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Abstract

Active learning is a popular research area
in machine learning and general domain
natural language processing (NLP) com-
munities. However, its applications to the
clinical domain have been studied very lit-
tle and no work has been done on using
active learning for phenotyping tasks. In
this paper we experiment with a specific
kind of active learning known as uncer-
tainty sampling in the context of four phe-
notyping tasks. We demonstrate that it can
lead to drastic reductions in the amount of
manual labeling when compared to its pas-
sive counterpart.

1 Introduction

Several multi-year, multi-institutional transla-
tional science initiatives focus on combining large
repositories of biological specimens and Elec-
tronic Health Records (EHR) data for high-
throughput genetic research with the ultimate goal
of transferring the knowledge to the point of care.
Among them are Electronic Medical Records
and Genomics (eMERGE)(McCarty et al., 2011),
Pharmacogenomics Network (PGRN)(Long and
Berg, 2011), Informatics for Integrating Biology
and the Bedside (i2b2)(Kohane et al., 2012). In
each of these initiatives there are a number of dis-
eases or driving biology projects that are studied
such as Rheumatoid Arthritis, Multiple Sclerosis,
Inflammatory Bowel Disease, Autism Spectrum
Disorder, Early Childhood Obesity, each defined
as the phenotype of interest. To enable large co-
hort identification, phenotype-specific algorithms
are developed, evaluated and run against multi-
million-patient EHRs which are then matched
against the biobanks for further genetic analysis.
Efficient and accurate large-scale automated phe-
notyping is a key component of these efforts.

Supervised machine learning is widely used for
phenotype cohort identification (Ananthakrishnan
et al., 2012; Ananthakrishnan et al., 2013b; Anan-
thakrishnan et al., 2013a; Lin et al., 2012b; Lin
et al., 2012a; Xia et al., 2012). However, the
supervised learning approach is expensive due to
the costs associated with gold standard creation.
While large amounts of unlabeled data are avail-
able to the researchers in the form of EHRs, a sig-
nificant manual effort is required to label them. In
a typical phenotype creation project (Lin et al.,
2012b; Lin et al., 2012a), a pool of patients is
identified using some filtering criteria and a sub-
set of patients is selected from that pool for sub-
sequent expert annotation. During annotation, a
domain expert examines the notes associated with
a patient, assigning either the positive label (i.e.
relevant for the given phenotype) or the negative
one. A model is subsequently trained using the
annotated data. This scenario is known as passive
learning.

On the other hand, active learning (Settles,
2009; Olsson, 2009) is an efficient alternative to
the traditionally used passive learning as it has the
potential to reduce the amount of annotation that
is required for training highly accurate machine
learning models. Multiple studies have demon-
strated that when active learning is used, machine
learning models require significantly less training
data and can still perform without any loss of accu-
racy. Active Learning is a popular research area in
machine learning and general domain natural lan-
guage processing (NLP) communities. However,
its applications to the clinical domain have been
little studied and no work has been done on using
active learning for phenotyping tasks. In this paper
we experiment with a specific kind of active learn-
ing known as uncertainty sampling in the context
of four phenotyping tasks. We demonstrate that
active learning can lead to drastic reductions in the
amount of manual labeling without any loss of ac-
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curacy when compared to passive learning.

2 Background

2.1 Phenotyping as Document Classification

Phenotyping can be viewed as a document classi-
fication task in which a document consists of all
EHR documents and other associated data (labs,
ordered medications, etc.) for the given patient.
Initial filtering is usually performed based on a set
of inclusion and exclusion criteria (ICD-9 codes,
CPT codes, laboratory results, medication orders).
Within the eMERGE and PGRN, flowcharts out-
lining each phenotyping criterion and logical oper-
ators (AND, OR) are defined to constitute the phe-
notyping algorithm (Pacheco et al., 2009; Waudby
et al., 2011; Kho et al., 2011; Kullo et al., 2010;
Kho et al., 2012; Denny et al., 2010). The phe-
notyping within i2b2 takes a different approach
– that of a machine learning patient-level classi-
fication task (Ananthakrishnan et al., 2012; Anan-
thakrishnan et al., 2013b; Ananthakrishnan et al.,
2013a; Lin et al., 2012b; Lin et al., 2012a; Xia et
al., 2012). Each patient is represented as a set of
variables derived from the structured and unstruc-
tured part of the EHR (ICD-9 codes, lab results,
relevant mentions in the clinical narrative along
with their attributes) which are then passed to a
machine learning algorithm. Whether the choice is
a rule-based or machine learning approach, a fairly
big sample of data needs to be labeled by experts
which will then be used to derive the rules/train a
classifier and to evaluate the performance.

2.2 Active Learning

Active learning is an approach to selecting unla-
beled data for annotation that can potentially lead
to large reductions in the amount of manual label-
ing that is necessary for training an accurate clas-
sifier. Unlike passive learning, where the data is
sampled for annotation randomly, active learning
delegates the data selection to the classifier. Ac-
tive learning succeeds if it reaches the same per-
formance as its passive counterpart but with fewer
training examples.

Seung et. al. (Seung et al., 1992) present an
active learning algorithm known as query by com-
mittee. In this algorithm, two classifiers are de-
rived from the labeled data and used to label new
examples. The instances where the two classifiers
disagree are returned to a human annotator for la-
beling. Lewis and Gale (Lewis and Gale, 1994)

pioneered the use of active learning for text cate-
gorization. Their scenario, known as pool-based
active learning, corresponds to a setting where an
abundant supply of text documents is available but
only a small sample can be economically anno-
tated by a human labeler. Pool-based active learn-
ing has since been explored for many problem do-
mains such as text classification (McCallum and
Nigam, 1998; Tong and Chang, 2001; Tong and
Koller, 2002), word-sense disambiguation (Chen
et al., 2006; Zhu and Hovy, 2007; Dligach and
Palmer, 2011), information extraction (Thompson
et al., 1999; Settles et al., 2008), and image classi-
fication (Tong and Chang, 2001; Hoi et al., 2006).

The pool-based scenario matches the setting in
our phenotyping tasks where large supplies of un-
labeled EHRs are available but only a small set can
be manually reviewed at a reasonable cost. Pool-
based active learning is typically an iterative pro-
cess that operates by first training a classifier on
a small sample of the data known as the seed set.
The classifier is subsequently applied to a pool of
unlabeled data with the purpose of selecting addi-
tional examples the classifier views as informative.
The selected data is annotated and the cycle is re-
peated, allowing the learner to quickly refine the
decision boundary between classes.

Little research exists on the applications of ac-
tive learning to the clinical domain. Figueroa et al.
(Figueroa et al., 2012) evaluate a Support Vector
Machine (SVM) based active learning algorithm
in the context of several text classification tasks
and find that active learning did not always per-
form better than random sampling. The use of
SVMs restricted their evaluation to binary clas-
sification only, limiting the applicability of their
findings for many clinical NLP tasks. Chen et
al. (Chen et al., 2011) investigate the use of ac-
tive learning for assertion classification and show
that active learning outperforms random sampling.
Both of the above mentioned studies experiment
with datasets that are quite different from ours in
that they annotate relatively short snippets of text.
Miller et al. (Miller et al., 2012) develop a se-
ries of active learning methods that are highly tai-
lored to coreference resolution in clinical texts. Fi-
nally, Hahn et al. (Hahn et al., 2012) utilize active
learning in practice for a corpus annotation task
that involves labeling pathological phenomena in
MEDLINE abstracts. Unfortunately they do not
compare the performance of their active learning
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method to a passive learning baseline, so no con-
clusion about the effectiveness of active learning
can be made. To the best of our knowledge, no
work has been done on using active learning for
phenotyping. In this work, we experiment with
multi-class pool-based active learning in the con-
text of four phenotyping tasks.

3 Methods

3.1 Data Representation

In a phenotyping task, the unit of classification
is the patient chart. We represent each chart
as a set of Unified Medical Language System
(UMLS) (Bodenreider and McCray, 2003) con-
cept identifiers (CUIs) which we extract from the
patient records using Apache Clinical Text Analy-
sis and Knowledge Extraction System1 (cTAKES)
(Savova et al., 2010). CUIs aim at abstracting
our representations from the lexical variability of
medical terminology and capturing the clinically
relevant terms in a document leaving out the non-
essential and potentially noisy lexical items. Each
CUI can be either asserted or negated, as deter-
mined by the cTAKES negation module.

Although cTAKES is capable of extracting most
CUIs that exist in the UMLS, we only include the
CUIs that are listed in phenotype-specific dictio-
naries. The dictionaries are created manually by
domain experts and define the terms that are rel-
evant for each phenotype. Thus, we model each
patient ~x as a vector of CUIs where each element
n indicates the frequency of occurrence of the re-
spective CUIn in the records for this patient.

3.2 Models

To perform the classification and to estimate the
informativeness of an instance during active learn-
ing, we need to evaluate the posterior probability
p(ci|~x), where ci is the class indicating the rele-
vance of the patient ~x for the given phenotype.
For that purpose, we utilize a multinomial Naive
Bayes model, which is widely used in document
classification.

Naive Bayes classifiers possess several useful
properties that make them particularly appropriate
for active learning: (1) training and classification
speed, (2) ability to produce a probability distri-
bution over the target classes, and (3) ability to
perform multi-class classification. Because active

1http://incubator.apache.org/ctakes/

learning requires many rounds of retraining (po-
tentially as many as the number of training exam-
ples), the first property is crucial for using active
learning in practice. The second property is desir-
able for evaluating the level of uncertainty of the
learner over the class predictions. Finally, the third
property is important since some of our datasets
include more than two classes.

We model the posterior probability as follows:

p(ci|~x) =
1

Z
p(ci)

N∏
n=1

p(CUIn|ci)
xn (1)

Where p(ci) is the prior probability of class ci,
N is the number of CUIs in the phenotype-specific
dictionary, CUIn is the nth CUI in that dictio-
nary, xn is the frequency of CUIn in ~x, and Z
(evidence) is the scaling factor. We determine
the model parameters, p(ci) and p(CUIn|ci), us-
ing maximum likelihood estimation with Laplace
smoothing from the training data. For classifica-
tion we predict the label c as:

c = arg max
i

p(ci|~x) (2)

For active learning, we utilize a framework
known as uncertainty sampling (Lewis and Gale,
1994; Schein and Ungar, 2007). In this frame-
work, the learner requests a label for the instance
it is most uncertain how to label. We evaluate the
level of uncertainty using the prediction margin
metric (Schein and Ungar, 2007) which is defined
as:

prediction margin = |p(c1|~x)− p(c2|~x)| (3)

Where c1 and c2 are the two most probable
classes for the patient ~x according to the model.

3.3 Datasets
In this work we utilize four datasets all of which
were created within the i2b2 initiative (Ananthakr-
ishnan et al., 2012; Ananthakrishnan et al., 2013b;
Ananthakrishnan et al., 2013a; Xia et al., 2012).
We show various important characteristics of our
datasets in Table 1. Domain experts defined the
ICD-9 codes relevant for each phenotype. These
were then used to create the initial cohort from
the 6 million+ patient EHR of the Partners Health-
care System. From that initial cohort, 600 pa-
tients were randomly chosen for manual labeling.
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Each patient chart was reviewed by a domain ex-
pert and labeled at the patient level for CASE or
NON-CASE (2-way labeling) for Ulcerative Col-
itis and Crohn’s Disease; CASE, NON-CASE,
or UNKNOWN (3-way labeling) for Type II Di-
abetes; CASE, NON-CASE, PROBABLE, UN-
KNOWN, or IRRELEVANT (5-way labeling) for
Multiple Sclerosis. In our experiments, we used
only the clinical narrative data, not a combination
of structured and unstructured data. The predomi-
nant class for each phenotype was CASE.

3.4 Experimental Setup

Active learning is typically evaluated by com-
paring the learning curves for passive and active
learning-based data selection methods. We gener-
ated the learning curves in the style of N fold cross
validation (N = 10). Within each fold, we have
a held out test set and a pool of unlabeled exam-
ples. We begin by randomly selecting the seed set
of size S, removing it from the pool, and training
a model. To produce a point of the active learning
curve, we apply the model to the pool of remaining
unlabeled data and select the most informative ex-
ample using the prediction margin metric defined
in Equation 3. We move the selected example to
the training set, retrain the model, and evaluate its
performance on the held out test set. In parallel, to
produce a point of the passive learning curve, we
select a single example from the pool randomly.
We continue this process in an iterative fashion un-
til the pool is exhausted. We repeat this for each
of the ten folds and average the resulting learning
curves.

In addition, we conduct a series of experiments
for each phenotype in which we vary the size of
the seed set S. Our motivation is to explore the
sensitivity of active learning to the size of the ini-
tial seed set. We only try several relatively small
seed set sizes. Larger seed sets may erase the gains
that could otherwise be obtained by active learn-
ing.

In this work, we do not compare the perfor-
mance of the models accross different phenotypes.
Instead, we focus on comparing the performance
of active learning against the passive learning
baseline.

In practice, active learning is used for selecting
examples for subsequent labeling from the pool of
unlabeled data. This scenario is simulated in our
experiments – we utilize the gold standard data,

but we hide the labels from the model. The label
is revealed only after the instance is selected and
is ready to be added to the training set. This is a
common practice used in most published studies
of active learning.

4 Results

For each phenotype, we construct the learning
curves for different sizes of the seed set. The re-
sults are shown in Figures 1, 2, and 3, which in-
clude the learning curves for seed sizes S = 10,
S = 30, and S = 50 respectively.

(a) Ulcerative Colitis

(b) Crohn’s Disease

(c) Multiple Sclerosis

(d) Type II Diabetes

Figure 1: Passive vs. active learning performance
on held-out data (S = 10)
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Phenotype Total Instances Number of Classes Proportion of Predominant Class
Ulcerative Colitis 600 2 0.630
Crohn’s Disease 600 2 0.665
Multiple Sclerosis 595 5 0.395
Type II Diabetes 600 3 0.583

Table 1: Dataset Characteristics

(a) Ulcerative Colitis

(b) Crohn’s Disease

(c) Multiple Sclerosis

(d) Type II Diabetes

Figure 2: Passive vs. active learning performance
on held-out data (S = 30)

For each plot we also compute the area under
the active learning and passive learning curves.
We report the difference between the two curves
in Table 2.

(a) Ulcerative Colitis

(b) Crohn’s Disease

(c) Multiple Sclerosis

(d) Type II Diabetes

Figure 3: Passive vs. active learning performance
on held-out data (S = 50)

5 Discussion and Conclusion

As we see in Figures 1, 2, and 3, for all phe-
notypes, active learning curves lie above passive
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Seed Size Ulcerative Colitis Crohn’s Disease Multiple Sclerosis Type II Diabetes
10 6.90 4.17 10.50 11.05
30 6.64 2.21 15.43 7.49
50 8.63 1.75 8.61 8.90

Table 2: Difference between areas under the curve (Active - Passive)

learning curves for most sizes of the training sets.
This means that the models trained on the data se-
lected via active learning typically perform better
than the models trained using random sampling.
This result is also supported by the fact that the
difference between the areas under the active and
passive learning curves in Table 2 was positive for
all of our experiments.

For most models, active learning reaches the
level of the best random sampling performance
with fewer than 200 examples, or about 1/3 of the
data. This potentially translates into manual anno-
tation savings of about 2/3. Moreover, the best ac-
tive learning performance is often above that of the
random sampling baseline. For example, consider
Figure 3d. The sizes of the training set in the range
between approximately 150 and 350 produce bet-
ter performance than the best performance of the
model trained on the randomly sampled data. At
about 260 training examples, the performance of
active learning approaches 0.79, which is at least
3 percentage points higher than the performance of
the passive learning baseline that it achieves with
the entire training set.

Although active learning consistently outper-
formed the passive learning baseline in most of
our experiments, occasionally active learning per-
formed worse at certain training set sizes. Con-
sider Figure 2b. During early stages of learn-
ing (training set sizes of about 50-130), the pas-
sive curve lies above the active learning curve (al-
though active learning recovers later on). We hy-
pothesize that the reason for this behavior lies in
outlier selection. Because outliers often do not
fit into one of the predefined classes, the classifier
is often uncertain about their labels, recommend-
ing their selection during active learning. At the
same time, the outliers do not help to clarify the
decision boundary, negatively affecting the perfor-
mance. We leave a further investigation into the
nature of this behavior for future work.

In other cases, the active learning briefly dips
below the passive learning curve at the very end
of the selection process. Although this behavior

is observed in several cases (e.g. 1d, 2b, 3d), it
is unlikely to be of consequence in practice. Ac-
tive learning would typically be stopped at a much
earlier stage, e.g. when 1/3 or 1/2 of the data has
been annotated. Nevertheless, it would still be in-
teresting to uncover the conditions leading to this
behavior and we leave this investigation for future
work.

Both of these scenarios, where active learning
performed worse than random sampling, highlight
the need for developing stopping criteria for ac-
tive learning such as (Laws and Schätze, 2008;
Bloodgood and Vijay-Shanker, 2009). In a prac-
tical application of active learning, a held-out test
set is unlikely to be available and some automated
means of tracking the progress of active learning is
needed. We plan to pursue this avenue of research
in the future. In addition to that, we plan to ex-
plore the portability of the models trained via ac-
tive learning. It would also be interesting to inves-
tigate the effect of swapping the base classifier: in
this work we collect the data for annotation using
a multinomial Naive Bayes model. It is still not
clear whether the gains obtained by active learn-
ing would be preserved if a model was trained on
the selected data using a different classifier (e.g.
SVM).

Finally, in addition to investigating the perfor-
mance of active learning across different pheno-
types, we also looked at the effects of varying the
size of the seed set S. We did not find a clear cor-
relation between the size of the seed set and active
learning performance. However, the relationship
may exist and could potentially be uncovered if a
larger set of seed set sizes was used. We leave the
further investigation in this area for future work.

In this work, we explored the use of active
learning for several phenotyping tasks. Super-
vised learning is frequently used for phenotype
creation, but the manual annotation that is required
for model training is expensive. Active learning
offers a way to reduce the annotation costs by
involving the classifier in the data selection pro-
cess. During active learning, the classifier chooses
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the unlabeled examples it views as informative,
thus eliminating the need to annotate the examples
that do not contribute to determining the decision
boundary. We demonstrated that active learning
outperforms the traditionally used passive learn-
ing baseline, potentially producing annotation cost
savings of up to two-thirds of what is required by
the passive baseline.
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