
Releasing multimodal data as Linguistic Linked Open Data:
An experience report

Peter Menke
SFB 673, Project X1

University of Bielefeld

John McCrae
CIT-EC

University of Bielefeld

Philipp Cimiano
SFB 673, CIT-EC

University of Bielefeld

pmenke@techfak.uni-bielefeld.de
{jmccrae,cimiano}@cit-ec.uni-bielefeld.de

Abstract

In this paper we describe an implemented
framework for releasing multimodal cor-
pora as Linked Data. In particular, we
describe our experiences in releasing a
multimodal corpus based on an online
chat game as Linked Data. Building on
an internal multimodal data model we
call FiESTA, we have implemented a li-
brary that enhances existing libraries and
classes by functionality allowing to con-
vert the data to RDF. Our framework is
implemented on the Rails web applica-
tion framework. We argue that this work
can be highly useful for further contribu-
tions to the Linked Data community, espe-
cially from the fields of spoken dialogue
and multimodal communication.

1 Introduction

In recent years, many linguistic resources have
been released as Linked Data (Chiarcos et al.,
2011). Most of the datasets that are part of the
so called Linguistic Linked Open Data (LLOD)
cloud consist of dictionaries, written corpora or
lexica. However, multimodal dataset are currently
heavily underrepresented. In order to address this
gap, we describe a framework supporting the easy
publication of multimodal data as RDF / Linked
Data which is based on an existing multimodal
data model and on the Rails framework. In this
paper we describe our approach and summarize
our experiences. In particular, we describe our ex-
periences in releasing a multimodal corpus based
on an online chat game as Linked Data. The cor-
pus consists of chats and related actions in an ob-
ject arrangement game using a computer-mediated
setting. It contains multiple forms of annota-
tion, including primary material such as text tran-
scripts and information about object movements as

well as secondary analysis such as phrase structure
analysis of the text. Due to the challenging nature
of the data, in particular that it contains annota-
tions on multiple timelines, we developed a new
model for the representation of this data, which
we call FiESTA.

In order to express both established and new
data categories and properties, from linguistics as
well as from nonlinguistic communication, we de-
veloped a new data category registry, which con-
tains links to other resources in the LLOD cloud,
in particular to the ISOcat data category repos-
itory (Windhouwer and Wright, 2012), but also
serves as a place where categories from novel re-
search fields (mainly multimodal communication)
can be collected, discussed, until they have set-
tled down and are stable enough for an integration
into more authoritative category registries, such as
ISOcat. By means of this we aim to make the re-

Figure 1: A screen configuration as seen by the
slider, who can see the last chat message (bottom
part) and move objects with a mouse. Unused ob-
jects are stored in an area on the left.

44



source more widely available and to enable a long
and successful lifecycle for the resource.

Furthermore, we describe a software toolchain
for easy extraction of RDF data from existing in-
formation structures, such as classes or database
records, and delivery of this data via web appli-
cations and services based on the popular frame-
work Rails (Ruby et al., 2011). This tool chain
is designed to be easy to integrate with existing
libraries in a plugin-like fashion, in order to re-
duce the effort of integrating existing systems into
Linked Data networks and infrastructures.

In Section 2 we describe the data collection, its
provenance, its experimental setup and its levels of
annotations. Then, Section 3 summarizes the steps
from the internal representation of this (and other)
multimodal data collections to a RDF represen-
tation served to the public web via HTTP. Some
thoughts and prospects on how this system could
be improved and distributed conclude the article.

2 The chat game experiment

2.1 About the chat game corpus

As a pilot test for the generation of RDF data in a
large linguistic research project we selected a cor-
pus resulting from a chat game experiment. This
choice was motivated by several reasons:

1. The data set is compact and manageable,
yet it contains data types and structures
(e.g., multimodal and nonlinguistic interac-
tion) that are still underrepresented in the
Linked Data context.

2. It is heterogeneous, containing both language
data and representations of actions and spa-
tial entities.

3. The consent forms of the experiment con-
tained clauses that permit a publication of
the complete anonymized data sets. With-
out such explicit permissions, the publica-
tion even of anonymized derived data sets
(such as transcriptions and annotations) is
highly problematic especially in Germany.
The chat game corpus is one of the few data
sets with unproblematic consent forms. In
addition, no video and audio recordings were
created in this study, which regularly cause
further problems considering anonymisation
and protection of privacy for participants.

2.2 Participants and setup

28 adults (all native speakers of German) partic-
ipated in pairs in the study (20 female, 8 male,
mean age: 26). Data from several additional par-
ticipants needed to be excluded due to various rea-
sons. The players received course credit and/or a
payment for their participation.

The chat game setup involves an object arrange-
ment game paradigm with two players realised by
a computer-mediated situation. Each participant
sits at a computer terminal. The first participant
(called the “chatter”) has to describe target posi-
tions of objects on her screen with distinct colors
and shapes to the second participant (the “slider”)
via chat messages. This second participant does
not have access to the target configuration, result-
ing in the chatter’s messages being the slider’s
only input. The slider is also not able to send mes-
sages. Their only mode of interaction is to move
the game pieces onto the board, and into the cor-
rect positions.

The goal of the game is to reach the full tar-
get configuration of all objects by the technique
described above. In each trial, eight rounds were
played, with role switches between rounds.

2.3 Data structures

Primary data1 essentially consists of an electronic
log file of the activities performed by the partic-
ipants. In particular, two types of actions were
used: chat messages (including a time stamp and
a string containing the message), and movements
of objects (including a time stamp, an identifier of
the object, and two pairs of coordinates, indicat-
ing the origin and the destination position on the
board). The log file uses a custom XML format
suited to the needs of the game (cf. Figure 2).

For each round, additional information about
the respective target configuration was added to
the log. A header contains further information
about participants and a timestamp indicating the
begin of the current trial.

Based on this automatically generated data, sev-
eral annotations have been created:

1Terms like primary and secondary data are problem-
atic when we go beyond classical face-to-face dialogues pre-
served in audio and video recordings. We use these terms in
Lehmann’s reading: “Primary linguistic data are [...] repre-
sentations of [...] speech events with their spatio-temporal
coordinates” (Lehmann, 2005, p. 187). However, his dis-
tinction between raw (=non-symbolic) and processed (=sym-
bolic) data (Lehmann, 2005, pp. 205ff.) does not work for the
data described here, because our raw data is in fact symbolic.

45



1 <match startTime="16.11.11 11:22">
2 <round timeStarted="16.11.11 11:22" roundId="1">
3 <chat time="+105" message="grauer kreis linke haelfte obere haelfte">
4 <sentence value="fragment w/o verb" type="instruction" lok="spatial" id="s1">
5 <parsetree id="parsetree1" tiefe="2" verzweigung="3.0" hoeflichkeit="2">
6 <CNP>
7 <NP>
8 <ADJA lemma="grau">Grauer</ADJA>
9 <NN lemma="Kreis">Kreis</NN>

10 </NP>
11 ...
12 </CNP>
13 </parsetree>
14 </sentence>
15 </chat>
16 <move shape="gray_circle" from="-1,0" to="215,215" time="+133"/>
17 <move shape="gray_circle" from="215,215" to="215,15" time="+136"/>
18 ...
19 </round>
20 ...
21 </match>

Figure 2: A simplified example of the custom XML file format, containing one instruction and two
subsequent moves (the second one being a correction).

Praat

ELAN

Anvil

custom

EXMA-
RaLDA

internal RDF 
data 

structure
FiESTA 
format

N-Triples

Turtle

RDF/XML

HTML 
View

XML / 
JSON
View

RDF
ViewsRDF

ViewsRDF
Views

Rails
engine

FiESTA / MExiCo
library

POSEIdON library Rails view
generation

Figure 3: Architecture of the corpus management web application, grouped into scopes of responsibility
of the respective libraries (FiESTA and POSEIdON).

1. A transformation of the written messages into
orthographically and syntactically correct ut-
terances. This was necessary for the parser
(see below) to perform with an adequate ac-
curacy.

2. Utterances were segmented into sentences
and then parsed with the Stanford Parser
(Klein and Manning, 2002; Klein and Man-
ning, 2003), using the German version
trained on the Negra corpus (Rafferty and
Manning, 2008).

3. Syntactic and semantic properties of sen-
tences were annotated, among them elabo-

rateness (e.g., fragments and full sentences),
speech acts (e.g., greetings, instructions, cor-
rections, feedback) and localisation strategies
– for instance, whether positions were de-
scribed in relation to present objects (“to the
right of the circle”), by describing absolute
locations of the board itself (“into the bottom-
left corner”), or by using metaphors (such as
points of the compass, floors of buildings for
rows: “south of the circle”).

4. The parse trees were further annotated with
basic tree measures (depth, breadth), and
with an automatically generated quantitative
measure of politeness, based on the occur-

46



rence of certain keywords, sentence types,
and syntactic features.

Two annotators annotated the data. Some game
instances were annotated by one of the annotators
only, some by both of them. Differences were dis-
cussed with the experimenters, which lead to re-
peated correction and refinement of both annota-
tions and annotation guidelines. This additional
data was added to the XML files, as additional at-
tributes or descendant elements to those already
generated during experimentation.

Overall, the corpus contains 666 chat messages
and 1,243 object moves. The parser created a total
of 11,812 constituents (including terminal nodes)
from the orthographically corrected chat messages
(resulting in a total average of 17.75 constituent
nodes per chat message).

3 From internal representations to RDF

3.1 Internal representation
We developed FiESTA (an acronym for “format
for extensive spatiotemporal annotations”), which
takes into account various approaches, among
them, the annotation graph approach (Bird and
Liberman, 2001), the NITE object model (Evert et
al., 2003), the speech transcription facilities of the
TEI P5 specification (TEI Consortium, 2008), and
the (X)CES standard (Ide et al., 2000). There were
shortcomings in all these approaches that made it
very difficult to express complex multimodal data
structures. These shortcomings can also be found
in theories and models that are more established
in the Linked Data community, such as POWLA
(Chiarcos, 2012) or LAF (Ide et al., 2003).

One of the most pressing problems is the restric-
tion to a single, flat stream or sequence of primary
data (called “text” in some approaches), or a sin-
gle, flat timeline. In several data collections we
need to support multiple timelines, especially in
cases where multiple novel recording and track-
ing devices are used whose temporal synchroni-
sation is nontrivial (because of irregular tracking
intervals, computational delay, etc.). However,
when working in a project with a limited duration,
researchers are under time pressure, as a conse-
quence, it can become necessary to perform anal-
yses of data sets even before a working mecha-
nism for complete, error-free synchronisation has
been built by others. As an example, annotators
might want to start the time-consuming transcrip-
tion of speech as soon as possible, while others

might make efforts to perform a categorization of
automatically detected head gestures based on raw
data generated by a novel tracker device. If it turns
out that the time stamps in the tracker data are er-
roneous and cannot be aligned to the other ones us-
ing a simple linear transformation, there might be
not enough time for their correction before annota-
tors can start creating secondary data. Therefore,
both groups need to start their work using their re-
spective, isolated timelines if they do not want to
put the project at risk. Simultaneously, the time-
line of the tracking data must be aligned to that of
the transcriptions in the background without mod-
ifying either of them.

The result are data sets that are based on dif-
ferent sets of time stamps, but belong to the same
situation under investigation. A synchronisation
of those different time stamps should be optional,
and the original time stamps must be preserved as
primary reference points at all times, even when a
complete synchronisation can be achieved. With
most of the given models, such an undertaking is
either impossible, or it involves the alienation of
model components (e.g., creation of phantom an-
notations being used as fake time points), which
both inflates the resulting data structure and makes
it less comprehensible. For instance, the annota-
tion tool EXMARaLDA provides a mechanism for
creating time forks (Schmidt and Wörner, 2005),
but this is useful only for shorter stretches of
simultaneous events surrounded by synchronised
time points (e. g., for shorter segments of simulta-
neous speech), and not for timelines that might be
completely independent from each other in the be-
ginning and need to be merged and aligned later.
Also, there are various potential reasons in a scien-
tific workflow that call for the use of an annotation
tool different from EXMARaLDA.

Also, in some cases there is need for the expres-
sion of spatial information parallel to temporal in-
formation. While this could be done by adding
additional tiers with annotations, we consider it a
cleaner and more logical solution to provide sup-
port for spatial (and other) axes on the same struc-
tural level as for timelines. This entails a modi-
fication of the present concept of the timeline to-
wards a more general scale that also enables users
to create spatial and abstract axes to which events
and annotations can be aligned. There can be
one or multiple scales, and each scale is given a
unit, a dimension (e. g., time, or a spatial axis),

47



identifier: ID
name: String

FiestaDocument

identifier: ID
name: String
unit: String
dimension: String
role: String

Scale

identifier: ID
name: String
contentStructure: String
dataType: String

Layer

identifier: ID
name: String
role: String
interLayerStruct.: String

LayerConnector

identifier: ID
Item

identifier: ID
role: String
order: Integer

LayerLink

identifier: ID
role: String
order: Integer
point: Double

PointLink

identifier: ID
role: String
order: Integer
min: Double
max: Double

IntervalLink

identifier: ID
role: String
order: Integer

ItemLink

min

max

point

so
ur
ce

target

ta
rg
et

so
ur
ce

ta
rg
et

identifier: ID
value: Object

Data

Figure 4: UML class diagram (simplified) of the FiESTA data model.

and a different level of measurement, following
(Stevens, 1946). Scales can be left independent,
or a synchronisation betweeen them can be ex-
pressed (e. g., a linear transformation between a
video-frame-based scale and a millisecond-based
one, or a manual alignment using explicit align-
ment points). A simplified version of the scale,
and the other FiESTA classes and their relations is
shown in the UML class diagram in Figure 4.

For the chat game data, three scales are used,
one as a classic timeline, and two as a basis for
coordinates on the two-dimensional game board.
Chat messages, moves, and subsequent data sets
are then imported as annotation items that are
linked to points on these scales, and, in some
cases, with a reference to other items.

3.2 A simple category registry

We established a simple web application serving
as a minimalist concept registry. There, we collect
and discuss concepts and categories for our data
models as well as the multimodal phenomena that
are (or are to be) modelled and described at our
institution.2

The granularity of the modeling of these con-
cepts (and also of properties) is roughly on the
level of the components used in RDF Schema.

2This registry is not meant to be a replacement for estab-
lished solutions such as ISOcat, but rather as an antecedent
tool for very early collection and discussion of concepts and
terms within projects and groups. We believe that this tool,
including additional mechanisms such as discussion boards,
is a better place for early concept development. As soon as
the first results emerge, categories can be transferred to sys-
tems such as ISOcat for presentation and discussion.

A category consists of (1) an identifier (which
automatically is suffixed to the ontology URI to
create an URI for the category), (2) a human-
readable label, (3) a human-readable definition
(typically consisting of one or two sentences), (4)
information about the class hierarchy, (5) infor-
mation about possible domains and ranges, and
(6) a number of relations, which express equiva-
lence and similarity relations to other categories
already existing outside the system (using appro-
priate vocabulary, such as rdfs:seeAlso or
owl:sameAs).

We added some convenience methods for easy
linking to some vocabularies or concept registries,
among them, ISOcat (Windhouwer and Wright,
2012), XML Schema, Dublin Core, FOAF, and
others.

At the moment, the ontology describing the Fi-
ESTA data model (cf. Subsection 3.1) contains
23 categories and 19 properties, resulting in 148
triples. The main part of which uses terms from
the RDFS vocabulary for a description and defi-
nition of classes and properties. Links to appro-
priate ISOcat entries were created, as well as to
the structuring components in the POWLA ontol-
ogy. However, most of these links use a weak
rdfs:seeAlso predicate rather than asserting a
strict equivalence, mainly because of slightly devi-
ating definitions, or because of different domain or
range specifications.

At the moment, the main purpose of this con-
cept registry is to provide an URL for each con-
cept, and to serve a snippet of information when an
HTTP request is sent to such an URL. Depending

48



Figure 5: Screenshot of the simple category registry.

on the type of request, it delivers either a human-
readable HTML document containing information
about the concept (see Figure 5), or an RDF repre-
sentation.

3.3 An RDF utility library

Within our systems, all transcription and annota-
tion files are available in the pivotal representation
format described above (see Section 3.1). They
can be exported into all formats (a) for which an
export routine is available and (b) that does not
raise irresolvable format conversion errors. How-
ever, for the generation of RDF a different solution
was chosen. We developed the POSEIdON library,
containing modules that can be integrated into ex-
isting classes3 in order to provide these classes and
their instances with basic RDF information by us-
ing only a small set of configuring methods (see
Figure 6 for an example of some POSEIdON di-
rectives and the resulting RDF). This can be use-
ful if an existing library should be augmented with
RDF information without modifying the existing
source code.

For the representation of types and categories,
the separate category registry described in 3.3 is
used.

Typical use cases for POSEIdON directives are

• The definition of a URI for a class (used for
type declarations of its instances).

• The definition of a URI scheme for instances
of a class, based on a unique instance prop-
erty.

3We use Ruby’s concept of mixins, which basically means
the integration of source code contained in a module into an
already existing class, without the need to alter the actual
source code files of these classes.

• A mapping between instance variables and
RDF snippets.

• Rules for a recursive RDF serialisation of
member objects.

The low-level basis of POSEIdON is the estab-
lished rdf library4 which, in combination with
various implementations of RDF writers, is used
for collecting triples and exporting them to the re-
spective variants of RDF documents. POSEIdON,
by providing such a high-level interface, spares the
user the creation and management of single RDF
triples and graphs.

Several POSEIdON directives are added to the
implementation of the FIESTA model. As a re-
sult, the RDF representation of a FiESTA docu-
ment contains its complete contents represented as
RDF triples (especially by using the recursive in-
cludes provided by POSEIdON).

There are already Ruby libraries that provide
high-level support for RDF, such as the Ac-
tiveRDF library5. However, this library pursues
a slightly different strategy by providing Ruby ac-
cessor methods to a data collection internally rep-
resented in RDF. In contrary, POSEIdON provides
a simple way of getting an additional representa-
tion (in RDF) from an already existing library or
data source in a read-only fashion, without mod-
ifying the source code of existing classes. Such
data interfaces are typically based on XML docu-
ments or relational databases which are accessed
with standard libraries (e.g., Nokogiri6 for XML
or ActiveRecord7 for SQL databases). A modifi-

4https://github.com/ruby-rdf/rdf.
5http://activerdf.org/
6http://nokogiri.org.
7http://rubygems.org/gems/activerecord

49



(a)

1 class Scale
2 include Poseidon
3 self_uri ’http://cats.acme.org/Scale’
4 rdf_property :identifier, ’http://cats.acme.org/identifier’
5 rdf_property :name, ’http://cats.acme.org/name’
6 rdf_property :unit, ’http://cats.acme.org/unit’
7 rdf_property :dimension, ’http://cats.acme.org/dimension’
8 rdf_property :mode, ’http://cats.acme.org/mode’
9 ...

10 end

(b)

1 @base <http://repo.acme.org/> .
2 @prefix cats: <http://cats.acme.org/> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4

5 cats:Scale a rdfs:Class .
6

7 <resources/1#timeline> a cats:Scale;
8 cats:identifier "timeline";
9 cats:name "Timeline";

10 cats:unit "s" ;
11 cats:dimension "time";
12 cats:mode "ratio".

Figure 6: Example of how POSEIdON works. (a) Usage of the POSEIdON library in a Ruby class to
markup URIs (line 3) or to express rules for the export of instance properties (lines 4-8). — (b) The RDF
resulting from these POSEIdON instructions. Some URLs are anonymized for review.

cation of such standard libraries just for an addi-
tional RDF representation would be out of propor-
tion. POSEIdON’s separate mixin strategy is a far
cleaner approach.

3.4 Characteristics of the RDF
representation

The resulting RDF representation (cf. the snippet
in Figure 7) of the chat game corpus consists of
approx. 300,000 triples (approx. 76,000 of these
are data category annotations). A large number of
those triples are necessary for the representation of
the heavily interconnected phrase structure analy-
ses of the chat messages. The category registry
(cf. Subsection 3.2) is used for defining types of
the entities contained in the corpus (as can be seen
in the last lines of the code example in Figure 6b),
where the predicates for the attributes come from
the simple category registry described in Subsec-
tion 3.2.

3.5 Rails RDF integration

A web-based corpus management system is being
developed in our project, which is based on Rails8,
a framework that uses the model-view-controller
paradigm. In this system, RDF representations can
easily be installed parallel to the standard HTML
views and XML/JSON data representations by two
rather simple steps:

8http://rubyonrails.org/

1. Model classes need to be augmented with
POSEIdON directives,

2. and additional routes and controller actions
need to be defined for the paths and objects
for which RDF should be delivered.

RDF data can be obtained by content negotia-
tion either by adding a corresponding file suffix to
the URI (if omitted HTML is returned by default),
or by setting an appropriate Accept field in the
HTTP request header. The actual generation of the
RDF representation is done entirely by the strategy
described in the previous section. The correspond-
ing Rails controller then retrieves the RDF repre-
sentation generated by POSEIdON, and generates
a HTTP response (with the appropriate metadata,
such as the content type).

For larger resources, Rails’ built-in caching
mechanisms can be used to further reduce the re-
sponse time, in addition to the basic caching im-
plemented in POSEIdON.

4 Conclusion

In this article, we present two main contributions:
a chat game corpus that is not easily expressable
in terms of classic corpus and annotation models
that require a flat sequence of primary data ele-
ments (timeline items or tokens); and a toolchain
that obtains RDF representations from data sets by
attaching a modular interface to existing libraries

50



<1> a cats:FiestaDocument;
cats:hasItem <1#chat-5>,
<1#round-1-move-7>,
<1#round-1-move-8>;

cats:hasLayer <1#chats>,
<1#moves>,
<1#sentences>,
<1#parsedTrees>,
<1#parsedPhrases>;

cats:hasScale <1#timeline01>,
<1#spatial_x>,
<1#spatial_y>;

cats:identifier "1" .

<1#timeline01> a cats:Scale;
cats:identifier "timeline01";
cats:name "Timeline";
cats:unit "s" .

<1#moves> a cats:Layer;
cats:identifier "moves";
cats:name "Moves" .

<1#chat-5> a cats:Item;
cats:hasData <1#chat-5-data>;
cats:hasLayerLink <1#chat-5-layer>;
cats:hasPointLink <1#chat-5-t>;
cats:identifier "round-1-chat-5" .

<1#chat-5-data> a cats:Data;
cats:stringValue "grauer kreis..." .

<1#chat-5-layer> a cats:LayerLink;
cats:identifier "chat-5-layer";
cats:target <1#chats> .

<1#chat-5-t> a cats:PointLink;
cats:identifier "chat-5-t";
cats:point 105,
cats:target <1#timeline01> .

Figure 7: A snippet of the RDF representation
generated by POSEIdON (corresponding to the
chat message from Figure 2), with some context.

without modifying their actual source code. The
principles of this toolchain have then been exem-
plified by taking the chat corpus data as a pilot data
set. While our corpus and annotation data mod-
els have been under development for some years,
the RDF publishing framework is still at an early
stage. We believe that this data is a highly use-
ful contributions to the linguistic and Linked Data
community and that the resource is easier to use in
a RDF form.

One of the more interesting aspects of the data
is user-assigned data types, categories and struc-
tures used in singular annotation layers, especially
when they go beyond the classic linguistic levels.
While large vocabularies and ontologies for those
have already been collected (for example, see the
large number of syntactic and semantic concepts
in ISOcat), there are hardly any entries for anno-
tation schemes for gestures, eye movements, or
other data coming from non-linguistic modalities.
One of the main reasons is that morphosyntactic
categories are far more established, and they are

mainly agreed upon, at least to a degree sufficient
for their integration into category registries. Re-
search on non-linguistic modalities, on the other
hand, is still at an early stage, and researchers have
much more diverging sets of categories and defi-
nitions. As an example, the term gesture is used
differently depending on the body limbs involved
(especially, whether movements of the head and
legs, knees, and feet should be subsumed unter
this term, or whether there should be separate cat-
egories for them), so a premature nomenclature of
categories based on only one of these definitions
is not advisable.

Although the consequences of such novel re-
search areas make it more difficult to create reli-
able concepts (and hence stable RDF), we are col-
laborating with researchers in these fields to col-
lect first sets of categories for these modalities,
which then are to be integrated into our category
registry, and, when they are sufficiently agreed
upon, also into the ISOcat system.

We believe that RDF-based representations es-
pecially of non-standard linguistic and multimodal
resources (such as the chat game corpus, and other
corpora, involving gestures, eye movements, and
annotations of facial expressions) are a valuable
gain for the Linguistic Linked Data community,
even at such an early stage as described in this ar-
ticle.

The data set

The simple category registry can be browsed
at http://cats.sfb673.org. The pi-
lot data set of the chat game in the draft
format as described above will be made avail-
able at http://phoibos.sfb673.org/
corpora/ChatStudy. However, the data set
as well as the tools and libraries described above
are under active development, so the data set is
subject to change during the next months until
a stable status of all related systems and tools is
achieved.

Acknowledgments

This research has been supported by the German
Research Foundation (DFG) in the project X1
Multimodal Alignment Corpora: Statistical Mod-
elling and Information Management of the Collab-
orative Research Centre (CRC) 673 Alignment in
Communication at Bielefeld University, Germany.

51



References
Steven Bird and Mark Liberman. 2001. A formal

framework for linguistic annotation. Speech com-
munication, 33(1-2):23–60.

Christian Chiarcos, Sebastian Hellmann, and Sebastian
Nordhoff. 2011. Towards a Linguistic Linked Open
Data cloud: The Open Linguistics Working Group.
TAL, 52(3):245–275.

Christian Chiarcos. 2012. Powla: Modeling lin-
guistic corpora in OWL/DL. In Elena Simperl,
Philipp Cimiano, Axel Polleres, Oscar Corcho, and
Valentina Presutti, editors, The Semantic Web: Re-
search and Applications, volume 7295 of Lec-
ture Notes in Computer Science, pages 225–239.
Springer, Berlin/Heidelberg.

Stefan Evert, Jean Carletta, Timothy J. O’Donnell,
Jonathan Kilgour, Andreas Vögele, and Holger
Voormann. 2003. The NITE Object Model. In Pro-
ceedings of the EACL Workshop on Language Tech-
nology and the Semantic Web, pages 1–17.

Nancy Ide, Patrice Bonhomme, and Laurent Romary.
2000. XCES : An XML-based Encoding Stan-
dard for Linguistic Corpora. In Proceedings of
the Language Resources and Evaluation Conference
(LREC), pages 825–830. ELRA.

Nancy Ide, Laurent Romary, and Eric de la Clergerie.
2003. International standard for a linguistic annota-
tion framework. In Proceedings of the HLT-NAACL
2003 workshop on Software engineering and archi-
tecture of language technology systems - Volume 8,
SEALTS ’03, pages 25–30, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Dan Klein and Christopher D. Manning. 2002. Fast
exact inference with a factored model for natural
language parsing. Advances in neural information
processing systems, 15:3—-10.

Dan Klein and Christopher D Manning. 2003. Accu-
rate unlexicalized parsing. Proceedings of the 41st
Annual Meeting on Association for Computational
Linguistics ACL 03, 1(July):423–430.

Christian Lehmann. 2005. Data in linguistics. The
Linguistic Review, 21(3-4):175–210.

Anna N. Rafferty and Christopher D. Manning. 2008.
Parsing three German treebanks: Lexicalized and
unlexicalized baselines. Proceedings of the Work-
shop on Parsing German, pages 40–46.

Sam Ruby, Dave Thomas, and David Heinemeier
Hansson. 2011. Agile Web Development with Rails
3.2. Pragmatic Bookshelf, 4th edition.

Thomas Schmidt and K Wörner. 2005. Erstellen und
Analysieren von Gespr{ä}chskorpora mit EXMAR-
aLDA. Gespr{ä}chsforschung, 6:171–195.

S. S. Stevens. 1946. On the Theory of Scales of Mea-
surement. Science, 103(2684):677–680.

TEI Consortium. 2008. TEI P5: Guidelines for elec-
tronic text encoding and interchange. TEI Consor-
tium.

Menzo Windhouwer and Sue Ellen Wright. 2012.
Linking to Linguistic Data Categories in ISOcat. In
Christian Chiarcos, Sebastian Nordhoff, and Sebas-
tian Hellmann, editors, Linked Data in Linguistics,
pages 99–107. Springer Berlin Heidelberg.

52


