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Abstract

In order to analyse the information present
in medical records while maintaining pa-
tient privacy, there is a basic need for
techniques to automatically de-identify the
free text information in these records. This
paper presents a machine learning de-
identification system for clinical free text
in Dutch, relying on best practices from
the state of the art in de-identification
of English-language texts. We combine
string and pattern matching features with
machine learning algorithms and compare
performance of three different experimen-
tal setups using Support Vector Machines
and Random Forests on a limited data set
of one hundred manually obfuscated texts
provided by Antwerp University Hospital
(UZA). The setup with the best balance
in precision and recall during development
was tested on an unseen set of raw clinical
texts and evaluated manually at the hospi-
tal site.

1 Introduction

In Electronic Health Records (EHRs), medical in-
formation about the treatment of patients is stored
on a daily basis, both in structured (e.g. lab re-
sults, medication, ) and unstructured (e.g. clin-
ical notes) forms. EHRs are unique sources of
information that need be further analyzed to im-
prove diagnosis and treatment of future patients.
However, these information sources cannot be
freely explored due to privacy regulations (Privacy
Rule, 2002; European Data Protection Directive,
1995; Belgian Data Protection Act, 1993). Auto-

mated de-identification is crucial to remove per-
sonal health information (PHI), while keeping all
medical and contextual information as intact as
possible. In the US, this is regulated under the
Health Insurance Portability and Accountability
Act (HIPAA, 1996).

Approaches to de-identification can be cate-
gorised into two main types, with rule-based and
pattern matching approaches on the one hand and
machine learning approaches on the other, as sug-
gested in Meystre et al. (2010). Rule-based and
pattern-matching approaches often rely on dictio-
naries and manually constructed regular expres-
sions. While this type of approach does not require
any annotation effort and can easily be customised
to increase performance, it offers only limited
scalability and is often highly language dependent.
Machine learning approaches in general are bet-
ter scalable and more robust to noise, but espe-
cially supervised learning algorithms require sub-
stantial amounts of annotated training data, a very
time-consuming and expensive undertaking. The
selection of meaningful features is a crucial as-
pect in the machine learning approach, especially
when only limited data is available (Ferrández et
al., 2012a). Hybrid approaches to de-identification
such as that presented in Ferrández et al. (2012b)
have been developed to combine the advantages of
the machine learning approach with those of dic-
tionaries and regular expressions. Below, we high-
light a number of interesting studies from the state
of the art in automated de-identification.

One of the first systems for de-identification,
the Scrub system, was proposed in Sweeney et
al. (1996). Scrub takes a dictionary rule-based
approach and has been shown to be able to effec-
tively model the human approach to locating PHI
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entities. This study included well-formatted letters
with a header block as well as shorthand notes, but
does not provide details on recall and precision.

Stat De-Id (Uzuner et al., 2008; Sibanda, 2006)
takes a machine learning approach using Support
Vector Machines (SVM) as the learning algorithm.
Features cover aspects of the target word as well
as of the immediate context of the target. Condi-
tional Random Fields (CRF) (Lafferty et al., 2001)
are being used increasingly in de-identification re-
search. Two examples are Health Information DE-
identification (HIDE) (Gardner and Xiong, 2008)
and the Mitre Identification Scrubber Toolkit
(MIST) (Aberdeen et al., 2010; Deleger et al.,
2013). Several of these de-identification systems
(see also Douglass et al. (2004) and Neamatullah
et al. (2008)) show excellent results rivaling man-
ual de-identification. While most de-identification
systems score well in terms of recall, they do pro-
duce quite a large amount of false positives (see
Ferrández et al. (2012a)). This compromises the
usability of the de-identified documents, as medi-
cally relevant data may have been removed.

In this paper, we present a de-identification case
study following best practices from the state of the
art. A machine learning approach is taken, using
features based on dictionaries and string and pat-
tern matching techniques. The objective of this
study is to develop a de-identification system for
clinical notes in Dutch, a language for which de-
identification training data are not available. We
evaluate three machine learning setups on a train-
ing set of 100 manually annotated medical notes
and test the best performing setup on 100 previ-
ously unseen medical notes, the performance of
which is manually evaluated at the hospital site.

2 Methods

2.1 Data set

The training set consists of 100 documents ran-
domly selected from the Antwerp University Hos-
pital (UZA) EHR system. This data set consists
of (discharge) letters, comprising 52,829 words in
total. These words have been annotated manually
according to the following Personal Health Infor-
mation (PHI) classes: Name, Date, Address, ID
(indicating a personal identification code such as
a social security number), and Hospital. 2,968
words were manually marked as containing PHI.
Their occurrence rates are shown in Figure 1.

For privacy reasons, all PHI words in these

Figure 1: Average frequency per PHI class over
total number of words (n=52.829)

documents have been obfuscated in the hospi-
tal before we obtained them. The PHI-labelled
documents were then reconstructed with fictitious
names, addresses, etc. to enable their use as a
training set. A test set with 100 randomly selected
documents was held internally at the Antwerp
University Hospital (UZA) and was manually an-
notated to be used for later testing (see Sec-
tion 3.3). However, training and test set differ
in quality since the former was manually obfus-
cated after manual de-identification to protect pa-
tient privacy and the latter was unaltered.

2.2 Experimental setup

For the development of our de-identification sys-
tem using the training set described above, we ap-
ply the following experimental setup. First of all,
the texts in the dataset are tokenized (i.e. splitting
the text in individual words and removing punctu-
ation). Next, features are derived and calculated.
In a third step, the resulting set of derived fea-
tures with associated PHI class per word is used
for training. In a set of experiments, we (1) as-
sess the performance of the classifiers for the indi-
vidual PHI classes, (2) evaluate how adding more
training data affects performance, and (3) validate
the performance on 100 previously unseen docu-
ments. Due to the high cost of manual annotation,
our training set is rather small. As a result, the
performance scores can only be interpreted as in-
dicative of performance in a realistic environment.

All results in Experiments 1 and 2 are averaged
over fifty independent runs, each selecting differ-
ent sets of training and test sets from the original
training set. In each run, ten random documents
are withheld as test set. In Experiment 1, the re-
maining ninety are used for training, while in Ex-
periment 2, a learning curve is constructed, show-
ing the effect of a stepwise (step size=10) increase
in training set size.
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2.3 Feature engineering

Since the choice of features affects algorithm
behavior and performance (Kim et al., 2011;
Sibanda, 2006), selecting features that discrim-
inate PHI from non-PHI and are able to in-
dicate the differences between the various PHI
classes (Gardner and Xiong, 2008) is crucial. Be-
cause of the limited data available for training, ex-
ternal dictionaries are indispensable.

We use four types of features: (i) direct tar-
get word characteristics, (ii) pattern matching fea-
tures, (iii) dictionary features, and (iv) contextual
word features. Direct target word characteristics
indicate the presence of capitalisation, punctua-
tion, and numbers and includes word length in-
formation. Pattern matching features are linked
to regular expressions that refer to social security
numbers or date patterns. Dictionary features in-
dicate whether the target word is present in a PHI
dictionary (i.c. dictionaries of first and last names,
streets, cities, hospital names, healthcare institu-
tions, salutations) or whether it is part of a word
group that is present in a PHI dictionary. For word
groups, we take into account a context of three
words to the right of the target word (i.e. slid-
ing window size=4). For computational efficiency,
we use a suffix tree algorithm by Ukkonen (1995).
Contextual word features indicate whether words
in the immediate context (i.e. left context=3, right
context=3; sliding window size=7) of the target
word have characteristics that might influence the
classification of the target word (e.g. punctuation,
capitalisation).

2.4 Classification

We apply three classification setups, each offering
their own advantages for different data sets, de-
pendent on the data set size, the heterogeneity of
the data set, and the total number of classes. We
use Weka (Witten and Frank, 2005), a toolkit for
machine learning, for classification with Random
Forests. For Support Vector Machines (SVM), we
use the libSVM (Chang and Lin, 2011) library. In
future de-identification experiments, we will eval-
uate Conditional Random Fields as well.

SVMs calculate an optimal decision bound-
ary between two classes (Chang and Lin, 2011),
are powerful with high-dimensional data and pro-
mote the use of local context features. For de-
identification with several PHI classes, multi-class
classification is required. We test (i) a one-versus-

one learning scheme (cf. ‘OOSVM‘), where the
binary classifiers distinguish between each pair
of classes and (ii) a one-versus-all scheme (cf.
‘OMSVM‘), where each class is distinguished
from the other classes simultaneously. Both
schemes apply majority voting with equal weights
assigned to each (PHI as well as non-PHI) class.

Random Forests is a machine learning tech-
nique that generates multiple random Decision
Trees (Breiman, 2001). Each of these trees ran-
domly selects features and assigns a particular
class to each instance containing those features.
A voting system decides which of these decisions
is finally assigned, potentially leading to a more
robust decision since it is supported by multiple
trees. The total number of trees is customisable,
but a high number of trees increases training time.
We tested multiple numbers of trees, but selecting
ten random trees (cf. RF10) yielded the best bal-
ance between precision, recall, and training time.

2.5 Evaluation measures

We present results in terms of precision, recall,
and F-score. We consider recall to be the most im-
portant measure for de-identification as it shows
the number of PHI-items actually retrieved by the
algorithm divided by the number of PHI items
present. Precision indicates how many of the PHI
items identified are actually correct. F-score is
calculated as the harmonic mean between preci-
sion and recall. Precision and recall are macro-
averaged, in a way that all classes have an equal
weight in the end result.

3 Results

We present results of three experiments: we (1)
evaluate the performance of the proposed method
for five PHI classes, (2) perform a learning curve
experiment to investigate how performance is af-
fected by increasing training set size, and (3) eval-
uate the best experimental setup on a previously
unseen test set of 100 documents.

3.1 Performance on individual PHI classes

Recall and precision are very similar for most
classes, as is shown in Table 1, except for the
Name and ID classes. This can be explained by the
wide variety in types of IDs and the larger ambigu-
ity between names and non-PHI words (e.g. ‘Vri-
jdag‘, the Dutch word for ‘Friday‘, also represents
a last name found in libraries with a relatively high
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OOSVM
Recall 91.2 95.9 95.6 79.9 95.0
Precision 88.6 98.0 98.2 95.3 98.6
F-score 90.1 96.9 96.8 86.9 96.8
OMSVM
Recall 91.2 95.8 96.2 77.2 95.4
Precision 88.9 98.0 98.4 95.3 98.6
F-score 90.0 96.8 97.3 85.3 97.0
RF10
Recall 87.4 95.0 92.5 75.8 75.3
Precision 95.1 98.4 98.5 99.4 97.8
F-score 91.1 96.6 95.4 86.0 85.1

Table 1: Results per PHI class and classification
setup

frequency). It should be noted that performance is
calculated per word in a (potentially multi-word)
name. If only part of the name gets classified as
a Name, it is counted as a false negative, although
the largest part of the name will be removed from
the text.

Overall, our SVM setups show a higher re-
call and F-measure than the Random Forest setup,
while the latter has a higher precision. With
90 training documents, an average F-measure of
91.5% for the Random Forest method and an av-
erage F-measure of 94.5% for the one-against-one
SVM setup is achieved.

3.2 Learning curve

To assess the amount of manually annotated data
required, we increase the number of training doc-
uments in a learning curve experiment. Figures 2
and 3 represent precision and recall scores with
varying training set size. The RF10 method has a
generally higher precision than the SVM setups,
but also a lower recall. Precision remains rela-
tively constant for all methods and recall values
seem to converge asymptotically.

3.3 Results on a previously unseen test set

In this experiment, we evaluate the algorithm in a
more realistic setting where the algorithm - built
from a limited set of manually obfuscated train-
ing data (cf. Section 2.1) - is tested on previously
unseen test data and evaluated by a hospital staff
member. The test data are qualitatively different

Figure 2: Average precision per setup with 90
training and 10 test documents

Figure 3: Average recall per setup with 90 training
and 10 test documents

since they were not subject to obfuscation. Exper-
iments were conducted with OOSVM - the ma-
chine learning setup that yielded the best perfor-
mance in the experiments described above - using
100 obfuscated documents for training and yielded
a recall of 89.12% and a precision of 93%, which
is lower than the performance on the obfuscated
test data in Section 3.2.

Error analysis revealed that the use of all-caps
(first and last) names and addresses is widespread
in the test documents, whereas the training data
were manually obfuscated and contained no all-
caps names and addresses. Since capitalisation is
a feature (cf. Section 2.3) in our de-identification
system, the difference in quality between training
and test data can explain the drop in performance.

3.4 Time measurements

Time measurements have been taken to check
whether the de-identification algorithm is ap-
plicable to a larger set of documents. A de-
identification speed of 109 ms/document (assum-
ing an average length of 500 words) was achieved
when de-identifying with the OOSVM method,
while the Random Forest method only needed 42
ms/document. The OMSVM method requires a
de-identification time of 205 ms/document.

If OOSVM, the best performing setup, would be
used to de-identify documents from the hospitals
EHR system on a daily basis, the processing time
would be a matter of minutes. The larger amount
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of time needed to use the one-against-one SVMs
rather than the Random Forest method is worth
it, since the performance of the former is signif-
icantly better.

4 Discussion

The results suggest that the de-identification al-
gorithm we developed achieves reasonable perfor-
mance considering the limited set of training data
it is based on. However, to be of practical use
without manual confirmation, de-identification re-
call should be as high as possible, making sure
that no PHI remains in the text. High precision
is of secondary importance, as long as the algo-
rithm does not identify too many non-PHI words
as containing Personal Health information, which
can cause medically relevant information to be lost
during de-identification.

The learning curve experiments show that recall
scores start to converge asymptotically, which may
indicate that relatively small amounts of training
data already yield fair results, while the increase
in precision with increasing training set size seems
limited. However, we are aware that the data set is
too limited to draw conclusions from these results.

The test on a non-obfuscated, previously unseen
test set indicates that minor feature improvements
and a more representative training set are needed.
Although the current approach with a previously
manually obfuscated training set is non-scalable,
it allows us to automatically create a more repre-
sentative training set from another dataset.

The results of the Random Forest method can
be improved when increasing the amount of trees.
However, this also increases training time linearly,
with a minimal increase in performance. Recall
scores of the current Random Forests setup are in-
sufficient for most PHI classes.

5 Conclusion

In this paper, we presented a machine learning
approach to de-identification based on a limited
set of manually annotated Dutch-language clini-
cal notes. We compared three types of classifi-
cation approaches and found the one-versus-one
SVM setup to be the method of choice for this
particular case study. In terms of recall - which
we consider the most crucial evaluation measure
for practically usable de-identification - it is better
than the Random Forest classifier, which in its turn
scores better in terms of de-identification time and

precision. Learning curve results seem to indicate
that the amount of training data needed converges
to an asymptote quite early in the curve.

We plan several extensions to the algorithm:
adding syntactic (e.g. part-of-speech tags) and
semantic features, investigating the use of semi-
supervised learning to automatically increasing
the set of training data, and testing Conditional
Random Fields for classification. Another next
step is the expansion to an ensemble method for
two of our classifiers, taking advantage of proper-
ties of both classifiers.
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