
Proceedings of the TextGraphs-8 Workshop, pages 20–28,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Reconstructing Big Semantic Similarity Networks

Ai He, Shefali Sharma
∗Information Sciences Institute

University of Southern California
4676 Adminralty Way

Marina del Rey, CA 90292
{aihe|sharma}@isi.edu

Chun-Nan Hsu∗,†
†Division of Biomedical Informatics

Department of Medicine
University of California, San Diego

La Jolla, CA 92093
chunnan@ucsd.edu

Abstract

Distance metric learning from high (thou-
sands or more) dimensional data with hun-
dreds or thousands of classes is intractable but
in NLP and IR, high dimensionality is usu-
ally required to represent data points, such
as in modeling semantic similarity. This pa-
per presents algorithms to scale up learning
of a Mahalanobis distance metric from a large
data graph in a high dimensional space. Our
novel contributions include random projection
that reduces dimensionality and a new objec-
tive function that regularizes intra-class and
inter-class distances to handle a large number
of classes. We show that the new objective
function is convex and can be efficiently op-
timized by a stochastic-batch subgradient de-
scent method. We applied our algorithm to
two different domains; semantic similarity of
documents collected from the Web, and phe-
notype descriptions in genomic data. Exper-
iments show that our algorithm can handle
the high-dimensional big data and outperform
competing approximations in both domains.

1 Introduction

According to Yang (2006), distance metric learning
learns a distance metric from data sets that consists
of pairs of points of the same or different classes
while at the same time preserving the adjacency re-
lations among the data points. Usually, it is easier
to let the user label whether a set of data is in the
same class than directly assign a distance between
each pair or classify whether a pair of data points
is a match or not. Learning a good distance met-

ric in the feature space is essential in many real-
world NLP and IR applications. For example, Web
news article clustering applying hierarchical cluster-
ing or k-means requires that the distance between
the two feature vectors extracted from the news ar-
ticles faithfully reflect the semantic similarity be-
tween them for these algorithms to perform well.

Studies on distance metric learning over the past
few years show that the learned metric can outper-
form Euclidean distance metric. The constraints of
training examples in learning usually comes from
the global or local adjacency information. Data
points with the same class labels are supposed to be
connected while those with different classes labels
disconnected. Supervised algorithms aim to learn
the distance metric to make the adjacency relation-
ships in the training examples preserved.

One of the most common approaches to distance
metric learning is to learn a Mahalanobis distance
metric. Example algorithms to learn a Mahalanobis
distance metric include (Xing et al., 2002; Gold-
berger et al., 2004; Shaw et al., 2011).

A common limitation shared by these algorithms
is that they fail to scale up to high dimensional data
sets. When those algorithms run on high dimen-
sional data sets, they usually run out of memory.
However, many NLP applications depend on tens of
thousands of features to perform well. Dimension-
ality reduction and approximation have been sug-
gested, but they usually degrade performance. Other
issues occur when the data sets consists of a large
number of disjoint classes. In this case, the learned
distance metric must map the data points to a space
where the data points cluster unevenly into a large

20



number of small groups, which makes the learning
problem harder and may require special treatments.

In this paper, we present a new scalable approach
to distance metric learning that addresses the scal-
ability issues mentioned above. To deal with high
dimensionality, one approach is to factorize the met-
ric matrix in the Mahalanobis distance metric into
low-rank matrix. This reduces the number of pa-
rameters that must be learned during the learning
phase. However, the learning problem becomes non-
convex. Different initializations may result in dras-
tically different performance due to local optima.
We solve this problem by introducing random pro-
jection, which projects data points to a low dimen-
sional space before learning a low dimensional full-
rank metric matrix. We show that this strategy not
only is more robust than the low-rank approxima-
tion, but also outperforms the Principal Component
Analysis (PCA), a common approach to dimension-
ality reduction.

Another contribution that our approach offers is
new regularization terms in the objective function
of learning. The new terms specify that one should
learn to minimize the distance for data points in the
same classes and maximize those in different ones.
We found that minimization but not maximization
would lead to the best performance, so we kept only
the minimization term.

We evaluated our new approach with data sets
from two problem domains. One domain is about
learning semantic similarity between Web pages.
This domain was studied in (Shaw et al., 2011) and
involves moderately high dimensional data sets of
bag-of-words. The other is about matching seman-
tically related phenotype variables across different
genome-wide association studies (GWAS) (Hsu et
al., 2011). This problem domain requires extremely
high dimensional data for a learner to perform well.
Our experimental results show that our new algo-
rithm consistently outperform the previous ones in
both the domains.

2 Distance Metric Learning

Let X ∈ Rd×n be the feature matrix of input data
points. For any two data points xi, xj ∈ Rd×1 in X,
the (square of) the Mahalanobis distance between xi

and xj is defined as

Di,j
M = (xi − xj)

ᵀM(xi − xj),

where M ∈ Rd×d is a metric matrix. The distance
is always non-negative because M is required to be
positive semidefinite (PSD).

Xing (2002) used semidefinite programming to
learn a Mahalanobis distance metric for clustering.
It was a convex optimization problem, which al-
lowed them to derive local optima free algorithms.
Weinberger (2005) learned a Mahalanobis distance
metric for the k-nearest neighbor classifier by main-
taining a margin between data points in different
classes, i.e., enforcing the neighbors of the same
class to be closer than all others. As in the sup-
port vector machines, the learning problem was re-
duced to convex optimization based on hinge loss.
Yang (2006) presented a comprehensive survey on
distance metric learning.

Recently, Shaw et al. (2011) followed the preced-
ing approaches but reformulated the problem, as an
instance of the on-line learning algorithm PEGA-
SOS (Shalev-Shwartz et al., 2011), albeit a com-
plex construction. In a way, it scaled up the tradi-
tional metric learning method to a larger amount of
data points. They also reformulated the margin men-
tioned above as triplets over the data set and clarify
the derivation of the objective function. Each train-
ing example used here is a triplet (xi, xj , xk), con-
sisting of a pair xi and xj in the same class and xk

that is in a different class. Learning in this case en-
sures that the learned distance between xi and xj is
less than their distance to xk. In comparison, one
may formulate the distance learning problem as bi-
nary classification, where the objective is to mini-
mize the match probability of data point pairs in dif-
ferent classes and maximize those in the same ones.
Since there will always be much more data point
pairs in different classes than those in the same ones,
this formulation always lead to an unbalanced clas-
sification problem.

3 Strategies for Scaling Up Learning

Shaw et al. (2011) suggested various strategies to
scale up the algorithm for high dimensional multi-
class data. In this section, we will review these
strategies and their weaknesses, and then, present
our approach that addresses these weaknesses.

21



3.1 Dimensional Reduction

Four strategies were suggested to handle the high di-
mensional data sets:

• Diagonal Approximation,

• Principal Component Analysis (PCA),

• Low Rank Decomposition,

• Random Projection.

Diagonal approximation requires the metric ma-
trix M to be diagonal, thus it consists of only d pa-
rameters to learn, instead of d× d. It indeed shrinks
the number of parameters to learn, but also ignores
the feature-feature interaction and might harm the
expressiveness of the model.

Dimensionality reduction using PCA as a prepro-
cessing step is a common way to deal with high di-
mensional data. However, it does not always work
satisfactorily, especially when the data set does not
have an apparent intrinsic low dimensional structure.
It usually fails to perform well for those data sets.

Shaw et al. (2011) suggested a low-rank decom-
position to scale up distance metric learning. The
idea is to decompose M into LᵀL, where L is a
r × d matrix and r � d is a predefined low-rank
degree. This approach reduces computational cost
but results in a non-convex problem that suffers from
local minima. Previously, low-rank decomposition
has been proposed for other machine learning prob-
lems. For example, Rennie et al. (2005) applied it
to scale up Maximum Margin Matrix Factorization
(MMMF) (Srebro et al., 2004). Originally, MMMF
was formulated as a convex semi-definite program-
ming (SDP) problem and solved by a standard SDP
solver, but it is no longer applicable for the non-
convex low-rank decomposition. Therefore, they
solved the non-convex problem by Conjugate Gradi-
ent (CG) (Fletcher and Reeves, 1964), but still there
is no guarantee that CG will converge at a global
minimum.

Our choice is to use random projection LᵀRL,
where L is a random r × d (r � d) matrix, with
all of its element in (0, 1). Random projection the-
ory has been developed by Johnson and Linden-
strauss(1984). The theory shows that a set of n
points in a high dimensional (d) Euclidean space

can be mapped into a low-dimensional (r � d) Eu-
clidean space such that the distance between any two
points will be well-persevered (i.e., changes by only
a tiny factor ε if r is greater than a function of n and
ε). Let R be a r × r PSD matrix to be learned from
data. Distance between xi and xj becomes

Di,j
R = (xi − xj)

ᵀLᵀRL(xi − xj).

There are two possible strategies to generate a
random projection matrix L. One is completely ran-
dom projection, where all elements are generated in-
dependently; the other one is orthonormal random
projection, which requires that Lr×d be a matrix
with r orthonormal random column vectors. The
Gram-Schmidt process (Golub and Van Loan, 1996)
generates such a matrix, in which one starts by gen-
erating a random column and then the next columns,
though generated randomly, too, must be orthonor-
mal with regard to other columns. In both strategies,
all of the elements must be in (0, 1).

Consider L to be a matrix which compresses xi

with dimension d by vi = Lxi with dimension r.
Hence,

Di,j
R = (vi − vj)

ᵀR(vi − vj) (1)

This distance metric can be learned by searching for
R that minimizes the following objective function:

F(R) =
1

|S|
∑

(i,j,k)∈S

Z+(Di,j
R −D

i,k
R + ξ), (2)

where Z+(x) is the hinge loss function. It can be
shown that this new objective function is convex. As
in Shaw et al., the training examples are given as a
hinge loss function over triplets.

S = {(i, j, k)|Aij = 1,Aik = 0}

is the set of all triplets where A is the adjacency
matrix of X. ξ is a predefined constant margin.
The hinge loss function will penalize a candidate R
when the resulting distance between xi and xj plus
the margin is greater than the distance between xi

and xk.

3.2 Intra and Inter-Class Distance
One challenge in distance metric learning is deal-
ing with data sets that can be clustered into a large

22



number of distinct classes. The hinge loss term in
Eq. (2) does not consider this because it only keeps
a margin of data points in one class against points
in other classes. In our approach, we would like to
learn a distance metric such that the entire set data
points in the same class are close to each other and
away from those in other classes. This idea is real-
ized by adding additional regularization terms to the
objective function. These new regularization terms
are proved to be useful to handle problem domains
where data points form a large number of mutually-
exclusive classes.

The formula for intra-class distance regularization
is given as

I1(R) =
1

|S1|
∑

(i,j)∈S1

Di,j
R , S1 = {(i, j)|Aij = 1},

(3)
while the formulation for inter-class distance regu-
larization is

I2(R) =
1

|S2|
∑

(i,k)∈S2

Di,k
R , S2 = {(i, k)|Aik = 0}.

(4)

3.3 Algorithm

Combining the regularization, the hinge loss, intra-
class and the inter-class item, we get the complete
objective function as Eq. (5).

F(R) =
λ

2
‖R‖2F+

1

|S|
∑

(i,j,k)∈S

Z+(Di,j
R −D

i,k
R + ξ)

+
1

|S1|
∑

(i,j)∈S1

Di,j
R −

1

|S2|
∑

(i,k)∈S2

Di,k
R

(5)

It is also possible to assign weights to terms above.
According to Vandenberghe (1996), Eq. (5) can be
expressed as a convex semidefinite programming
problem. By construction, Eq. (5) can also be re-
formulated as an instance of PEGASOS algorithm,
which basically employs a sub-gradient descent al-
gorithm to optimize with a stochastic batch selec-
tion, and a smart step size selection. The sub-

gradient of F in terms of R is then:

∇F = λR +
1

|S+|
∑

(i,j,k)∈S+

LXC(i,j,k)XᵀLᵀ

+
1

|S1|
∑

(i,j)∈S)1

LXC1
(i,j)XᵀLᵀ

− 1

|S2|
∑

(i,k)∈S2

LXC2
(i,k)XᵀLᵀ,

S+ = {(i, j, k)|Di,j
R + ξ −Di,k

R > 0}

(6)

Here the sparse symmetric matrix C is defined such
that

C
(i,j,k)
jj = C

(i,j,k)
ik = C

(i,j,k)
ki = 1,

C
(i,j,k)
ij = C

(i,j,k)
ji = C

(i,j,k)
kk = −1,

and zero elsewhere. Similarly, C1 is given by

C1
(i,j)
ii = C1

(i,j)
jj = 1,

C1
(i,j)
ij = C1

(i,j)
ji = −1,

and zero elsewhere. C2 is

C2
(i,k)
ii = C2

(i,k)
kk = 1,

C2
(i,k)
ik = C2

(i,k)
ki = −1,

and zero elsewhere. It is easy to verify that

tr(C(i,j,k)XᵀLᵀRLX) = Di,j
R −D

i,k
R .

The derivation is from (Petersen and Pedersen,
2006):

∂tr(C(i,j,k)XᵀLᵀRLX)

∂R
= LXC(i,j,k)XᵀLᵀ

Using the same method for intra-class and inter-
class terms, the subgradient ofF at R can be derived
as

∇F = λR + LX

 ∑
(i,j,k)∈S+

C(i,j,k)

+
1

|S1|
∑

(i,j)∈S1

C1
(i,j)

− 1

|S2|
∑

(i,k)∈S2

C2
(i,k)

XᵀLᵀ.

(7)

According to the PEGASOS algorithm, instead
of using all elements in S, S1 and S2 to optimize
F(R), we randomly sample subsets of S, S1 and S2

with size of B, B1 and B2 in each iteration. The
full detail of the algorithm is given as procedure
LEARN METRIC.

23



procedure LEARN METRIC(A ∈ Bn×n, X ∈ Bn×d,
λ, S, S1, S2, B, B1, B2, T , ξ)

L← rand(r, d)
R1 ← zeros(r, r)
for t← 1− T do

ηt ← 1
λt

C,C1,C2 ← zeros(n, n)
for b← 1 to B do

(i, j, k)← Sample from S

if Di,j
R −D

i,k
R + ξ ≥ 0 then

Cjj ← Cjj + 1, Cik ← Cik + 1
Cki ← Cki + 1, Cij ← Cij + 1
Cji ← Cji + 1, Ckk ← Ckk + 1

end if
end for
for b← 1 to B1 do

(i, j)← Sample from S1

C1,ii ← C1,ii + 1, C1,jj ← C1,jj + 1
C1,ij ← C1,ij − 1, C1,ji ← C1,ji − 1

end for
for b← 1 to B2 do

(i, k)← Sample from S2

C2,ii ← C2,ii + 1, C2,kk ← C2,kk + 1
C2,ik ← C2,ik − 1, C2,ki ← C2,ki − 1

end for
∇t ← λR + LX(C + C1 −C2)X

ᵀLᵀ

Rt+1 ← Rt − ηt∇t
Rt+1 ← [Rt+1]

+ Optional PSD projection
end for
return L, RT

end procedure

4 Experimental Results

We applied our approach in two different problem
domains. One involves a small amount of data
points with moderately high dimensions (more than
1,000 and less than 10,000); the other involves a
large number of data points with very high dimen-
sions (more than 10,000). The results show that our
approach can perform well in both cases.

4.1 Wikipedia Articles

In this domain, the goal is to predict seman-
tic distances between Wikipedia documents about
“Search Engine” and “Philosophy Concept”. The
data sets are available from Shaw et al. (2011).
They manually labeled these pages to decide which
pages should be linked, and extracted bag-of-words
features from Web documents after preprocessing
steps. Each data set forms a sub-network of all re-

lated documents.
The problem here is to learn the metric matri-

ces LᵀRL according to the sub-network described
above. The random projection matrix L was ran-
domly initialized in the beginning and R was ob-
tained by optimization, as described in Section 3.

Tables 1 shows the statistics about the Wikipedia
documents data sets.

Table 1: Wikipedia pages dataset

Data set n m d

Search Engine 269 332 6695
Philosophy Concept 303 921 6695

In this table, n denotes the number of data points, m,
the number of edges, and d, feature dimensionality.

We split this data set 80/20 for training and test-
ing, where 20% of the nodes are randomly chosen
for evaluations. The remaining 80% of data were
used in a five-fold cross-validation to select the best
performing hyper-parameters, e.g., λ in Eq. (5). We
then trained the model with these hyper-parameters.

With the held-out evaluation data, we applied the
learned distance metric to compute the distance be-
tween each pair of data points. Then we ranked all
distances and measured the quality of ranking using
the Receiver Operator Characteristic (ROC) curve.
The area under the curve (AUC) was then used to
compare the performance of various algorithms.

The list below shows the alternatives of the ob-
jective functions used in the algorithms compared
in the experiment. Note that HL denotes the hinge
loss term, parameterized by either M, the full-rank
metric matrix, L, the low-rank approximation ma-
trix, or R, dimensionally-reduced metric matrix af-
ter random projection. I1 denotes the intra-class
distances as given in Eq. (3) and I2 inter-class dis-
tances in Eq. (4). Algorithms A, B, C and D are
diagonal approximation. Algorithm E implements
the low rank decomposition with reduced dimension
r = 300. Algorithms F, G, H, and I are variations of
our approach with combinations of random projec-
tion and/or intra/inter-class regularization. The re-
duced dimension of the new feature space was also
300 and R is a full matrix. Algorithm J uses PCA
to reduce the dimension to 300 and M here is a full
matrix.

In all algorithms, elements in the random projec-

24



tion matrix L were generated at random indepen-
dently except for algorithm L, where L was gener-
ated such that its columns are orthonormal.

A λ
2 ‖M‖

2
F +HL(M)

B λ
2 ‖M‖

2
F +HL(M) + I1(M)

C λ
2 ‖M‖

2
F +HL(M)− I2(M)

D λ
2 ‖M‖

2
F +HL(M) + I1(M)− I2(M)

E λ
2 ‖L‖

2
F +HL(L)

F λ
2 ‖R‖

2
F +HL(R)

G λ
2 ‖R‖

2
F +HL(R) + I1(R)

H λ
2 ‖R‖

2
F +HL(R)− I2(R)

I λ
2 ‖R‖

2
F +HL(R) + I1(R)− I2(R)

J λ
2 ‖M‖

2
F +HL(M) (PCA dimension reduction)

L λ
2 ‖R‖

2
F +HL(R) + I1(R) (orthonormal projection)

Table 2: Performance Comparison on Wikipedia Docu-
ments

Search Engine Philosophy Concept
A 0.7297 0.6935
B 0.6169 0.5870
C 0.5817 0.6808
D 0.6198 0.6704
E* 0.6952 0.4832
F 0.6962 0.6849
G 0.7909 0.7264
H 0.5744 0.6903
I 0.5984 0.6966
J 0.3509 0.4525
L 0.7939 0.7174

* Algorithm E performed unstably in this experiment
even when all initial hyper-parameters were the same.

The running time for combined training and eval-
uation for A, B, C, D was around 15 seconds(s), for
E about 300s, for F, G, H and I 200s and J 300s.
All ran on a MacBook Pro notebook computer with
8GB of memory. Learning full-rank M is impossi-
ble because it ran out of memory.

Table 2 shows that algorithm G performs better
than others in terms of the AUC metric, suggesting

that the distances of two points in the same class is
likely to be small and similar to some degree while
the ones in the different classes vary a lot, as we
speculated. Algorithm A also performs well proba-
bly because the bag-of-words features tend to be in-
dependent of each other and lack for word-to-word
(feature-to-feature) interactions. As a result, diago-
nal approximation is sufficient to model the seman-
tic similarity here. The low rank approximation al-
gorithm E is unstable. Different trial runs resulted
in drastically different AUCs. The AUC reported
here is the best observed, but still not the best com-
pared to other algorithms. In contrast, random pro-
jection algorithms rarely suffer this problem. PCA
with dimensionality reducing to 300 hurt the perfor-
mance significantly. This might be because there is
too much information loss for such a low dimension-
ality, compared to the original one. However, using
random L to project the feature vectors to 300 di-
mensions did not seem to have the same problem,
according our results of algorithm F.

Comparing different strategies to generate the
random projection matrix L, we found that algo-
rithms F and L basically performs similarly, yet vari-
ations of the performance of algorithm F in different
trials are slightly higher than L, though the varia-
tions for both algorithms are negligible.

4.2 Phenotype Similarity

The second dataset comes from a project supported
by NIH, with the objective of matching semantically
related phenotype variables across studies. For train-
ing, phenotype variables that are semantically sim-
ilar are categorized to be in the same class. The
data set that we used here contained annotated data
from the harmonization effort in the CARe (the Can-
didate Gene Association Resource) consortium, led
by Prof. Leslie Lange from the University of North
Carolina. This data set is comprised of 3,700 phe-
notypes that were manually classified into 160 cate-
gories. We note that previous works in distance met-
ric learning usually used test data sets with less than
30 classes or categories.

A phenotype variable is given as a tuple of a con-
dition description and an expert-assigned category.
For example

25



1. 〈 Forced Vital . . .
. . . Capacity (Litres),
Forced Expiratory Volume 〉

2. 〈 MAX MID-EXPIR’Y FLOW RATE . . .
. . . FR MAX CURVE,
Forced Expiratory Volume 〉

3. 〈 Age at natural menopause,
Menopause 〉

If we regard condition descriptions as data points
and expert-assigned categories as class labels, each
tuple above can be considered to be a node with a
label in a graph. Hence, nodes with the same la-
bels should be a match (be linked) to form a se-
mantic network. For example, phenotype 1 and 2
forms a match because they have the same category
‘‘Forced Expiratory Volume.’’

Previously, we applied the Maximum Entropy
model (MaxEnt) to predict the match on pairs, which
were labeled according to the annotated data by con-
sidering variables in the same category as semanti-
cally similar (i.e., a match), and those across cate-
gories as dissimilar (Hsu et al., 2011). We extracted
features from each pair, such as whether a keyword
appear in both phenotype descriptions, and trained a
MaxEnt model to predict whether a given pair is a
match. To evaluate the performance, we split vari-
ables into training and test sets and paired variables
within each set as the training and test data sets.

After careful observation of the descriptions of
the phenotype variables, we found that they are in
general short and non-standardized. To standardize
them, and detect their semantic similarity, we ex-
panded the descriptions using UMLS (Unified Med-
ical Language System, http://www.nlm.nih.
gov/research/umls/). We search UMLS with
a series of n-grams constructed from the variable
descriptions. For example, for a variable descrip-
tion: “Age Diagnosed Coronary Bypass”. The n-
gram words will be “age diagnosed coronary by-
pass”, “age diagnosed coronary”, “diagnosed coro-
nary bypass”, “age diagnosed”, “diagnosed coro-
nary”, “coronary bypass”. We query UMLS for con-
cepts corresponding to these n-grams. The defini-
tions thus returned are appended to the original vari-
able description. We reused the feature set described

in (Hsu et al., 2008) for the BioCreative 2 Gene
Mention Tagging task, but removed all char-gram
features. This features set was carefully designed
and proved to be effective for the gene mention tag-
ging task, but results in a very high dimensional data
set. Note that this feature set is different from the
one used in our previous work (Hsu et al., 2011).

To make the configurations of our experiment ex-
actly comparable with what described in Sharma et
al. (2012), we modified the algorithms to be pair-
wise oriented. We randomly divided the annotated
phenotype variable description data into three folds
and created pairs for this experiment. The statis-
tics of these folds is shown in Table 3. We trained
our models on connected and disconnected training
pairs in two folds and then evaluated with the pairs
in the other fold. Again, after we used the trained
model to predict the distances of all test pairs, we
ranked them and compared the quality of the rank-
ing using the ROC curves as described earlier. The
evaluation metric is the average of their AUC scores
for the three folds.

Table 3: Phenotype dataset

Fold train+ train− test+ test−
Fold1 98,964 2,824,398 24,550 705,686
Fold2 99,607 2,823,755 25,386 704,850
Fold3 98,013 2,825,349 23,892 706,344

a. The number of data points is 2,484 and dimension here
is 18,919.
b. In this table, train+ denotes number of connected (pos-

itive) pairs in training data, train− number of discon-
nected (negative) pairs in training data, test+ number of
connected pairs in testing data, test− number of discon-
nected pairs in testing data.

We compared algorithms A, E, G, H, I, J and L
listed earlier with the same configurations except
that the reduced dimensionality r = 500. Perfor-
mance of the MaxEnt algorithm was also reported
as K. Their AUC scores are shown in Table 4.

Training and evaluation processes took each fold
for algorithm A around 500 seconds(s) , for algo-
rithm E around 1400s , for algorithms F, G, H, I and
L around 900s , for J 1400s, and for K 1200s.

The experimental results shows that random pro-
jection (algorithm F) outperformed diagonal approx-
imation (algorithm A) by reserving feature-feature
interactions with merely 500 dimensions, compared

26



Table 4: Performance Comparison on Phenotype Data

AUC1 AUC2 AUC3 AUC*
A 0.7668 0.7642 0.7627 0.7646
E* 0.9612 0.9617 0.9689 0.9639
F 0.8825 0.8953 0.8684 0.8820
G 0.9461 0.9545 0.9293 0.9433
H 0.7149 0.7272 0.7299 0.7240
I 0.8930 0.8888 0.8809 0.8876
J 0.7582 0.7357 0.7481 0.7473
K 0.8884 0.9107 0.8996 0.8996
L 0.9505 0.9580 0.9527 0.9537

AUC1,2,3 denote the AUC performance of Fold1,2,3 re-
spectively. AUC* is the average AUC score.
* Results of algorithm E varied wildly in each running.
For example, using Fold1 with a fixed hyper-parameter
setting, its AUC scores were 0.9612, 0.9301, 0.9017 and
0.8920 in different trails, respectively.

to the original dimensionality of nearly 19K. Again,
the best performer is algorithm G, which combines
random projection with intra-class regularization.
The intra-class term was beneficial but the inter-
class term was not. One speculation is that the dis-
tance between data points in the same class may
be confined in a small range while those in dif-
ferent classes may vary widely. Maximizing inter-
class distance here might have distorted the learned
feature space. The low rank decomposition (algo-
rithm E) behaved unstably in this data sets. The re-
sult shown here is the best-chosen one. In fact, the
non-convex low-rank decomposition results in dras-
tically different AUC in each trial run. We speculate
that the best result observed here is an overfitting.
Diagonal approximation (algorithm A) and PCA (al-
gorithm J) performed similarly, unlike the results for
the Web documents.

Finally, when comparing different strategies to
generate the random projection matrix L, we had
the same conclusion as for the Wikipedia domain
that orthonormal random projection (algorithm L)
has a slight advantage in terms of low variations in
different trials over completely indepndent random
project (algorithm F).

5 Discussions and Future Work

We have proposed a convex, input-size free op-
timization algorithm for distance metric learning.
This algorithm combines random projection and
intra-class regularization that addresses the weak-
nesses presenting in the previous works. When the
dimension d is in tens of thousands, as in many NLP
and IR applications, M will be hundreds of millions
in size, too large and intractable to handle for any
existing approaches. Our approach addresses these
issues, making the learning not only scalable, but
also more accurate.

In the future, we will investigate theoretical prop-
erties that explain why the synergy of random pro-
jection and intra-class regularization works well and
robust. We would also like to investigate how to use
unlabeled data to regulate the learning to accomplish
semi-supervised learning.

Acknowledgments

Research reported in this publication was supported
in part by the National Human Genome Research
Institute of the National Institutes of Health (NIH)
under Award Number U01HG006894. The content
is solely the responsibility of the authors and does
not necessarily represent the official views of NIH.

References
John Blitzer, Kilian Q Weinberger, and Lawrence K Saul.

2005. Distance metric learning for large margin near-
est neighbor classification. In Advances in neural in-
formation processing systems, pages 1473–1480.

Reeves Fletcher and Colin M Reeves. 1964. Function
minimization by conjugate gradients. The computer
journal, 7(2):149–154.

Jacob Goldberger, Sam Roweis, Geoff Hinton, and Rus-
lan Salakhutdinov. 2004. Neighbourhood components
analysis.

G.H. Golub and C.F. Van Loan. 1996. Matrix Compu-
tations. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press.

Chun-Nan Hsu, Yu-Ming Chang, Cheng-Ju Kuo, Yu-
Shi Lin, Han-Shen Huang, and I-Fang Chung. 2008.
Integrating high dimensional bi-directional parsing
models for gene mention tagging. Bioinformatics,
24(13):i286–i294.

Chun-Nan Hsu, Cheng-Ju Kuo, Congxing Cai, Sarah
Pendergrass, Marylyn Ritchie, and Jose Luis Ambite.

27



2011. Learning phenotype mapping for integrating
large genetic data. In Proceedings of BioNLP 2011
Workshop, pages 19–27, Portland, Oregon, USA, June.
Association for Computational Linguistics.

William B Johnson and Joram Lindenstrauss. 1984. Ex-
tensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1.

Kaare Brandt Petersen and Michael Syskind Pedersen.
2006. The matrix cookbook.

Jasson DM Rennie and Nathan Srebro. 2005. Fast maxi-
mum margin matrix factorization for collaborative pre-
diction. In Proceedings of the 22nd international con-
ference on Machine learning, pages 713–719. ACM.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and
Andrew Cotter. 2011. Pegasos: Primal estimated sub-
gradient solver for svm. Mathematical Programming,
127(1):3–30.

Shefali Sharma, Leslie Lange, Jose Luis Ambite, Yigal
Arens, and Chun-Nan Hsu. 2012. Exploring label de-
pendency in active learning for phenotype mapping.
In BioNLP: Proceedings of the 2012 Workshop on
Biomedical Natural Language Processing, pages 146–
154, Montréal, Canada, June. Association for Compu-
tational Linguistics.

Blake Shaw, Bert Huang, and Tony Jebara. 2011. Learn-
ing a distance metric from a network. In Advances in
Neural Information Processing Systems, pages 1899–
1907.

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola.
2004. Maximum-margin matrix factorization. In
Advances in neural information processing systems,
pages 1329–1336.

Lieven Vandenberghe and Stephen Boyd. 1996.
Semidefinite programming. SIAM review, 38(1):49–
95.

Eric P Xing, Michael I Jordan, Stuart Russell, and An-
drew Ng. 2002. Distance metric learning with
application to clustering with side-information. In
Advances in neural information processing systems,
pages 505–512.

Liu Yang and Rong Jin. 2006. Distance metric learning:
A comprehensive survey. Michigan State Universiy,
pages 1–51.

28


