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Preface

Biomedical NLP deals with the processing of healthcare-related text—clinical documents created by
physicians and other healthcare providers at the point of care, scientific publications in the areas
of biology and medicine, and consumer healthcare text such as social media blogs. Recent years
have seen dramatic changes in the types and amount of data available to researchers in this field.
Where most research on publications in the past has dealt with the abstracts of journal articles, we
now have access to the full texts of journal articles via PubMedCentral. Where research on clinical
documents has been hampered by a lack of availability of data, we now have access to large bodies
of data through the auspices of the Cincinnati Children’s Hospital NLP Challenge, the i2b2 shared
tasks (www.i2b2.org), the TREC Electronic Medical Records track, the US-funded Strategic Health
Advanced Research Projects Area 4 (www.sharpn.org) and the Shared Annotated Resources (ShARe;
https://sites.google.com/site/shareclefehealth/taskdescription; www.clinicalnlpannotations.org) project.
Meanwhile, the number of abstracts in PubMed continues to grow exponentially. Text in the form of
blogs created by patients discussing various healthcare topics has emerged as another data source, with
a new perspective on healthrelated issues. Connecting the information from the three main sources in
multiple languages to the scientific community, the healthcare provider, and the healthcare consumer
presents new challenges.

The Natural language processing for medicine and biology workshop at RANLP 2013 provided a
venue for presentations of current work in this field. The topics of papers and posters presented at
the workshop included finding domainspecific symptoms in patient records, helping parents understand
diseases, phenotyping, and deidentification of clinical text. We gratefully acknowledge the contributions
of

• Sophia Ananiadou, University of Manchester, UK
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Abstract

Active learning is a popular research area
in machine learning and general domain
natural language processing (NLP) com-
munities. However, its applications to the
clinical domain have been studied very lit-
tle and no work has been done on using
active learning for phenotyping tasks. In
this paper we experiment with a specific
kind of active learning known as uncer-
tainty sampling in the context of four phe-
notyping tasks. We demonstrate that it can
lead to drastic reductions in the amount of
manual labeling when compared to its pas-
sive counterpart.

1 Introduction

Several multi-year, multi-institutional transla-
tional science initiatives focus on combining large
repositories of biological specimens and Elec-
tronic Health Records (EHR) data for high-
throughput genetic research with the ultimate goal
of transferring the knowledge to the point of care.
Among them are Electronic Medical Records
and Genomics (eMERGE)(McCarty et al., 2011),
Pharmacogenomics Network (PGRN)(Long and
Berg, 2011), Informatics for Integrating Biology
and the Bedside (i2b2)(Kohane et al., 2012). In
each of these initiatives there are a number of dis-
eases or driving biology projects that are studied
such as Rheumatoid Arthritis, Multiple Sclerosis,
Inflammatory Bowel Disease, Autism Spectrum
Disorder, Early Childhood Obesity, each defined
as the phenotype of interest. To enable large co-
hort identification, phenotype-specific algorithms
are developed, evaluated and run against multi-
million-patient EHRs which are then matched
against the biobanks for further genetic analysis.
Efficient and accurate large-scale automated phe-
notyping is a key component of these efforts.

Supervised machine learning is widely used for
phenotype cohort identification (Ananthakrishnan
et al., 2012; Ananthakrishnan et al., 2013b; Anan-
thakrishnan et al., 2013a; Lin et al., 2012b; Lin
et al., 2012a; Xia et al., 2012). However, the
supervised learning approach is expensive due to
the costs associated with gold standard creation.
While large amounts of unlabeled data are avail-
able to the researchers in the form of EHRs, a sig-
nificant manual effort is required to label them. In
a typical phenotype creation project (Lin et al.,
2012b; Lin et al., 2012a), a pool of patients is
identified using some filtering criteria and a sub-
set of patients is selected from that pool for sub-
sequent expert annotation. During annotation, a
domain expert examines the notes associated with
a patient, assigning either the positive label (i.e.
relevant for the given phenotype) or the negative
one. A model is subsequently trained using the
annotated data. This scenario is known as passive
learning.

On the other hand, active learning (Settles,
2009; Olsson, 2009) is an efficient alternative to
the traditionally used passive learning as it has the
potential to reduce the amount of annotation that
is required for training highly accurate machine
learning models. Multiple studies have demon-
strated that when active learning is used, machine
learning models require significantly less training
data and can still perform without any loss of accu-
racy. Active Learning is a popular research area in
machine learning and general domain natural lan-
guage processing (NLP) communities. However,
its applications to the clinical domain have been
little studied and no work has been done on using
active learning for phenotyping tasks. In this paper
we experiment with a specific kind of active learn-
ing known as uncertainty sampling in the context
of four phenotyping tasks. We demonstrate that
active learning can lead to drastic reductions in the
amount of manual labeling without any loss of ac-
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curacy when compared to passive learning.

2 Background

2.1 Phenotyping as Document Classification

Phenotyping can be viewed as a document classi-
fication task in which a document consists of all
EHR documents and other associated data (labs,
ordered medications, etc.) for the given patient.
Initial filtering is usually performed based on a set
of inclusion and exclusion criteria (ICD-9 codes,
CPT codes, laboratory results, medication orders).
Within the eMERGE and PGRN, flowcharts out-
lining each phenotyping criterion and logical oper-
ators (AND, OR) are defined to constitute the phe-
notyping algorithm (Pacheco et al., 2009; Waudby
et al., 2011; Kho et al., 2011; Kullo et al., 2010;
Kho et al., 2012; Denny et al., 2010). The phe-
notyping within i2b2 takes a different approach
– that of a machine learning patient-level classi-
fication task (Ananthakrishnan et al., 2012; Anan-
thakrishnan et al., 2013b; Ananthakrishnan et al.,
2013a; Lin et al., 2012b; Lin et al., 2012a; Xia et
al., 2012). Each patient is represented as a set of
variables derived from the structured and unstruc-
tured part of the EHR (ICD-9 codes, lab results,
relevant mentions in the clinical narrative along
with their attributes) which are then passed to a
machine learning algorithm. Whether the choice is
a rule-based or machine learning approach, a fairly
big sample of data needs to be labeled by experts
which will then be used to derive the rules/train a
classifier and to evaluate the performance.

2.2 Active Learning

Active learning is an approach to selecting unla-
beled data for annotation that can potentially lead
to large reductions in the amount of manual label-
ing that is necessary for training an accurate clas-
sifier. Unlike passive learning, where the data is
sampled for annotation randomly, active learning
delegates the data selection to the classifier. Ac-
tive learning succeeds if it reaches the same per-
formance as its passive counterpart but with fewer
training examples.

Seung et. al. (Seung et al., 1992) present an
active learning algorithm known as query by com-
mittee. In this algorithm, two classifiers are de-
rived from the labeled data and used to label new
examples. The instances where the two classifiers
disagree are returned to a human annotator for la-
beling. Lewis and Gale (Lewis and Gale, 1994)

pioneered the use of active learning for text cate-
gorization. Their scenario, known as pool-based
active learning, corresponds to a setting where an
abundant supply of text documents is available but
only a small sample can be economically anno-
tated by a human labeler. Pool-based active learn-
ing has since been explored for many problem do-
mains such as text classification (McCallum and
Nigam, 1998; Tong and Chang, 2001; Tong and
Koller, 2002), word-sense disambiguation (Chen
et al., 2006; Zhu and Hovy, 2007; Dligach and
Palmer, 2011), information extraction (Thompson
et al., 1999; Settles et al., 2008), and image classi-
fication (Tong and Chang, 2001; Hoi et al., 2006).

The pool-based scenario matches the setting in
our phenotyping tasks where large supplies of un-
labeled EHRs are available but only a small set can
be manually reviewed at a reasonable cost. Pool-
based active learning is typically an iterative pro-
cess that operates by first training a classifier on
a small sample of the data known as the seed set.
The classifier is subsequently applied to a pool of
unlabeled data with the purpose of selecting addi-
tional examples the classifier views as informative.
The selected data is annotated and the cycle is re-
peated, allowing the learner to quickly refine the
decision boundary between classes.

Little research exists on the applications of ac-
tive learning to the clinical domain. Figueroa et al.
(Figueroa et al., 2012) evaluate a Support Vector
Machine (SVM) based active learning algorithm
in the context of several text classification tasks
and find that active learning did not always per-
form better than random sampling. The use of
SVMs restricted their evaluation to binary clas-
sification only, limiting the applicability of their
findings for many clinical NLP tasks. Chen et
al. (Chen et al., 2011) investigate the use of ac-
tive learning for assertion classification and show
that active learning outperforms random sampling.
Both of the above mentioned studies experiment
with datasets that are quite different from ours in
that they annotate relatively short snippets of text.
Miller et al. (Miller et al., 2012) develop a se-
ries of active learning methods that are highly tai-
lored to coreference resolution in clinical texts. Fi-
nally, Hahn et al. (Hahn et al., 2012) utilize active
learning in practice for a corpus annotation task
that involves labeling pathological phenomena in
MEDLINE abstracts. Unfortunately they do not
compare the performance of their active learning
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method to a passive learning baseline, so no con-
clusion about the effectiveness of active learning
can be made. To the best of our knowledge, no
work has been done on using active learning for
phenotyping. In this work, we experiment with
multi-class pool-based active learning in the con-
text of four phenotyping tasks.

3 Methods

3.1 Data Representation

In a phenotyping task, the unit of classification
is the patient chart. We represent each chart
as a set of Unified Medical Language System
(UMLS) (Bodenreider and McCray, 2003) con-
cept identifiers (CUIs) which we extract from the
patient records using Apache Clinical Text Analy-
sis and Knowledge Extraction System1 (cTAKES)
(Savova et al., 2010). CUIs aim at abstracting
our representations from the lexical variability of
medical terminology and capturing the clinically
relevant terms in a document leaving out the non-
essential and potentially noisy lexical items. Each
CUI can be either asserted or negated, as deter-
mined by the cTAKES negation module.

Although cTAKES is capable of extracting most
CUIs that exist in the UMLS, we only include the
CUIs that are listed in phenotype-specific dictio-
naries. The dictionaries are created manually by
domain experts and define the terms that are rel-
evant for each phenotype. Thus, we model each
patient ~x as a vector of CUIs where each element
n indicates the frequency of occurrence of the re-
spective CUIn in the records for this patient.

3.2 Models

To perform the classification and to estimate the
informativeness of an instance during active learn-
ing, we need to evaluate the posterior probability
p(ci|~x), where ci is the class indicating the rele-
vance of the patient ~x for the given phenotype.
For that purpose, we utilize a multinomial Naive
Bayes model, which is widely used in document
classification.

Naive Bayes classifiers possess several useful
properties that make them particularly appropriate
for active learning: (1) training and classification
speed, (2) ability to produce a probability distri-
bution over the target classes, and (3) ability to
perform multi-class classification. Because active

1http://incubator.apache.org/ctakes/

learning requires many rounds of retraining (po-
tentially as many as the number of training exam-
ples), the first property is crucial for using active
learning in practice. The second property is desir-
able for evaluating the level of uncertainty of the
learner over the class predictions. Finally, the third
property is important since some of our datasets
include more than two classes.

We model the posterior probability as follows:

p(ci|~x) =
1

Z
p(ci)

N∏
n=1

p(CUIn|ci)
xn (1)

Where p(ci) is the prior probability of class ci,
N is the number of CUIs in the phenotype-specific
dictionary, CUIn is the nth CUI in that dictio-
nary, xn is the frequency of CUIn in ~x, and Z
(evidence) is the scaling factor. We determine
the model parameters, p(ci) and p(CUIn|ci), us-
ing maximum likelihood estimation with Laplace
smoothing from the training data. For classifica-
tion we predict the label c as:

c = arg max
i

p(ci|~x) (2)

For active learning, we utilize a framework
known as uncertainty sampling (Lewis and Gale,
1994; Schein and Ungar, 2007). In this frame-
work, the learner requests a label for the instance
it is most uncertain how to label. We evaluate the
level of uncertainty using the prediction margin
metric (Schein and Ungar, 2007) which is defined
as:

prediction margin = |p(c1|~x)− p(c2|~x)| (3)

Where c1 and c2 are the two most probable
classes for the patient ~x according to the model.

3.3 Datasets
In this work we utilize four datasets all of which
were created within the i2b2 initiative (Ananthakr-
ishnan et al., 2012; Ananthakrishnan et al., 2013b;
Ananthakrishnan et al., 2013a; Xia et al., 2012).
We show various important characteristics of our
datasets in Table 1. Domain experts defined the
ICD-9 codes relevant for each phenotype. These
were then used to create the initial cohort from
the 6 million+ patient EHR of the Partners Health-
care System. From that initial cohort, 600 pa-
tients were randomly chosen for manual labeling.
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Each patient chart was reviewed by a domain ex-
pert and labeled at the patient level for CASE or
NON-CASE (2-way labeling) for Ulcerative Col-
itis and Crohn’s Disease; CASE, NON-CASE,
or UNKNOWN (3-way labeling) for Type II Di-
abetes; CASE, NON-CASE, PROBABLE, UN-
KNOWN, or IRRELEVANT (5-way labeling) for
Multiple Sclerosis. In our experiments, we used
only the clinical narrative data, not a combination
of structured and unstructured data. The predomi-
nant class for each phenotype was CASE.

3.4 Experimental Setup

Active learning is typically evaluated by com-
paring the learning curves for passive and active
learning-based data selection methods. We gener-
ated the learning curves in the style of N fold cross
validation (N = 10). Within each fold, we have
a held out test set and a pool of unlabeled exam-
ples. We begin by randomly selecting the seed set
of size S, removing it from the pool, and training
a model. To produce a point of the active learning
curve, we apply the model to the pool of remaining
unlabeled data and select the most informative ex-
ample using the prediction margin metric defined
in Equation 3. We move the selected example to
the training set, retrain the model, and evaluate its
performance on the held out test set. In parallel, to
produce a point of the passive learning curve, we
select a single example from the pool randomly.
We continue this process in an iterative fashion un-
til the pool is exhausted. We repeat this for each
of the ten folds and average the resulting learning
curves.

In addition, we conduct a series of experiments
for each phenotype in which we vary the size of
the seed set S. Our motivation is to explore the
sensitivity of active learning to the size of the ini-
tial seed set. We only try several relatively small
seed set sizes. Larger seed sets may erase the gains
that could otherwise be obtained by active learn-
ing.

In this work, we do not compare the perfor-
mance of the models accross different phenotypes.
Instead, we focus on comparing the performance
of active learning against the passive learning
baseline.

In practice, active learning is used for selecting
examples for subsequent labeling from the pool of
unlabeled data. This scenario is simulated in our
experiments – we utilize the gold standard data,

but we hide the labels from the model. The label
is revealed only after the instance is selected and
is ready to be added to the training set. This is a
common practice used in most published studies
of active learning.

4 Results

For each phenotype, we construct the learning
curves for different sizes of the seed set. The re-
sults are shown in Figures 1, 2, and 3, which in-
clude the learning curves for seed sizes S = 10,
S = 30, and S = 50 respectively.

(a) Ulcerative Colitis

(b) Crohn’s Disease

(c) Multiple Sclerosis

(d) Type II Diabetes

Figure 1: Passive vs. active learning performance
on held-out data (S = 10)
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Phenotype Total Instances Number of Classes Proportion of Predominant Class
Ulcerative Colitis 600 2 0.630
Crohn’s Disease 600 2 0.665
Multiple Sclerosis 595 5 0.395
Type II Diabetes 600 3 0.583

Table 1: Dataset Characteristics

(a) Ulcerative Colitis

(b) Crohn’s Disease

(c) Multiple Sclerosis

(d) Type II Diabetes

Figure 2: Passive vs. active learning performance
on held-out data (S = 30)

For each plot we also compute the area under
the active learning and passive learning curves.
We report the difference between the two curves
in Table 2.

(a) Ulcerative Colitis

(b) Crohn’s Disease

(c) Multiple Sclerosis

(d) Type II Diabetes

Figure 3: Passive vs. active learning performance
on held-out data (S = 50)

5 Discussion and Conclusion

As we see in Figures 1, 2, and 3, for all phe-
notypes, active learning curves lie above passive
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Seed Size Ulcerative Colitis Crohn’s Disease Multiple Sclerosis Type II Diabetes
10 6.90 4.17 10.50 11.05
30 6.64 2.21 15.43 7.49
50 8.63 1.75 8.61 8.90

Table 2: Difference between areas under the curve (Active - Passive)

learning curves for most sizes of the training sets.
This means that the models trained on the data se-
lected via active learning typically perform better
than the models trained using random sampling.
This result is also supported by the fact that the
difference between the areas under the active and
passive learning curves in Table 2 was positive for
all of our experiments.

For most models, active learning reaches the
level of the best random sampling performance
with fewer than 200 examples, or about 1/3 of the
data. This potentially translates into manual anno-
tation savings of about 2/3. Moreover, the best ac-
tive learning performance is often above that of the
random sampling baseline. For example, consider
Figure 3d. The sizes of the training set in the range
between approximately 150 and 350 produce bet-
ter performance than the best performance of the
model trained on the randomly sampled data. At
about 260 training examples, the performance of
active learning approaches 0.79, which is at least
3 percentage points higher than the performance of
the passive learning baseline that it achieves with
the entire training set.

Although active learning consistently outper-
formed the passive learning baseline in most of
our experiments, occasionally active learning per-
formed worse at certain training set sizes. Con-
sider Figure 2b. During early stages of learn-
ing (training set sizes of about 50-130), the pas-
sive curve lies above the active learning curve (al-
though active learning recovers later on). We hy-
pothesize that the reason for this behavior lies in
outlier selection. Because outliers often do not
fit into one of the predefined classes, the classifier
is often uncertain about their labels, recommend-
ing their selection during active learning. At the
same time, the outliers do not help to clarify the
decision boundary, negatively affecting the perfor-
mance. We leave a further investigation into the
nature of this behavior for future work.

In other cases, the active learning briefly dips
below the passive learning curve at the very end
of the selection process. Although this behavior

is observed in several cases (e.g. 1d, 2b, 3d), it
is unlikely to be of consequence in practice. Ac-
tive learning would typically be stopped at a much
earlier stage, e.g. when 1/3 or 1/2 of the data has
been annotated. Nevertheless, it would still be in-
teresting to uncover the conditions leading to this
behavior and we leave this investigation for future
work.

Both of these scenarios, where active learning
performed worse than random sampling, highlight
the need for developing stopping criteria for ac-
tive learning such as (Laws and Schätze, 2008;
Bloodgood and Vijay-Shanker, 2009). In a prac-
tical application of active learning, a held-out test
set is unlikely to be available and some automated
means of tracking the progress of active learning is
needed. We plan to pursue this avenue of research
in the future. In addition to that, we plan to ex-
plore the portability of the models trained via ac-
tive learning. It would also be interesting to inves-
tigate the effect of swapping the base classifier: in
this work we collect the data for annotation using
a multinomial Naive Bayes model. It is still not
clear whether the gains obtained by active learn-
ing would be preserved if a model was trained on
the selected data using a different classifier (e.g.
SVM).

Finally, in addition to investigating the perfor-
mance of active learning across different pheno-
types, we also looked at the effects of varying the
size of the seed set S. We did not find a clear cor-
relation between the size of the seed set and active
learning performance. However, the relationship
may exist and could potentially be uncovered if a
larger set of seed set sizes was used. We leave the
further investigation in this area for future work.

In this work, we explored the use of active
learning for several phenotyping tasks. Super-
vised learning is frequently used for phenotype
creation, but the manual annotation that is required
for model training is expensive. Active learning
offers a way to reduce the annotation costs by
involving the classifier in the data selection pro-
cess. During active learning, the classifier chooses
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the unlabeled examples it views as informative,
thus eliminating the need to annotate the examples
that do not contribute to determining the decision
boundary. We demonstrated that active learning
outperforms the traditionally used passive learn-
ing baseline, potentially producing annotation cost
savings of up to two-thirds of what is required by
the passive baseline.
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Abstract

This paper reports the automatic ex-
traction of eleven negative symptoms
of schizophrenia from patient medical
records. The task offers a range of
difficulties depending on the consistency
and complexity with which mental health
professionals describe each. In order
to reduce the cost of system develop-
ment, rapid prototypes are built with min-
imal adaptation and configuration of ex-
isting software, and additional training
data is obtained by annotating automat-
ically extracted symptoms for which the
system has low confidence. The sys-
tem was further improved by the addition
of a manually engineered rule based ap-
proach. Rule-based and machine learn-
ing approaches are combined in various
ways to achieve the optimal result for each
symptom. Precisions in the range of 0.8 to
0.99 have been obtained.

1 Introduction

There is a large literature on information extrac-
tion (IE) from the unstructured text of medical
records (see (Meystre et al., 2008) for the most
recent review). Relatively little of this literature,
however, is specific to psychiatric records (see
(Sohn et al., 2011; Lloyd et al., 2009; Roque et
al., 2011) for exceptions to this). The research
presented here helps to fill this gap, reporting the
extraction of schizophrenia symptomatology from
free text in the case register of a large mental
health unit, the South London and Maudsley NHS
Trust (SLaM).

We report the extraction of negative symptoms
of schizophrenia, such as poor motivation, social

withdrawal and apathy. These often present in ad-
dition to more prominent, positive symptoms such
as delusions and hallucinations. Negative symp-
toms can severely impair the quality of life of af-
fected patients, yet existing antipsychotic medica-
tions have poor efficacy in their treatment. As neg-
ative symptoms can be measured in quantitative
frameworks within a clinical environment (Kay et
al., 1987; Andreasen, 1983), they have the poten-
tial to reflect the success or failure of new med-
ical interventions, and are of widespread interest
in the epidemiology of schizophrenia. The mo-
tivation for our work is to provide information on
the presence of negative symptoms, for use in such
quantitative measures.

SLaM covers a population of 1.1 million, being
responsible for close to 100% of the mental health
care contacts in four London boroughs. Approx-
imately 225,000 records are stored in the SLaM
Electronic Health Record (EHR) system, which
supports an average of 35,000 patients at any
one time. SLaM hosts the UK National Institute
for Health Research (NIHR) Biomedical Research
Center (BRC) for Mental Health. The BRC de-
identifies all records in the SLaM EHR (Fernandes
et al., 2013) to form the largest mental health case
register in Europe, the Case Register Interactive
Search (CRIS) system (Stewart et al., 2009). CRIS
provides BRC epidemiologists with search facili-
ties, via a web front end that allows standard in-
formation retrieval queries over an inverted index,
and via database query languages. CRIS has been
approved as an anonymized data resource for sec-
ondary analysis by Oxfordshire Research Ethics
Committee C (08/H0606/71). The governance for
all CRIS projects and dissemination is managed
through a patient-led oversight committee.

CRIS contains both the structured information,
and the unstructured free text from the SLaM
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EHR. The free text consists of 18 million text field
instances – a mix of correspondence and notes de-
scribing patient encounters. Much of the informa-
tion of value to mental health epidemiologists is
found in these free text fields. SLaM clinicians
record important information in the textual portion
of the record, even when facilities are provided
for recording the same information in a structured
format. For example, a query on the structured
fields containing Mini Mental State Examination
scores (MMSE, a score of cognitive ability) re-
cently returned 5,700 instances, whereas a key-
word search over the free text fields returned an
additional 48,750 instances. The CRIS inverted
index search system, however, cannot return the
specific information of interest (the MMSE score
in this case), instead returning each text field that
contains a query match, in its entirety. In the case
of symptomatology, as examined in this paper,
symptoms are rarely recorded in structured fields,
but are frequently mentioned in the unstructured
text.

This problem is not unusual. (Meystre et al.,
2008) note that free text is “convenient to ex-
press concepts and events” (Meystre et al., 2008),
but that it is difficult for re-use in other applica-
tions, and difficult for statistical analysis. (Rosen-
bloom et al., 2011) have reviewed the few studies
that look at the expressivity of structured clinical
documentation systems compared to natural prose
notes, and report that prose is more accurate, reli-
able and understandable. (Powsner et al., 1998) re-
fer to structured data as freezing clinical language,
and restricting what may be said. (Greenhalgh et
al., 2009), referring to the free text of the paper
record, say that it is tolerant of ambiguity, which
supports the complexity of clinical practice. Much
of medical language is hedged with ambiguity and
probability, which is difficult to represent as struc-
tured data (Scott et al., 2012).

Given the presence of large quantities of valu-
able information in the unstructured portion of the
BRC case register, and CRIS’s inability to extract
this information using standard information re-
trieval techniques, it was decided, in 2009, to im-
plement an IE and text mining capability as a com-
ponent of CRIS. This comprises tools to develop
and evaluate IE applications for specific end-user
requirements as they emerge, and the facility to
deploy these applications on the BRC compute
cluster.

Most IE applications developed by the BRC to
date have used a pattern matching approach. In
this, simple lexico-syntactic pre-processing and
dictionary lookup of technical terms are followed
by cascades of pattern matching grammars de-
signed to find the target of extraction. These
grammars are hand-written by language engineers.
Previous extraction targets have included smok-
ing status, medications, diagnosis, MMSE, level
of education, and receipt of social care. Building
such pattern matching grammars is often time con-
suming, in that it takes significant language engi-
neer time to develop and refine grammars. In addi-
tion, the process of writing and testing grammars
requires examples of the extraction target. These
are provided by manual annotation, or labelling, of
examples and correction of system output; a task
which takes significant domain expert time.

In the case of schizophrenia, the IE applications
are required to extract multiple symptoms for use
in quantitative measures of the disease. The set of
symptoms relevant to such quantitative measures
number in the dozens. Given the cost of pattern
grammar development, and the cost of manual an-
notation, it is impractical to develop grammars for
each of the required symptoms, and such an ap-
proach would not scale up to larger numbers of
symptoms and to other diseases. In addition, the
cost of domain expert annotation of examples for
each individual symptom is also high. The ap-
proach taken in our research aims to reduce these
two costs.

In order to reduce the cost of system develop-
ment, and to improve scalability to new symptoms
and diseases, we build rapid prototypes, using off-
the-shelf NLP and machine learning (ML) toolk-
its. Such toolkits, and repositories of applications
built on them, are becoming increasingly popular.
It has been asked (Nadkarni et al., 2011) whether
such tools may be used as “commodity software”
to create clinical IE applications with little or no
specialist skills. In order to help answer this ques-
tion, we compare the performance of our ML only
prototypes to applications that combine ML and
pattern matching, and to applications implemented
with pattern matching alone.

The second cost considered is that of finding
and labelling high quality examples of the extrac-
tion target, used to inform and test system develop-
ment. To deal with this cost, we explore methods
of enriching the pool of examples for labelling,
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including the use of methods inspired by active
learning (Settles, 2012). In active learning, poten-
tial examples of the extraction target are selected
by the learning algorithm for labelling by the hu-
man annotator. The aim is to present instances
which will most benefit the ML algorithm, at least
human cost. This paper presents results from ex-
periments in training data enrichment, and a sim-
ple approach to active learning, applied to symp-
tom extraction.

The paper is organised as follows. Section 2
looks at the task domain in more detail, explain-
ing the symptoms to be extracted, and describing
the dataset. Section 3 describes the experimental
method used, and the evaluation metrics. This is
followed by a presentation of the results in Sec-
tion 4, and a discussion of these results in Sec-
tion 5. Finally, we draw some conclusions in Sec-
tion 6.

2 Analysis of the Task Domain

In this section we will first introduce the concept
of negative symptoms and explain what entities we
are aiming to extract from the data. We will then
discuss the datasets we used, and how each symp-
tom varies in its nature and therefore difficulty.

2.1 Negative Symptoms

In the psychiatric context, negative symptoms are
deficit symptoms; those that describe an absence
of a behaviour or ability that would normally be
present. A positive symptom would be one which
is not normally present. In schizophrenia, posi-
tive symptoms might include delusions, auditory
hallucinations and thought disorder. Here, we are
concerned with negative symptoms of schizophre-
nia, in particular the following eleven, where bold
font indicates the feature values we hope to ex-
tract from the data (in machine learning terms, the
classes, not including the negative class). Exam-
ples illustrate something of the ways in which the
symptom might be described in text. “ZZZZZ”
replaces the patient name for anonymization pur-
poses:

• Abstract Thinking: Does the individual
show evidence of requiring particularly con-
crete conceptualizations in order to under-
stand? Examples include; “Staff have noted
ZZZZZ is very concrete in his thinking”,
“Thought disordered with concrete thinking”,

but NOT “However ZZZZZ has no concrete
plans to self-harm”

• Affect: Is the individual’s emotional re-
sponse blunted or flat? Is it inappropri-
ate to events (abnormal)? Alternatively,
does the individual respond appropriately
(reactive)? Examples include; “Mood:
subjectively ‘okay’ however objectively in-
congruent”, “Denied low mood or suicide
ideation”, “showed blunting of affect”

• Apathy: Does the individual exhibit apathy?
Examples include; “somewhat apathetic dur-
ing his engagement in tasks”, “Apathy.”

• Emotional Withdrawal: Does the individ-
ual appear withdrawn or detached? Exam-
ples include; “withdrawal from affectational
and social contacts”, “has been a bit with-
drawn recently”, NOT “socially withdrawn”,
which is a separate symptom, described be-
low.

• Eye Contact: Does the individual make
good eye contact, or is it intermediate or
poor? Examples include; “eye contact was
poor”, “maintaining eye contact longer than
required”, “made good eye contact”

• Motivation: Is motivation poor? Examples
include; “ZZZZZ struggles to become moti-
vated.”, “ZZZZZ lacks motivation.”, “This is
due to low motivation.”

• Mutism: A more extreme version of poverty
of speech (below), and considered a separate
symptom, is the individual mute (but not deaf
mute)? Examples include; “Was electively
mute [...]”, “ZZZZZ kept to himself and was
mute.”, NOT “ZZZZZ is deaf mute.”

• Negative Symptoms: An umbrella term for
the symptoms described here. Do we see
any negative symptom? Examples include;
“main problem seems to be negative symp-
toms [...]”, “[...] having negative symptoms
of schizophrenia.”

• Poverty of Speech: The individual may
show a deficit or poverty of speech, or their
speech may be abnormal or normal. Ex-
amples include; “Speech: normal rate and
rhythm”, “speech aspontaneous”, “speech
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was dysarthric”, “ongoing marked speech de-
fect”, “speech was coherent and not pres-
sured”

• Rapport: Individual ability to form conver-
sational rapport may be poor or good. Ex-
amples include; “we could establish a good
rapport”, “has built a good rapport with her
carer”

• Social Withdrawal: Do we see indications
of social withdrawal or not? Examples in-
clude; “long term evidence of social with-
drawal”, “ZZZZZ is quite socially with-
drawn”

2.2 Dataset

Different symptoms vary in the challenges they
pose. For example, “apathy” is almost exclusively
referred to using the word “apathy” or “apathetic”,
and where this word appears, it is almost cer-
tainly a reference to the negative symptom of ap-
athy, whereas concrete thinking is harder to locate
because the word “concrete” appears so often in
other contexts, and because concrete thinking may
be referred to in less obvious ways. In the pre-
vious section, we gave some examples of negative
symptom mentions that give an idea of the range of
possibilities. Exemplars were unevenly distributed
among medical records, with some records having
several and others having none.

Due to the expertize level required for the anno-
tation part of the task, and strict limitations on who
is authorized to view the data, annotation was per-
formed by a single psychiatrist. Data quantity was
therefore limited by the amount of time the expert
annotator had available for the work. For this rea-
son, formal interannotator agreement assessment
was not possible, although a second annotator did
perform some consistency checking on the data.
Maximizing the utility of a limited dataset there-
fore constituted an important part of the work.

Because many of the records do not contain
any mention of the symptom in question, in or-
der to make a perfect gold standard corpus the ex-
pert annotator would have to read a large num-
ber of potentially very lengthy documents look-
ing for mentions that are thin on the ground. Be-
cause expert annotator time was so scarce, this was
likely to lead to a much reduced corpus size, and
so a compromise was arrived at whereby simple
heuristics were used to select candidate mentions

for the annotator to judge rather than having also
to find them. For example, in abstract thinking,
one heuristic used was to identify all mentions of
“concrete”. In some cases, the mention is irrele-
vant to concrete thinking, so the annotator marks
it as a negative, whereas in others it is a positive
mention. This means that compared with a fully
annotated corpus, our data may be lower on recall,
since some cases may not have been identified us-
ing the simple heuristics, though precision is most
likely excellent, since all positive examples have
been fully annotated by the expert. In terms of
the results reported here, this compromise has lit-
tle impact, since the task is defined to be replicat-
ing the expert annotations, whatever they may be.
However, it might be suggested that our task is a
little easier than it would have been for a fully an-
notated corpus, since the simple heuristics used to
identify mentions would bias the task toward the
easier cases. In terms of the adequacy of the result
for future use cases, precision is the priority so this
decision was made with end use in mind.

2.2.1 Selecting examples for training
As a further attempt to obtain more expert-
annotated data, the principles of active learning
were applied in order to strategically leverage an-
notator time on the most difficult cases and for
the most difficult symptoms. Candidate mentions
were extracted with full sentence context on the
basis of their confidence scores, as supplied by the
classifier algorithm, and presented to the annota-
tor for judgement. Mentions were presented in
reverse confidence score order, so that annotator
time was prioritized on those examples where the
classifier was most confused.

3 Method

Because the boundaries of a mention of a nega-
tive symptom are somewhat open to debate, due to
the wide variety of ways in which psychiatric pro-
fessionals may describe a negative symptom, we
defined the boundaries to be sentence boundaries,
thus transforming it into a sentence classification
task. However, for evaluation purposes, precision,
recall and F1 are used here, since observed agree-
ment is not appropriate for an entity extraction
task, giving an inflated result due to the inevitably
large number of correctly classified negative ex-
amples.

Due to the requirements of the use case, our
work was biased toward achieving a good preci-
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sion. Future work making use of the data depends
upon the results being of good quality, whereas
a lower recall will only mean that a smaller pro-
portion of the very large amount of data is avail-
able. For this reason, we aimed, where possible,
to achieve precisions in the region of 0.9 or higher,
even at the expense of recalls below 0.6.

Our approach was to produce a rapid prototype
with a machine learning approach, and then to
combine this with rule-based approaches in an at-
tempt to improve performance. Various methods
of combining the two approaches were tried. Ma-
chine learning alone was performed using support
vector machines (SVMs). Two rule phases were
then added, each with a separate emphasis on im-
proving either precision or recall. The rule-based
approach was then tried in the absence of a ma-
chine learning component, and in addition both
overriding the ML where it disagreed and being
overridden by it. Rules were created using the
JAPE language (Cunningham et al., 2000). Ex-
periments were performed using GATE (Cunning-
ham et al., 2011; Cunningham et al., 2013), and
the SVM implementation provided with GATE (Li
et al., 2009).

Evaluation was performed using fivefold cross-
validation, to give values for precision, recall and
F1 using standard definitions. For some symp-
toms, active learning data were available (see Sec-
tion 2.2.1) comprising a list of examples chosen
for having a low confidence score on earlier ver-
sions of the system. For these symptoms, we first
give a result for systems trained on the original
dataset. Then, in order to evaluate the impact
of this intervention, we give results for systems
trained on data including the specially selected
data. However, at test time, these data constitute a
glut of misrepresentatively difficult examples that
would have given a deflated result. We want to
include these only at training time and not at test
time. Therefore, the fold that contained these data
in the test set was excluded from the calculation.
For these symptoms, evaluation was based on the
four out of five folds where the active learning data
fell in the training set. The symptoms to which
this applies are abstract thinking, affect, emotional
withdrawal, poverty of speech and rapport.

In the next section, results are presented for
these experiments. The discussion section fo-
cuses on how results varied for different symp-
toms, both in the approach found optimal and the

result achieved, and why this might have been the
case.

4 Results

Table 1 shows results for each symptom obtained
using an initial “rapid prototype” support vector
machine learner. Confidence threshold in all cases
is 0.4 except for negative symptoms, where the
confidence threshold is 0.6 to improve precision.
Features used were word unigrams in the sentence
in conjunction with part of speech (to distinguish
for example “affect” as a noun from “affect” as a
verb) as well as some key terms flagged as relevant
to the domain. Longer n-grams were rejected as a
feature due to the small corpus sizes and conse-
quent risk of overfitting. A linear kernel was used.
The soft margins parameter was set to 0.7, al-
lowing some strategic misclassification in bound-
ary selection. An uneven margins parameter was
used (Li and Shawe-Taylor, 2003; Li et al., 2005)
and set to 0.4, indicating that the boundary should
be positioned closer to the negative data to com-
pensate for uneven class sizes and guard against
small classes being penalized for their rarity. Since
the amount of data available was small, we were
not able to reserve a validation set, so care was
taken to select parameter values on the basis of
theory rather than experimentation on the test set,
although confidence thresholds were set pragmat-
ically. Table 1 also gives the number of classes,
including the negative class (recall that different
symptoms have different numbers of classes), and
number of training examples, which give some in-
formation about task difficulty.

As described in Section 2.2.1, active learning-
style training examples were also included for
symptoms where it was deemed likely to be of
benefit. Table 2 provides performance statistics for
these symptoms alongside the original machine
learning result for comparison. In all cases, some
improvement was observed, though the extent of
the improvement was highly variable.

Central to our work is investigating the inter-
play between rule-based and machine learning ap-
proaches. Rules were prepared for most symp-
toms, with the intention that they should be com-
plementary to the machine learning system, rather
than a competitor. The emphasis with the rules is
on coding for the common patterns in both pos-
itive and negative examples, though coding the
ways in which a symptom might not be referred
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Table 1: Machine Learning Only, SVM

Symptom Classes Training Ex. Precision Recall F1
Abstract Thinking 2 118 0.615 0.899 0.731
Affect 5 103 0.949 0.691 0.8
Apathy 2 145 0.880 0.965 0.921
Emotional Withdrawal 3 118 0.688 0.815 0.746
Eye Contact 4 35 0.827 0.677 0.745
Motivation 2 259 0.878 0.531 0.662
Mutism 2 234 0.978 0.936 0.956
Negative Symptoms 2 185 0.818 0.897 0.856
Poverty of Speech 4 263 0.772 0.597 0.674
Rapport 3 139 0.775 0.693 0.731
Social Withdrawal 2 166 0.940 0.958 0.949

Table 2: Active Learning

Symptom Ex. Without AL-Style Examples With AL-Style Examples Difference
Prec Rec F1 Prec Rec F1

Abstract Thinking 99 0.595 0.940 0.728 0.615 0.899 0.731 0.003
Affect 200 0.947 0.529 0.679 0.949 0.691 0.8 0.121
Emotional Withdrawal 100 0.726 0.517 0.604 0.688 0.815 0.746 0.142
Poverty of Speech 62 0.721 0.515 0.601 0.772 0.597 0.674 0.073
Rapport 37 0.725 0.621 0.669 0.775 0.693 0.731 0.062

to is considerably harder. F1 results for the stand-
alone rule-based systems where sufficiently com-
plete are given in Table 4; however, for now, we
focus on the results of our experiments in com-
bining the two approaches, which are given in Ta-
ble 3. Here, we give results for layering rules with
machine learning. On the left, we see results ob-
tained where ML first classifies the examples, then
the rule-based approach overrides any ML classi-
fication it disagrees with. In this way, the rules
take priority. On the right, we see results obtained
where machine learning overrides any rule-based
classification it disagrees with. The higher of the
F1 scores is given in bold. Results suggest that the
more successful system is obtained by overriding
machine learning with rules rather than vice versa.

Table 4 gives a summary of the best results ob-
tained by symptom, using all training data, in-
cluding active learning instances. We focus on F1
scores only here for conciseness. The baseline ma-
chine learning result is first recapped, along with
the rule-based F1 where this was sufficiently com-
plete to stand alone. Since in all cases, overrid-
ing machine learning with rules led to the best re-

sult of the two combination experiments, we give
the F1 for this, which in all cases, where avail-
able, proves the best result of all. We provide the
percentage improvement generated relative to the
ML baseline by the combined approach. The fi-
nal column recaps the best F1 obtained for that
symptom. We can clearly see from Table 4 that
in all cases, the result obtained from combining
approaches outperforms either of the approaches
taken alone.

5 Discussion

In summary, the best results were obtained by
building upon a basic SVM system with layers
of rules that completed and corrected areas of
weakness in the machine learning. Note that the
symptoms where this approach yielded the most
striking improvements tended to be those with the
fewer training examples and the larger numbers
of classes. In these cases, the machine learning
approach is both easier to supplement using rules
and easier to beat. A high performing rule-based
system certainly correlates with a substantial im-
provement over the ML baseline; however, we
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Table 3: Machine Learning Layered with Rules

Symptom Rules Override ML ML Overrides Rules
Precision Recall F1 Precision Recall F1

Abstract Thinking 0.914 0.719 0.805 0.935 0.652 0.768
Affect 0.931 0.827 0.876 0.931 0.827 0.876
Emotional Withdrawal 0.840 0.778 0.808 0.691 0.827 0.753
Eye Contact 0.88 0.852 0.866 0.779 0.611 0.684
Mutism 0.986 0.936 0.960 0.978 0.936 0.956
Negative Symptoms 0.851 0.897 0.874 0.818 0.897 0.856
Poverty of Speech 0.8 0.730 0.763 0.793 0.723 0.757
Rapport 0.839 0.868 0.853 0.907 0.772 0.834

Table 4: Best Result Per Symptom

Symptom Classes Ex. ML F1 Rules F1 Rules>ML F1 % Imp Best F1
Abstract Thinking 2 217 0.731 0.765 0.805 10% 0.805
Affect 5 303 0.800 0.820 0.876 9% 0.876
Apathy 2 145 0.921 n/a n/a n/a 0.921
Emotional withdrawal 3 218 0.746 0.452 0.808 8% 0.808
Eye contact 4 35 0.745 0.859 0.866 16% 0.866
Motivation 2 259 0.662 n/a n/a n/a 0.662
Mutism 2 234 0.956 n/a 0.960 0% 0.960
Negative Symptoms 2 185 0.856 n/a 0.874 2% 0.874
Poverty of speech 4 325 0.674 0.689 0.763 13% 0.763
Rapport 3 176 0.731 0.826 0.853 17% 0.853
Social withdrawal 2 166 0.949 n/a n/a n/a 0.949
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do also consistently see the combined approach
outperforming both the ML and rule-based ap-
proaches as taken separately. We infer that this
approach is of the most value in cases where train-
ing data is scarce.

Where machine learning was removed com-
pletely, we tended to see small performance de-
creases, but in particular, recall was badly affected.
Precision, in some cases, improved, but not by as
much as recall decreased. This seems to suggest
that where datasets are limited, machine learning
is of value in picking up a wider variety of ways
of expressing symptoms. Of course, this depends
on a) the coverage of the rules against which the
SVM is being contrasted, and b) the confidence
threshold of the SVM and other relevant param-
eters. However, this effect persisted even after
varying the confidence threshold of the SVM quite
substantially.

Optimizing precision presented more difficul-
ties than improving recall. Varying the confidence
threshold of the SVM to improve recall tended to
cost more in recall than was gained in precision, so
rule-based approaches were employed. However,
it is much easier to specify what patterns do in-
dicate a particular symptom than list all the ways
in which the symptom might not be referred to.
Symptoms varied a lot with respect to the extent
of the precision problem. In particular, abstract
thinking, which relies a lot on the word “con-
crete”, which may appear in many contexts, posed
problems, as did emotional withdrawal, which is
often indicated by quite varied use of the word
“withdrawn”, which may occur in many contexts.
Other symptoms, whilst easier than abstract think-
ing and social withdrawal, are also variable in the
way they are expressed. Mood, for example, is of-
ten described in expressive and indirect ways, as
is poverty of speech. On the other hand, mutism
is usually very simply described, as is eye contact.
It is an aid in this task that medical professionals
often use quite formalized and predictable ways of
referring to symptoms.

Aside from that, task difficulty depended to
a large extent on the number of categories into
which symptoms may be split. For example, the
simple “mute” category is easier than eye con-
tact, which may be good, intermediate or poor,
with intermediate often being difficult to separate
from good and poor. Likewise, speech may show
poverty or be normal or abnormal, with many dif-

ferent types of problem indicating abnormality.
We chose to use an existing open-source lan-

guage engineering toolkit for the creation of our
applications; namely GATE (Cunningham et al.,
2011). This approach enabled rapid prototyping,
allowing us to make substantial progress on a large
number of symptoms in a short space of time. The
first version of a new symptom was added using
default tool settings and with no additional pro-
gramming. It was often added to the repertoire in
under an hour, and although not giving the best
results, this did achieve a fair degree of success,
as seen in Table 1 which presents the machine
learning-only results. In the case of the simpler
symptoms (apathy and social withdrawal), this ini-
tial system gave sufficient performance to require
no further development.

Additional training data was obtained for five
symptoms, by presenting labelled sentences with
low classifier confidence to the annotator (Ta-
ble 2). Although this did improve performance,
it is unclear whether this was due to an increase in
training data alone, or whether concentrating on
the low confidence examples made a difference.
The annotator did, however, report that they found
this approach easier, and that it took less time than
annotating full documents for each symptom.

6 Conclusion

In conclusion, a good degree of success has
been achieved in finding and classifying negative
symptoms of schizophrenia in medical records,
with precisions in the range of 0.8 to 0.99 being
achieved whilst retaining recalls in excess of 0.5
and in some cases as high as 0.96. The work
has unlocked key variables that were previously
inaccessible within the unstructured free text of
clinical records. The resulting output will now
feed into epidemiological studies by the NIHR
Biomedical Research Centre for Mental Health.

We asked whether off-the-shelf language engi-
neering software could be used to build symptom
extraction applications, with little or no additional
configuration. We found that it is possible to cre-
ate prototypes using such a tool, and that in the
case of straightforward symptoms, these perform
well. In the case of other symptoms, however, lan-
guage engineering skills are required to enhance
performance. The best results were obtained by
adding hand-crafted rules that dealt with weakness
in the machine learning.
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Abstract

In order to analyse the information present
in medical records while maintaining pa-
tient privacy, there is a basic need for
techniques to automatically de-identify the
free text information in these records. This
paper presents a machine learning de-
identification system for clinical free text
in Dutch, relying on best practices from
the state of the art in de-identification
of English-language texts. We combine
string and pattern matching features with
machine learning algorithms and compare
performance of three different experimen-
tal setups using Support Vector Machines
and Random Forests on a limited data set
of one hundred manually obfuscated texts
provided by Antwerp University Hospital
(UZA). The setup with the best balance
in precision and recall during development
was tested on an unseen set of raw clinical
texts and evaluated manually at the hospi-
tal site.

1 Introduction

In Electronic Health Records (EHRs), medical in-
formation about the treatment of patients is stored
on a daily basis, both in structured (e.g. lab re-
sults, medication, ) and unstructured (e.g. clin-
ical notes) forms. EHRs are unique sources of
information that need be further analyzed to im-
prove diagnosis and treatment of future patients.
However, these information sources cannot be
freely explored due to privacy regulations (Privacy
Rule, 2002; European Data Protection Directive,
1995; Belgian Data Protection Act, 1993). Auto-

mated de-identification is crucial to remove per-
sonal health information (PHI), while keeping all
medical and contextual information as intact as
possible. In the US, this is regulated under the
Health Insurance Portability and Accountability
Act (HIPAA, 1996).

Approaches to de-identification can be cate-
gorised into two main types, with rule-based and
pattern matching approaches on the one hand and
machine learning approaches on the other, as sug-
gested in Meystre et al. (2010). Rule-based and
pattern-matching approaches often rely on dictio-
naries and manually constructed regular expres-
sions. While this type of approach does not require
any annotation effort and can easily be customised
to increase performance, it offers only limited
scalability and is often highly language dependent.
Machine learning approaches in general are bet-
ter scalable and more robust to noise, but espe-
cially supervised learning algorithms require sub-
stantial amounts of annotated training data, a very
time-consuming and expensive undertaking. The
selection of meaningful features is a crucial as-
pect in the machine learning approach, especially
when only limited data is available (Ferrández et
al., 2012a). Hybrid approaches to de-identification
such as that presented in Ferrández et al. (2012b)
have been developed to combine the advantages of
the machine learning approach with those of dic-
tionaries and regular expressions. Below, we high-
light a number of interesting studies from the state
of the art in automated de-identification.

One of the first systems for de-identification,
the Scrub system, was proposed in Sweeney et
al. (1996). Scrub takes a dictionary rule-based
approach and has been shown to be able to effec-
tively model the human approach to locating PHI
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entities. This study included well-formatted letters
with a header block as well as shorthand notes, but
does not provide details on recall and precision.

Stat De-Id (Uzuner et al., 2008; Sibanda, 2006)
takes a machine learning approach using Support
Vector Machines (SVM) as the learning algorithm.
Features cover aspects of the target word as well
as of the immediate context of the target. Condi-
tional Random Fields (CRF) (Lafferty et al., 2001)
are being used increasingly in de-identification re-
search. Two examples are Health Information DE-
identification (HIDE) (Gardner and Xiong, 2008)
and the Mitre Identification Scrubber Toolkit
(MIST) (Aberdeen et al., 2010; Deleger et al.,
2013). Several of these de-identification systems
(see also Douglass et al. (2004) and Neamatullah
et al. (2008)) show excellent results rivaling man-
ual de-identification. While most de-identification
systems score well in terms of recall, they do pro-
duce quite a large amount of false positives (see
Ferrández et al. (2012a)). This compromises the
usability of the de-identified documents, as medi-
cally relevant data may have been removed.

In this paper, we present a de-identification case
study following best practices from the state of the
art. A machine learning approach is taken, using
features based on dictionaries and string and pat-
tern matching techniques. The objective of this
study is to develop a de-identification system for
clinical notes in Dutch, a language for which de-
identification training data are not available. We
evaluate three machine learning setups on a train-
ing set of 100 manually annotated medical notes
and test the best performing setup on 100 previ-
ously unseen medical notes, the performance of
which is manually evaluated at the hospital site.

2 Methods

2.1 Data set

The training set consists of 100 documents ran-
domly selected from the Antwerp University Hos-
pital (UZA) EHR system. This data set consists
of (discharge) letters, comprising 52,829 words in
total. These words have been annotated manually
according to the following Personal Health Infor-
mation (PHI) classes: Name, Date, Address, ID
(indicating a personal identification code such as
a social security number), and Hospital. 2,968
words were manually marked as containing PHI.
Their occurrence rates are shown in Figure 1.

For privacy reasons, all PHI words in these

Figure 1: Average frequency per PHI class over
total number of words (n=52.829)

documents have been obfuscated in the hospi-
tal before we obtained them. The PHI-labelled
documents were then reconstructed with fictitious
names, addresses, etc. to enable their use as a
training set. A test set with 100 randomly selected
documents was held internally at the Antwerp
University Hospital (UZA) and was manually an-
notated to be used for later testing (see Sec-
tion 3.3). However, training and test set differ
in quality since the former was manually obfus-
cated after manual de-identification to protect pa-
tient privacy and the latter was unaltered.

2.2 Experimental setup

For the development of our de-identification sys-
tem using the training set described above, we ap-
ply the following experimental setup. First of all,
the texts in the dataset are tokenized (i.e. splitting
the text in individual words and removing punctu-
ation). Next, features are derived and calculated.
In a third step, the resulting set of derived fea-
tures with associated PHI class per word is used
for training. In a set of experiments, we (1) as-
sess the performance of the classifiers for the indi-
vidual PHI classes, (2) evaluate how adding more
training data affects performance, and (3) validate
the performance on 100 previously unseen docu-
ments. Due to the high cost of manual annotation,
our training set is rather small. As a result, the
performance scores can only be interpreted as in-
dicative of performance in a realistic environment.

All results in Experiments 1 and 2 are averaged
over fifty independent runs, each selecting differ-
ent sets of training and test sets from the original
training set. In each run, ten random documents
are withheld as test set. In Experiment 1, the re-
maining ninety are used for training, while in Ex-
periment 2, a learning curve is constructed, show-
ing the effect of a stepwise (step size=10) increase
in training set size.
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2.3 Feature engineering

Since the choice of features affects algorithm
behavior and performance (Kim et al., 2011;
Sibanda, 2006), selecting features that discrim-
inate PHI from non-PHI and are able to in-
dicate the differences between the various PHI
classes (Gardner and Xiong, 2008) is crucial. Be-
cause of the limited data available for training, ex-
ternal dictionaries are indispensable.

We use four types of features: (i) direct tar-
get word characteristics, (ii) pattern matching fea-
tures, (iii) dictionary features, and (iv) contextual
word features. Direct target word characteristics
indicate the presence of capitalisation, punctua-
tion, and numbers and includes word length in-
formation. Pattern matching features are linked
to regular expressions that refer to social security
numbers or date patterns. Dictionary features in-
dicate whether the target word is present in a PHI
dictionary (i.c. dictionaries of first and last names,
streets, cities, hospital names, healthcare institu-
tions, salutations) or whether it is part of a word
group that is present in a PHI dictionary. For word
groups, we take into account a context of three
words to the right of the target word (i.e. slid-
ing window size=4). For computational efficiency,
we use a suffix tree algorithm by Ukkonen (1995).
Contextual word features indicate whether words
in the immediate context (i.e. left context=3, right
context=3; sliding window size=7) of the target
word have characteristics that might influence the
classification of the target word (e.g. punctuation,
capitalisation).

2.4 Classification

We apply three classification setups, each offering
their own advantages for different data sets, de-
pendent on the data set size, the heterogeneity of
the data set, and the total number of classes. We
use Weka (Witten and Frank, 2005), a toolkit for
machine learning, for classification with Random
Forests. For Support Vector Machines (SVM), we
use the libSVM (Chang and Lin, 2011) library. In
future de-identification experiments, we will eval-
uate Conditional Random Fields as well.

SVMs calculate an optimal decision bound-
ary between two classes (Chang and Lin, 2011),
are powerful with high-dimensional data and pro-
mote the use of local context features. For de-
identification with several PHI classes, multi-class
classification is required. We test (i) a one-versus-

one learning scheme (cf. ‘OOSVM‘), where the
binary classifiers distinguish between each pair
of classes and (ii) a one-versus-all scheme (cf.
‘OMSVM‘), where each class is distinguished
from the other classes simultaneously. Both
schemes apply majority voting with equal weights
assigned to each (PHI as well as non-PHI) class.

Random Forests is a machine learning tech-
nique that generates multiple random Decision
Trees (Breiman, 2001). Each of these trees ran-
domly selects features and assigns a particular
class to each instance containing those features.
A voting system decides which of these decisions
is finally assigned, potentially leading to a more
robust decision since it is supported by multiple
trees. The total number of trees is customisable,
but a high number of trees increases training time.
We tested multiple numbers of trees, but selecting
ten random trees (cf. RF10) yielded the best bal-
ance between precision, recall, and training time.

2.5 Evaluation measures

We present results in terms of precision, recall,
and F-score. We consider recall to be the most im-
portant measure for de-identification as it shows
the number of PHI-items actually retrieved by the
algorithm divided by the number of PHI items
present. Precision indicates how many of the PHI
items identified are actually correct. F-score is
calculated as the harmonic mean between preci-
sion and recall. Precision and recall are macro-
averaged, in a way that all classes have an equal
weight in the end result.

3 Results

We present results of three experiments: we (1)
evaluate the performance of the proposed method
for five PHI classes, (2) perform a learning curve
experiment to investigate how performance is af-
fected by increasing training set size, and (3) eval-
uate the best experimental setup on a previously
unseen test set of 100 documents.

3.1 Performance on individual PHI classes

Recall and precision are very similar for most
classes, as is shown in Table 1, except for the
Name and ID classes. This can be explained by the
wide variety in types of IDs and the larger ambigu-
ity between names and non-PHI words (e.g. ‘Vri-
jdag‘, the Dutch word for ‘Friday‘, also represents
a last name found in libraries with a relatively high
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OOSVM
Recall 91.2 95.9 95.6 79.9 95.0
Precision 88.6 98.0 98.2 95.3 98.6
F-score 90.1 96.9 96.8 86.9 96.8
OMSVM
Recall 91.2 95.8 96.2 77.2 95.4
Precision 88.9 98.0 98.4 95.3 98.6
F-score 90.0 96.8 97.3 85.3 97.0
RF10
Recall 87.4 95.0 92.5 75.8 75.3
Precision 95.1 98.4 98.5 99.4 97.8
F-score 91.1 96.6 95.4 86.0 85.1

Table 1: Results per PHI class and classification
setup

frequency). It should be noted that performance is
calculated per word in a (potentially multi-word)
name. If only part of the name gets classified as
a Name, it is counted as a false negative, although
the largest part of the name will be removed from
the text.

Overall, our SVM setups show a higher re-
call and F-measure than the Random Forest setup,
while the latter has a higher precision. With
90 training documents, an average F-measure of
91.5% for the Random Forest method and an av-
erage F-measure of 94.5% for the one-against-one
SVM setup is achieved.

3.2 Learning curve

To assess the amount of manually annotated data
required, we increase the number of training doc-
uments in a learning curve experiment. Figures 2
and 3 represent precision and recall scores with
varying training set size. The RF10 method has a
generally higher precision than the SVM setups,
but also a lower recall. Precision remains rela-
tively constant for all methods and recall values
seem to converge asymptotically.

3.3 Results on a previously unseen test set

In this experiment, we evaluate the algorithm in a
more realistic setting where the algorithm - built
from a limited set of manually obfuscated train-
ing data (cf. Section 2.1) - is tested on previously
unseen test data and evaluated by a hospital staff
member. The test data are qualitatively different

Figure 2: Average precision per setup with 90
training and 10 test documents

Figure 3: Average recall per setup with 90 training
and 10 test documents

since they were not subject to obfuscation. Exper-
iments were conducted with OOSVM - the ma-
chine learning setup that yielded the best perfor-
mance in the experiments described above - using
100 obfuscated documents for training and yielded
a recall of 89.12% and a precision of 93%, which
is lower than the performance on the obfuscated
test data in Section 3.2.

Error analysis revealed that the use of all-caps
(first and last) names and addresses is widespread
in the test documents, whereas the training data
were manually obfuscated and contained no all-
caps names and addresses. Since capitalisation is
a feature (cf. Section 2.3) in our de-identification
system, the difference in quality between training
and test data can explain the drop in performance.

3.4 Time measurements

Time measurements have been taken to check
whether the de-identification algorithm is ap-
plicable to a larger set of documents. A de-
identification speed of 109 ms/document (assum-
ing an average length of 500 words) was achieved
when de-identifying with the OOSVM method,
while the Random Forest method only needed 42
ms/document. The OMSVM method requires a
de-identification time of 205 ms/document.

If OOSVM, the best performing setup, would be
used to de-identify documents from the hospitals
EHR system on a daily basis, the processing time
would be a matter of minutes. The larger amount
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of time needed to use the one-against-one SVMs
rather than the Random Forest method is worth
it, since the performance of the former is signif-
icantly better.

4 Discussion

The results suggest that the de-identification al-
gorithm we developed achieves reasonable perfor-
mance considering the limited set of training data
it is based on. However, to be of practical use
without manual confirmation, de-identification re-
call should be as high as possible, making sure
that no PHI remains in the text. High precision
is of secondary importance, as long as the algo-
rithm does not identify too many non-PHI words
as containing Personal Health information, which
can cause medically relevant information to be lost
during de-identification.

The learning curve experiments show that recall
scores start to converge asymptotically, which may
indicate that relatively small amounts of training
data already yield fair results, while the increase
in precision with increasing training set size seems
limited. However, we are aware that the data set is
too limited to draw conclusions from these results.

The test on a non-obfuscated, previously unseen
test set indicates that minor feature improvements
and a more representative training set are needed.
Although the current approach with a previously
manually obfuscated training set is non-scalable,
it allows us to automatically create a more repre-
sentative training set from another dataset.

The results of the Random Forest method can
be improved when increasing the amount of trees.
However, this also increases training time linearly,
with a minimal increase in performance. Recall
scores of the current Random Forests setup are in-
sufficient for most PHI classes.

5 Conclusion

In this paper, we presented a machine learning
approach to de-identification based on a limited
set of manually annotated Dutch-language clini-
cal notes. We compared three types of classifi-
cation approaches and found the one-versus-one
SVM setup to be the method of choice for this
particular case study. In terms of recall - which
we consider the most crucial evaluation measure
for practically usable de-identification - it is better
than the Random Forest classifier, which in its turn
scores better in terms of de-identification time and

precision. Learning curve results seem to indicate
that the amount of training data needed converges
to an asymptote quite early in the curve.

We plan several extensions to the algorithm:
adding syntactic (e.g. part-of-speech tags) and
semantic features, investigating the use of semi-
supervised learning to automatically increasing
the set of training data, and testing Conditional
Random Fields for classification. Another next
step is the expansion to an ensemble method for
two of our classifiers, taking advantage of proper-
ties of both classifiers.
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Abstract 

 

Rare diseases are not that rare: worldwide, one 
in 12-17 people will be affected by a rare dis-
ease. Newborn screening for rare diseases has 
been adopted by many European and North 
American jurisdictions. The results of genetic 
testing are given to millions of families and 
children’s guardians who often turn to the In-
ternet to find more information about the dis-
ease. We found 42 medical forums and blogs 
where parents and other related adults form 
virtual communities to discuss the disease di-
agnosis, share related knowledge and seek 
moral support.   Many people (up to 75% in 
some population groups) look for professional 
medical publications to find reliable informa-
tion. How can it be made easier for these non-
medical professionals to understand such 
texts?   We suggest that recommender sys-
tems, installed on web sites of research and 
teaching health care organizations, can be a 
tool that helps parents to navigate a massive 
amount of available medical information.  In 
this paper, we discuss NLP architecture of 
such a system. We concentrate on processing 
epistemic modal expressions and helping the 
general public to evaluate the certainty of an 
event.       

1 Introduction 

A rare disease is identified as a life-threatening 
or chronically debilitating condition affecting not 
more than 5 in 10.000 persons (Cornel et al., 
2013). Accumulatively, rare diseases are not un-
common. In UK, one in 17 people will be af-
fected at some point in their lives; this equates to 
more than 3.5 million people. Most of these will 
be children, and 30% of individuals with a rare 

disease will die before they are five years old. 1  
In Canada, one in 12 people suffer from a rare 
disease, and the number of identified rare diseas-
es identified constantly increases.2

Nevertheless, Raffle and Gray (2007) note that 
screening programs can induce harm.  Whereas 
the programs improve health status in patients by 
diagnosing them early and treating optimally, 
after the screening, parents and guardians of the 
newborns receive a substantial amount of new 
information about health of their children. The 
results may cause parental stress and anxiety, 
among other negative factors. To aid in naviga-
tion through the screening results, health care 
authorities organized web-based resource cen-
ters, such as a joint web site by the Newborn 
Screening Ontario program and Children’s Hos-
pital of Eastern Ontario

   

 A prevailing understanding is that early diagno-
sis and treatment may ease the burden of a dis-
ease.  Thus, newborn screening for rare diseases 
has become a routine procedure in USA, Canada 
and the member states of the European Union.   

3 or the Newborn Screen-
ing web site by the National Health Service4

Emergence of user-friendly online technologies 
prompted the general public to turn to the Inter-
net to gain more knowledge on health-related 
issues, a phenomenon often referred to as Dr. 
Google.  A 2011 survey of the US population 
estimated that i) 59% of all adults have looked 
online for information about health topics such 

. 
 

                                                 
1http://blogs.biomedcentral.com/bmcblog/2013/02/28/
what-is-the-cost-of-rare-diseases/ 
2 http://rare-diseases.ca/ 
3 http://www.newbornscreening.on.ca/bins/index.asp 
4http://www.nhs.uk/Livewell/Screening/Pages/Newbo
rnscreening.aspx 
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as a specific disease or treatment, ii) 18% of 
adults have consulted online reviews of particu-
lar drugs or medical treatments, iii) 29% of all 
adults sought online health information related to 
somebody’s else medical condition (Fox 2011; 
Fox 2011a).    Preference in online searches re-
lated to specific health problems was previously 
reported by Nicholas et al. (2003).  
 
At the same time, the general public does not 
consider different sources of the available health 
information as being equal.  75% of non-medical 
professionals aim their online searchers at pro-
fessional medical sites and publications (McMul-
lan, 2006). Many individuals prefer to have an 
access to a complex and complete information 
(80%), whereas some feel that the information 
usually accessed is too basic (45%) (ibid).  
An important question arises as to how well the 
readers can understand the information they re-
trieve. Eysenbach (2003) reported that patients 
who sought health information online felt that 
Internet information can be overwhelming 
(31%), conflicting (76%) and confusing (27%). 
 
The system that we are building aims to help in-
dividuals, specifically parents of newborns, to 
navigate and assess medical publications about 
rare diseases.   
 

2 Motivation 

It has been documented that many parental users 
of the Internet are first-time parents (Oprescu et 
al, 2013) and parents with young children (Balka  
and Butt, 2006). They might not have a hands-on 
experience or practice in dealing with a complex 
medical issue and information related to it and 
can be easily overwhelmed. This is especially 
true for parents of newborn babies which were 
screened positive for one of the rare diseases.       
 
The screening happens at the very beginning of 
the child’s life.  A positive result may cause par-
ents’ insecurity and increase their uncertainty 
about future (Brashers, 2001). Gaining new 
knowledge through relevant information is one 
of the tools that can alleviate stress and anxiety 
(Brashers, 2000). It is natural that the affected 
parents search for information about the diagno-
sis and turn their attention to professional medi-
cal publications.  
 

In the quest for knowledge, parents face a chal-
lenge of understanding a complex text that in-
cludes assessment of the relevance of the re-
trieved information and ability to differentiate 
among available options. This necessitates, 
among other required skills, ability to discrimi-
nate between different degrees of certainty and 
evaluate the likelihood score found in the text 
(Holmes, 1982; Morante and Sporleder, 2012).         
 

3 Medical Forum Data 

To get a notion of the public concerns and ques-
tions, we automatically extracted and manually 
analyzed messages posted on medical forums 
and blogs dedicated to newborn screening for 
rare diseases.     
 
We selected 42 forums frequently visited by 
parents and families concerned about newborn 
screening and its consequences (e.g., fo-
rums.familyeducation.com,www.justmommies.c
om/babies/newborn,www.parentingforums.org
/forum.php). We did not require research ethics 
review for this study as all of the data collected 
and used was from publically available sources. 
Nevertheless, we confirmed with our institutional 
research ethics board that no review of research 
on public data sets was necessary. 

 
To find what parents think and discuss, we fol-
lowed two strategies to collect data: a manual 
search and automated crawling of parenting fo-
rums and blogs. In our manual data collection, 
we used Google to find blogs, comments and 
medical forums that could post messages with 
the relevant content. Our queries were built from 
all the possible combinations of the following 
three sets of phrases: 

• {Forum, Bulletin Board, Message Board, 
BBS, Threads} 

• {Newborn, infant} 
• {Genetic Predisposition Testing, Genetic 

Screening, Predictive Genetic Testing, 
Genome Sequencing} 
 

For instance, the query {newborn genetic 
screening threads} is used to search for the re-
lated forums. After finding relevant blogs or 
threads, we downloaded the comments.  
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To download the comments we used Selenium 
API5, Hibernate API6, MySQL database, and 
Java programming language. In automatic data 
collection, we used Apache Nutc crawler appli-
cation7  in combination with Apache Solr search 
platform8 to crawl handpicked forums.   
 
First, we performed manual search to find fo-
rums with the related phrases mentioned above. 
Then we used URLs of the selected forums as a 
seed for Nutch.  We stored the collected HTML 
pages in MySQL database.  Next, we searched 
these pages with Apache Solr, which uses the 
cosine similarity metric to find related page to 
the search query: 
   

 
 
where A and B are the term frequency vectors of 
the query and a document.  We marked page as 
relevant if it contained any three-phrase combi-
nation built from three sets of phrases mentioned 
earlier in this section.  
 
After finding pages with relevant comments, 
their content was downloaded and analyzed in-
dependently by two authors. We found that par-
ents and other involved individuals are often 
concerned about the following issues: 
 

• Prevalence and severity  of the disease 
• Available treatment and the effects of an 

early treatment 
• A possible course of the disease  
• Reliable tests 
• Health care facilities  
• Medications and their side effects  
• Future use of the results 

 
Table 1 lists some examples of messages.  We 
keep all the original spelling, punctuation, and 
grammar. 
 
 
 

                                                 
5 http://docs.seleniumhq.org/, accessed:  July. 2, 2013 
6 http://www.hibernate.org/, accessed:  July. 2, 2013 
 
7http://nutch.apache.org/#What+is+Apache+Nutch%3
F, accessed:  July. 2, 2013 
8 http://lucene.apache.org/solr/ , accessed: July.  2, 
2013 

 
Table 1: Online messages on newborn screening 
Concern Message  
Prevalence 
and severity 
 

I was 39 when my son was 
born. 1:810 for downs and 
1:10,000 for tri 18/13. The 
risk for ANY chromosomal 
issue is 1:80 for someone 
age 39.  

Available 
treatment and 
the effects of 
an early 
treatment 
 

she said if he starts to get 
congestion then do a breath-
ing treatment and call next 
day if he is not doing better. 
I was confused about this as 
well as I thought he would 
need those treatments im-
mediately.... 

A possible 
course of the 
disease  
 

nothing is written in stone 
for CF these days. Docs told 
my parents I wouldn't live 
past 21. I'm 27yo, working 
on a PhD, and this past 
spring I finished my second 
Half-Ironman Triathlon. 

Reliable tests 
 

I'm concerned because of 
the number of false-positives 
I read about, and further 
testing to eliminate that 
worry have a small chance of 
causing death to a perfectly 
healthy baby. 

Health care 
facilities  
 

best to do them in a cf9 cen-
ter cause it all depends on 
the lab you do the test in. 

Medications 
and their side 
effects  
 

I have a 6 month old son that 
was born deaf. He just re-
cieved a baha hearing aid, 
and it has done some good, 
but not as much as we had 
hoped for 

Future use of 
the results 

And you have no problem 
with this government own-
ing their genetic code, po-
tentially knowing illness, dis-
abilities, strengths, weak-
nesses and potential? 
A trusting soul you are in-
deed. 

                                                 
9 Cystic fibrosis - an autosomal recessive genetic 
disorder that affects most critically the lungs, and also 
the pancreas, liver, and intestine.   
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4 Epistemic expressions  

Our current project focuses on disambiguating 
epistemic modal expressions. Previously, several 
studies connected the use of modal verbs (can, 
might, should), amplifiers (certainly, definitely) 
with the level of expectation of an event (He-
nriksson and Velupillai, 2010; Sokolova and La-
palme, 2011).   
 
However, these studies did not categorize epis-
temic expressions based on their strength of con-
viction in the event happening. We categorize the 
strength of conviction by assigning six catego-
ries: impossible, improbable, uncertain, possible, 
probable, and certain (Horn, 1989; Sokolova et 
al, 2010).  Table 2 shows the categories and ex-
pressions. 
 
Table 2: Examples of epistemic expressions 

Epistemic category Expressions 
Impossible Never happens  
Improbable Hardly expected 
Uncertain  We unsure 
Possible  Perhaps 
Probable  There is a certain risk 
Certain  We always see 
 
The suggested six categories add three negative 
categories (impossible, improbable, uncertain) to 
common positive happenstance categories (poss-
ible, probable, certain) (R. Saurı´ and J. Puste-
jovsky, 2009).   
 
Language expressions corresponding to the cate-
gories contain extensional modifiers, i.e. modifi-
ers of degree and happenstance (Sokolova and 
Lapalme, 2011). The modifiers can be modal 
verbs (can, must, would), adverbs (likely, most-
ly), adjectives (common, rare) and quantifying 
pronouns (every, none).   These expressions 
should be disambiguated in the context of a sen-
tence or a clause.  
 
Below we categorize a few expressions found in 
articles on rare diseases:  
• Impossible: such  off-target gene modulat-

ing effects are currently impossible to pre-
dict 

• Improbable: in part out of concern that re-
cruitment of eligible subjects with SMA Type 
I would be difficult because of their high 

level of inter-current illness and mortality in 
childhood  

• Uncertain: these studies could not rule out 
an additional contribution resulting from 
restoration of SMN levels in muscle  

• Possible: raising the possibility that intrinsic 
responses to low levels of SMN in skeletal 
muscle may also contribute directly to SMA 
pathogenesis  

• Probable: Studies have shown that restoring 
SMN protein levels in neurons can signifi-
cantly ameliorate disease progression  

• Certain: A neighboring nearly-identical copy 
of this gene, SMN2, is invariably present in 
individuals with SMA  

 
Our next step was to assess the presence of epis-
temic expressions in articles on rare diseases. 

5 Empirical evidence 

For our preliminary study we decided on a group 
of articles dedicated to spinal muscular atrophy 
(SMA), a neurodegenerative disease affecting 1 
in 11000  newborns world- wide (Farooq et al, 
2013).   We selected six full-length research ar-
ticles. The articles were published in  Orphanet 
Journal of Rare Diseases, Neurodegenerative 
Diseases (an open source book), Journal of Clin-
ical Investigation, Plos One, and Human Molecu-
lar Genetics (2 articles).  

 
The articles’ content covers most of parent con-
cerns (see Table 1): a) severity of the disease, b) 
available treatment and the effects of an early 
treatment, c) a possible course of the disease, 
reliability of tests, d) medications. Thus, the ar-
ticle selection allows the empirical results to be 
representative of the information parents will 
find. At the same time, we cover language ex-
pressions belonging to different authors.   
 
Three articles were written by a team of leading 
researchers in SMA; these authors have written 
papers that receive a high rank in SMA search 
through Google Scholar; hence, there is a high 
probability that parents looking for the SMA in-
formation will first encounter papers published 
by this team (Articles A).  Three other articles 
were written by other teams working on SMA 
research (Articles B).   We report the descriptive 
statistics in Table 3; vocabulary signifies differ-
ent words in the text.  
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Table 3: Vocabulary richness of the six articles; 
d.leg. – vocabulary with occur. = 1, h.leg. – vocabu-
lary with occur. = 2, occ > 5 – vocabulary that oc-
cur 6 and more times. 

Articles A 
# words vocab. d. leg. h. leg. Occ >5 
1a 6894 1661 1008 254 159 
2a 4492 1374 827 242 121 
3a 6629 1506 871 246 185 

Articles B 
# words  vocab. d. leg. h. leg. Occ >5 

1b 10731 2658 1344 441 317 
2b 6009 1557 896 246 173 
3b 5094 1125 598 191 157 
 
We looked for epistemic expressions related to 
the main concerns found on medical forums (see 
Table 1).   For the information retrieval, we built 
N-gram models of each article (N = 1, …, 4).  
We tokenized data by splitting along spaces and 
punctuation marks.  We kept the original capita-
lization to preserve the beginning of sentences. 
We used combinations of the seed words to find 
N-grams with the epistemic meaning. Table 4 
lists examples of the seed words.   
 
Table 4: Examples of words used in search of epis-
temic expressions. 

Part-of-speech Examples 
Adverbs Possibly, perhaps  
Adjectives Impossible 
Modal verbs Can, may, should  
Negations No, not 
Nouns absence, presence  
Quantifying pronouns  Every, none  

 
To avoid counting the same expression multiple 
times, we filtered out those bi-grams which first 
word overlaps with the second word of another 
epistemic bi-gram.  From the list of tri-grams, we 
filtered out those which first word overlaps with 
the third word of another epistemic tri-gram.   
For instance, we filtered out not be as a possible 
extension of may not. 
 

Manual analysis showed that the most fre-
quent bi- and tri-grams expressed negative and 
positive conviction, supporting the proposed ex-
pansion of epistemic categories by negative im-
possible, improbable and uncertain.    Table 5 
lists the most frequent epistemic bi- and tri-
grams found in the articles. 

 

Table 5:  Five most frequent not overlapping epis-
temic bi- and tri-grams per article. 

Articles A 
Article1a  Bi-grams may not, may be, can 

be, will be, where 
possible  

Tri-grams may not be, the hope 
is, would have a, ma-
jority of these, and 
where possible 

Article 2a Bi-grams which can, SMA can, 
and can, must be, may 
have 

Tri-grams which can cross, no 
cure for, SMA can be, 
SMA is primarily, 
which may have 

Article 3a Bi-grams potential treatment, 
such promising, prom-
ise for, of approx-
imately, suggest that  

Tri-grams potential therapeutic 
compounds, potential 
treatment strategy, 
such promising agent, 
found to be, There 
could be 

Articles B 
Article 1b Bi-grams can be, able to,  will 

be, would be, could be 
Tri-grams the potential to, the 

false discovery, can be 
used, may not be, 
there were no 

Article 2b Bi-grams absence of, implicated 
in, as expected, poten-
tial to, the possibility 

Tri-grams absence of any, con-
firmed in a,  raising the 
possibility, potential to 
act, supported by sev-
eral 

Article 3b Bi-grams a putative, probably 
carry, could be, should 
be, would be 

Tri-grams result not shown, put-
ative gene conversion, 
affected children 
could, observations 
should be, This change 
would 

  

28



We hypothesized that the use of the expressions 
closely relates to the content of the article.   For 
example, articles reporting on clinical trials, 
treatments, medications may have a high fre-
quency of epistemic expressions as due to neces-
sity of drawing conclusions and implications for 
future patients.    We list the topics of the six pa-
pers and frequencies of the top epistemic bi- and 
tri-grams in Table 6. 

 
Table 6: Article topics and frequencies of the epis-
temic expressions (x10-3) 

Articles A 
# Topics bigrams trigrams 

1a disease therapy, 
preclinical drug 
development, ge-
neralizable screen-
ing methods 

22.4 14.0 

2a Classification, di-
agnosis, back-
ground for SMA 

5.0 2.9 

3a PRL treatment in 
mice, potential the-
rapeutic com-
pounds 

2.1 1.6 

1b Identification of 
novel candidate 
biomarkers asso-
ciated with disease 
severity in SMA  

3.2 1.1 

2b intrinsic pathology 
of skeletal muscle, 
novel biomarkers 
in SMA 

6.3 2.0 

3b molecular analysis 
of the SMN and 
NAIP Genes 

4.3 2.3 

Looking at the topics of the papers, we can see 
that preclinical drug development corresponds to 
the largest frequency of the epistemic expres-
sions in the text.  

6 Parent Advisor 

In the medical domain, uncertainty and misun-
derstanding of information can imperil lives and 
incur significant costs on health care systems 
(McCoy et al, 2012).  Although a thirst for medi-
cal knowledge among non-medical readers has 
been documented (see Section 1), there are not 
many developed NLP tools and methods that 
help such readers to understand medical texts.  
 

Although epistemic disambiguation is important 
for text understanding, other text analysis tasks 
are essential in order to build an effective system 
that helps parents to understand medical publica-
tions related to rare diseases.   Hence, the pro-
posed system name is the Parent Advisor.  
 
We suggest that such the Parent Advisor is orga-
nized as a pipeline of NLP and Text Mining 
tools, each serving a special purpose (Figure 1): 
1. social media analyzer, to identify concept 

shift in parents’ concerns;  
2. article content classifier, to  select relevant 

articles for further analysis; 
3. relevant article ranker, to  evaluate the use-

fulness  of the selected articles;    
4. factual information extractor, to  retrieve in-

formation related to parents’ concerns  
5. epistemic disambiguator, to assess the re-

trieved  factual information.  
6. the output ranker, which ranks the factual 

information according to the assigned epis-
temic categories.  

 
We also suggest that human participation should 
be incorporated in the system functioning. To 
support the actuality of text analysis, parents can 
be surveyed and polled either on a regular basis 
or in relation to medical and health-related 
events (e.g., a new discovery, a proposed change 
in health care) (Fox, 2011).  Medical profession-
als should be involved in the article ranking, to 
ensure the quality of the selected publications. 
Additionally to standard text annotation, a team 
of communication and medical professionals can 
assist in the factual information extraction and 
epistemic disambiguation (Scott et al, 2012).     
 
 

 

 

 

 

 

 

   
 
Figure 1: the Parent Advisor system.  

epistemic disambiguator 

factual information extractor 

Social media analyser 

relevant article ranker 

article content classifier 

Parent 
survey 

Medical 
validation 

the output ranker     
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For a given query, the system will release the 
information ranked accordingly to the epistemic 
categories.  For example, the information 
deemed certain will be ranked higher than the 
information deemed probable or possible (Table 
7).  When releasing the information marked with 
negative categories, we plan to label it with 
“Caution”.  

Table 7: A possible output for the query “ orphan 
diseases, protein, therapy”. 

# Extracted text Annotation 
(not shown to 
parents) 

1 Pharmacological 
chaperones stabil-
ize the folding of 
mutant proteins 
and allow for cor-
rect trafficking of 
the enzyme 

Certain 

2 mRNA serves as a 
valid proxy for pro-
tein level more 
often than not. 

Probable 

Cau-
tion 

[the pharmacologic 
upregulation of 
gene activity and 
mRNA level] will 
not work if the mu-
tated protein has 
any dominant neg-
ative effect. 

Impossible  

Cau-
tion 

even if a pro-
tein:RNA correla-
tion is observed in 
vitro, a given tran-
script response 
detected in cell 
culture may not 
hold true for a 
whole organism. 

Improbable 

  

7 Related Work 

 
The semantic analysis of biomedical and clinical 
texts mainly focuses on identification and disam-
biguation of medical terms and events (Cohen et 
al, 2011; Demner-Fushman et al, 2010; Savova 
et al, 2011) including temporal characteristics of 
events (Boytcheva et al, 2012).   Emergence of 
electronic health records enabled studies of epis-
temic expressions, often linking them with the 
diagnosis of a patient (McCoy et al, 2012; S. Ve-

lupillai’ 2010). Expressions of certainty in the 
medical publications, however, are not well stu-
died, although it is natural to expect a medical 
publication to contain epistemic expressions: 
while presenting factual information, a publica-
tion also conveys the authors’ inference from the 
facts and conviction in the event happenstance.    

 
Categorizing text into speculative and non-
speculative parts partially addresses the problem 
(Szarvas, 2008; Sanchez et al, 2010) as such di-
vision only differentiates the certain (aka non-
speculative) category from other epistemic cate-
gories.   We, however, want to analyze language 
expressions of several epistemic categories.    
 
Vagueness in clinical records was studied by 
Emanuel and Emanuel (1989) and more recently 
by Hyland (2006) and Scott et al (2012).  
These studies concentrate on the use of happens-
tance modifiers (Sokolova and Lapalme, 2011), 
also known as linguistic hedges (e.g., possible, 
probably, few, consistent with). The goal is to 
develop an automated analysis of diagnosis and 
symptom information extracted from electronic 
patient records (Scott et al, 2012). Although the 
task is similar to our goal, we plan to work with 
information extracted from medical publications. 
 
A more complex approach would be to introduce 
a pragmatic component into the epistemic analy-
sis of medical publications. This approach diffe-
rentiates between a hypothesis, accepted know-
ledge, and new experimental knowledge (Nawaz 
et al, 2010).  Such categorization may be useful 
in the recommender system designed for the 
general public. In future, we plan to work on the 
hypothesis - experimental knowledge division.  
 
Our work also closely relates to text understand-
ing and interpretation (Bos, 2011). With the de-
velopment of Internet search engines, text under-
standing and interpretation mainly focused on 
retrieval of texts relevant to the query. A few 
systems develop a more advanced and deep text 
exploration which interprets text on demand 
from the system users (Dunne et al, 2012). The 
systems are field-specific, often built on ontolo-
gy, and are designed to help professionals work-
ing in the field (Dunne et al, 2012; Wimalasuriya 
and Dou, 2010).   An advanced, semantically 
based information retrieval is performed by ques-
tion-answering systems.  In medicine, such sys-
tems assist clinicians to find clinically-relevant 
information (Cao et al, 2011).  Our goal, in con-
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trast, is to build a system that helps the general 
public to understand professional medical text.   
 
Note that during the related work analysis, we 
could not find published studies that relate parent 
concerns to social media to rare disease informa-
tion. 

8 Future Work  

Our immediate future work will focus on ep-
istemic annotation of a large collection of 
SMA articles. What can be considered a suf-
ficient size of the annotated corpus is an 
open question in BioNLP: the physical che-
mistry and biochemistry Core Scientific 
Concepts corpus has 265 articles (Liakata, 
2010), the bioinformatics’ Bioscope corpus 
has 9 articles and 1273 abstracts (Vincze et 
al, 2008).  

We suggest that the number of annotated ar-
ticles can be linked to the annual rate of 
SMA publications. For example, the Google 
Scholar search for “spinal muscular atro-
phy” 10  retrieved 278 articles 11  published in 
2012 – 2013. A similar PubMed search12 re-
trieved 222 articles13

The article and abstract selection is another 
open question in the article annotation.  Our 
criterion is the corpus compliance with the 

. Hence, we aim to an-
notate 150 - 200 SMA articles and abstracts.   

We want the article profiles be representative 
of the concerns expressed on the medical fo-
rums (listed in Table 1). For example, after 
adding the term “treatment” to both search-
ers we retrieved 77 articles through Google 
Scholar and 99 articles through PubMed, 
while substituting “treatment” by “drugs” we 
retrieved 45 articles and 7 articles respective-
ly.  Thus, our annotated data should include 
60-80 treatment-oriented and 10-30 drug-
oriented articles and abstracts.         

                                                 
10http://scholar.google.ca/scholar?hl=en&as_sdt=1,5&
as_vis=1&q=%22spinal+muscular+atrophy%22&scis
bd=1, accessed Aug 13, 2013.  
11 All languages. 
12 http://www.ncbi.nlm.nih.gov/pubmed, accessed 
Aug 13, 2013. 
13 English only. 

expected retrieval results of the Web search. 
Hence, for each topic, we will select articles 
based on their relevance.  

To ensure that the corpus is consistent with 
the public concerns, we will continue to ana-
lyze medical forums in order to keep updates 
on the general public response on newborn 
screening for rare diseases.   

9 Conclusions 

We presented a preliminary work on the system 
which we call Parent Advisor. Parent Advisor 
can help parents to understand medical publica-
tions related to rare diseases.  The topic of rare 
diseases became a subject of many discussions, 
as more and more jurisdictions adopted a policy 
of newborn screening for rare diseases.     

 
To make our future system actual and useful for 
parents, we have studied messages posted on 42 
medical forums. These forums are frequently 
visited by parents and families who have ques-
tions related to newborn screening for rare dis-
eases.    We identified several issues that concern 
the general public most (prevalence and severity  
of the disease, available treatment and the effects 
of an early treatment, a possible course of the 
disease, reliable tests, health care facilities, 
medications and their side effects, future use of 
the results).   
 
We chose epistemic disambiguation as the focus 
of our first sub-project in building Parent 
Advisor.  We identified six epistemic categories 
(impossible, improbable, uncertain, possible, 
probable, certain), thus expanding a usual range 
of  positive categories (possible, probable 
certain)  by negative categories (impossible, 
improbable, uncertain).  
 
In this paper, we also outlined the architecture of 
the system, sketched human-system collabora-
tion desirable for the system to be effective, and 
presented a detailed plan for future work.   

 
Acknowledgments 

This work was in part supported by Natural 
Sciences and Engineering Research Council 
of Canada Discovery Grant.  The authors 
thank anonymous reviewers for helpful 
comments.   

31



References Social  

E. Balka and A. Butt. 2006. Information Seeking  
Practices for Youth, Parents and Seniors. Report. 
www.sfu.ca/act4hlth/ 
 
Bos, J. 2011. A Survey of Computational Semantics: 
Representation, Inference and Knowledge in Wide-
Coverage Text Understanding. Language and 
Linguistics Compass, 5: 336–366. 

S. Boytcheva, G. Angelova, I. Nikolova. 2012. 
Automatic Analysis of Patient History Episodes in 
Bulgarian Hospital Discharge Letters. Proceedings of 
EACL, 77-81 

D. Brashers. 2001. Communication and Uncertainty 
Management.  Journal of Communication, 51(3):477-
497 

D. Brashers, J. Neidig, S. Haas, L. Dobbs, L. Cardillo, 
J. Russell. 2000. Communication in the management 
of uncertainty: The case of persons living with HIV or 
AIDS. Commun Monogr , 67(1):63-84 
 
Y. Cao, F. Liu, P. Simpson, L. Antieau, A. Bennett, J. 
Cimino, J. Ely, H. Yu. 2011. AskHERMES: An on-
line question answering system for complex clinical 
questions, Journal of Biomedical Informatics, 44(2): 
277-288.  
 
K. Cohen, K. Verspoor, H. Johnson, C. Roeder, P. 
Ogren, W. Baumgartner Jr, E. White, H. Tipney, and 
L. Hunter. 2011. High-Precision Biological Event 
Extraction: Effects of System and Of Data. Computational 
Intelligence, 27: 681–701 

M. Cornel, T. Rigter, S. Weinreich, P. Burgard, G. 
Hoffmann, M. Lindner, G. Loeber, K. Rupp, 
D. Taruscio and L. Vittozzi. 2013. A framework to 
start the debate on neonatal screening policies in the 
EU: an Expert Opinion Document, European Journal 
of Human Genetics, 1-6. 

D. Demner-Fushman, J. Mork, S. Shooshan, A. Aron-
son. 2010. UMLS Content Views Appropriate for 
NLP Processing of the Biomedical Literature vs. Clin-
ical Text. Journal of Biomedical Informatics, 43(4): 
587–594. 
 
Dunne, C., Shneiderman, B., Gove, R., Klavans, J. 
and Dorr, B. 2012. Rapid understanding of scientific 
paper collections: Integrating statistics, text analytics, 
and visualization. J. Am. Soc. Inf. Sci., 63: 2351–2369 
 

L. Emanuel and E. Emanuel. 1989. The medical di-
rective: A new comprehensive advance care docu-
ment. Journal of the American Medical Association, 
261(22): 3288 – 3293. 
 
G. Eysenbach. 2003. The impact of the Internet on 
cancer outcomes. CA Cancer J Clin, 53:356–71. 
 
F. Farooq, F. Abadı´a-Molina, D. MacKenzie, J. 
Hadwen, F. Shamim, S. O’Reilly, M. Holcik, and A. 
MacKenzie. 2013. Celecoxib increases SMN and sur-
vival in a severe spinal muscular atrophy mouse mod-
el via p38 pathway activation. Human Molecular Ge-
netics, 1–10.  
 
S. Fox. 2011. The Social Life of Health Information.  
Pew Research Center’s Internet & American Life 
Project,http://pewinternet.org/Reports/2011/Social‐Lif

e‐of‐Health‐Info.aspx 
 
S. Fox. 2011a. Survey Questions. Pew Research Cen-

ter’s Internet & American Life Project, 
http://pewinternet.org/Reports/2011/Social‐Life‐of‐
Health‐Info.aspx 

 
A. Henriksson and S. Velupillai. 2010. Levels of cer-
tainty in knowledge-intensive corpora: An initial an-
notation study. Proceedings of the Workshop on 
Negation and Speculation in Natural Language 
Processing, pages 41–45 
 
J. Holmes. 1982. Expressing Doubt and Certainty in 

English. RELC Journal, 13:9-28. 
 
L. Horn. 1989. A Natural History of Negation. The 
University of Chicago Press.  
 
K. Hyland. 2006. Medical discourse: hedges. Encyc-
lopedia of Language and Linguistics, p.p. 694- 697. 
 
M. Liakata. 2010. Zones of conceptualisation in 
scientific papers: a window to negative and specula-
tive statements. Proceedings of the Workshop on Ne-
gation and Speculation in NLP, 1–4. 
 
 
W. McCoy, C. Alm, C. Calvelli, J. Pelz, P. Shi, A. 
Haake. 2012. Linking Uncertainty in Physicians’ 
Narratives to Diagnostic Correctness. Proceedings of 
the ACL-2012 Workshop on Extra-Propositional As-
pects of Meaning in Computational Linguistics 
 
M. McMullan. 2006. Patients using the Internet to 
obtain health information: How this affects the pa-
tient–health professional relationship. Patient Educa-
tion and Counseling, 63:24–28, Elsevier. 
 
R. Morante and C. Sporleder. 2012. Modality and 
Negation: An Introduction to the Special Issue. Com-
putational Linguistics, 38(2): 224-260. 

32



 
R. Nawaz, P. Thompson, S. Ananiadou. 2010. Eva-
luating a Meta-Knowledge Annotation Scheme for 
Bio-Events, Proceedings of the Workshop on Nega-
tion and Speculation in NLP, pages 69–77. 
 
D. Nicholas , P. Huntington, B. Gunter, C. Russell, R. 
Withey. 2003. The British and their use of the web for 
health information and advice: a survey. Aslib Proc, 
55:261–76. 
 
F. Oprescu, S. Campo, J. Lowe, J. Andsager, J. Mor-
cuende. 2013. Online Information Exchanges for Par-
ents of Children with a Rare Health Condition: Key 
Findings From an Online Support Community. Jour-
nal of Medical Internet Research, 15(1):e16 
 
A.Raffle, M. Gray. 2007. Screening. Evidence and 
Practice. Oxford: Oxford University Press.  

 

L. Sanchez, B. Li, C. Vogel. 2010. Exploiting CCG 
Structures with Tree Kernels for Speculation Detec-
tion. Proceedings of CoNLL: Shared Task, 126–131. 

R. Saurı´ and J. Pustejovsky. 2009. FactBank: a cor-
pus annotated with event factuality. Language Re-
sources and Evaluation, 43:227–268.  

G. Savova, W. Chapman, J. Zheng, R. Crowley. 2011. 
Anaphoric relations in the clinical narrative: corpus 
creation. Journal of American Medical Informatics 
Association, 18(4): 459-465.  

D. Scott, R. Barone, B. Koeling. 2012. Corpus anno-
tation as a scientific task. Proceedings of  LREC'2012, 
p.p. 1481 – 1485.   
 
M. Sokolova, K. El Emam, S. Chowdhury, E. Neri, S. 
Rose, E. Jonker. 2010. Evaluation of Rare Event De-
tection, Advances in Artificial Intelligence 23, pp. 
379–383 
 
M. Sokolova and G. Lapalme. 2011. Learing opinions 
in user-generated Web content”, Journal of Natural 
Language Engineering, Cambridge University Press, 
17(4): 541–567 
 
S. Velupillai. 2010. Towards A Better Understanding 
of Uncertainties and Speculations in Swedish Clinical 
Text – Analysis of an Initial Annotation Trial. Pro-
ceedings of the Workshop on Negation and Specula-
tion in NLP, 14–22. 
 
V. Vincze, G. Szarvas, R. Farkas, G. Mora, and J. 
Csirik. 2008. The BioScope Corpus: Biomedical 
Texts Annotated for Uncertainty, Negation and their 
Scopes. BMC Bioinformatics, 9(Suppl 11):S9. 
 

D. Wimalasuriya and D. Dou. 2010. Ontology-based 
information extraction: An introduction and a survey 
of current approaches. Journal of Information 
Science, 36(3):306 – 323 
  
 
 

 

33





Author Index

Dligach, Dmitriy, 1

Gorrell, Genevieve, 9

Ioshikhes, Ilya, 24

Jackson, Richard, 9

Luyckx, Kim, 18

MacKenzie, Alex, 24
Miller, Timothy, 1

Poursepanj, Hamid, 24

Roberts, Angus, 9

Savova, Guergana, 1
Scheurwegs, Elyne, 18
Sokolova, Marina, 24
Stewart, Robert, 9

Van den Bulcke, Tim, 18
Van der Schueren, Filip, 18

35


	Program
	Active Learning for Phenotyping Tasks
	Finding Negative Symptoms of Schizophrenia in Patient Records
	De-Identification of Clinical Free Text in Dutch with Limited Training Data: A Case Study
	NLP can help parents to understand rare diseases

