Kuipergordel)][die zich uitstrekt tot ongeveer een kwart van de afstand
tussen de zon en de dichtstbijzijnde ster.]
[The Oort cloud is a large cloud with billions of comets surrounding our solar system
(including the Kuiper belt)][which extends to about a quarter of the distance between the
sun and the nearest star.](EE08)

An example of an error of the second type is shown below. In sentence (9) our algorithm
wrongly identifies the text part ‘doordat de kometen hier maar weinig ondervinden’ (because the
comets are here barely affected) as a separate EDU. The text part functions as a complement
clause and is therefore not treated as EDU in our manual segmentation. In the syntactic analysis
of Alpino it is labeled with @cat=‘cp’ and @rel=‘mod’ and it contains a verb, so according to
our automatic segmentation rules it is identified as an EDU (see EDU rule 3, section 4). This
results in an embedded EDU in the segmentation of sentence (9) produced by our segmenter,
as shown in (10).

(9) Dat komt doordat de kometen hier maar weinig ondervinden van de aantrekkingskracht
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 418 of 474]

van de zon.
This is because the comets are here barely affected by the gravitational force of the sun.
(EE08)

(10) [Dat komt van de aantrekkingskracht van de zon.][doordat de kometen hier maar
weinig ondervinden]
[This is by the gravitational force of the sun.][because the comets are barely affected]

Example (12) shows an error of the third type, wrongly placed segment boundary, in combi-
nation of errors of the second type, failure to identify a boundary. Our manual segmentation
is shown in (11) and the output of our segmenter is shown in (12). The segmenter does not
recognize the segment boundaries after rompslomp,, after rekening, and after opnemen (which
separate four elliptical clauses in this sentence), but does identify an embedded discourse
discourse unit instead. The text part ‘waar en wanneer u maar wilt’ is labeled with the tag
@cat=‘whrel’ in the syntactic analysis and is preceded by a comma, so the segmenter the
EDU rule for non-restrictive relative clauses and identifies it as a separate EDU. Note that the
segmenter produces an error of the second type in this sentence as well: it fails to identify the
boundary after opnemen.

(11) [Dus.. geen papieren rompslomp,][waar en wanneer u maar wilt toegang tot uw
rekening][en altijd vrij opnemen][en storten.]
[So.. no paperwork,][access to your account where and when you want][and always
freely withdraw][and pay.]

(12) [Dus.. geen papieren rompslomp, toegang tot uw rekening en altijd vrij opnemen en
storten.][waar en wanneer u maar wilt]
[So..no paperwork, access to your account and always freely withdraw and pay.][where
and when you want]

8 Conclusion

We presented a rule-based algorithm to identify elementary discourse units (EDUs) in Dutch
written texts. Our experimental results show that good identification results can be obtained
using a relatively simple method. The performance of the EDU identifier is stable across the
genres in our data. Together with the work of Tofiloski et al. (2009) and Le Thanh et al. (2004))
our work suggests that for languages for which large corpora annotated with discourse relations
are not available, a rule-based approach is a viable alternative to machine learning approaches.
In future work we will use the output of the EDU identification algorithm in our experiments
on the automatic identification of discourse relations in Dutch text.

Acknowledgments

This work has been supported by grant 360-70-282 of the Netherlands Organization
for Scientific Research (NWO) as part of the program Modelling textual organization
(http://www.let.rug.nl/mto/).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 419 of 474]

References

Afantenos, S., Denis, P., Muller, P., and Danlos, L. (2010). Learning recursive segments for
discourse parsing. Arxiv preprint arXiv:1003.5372.

Bach, N. X., Nguyen, M. L., and Shimazu, A. (2012). A reranking model for discourse
segmentation using subtree features. In SIGDIAL Conference’12, pages 160–168.

Borisova, I. and Redeker, G. (2010). Same and Elaboration relations in the Discourse Graph-
bank. In Proceedings of the 11th annual SIGdial Meeting on Discourse and Dialogue, Tokyo,
September 24-25.

Bosma, W. E. (2008). Discourse Oriented Summarization. PhD thesis, University of Twente,
Enschede, the Netherlands.

Carlson, L. and Marcu, D. (2001). Discourse tagging reference manual. Technical report, ISI
Technical Report ISI-TR-545.

Carlson, L., Okurowski, M. E., and Marcu, D. (2002). RST discourse treebank. Linguistic Data
Consortium, University of Pennsylvania.

Eisenstein, J. (2009). Hierarchical text segmentation from multi-scale lexical cohesion. In
Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 353–361.

Fisher, S. and Roark, B. (2007). The utility of parse-derived features for automatic discourse
segmentation. In Proceedings of ACL ’07, pages 488–495.

Hearst, M. (1997). Texttiling: Segmenting text into multi-paragraph subtopic passages.
Computational Linguistics, 23(1):33–64.

Hernault, H., Bollegala, D., and Ishizuka, M. (2010). A sequential model for discourse
segmentation. In Proceedings of CICLing 2010, pages 315–326.

Le Thanh, H., Abeysinghe, G., and Huyck, C. (2004). Automated discourse segmentation by
syntactic information and cue phrases. In Proceedings of the IASTED International Conference
on Artificial Intelligence and Applications (AIA 2004), Innsbruck, Austria.

Louis, A., Joshi, A., and Nenkova, A. (2010). Discourse indicators for content selection in
summarization. In Proceedings of the 11th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 147–156.

Lüngen, H., Puskàs, C., Bärenfänger, M., Hilbert, M., and Lobin, H. (2006). Discourse
segmentation of German written text. In Proceedings of the 5th International Conference on
Natural Language Processing (FinTAL 2006).

Mann, W. C. and Thompson, S. A. (1988). Rhetorical structure theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

Marcu, D. (2000). The theory and practice of discourse parsing and summarization. The MIT
Press.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 420 of 474]

Maslennikov, M. and Chua, T. (2007). A multi-resolution framework for information extraction
from free text. In Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 592–599.

O’Donnell, M. (1997). RST-Tool: An RST analysis tool. In Proc. of the 6th European Workshop
on Natural Language Generation, Duisburg.

Redeker, G., Berzlánovich, I., van der Vliet, N., Bouma, G., and Egg, M. (2012). Multi-Layer
discourse annotation of a Dutch text corpus. In Proceedings of LREC 2012, Istanbul, May 21-27,
pages 2820–2825.

Sagae, K. (2009). Analysis of discourse structure with syntactic dependencies and data-driven
shift-reduce parsing. In Proceedings of the 11th International Conference on Parsing Technologies,
pages 81–84.

Soricut, R. and Marcu, D. (2003). Sentence level discourse parsing using syntactic and lexical
information. In Proceedings of HLT/NAACL 2003, pages 228–235.

Sporleder, C. and Lapata, M. (2005). Discourse chunking and its application to sentence
compression. In Human Language Technology Conference and the Conference on Empirical
Methods in Natural Language Processing (HLT-EMNLP), pages 257–264.

Subba, R. and Di Eugenio, B. (2007). Automatic Discourse Segmentation using Neural
Networks. In Proc. of the 11th Workshop on the Semantics and Pragmatics of Dialogue, pages
189–190.

Thione, G., Van Den Berg, M., Polanyi, L., and Culy, C. (2004). Hybrid text summarization:
Combining external relevance measures with structural analysis. In Proceedings ACL Workshop
Text Summarization Branches Out. Barcelona.

Tofiloski, M., Brooke, J., and Taboada, M. (2009). A syntactic and lexical-based discourse
segmenter. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 77–80.

van der Vliet, N. (2010). Syntax-based discourse segmentation of Dutch text. In Slavkovik, M.,
editor, Proceedings of the 15th Student Session, ESSLLI, pages 203–210.

van der Vliet, N., Berzlánovich, I., Bouma, G., Egg, M., and Redeker, G. (2011). Building a
Discourse-annotated Dutch Text Corpus. In Dipper, S. and Zinsmeister, H., editors, Bochumer
Linguistische Arbeitsberichte 3, pages 157–171.

Van Noord, G. et al. (2006). At last parsing is now operational. In Verbum ex machina: actes
de la 13e conférence sur le traitement automatique des langues naturelles (TALN 2006): Leuven,
10-13 avril 2006, page 20.

Verberne, S., Boves, L., Oostdijk, N., and Coppen, P. (2007). Discourse-based answering
of why-questions. Traitement Automatique des Langues (TAL), special issue on "Discours et
document: traitements automatiques", 47(2):21–41.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 421 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 422 of 474]

Example-Based Treebank Querying with GrETEL
– now also for Spoken Dutch

Liesbeth Augustinus, Vincent Vandeghinste, Ineke Schuurman,
and Frank Van Eynde

Centre for Computational Linguistics, University of Leuven

{liesbeth,vincent,ineke,frank}@ccl.kuleuven.be

ABSTRACT
Although several syntactically annotated corpora (or treebanks) exist for Dutch, they are
seldomly used for descriptive linguistic research because there are no easy-to-use exploitation
tools available. This demonstration paper describes GrETEL, a linguistic search engine (http://
nederbooms.ccl.kuleuven.be/eng/gretel) that enables non-technical users to consult
treebanks in a user-friendly way. Instead of a formal search expression, a natural language
example is used as input to the system, allowing users to search for similar constructions as the
example they provide. In the first version of GrETEL, only written Dutch (LASSY) was included.
Based on user requests we have now included the Spoken Dutch Corpus (CGN) as well.

KEYWORDS: Dutch, treebank, querying, example-based.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 423 of 474]

1 Introduction

Within CLARIN (Common Language Resources and Technology Infrastructure), a European
research infrastructure project, researchers in language and speech technology aim at making
it easy for researchers in the humanities and social sciences to work with digital language
data.1 For linguists those language data could be annotated corpora, such as treebanks. While
several syntactically annotated corpora (or treebanks) exist for Dutch, they are seldomly used
for descriptive linguistic research up till now.

Talking with (descriptive) linguists about using treebanks, the same problems pop up over and
over again: on the one hand the limited user-friendliness of the query languages and search
tools, and on the other hand the lack of standardisation in both treebanks and query languages.
This is unfortunate, since treebanks could be very useful for them, especially when they are
looking for (possibly) discontinuous constructions. In order to overcome the querying problems,
the linguistic search engine GrETEL (Greedy Extraction of Trees for Empirical Linguistics) was
developed.2 GrETEL was created as a part of the Nederbooms project, a CLARIN project funded
by the Flemish Community.

Instead of developing yet another query language or designing yet another GUI, we present a
query engine which does not ask for any formal input query. As input, the tool takes something
linguists are familiar with: natural language. Since linguists tend to start their research from
example sentences, the methodology of example-based querying allows users to search for
similar constructions as the example they provide. How similar is for the user to decide.

A first version of GrETEL (1.0), which is optimized for the Dutch LASSY treebank (van Noord
et al., 2013), is described in Augustinus et al. (2012). In a more refined version (GrETEL 1.1),
the Spoken Dutch Corpus (CGN) (Oostdijk et al., 2002) is also supported. For the next release
(GrETEL 2.0), we will make the tool less dependent on particular XML formats. Moreover, we
will enable much larger treebanks to be queried compared to the ones that are supported at the
moment.

2 Methodology and Design

As an example, we look for collective noun constructions, such as een aantal mensen ‘a number
of people’ and een school vissen ‘a school of fish’. In Dutch, such constructions consist of a
determiner (e.g. een ‘a’), a noun denoting the kind of collection (e.g. aantal ‘number’), and
a noun denoting the entities in the collection (e.g. mensen ‘people’). As we want to find
discontinous examples as well, such as een school kleine vissen ‘a school of small fish’, a treebank
is the obvious resource to use, rather than a corpus just annotated for part of speech. The
construction in mind may also determine which treebank is consulted. The LASSY treebank
contains written Dutch, whereas the CGN treebank contains (transcribed) spoken language. For
this example, we will use CGN, as case studies on the LASSY treebank were already described in
previous work (Augustinus et al., 2012). We will furthermore indicate the differences between
the updated version of GrETEL and the previous release.

Work related to our approach is the now deceased Linguist’s Search Engine (Resnik and
Elkiss, 2005), a tool that also used example-based querying; and the TIGER Corpus Navigator
(Hellmann et al., 2010), which is a SemanticWeb system used to classify and retrieve sentences
from the TIGER corpus on the basis of abstract linguistic concepts.

1http://www.clarin.eu
2http://nederbooms.ccl.kuleuven.be/eng/gretel

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 424 of 474]

Natural language example The user provides a relevant natural language example, contain-
ing the syntactic construction (s)he is looking for. After presenting an input construction (in this
case: een aantal mensen gaan naar huis ‘a number of people go home’) to the system, GrETEL
returns the sentence to the user in the sentence parts selection matrix, cf. Figure 1.

Selection The user can indicate for each word whether (s)he is interested in the short part of
speech (pos), the extended pos, the lemma or the token.3 For general non-lexical similarities,
pos should be selected. To take into account more detailed information, such as agreement or
number, extended pos should be selected. The lemma button should be indicated to abstract
over word forms, and the token button should be selected for retrieving specific word forms.
Mind that token is a case sensitive feature, while lemma is case insensitive (except for proper
nouns).

If the input contains words that are not part of the target construction, the optional nodes
button should be used. Note that both the dependency relation and the syntactic category of
all relevant nodes are taken into account,4 cf. the XPath expression (1) describing the subtree
depicted in Figure 2b. Instead of marking certain words as optional, one could also use a
sentence part as input (such as een aantal mensen).

Figure 1: Sentence Parts Selection Matrix

We indicated pos for both een ‘a’ and aantal ‘number’, since we are looking for any determiner,
followed by a noun. For mensen ‘people’, we indicated extended pos, as this wil return matches
not merely with the same part of speech, but also with the same number (we are looking for
plural nouns).

XPath expression GrETEL turns the information from the matrix into an XPath expression5

(1), which can be used to query the treebank. In addition, the parse tree of the input sentence
is presented, along with the subtree containing the construction the user is looking for, cf.
Figure 2. Users can optionally adapt the XPath query in order to refine or generalize the search
instruction. The user also has the option to search a complete treebank or to select one or
more subcorpora. In the case of CGN, one could for example only query the Flemish part of the
corpus.

3The short pos tags are different in LASSY and CGN. The LASSY treebank contains both the tags assigned by the
Alpino parser (van Noord, 2006) (e.g. noun, verb) and the (extended) CGN/D-COI tags (e.g. N(soort,mv,basis),
WW(pv,tgw,ev)) (Van Eynde, 2004). CGN only contains the CGN/D-COI tags, so the shortened versions of the
CGN/D-COI tags (e.g. n, ww) are used as pos tags.

4The list of all dependency relations and syntactic categories can be found in Hoekstra et al. (2003) for CGN and in
van Noord et al. (2011) for LASSY.

5http://www.w3.org/TR/xpath

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 425 of 474]

(1) //node[@cat="np" and node[@rel="det" and @cat="np" and node[@rel="det" and

@pt="lid"] and node[@rel="hd" and @pt="n"]] and node[@rel="hd" and @pt="n" and

@postag="N(soort,mv,basis)"]]

Figure 2: Parse tree (a) and subtree (b) of the input example

Results In the last phase the search results are presented, i.e. the sentences containing the
construction at hand. The user can inspect the tree and/or or the source XML of all results.
It is also possible to download the results in text format. For the query in (1), we found 594
matches in the complete CGN treebank (130k sentences, 1M tokens). Some examples are given
in (2). Note that 2b is discontinuous.

(2) a. heb
have

je
you

gezien
seen

dat
that

in
in

de
the

frigo
fridge

dat
that

er
there

daar
there

een
a

pakje
packet-DIM

pralines
chocolats

stond?
stood

‘Did you see there was a box of chocolats in the fridge?’ [fva400282__2]
b. ik

I
heb
have

hier
here

nog
still

een
a

hele
whole

reut
lot

ouwe
old

boeken
books

staan.
stand

‘I still have a whole lot of old books here.’ [fnc008006__344]

Search options Besides adding the extended pos option to the selection matrix, we added
some other options in GrETEL 1.1. It is now possible to include some context in the search
results, to ignore the syntactic properties of the dominating node in the subtree, and to split up
the extended pos tags. Due to limitations of space, we are not able to discuss the options here.

3 Technical description

GrETEL is accessible online, which means that users do not have to install any treebanks or
specific software (e.g. a parser) locally.6 Drupal is used as content management system.7 Figure
3 presents GrETEL’s general architecture, which consists of three tiers: the presentation layer,
the search layer, and the data layer.

Presentation tier In the first tier we interact with the user, resulting in an information flow
to and from the search layer. This is done using PHP and HTML.

6The user is adviced to access the tool via Mozilla Firefox (http://www.mozilla.org), as that browser supports
W3C standards very well.

7http://drupal.org

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 426 of 474]

Search tier This tier is used to process information coming from the presentation layer, and
to interact with the data layer. The (Alpino) parser (van Noord, 2006) is addressed using PHP,
while the Subtree Finder and XPath Generator are implemented as perl scripts. For the treebank
search PHP, SQL, and XPath are used.

Data tier In the current implementation (cf. ‘version 1’ in Figure 3) the data is stored into a
PostgreSQL database.8 The data format of the treebanks is Alpino XML.9

Figure 3: GrETEL’s 3-tier architecture

4 Conclusion and Future Work
Thanks to the positive response to GrETEL 1.0, we can now implement GrETEL 2.0, which will
be able to deal with larger treebanks, and which will also be able to deal with XML formats
other than Alpino XML.

We plan to make the various layers less intertwined to make adaptation for other languages,
treebanks, and/or data formats possible.

The major challenge, however, is making the system usable for very large treebanks, such as
the LASSY large corpus (500M tokens). In the next implementation the PostgreSQL database
will be replaced by a native XML database, such as BaseX,10 and we will make use of the Varro
Treebank Indexer, cf. ‘version 2’ in Figure 3.

Varro (Martens and Vandeghinste, 2010), (Martens, 2011) is a toolkit and algorithm for indexing
regular structures in treebanks. Subtrees are listed in the Varro Treebank Index, which indicates
where they are located and what their frequency is.

With this preprocessing step we intend to allow for faster treebank mining and, we hope, to
query large (huge) treebanks in a timespan acceptable for the intended users, i.e. descriptive
linguists.

8http://www.postgresql.org/
9http://www.let.rug.nl/vannoord/Lassy/alpino_ds.dtd

10http://basex.org

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 427 of 474]

References

Augustinus, L., Vandeghinste, V., and Van Eynde, F. (2012). Example-Based Treebank Querying.
In Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC
2012), Istanbul.

Hellmann, S., Unbehauen, J., Chiarcos, C., and Ngomo, A.-C. N. (2010). The TIGER Corpus
Navigator. In Proceedings of TLT-9, pages 91–102, Tartu, Estonia.

Hoekstra, H., Moortgat, M., Renmans, B., Schouppe, M., Schuurman, I., and van der Wouden,
T. (2003). CGN Syntactische Annotatie. http://nederbooms.ccl.kuleuven.be/documentation/sa-
man_cgn.pdf.

Martens, S. (2011). Quantifying Linguistic Regularity. PhD thesis, KU Leuven, Leuven, Belgium.

Martens, S. and Vandeghinste, V. (2010). An Efficient, Generic Approach to Extracting Multi-
Word Expressions from Dependency Trees. In Proceedings of the CoLing Workshop: Multiword
Expressions: From Theory to Applications (MWE 2010), Beijing, China.

Oostdijk, N., Goedertier, W., Van Eynde, F., Boves, L., Martens, J.-P., Moortgat, M., and Baayen,
H. (2002). Experiences from the Spoken Dutch Corpus Project. In Proceedings of the 3rd
International Conference on Language Resources and Evaluation (LREC’02), pages 340–347, Las
Palmas, Spain.

Resnik, P. and Elkiss, A. (2005). The Linguist’s Search Engine: An Overview. In Proceedings of
the ACL Interactive Poster and Demonstration Sessions, pages 33–36, Ann Arbor.

Van Eynde, F. (2004). Part of Speech Tagging en Lemmatisering van het Corpus Gesproken
Nederlands. www.ccl.kuleuven.be/Papers/POSmanual_febr2004.pdf.

van Noord, G. (2006). At Last Parsing Is Now Operational. In TALN 2006, pages 20–42.

van Noord, G., Bouma, G., Van Eynde, F., de Kok, D., van der Linde, J., Schuurman, I., Tjong
Kim Sang, E., and Vandeghinste, V. (2013). Large Scale Syntactic Annotation of Written Dutch:
Lassy. In Essential Speech and Language Technology for Dutch: Resources, Tools and Applications.
Springer.

van Noord, G., Schuurman, I., and Bouma, G. (2011). Lassy Syntactische Annotatie, Revision
19455. www.let.rug.nl/vannoord/Lassy/sa-man_lassy.pdf.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 428 of 474]

Korp and Karp – a bestiary of language resources:
the research infrastructure of Språkbanken

Malin Ahlberg, Lars Borin, Markus Forsberg, Martin Hammarstedt, Leif-Jöran
Olsson, Olof Olsson, Johan Roxendal, Jonatan Uppström

Språkbanken, Dept. of Swedish, University of Gothenburg, Sweden

{malin.ahlberg,lars.borin, markus.forsberg, martin.hammarstedt,

leif-joran.olsson, olof.olsson.2, johan.roxendal,

jonatan.uppstrom}@svenska.gu.se

Abstract
A central activity in Språkbanken, an R&D unit at the University of Gothenburg, is the systematic
construction of a research infrastructure based on interoperability and widely accepted standards for
metadata and data. The two main components of this infrastructure deal with text corpora and with
lexical resources. For modularity and flexibility, both components have a backend, or server-side
part, accessed through an API made up of a set of well-defined web services. This means that
there can be any number of different user interfaces to these components, corresponding, e.g., to
different research needs. Here, we will demonstrate the standard corpus and lexicon search interfaces,
designed primarily for linguistic searches: Korp and Karp.

Keywords: Swedish, corpora, lexical resources, research infrastructure.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 429 of 474]

1 The research infrastructure of Språkbanken
Språkbanken <http://spraakbanken.gu.se/eng/start> is a research and development unit at the
University of Gothenburg, and a node in a cross-disciplinary research collaboration at the University
of Gothenburg and Chalmers University of Technology formalized under the name of Centre
for Language Technology <http://www.clt.gu.se>. Språkbanken was established with government
funding already in 1975 as a national centre. The main focus of Språkbanken’s present-day activities
is the development and refinement of language resources and language technology (LT) tools, and
their application to research in language technology, in linguistics, and in several other disciplines,
notably text-based research in the humanities, social sciences, medicine and health sciences.

The larger context of these activities is the systematic construction of a research infrastructure based
on interoperability and widely accepted standards for metadata and data. The two main components
of this infrastructure deal with text corpora and with lexical resources. For modularity and flexibility,
both components have a backend, or server-side part, accessed through an API made up of set of
well-defined web services. This means that there can be any number of different user interfaces
to these components, corresponding, e.g., to different research needs. Here, we will focus on the
standard corpus and lexicon search interfaces Korp and Karp – designed primarily for linguistic
searches – but the same backend web services are also used, e.g., in a corpus-driven grammar and
vocabulary exercise generator (Volodina et al., 2012).

2 The search interface of Korp
The search interface of Korp (Borin et al., 2012b; <http://http://spraakbanken.gu.se/korp>) has been
inspired by corpus search interfaces such as SketchEngine (Kilgarriff et al., 2008), Glossa (Nygaard
et al., 2008), and DeepDict (Bick, 2009).

At first glance, the search interface of Korp is a concordance tool that displays search results in the
standard KWIC (keywords in context) layout (figure 1), here with the example word svininfluensa
(noun) ‘swine flu’. This basic functionality is extended by various visualisations of statistical data,
such as the basic table (figure 2) and and interactive trend diagram (figure 4) plotting relative
frequency over time. Furthermore, the interface features so called word pictures that provides an
overview of a selected set of syntactic relations for a word (figure 3). The purpose is to quickly gain
an understanding of the contexts in which a word most commonly appears.

We are also working on increasing the diachronic coverage of the corpora, by including Swedish
texts from the 19th century back to the 13th century. Ultimately, our goal is to develop tools
for all types of text, at various levels of annotation, such as part-of-speech, morphosyntactic
information, and dependency parses (Borin et al., 2010; Borin and Forsberg, 2011; Adesam et al.,
2012). Our primary source material for Old Swedish (ca 1225–1526) comes from Fornsvenska
textbanken,<http://project2.sol.lu.se/fornsvenska> a 3 MW collection of around 160 digitized texts,
mainly from the 13th to the 16th century. Further, a 1 MW corpus of medieval letters from the
Swedish National Archives<http://riksarkivet.se> is available. Work in progress concerns newspaper
texts (17th–19th century) and a collection of law texts (13th century – present).

A number of issues are problematic for annotation of historical texts. For example, sentence splitting
cannot be handled with standard tools, as sentence boundaries are often not marked by punctuation
or uppercase letters. Compared to modern Swedish texts, the Old Swedish texts have a different
vocabulary and richer morphology, show a more free word order, and Latin and German influences.
Finally, the lack of a standardized orthography results in a wide variety of spellings for the same
word.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 430 of 474]

Figure 1: The Korp KWIC view of svininfluensa (noun) ‘swine flu’

Figure 2: The Korp statistics of svininfluensa (noun) ‘swine flu’ (including compounds)

3 The search interface of Karp

The interface of Karp (Borin et al., 2012a; <http://http://spraakbanken.gu.se/karp>) supports search-
ing and editing lexical resources. It currently hosts 21 lexical resources, some of which have been
created from scratch using existing free resources, both external and in-house. The resources have
been converted to the Lexical Markup Framework format (ISO, 2008) to ensure uniformity and
interchangeability. The infrastructure has one primary lexical resource, SALDO (Borin and Forsberg,

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 431 of 474]

Figure 3: The word picture of svininfluensa (noun) ‘swine flu’

Figure 4: The trend diagram of svininfluensa (noun) ’swine flu’

Figure 5: The search result of influensa ‘flu’

2009), which acts as a pivot to which all other modern resources are linked. SALDO is a large freely
available morphological and lexical-semantic lexicon for modern Swedish. Moreover, there is a

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 432 of 474]

diachronic pivot resource with links between the modern and the historical morphologies.

In the simple search a user can input either a word form, a lemgram (a form unit), or a sense unit,
and the interface will render all information associated to all sense units related to the input. E.g.,
figure 5 displays the search result of the lemgram influensa (noun) ‘flu’. In the extended search
the user can combine available filters from drop down boxes which are translated to SRU/CQL
expressions. E.g. a word form as reglular expression and a certain part of speech type.

In addition, the interface supports full text search in the textual parts of the lexical resources, such as
examples and definitions. The full text search, beyond extending the search capabilities, also makes
the lexical information not linked to SALDO discoverable.

References
Adesam, Y., Ahlberg, M., and Bouma, G. (2012). bokstaffua, bokstaffwa, bokstafwa, bokstaua,
bokstawa. . . Towards lexical link-up for a corpus of Old Swedish. In Proceedings of LTHist 2012.

Bick, E. (2009). A graphical corpus-based dictionary of word relations. In Proceedings of
NODALIDA 2009. NEALT Proceedings Series Vol. 4, Odense. NEALT.

Borin, L. and Forsberg, M. (2009). All in the family: A comparison of SALDO and WordNet. In
Proceedings of the Nodalida 2009 Workshop on WordNets and other Lexical Semantic Resources –
between Lexical Semantics, Lexicography, Terminology and Formal Ontologies, Odense. NEALT.

Borin, L. and Forsberg, M. (2011). A diachronic computational lexical resource for 800 years of
Swedish. In Language technology for cultural heritage, pages 41–61. Springer, Berlin.

Borin, L., Forsberg, M., and Kokkinakis, D. (2010). Diabase: Towards a diachronic blark in support
of historical studies. In Proceedings of LREC 2010.

Borin, L., Forsberg, M., Olsson, L.-J., and Uppström, J. (2012a). The open lexical infrastructure of
Språkbanken. In Proceedings of LREC 2012, pages 3598–3602, Istanbul. ELRA.

Borin, L., Forsberg, M., and Roxendal, J. (2012b). Korp – the corpus infrastructure of Språkbanken.
In Proceedings of LREC 2012, pages 474–478, Istanbul. ELRA.

ISO (2008). Language resource management – lexical markup framework (lmf). International
Standard ISO 24613:2008.

Kilgarriff, A., Rychlý, P., Smrž, P., and Tugwell, D. (2008). The Sketch Engine. In Fontenelle, T.,
editor, Practical Lexicography: A Reader, pages 297–306. Oxford University Press, Oxford.

Nygaard, L., Priestley, J., Nøklestad, A., and Johannessen, J. B. (2008). Glossa: a multilingual,
multimodal, configurable user interface. In Proceedings of the Sixth International Language
Resources and Evaluation Conference (LREC’08), Marrakech. ELRA.

Volodina, E., Borin, L., Loftsson, H., Arnbjörnsdóttir, B., and Leifsson, G. Ö. (2012). Waste not,
want not: Towards a system architecture for icall based on nlp component re-use. In Proceedings
of the SLTC 2012 workshop on NLP for CALL, Lund, 25th October, 2012, pages 47–58.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 433 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 434 of 474]

A Grammar Sparrer for Norwegian

Lars Hellan1, Tore Bruland2, Elias Aamot3, Mads H. Sandøy4

(1,3,4) Department of Language and Communication Studies, NTNU, N-7491 Trondheim
(2) Department of Informatics, NTNU, N-7491 Trondheim

lars.hellan@ntnu.no, torebrul@idi.ntnu.no, eliasaa@stud.ntnu.no,

mads_h_s@hotmail.com

ABSTRACT

We demonstrate an on-line tool for grammatical error detection for Norwegian with freely chosen
inputs, and error-messages informing the user about possible mistakes; the system also generates
grammatically correct alternatives for ill-formed input strings. The system is built as an extension
to a general-purpose large HPSG grammar of Norwegian, with special ‘mal’-rules identifying a
set of 40 types of errors. The system is still a prototype.

KEYWORDS: Computer Assisted Language Learning, HPSG, LKB, error message, mal-rules

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 435 of 474]

1 Introduction

The Norwegian Online Grammar Sparrer is an interactive online Grammar Tutor with freely
chosen written inputs, with error-messages informing the user about possible mistakes, and
generated grammatically correct alternatives for some ill-formed input strings. The system is
developed at NTNU, and was first taken into use in 2011. It is built as an extension to a general-
purpose large HPSG grammar of Norwegian (see below).

2 Functionalities of the system

The main functionalities can be illustrated as follows. A user writes a putative Norwegian
sentence into a window, as shown in FIGURE 1;1

 if grammatical, the system responds that the
sentence is grammatical, while if ungrammatical, the system informs the user in what respect the
string is ungrammatical. FIGURE 1 shows how, for the ungrammatical string “Mannet smiler”,
one gets the feedback The word “mannet” is of masculine gender, not neuter.

FIGURE 1: Illustration of Error Information display

In addition to the slot for error message(s), the window provides three buttons: Info takes one to a
detailed instruction about the tool,2 More description takes one to succinct information about the
relevant aspect of Norwegian grammar,3

 and by pushing Generate, one can get an example of
how the intended sentence should be written, as illustrated in FIGURE 2 for the same string:

FIGURE 2: Illustration of Correct Option generation

1 http://regdili.idi.ntnu.no:8080/studentAce/parse
2 http://typecraft.org/tc2wiki/Classroom:Norwegian_Grammar_Checking
3 In the relevant case, http://typecraft.org/tc2wiki/The_Noun_Phrase_-_Norwegian.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 436 of 474]

We call the system ‘grammar sparring’ to highlight the circumstance that the system immediately
responds to each move by the user. While the interface shown above is for this interaction, a
more general wiki interface is being hosted at TypeCraft 4 , with instructions and pages
supplementing those accessed by the buttons Info and More description mentioned above.5

3 The system architecture

The system builds on the computational grammar NorSource of Norwegian, developed at
NTNU, 6

With Norsource as a so-called ‘bon-grammar’, a 'mal-apparatus' is built onto the 'bon'-grammar,
with ‘mal-rules’ accommodating a predefined set of grammatical errors. Norsource and the ‘mal-
apparatus together constitute the full system named NorMal, all parts of Norsource thus being
used in NorMal, while NorMal includes files not used in Norsource. When an illformed string is
parsed, with an error type which has been assigned a mal-rule, the set of syntactic rules accepting
the string will include a mal-rule. The strategy enabling generation of recommendations is to let
mal-rules and mal-lexical entries introduce into the MRS exactly the same EP(s) as their ’bon’-
counterparts generally introduce, whereby generation can produce well-formed strings coming
very close to the intended form.

 and is an implemented HPSG grammar (Pollard and Sag 1994) based on the
development platform LKB (Copestake 2002). LKB grammars are purely declarative, in that
they define what are possible structures in a language, while the status of ungrammatical for a
given string resides in its not being included in this set of structures; thus, such a grammar
contains no negative statements. NorSource uses the architecture of the HPSG Grammar Matrix
(Bender 2010, 2012), which includes the semantic representation formalism Minimal Recursion
Semantics (MRS; Copestake et al. 2005); such a representation accompanies any parse produced
by the grammar, and from it, sentences of the language can be generated (such a grammar is thus
both ‘analyzing’ and ‘generating’). This generation capacity is crucial in the recommendation
capacity illustrated in Figure 2, the recommended sentence being generated from the MRS of the
input string.

Norsource currently has close to 200 phrasal combinatory rules, and verb- and adjective lexicons
with approximately 10,000 entries each. A noun lexicon with about 50,000 entries is also
available, but not used in the Grammar Sparrer, as it induces too much parse ambiguity at the
present point. The number of MRSs from a parsed sentence generally depends on the strictness of
the rules of the grammar, but even with the fairly strict format presently used, a given parse –
especially with mal-rules involved – will be associated with many MRSs. While it is in many
cases impossible to predict the intended grammatical sentence of the user, a qualified guess is
still possible. In this regard, it is essential that the relevant MRS can be automatically chosen, and
for this purpose we use the parse ranker Velldal (2008) implemented with treebanking in
[tsdb++] (Oepen et al. 1998, 2002), a tool in the LOGON system (Oepen et al. 2004). A number
of sentences representative of the expected input of our system are treebanked and a ranking
model is trained, using Rob Malouf's Toolkit for Advanced Discriminative Modeling
(http://tadm.sourceforge.net/). The model is loaded with the grammar and it sorts the MRSes

4 http://typecraft.org
5 http://typecraft.org/tc2wiki/Feedback_messages,

 http://typecraft.org/tc2wiki/Grammar_sparring_phenomena
6 http://typecraft.org/tc2wiki/Norwegian_HPSG_grammar_NorSource

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 437 of 474]

according to the ranking model. For the selection of MRS for a given parse, the system will
choose the first MRS in the list.

Such selection is particularly important in cases where parses with alternative mal-rules – or sets
of mal-rules – are produced in a parse. It is similarly essential if one wants to deploy the large
noun lexicon: in Norwegian, there are very many noun stems homophonous with verb stems, and
only systematic tree-banking can ‘relegate’ the noun options below the verb option on the parse
ranking.

From the outset, parsing in the system has been done in processing system PET7, and generation
in LKB. During the last year we have taken into use the system ACE 8

4 Pedagogical development and outlook

, integrated for both
purposes, thereby increasing speed by a significant factor.

We originally based our mal-rule development on a corpus of common errors among L2 learners
of Norwegian at NTNU. The set of phenomena covered in this corpus has proved adequate for
the system so far, but we will soon face the need for increasing the phenomena range.9

With a running log of sentences processed by the Sparrer, we get continuous feedback on the
number of use interactions (approximately 3000 per month, currently), and on the behavior of the
system regarding correct identification of grammatical vs. ungrammatical, and delivery and
correctness of error messages. The Sparrer is in addition a recommended facility in the
Norwegian L2 course NoW hosted at NTNU,

10

In the general context of Computer Assisted Language Learning, the present system follows a
type of architecture envisaged in Schneider, D. and K. McCoy (1998), and situated relative to
LKB systems in Bender et al. (2004). Relative to the overview of CALL systems presented in
Heift et al. (2007), the system is ‘rule based’ rather than ‘constraint-based’ (despite HPSG as a
framework being commonly called ‘constraint-based’). Among CALL systems implemented with
LKB, to our knowledge the only other system in current use is a system based on the English
grammar ERG (cf. Flickinger 2010), used in primary school teaching, with a more closed
pedagogical architecture, and with a significantly broader scope.

 an environment in which more systematic
pedagogical developments of the tool can be tried out and tested in the future.

What the present type of system perhaps most interestingly demonstrates is the way in which a
fully ‘generic’ grammar – i.e., a domain- and purpose-neutral grammar – can be seamlessly
extended into a working pedagogical system. This aspect is particularly interesting in view of the
fact that there are currently 8-10 fairly large grammars based on the Grammar Matrix format, and
thus using the same formalism as Norsource: an architecture made operative for one of them can
relatively easily be applied to others as well. In addition to the rapid avenue to a multi-lingual
system of grammar checkers thereby opening, the circumstance that the grammars in all of their
modules use largely the same formalism opens for the possibility of creating parallel repositories
of language information, and thereby the build-up of parallel pedagogical resources.

7 http://moin.delph-in.net/PetTop
8 http://moin.delph-in.net/AceTop
9 See footnote 5 for links to overview of phenomena.
10 http://www.ntnu.edu/now

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 438 of 474]

References

Bender, E. M., D. Flickinger, S. Oepen and A. Walsh (2004). "Arboretum: Using a precision
grammar for grammar checking in CALL," in Proceedings of the InSTIL/ICALL Symposium
2004, Venice, Italy.

Bender, E.M., Scott Drellishak, Antske Fokkens, Laura Poulson. and S. Saleem. 2010.
Grammar Customization. In Research on Language & Computation, Volume 8, Number 1, 23-
72.

Bender, E.M., Sumukh Ghodke, Timothy Baldwin and Rebecca Dridan. 2012. From Database
to Treebank: On Enhancing Hypertext Grammars with Grammar Engineering and Treebank
Search. In Sebastian Nordhoff (ed) Electronic Grammaticography. Pp179-206.

Copestake, A. (2002). Implementing Typed Feature Structure Grammars. CSLI Publications,
Stanford.

Copestake, A., D. Flickinger, C. Pollard, and I. Sag. (2005). Minimal Recursion Semantics: an
Introduction. Research on Language and Computation 3(4): 281—332.

Heift, T., and M. Schulze. (2007). Errors and Intelligence in Computer-Assisted Language
Learning: Parsers and Pedagogues. Routledge, New York.

Flickinger, D. (2010). Prescription and Explanation -- Using an HPSG implementation to teach
writing skills. Invited talk, HPSG Conference 2010.

Heift, T., and M. Schulze. (2007). Errors and Intelligence in Computer-Assisted Language
Learning: Parsers and Pedagogues. Routledge, New York.

Oepen, S. and D. Flickinger (1998). Towards systematic grammar profiling. test suite
technology ten years after. Journal of Computer Speech and Language 12(4), 411 - 436.

Oepen, S., K. Toutanova, S. Shieber, C. Manning, D. Flickinger, and T. Brants (2002). The
lingo redwoods treebank: Motivation and preliminary applications. In Proceedings of the 19th
international conference on Computational linguistics-Volume 2, pp. 1 - 5. Association for
Computational Linguistics.

Oepen, S., H. Dyvik, J. T. Lønning, E. Velldal, D. Beermann, J. Carroll, .n Flickinger, L.
Hellan, J. B. Johannessen, P. Meurer, T. Nordgård, and V. Rosén (2004). Som å kapp-ete med
trollet? Towards MRS-based Norwegian-English Machine Translation. In Proceedings of the
10th International Conference on Theoretical and Methodological Issues in Machine
Translation, pp. 11 - 20. Baltimore, MD.

Schneider, D. and K. McCoy (1998). "Recognizing Syntactic Errors in the Writing of Second
Language Learners," in Proceedings of Coling-ACL, pp. 1198-1204. Montreal.

Velldal, E. (2008). Empirical realization ranking. Ph. D. thesis, The University of Oslo.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 439 of 474]

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 440 of 474]

Finite state applications with Javascript

Mans Hulden1 Miikka Silfverberg1 Jerid Francom2

(1) University of Helsinki
(2) Wake Forest University

mans.hulden@email.arizona.edu, miikka.silfverberg@helsinki.fi, francojc@wfu.edu

ABSTRACT
In this paper we present a simple and useful Javascript application programming interface for
performing basic online operations with weighted and unweighted finite-state machines, such
as word lookup, transductions, and least-cost-path finding. The library, jsfst, provides access to
frequently used online functionality in finite-state machine-based language technology. The
library is technology-agnostic in that it uses a neutral representation of finite-state machines
into which most formats can be converted. We demonstrate the usefulness of the library through
addressing a task that is useful in web and mobile environments—a multilingual spell checker
application that also detects real-word errors.

KEYWORDS: Finite-state technology, Javascript, spell checking, perceptrons.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 441 of 474]

1 Introduction

Finite-state machine (FSM) technology is widely used in language-processing and FSMs are
applied in many contexts ranging from text processing to more complex tasks. Currently, several
high-quality toolkits exist for the manipulation and construction of weighted and unweighted
finite-state machines, such as foma (Hulden, 2009), HFST (Lindén et al., 2009), OpenFST
(Allauzen et al., 2007), SFST (Schmid, 2006), and xfst (Beesley and Karttunen, 2003), to name
a few. These toolkits, once compiled, also provide programming interfaces for the real-time use
of automata in language processing tasks. However, for online and mobile applications, the use
of finite-state machines is complicated by the unavailability of generic application interfaces
for applying the finite-state machines built with any of the above toolkits. In the following, we
demonstrate a simple Javascript API that allows one to take advantage of finite-state technology
in a toolkit-agnostic environment. The API can take advantage of any FSM represented in
the AT&T toolkit format (to which all of the above tools can export). We demonstrate its
real-world usefulness with a Javascript spell checking application that offers both traditional
spell checking functionality—marking of incorrectly spelled words using a simple unweighted
automaton—and more advanced real-word error (RWE) correction, implemented through a
perceptron algorithm and encoded as weighted finite automata.

2 The jsfst API

The jsfst API allows basic operations on FSMs, both weighted and unweighted. These include:
checking whether a word (string) is accepted by an automaton, performing a string transduction
by a transducer, and finding, given an input string, the least-cost path through a weighted
automaton.

It is assumed that the user has stored the required FSMs as a compressed string representation
(see below), after which the FSM may be expanded in memory and subsequently used in
applications through the API. We also provide a tool for converting FSMs from the widely-used
AT&T textual format (Mohri et al., 1997) into a compressed Javascript format discussed below.
The workflow is simple; the user defines one or several compressed FSM variables, after which
operations on the FSMs can be performed through the API:

<script type=’text/javascript’ src=’./jsfst.js’></script>
<script type=’text/javascript’ src=’./my_automaton.js’></script>
// my_automaton.js: var mycompressedFSM = "moomoom4se8us7loo9s7goo9|4FEBC|9280" ;
...
// Uncompress
var myNet = jsfst_uncompress_unweighted(mycompressedFSM);
...
// Check if a word is accepted by the machine
var accept = jsfst_apply_unweighted_automaton(myNet, myString);
...

2.1 Compression of FSMs for online use

When dealing with online and mobile applications, memory restrictions tend to be more severe
than under other environments. This calls for compression of finite-state networks during
transmission and storing. Often, Javascript code is transferred from server to client in a
gzip-compressed format which offers some compaction; however, this can be much improved
upon by judicious encoding of the finite-state machines. In the current work, we rely on a

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 442 of 474]

0

12
g

10l

1

m

2o

9

u

3o

7
s

4m

5

o 6o

m

8e

s
11o s

o

13o o

Figure 1: Finite state machine represented as the string:
moomoom4se8us7loo9s7goo9|4FEBC|9280.

string representation of FSMs that, together with standard compression methods (gzip), yields
compression ratios of about 1:10 compared with completely uncompressed material, and about
1:3 compared with other textual formats which are compressed, such as the widely used AT&T
FSM format followed by gzip.

We represent the FSMs as a string in three parts, A|B|C. The string encodes the result of
printing out a depth-first-search through an FSM, where states are only mentioned when strictly
necessary for its later reconstruction. Similar methods have been used successfully in other
circumstances where space has been at a premium (Karttunen, 1990). The parts encode the
following information:

• Part A: represents a depth-first-search through the automaton. Each arc is mentioned
once whenever it is encountered. A state number is given every time a backtrack occurs
during the DFS, or at the end. States not mentioned are assumed to be constructed in
ascending numerical order, one for each transition that is not followed by a backtrack.

• Part B: a sequence of bits, 1 for each arc that is the last one in the source state, otherwise
0, converted into hexadecimal symbols, 4 bits in each symbol.

• Part C: a sequence of bits, 1 for each state that is final, otherwise 0, converted into
hexadecimal, 4 bits in each symbol.

For example, in our compressed format, the FSM in figure 1, which encodes the regular
expression /(moo)*|(mo(o|u)se|goose|loo?se)/, is represented as the concatenation of
the three strings:

(A) moomoom4se8us7loo9s7goo9 (is a DFS path)
(B) 4FEBC (is 0100 1111 1110 1011 11(00) in binary)
(C) 9280 (is 1001 0010 1000 00(00) in binary)

Transducers are encoded similarly, but differing input-output pairs are separated by a colon.
Weighted machines additionally have the weight specified in parentheses after each transition.
Likewise, weighted machines have their final weight (in C) given explicitly, instead of in the
bit-encoded format. Note that the original state numbering of any given FSM may change when
this encoding is performed by a DFS, as states are assigned running numbers in the order they

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 443 of 474]

Language .cmp.gz .cmp .att.gz .att

Basque 797K 2.1M 2.3M 8.2M
English 632K 1.3M 1.9M 6.1M
Finnish 1.3M 2.9M 3.7M 13M
German 8.2M 23M 22M 84M
Spanish 194K 415K 591K 2.0M
Swedish 433K 994M 1.3M 4.0M

Table 1: File sizes of some morphologies from which word-surface forms have been extracted in
different formats for use in a online spell-checking application. Here .cmp represents the string
format FSM compression, .gzip a gzipped file, and .att the AT&T file format.

Figure 2: Screenshot of combined standard and RWE spell checker in Spanish: incorrectly spelled
words are marked interactively in red, while real-word errors are marked in orange.

are encountered. This allows for a very compact encoding of sets of words and FSMs in general.
For example, the basic acyclic Spanish morphological dictionary used in subsequent examples
contains 571,129 words. Represented as an FSM encoded in our compressed format, and then
gzipped, it occupies 198,904 bytes. This is equivalent to 2.79 bits per word. Table 1 shows the
size of various morphological transducers, converted into automata by extracting only the valid
word-forms, and then encoded in various compressed and uncompressed formats.

3 Example application: spell checking

A classic byproduct of encoding a morphological analyzer as an FSM is the ability to quickly
implement spell checking tools. This involves extracting the domain or range of the morpholog-
ical transducer, yielding an automaton that (presumably) contains only valid surface forms of
words. This automaton can then be consulted for checking correctness of words—usually with
much larger coverage than word lists can provide. For our experiments, we have done so using
morphological transducers for Basque (Agirre et al., 1992), English, Finnish (Pirinen, 2011),
German (Schmid et al., 2004), Spanish (Carreras et al., 2004), and Swedish. As is seen from
table 1, except for the German transducer which encodes many circumfixation phenomena and
is rather large to begin with, the compressed sizes of the automata are small enough to be used
and integrated into, for instance, web-based text editing environments. 1

3.1 Real-word errors with perceptrons encoded as weighted automata

To demonstrate more advanced usage, we have implemented a real-word-error-aware spell
checker using weighted automata. Catching real-word spelling errors is a difficult problem

1Performance is also reasonable. When using a determinized automaton, we can check correctness of an average of
49,000 words/s using the Javascript API (vs. 1,400,000 words/s in a C implementation using the foma API).

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 444 of 474]

(see Hirst and Budanitsky (2005) for an overview). However, in restricted domains, fairly
high accuracies can be achieved (Yarowsky, 1994). One of these is the detection of diacritic
placement errors in Romance languages. We focus here on Spanish, as it is arguably at the easier
end of the spectrum, and a comfortable level of certainty in error marking can be achieved.

When restoring diacritics, we divide words into three classes: (1) words whose correct ortho-
graphic form has no diacritics, for example “para” (for); (2) words whose correct form has
diacritics, but there is only one possible form, for example “según” (according to); (3) words
that have two orthographically correct forms with and without diacritics, for example “que”
(that) and “qué” (what).

In the unambiguous cases, a list of correct forms is sufficient for restoring the diacritics. For
ambiguous words, one of the forms for example “qué” is the diacritized form and the other one,
“que”, is the non-diacritized form. It is possible to train a binary classifier based on contextual
features, which decides whether the form should be diacritized or not. The contextual features
that are used in the classifier are: (1) the word form itself, for example WORD = que; (2)
the neighboring words, for example NEIGHBOR = por; and (3), whether the word occurs at a
sentence boundary NEIGHBOR = ##. These features are usually sufficient to choose between
alternative forms. For example, in a case like ‘... para él.’ the ambiguity of ‘el’ (article) vs. ‘él’
(he/him) is resolved by the presence of a sentence boundary.

We use a logistic classifier to classify ambiguous words. Model parameters are estimated using
the averaged perceptron algorithm (Collins, 2002) and all features whose parameters are
non-zero are compiled into a weighted FSM. Using the word lists and the classifier, the system
achieves 99.4% accuracy when determining whether a form should be diacritized or not.2

To reduce the size of the resulting FSM, it is useful to filter features. For training data consisting
of approximately 14M words, we filtered out features for words occurring less than 60 times.
This reduced the accuracy of the system from 99.4% to 99.1%, while the size of the feature
FSM was reduced from 4.7M to 1.4M in AT&T text format. The size is further reduced to
141K by representing the transducer in compressed format as explained in section 2.1. The
performance of the RWE detection is similar to that of checking a word against an automaton, as
the perceptron is encoded as a deterministic weighted automaton (30,000 lookups/s). However,
for each word to be checked, three separate lookups are needed (one for each feature). The
combined use of both a basic spell checker and an RWE error checker is shown in figure 2.

4 Conclusion

Javascript-based tools have already demonstrated their usability: there are now Javascript-based
WYSIWYG text editors and PDF readers, for example. As we have demonstrated, it is also
possible to create Javascript-based language technology tools that are sufficiently fast and
compact for heavy use even in, for example, mobile devices.

It is possible to encode a variety of machine learning and language modeling paradigms as
FSMs, which means that a general, efficient Javascript API for FSMs provides access to a broad
swathe of cutting-edge technology. Since Javascript is widely supported, tools using such an
API are also easy to insert in a variety of applications. This, in turn, offers the potential to
promote the creation of tools with a much wider coverage of languages, including less-resourced
minority languages.

2We use a section of the Spanish GigaWord corpus (Graff, 2011) for training data, from which 10% was held out for
tuning, and another 10% set aside to be used as evaluation data.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 445 of 474]

References

Agirre, E., Alegria, I., Arregi, X., Artola, X., de Ilarraza, A. D., Maritxalar, M., Sarasola, K.,
and Urkia, M. (1992). Xuxen: A spelling checker/corrector for Basque based on two-level
morphology. In Proceedings of the third conference on Applied natural language processing, pages
119–125. Association for Computational Linguistics.

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri, M. (2007). OpenFst: A general
and efficient weighted finite-state transducer library. In Implementation and Application of
Automata, pages 11–23. Springer.

Beesley, K. R. and Karttunen, L. (2003). Finite state morphology. CSLI, Stanford.

Carreras, X., Chao, I., Padró, L., and Padró, M. (2004). Freeling: An open-source suite of
language analyzers. In Proceedings of the 4th LREC, volume 4.

Collins, M. (2002). Discriminative training methods for hidden Markov models: theory and
experiments with perceptron algorithms. In Proceedings of EMNLP ’02, pages 1–8.

Graff, D. (2011). Spanish Gigaword Third Edition (LDC2011T12). Linguistic Data Consortium,
University of Pennsylvania, Philadelphia, PA.

Hirst, G. and Budanitsky, A. (2005). Correcting real-word spelling errors by restoring lexical
cohesion. Natural Language Engineering, 11(01):87–111.

Hulden, M. (2009). Foma: a finite-state compiler and library. In Proceedings of the 12th Confer-
ence of the European Chapter of the Association for Computational Linguistics: Demonstrations
Session, pages 29–32. Association for Computational Linguistics.

Karttunen, L. (1990). Binary encoding format for finite-state networks. Technical Report, Palo
Alto Research Center, (P90-00019).

Lindén, K., Silfverberg, M., and Pirinen, T. (2009). HFST tools for morphology–an efficient
open-source package for construction of morphological analyzers. In State of the Art in
Computational Morphology, pages 28–47. Springer.

Mohri, M., Pereira, F., Riley, M., and Allauzen, C. (1997). AT&T FSM library-finite state
machine library. AT&T Labs-Research.

Pirinen, T. (2011). Modularisation of Finnish finite-state language description—towards
wide collaboration in open source development of morphological analyser. In Proceedings of
NoDaLiDa, volume 18.

Schmid, H. (2006). A programming language for finite state transducers. Lecture Notes in
Computer Science, 4002.

Schmid, H., Fitschen, A., and Heid, U. (2004). SMOR: A German computational morphology
covering derivation, composition and inflection. In Proceedings of LREC 2004, pages 1263–1266.
Citeseer.

Yarowsky, D. (1994). Decision lists for lexical ambiguity resolution: Application to accent
restoration in Spanish and French. Proceedings of the 32nd annual meeting on Association for
Computational Linguistics, pages 88–95.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 446 of 474]

HPC-ready Language Analysis for Human Beings

Emanuele Lapponi1, Erik Velldal1, Nikolay A. Vazov2, Stephan Oepen1

(1) Language Technology Group, Department of Informatics, University of Oslo
(2) Research Support Services Group, University Center for Information Technology, University of Oslo

{emanuel|erikve|oe}@ifi.uio.no, n.a.vazov@usit.uio.no

ABSTRACT
This demonstration presents a first operable pilot of the Language Analysis Portal (LAP), an
ongoing project within the Norwegian CLARINO initiative that aims at providing easy access to
Language Technology (LT) tools running on a powerful High-Performance Computing (HPC)
cluster. The system is built on top of the Galaxy framework, giving users an on-line platform
where they can design experiments using an array of processors. These processors can be
combined into complex workflows using a visual editor. The current implementation functions
as a testbed for further development, hosting a limited collection of tools addressing common
use-cases in the LT-realm; the long-term goal for LAP is to reach beyond the field and be an
enabling platform for LT-powered research in the humanities and social sciences.

KEYWORDS: research infrastructure, High-Performance Computing, web portal, CLARINO.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 447 of 474]

1 Introduction

This demonstration will be showcasing ongoing work within the CLARINO1 project on building
a web portal for natural language analysis. The effort is carried out at the University of Oslo
(UiO) jointly by the Language Technology Group (LTG) and the Research Computing group at
the University Center for Information Technology (USIT).

An important part of the overall mission of CLARINO is to facilitate the use of language
technology (LT) in the social sciences and humanities. In the same vein, the construction of
the Language Analysis Portal (LAP) aims to boost the availability and usability of large-scale
language analysis for researchers both within and outside the field of LT itself. Currently, many
common LT tools can appear rather daunting to use, requiring a lot of technical knowledge on
the side of the user. Apart from the challenge of orienting oneself in the fragmented ecosystem
of available tools, many potential users, especially from less technically oriented disciplines,
might not be comfortable with command-line interfaces or having to wrestle with difficult
and poorly documented installation procedures, or might lack the required knowledge about
annotation formats or other dependencies. Many researchers might also not have access to the
computing power necessary to process larger data sets. LAP aims to eliminate such obstacles.
The goal is to maintain a large repository of LT tools that are easily accessible through a web
portal, offering a uniform graphical interface and ensuring a low bar of entry for users, while
at the same time enabling execution of complex workflows to be run on a high-performance
computing (HPC) cluster, also ensuring scalability to very large data sets. LAP’s HPC-centric
design also sets it apart from other abstractly similar infrastructure projects such as WebLicht2

within CLARIN-D, in that all the tools will be hosted locally and adapted to work with the
national grid infrastructure.

While the LAP development is still in its early stages, an operable pilot is already available for
testing and demonstration purposes. The remaining part of the paper is structured analogously
to the interactive demonstration, viz. providing a walk-through of a representative use case—
touching on everything from user authentication and data set management to workflow design
and viewing results—commenting on technical details along the way.

2 LAP Pilot

The long-term goal for LAP is to reach beyond the field and be an enabling platform for LT-
powered research in the humanities and social sciences. At this early stage of development,
however, the pilot use case is centered around the needs of LT researchers and in particular
students, as their level of proficiency strikes a good balance between non programming-savvy
historians and seasoned programmers. This allows us to make certain assumptions that facilitate
the initial development stage—we assume the users have a certain knowledge of what the
installed tools do—while at the same time providing test candidates that can truly benefit from
the system.

The pilot system serves several purposes: Most importantly it will act as a proof-of-concept,
assessing the viability of involved software as well as ideas before extending the implementation
to a larger set of tools and support for a larger set of features. The most important part
of this, in turn, is assessing the suitability of the Galaxy platform (Giardine et al., 2005;

1The Norwegian branch of the pan-European CLARIN project (Common Language Resources and Technology
Infrastructure). For more information see; http://clarin.b.uib.no/

2The WebLicht website: http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 448 of 474]

Blankenberg et al., 2010; Goecks et al., 2010), a web-based workflow management system
initially developed for data-intensive research in genomics and bioinformatics , which is a core
component of the current pilot implementation.3 Another important use of the pilot will be
as a demonstrator; for reaching out to tool developers, to illustrate use cases for potential
user groups in the humanities and social sciences, and as a foundation for further surveying
user-requirements. The pilot is only meant to support a minimal selection of LT tools and will
be evaluated in part by a group of test users consisting of master students of the study program
Informatics: Language and Communication at the University of Oslo.

In this context, a typical use case is that of annotating natural language text with syntactic
analyses, e.g. annotating a collection of newspaper articles or a novel with dependency graphs.
The completion of this task would ordinarily require the user to install the relevant software
packages and execute the tools that satisfy the dependencies of the parser; minimally a sentence-
segmenter, a tokenizer and a POS-tagger. Furthermore, the user in question could be interested
in producing dependency annotations generated using different parsers, that are in turn
invoked with part of speech tags that originate from different upstream annotators. These
actions typically require at least basic Unix-shell proficiency; wrapping the execution in a
small, parameterizable program that allows the user to effectively try out different settings
further raises the entry-bar for this kind of experimental process. Additionally, different tools
in the chain might use different representations—tab-separated columns or nested XML, say—
requiring the user to further pre-process the data at each step. Lack of in-depth technical
knowledge, perhaps in combination with lack of good documentation, might make each of
these steps difficult for many potential users, especially for those from less technically oriented
disciplines. Access to the necessary computing power might itself also be a barrier, depending
on the complexity of the task or the size of the dataset in question.

The LAP pilot includes enough tools and functionality to enable this kind of computation with
a few mouse-clicks, allowing users to visually design complex tool-chains, store results and
experiment with different tool-configurations and datasets on any platform that can run a
modern web-browser. After logging into the system via Feide, users are presented with the
Galaxy workspace, as shown in Figure 1. The left panel displays the installed processing tools;
clicking on tool-names displays general information and configuration options in the center
panel. In order to be integrated in the LAP tool-chain, existing tools are ‘wrapped’ inside
scripts that decode the LAP-internal format, present the tool itself with its expected input and
finally re-encode the output so that it is compatible with the next processing step. For LAP’s
system-internal representation, we are at the moment looking into both TCF (Text Corpus
Format, Heid et al., 2010) (the format used within WebLicht, which comes with a full, albeit
closed-source API) and our own in-house JSON-based LTON format (Language Technology
Object Notation) which is still currently under development.

Additionally, the wrapper handles the submission of the job to the Abel cluster, a shared resource
for research computing boasting more than 600 machines, totaling more than 10.000 cores
(CPUs).4 The HPC connection is a very important feature, as Language technology can be
computationally quite expensive, often involving sub-problems where known best solutions

3For more information about Galaxy, please see http://wiki.galaxyproject.org/
4At the time of writing, the cluster ranks at position 134 on the http://www.top500.org list of top supercom-

puters world- wide. Among its frequent users, besides the language technology group, we find researchers from the life
sciences, astrophysics, geophysics, and chemistry.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 449 of 474]

Figure 1: A screenshot of the current implementation of LAP within Galaxy. The left panel
displays the installed tools, the center panel shows the currently selected function and the right
panel hosts the file history.

have exponential worst-case complexity. At the same time, typical language analysis tasks can
be trivially parallelized, as processing separate documents (and for many tasks also individual
sentences) constitute independent units of computation. The fact that the portal will submit the
sub-tasks of a workflow to an underlying HPC cluster—without the need for user knowledge
about job scheduling etc.—means that the user will be able to perform analyses that might
otherwise not be possible (and faster and on larger data sets).

Returning to Figure 1, the right panel contains so-called histories, where files associated with
different experiments are collected and persistently stored across sessions. Users can add
datasets to a history by uploading local files, providing a URL to the dataset location, or by
pasting the relevant text using the ‘Get Data’ tool. The simplest action achievable with this
pilot consists of adding a dataset to a history and running one of the processing tools. The
processing job then starts and the annotated dataset is added to the same history; users can
then select it and run other annotators. The resulting datasets can either be inspected within
LAP or downloaded (the system also allows for full histories to be downloaded as compressed
archives).

Most importantly, users can also compose workflows using the workflow editor, where experi-
mental tool-chains such as the one sketched previously can be designed using a simple graphical
interface; Figure 2 shows an example of workflow design within the editor, here with a workflow
with four endpoints. To build the chain, users invoke GUI elements representing tool instances
to the center panel and link inputs to outputs, guiding the data flow across tools. Workflows
can then be saved and shared with all or selected LAP users. When running a workflow, the
system populates the history with a version of the dataset for each processing point, so that
the user can return to the partially processed data and run (or re-run) relevant tools without
re-starting the whole workflow.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 450 of 474]

Figure 2: A user-defined LAP workflow with four endpoints. The data processing starts with
unannotated text and ends with four datasets containing different annotations.

3 Conclusion and Outlook

In this demonstration we presented the current pilot implementation of the Language Analysis
Portal (LAP), an in-development web-portal for natural language processing. LAP, developed
under the umbrella of the CLARINO initiative, aims to facilitate the use of LT-tools for non-
programmers by letting users create complex experimental setups visually, and allowing them
to run large-scale processes on the national grid infrastructure for HPC computing. Further
discussion of the technical details of the pilot can be found in (Lapponi et al., 2013).

While the long-term goal for the portal is to also address the language processing needs of
researchers outside the field, the current implementation focuses on a typical use case within
the LT realm, allowing users to quickly and simply combine processing tools into complex
workflows and collect the results. Future releases of the systems will feature a larger array of
tools, and further work starting after the release of the final pilot will address the challenge of
shaping LAP into a useful research tool for the humanities and the social sciences, investigating
possible use cases and surveying user-requirements from active researchers from these fields.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 451 of 474]

References

Blankenberg, D., Kuster, G. V., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko,
A., and Taylor, J. (2010). Galaxy: a web-based genome analysis tool for experimentalists.
Current Protocols in Molecular Biology, pages 19.10.1–19.10.21.

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y.,
Blankenberg, D., Albert, I., Taylor, J., Miller, W., Kent, W. J., and Nekrutenko, A. (2005).
Galaxy: a platform for interactive large-scale genome analysis. Genome Research, 15(10):1451–
5.

Goecks, J., Nekrutenko, A., Taylor, J., and Team, T. G. (2010). Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational research in
the life sciences. Genome Biology, 11(8):R86.

Heid, U., Schmid, H., Eckart, K., and Hinrichs, E. (2010). A corpus representation format
for linguistic web services: The D-SPIN Text Corpus Format and its relationship with ISO
standards. In Proceedings of the 7th International Conference on Language Resources and
Evaluation, pages 494–499, Malta.

Lapponi, E., Velldal, E., Vazov, N. A., and Oepen, S. (2013). Towards large-scale language
analysis in the cloud. In Proceedings of the Workshop on Nordic Language Research Infrastructure
at the 19th Nordic Conference of Computational Linguistics, Oslo, Norway.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 452 of 474]

The INESS Treebanking Infrastructure

Paul Meurer2, Helge Dyvik1,2, Victoria Rosén1,2, Koenraad De Smedt1,
Gunn Inger Lyse1, Gyri Smørdal Losnegaard1, Martha Thunes1

(1) University of Bergen, Norway
(2) Uni Computing, Bergen, Norway

paul.meurer@uni.no, helge.dyvik@uib.no, victoria@uib.no, desmedt@uib.no,

gunn.lyse@lle.uib.no, gyri.losnegaard@lle.uib.no, martha.thunes@lle.uib.no

ABSTRACT
This paper briefly describes the current state of the evolving INESS infrastructure in Norway
which is developing treebanks as well as making treebanks more accessible to the R&D com-
munity. Recent work includes the hosting of more treebanks, including parallel treebanks, and
increasing the number of parsed and disambiguated sentences in the Norwegian LFG treebank.
Other recent improvements include the presentation of metadata and license handling for re-
stricted treebanks. The infrastructure is fully operational and accessible, but will be further
improved during the lifetime of the INESS project.

KEYWORDS: treebanks, research infrastructure, parsed corpora, metadata, IPR, INESS, META-
NORD, CLARIN, CLARINO.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 453 of 474]

1 Introduction

This short paper sketches the current state of the Infrastructure for the Exploration of Syntax
and Semantics (INESS) (Rosén et al., 2012a). The implementation and operation of this infra-
structure is carried out by the University of Bergen (Norway) and Uni Computing (a division
of Uni Research, Bergen), and is funded by the Research Council of Norway and the University
of Bergen (2010–2016).

INESS is aimed at providing access to treebanks to the R&D community in the language sci-
ences. One of the project’s main activities is the development of a large, deep parsebank for
Norwegian with a wide coverage grammar and lexicon based on the Lexical-Functional Gram-
mar (LFG) formalism (Bresnan, 2001). The other is the implementation and operation of a
comprehensive open treebanking environment for building, hosting and exploring treebanks,
thereby overcoming problems of maintenance and fragmentation due to treebanks being scat-
tered and dependent on various platform-dependent software.

The project has recently cooperated with META-NORD (Vasiļjevs et al., 2012) (2011–2013), in
the Information and Communication Technologies Policy Support Programme (CIP ICT-PSP),
aimed at creating an open infrastructure to promote the accessibility and reuse of language
resources and technologies (LRT). The META-NORD consortium included organizations from
all the Nordic and Baltic countries. Among its recent results has been the documentation,
rights clearance, licensing and sharing of many language resources, including treebanks, via
the META-SHARE1 catalogue and repository, thereby making LRT more readily available to R&D.

While the details of this cooperation are presented elsewhere,2 the present paper will summa-
rize the present state of the INESS infrastructure with a focus on functionality and usability.

2 Hosting treebanks in the INESS infrastructure

INESS currently provides the most comprehensive web-based treebanking services available. A
normal web browser is sufficient as a client platform for accessing, searching and downloading
treebanks, and also for the annotation of LFG-based parsebanks, including computer-aided
manual disambiguation, text cleanup and handling of unknown words (Rosén et al., 2009,
2012b). The search functionality has recently been extended and simplified (Meurer, 2012).
Search, visualization, resource management and cataloguing have been streamlined and work
in similar ways for treebanks in several different paradigms (LFG, constituency and various
dependency formats), thus simplifying access to a variety of resources.

For these reasons, INESS has become an attractive service for research groups who have de-
veloped or want to develop treebanks, but who cannot or do not want to invest in their own
suite of web services for treebanking. Since the project start in 2010, INESS has been hosting
an increasing number of treebanks, small and large. Among the larger treebanks developed by
others and made available through INESS are the Icelandic Parsed Historical Corpus (IcePaHC,
73,014 sentences) (Wallenberg et al., 2011), the German Tiger treebank (50,472 sentences
with dependency annotation, 9,221 with LFG annotation) (Brants et al., 2002) and the de-
pendency part of the Bulgarian BulTreeBank (11,900 sentences) (Simov and Osenova, 2004).
There is also a collection of sizable treebanks for Northern Sami (in total more than 1.7 million
sentences, although not manually checked).

1http:/meta-share.tilde.lv
2A paper about the cooperation between INESS and META-NORD has been accepted for the Workshop on Nordic

Language Resources Infrastructure (NoLaReIn) at NoDaLiDa 2013.
Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 454 of 474]

Figure 1: Choosing treebanks in INESS with the parallel treebanks setting.

The INESS infrastructure also offers tools for the development and exploitation of parallel cor-
pora. Two parallel corpora aligned at sentence level were recently constructed and documented
in cooperation with META-NORD. One of these is based on excerpts of a number of translations
of the novel Sofies Verden (Sophie’s World) (Gaarder, 1991), annotated for different languages
and various formalisms, amounting to 26 aligned language pairs. Annotations of translations
of a document from the Acquis communautaire were also aligned, currently yielding 21 pairs.

The ParGram project (Butt et al., 2002) has recently started using INESS as a testbed for semi-
automatically aligning several LFG treebanks at phrase level. For treebanks constructed with
parallel LFG grammars, the technology developed in the XPAR project (Dyvik et al., 2009)
makes it possible to automatically align c-structure phrases based on manually indicated trans-
lational equivalences between f-structures. The resulting parallel treebanks are currently too
small for exploitation, but their construction and exploration is an important proof of concept
and a test of the parallel grammar construction endeavor in ParGram.

A screenshot with an overview of the treebank selection interface, with the option of choosing
parallel treebanks, is shown in Figure 1. This figure also shows the 30 languages for which
there are currently treebanks in the INESS infrastructure.

3 Accessing treebanks in the INESS interface

When accessing treebanks, users may want to identify treebanks and their provenance, for
instance to correctly cite the materials. Access to many resources also requires that users be au-
thenticated and authorized to use the materials under specified conditions. In recent joint work
with META-NORD more attention has therefore been paid to the documentation and licensing
of treebanks in INESS.

Relevant information is presented in the user interface after login. By way of example, Figure
2 shows how information on the Sofie Estonian treebank is presented the first time an authen-
ticated user accesses this resource in INESS. A text describing the terms of the license and other
metadata is presented to the user. The user can then choose to accept this license by clicking on
the “Accept” button. This procedure is only necessary for treebanks with restrictions; in many
cases the restrictions amount to no more than the requirement of attribution.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 455 of 474]

Figure 2: Presentation of documentation and user license, Sofie Estonian treebank.

4 The INESS Norwegian treebank

One of the main activities of the INESS project is the development of a large treebank for Nor-
wegian, obtained by parsing automatically with an LFG grammar on the XLE parsing platform.
The Norwegian treebank is growing and consists of a number of different genres in fiction
and non-fiction. Part of the treebank is being efficiently manually disambiguated with the LFG
PARSEBANKER (Rosén et al., 2009) Currently 4568 Norwegian sentences (46735 words) have
been manually (at least partially) disambiguated; of these, 3602 sentences (35450) have been
fully disambiguated. Based on the increasing number of manually disambiguated and qual-
ity controlled sentences, a stochastic disambiguator has been implemented which currently
operates on the fly for any new sentences that are added.

(1) Men
But

det
it

var
was

helt
completely

umulig.
impossible.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 456 of 474]

Figure 3: Screenshot of a disambiguated sentence in the INESS Norwegian treebank.

Figure 3 shows the manually disambiguated analysis of the sentence in example 1. Parsing re-
sulted in 46 analyses for this sentence, and 211 discriminants were calculated (see Rosén et al.
(2007) for the use of discriminants in LFG). Of these 211, only four were chosen in order to
select the intended analysis.

5 Conclusion and outlook
INESS is becoming established as an infrastructure hosting a variety of existing treebanks as
well as actively promoting the development of new treebanks. The infrastructure provides
added value to existing treebanks through an increasing number of services, now including
streamlined documentation and metadata, cataloguing information, access and licensing pro-
cedures, search, visualization and download. The INESS infrastructure is fully functional.

In the future, access will be further improved through user authentication by means of single
sign-on via federated identity servers (eduGain) and through the use of persistent identifiers
to identify resources (including also complex resources and possibly parts of resources). The
resources and services in INESS will also be catalogued and linked in CLARINO (the Norwegian
part of the CLARIN network) and in the Language Technology Resource Collection for Norwegian
– Språkbanken, hosted at the National Library of Norway.

Acknowledgments
The reported work has been funded by the Research Council of Norway, the University of
Bergen, and the European Commission under CIP-ICT-PSP grant agreement no. 270899.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 457 of 474]

References
Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002). The TIGER treebank. In
Proceedings of the 1st Workshop on Treebanks and Linguistic Theories, pages 24–41.

Bresnan, J. (2001). Lexical-Functional Syntax. Blackwell, Malden, MA.

Butt, M., Dyvik, H., King, T. H., Masuichi, H., and Rohrer, C. (2002). The Parallel Grammar
project. In Proceedings of COLING-2002 Workshop on Grammar Engineering and Evaluation,
Taipei, Taiwan.

Dyvik, H., Meurer, P., Rosén, V., and De Smedt, K. (2009). Linguistically motivated parallel
parsebanks. In Passarotti, M., Przepiórkowski, A., Raynaud, S., and Van Eynde, F., editors,
Proceedings of the Eighth International Workshop on Treebanks and Linguistic Theories, pages
71–82, Milan, Italy. EDUCatt.

Gaarder, J. (1991). Sofies verden: roman om filosofiens historie. Aschehoug, Oslo, Norway.

Meurer, P. (2012). INESS-Search: A search system for LFG (and other) treebanks. In Butt, M.
and King, T. H., editors, Proceedings of the LFG ’12 Conference, LFG Online Proceedings, pages
404–421, Stanford, CA. CSLI Publications.

Rosén, V., De Smedt, K., Meurer, P., and Dyvik, H. (2012a). An open infrastructure for ad-
vanced treebanking. In Hajič, J., De Smedt, K., Tadić, M., and Branco, A., editors, META-
RESEARCH Workshop on Advanced Treebanking at LREC2012, pages 22–29, Istanbul, Turkey.

Rosén, V., Meurer, P., and De Smedt, K. (2007). Designing and implementing discriminants for
LFG grammars. In King, T. H. and Butt, M., editors, The Proceedings of the LFG ’07 Conference,
pages 397–417. CSLI Publications, Stanford.

Rosén, V., Meurer, P., and De Smedt, K. (2009). LFG Parsebanker: A toolkit for building and
searching a treebank as a parsed corpus. In Van Eynde, F., Frank, A., van Noord, G., and
De Smedt, K., editors, Proceedings of the Seventh International Workshop on Treebanks and
Linguistic Theories (TLT7), pages 127–133, Utrecht. LOT.

Rosén, V., Meurer, P., Losnegaard, G. S., Lyse, G. I., De Smedt, K., Thunes, M., and Dyvik, H.
(2012b). An integrated web-based treebank annotation system. In Hendrickx, I., Kübler, S.,
and Simov, K., editors, Proceedings of the Eleventh International Workshop on Treebanks and
Linguistic Theories (TLT11), pages 157–167, Lisbon, Portugal. Edições Colibri.

Simov, K. and Osenova, P. (2004). BulTreeBank Stylebook. BulTreeBank Project Technical
Report 5, Bulgarian Academy of Sciences.

Vasiļjevs, A., Forsberg, M., Gornostay, T., Haltrup Hansen, D., Jóhannsdóttir, K., Lyse, G.,
Lindén, K., Offersgaard, L., Olsen, S., Pedersen, B., Rögnvaldsson, E., Skadiņa, I., De Smedt,
K., Oksanen, V., and Rozis, R. (2012). Creation of an open shared language resource repos-
itory in the Nordic and Baltic countries. In Calzolari, N., Choukri, K., Declerck, T., Doğan,
M. U., Maegaard, B., Mariani, J., Odijk, J., and Piperidis, S., editors, Proceedings of the Eighth
Conference on International Language Resources and Evaluation (LREC’12), pages 1076–1083,
Istanbul, Turkey. European Language Resources Association (ELRA).

Wallenberg, J., Ingason, A. K., Sigurðsson, E. F., and Rögnvaldsson, E. (2011). Icelandic
Parsed Historical Corpus (IcePaHC) version 0.9.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 458 of 474]

Building gold-standard treebanks for Norwegian

Per Erik Solberg
National Library of Norway, P.O.Box 2674 Solli, NO-0203 Oslo, Norway

per.solberg@nb.no

ABSTRACT
Språkbanken at the National Library of Norway is currently building up gold-standard
Dependency Grammar treebanks for Norwegian Bokmål and Nynorsk. The treebanks
are manually annotated for morphological features, syntactic functions and dependency
relations. This paper explains the choice of texts and format of the treebanks, some key
aspects of the morphological and syntactic annotation, and it is illustrated how the treebanks
can be used.

KEYWORDS: Treebanking, Dependency Grammar, Morphology, Syntax, Norwegian.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 459 of 474]

1 Introduction
Data-driven NLP tools such as part-of-speech taggers and syntactic parsers require sufficiently
large manually annotated corpora for training and testing, so-called gold-standard corpora
(Brants (2000), Nivre et al. (2006a)). Språkbanken has decided to provide gold-standard
Dependency Grammar treebanks for the two written standards of Norwegian - Bokmål
and Nynorsk. The treebanks are manually annotated for morphological features, syntactic
functions and dependency relations.

The project was initiated in October 2011, and beta versions of the tree-
banks are released at irregular intervals at Språkbanken’s web page (see
http://www.nb.no/English/Collection-and-Services/Spraakbanken/
Available-resources/Text-Resources). Stable versions will be released in Oc-
tober 2013.

This paper and the system demonstration at NoDaLiDa 2013 present some important features
of the treebanks: Section 2 describes the format, size and choice of texts, and section 3 lays
out traits of the morphological analysis. Section 4 explains some key aspects of the syntactic
annotation, and section 5 exemplifies how the treebanks can be used.

2 Choice of texts and format
At the time of writing (April 2013), the Bokmål treebank consists of approximately 204 000
tokens and the Nynorsk treebank of around 156 000 tokens. These numbers will increase
significantly during the the last months before the final release. The size of the two treebanks
will also be leveled out.

Comparable treebanks for other languages, such as the TIGER treebank and Prague Depen-
dency Treebank, contain, to a large extent, newspaper text (Brants et al. (2004), Böhmová
et al. (2003)). The Norwegian treebanks also contain a significant amount of text of this
genre, taken from Norsk aviskorpus, a corpus of Norwegian newspaper articles from the last
15 years (http://avis.uib.no/om-aviskorpuset/english). Other types of factual
prose, such as government reports and transcripts of parliament debates, are also included.
In order to include texts in a more colloquial style, we have received permission from
individual bloggers to use selected posts from their blogs.

The distribution of texts in the treebanks is currently as follows:

Newspaper text 79%
Government reports 9%
Parliament debates 6%
Blogs 6%

Table 1: Distribution of texts in the treebanks

The texts are morphologically tagged, using the Oslo-Bergen Tagger (OBT), (Johannessen
et al. (2011)) and subsequently checked and corrected. For the syntactic preprocessing, we
use the MaltParser, trained on an earlier version of the treebanks ((Nivre et al. (2006a)).
The output of the syntactic parsing is checked and corrected using the annotation software
TrEd (http://ufal.mff.cuni.cz/tred/). Most texts are syntactically annotated by
one annotator, but the two annotators working in the project regularly perform double
annotations to check that their annotations are consistent.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 460 of 474]

The treebanks are released in the CONLL format (Nivre et al. (2007)). The CONLL format is
a 10 column tab-separated table, where each new line represents a token. The columns,
from right to left, are token index, word form, lemma, coarse-grained part-of-speech (POS)
tag, fine-grained POS tag, morphological features, index of head, dependency relation,
and two columns which are left blank in our treebanks. We do not distinguish between
coarse-grained POS tags and fine-grained POS tags in our annotations, and these columns
therefore always contain the same information. In the final release, the treebanks will
also be available in Prague Markup Language, the XML-based format used in the Prague
Dependency Treebank.

3 Morphological annotation
The lemmatization and the morphological tagset are mostly the same for OBT and
Språbanken’s treebanks, although we have added a few additional morphological tags
(cf. Kinn et al. (2013, 7-16)), the most important being the tag unorm, explained be-
low. The lemmas are taken from Norsk ordbank, a lexicographic database for Norwegian
(http://www.edd.uio.no/prosjekt/ordbanken). In addition to this, OBT generates
lemmas for compounds and for adjectives formed on the basis of participial forms of verbs.
The morphological tagset of OBT is rather rich: In addition to features pertaining to the
inflection of words, it also contains information on whether the token belongs to a particular
sub-class of a POS: Pronouns are marked as demonstrative, personal, reflexive, reciprocal,
question-forming etc., determiners as demonstrative, quantifying, possessive and so on. For
users of the treebanks who need a distinction between coarse- and fine-grained POS tags, it
should be relatively easy to make a conversion scheme based on these tags.

A phenomenon which OBT cannot handle, is spelling variants and inflectional forms which
do not comply with the official norm for Bokmål and Nynorsk, and non-compounds which
do not have an entry in Norsk ordbank. In such cases, the annotators manually add a lemma
and the correct morphological tags, and mark the token as not complying with the norm,
using the morphological tag unorm, (i.e. unormert, ’non-standard’).

4 Syntactic annotation
While the morphological analyses are based on OBT, the syntactic annotation guidelines for
the treebanks have been developed specifically for this project (see Kinn et al. (2013)). The
formalism for the syntactic annotation is Dependency Grammar. The sentence in example
(1) and its analysis in FIGURE 1 illustrates some key features of the syntactic annotation.

(1) Den
the

kinesiske
Chinese

ledelsen
administration

har
has

tydeligvis
evidently

innsett
realized

alvoret.
seriousness+the

’The Chinese administration has evidently realized the seriousness.’

One token serves as head for the whole sentence. In (1), the finite auxiliary verb har heads
the sentence and carries the root-function for finite sentences FINV. Each of the other tokens
are annotated for syntactic functions and unique dependency relations to another token
in the sentence. The subject is dependent on the finite verb, as subjects usually only occur
in finite constructions. Other arguments and modifiers, such as the object alvoret and the
adverb tydeligvis in example (1), are, however, dependents on the lexical verb. While there
might be cases where it would be adequate to make e.g. an adverbial dependent on the

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 461 of 474]

Figure 1: Analysis of (1) Figure 2: Analysis of (2)

auxiliary, we have chosen this analysis to ensure annotations which are as consistent and
uniform as possible.

Finite subordinate clauses are always headed by the finite verb in our treebanks. Example
(2) and its analysis in FIGURE 2 illustrates this.

(2) De
the

kritiske
critical

røstene
voices

hevdet
claimed

at
that

foreldrene
parents+the

overstimulerte
overstimulated

barna.
children+the

’The critical voices claimed that the parents overstimulated the children.’

The complement clause in (2) is headed by the verb overstimulerte, which receives the
function DOBJ (direct object). An alternative analysis would be to make the subjunction
head. In Norwegian, the subjunction can quite often be dropped in both relative and
complement clauses. If all finite subordinate clauses are headed by the finite verb, it is quite
simple to make queries for all subordinate clauses of a specific type, regardless of whether
a subjunction is present. In the alternative analysis where the subjunction serves as head,
a different analysis would have to be found for clauses lacking a subjunction, and some
queries would be much more difficult to perform.

5 Use

The treebanks are mainly intended as testing and training material for data-driven NLP
tools, both morphological and syntactic. Such resources have been lacking for Norwegian1.
For example, there have been no suitable treebank for testing and training data-driven
dependency parsers. To illustrate how the gold-standard treebanks can be used for this
purposes, I parsed a 15 000 token text in Bokmål both with the MaltParser, and compared the
results to a manually annotated version of the text, using the CONLL-X shared task evaluation
script (http://ilk.uvt.nl/conll/software.html). The MaltParser was trained on
the current version of the Bokmål treebank. I used the Covington’s non-projective parsing
algorithm and the Liblinear learning algorithm, but didn’t try to optimize the parser any
further (Nivre et al. (2006a), Covington (2001), Fan et al. (2008)). the MaltParser gave a

1But see also the INESS project at the University of Bergen: http://iness.uib.no/

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 462 of 474]

labeled attachment score (LAS; the percentage of tokens for which both the dependency
relation and the syntactic function is correct) of 85.77 %. In comparison, Nivre et al. (2006b)
obtained a LAS of 84.58 % for Swedish and 84.77 % for Danish using the MaltParser, the best
results for those languages in the 2006 CoNLL-X shared task on Multilingual Dependency
Parsing (Buchholz and Marsi (2006)).

While the treebanks are primarily developed for NLP research and development, they can also
be interesting tools for researchers within other linguistic disciplines, such as morphology,
lexicography and syntax. A treebank can be used to query very specific constructions, which
cannot be found in corpora with a less detailed annotation. For example, Julien (2009),
who studied main clause word order in subordinate clauses in Mainland Scandinavian,
wasn’t able to search for fronted non-subjects in subordinate clauses in the corpora she used
(Julien (2009, 5)). This could have been retrieved easily from the gold-standard treebanks,
using e.g. PML Tree Query (Pajas and Štěpánek (2009)). A query in the treebanks can also
immediately give all lemmas occurring e.g. as indirect object, while this kind of information
is much harder to retrieve in corpora without syntactic annotation. A downside to manually
annotated treebanks when used for such purposes, is that they are usually much smaller
than corpora with a more shallow annotation, and it might therefore be difficult to find
infrequent constructions.

6 Conclusion

This paper has presented Språkbanken’s gold-standard treebanks for Norwegian Bokmål
and Nynorsk, two Dependency Grammar treebanks which are manually annotated for
morphological features, syntactic functions and dependency relations. The treebanks have
primarily been developed with the testing and training of data-driven NLP tools in mind.
Norwegian treebanks containing detailed syntactic annotation can, however, be useful and
interesting resources for other purposes too, such as syntactic and lexicographic research.

Acknowledgments

Språkbanken’s gold-standard treebanks are built up in close collaboration with the Text
Laboratory at the University of Oslo. I would also like to thank Lilja Øverlid and Arne
Skjærholt at the Department of Informatics at the University of Oslo for their valuable advice
and for helping us set up a more effective syntactic preprocessing. Inquiries regarding the
treebanks can be sent to sprakbanken@nb.no.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 463 of 474]

References

Böhmová, A., Hajič, J., Hajičová, E., and Hladká, B. (2003). The Prague Dependency
Treebank. In Treebanks, pages 103–127. Springer, Netherlands.

Brants, S., Dipper, S., Eisenberg, P., Hansen-Schirra, S., König, E., Lezius, W., Rohrer, C.,
Smith, G., and Uszkoreit, H. (2004). Tiger: Linguistic interpretation of a german corpus.
Research on Language and Computation, 2(4):597–620.

Brants, T. (2000). Tnt: a statistical part-of-speech tagger. In Proceedings of the sixth
conference on Applied natural language processing, pages 224–231, Seattle, WA.

Buchholz, S. and Marsi, E. (2006). Conll-x shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Computational Natural Language Learning, pages
149–164, New York, NY.

Covington, M. A. (2001). A fundamental algorithm for dependency parsing. In Proceedings
of the 39th annual ACM southeast conference, pages 95–102, Athens, GA.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear: A library
for large linear classification. The Journal of Machine Learning Research, 9:1871–1874.

Johannessen, J. B., Hagen, K., Nøklestad, A., and Lynum, A. (2011). Obt+ stat: Evaluation
of a combined cg and statistical tagger. Constraint Grammar Applications, pages 26–34.

Julien, M. (2009). Embedded clauses with main clause word order in mainland scandina-
vian. Published on LingBuzz:(http://ling. auf. net/lingBuzz/000475).

Kinn, K., Solberg, P. E., and Eriksen, P. K. (2013). Retningslinjer for morfologisk
og syntaktisk annotasjon i Språkbankens gullkorpus. Manuscript. Språkbanken, Na-
tional Library of Norway. URL: http://www.nb.no/Tilbud/Forske/Spraakbanken/
Tilgjengelege-ressursar/Tekstressursar. [last visited on 05/04/2013].

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret, D. (2007).
The conll 2007 shared task on dependency parsing. In Proceedings of the CoNLL Shared
Task Session of EMNLP-CoNLL, pages 915–932, Toulouse, France.

Nivre, J., Hall, J., and Nilsson, J. (2006a). Maltparser: A data-driven parser-generator for
dependency parsing. In Proceedings of LREC, volume 6, pages 2216–2219.

Nivre, J., Hall, J., Nilsson, J., Eryiit, G., and Marinov, S. (2006b). Labeled pseudo-projective
dependency parsing with support vector machines. In Proceedings of the Tenth Conference
on Computational Natural Language Learning, pages 221–225, New York, NY.

Pajas, P. and Štěpánek, J. (2009). System for querying syntactically annotated corpora.
In Proceedings of the ACL-IJCNLP 2009 Software Demonstrations, pages 33–36, Suntec,
Singapore.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013); Linköping Electronic Conference Proceedings #85 [page 464 of 474]

www.tungutaekni.is

Sponsors of
NODALIDA 2013 & NEALT

Design • Joel Priestley
Photo • Arthur Sand

