
Proceedings of the TextGraphs-8 Workshop, pages 53–60,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Graph-Structures Matching for Review Relevance Identification

Lakshmi Ramachandran and Edward F. Gehringer
North Carolina State University
{lramach, efg}@ncsu.edu

Abstract

Review quality is determined by identifying
the relevance of a review to a submission
(the article or paper the review was written
for). We identify relevance in terms of the se-
mantic and syntactic similarities between two
texts. We use a word order graph, whose ver-
tices, edges and double edges help determine
structure-based match across texts. We use
WordNet to determine semantic relatedness.
Ours is a lexico-semantic approach, which pre-
dicts relevance with an accuracy of 66% and
f -measure of 0.67.

1 Introduction

Reviews play a critical role in making decisions, e.g.,
for grading students, accepting manuscripts for publi-
cation, or funding grants. Therefore, we must ensure
that the decision-making party finds the review’s con-
tent useful. Kuhne et al. (2010) found that authors were
contented with reviewers who made an effort to under-
stand their work. Nelson and Schunn (2009) found that
reviews locating problems in the author’s work, or pro-
viding suggestions for improvement help authors un-
derstand and use feedback effectively.

We investigated peer reviews from Expertiza, a web-
based collaborative learning application (Gehringer,
2010). We found that reviewers provide comments
such as, “Yes, it is good! It is very well organized.”
Such a review does not contain any unique information,
or reference a specific concept or object in the author’s
submission. Such a generic review could work for any
submission. Consider the comment, “I felt that some of
the examples were clichéd.” The reviewer criticizes the
“examples” in the author’s work but does not explain
why they find the example “clichéd”.

A review’s quality may be assessed with the help of
several metrics such as relevance of a review to the sub-
mission, its content type, coverage, tone, quantity of
feedback provided (Ramachandran, 2011). In this pa-
per we focus on the study of one review quality metric
- review relevance.

A relevant review paraphrases the concepts de-
scribed in a submission, with possible descriptions of
problems identified in the author’s work. Our aim is to

identify whether a review is relevant to the work it was
written for.

While paraphrasing, an idea may be restated by the
reviewer with possible lexical and syntactic changes to
the text. According to Liu et al. (2009), a good para-
phrase, while preserving the original meaning of the
text should contain some syntactic changes. Accord-
ing to Boonthum (2004) patterns followed commonly
while paraphrasing include lexical synonymy, change
in voice and change in sentence structure. Therefore,
conventional text matching approaches, which look for
exact matches, may not be good at identifying rele-
vance.

2 Definition of Relevance

Definition Let S be the set of sentences in the text un-
der review (the submission) and R be the set of review
sentences. Let s and r represent a sentence in the sub-
mission and review respectively.

relevance(S, R) =
1
|R|

∑
∀r∈R

{argmax
∀s∈S

(lexicoSemSim(s, r))} (1)

lexicoSemSim(s,r) represents the lexico-semantic
match between s and r. Relevance is the average of the
best lexico-semantic matches of a review’s sentences
with corresponding submission sentences. The mean-
ing and usage of lexicoSemSim has been explained in
detail in Section 6. We acknowledge that all review
sentences may not have corresponding matches in the
submission. Our aim is only to identify the proportion
of review text that is lexico-semantically relevant to a
submission.

Since our aim is to identify the lexico-semantic
match between texts, we need a representation that cap-
tures the syntax or order of tokens in a text. Hence we
use a word order graph. Word order graphs are suited
for identifying lexical and voice changes, which are
common among paraphrased text. Similarity should
capture the degree of relatedness between texts. Hence
we use a WordNet-based metric (Fellbaum, 1998).

Figure 1 contains a sample submission and three
sample reviews. The first review has some instances of
exact match with the submission and is therefore rele-
vant to the submission. However, the relevance of the
second review may not be determined by a text overlaps

53

Figure 1: The figure contains a sample submission, two
relevant reviews – one with overt text matches and an-
other that is lexico-semantically similar to the submis-
sion, and a non-relevant review.

match. The third review is lexico-semantically distinct
from the submission.

3 Related Work

There is little previous work in the area of identifying
relevance between a review and a submission. Xiong
and Litman (2011) use shallow metrics such as noun,
verb count to identify review helpfulness. Their ap-
proach does not check for presence of paraphrases or
summaries in a review. Ours is a pioneering effort in
the application of relevance identification to the study
of review helpfulness.

In this section we list some related work in the area
of text matching, with a focus on approaches that use
graphs such as lexical chains or dependency trees to
represent text. Haghighi et al. (2005) use dependency
trees to determine text entailment. They use node and
path substitutions to compare text graphs.

Vertices in a dependency tree represent words, and
edges capture the asymmetric dependency relation-
ships between a head word and its modifier. Figure 2(a)
contains a dependency tree representation (Bohnet,
2010) for the text “The paper presented the important
concepts.” We see that every token in the text is a ver-
tex in the tree and edges depict governance relations
(head → modifier). For example, “presented” is the
root of this sentence and the edge between “presented”
and “paper” signifies a subject relationship (SBJ). De-
pendency trees may not capture ordering information.
For instance when we read the edges of the dependency
tree in Figure 2(a) we get presented→ paper, presented
→ concepts. The order of words in the edges is re-
versed, as in the case of presented → paper, although
the actual order in the text is paper→ presented.

The corresponding word order graph representation
in Figure 2(b) captures the order of the words. The

(a) Dependency tree

(b) Word order graph

Figure 2: Displaying the ordering difference between a
dependency tree representation and a word order repre-
sentation for the text “The paper presented the impor-
tant concepts.”

word order graph captures SBJ—OBJ ordering as in
paper—presented—concepts, which the directed edges
in a dependency tree do not capture. Thus dependency
tree representations may not be a useful representation
in studying lexical or word order changes across docu-
ments.

Mani and Bloedorn (1997) suggest a graph search
and matching approach for multi-document summa-
rization. The graph matching approach used by
Mani and Bloedorn focuses on concept or topics-based
matching (noun entities). The graph captures adja-
cency relations between concepts or topics. Their
graph representation does not capture ordering infor-
mation, which would be suited for tasks involving com-
parison of lexical-order changes. As noted earlier, text
matching with possible changes in word order is es-
sential for a task like relevance identification. Existing
representations and matching techniques do not capture
this information. Van et al. (2009) construct phrase
nets using regular expressions. Phrase nets are con-
structed for specific relations between tokens e.g. “X at
Y” may indicate location of object X. Phrase nets are
used as a tool for visualizing relations between objects
in literary texts.

The document index graph (DIG) used by Ham-
mouda and Kamel (2002), capture phrases of a doc-
ument. Although the DIG captures order of words
within a phrase, it does not capture the order of phrases
within a document. As a result this representation does
not capture complete sentence structure information,
which may be necessary to identify whether a review
contains sentence structure changes.

Mihalcea (2004) uses a graph to perform sentence
extraction and summarization. Vertices in the graph
represent sentences in a document. Weighted graph
edges represent the degree of overlap across content of
the sentences.

Kauchak and Barzilay (2006) suggest an auto-
mated technique to create paraphrases for human and

54

machine-translated text pairs, by substituting words in
machine translated texts with their corresponding syn-
onyms. They define paraphrases primarily in terms of
synonyms of individual tokens.

Although there do exist independent research works
that discuss graph-based summarization and paraphras-
ing techniques, they use content overlap or synonym
matches to determine paraphrases. They do not con-
sider context during text comparison. Our work is an
amalgamation of existing research in the areas of text
matching and paraphrase recognition.

4 Graph Representation
In a word order graph, edges represent relations be-
tween contiguous vertices. The graph captures word or
phrase order of the text. Figure 2(b) contains the graph
representation for a review.

A word order graph is suitable for applications that
identify relevance or paraphrases across texts. Para-
phrases may contain lexical changes and word or
phrase shuffling across a text’s length. Graph matches
identify the presence or absence of lexical changes us-
ing the ordering and context that the word order graphs
capture. A detailed description of the graph gener-
ation algorithm can be found in Ramachandran and
Gehringer (2012).

1. The graph generator takes a piece of text as input
and generates a graph as its output. We use period
(.), semicolons (;) or exclamations (!) to break the
text into multiple segments1. A text segment is a
complete grammatical unit that can stand indepen-
dent of the other clauses in the sentence in terms
of its meaning.

2. The text is then tagged with parts-of-speech (POS)
(NN, DT, VB, RB2 etc.). We use the Stan-
ford NLP POS tagger to generate the tagged text
(Toutanova et al., 2003). POS tags are useful
in determining how to group words into phrases
while still maintaining the order.

3. We use a heuristic phrase chunking technique3

to group consecutive subject components (nouns,
prepositions etc.) into a subject vertex, consecu-
tive verbs (or modals) into a verb vertex, and sim-
ilarly for adverb and adjective vertices. A graph
vertex may contain a phrase or a token.

4. When a verb vertex is created the algorithm looks
for the last created subject vertex to form an edge
between the two. Ordering is maintained when an
edge is created, i.e., if a subject vertex was formed

1Approach used is similar to that of the determinis-
tic sentence splitter used by the Stanford NLP sentence
splitter. http://nlp.stanford.edu/software/
tokenizer.shtml

2NN - noun, DT - determiner, VB(Z) - verb, RB - adverb
3Our chunker groups words based on the POS tags with-

out the overhead of training a model to perform chunking.

before a verb vertex a subject—verb edge is cre-
ated, else a verb—object edge is created. An ad-
jective or an adverb is attached to the subject or
verb vertex found in the sentence (i.e., subject—
adjective or verb—adverb edge).

5. We tag graph edges with dependencies (Bohnet,
2010). We use the anna library available as part
of the mate tools package to identify dependen-
cies. Labels indicate the relation between words
and their modifiers (e.g. SBJ – subject—verb re-
lationship, OBJ – verb—object relationship). Post
edge creation, we iterate through all edges to
determine whether a dependency exists between
the tokens representing the edge’s vertices. We
add an edge label if a dependency exists, e.g.,
“concepts—important” in Figure 2(b) captures the
noun-modifier (NMOD) relation. Labels capture
the grammatical role played by tokens in a text.

5 Semantic Relatedness
Match between two tokens could be one of: (1) ex-
act, (2) synonym, (3) hypernym or hyponym (more
generic or specific), (4) meronym or holonym (sub-
part or whole) (5) presence of common parents (exclud-
ing generic parents such as “object”, “entity”), and (6)
overlaps across definitions or examples of compared to-
kens4, or (7) distinct or non-match. Each match is given
a weight value, which represents its degree of impor-
tance, e.g., exact matches are more important than syn-
onym matches, which are in turn more important than
hypernyms or hyponyms and so on. Weight values are
in the [0-6] range, 0 being the lowest match (distinct)
and 6 the best match (exact). Unlike other approaches,
which capture just exact or synonymy matches, our ap-
proach captures semantic relatedness between tokens
using a few types of matches (Ramachandran, 2013).

Each match is identified using WordNet. WordNet
has been used successfully to measure relatedness by
Agirre et al. (2009). We use WordNet because it
is faster than querying a knowledge source such as
Wikipedia, which contains more than a million articles,
not all of which may be relevant.

6 Lexico-Semantic Matching
The degree of match between two graphs depends on
the degree of match between their vertices and edges.
In this section we describe three types of matches
across graphs - (1) phrase or token matching, (2) con-
text matching, and (3) sentence structure matching.
Figure 3 contains an overview of our relevance iden-
tification approach.

6.1 Phrase or token matching
In phrase or token matching, vertices containing
phrases or tokens are compared across graphs. This

4Using context to match tokens was an approach used by
Lesk (1986) for word-sense disambiguation.

55

Figure 3: Overview of our approach for relevance iden-
tification task.

matching succeeds in capturing semantic relatedness
between single or compound words. When vertices
“concepts” and “points” are compared, a common par-
ents match is found. This match would have been
missed when using only an exact or synonym match.

Phrase(S, R) =
1
|Vr|

∑
∀r(v)∈Vr

argmax
∀s(v)∈Vs

{match(s(v), r(v))}

(2)
An overall phrase match is determined by taking the

average of the best match that every review phrase has
with a corresponding submission phrase. Similarity
between two vertices is calculated as the average of
matches between their constituent words or phrases.
Match could be one of those listed in Section 5. In
Equation 2, r(v) and s(v) refer to review and submis-
sion vertices respectively, and Vr and Vs is the set of
vertices in a review and a submission.

6.2 Context matching

Context matching compares edges with same and dif-
ferent syntax, and edges of different types across two
text graphs. We refer to the match as context matching
since contiguous phrases (vertices) are chosen from a
graph for comparison with another, i.e., more context.
Relatedness between edges is the average of the vertex
matches. We compare edge labels for matches retain-
ing word order. Edge labels capture grammatical rela-
tions, and play an important role in matching. Hence
if edges have the same labels then the average match is
retained, else the match is halved. Some of the context-
based matches include:

• Ordered match - Ordered match preserves the
order of phrases in a text. We compare same
type edges5 with the same vertex order. Figure
4(a) shows the comparison of single edges from
two review graphs. A match is identified between
edges “important—concepts” and “necessary—
points”, because they capture the noun-modifier
relationship (NMOD), and because a relation ex-
ists between tokens “concepts” and “points”.

5Same type edges are edges with same types of vertices.

• Lexical change - Lexical match flips the order of
comparison, e.g., we compare subject—verb with
verb—object edges or vice versa. The match iden-
tifies paraphrases, which involve lexical changes.
Figure 4(b) depicts lexical change match. When
comparing edge “paper—presented” with edge
“included—points”, we compare vertex “paper”
with “points” and “presented” with “included”.
A match is found between tokens “paper” and
“points”, resulting in the edge pair getting a relat-
edness value greater than a non-match. Had it not
been for the lexical change match, such a relation
may have been missed.

• Nominalization match - The match identifies
noun nominalizations - nouns formed from verbs
or adjectives (e.g. abstract→ abstraction, ambigu-
ous→ ambiguity).

In an ordered and lexical change match we com-
pare same types of vertices (of the compared
edges). We compare vertices of different types,
e.g., the subject and verb vertices or the subject
and adjective vertices. This match also captures
relations between nouns and their adjective forms
(e.g. ethics → ethical), and nouns and their verb
forms (e.g. confusion→ to confuse).

In Figure 4(b) when we compare the edge
“paper—presented” with edge “presentation—
included”, we compare “paper” (NN) with “in-
cluded” (VB) and “presented” (VB) with “presen-
tation” (NN) . Token “presentation” is the nom-
inalization of token “presented”, as a result of
which a match is identified between the two edges.

Context(S, R) =

1
3|Er|

(∑
r(e)∈Er

argmax
∀s(e)∈Es

{matchord(s(e), r(e))}+∑
r(e)∈Er

argmax
∀s(e)∈Es

{matchlex(s(e), r(e))}+

∑
r(e)∈Er

argmax
∀s(e)∈Es

{matchnom(s(e), r(e))}
)

(3)

In Equation 2, r(e) and s(e) refer to review and
submission edges. The formula calculates the average
best matches that review edges have with correspond-
ing submission edges, for each of the above three types
of matches matchord, matchlex and matchnom. Er and
Es represent the sets of review and submission edges
respectively.

6.3 Sentence structure matching
Sentence structure matching compares double edges
(two contiguous edges6), which constitute a complete
segment7 (e.g. subject—verb—object), across graphs.

6Two consecutive edges sharing a common vertex.
7In this work we only consider single and double edges,

and not more contiguous edges (triple edges etc.), for text
matching.

56

(a) Ordered match - similar edges are compared
across the two reviews, i.e., SBJ with SBJ, OBJ with
OBJ etc.

(b) Lexical change - edges of different types are com-
pared, i.e., SBJ with OBJ and OBJ with SBJ respec-
tively. Only the compared edges are shown in the
graph representation.

Figure 4: Context matching across two text graphs.

The matching captures similarity across segments, and
it captures voice changes. Relatedness between double
edges is the average of the vertex matches. Edge la-
bels are compared in ordered matching, and the average
vertex match is halved if the edge labels are different.
Some sentence structure matches are:

• Ordered match - Double edges capture more
word order than single edges, hence this match-
ing captures more context. In Figure 5(a)
double edges “paper—presented—concepts” and
“presentation—included—points” are compared.
Vertices “paper”, “presented” and “concepts”
are compared with vertices “presentation”, “in-
cluded” and “points” respectively.

• Voice change - Voice match captures word or
phrase shuffling. Change of voice from active
to passive, or vice versa is common with para-
phrased text. Vertices of the same type are com-
pared across double edges. However, the order of
comparison is flipped. Consider the comparison
between active and passive texts “The author pre-
sented the important concepts.” and “Necessary
points were explained by the author.” in Figure
5(b). We compare “author” and “author” (exact
match), “presented” and “were explained” (syn-
onym match), and “concepts” and “points” (com-
mon parents match). This results in a cumulative
voice match value of 48. Only a voice change
match succeeds in capturing such a relationship
across the length of a sentence segment.

8Average of the vertex match values - 6 for exact match,
5 for synonym match, 2 for common parents match. Edge
labels are not compared since the order of comparison of the
vertices is flipped.

(a) Ordered sentence structure match.

(b) Voice change match - Order of comparison of
the vertices is flipped, i.e., “author” is compared
with “author”, “presented” with “were explained”
and “concepts” with “points”.

Figure 5: Matching sentence segments across two text
graphs. Compared vertices are denoted by similar bor-
ders.

SentStruct(S, R) =

1
2|Tr|

(∑
r(t)∈Tr

argmax
∀s(t)∈Ts

{matchord(s(t), r(t))}+∑
r(t)∈Tr

argmax
∀s(t)∈Ts

{matchvoice(s(t), r(t))}
)
(4)

The cumulative sentence structure match in Equation
3 calculates the average of the best ordered (matchord)
and voice change (matchvoice) matches that a review’s
double edges have with corresponding submission dou-
ble edges. r(t) and s(t) refer to double edges, and Tr

and Ts are the number of double edges in the review
and submission respectively.
Relevance in Equation 1 can be re-written as the av-
erage of the lexico-semantic relatedness values cal-
culated from phrase, context and sentence structure
matches.

relevance(S, R) = 1
3 (Phrase(S, R) + Context(S, R)+
SentStruct(S, R))

(5)

7 Experiments
We evaluate the performance of our graph matching ap-
proach in identifying the relevance of a review. We also
study the performance of each match - Phrase, Context
and SentStruct to determine whether the matches add
value, and help improve the overall performance of our
approach.

7.1 Data and method
We select review-submission pairs from assignments
completed using Expertiza (Gehringer, 2010). Each re-
view is compared with its respective submission, and

57

in order to include some explicit non-relevant cases re-
views are compared with other submission texts. For
the sake of evaluation we identify whether a review is
relevant or not relevant to a submission. We chose 986
review-submission pairs containing an equal number of
relevant and non-relevant reviews for our study. Rel-
evance thresholds for the different matches are deter-
mined based on the averages. Two annotators labeled
19% of randomly selected data as relevant or non-
relevant. We found an 80% agreement, and a Spear-
man correlation of 0.44 (significance p < .0001) be-
tween the two annotators’ ratings. We use labels from
the first annotator for testing due to the high percent
agreement.

7.2 Results

Table 1 contains the accuracy and f -measure values of
our approach in identifying relevance. A phrase or to-
ken matching contains no context. Consider the sam-
ple review “I would retitle ‘Teaching, Using and Im-
plementing Ethics’ to ‘Teaching and Using Codes of
Ethics’.” This review gets a good phrase match value
of 3.3 with a submission (in Figure 1) discussing dif-
ferent codes of ethics. However, this review is not fully
relevant to the content of the submission, since it is sug-
gesting a change in title, and does not discuss the sub-
mission’s content. Thus a simple non context-based
phrase match tends to magnify the degree of related-
ness between two texts. Thus although a phrase match
is important, the lack of context may inflate relevance.

In the case of context matching, we found that lex-
ical and nominalization matches produce lower match
values than an ordered match. This happens because
not all reviews contain word order changes or nomi-
nalizations, and flipping the order of matching results
in a lower match when compared to that from an or-
dered match. The lower values decrease the average
context matching, thus rendering a review non-relevant
to a submission. This phenomenon explains the dip in
context matching’s accuracy and f -measure.

We observed a similar trend with sentence structure
matches, where voice match produced a lower value
than the ordered match in some of the cases. How-
ever the average SentStruct match in Equation 3, with
an accuracy of 65%, shows an improvement over both
phrase and context matches (Table 1).

Relevance is identified with an accuracy of 66% and
f -measure of 0.67 (Table 1). Our approach has a high
recall of 0.71, indicating a good degree of agreement
with human relevance ratings. Thus the average of the
phrase, context and sentence structure matches shows
an improvement over each of the individual matches.
This indicates that the addition of context (ordering)
from edges and double edges contributes to an im-
provement in performance.

Dependency trees perform best for phrase matching
(Table 1). Accuracy and f -measure of identifying rel-
evance decreases for context, sentence structure and

Table 1: Comparing accuracy, precision, recall and f -
measure values of our word order graph with those of
a dependency-tree representation.

Metric Phrase Context Sentence Structure Relevance
Word order graph

accuracy 64% 62% 65% 66%
precision 0.64 0.63 0.65 0.64

recall 0.67 0.60 0.63 0.71
f -measure 0.65 0.62 0.64 0.67

Dependency tree
accuracy 64% 50% 52% 61%
precision 0.63 0.50 0.52 0.6

recall 0.7 0.40 0.41 0.65
f -measure 0.66 0.44 0.46 0.62

Figure 6: Identifying relevance with dependency trees
takes more time (in milliseconds) than with word order
graphs.

overall relevance matches. This is likely because edges
in dependency trees capture only governance (head→
modifier relation), and not word order.

Dependency trees contain more vertices and edges
than our graph, which results in an increase in the time
taken to carry out pairwise comparison between the re-
view and submission texts. We randomly selected 4%
of the data to study the time taken to identify relevance
by dependency trees, and by our graph. We found that
in most cases dependency trees take more time than our
graph (Figure 6). Thus our graph has a better perfor-
mance, and is also faster than a dependency tree repre-
sentation.

7.2.1 Comparison with a text overlap-based
approach

We compare our approach with an overlap-based rel-
evance identification approach. For this measure we
consider the average of 1 to 4-gram overlaps between a
review and a submission’s texts to determine relevance.
This is a precision-based metric, similar to the one used
by Papineni et al. (2002).

relevanceoverlap = overlap(R,S)
|R| , where overlap cal-

culates the number of tokens in the review (R) that
overlap with tokens in submission (S), and |R| indi-
cates the number of tokens in the review. Stopwords
and frequent words are excluded from the numerator
and denominator during overlap calculation.

This approach classifies a majority 62% of the
records as non-relevant, and has an f -measure value
of 0.59. The overlap approach has a high false negative

58

Figure 7: Example of phrase or token matching and sentence structure match between a review and a submission.

Figure 8: Output from our review assessment system
displaying relevance value of reviews. Review’s con-
tents are relevant to article on “software extensibility”.

rate i.e., several relevant reviews were wrongly clas-
sified as non-relevant (recall of 0.52). A simple text
overlap, which does not capture the relations our ap-
proach succeeds in capturing, does not outperform our
approach.

Figure 7 contains two sample reviews displaying
phrase and sentence structure matching with sentences
from a sample submission. The first review has some
instances of exact match with the submission and its
relevance may be easy to identify. However, relevance
of the second review may not be determined by a text
overlaps match. Our order-based matching and seman-
tic relatedness metric help capture the relevance be-
tween the second review and the submission.

8 Feedback to Reviewers

A screenshot of the output from our review assessment
system can be seen in Figure 8. In this example we

have a review written for an article on software extensi-
bility9. The sample review in Figure 8 has a relevance
of 0.1309 (on a scale of 0–1). As can be seen from
the screenshot, our automated assessment system pro-
vides feedback on not just relevance but on other met-
rics such as quantity, content and tone types too. How-
ever, a discussion of the approach involved in calculat-
ing each of these metrics is beyond the scope of this
paper.

Our aim with this review assessment system is to
motivate reviewers to update their review and make it
more relevant to the text under review. This would help
authors to better understand details of the review, and
use the review to fix and improve their work.

In the future we are planning to improve the format
of this output by providing textual feedback in addition
to the numeric feedback. The feedback will point to
specific instances of the review that need improvement.
This may make it easy for reviewers to interpret the
numeric score, and maybe further motivate reviewers
to use the information to improve their reviews.

9 Conclusion
Assessment of reviews is an important problem in edu-
cation, science and human resources, and so it is wor-
thy of serious attention. In this paper we use a graph-
based approach to determine whether a review is rele-
vant to a piece of submission. Some important findings
from our experiments are:

1. Additional context from graph edges and sen-
tence structures helps improve the accuracy and
f -measure of predicting relevance.

2. Our approach produces higher f -measure than a
text overlap-based approach, that takes the aver-
age of 1 to 4-gram overlaps between review and
submission texts to determine relevance.

9Software Extensibility https://en.wikipedia.
org/wiki/Extensibility

59

3. Our approach produces higher accuracy and f -
measure than dependency trees, which capture
word-modifier information and not word order in-
formation.

References
Aria D. Haghighi, Andrew Y. Ng and Christopher D.

Manning. 2005. Robust textual inference via graph
matching. In Proceedings of the conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing. Vancouver, British
Columbia, Canada 387–394.

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proceed-
ings of the 23rd International Conference on Com-
putational Linguistics (COLING). Beijing, China.
89–97.

Bing Quan Liu and Shuai Xu and Bao Xun Wang.
2009. A combination of rule and supervised learning
approach to recognize paraphrases. In Proceedings
of the International Conference on Machine Learn-
ing and Cybernetics. July. 110–115.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press, Cambridge, MA.

Chutima Boonthum. 2004. iSTART: paraphrase recog-
nition. In Proceedings of the ACL 2004 workshop on
Student research (ACLstudent). Barcelona, Spain.

Conny Kuhne and Klemens Bohm and Jing Zhi Yue.
2010. Reviewing the reviewers: A study of au-
thor perception on peer reviews in computer science.
CollaborateCom. 1–8.

David Kauchak and Regina Barzilay. 2006. Para-
phrasing for automatic evaluation. In Proceedings
of the main conference on Human Language Tech-
nology Conference of the North American Chapter of
the Association of Computational Linguistics (HLT-
NAACL ’06). New York, New York. 455–462.

Edward F. Gehringer. 2010. Expertiza: Managing
Feedback in Collaborative Learning. Monitoring
and Assessment in Online Collaborative Environ-
ments: Emergent Computational Technologies for E-
Learning Support. 75–96.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Paşca and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics.
Boulder, Colorado. 19–27.

Frank Van Ham, Martin Wattenberg and Fernanda B
Viégas. 2009. Mapping text with phrase nets. IEEE
Transactions on Visualization and Computer Graph-
ics 15(6):1169–1176.

Inderjeet Mani and Eric Bloedorn. 1997. Multi-
document summarization by graph search and
matching. In Proceedings of the fourteenth national
conference on artificial intelligence and ninth con-
ference on Innovative applications of artificial intel-
ligence (AAAI ’97). Providence, Rhode Island. 622–
628.

Khaled M. Hammouda and Mohamed S. Kamel. 2002.
Phrase-based Document Similarity Based on an In-
dex Graph Model. In Proceedings of the 2002 IEEE
International Conference on Data Mining (ICDM).

Kishore Papineni, Salim Roukos, Todd Ward and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics (ACL). Philadelphia, Pennsylva-
nia. 311–318.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning and Yoram Singer. 2003. Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network.
In Proceedings of HLT-NAACL 2003, 252–259.

Lakshmi Ramachandran and Edward F. Gehringer.
2011. Automated assessment of review quality us-
ing latent semantic analysis. 11th IEEE Interna-
tional Conference on Advanced Learning Technolo-
gies. July. 136–138.

Lakshmi Ramachandran and Edward F. Gehringer.
2012. A Word-Order Based Graph Representation
For Relevance Identification [poster]. CIKM 2012,
21st ACM Conference on Information and Knowl-
edge Management. Maui, Hawaii. October.

Lakshmi Ramachandran and Edward F. Gehringer.
2013. An Ordered Relatedness Metric for Rele-
vance Identification. In proceedings of the Seventh
IEEE International Conference on Semantic Com-
puting (ICSC) 2013.

Melissa M. Nelson and Christian D. Schunn. 2009.
The nature of feedback: How different types of peer
feedback affect writing performance. Instructional
Science. 27(4):375–401.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a
pine cone from an ice cream cone. In Proceedings
of the 5th annual international conference on Sys-
tem documentation (SIGDOC). Toronto, Ontario,
Canada. 24–26.

Rada Mihalcea. 2004. Graph-based ranking algo-
rithms for sentence extraction, applied to text sum-
marization. In Proceedings of the ACL 2004 on
Interactive poster and demonstration sessions (ACL
demo). Stroudsburg, PA, USA.

Wenting Xiong and Diane Litman. 2011. Automat-
ically predicting peer-review helpfulness. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies: short papers (HLT) - Volume 2.
Portland, Oregon. 502–507.

60

