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Introduction to TextGraphs-8

For the past 7 years, the series of TextGraphs workshops have exposed and encouraged the synergy
between the field of Graph Theory (GT) and Natural Language Processing (NLP). The mix between the
two started small, with graph theoretical framework providing efficient and elegant solutions for NLP
applications that focused on single documents for part-of-speech tagging, word sense disambiguation
and semantic role labeling. It then got progressively larger with ontology learning and information
extraction from large text collections, and have reached web scale through the new fields of research
that focus on information propagation in social networks, rumor proliferation, e-reputation, multiple
entity detection, language dynamics learning and future events prediction to name but a few.

The 8th edition of the TextGraphs workshop aimed to be a new step in the series, focused on issues and
solutions for large-scale graphs, such as those derived for web-scale knowledge acquisition or social
networks. We encouraged the description of novel NLP problems or applications that have emerged in
recent years which can be addressed with graph-based solutions, as well as novel graph-based solutions
to known NLP tasks. Continuing to bring together researchers interested in Graph Theory applied to
Natural Language Processing, provides an environment for further integration of graph-based solutions
into NLP tasks. A deeper understanding of new theories of graph-based algorithms is likely to help
create new approaches and widen the usage of graphs for NLP applications.

This edition of the TextGraphs workshop took place on October 18th, 2013, in Seattle, WA, immediately
preceding the Conference on Empirical Methods in Natural Language Processing – EMNLP 2013.

This volume contains papers accepted for presentation at the workshop. We issued calls for regular
papers, short late–breaking papers, and demos. After careful review by the program committee of
the 15 submissions received – 12 regular papers, 2 short papers and 1 demo – 8 regular papers, 2 short
papers and 1 demo were accepted for presentation. The accepted papers address varied problems – from
theoretical and general considerations, to NLP and also "real-world" applications - through interesting
variations in known and also novel graph-based methods.

We are thankful to the members of the program committee, who have provided high quality reviews in a
timely fashion despite the holiday season, and all submissions have benefited from this expert feedback.

We were lucky to have two excellent speakers for this year’s event. We thank Oren Etzioni and Pedro
Domingos for their enthusiastic acceptance and presentations.

Zornitsa Kozareva, Irina Matveeva, Gabor Melli, Vivi Nastase

October, 2013
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Abstract

Traditional information retrieval models as-
sume keyword-based queries and use unstruc-
tured document representations. There is
an abundance of event-centered texts (e.g.,
breaking news) and event-oriented informa-
tion needs that often involve structure that
cannot be expressed using keywords. We
present a novel retrieval model that uses a struc-
tured event-based representation. We struc-
ture queries and documents as graphs of event
mentions and employ graph kernels to measure
the query-document similarity. Experimental
results on two event-oriented test collections
show significant improvements over state-of-
the-art keyword-based models.

1 Introduction

The purpose of an information retrieval (IR) system is
to retrieve the documents relevant to user’s informa-
tion need expressed in the form of a query. Many in-
formation needs are event-oriented, while at the same
time there exists an abundance of event-centered texts
(e.g., breaking news, police reports) that could satisfy
these needs. Furthermore, event-oriented information
needs often involve structure that cannot easily be
expressed with keyword-based queries (e.g., “What
are the countries that President Bush has visited and
in which has his visit triggered protests?”). Tradi-
tional IR models (Salton et al., 1975; Robertson and
Jones, 1976; Ponte and Croft, 1998) rely on shal-
low unstructured representations of documents and
queries, making no use of syntactic, semantic, or
discourse level information. On the other hand, mod-
els utilizing structured event-based representations
have not yet proven useful in IR. However, signifi-
cant advances in event extraction have been achieved

in the last decade as the result of standardization ef-
forts (Pustejovsky et al., 2003) and shared evaluation
tasks (Verhagen et al., 2010), renewing the interest
in structured event-based text representations.

In this paper we present a novel retrieval model
that relies on structured event-based representation
of text and addresses event-centered queries. We
define an event-oriented query as a query referring
to one or more real-world events, possibly includ-
ing their participants, the circumstances under which
the events occurred, and the temporal relations be-
tween the events. We account for such queries by
structuring both documents and queries into event
graphs (Glavaš and Šnajder, 2013b). The event
graphs are built from individual event mentions ex-
tracted from text, capturing their protagonists, times,
locations, and temporal relations. To measure the
query-document similarity, we compare the corre-
sponding event graphs using graph kernels (Borg-
wardt, 2007). Experimental results on two news story
collections show significant improvements over state-
of-the-art keyword-based models. We also show that
our models are especially suitable for retrieval from
collections containing topically similar documents.

2 Related Work

Most IR systems are a variant of the vector space
model (Salton et al., 1975), probabilistic model
(Robertson and Jones, 1976), or language model
(Ponte and Croft, 1998), which do not account for
associations between query terms. Recent models in-
troduce co-occurrence-based (Park et al., 2011) and
syntactic (Shinzato et al., 2012) dependencies. How-
ever, these dependencies alone in most cases cannot
capture in sufficient detail the semantics of events.

A more comprehensive set of dependencies can be
modeled with graph-based representations. Graph-
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based IR approaches come in two flavors: (1) the
entire document collection is represented as a sin-
gle graph in which queries are inserted as additional
vertices (Mihalcea and Tarau, 2004); (2) each query
and each document are represented as graphs of con-
cepts, and the relevance of a document for a query is
determined by comparing the corresponding graphs
(Montes-y Gómez et al., 2000). Our approach fits
into the latter group but we represent documents as
graphs of events rather than graphs of concepts. In
NLP, graph kernels have been used for question type
classification (Suzuki, 2005), cross-lingual retrieval
(Noh et al., 2009), and recognizing news stories on
the same event (Glavaš and Šnajder, 2013b).

Event-based IR is addressed explicitly by Lin et
al. (2007), who compare predicate-argument struc-
tures extracted from queries to those extracted from
documents. However, queries have to be manually
decomposed into semantic roles and can contain only
a single predicate. Kawahara et al. (2013) propose a
similar approach and demonstrate that ranking based
on semantic roles outperforms ranking based on syn-
tactic dependencies. Both these approaches target the
problem of syntactic alternation but do not consider
the queries made of multiple predicates, such as those
expressing temporal relations between events.

3 Kernels on Event Graphs

Our approach consists of two steps. First, we con-
struct event graphs from both the document and the
query. We then use a graph kernel to measure the
query-document similarity and rank the documents.

3.1 Event Graphs

An event graph is a mixed graph in which vertices rep-
resent the individual event mentions and edges repre-
sent temporal relations between them. More formally,
an event graph is a tuple G = (V,E,A,m, r), where
V is the set of vertices, E is the set of undirected
edges, A is the set of directed edges, m : V → M
maps the vertices to event mentions, and r : E → R
assigns temporal relations to edges.

We use a generic representation of a factual event
mention, which consists of an event anchor and event
arguments of four coarse types (agent, target, time,
and location) (Glavaš and Šnajder, 2013a; Glavaš
and Šnajder, 2013b). We adopt the set of temporal

relations used in TempEval-2 (Verhagen et al., 2010)
(before, after, and overlap), with additional temporal
equivalence relation (equal).

To build an event graph, we first extract the event
mentions and then extract the temporal relations be-
tween them. To extract the event anchors, we use
a supervised model based on a rich feature set pro-
posed by Glavaš and Šnajder (2013b), performing
at 80% F1-score. We then use a robust rule-based
approach from Glavaš and Šnajder (2013a) to extract
event arguments. Finally, we extract the temporal
relations using a supervised model with a rich fea-
ture set proposed by Glavaš and Šnajder (2013b).
Relation classification performs at 60% F1-score.

To compute the product graph kernels, we must
identify event mentions from the query that corefer
with mentions from the document. To this end, we
employ the model from Glavaš and Šnajder (2013a),
which compares the anchors and four types of argu-
ments between a pair of event mentions. The model
performs at 67% F-score on the EventCorefBank
dataset (Bejan and Harabagiu, 2008).

3.2 Product Graph Kernels
Graph kernels provide an expressive measure of sim-
ilarity between graphs (Borgwardt, 2007). In this
work, we use product graph kernel (PGK), a type of
random walk graph kernel that counts the common
walks between two graphs (Gärtner et al., 2003).

Product graph. The graph product of two labeled
graphs, G and G

′
, denoted GP = G×G′, is a graph

with the vertex set

VP =
{
(v, v′) | v ∈ VG, v

′ ∈ VG′ , δ(v, v′)
}

where predicate δ(v, v′) holds iff vertices v and v′ are
identically labeled (Hammack et al., 2011). Vertices
of event graphs have the same label if the event men-
tions they denote corefer. The edge set of the product
is conditioned on the type of the graph product. In the
tensor product, an edge exists in the product iff the
corresponding edges exist in both input graphs and
have the same label, i.e., denote the same temporal
relation. In the conormal product, an edge is intro-
duced iff the corresponding edge exists in at least one
input graph. A conormal product may compensate
for omitted temporal relations in the input graphs but
may introduce spurious edges that do not represent

2



(a) Query graph (b) Document graph (c) Tensor product (d) Conormal product

Figure 1: Examples of event graphs and their products

true overlap between queries and documents. Fig. 1
shows an example of input graphs and their products.

PGK computation. The PGK for input graphs G
and G′ is computed as

kPG(G,G′) =

|VP |∑
i,j=1

[(I − λAP )−1]ij

provided λ < 1/d , where d is the maximum vertex
degree in the product graph GP with the adjacency
matrix AP . In experiments, we set λ to 1/(d+ 1) .
PGK suffers from tottering (Mahé et al., 2005), a phe-
nomenon due to the repetition of edges in a random
walk. A walk that totters between neighboring ver-
tices produces an unrealistically high similarity score.
To prevent tottering between neighboring vertices,
Mahé et al. (2005) transform the input graphs before
computing the kernel score on their product: each
edge (vi, vj) is converted into a vertex ve; the edge it-
self gets replaced with edges (ve, vi) and (ve, vj). We
experiment with Mahé extension for PGK, account-
ing for the increased probability of one-edge-cycle
tottering due the small size of query graphs.

4 Experiments

Test Collections and Queries. To the best of our
knowledge, there is no standard test collection avail-
able for event-centered IR that we could use to evalu-
ate our models. Thus, we decided to build two such
test collections, with 50 queries each: (1) a general
collection of topically diverse news stories and (2) a
topic-specific collection of news on Syria crisis. The
first collection contains 25,948 news stories obtained
from EMM News Brief, an online news clustering
service.1 For the topic-specific collection, we se-
lected from the general collection 1387 documents
that contain the word “Syria” or its derivations.

1http://emm.newsbrief.eu

General collection (news stories)

q1: An ICT giant purchased the phone maker after the
government approved the acquisition

q2: The warship tried to detain Chinese fishermen but
was obstructed by the Chinese vessels

Topic-specific collection (Syria crisis)

q3: Syrian forces killed civilians, torched houses, and
ransacked stores, overrunning a farmer village

q4: Rebels murdered many Syrian soldiers and the gov-
ernment troops blasted the town in central Syria

Table 1: Example queries from the test collection

For each collection we asked an annotator to com-
pile 50 queries. She was instructed to select at ran-
dom a document from the collection, read the docu-
ment carefully, and compile at least one query con-
sisting of at least two event mentions, in such a way
that the selected document is relevant for the query.
Example queries are shown in Table 1. For instance,
query q1 (whose corresponding event graph is shown
in Fig. 1a) was created based on the following docu-
ment (whose event graph is shown in Fig. 1b):

Google Inc. won approval from Chinese regula-
tors for its $12.5 billion purchase of Motorola
Mobility Holdings Inc., clearing a final hurdle
for a deal that boosts its patents portfolio. . .

Relevance judgments. To create relevance judg-
ments, we use the standard IR pooling method with
two baseline retrieval models – a TF-IDF weighted
vector space model (VSM) and a language model.
Our graph-based model was not used for pooling be-
cause of time limitations (note that this favors the
baseline models because pool-based evaluation is
biased against models not contributing to the pool
(Büttcher et al., 2007)). Given that EMM News Brief
builds clusters of related news and that most EMM

3



Collection

Model General Specific

Baselines TF-IDF VSM 0.335 0.199
Hiemstra LM 0.300 0.175
In expC2 0.341 0.188
DFR BM25 0.332 0.192

Graph-based Tensor 0.502 0.407
Conormal 0.434 0.359
Mahé Tensor 0.497 0.412
Mahé Conormal 0.428 0.362

Table 2: Retrieval performance (MAP)

clusters contain less than 50 news stories, we esti-
mate that there are at most 50 relevant documents per
query. To get an even better estimate of recall, for
each query we pooled the union of top 75 documents
retrieved by each of the two baseline models.

One annotator made the relevance judgments for
all queries. We asked another annotator to provide
judgments for two randomly chosen queries and ob-
tained perfect agreement, which confirmed our intu-
ition that determining relevance for complex event-
centered queries is not difficult. The average number
of relevant documents per query in the general and
topic-specific collection is 12 and 8, respectively.2

Results. Table 2 shows the mean average preci-
sion (MAP) on both test collections for four graph
kernel-based models (tensor/conormal product and
with/without Mahé extension). We compare our
models to baselines from the three traditional IR
paradigms: a TF-IDF-weighted cosine VSM, the
language model of Hiemstra (2001), and the best-
performing models from the probabilistic Divergence
from Randomness (DFR) framework (In expC2 and
DFR BM25) (Amati, 2003; Ounis et al., 2006). We
evaluate these models using the Terrier IR platform.3

Overall, all models perform worse on the topic-
specific collection, in which all documents are topi-
cally related. Our graph kernel models outperform
all baseline models (p<0.01 for tensor models and
p<0.05 for conormal models; paired student’s t-test)
on both collections, with a wider margin on topic-
specific than on the general collection. This result

2Available at http://takelab.fer.hr/data
3http://terrier.org
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Figure 2: Histogram of AP differences

suggests that the graph-based models are especially
suitable for retrieval over topic-specific collections.
There is no significant difference between the ten-
sor product and conormal product models, indicating
that the conormal product introduces spurious edges
more often than it remedies for incorrect extraction
of temporal relations. The performance differences
due to Mahé extension are not significant, providing
no conclusive evidence on the effect of tottering.

To gain more insights into the performance of our
event graph-based model, we analyzed per query
differences in average precision between our best-
performing model (Tensor) and the best-performing
baseline (In expC2) on queries from the general col-
lection. Fig. 2 shows the histogram of differences.
Our graph kernel-based model outperforms the base-
line on 42 out of 50 queries. A closer inspection
of the eight queries on which our model performs
worse than the baseline reveals that this is due to (1)
an important event mention not being extracted from
the query (2 cases) or a (2) failure in coreference
resolution between an event mention from the query
and a mention from the document (6 cases).

5 Conclusion and Perspectives

We presented a graph-based model for event-centered
information retrieval. The model represents queries
and documents as event graphs and ranks the docu-
ments based on graph kernel similarity. The experi-
ments demonstrate that for event-based queries our
graph-based model significantly outperforms state-of-
the-art keyword-based retrieval models. Our models
are especially suitable for topic-specific collections,
on which traditional IR models perform poorly.

An interesting topic for further research is the ex-
tension of the model with other types of dependen-
cies between events, such as entailment, causality,
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and structural relations. Another direction concerns
the effective integration of event graph-based and
keyword-based models. We will also consider ap-
plications of event graphs on other natural language
processing tasks such as text summarization.
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Abstract

We introduce an interactive visualization com-
ponent for the JoBimText project. JoBim-
Text is an open source platform for large-scale
distributional semantics based on graph rep-
resentations. First we describe the underly-
ing technology for computing a distributional
thesaurus on words using bipartite graphs of
words and context features, and contextualiz-
ing the list of semantically similar words to-
wards a given sentential context using graph-
based ranking. Then we demonstrate the ca-
pabilities of this contextualized text expan-
sion technology in an interactive visualization.
The visualization can be used as a semantic
parser providing contextualized expansions of
words in text as well as disambiguation to
word senses induced by graph clustering, and
is provided as an open source tool.

1 Introduction

The aim of the JoBimText1 project is to build a
graph-based unsupervised framework for computa-
tional semantics, addressing problems like lexical
ambiguity and variability, word sense disambigua-
tion and lexical substitutability, paraphrasing, frame
induction and parsing, and textual entailment. We
construct a semantic analyzer able to self-adapt to
new domains and languages by unsupervised learn-
ing of semantics from large corpora of raw text. At
the moment, this analyzer encompasses contextual-
ized similarity, sense clustering, and a mapping of
senses to existing knowledge bases. While its pri-
mary target application is functional domain adap-
tation of Question Answering (QA) systems (Fer-

1http://sf.net/projects/jobimtext/

rucci et al., 2013), output of the semantic analyzer
has been successfully utilized for word sense disam-
biguation (Miller et al., 2012) and lexical substitu-
tion (Szarvas et al., 2013). Rather than presenting
the different algorithms and technical solutions cur-
rently implemented by the JoBimText community in
detail, in this paper we will focus on available func-
tionalities and illustrate them using an interactive vi-
sualization.

2 Underlying Technologies

While distributional semantics (de Saussure, 1959;
Harris, 1951; Miller and Charles, 1991) and the
computation of distributional thesauri (Lin, 1998)
has been around for decades, its full potential has yet
to be utilized in Natural Language Processing (NLP)
tasks and applications. Structural semantics claims
that meaning can be fully defined by semantic oppo-
sitions and relations between words. In order to per-
form a reliable knowledge acquisition process in this
framework, we gather statistical information about
word co-occurrences with syntactic contexts from
very large corpora. To avoid the intrinsic quadratic
complexity of the similarity computation, we have
developed an optimized process based on MapRe-
duce (Dean and Ghemawat, 2004) that takes advan-
tage of the sparsity of contexts, which allows scal-
ing the process through parallelization. The result of
this computation is a graph connecting the most dis-
criminative contexts to terms and explicitly linking
the most similar terms. This graph represents local
models of semantic relations per term rather than a
model with fixed dimensions. This representation
departs from the vector space metaphor (Schütze,
1993; Erk and Padó, 2008; Baroni and Zamparelli,
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2010), commonly employed in other frameworks for
distributional semantics such as LSA (Deerwester et
al., 1990) or LDA (Blei et al., 2003).

The main contribution of this paper is to de-
scribe how we operationalize semantic similarity in
a graph-based framework and explore this seman-
tic graph using an interactive visualization. We de-
scribe a scalable and flexible computation of a dis-
tributional thesaurus (DT), and the contextualization
of distributional similarity for specific occurrences
of language elements (i.e. terms). For related works
on the computation of distributional similarity, see
e.g. (Lin, 1998; Lin and Dyer, 2010).

2.1 Holing System

To keep the framework flexible and abstract with re-
spect to the pre-processing that identifies structure
in language material, we introduce the holing op-
eration, cf. (Biemann and Riedl, 2013). It is ap-
plied to observations over the structure of text, and
splits these observations into a pair of two parts,
which we call the “Jo” and the “Bim”2. All JoBim
pairs are maintained in the bipartite First-Order Jo-
Bim graph TC(T, C, E) with T set of terms (Jos),
C set of contexts (Bims), and e(t, c, f) ∈ E edges
between t ∈ T , c ∈ C with frequency f . While
these parts can be thought of as language elements
referred to as terms, and their respective context fea-
tures, splits over arbitrary structures are possible (in-
cluding pairs of terms for Jos), which makes this
formulation more general than similar formulations
found e.g. in (Lin, 1998; Baroni and Lenci, 2010).
These splits form the basis for the computation of
global similarities and for their contextualization. A
Holing System based on dependency parses is illus-
trated in Figure 1: for each dependency relation, two
JoBim pairs are generated.

2.2 Distributed Distributional Thesaurus
Computation

We employ the Apache Hadoop MapReduce Fram-
work3, and Apache Pig4, for parallelizing and dis-
tributing the computation of the DT. We describe
this computation in terms of graph transformations.

2arbitrary names to emphasize the generality, should be
thought of as ”term” and ”context”

3http://hadoop.apache.org
4http://pig.apache.org/

Figure 1: Jos and Bims generated applying a dependency
parser (de Marneffe et al., 2006) to the sentence I suffered
from a cold and took aspirin. The @@ symbolizes the
hole.

Staring from the JoBim graph TC with counts as
weights, we first apply a statistical test5 to com-
pute the significance of each pair (t, c), then we only
keep the p most significant pairs per t. This consti-
tutes our first-order graph for Jos FOJO. In analogy,
when keeping the p most significant pairs per c, we
can produce the first-order graph for Bims FOBIM .
The second order similarity graph for Jos is defined
as SOJO(T, E) with Jos t1, t2 ∈ T and undirected
edges e(t1, t2, s) with similarity s = |{c|e(t1, c) ∈
FOJO, e(t2, c) ∈ FOJO}|, which defines similar-
ity between Jos as the number of salient features
two Jos share. SOJO defines a distributional the-
saurus. In analogy, SOBIM is defined over the
shared Jos for pairs of Bims and defines similar-
ity of contexts. This method, which can be com-
puted very efficiently in a few MapReduce steps, has
been found superior to other measures for very large
datasets in semantic relatedness evaluations in (Bie-
mann and Riedl, 2013), but could be replaced by any
other measure without interfering with the remain-
der of the system.

2.3 Contextualization with CRF

While the distributional thesaurus provides the sim-
ilarity between pairs of terms, the fidelity of a par-
ticular expansion depends on the context. From the
term-context associations gathered in the construc-
tion of the distributional thesaurus we effectively
have a language model, factorized according to the
holing operation. As with any language model,
smoothing is critical to performance. There may be

5we use log-likelihood ratio (Dunning, 1993) or LMI (Evert,
2004)
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many JoBim (term-context) pairs that are valid and
yet under represented in the corpus. Yet, there may
be some similar term-context pair that is attested in
the corpus. We can find similar contexts by expand-
ing the term arguments with similar terms. However,
again we are confronted with the fact that the simi-
larity of these terms depends on the context.

This suggests some technique of joint inference
to expand terms in context. We use marginal in-
ference in a conditional random field (CRF) (Laf-
ferty et al., 2001). A particular world, x is defined
as single, definite sequence of either original or ex-
panded words. The weight of the world, w(x) de-
pends on the degree to which the term-context as-
sociations present in this sentence are present in the
corpus and the general out-of-context similarity of
each expanded term to the corresponding term in the
original sentence. Therefore the probability associ-
ated with any expansion t for any position xi is given
by Equation 1. Where Z is the partition function, a
normalization constant.

P (xi = t) =
1
Z

∑
{x | xi=t}

ew(x) (1)

The balance between the plausibility of an ex-
panded sentence according to the language model,
and its per-term similarity to the original sentence is
an application specific tuning parameter.

2.4 Word Sense Induction, Disambiguation
and Cluster Labeling

The contextualization described in the previous sub-
section performs implicit word sense disambigua-
tion (WSD) by ranking contextually better fitting
similar terms higher. To model this more explicitly,
and to give rise to linking senses to taxonomies and
domain ontologies, we apply a word sense induction
(WSI) technique and use information extracted by
IS-A-patterns (Hearst, 1992) to label the clusters.

Using the aggregated context features of the clus-
ters, the word cluster senses are assigned in con-
text. The DT entry for each term j as given in
SOJO(J, E) induces an open neighborhood graph
Nj(Vj , Ej) with Vj = {j′|e(j, j′, s) ∈ E) and Ej

the projection of E regarding Vj , consisting of sim-
ilar terms to j and their similarities, cf. (Widdows
and Dorow, 2002).

We cluster this graph using the Chinese Whispers
graph clustering algorithm (Biemann, 2010), which
finds the number of clusters automatically, to ob-
tain induced word senses. Running shallow, part-
of-speech-based IS-A patterns (Hearst, 1992) over
the text collection, we obtain a list of extracted IS-
A relationships between terms, and their frequency.
For each of the word clusters, consisting of similar
terms for the same target term sense, we aggregate
the IS-A information by summing the frequency of
hypernyms, and multiplying this sum by the number
of words in the cluster that elicited this hypernym.
This results in taxonomic information for labeling
the clusters, which provides an abstraction layer for
terms in context6. Table 1 shows an example of this
labeling from the model described below. The most
similar 200 terms for ”jaguar” have been clustered
into the car sense and the cat sense and the high-
est scoring 6 hypernyms provide a concise descrip-
tion of these senses. This information can be used
to automatically map these cluster senses to senses
in an taxonomy or ontology. Occurrences of am-
biguous words in context can be disambiguated to
these cluster senses comparing the actual context
with salient contexts per sense, obtained by aggre-
gating the Bims from the FOJO graph per cluster.

sense IS-A labels similar terms
jaguar
N.0

car, brand,
company,
automaker,
manufacturer,
vehicle

geely, lincoln-mercury,
tesla, peugeot, ..., mit-
subishi, cadillac, jag, benz,
mclaren, skoda, infiniti,
sable, thunderbird

jaguar
N.1

animal, species,
wildlife, team,
wild animal, cat

panther, cougar, alligator,
tiger, elephant, bull, hippo,
dragon, leopard, shark,
bear, otter, lynx, lion

Table 1: Word sense induction and cluster labeling exam-
ple for “jaguar”. The shortened cluster for the car sense
has 186 members.

3 Interactive Visualization

3.1 Open Domain Model

The open domain model used in the current vi-
sualization has been trained from newspaper cor-

6Note that this mechanism also elicits hypernyms for unam-
biguous terms receiving a single cluster by the WSI technique.
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Figure 2: Visualization GUI with prior expansions for
“cold”. Jobims are visualized on the left, expansions on
the right side.

pora using 120 million sentences (about 2 Giga-
words), compiled from LCC (Richter et al., 2006)
and the Gigaword (Parker et al., 2011) corpus. We
constructed a UIMA (Ferrucci and Lally, 2004)
pipeline, which tokenizes, lemmatizes and parses
the data using the Stanford dependency parser (de
Marneffe et al., 2006). The last annotator in the
pipeline annotates Jos and Bims using the collapsed
dependency relations, cf. Fig. 1. We define the lem-
matized forms of the terminals including the part-
of-speech as Jo and the lemmatized dependent word
and the dependency relation name as Bim.

3.2 Interactive Visualization Features
Evaluating the impact of this technology in applica-
tions is an ongoing effort. However, in the context
of this paper, we will show a visualization of the ca-
pabilities allowed by this flavor of distributional se-
mantics. The visualization is a GUI as depicted in
Figure 2, and exemplifies a set of capabilities that
can be accessed through an API. It is straightfor-
ward to include all shown data as features for seman-
tic preprocessing. The input is a sentence in natural
language, which is processed into JoBim pairs as de-
scribed above. All the Jos can be expanded, showing
their paradigmatic relations with other words.

We can perform this operation with and without
taking the context into account (cf. Sect. 2.3). The
latter performs an implicit disambiguation by rank-
ing similar words higher if they fit the context. In
the example, the “common cold” sense clearly dom-
inates in the prior expansions. However, “weather”
and “chill” appear amongst the top-similar prior ex-
pansions.

We also have implemented a sense view, which
displays sense clusters for the selected word, see

Figure 3. Per sense, a list of expansions is pro-
vided together with a list of possible IS-A types. In
this example, the algorithm identified two senses of
“cold” as a temperature and a disease (not all clus-
ter members shown). Given the JoBim graph of the
context (as displayed left in Fig. 2), the particular
occurrence of “cold” can be disambiguated to Clus-
ter 0 in Fig. 3, since its Bims “amod(@@,nasty)”
and “-dobj(catch, @@)” are found in FOJO for far
more members of cluster 0 than for members of clus-
ter 1. Applications of this type of information in-
clude knowledge-based word sense disambiguation
(Miller et al., 2012), type coercion (Kalyanpur et al.,
2011) and answer justification in question answering
(Chu-Carroll et al., 2012).

4 Conclusion

In this paper we discussed applications of the Jo-
BimText platform and introduced a new interactive
visualization which showcases a graph-based unsu-
pervised technology for semantic processing. The
implementation is operationalized in a way that it
can be efficiently trained “off line” using MapRe-
duce, generating domain and language specific mod-
els for distributional semantics. In its “on line” use,
those models are used to enhance parsing with con-
textualized text expansions of terms. This expansion
step is very efficient and runs on a standard laptop,
so it can be used as a semantic text preprocessor. The
entire project, including pre-computed data models,
is available in open source under the ASL 2.0, and
allows computing contextualized lexical expansion
on arbitrary domains.
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Abstract

WordNet, a widely used sense inventory for
Word Sense Disambiguation(WSD), is often
too fine-grained for many Natural Language
applications because of its narrow sense dis-
tinctions. We present a semi-supervised ap-
proach to learn similarity between WordNet
synsets using a graph based recursive sim-
ilarity definition. We seed our framework
with sense similarities of all the word-sense
pairs, learnt using supervision on human-
labelled sense clusterings. Finally we discuss
our method to derive coarse sense invento-
ries at arbitrary granularities and show that the
coarse-grained sense inventory obtained sig-
nificantly boosts the disambiguation of nouns
on standard test sets.

1 Introduction

With different applications requiring different levels
of word sense granularity, producing sense clustered
inventories with the requisite level of sense granu-
larity has become important. The subtleties of sense
distinctions captured by WordNet(Miller, 1995) are
helpful for language learners (Snow et al., 2007)
and in machine translation of languages as diverse
as Chinese and English (Ng et al., 2003). On the
other hand, for tasks like Document Categorization
and Information Retrieval (Buitelaar, 2000), it may
be sufficient to know if a given word belongs to a
coarsely defined class of WordNet senses. Using
the fine grained sense inventory of WordNet may be
detrimental to the performance of these applications.
Thus developing a framework which can generate
sense inventories with different granularities can im-
prove the performance of many applications.

To generate a coarse sense inventory, many re-
searchers have focused on generating coarse senses
for each word by merging the fine-grained senses
(Chugur et al., 2002) (Navigli, 2006). This approach
has two problems. First, it requires a stopping crite-
rion for each word — for example the number of
final classes. The right number of classes for each
word cannot usually be predetermined even if the
application is known. So such systems cannot be
used to derive coarse senses for all the words. Sec-
ond, inconsistent sense clusters are obtained because
coarse senses are independently generated for each
word. This leads to transitive closure errors and sug-
gests that for deriving consistent coarse senses, in-
stead of clustering senses for each word separately
we should cluster synsets.

We propose a framework that derives a coarse
sense inventory by learning a synset similarity met-
ric. We focus on coarsening the noun synsets of
WordNet and show that the obtained coarse-grained
sense inventory greatly improves the noun sense
disambiguation. Our approach closely resembles
(Snow et al., 2007) for supervised learning of synset
similarity. But to learn similarity between synset
pairs which do not share a word we use a variant
of the SimRank framework (Jeh and Widom, 2002)
and avoid giving them zero similarity. Thus the sim-
ilarity learnt is more than a binary decision and is
reflective of a more comprehensive semantic simi-
larity between the synsets. The use of SimRank for
learning synset similarity is inspired by the success
of graph-centrality algorithms in WSD. We do not
modify the WordNet ontology, unlike (Snow et al.,
2007), as it may introduce spurious relations and re-
move some manually encoded information.
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In section 2, we discuss past work in sense clus-
tering. In section 3 and 4, we describe our frame-
work of learning synset similarity using SimRank.
In section 5, we discuss our methodology of produc-
ing coarse senses using the learnt similarity metric.
Section 6 describes the experimental setup and eval-
uates the framework described. Section 7 contains
conclusions and discusses the directions for future
work.

2 Related Work

A wide variety of automatic methods have been pro-
posed for coarsening fine-grained inventories. The
earliest attempt on WordNet include (Mihalcea and
Moldovan, 2001) which merged synsets on seman-
tic principles like sharing a pertainym, antonym or
verb group. We discuss some of the ideas which
are related to our work. Though promising, many of
these techniques are severely limited by the amount
of available manually annotated data.

(Chugur et al., 2002) constructed sense similarity
matrices using translation equivalences in four lan-
guages. With the advent of WordNets being devel-
oped in multiple languages1 as well as multilingual
ontologies like BabelNet (Navigli and Ponzetto,
2012), this seems a promising area.

(McCarthy, 2006) estimated sense similarities us-
ing a combination of word-to-word distributional
similarity combined with the JCN WordNet based
similarity measure (Jiang and Conrath, 1997). They
introduce a more relaxed notion of sense relatedness
which allows the user to control the granularity for
the application in hand.

(Navigli, 2006) produced a fixed set sense clusters
by mapping WordNet word senses to Oxford En-
glish Dictionary(OED) word senses exploiting sim-
ilarities in glosses and semantic relationships in the
sense inventories. It is expected that the different
WordNet senses that are semantically close mapped
to the same sense in the other ontology via an ef-
ficient mapping that is able to capture the semantic
similarity between the concepts in both the ontolo-

1GlobalWordNet lists the WordNets available in the pub-
lic domains: http://www.globalwordnet.org/gwa/wordnet table.
html.

gies. The drawback of this method is the generation
of inconsistent sense clusters.

(Snow et al., 2007) presented a novel supervised
approach in which they train a Support Vector Ma-
chine(SVM) using features derived from WordNet
and other lexical resources, whose predictions serve
as a distance measure between synsets. Assuming
zero similarity between synset pairs with no com-
mon words, they cluster synsets using average link
agglomerative clustering and the synset similarity
model learnt.

3 SimRank

SimRank (Jeh and Widom, 2002) is a graph based
similarity measure applicable in any domain with
object-to-object relationships. It uses the intuition
that “two objects are similar if they are related to
similar objects”. Since SimRank has a recursive
structure, the base cases play an important role.

Let us denote the SimRank similarity between ob-
jects α and β by s(α, β). It is defined as 1 if α = β,
otherwise it is given by:

s(α, β) =
C

|I(α)||I(β)|

|I(α)|∑
i=1

|I(β)|∑
j=1

s(Ii(α), Ij(β))

(1)
where C ∈ (0, 1) is a constant decay factor and
I(v) is the set consisting of in-neighbours of node v,
whose individual members are referred to as Ij(v),
1 ≤ j ≤ |I(v)|.

3.1 Solution and its Properties

(Jeh and Widom, 2002) proved that a solution s(∗, ∗)
to the SimRank equations always exists and is
unique. For a graphG(V,E), the solution is reached
by iteration to a fixed-point. For each iteration k, we
keep |V |2 entries Sk(∗, ∗), where Sk(α, β) is the es-
timate of similarity between α and β at the kth iter-
ation. We start with S0(∗, ∗) which is 1 for single-
ton nodes like (x, x), 0 otherwise. We successively
compute Sk+1(∗, ∗) based on Sk(∗, ∗) using equa-
tion 1.

Regarding the convergence of the above computa-
tion process, (Lizorkin et al., 2010) proved that the
difference between the SimRank theoretical scores
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and iterative similarity scores decreases exponen-
tially in the number of iterations and uniformly for
every pair of nodes i.e.

s(α, β)− Sk(α, β) ≤ Ck+1 ∀α, β ∈ V ; k = 0, 1, 2 . . .

(2)

3.2 Personalizing SimRank
In many scenarios we do not have complete informa-
tion about the objects and thus have similarities for
only some pairs of objects. These similarities may
be independently learnt and may not directly con-
form with the underlying graph. In such situations,
we would like to get a more complete and consis-
tent similarity metric between objects while simul-
taneously using the existing information. For this
we propose a personalized framework for SimRank
where we bias the SimRank by changing the initial-
ization. If we know similarities of some pairs, we
fix them in our set of equations and let the rest of the
values be automatically learnt by the system.

Let us call the map of node pairs to their similarity
values as InitStore. It also contains all the single-
ton nodes like (x, x) which have values equal to 1.
For other node pairs, the system of equations is the
same as equation 1. In the personalized framework,
we have no constraints on the initialization as long
as all values initialized are in the range [0, C].

3.3 Learning Synset Similarity using SimRank
The Personalized SimRank framework requires an
underlying graph G(V,E), where V is the set of
objects to be clustered and E is the set of seman-
tic links connecting these objects and an InitStore
containing the similarity values over some pairs
from V × V learnt or known otherwise. Note that
the values in the InitStore have an upper bound of
C.

For learning synset similarity, V is the set of
synsets to be clustered and E is the set of Word-
Net relations connecting these synsets. We use the
Hypernymy, Hyponymy, Meronymy and Holonymy
relations of WordNet as the semantic links. The
method for seeding the InitStore is described in
section 4 and can be summed up as follows:

• We train the SVMs from synset-merging data
from OntoNotes (Hovy et al., 2006) to pre-

dict the similarity values of all the synset pairs
which share at least one word.

• We estimate the posterior probabilities from the
SVM predictions by approximating the poste-
rior by a sigmoid function, using the method
discussed in (Lin et al., 2003).

• We scale the posterior probabilities obtained to
range between [0, C] by linear scaling, where
C is the SimRank decay parameter.

4 Seeding SimRank with supervision

4.1 Outline
We learn semantic similarity between different
senses of a word using supervision, which allows
us to intelligently combine and weigh the different
features and thus give us an insight into how hu-
mans relate word senses. We obtain pairs of synsets
which human-annotators have labeled as “merged”
or “not merged” and describe each pair as a feature
vector. We learn a synset similarity measure by us-
ing an SVM on this extracted dataset, where positive
examples are the pairs which were merged and neg-
ative examples are the ones which were not merged
by the annotators. We then calculate the posterior
probability using the classifier score which is used
as an estimate of the similarity between synsets con-
stituting the pair.

4.2 Gold standard sense clustering dataset
Since our methodology depends upon the availabil-
ity of labelled judgements of synset relatedness, a
dataset with a high Inter-Annotator agreement is re-
quired. We use the manually labelled mappings
from the Omega ontology2 (Philpot et al., 2005)
to the WordNet senses, provided by the OntoNotes
project (Hovy et al., 2006).

The OntoNotes dataset creation involved a rigor-
ous iterative annotation process producing a coarse
sense inventory which guarantees at least 90% Inter-
Tagger agreement on the sense-tagging of the sam-
ple sentences used in the annotation process. Thus
we expect the quality of the final clustering of senses
and the derived labelled judgements to be reasonably
high.

2http://omega.isi.edu/
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We use OntoNotes Release 3.0 3 for extracting
WordNet sense clusters.4. The dataset consists of
senses for selected words in sense files. The senses
in OntoNotes are mapped to WordNet senses, if a
good mapping between senses exists. The steps in-
volved in extraction are as follows:

1. OntoNotes has mappings to 4 WordNet ver-
sions: 1.7, 2.0, 2.1 and 3.0. We mapped all
the senses5 to WordNet 3.0.

2. Validating clusters on WN3.0:

• We removed the sense files which did not
contain all the senses of the word i.e. the
clustering was not complete.
• We removed the sense files in which the

clusters had a clash i.e. one sense be-
longed to multiple clusters.

3. We removed instances that were present in both
positive and negative examples. This situa-
tion arises because the annotators were work-
ing with word senses and there were inconsis-
tent sense clusters.

Statistics Nouns Verbs
# of Word Sense File Before Processing 2033 2156
# of Word Sense Files After Processing 1680 1951

Distinct Offsets encountered 4930 6296
Positive Examples 1214 6881
Negative Examples 11974 20899

Percentage of Positive examples 9.20 24.76

Table 1: Statistics of Pairwise Classification Dataset ob-
tained from OntoNotes

4.3 Feature Engineering
In this section, we describe the feature space con-
struction. We derive features from the structure of
WordNet and other available lexical resources. Our
features can be broadly categorized into two parts:
derived from WordNet and derived from other cor-
pora. Many of the listed features are motivated by
(Snow et al., 2007) and (Mihalcea and Moldovan,
2001).

3 http://www.ldc.upenn.edu/Catalog/docs/LDC2009T24/
OntoNotes-Release-3.0.pdf

4The OntoNotes groupings will be available through the
LDC at http://www.ldc.upenn.edu

5We dropped WN1.7 as there were very few senses and the
mapping from WN1.7 to WN3.0 was not easily available.

4.3.1 Features derived from WordNet
WordNet based features are further subdivided

into similarity measures and features. Among the
WordNet similarity measures, we used Path Based
Similarity Measures: WUP (Wu and Palmer, 1994),
LCH (Leacock et al., 1998); Information Content
Based Measures: RES (Resnik, 1995), JCN (Jiang
and Conrath, 1997), LIN (Lin, 1998); Gloss Based
Heuristics (variants of Lesk (Lesk, 1986)): Adapted
Lesk (Banerjee and Pedersen, 2002), Adapted Lesk
Tanimoto and Adapted Lesk Tanimoto without hy-
ponyms6

Other synset and sense based features include
number of lemmas common in two synsets, SenseC-
ount: maximum polysemy degree among the lem-
mas shared by the synsets, SenseNum: number of
lemmas having maximum polysemy degree among
the lemmas shared by the synsets, whether two
synsets have the same lexicographer file, number of
common hypernyms, autohyponymy: whether the
two synsets have a hyponym-hypernym relation be-
tween them and merging heuristics by (Mihalcea
and Moldovan, 2001).7

4.3.2 Features derived from External Corpora
• eXtended WordNet Domains Project (González

et al., 2012) provides us the score of a synset
with respect to 169 hierarchically organized
domain-labels(excluding factotum label). We
obtain a representation of a synset in the do-
main label space and use cosine similarity, L1
distance and L2 distance computed over the
weight representations of the synsets as fea-
tures.

• BabelNet (Navigli and Ponzetto, 2012) pro-
vides us with the translation of noun word
senses in 6 languages namely: English, Ger-
man, Spanish, Catalan, Italian and French and
the mapping of noun synsets to DBpedia8 en-
tries. For features we use counts of common

6We call the lesk variants as AdapLesk, AdapLeskTani and
AdapLeskTaniNoHypo.

7We divide mergeSP1 2 into two features: The strict heuris-
tic checks whether all the hypernyms are shared or not whereas
the relaxed heuristic checks if the synsets have at least 1 com-
mon hypernym.

8http://dbpedia.org/About
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lemmas in all 6 languages and count of com-
mon DBpedia entries.

• SentiWordNet (Baccianella et al., 2010) pro-
vides us with a mapping from a synset to a triad
of three weights. The weights correspond to the
score given to a synset based on its objectivity
and subjectivity(positive and negative). We use
cosine similarity, L1 distance and L2 distance
of the weight representations of the synsets as
features.

• We use the sense clusterings produced by map-
ping WordNet senses to OED senses by the
organizers of the coarse-grained AW task in
SemEval-20079 (Navigli et al., 2007). For each
pair of synsets, we check if there are senses in
the synsets that belong to the same cluster in
the OED mapping.

4.4 Classifier and Training
We train SVMs using the features above on the
synset pairs extracted from OntoNotes, where ev-
ery synset pair is given either a “merged” or “not-
merged” label. Because of the skewed class distribu-
tion in the dataset, we randomly generated balanced
datasets (equal number of positive and negative in-
stances) and then divided them in a ratio of 7:3 for
training and testing respectively. We repeated the
process multiple number of times and report the av-
erage.

To train the SVMs we used an implementation by
(Joachims, 1998), whose java access is provided by
JNI-SVMLight 10 library. For all experiments re-
ported, we use the linear kernel with the default pa-
rameters provided by the library. 11

We scale the ranges of all the features to a com-
mon range [-1,1]. The main advantage offered by
scaling is that it prevents domination of attributes
with smaller numeric ranges by those with greater
numeric ranges. It also avoids numerical difficulties
like overflow errors caused by large attribute values.
Note that both training and testing data should be
scaled with the same parameters.

9 http://lcl.uniroma1.it/coarse-grained-aw/
10JNI-SVMLight: http://adrem.ua.ac.be/∼tmartin/
11We also tested our system with an RBF kernel but the best

results were obtained with the linear kernel(Bhagwani, 2013)

4.5 Estimating Posterior Probabilities from
SVM Scores

For seeding SimRank, we need an estimate of the
posterior probability Pr(y = +1|x) instead of the
class label. (Platt, 1999) proposed approximating
the posterior by a sigmoid function

Pr(y = +1|x) ≈ PA,B(f(x)) ≡ 1
1+exp(Af(x)+B)

We use the method described in (Lin et al., 2003),
as it avoids numerical difficulties faced by (Platt,
1999).

5 Coarsening WordNet

We construct an undirected graph G(V,E) where
the vertex set V contains the synsets of WordNet and
edge set E comprises of edges obtained by thresh-
olding the similarity metric learnt using the person-
alized SimRank model (see section 3.2). On varying
the threshold, we obtain different graphs which dif-
fer in the number of edges. On these graphs, we find
connected components12, which gives us a partition
over synsets. All the senses of a word occurring in
the same component are grouped as a single coarse
sense. We call our approach Connected Components
Clustering(CCC).

For lower thresholds, we obtain denser graphs
and thus fewer connected components. This small
number of components translates into more coarser
senses. Therefore, using this threshold as a param-
eter of the system, we can control the granularity of
the coarse senses produced.

6 Experimental Setup and Evaluation

6.1 Feature Analysis

We analyze the feature space used for SVMs in two
ways. We evaluate Information Gain(IG) and Gain
Ratio(GR) functions over the features and do a fea-
ture ablation study. The former tries to capture the
discrimination ability of the feature on its own and
the latter measures how a feature corroborates with
other features in the feature space.

12a connected component of an undirected graph is a sub-
graph in which any two vertices are connected to each other by
paths, and which is connected to no additional vertices in the
supergraph.
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We extracted all the features over the complete
OntoNotes dataset without any normalization and
evaluated them using IG and GR functions. We re-
port the top 7 features of both the evaluators in table
213.

Feature GR IG
LCH 0.0129 0.0323
WUP 0.0148 0.0290
JCN 0.0215 0.0209

AdapLesk 0.0169 0.0346
AdapLeskTani 0.0231 0.0360

AdapLeskTaniNoHypo 0.0168 0.0301
mergeSP1 2 strict 0.0420 0.0010

mergeSP1 2 relaxed 0.0471 0.0012
number of Common Hypernyms 0.0883 0.0096

Domain-Cosine Similarity 0.0200 0.0442
OED 0.0326 0.0312

Table 2: Information Gain and Gain Ratio Based Evalua-
tion

We divide our features into 6 broad categories and
report the average F-Score of both the classes ob-
served by removing that category of features from
our feature space. The SVMs are trained with fea-
tures normalized using MinMax Normalization for
this study.

Features Removed FScore Pos FScore Neg
WordNet Similarity Measures 0.6948 0.6784

WordNet Based Features 0.7227 0.7092
BabelNet Features 0.7232 0.7127

Domain Similarity Features 0.6814 0.6619
OED Feature 0.6957 0.7212

SentiWordNet Features 0.7262 0.7192
Without Removing Features 0.7262 0.7192

Table 3: Feature Ablation Study

From tables 2 and 3, we observe that the most sig-
nificant contributors in SVM performance are Word-
Net similarity measures and domain cosine similar-
ity. The former highlights the importance of the on-
tology structure and the gloss definitions in Word-
Net. The latter stresses the fact that approximately
matching the domain of two senses is a strong cue
about whether the two senses are semantically re-
lated enough to be merged.

13Table lists only 11 features as 3 features are common in top
7 features of both the evaluators

Other notable observations are the effectiveness
of the OED feature and the low Information Gain
and Gain Ratio of multilingual features. We
also found that SentiWordNet features were non-
discriminatory as most of the noun synsets were de-
scribed as objective concepts.

6.2 Estimating Posterior Probabilities from
SVM Scores

We learn parameters A and B of the sigmoid that
transforms SVM predictions to posterior probabili-
ties (see section 4.5). Since using the same data set
that was used to train the model we want to calibrate
will introduce unwanted bias we calibrate on an in-
dependently generated random balanced subset from
OntoNotes.

The values of A and B obtained are -1.1655 and
0.0222 respectively. Using these values, the SVM
prediction of value 0 gets mapped to 0.4944.

6.3 Semi-Supervised Similarity Learning

We learn similarity models using the SimRank vari-
ant described in section 3. (Jeh and Widom, 2002)
use C = 0.8 and find that 5-6 iterations are enough.
(Lizorkin et al., 2010) suggest lower values of C or
more number of iterations. We vary the values for C
between 0.6, 0.7 and 0.8 and we run all systems for
10 iterations to avoid convergence issues.

6.4 Coarsening WordNet

We assess the effect of automatic synset clustering
on the English all-words task at Senseval-3 (Snyder
and Palmer, 2004) 14. The task asked WSD systems
to select the apt sense for 2,041 content words in
running texts comprising of 351 sentences. Since
the BabelNet project provided multilingual equiva-
lences for only nouns, we focussed on nouns and
used the 890 noun instances.

We consider the three best performing WSD sys-
tems: GAMBL (Decadt et al., 2004), SenseLearner
(Mihalcea and Faruque, 2004) and Koc University
(Yuret, 2004) - and the best unsupervised system:
IRST-DDD (Strapparava et al., 2004) submitted in
the task. The answer by the system is given full

14This evaluation is similar to the evaluation used by (Nav-
igli, 2006) and (Snow et al., 2007)
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C System F-Score Threshold CCC Random Improvement

0.6

GAMBL 0.7116 0.36 0.9031 0.8424 0.0607
SenseLearner 0.7104 0.37 0.8824 0.8305 0.0518

KOC University 0.7191 0.37 0.8924 0.8314 0.0610
IRST-DDD 0.6367 0.35 0.8731 0.8013 0.0718

0.7

GAMBL 0.7116 0.52 0.8453 0.7864 0.0589
SenseLearner 0.7104 0.49 0.8541 0.8097 0.0444

KOC University 0.7191 0.52 0.8448 0.7911 0.0538
IRST-DDD 0.6367 0.49 0.7970 0.7402 0.0568

0.8

GAMBL 0.7116 0.59 0.8419 0.7843 0.0577
SenseLearner 0.7104 0.56 0.8439 0.7984 0.0455

KOC University 0.7191 0.59 0.8414 0.7879 0.0535
IRST-DDD 0.6367 0.47 0.8881 0.8324 0.0557

Table 4: Improvement in Senseval-3 WSD performance using Connected Component Clustering Vs Random Cluster-
ing at the same granularity

credit if it belongs to the cluster of the correct an-
swer.

Observe that any clustering will only improve the
WSD performance. Therefore to assess the improve-
ment obtained because of our clustering, we calcu-
late the expected F-Score, the harmonic mean of ex-
pected precision and expected recall, for a random
clustering at the same granularity and study the im-
provement over the random clustering.

Let the word to be disambiguated have N senses,
each mapped to a unique synset. Let the clustering
of these N synsets on a particular granularity give
us k clusters C1, . . . Ck. The expectation that an in-
correctly chosen sense and the actual correct sense
would belong to same cluster is∑k

i=1|Ci|(|Ci|−1)

N(N − 1)
(3)

We experiment with C = 0.6, 0.7 and 0.8. The
SVM probability boundaries when scaled to [0, C]
for these values are 0.30, 0.35 and 0.40. To find the
threshold giving the best improvement against the
random clustering baseline, we use the search space
[C − 0.35, C]. The performance of the systems at
these thresholds for different values of C is reported
in table 4.

Commenting theoretically about the impact of C
on the performance is tough as by changing C we

are changing all the |V |2 simultaneous equations to
be solved. Empirically, we observe that across all
systems improvements over the baseline keep de-
creasing as C increases. This might be due to the
slow convergence of SimRank for higher values of
C.

Figure 1 shows that by varying thresholds the im-
provement of the Connected Components Cluster-
ing over the random clustering baseline at the same
granularity first increases and then decreases. This
behaviour is shared by both supervised and unsuper-
vised systems. Similar figures are obtained for other
values of C (0.7 and 0.8), but are omitted because of
lack of space.

Across supervised and unsupervised systems, we
observe higher improvements for unsupervised sys-
tems. This could be because the unsupervised sys-
tem was underperforming compared to the super-
vised systems in the fine grained WSD task setting.

7 Conclusions and Future Work

We presented a model for learning synset similarity
utilizing the taxonomy information and information
learnt from manually obtained sense clustering. The
framework obtained is generic and can be applied to
other parts of speech as well. For coarsening senses,
we used one of the simplest approaches to cluster
senses but the generic nature of the similarity gives
us the flexibility to use other clustering algorithms
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Figure 1: Improvement in (a) average performance of best 3 Supervised Systems and (b) performance of best Unuper-
vised System in Senseval-3 using Connected Component Clustering Vs Random Clustering at the same granularity
with C = 0.6

for experimentation. We show that the clustering ob-
tained by partitioning synsets in connected compo-
nents gives us a maximum improvement of 5.78%
on supervised systems and 7.18% on an unsuper-
vised system. This encourages us to study graph
based similarity learning methods further as they al-
low us to employ available wide-coverage knowl-
edge bases.

We use the WordNet relations Hypernymy, Hy-
ponymy, Meronymy and Holonymy without any dif-
ferentiation. If we can grade the weights of the rela-
tions based on their relative importance we can ex-
pect an improvement in the system. These weights
can be obtained by annotator feedback from cogni-
tive experiments or in a task based setting. In ad-
dition to the basic WordNet relations, we can also
enrich our relation set using the Princeton WordNet
Gloss Corpus15, in which all the WordNet glosses
have been sense disambiguated. Any synset occur-
ing in the gloss of a synset is directly related to that
synset via the gloss relation. This relation helps
make the WordNet graph denser and richer by cap-
turing the notion of semantic relatedness, rather than
just the notion of semantic similarity captured by the
basic WordNet relations.

15http://wordnet.princeton.edu/glosstag.shtml
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Abstract

Distance metric learning from high (thou-
sands or more) dimensional data with hun-
dreds or thousands of classes is intractable but
in NLP and IR, high dimensionality is usu-
ally required to represent data points, such
as in modeling semantic similarity. This pa-
per presents algorithms to scale up learning
of a Mahalanobis distance metric from a large
data graph in a high dimensional space. Our
novel contributions include random projection
that reduces dimensionality and a new objec-
tive function that regularizes intra-class and
inter-class distances to handle a large number
of classes. We show that the new objective
function is convex and can be efficiently op-
timized by a stochastic-batch subgradient de-
scent method. We applied our algorithm to
two different domains; semantic similarity of
documents collected from the Web, and phe-
notype descriptions in genomic data. Exper-
iments show that our algorithm can handle
the high-dimensional big data and outperform
competing approximations in both domains.

1 Introduction

According to Yang (2006), distance metric learning
learns a distance metric from data sets that consists
of pairs of points of the same or different classes
while at the same time preserving the adjacency re-
lations among the data points. Usually, it is easier
to let the user label whether a set of data is in the
same class than directly assign a distance between
each pair or classify whether a pair of data points
is a match or not. Learning a good distance met-

ric in the feature space is essential in many real-
world NLP and IR applications. For example, Web
news article clustering applying hierarchical cluster-
ing or k-means requires that the distance between
the two feature vectors extracted from the news ar-
ticles faithfully reflect the semantic similarity be-
tween them for these algorithms to perform well.

Studies on distance metric learning over the past
few years show that the learned metric can outper-
form Euclidean distance metric. The constraints of
training examples in learning usually comes from
the global or local adjacency information. Data
points with the same class labels are supposed to be
connected while those with different classes labels
disconnected. Supervised algorithms aim to learn
the distance metric to make the adjacency relation-
ships in the training examples preserved.

One of the most common approaches to distance
metric learning is to learn a Mahalanobis distance
metric. Example algorithms to learn a Mahalanobis
distance metric include (Xing et al., 2002; Gold-
berger et al., 2004; Shaw et al., 2011).

A common limitation shared by these algorithms
is that they fail to scale up to high dimensional data
sets. When those algorithms run on high dimen-
sional data sets, they usually run out of memory.
However, many NLP applications depend on tens of
thousands of features to perform well. Dimension-
ality reduction and approximation have been sug-
gested, but they usually degrade performance. Other
issues occur when the data sets consists of a large
number of disjoint classes. In this case, the learned
distance metric must map the data points to a space
where the data points cluster unevenly into a large
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number of small groups, which makes the learning
problem harder and may require special treatments.

In this paper, we present a new scalable approach
to distance metric learning that addresses the scal-
ability issues mentioned above. To deal with high
dimensionality, one approach is to factorize the met-
ric matrix in the Mahalanobis distance metric into
low-rank matrix. This reduces the number of pa-
rameters that must be learned during the learning
phase. However, the learning problem becomes non-
convex. Different initializations may result in dras-
tically different performance due to local optima.
We solve this problem by introducing random pro-
jection, which projects data points to a low dimen-
sional space before learning a low dimensional full-
rank metric matrix. We show that this strategy not
only is more robust than the low-rank approxima-
tion, but also outperforms the Principal Component
Analysis (PCA), a common approach to dimension-
ality reduction.

Another contribution that our approach offers is
new regularization terms in the objective function
of learning. The new terms specify that one should
learn to minimize the distance for data points in the
same classes and maximize those in different ones.
We found that minimization but not maximization
would lead to the best performance, so we kept only
the minimization term.

We evaluated our new approach with data sets
from two problem domains. One domain is about
learning semantic similarity between Web pages.
This domain was studied in (Shaw et al., 2011) and
involves moderately high dimensional data sets of
bag-of-words. The other is about matching seman-
tically related phenotype variables across different
genome-wide association studies (GWAS) (Hsu et
al., 2011). This problem domain requires extremely
high dimensional data for a learner to perform well.
Our experimental results show that our new algo-
rithm consistently outperform the previous ones in
both the domains.

2 Distance Metric Learning

Let X ∈ Rd×n be the feature matrix of input data
points. For any two data points xi, xj ∈ Rd×1 in X,
the (square of) the Mahalanobis distance between xi

and xj is defined as

Di,j
M = (xi − xj)

ᵀM(xi − xj),

where M ∈ Rd×d is a metric matrix. The distance
is always non-negative because M is required to be
positive semidefinite (PSD).

Xing (2002) used semidefinite programming to
learn a Mahalanobis distance metric for clustering.
It was a convex optimization problem, which al-
lowed them to derive local optima free algorithms.
Weinberger (2005) learned a Mahalanobis distance
metric for the k-nearest neighbor classifier by main-
taining a margin between data points in different
classes, i.e., enforcing the neighbors of the same
class to be closer than all others. As in the sup-
port vector machines, the learning problem was re-
duced to convex optimization based on hinge loss.
Yang (2006) presented a comprehensive survey on
distance metric learning.

Recently, Shaw et al. (2011) followed the preced-
ing approaches but reformulated the problem, as an
instance of the on-line learning algorithm PEGA-
SOS (Shalev-Shwartz et al., 2011), albeit a com-
plex construction. In a way, it scaled up the tradi-
tional metric learning method to a larger amount of
data points. They also reformulated the margin men-
tioned above as triplets over the data set and clarify
the derivation of the objective function. Each train-
ing example used here is a triplet (xi, xj , xk), con-
sisting of a pair xi and xj in the same class and xk

that is in a different class. Learning in this case en-
sures that the learned distance between xi and xj is
less than their distance to xk. In comparison, one
may formulate the distance learning problem as bi-
nary classification, where the objective is to mini-
mize the match probability of data point pairs in dif-
ferent classes and maximize those in the same ones.
Since there will always be much more data point
pairs in different classes than those in the same ones,
this formulation always lead to an unbalanced clas-
sification problem.

3 Strategies for Scaling Up Learning

Shaw et al. (2011) suggested various strategies to
scale up the algorithm for high dimensional multi-
class data. In this section, we will review these
strategies and their weaknesses, and then, present
our approach that addresses these weaknesses.
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3.1 Dimensional Reduction

Four strategies were suggested to handle the high di-
mensional data sets:

• Diagonal Approximation,

• Principal Component Analysis (PCA),

• Low Rank Decomposition,

• Random Projection.

Diagonal approximation requires the metric ma-
trix M to be diagonal, thus it consists of only d pa-
rameters to learn, instead of d× d. It indeed shrinks
the number of parameters to learn, but also ignores
the feature-feature interaction and might harm the
expressiveness of the model.

Dimensionality reduction using PCA as a prepro-
cessing step is a common way to deal with high di-
mensional data. However, it does not always work
satisfactorily, especially when the data set does not
have an apparent intrinsic low dimensional structure.
It usually fails to perform well for those data sets.

Shaw et al. (2011) suggested a low-rank decom-
position to scale up distance metric learning. The
idea is to decompose M into LᵀL, where L is a
r × d matrix and r � d is a predefined low-rank
degree. This approach reduces computational cost
but results in a non-convex problem that suffers from
local minima. Previously, low-rank decomposition
has been proposed for other machine learning prob-
lems. For example, Rennie et al. (2005) applied it
to scale up Maximum Margin Matrix Factorization
(MMMF) (Srebro et al., 2004). Originally, MMMF
was formulated as a convex semi-definite program-
ming (SDP) problem and solved by a standard SDP
solver, but it is no longer applicable for the non-
convex low-rank decomposition. Therefore, they
solved the non-convex problem by Conjugate Gradi-
ent (CG) (Fletcher and Reeves, 1964), but still there
is no guarantee that CG will converge at a global
minimum.

Our choice is to use random projection LᵀRL,
where L is a random r × d (r � d) matrix, with
all of its element in (0, 1). Random projection the-
ory has been developed by Johnson and Linden-
strauss(1984). The theory shows that a set of n
points in a high dimensional (d) Euclidean space

can be mapped into a low-dimensional (r � d) Eu-
clidean space such that the distance between any two
points will be well-persevered (i.e., changes by only
a tiny factor ε if r is greater than a function of n and
ε). Let R be a r × r PSD matrix to be learned from
data. Distance between xi and xj becomes

Di,j
R = (xi − xj)

ᵀLᵀRL(xi − xj).

There are two possible strategies to generate a
random projection matrix L. One is completely ran-
dom projection, where all elements are generated in-
dependently; the other one is orthonormal random
projection, which requires that Lr×d be a matrix
with r orthonormal random column vectors. The
Gram-Schmidt process (Golub and Van Loan, 1996)
generates such a matrix, in which one starts by gen-
erating a random column and then the next columns,
though generated randomly, too, must be orthonor-
mal with regard to other columns. In both strategies,
all of the elements must be in (0, 1).

Consider L to be a matrix which compresses xi

with dimension d by vi = Lxi with dimension r.
Hence,

Di,j
R = (vi − vj)

ᵀR(vi − vj) (1)

This distance metric can be learned by searching for
R that minimizes the following objective function:

F(R) =
1

|S|
∑

(i,j,k)∈S

Z+(Di,j
R −D

i,k
R + ξ), (2)

where Z+(x) is the hinge loss function. It can be
shown that this new objective function is convex. As
in Shaw et al., the training examples are given as a
hinge loss function over triplets.

S = {(i, j, k)|Aij = 1,Aik = 0}

is the set of all triplets where A is the adjacency
matrix of X. ξ is a predefined constant margin.
The hinge loss function will penalize a candidate R
when the resulting distance between xi and xj plus
the margin is greater than the distance between xi

and xk.

3.2 Intra and Inter-Class Distance
One challenge in distance metric learning is deal-
ing with data sets that can be clustered into a large
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number of distinct classes. The hinge loss term in
Eq. (2) does not consider this because it only keeps
a margin of data points in one class against points
in other classes. In our approach, we would like to
learn a distance metric such that the entire set data
points in the same class are close to each other and
away from those in other classes. This idea is real-
ized by adding additional regularization terms to the
objective function. These new regularization terms
are proved to be useful to handle problem domains
where data points form a large number of mutually-
exclusive classes.

The formula for intra-class distance regularization
is given as

I1(R) =
1

|S1|
∑

(i,j)∈S1

Di,j
R , S1 = {(i, j)|Aij = 1},

(3)
while the formulation for inter-class distance regu-
larization is

I2(R) =
1

|S2|
∑

(i,k)∈S2

Di,k
R , S2 = {(i, k)|Aik = 0}.

(4)

3.3 Algorithm

Combining the regularization, the hinge loss, intra-
class and the inter-class item, we get the complete
objective function as Eq. (5).

F(R) =
λ

2
‖R‖2F+

1

|S|
∑

(i,j,k)∈S

Z+(Di,j
R −D

i,k
R + ξ)

+
1

|S1|
∑

(i,j)∈S1

Di,j
R −

1

|S2|
∑

(i,k)∈S2

Di,k
R

(5)

It is also possible to assign weights to terms above.
According to Vandenberghe (1996), Eq. (5) can be
expressed as a convex semidefinite programming
problem. By construction, Eq. (5) can also be re-
formulated as an instance of PEGASOS algorithm,
which basically employs a sub-gradient descent al-
gorithm to optimize with a stochastic batch selec-
tion, and a smart step size selection. The sub-

gradient of F in terms of R is then:

∇F = λR +
1

|S+|
∑

(i,j,k)∈S+

LXC(i,j,k)XᵀLᵀ

+
1

|S1|
∑

(i,j)∈S)1

LXC1
(i,j)XᵀLᵀ

− 1

|S2|
∑

(i,k)∈S2

LXC2
(i,k)XᵀLᵀ,

S+ = {(i, j, k)|Di,j
R + ξ −Di,k

R > 0}

(6)

Here the sparse symmetric matrix C is defined such
that

C
(i,j,k)
jj = C

(i,j,k)
ik = C

(i,j,k)
ki = 1,

C
(i,j,k)
ij = C

(i,j,k)
ji = C

(i,j,k)
kk = −1,

and zero elsewhere. Similarly, C1 is given by

C1
(i,j)
ii = C1

(i,j)
jj = 1,

C1
(i,j)
ij = C1

(i,j)
ji = −1,

and zero elsewhere. C2 is

C2
(i,k)
ii = C2

(i,k)
kk = 1,

C2
(i,k)
ik = C2

(i,k)
ki = −1,

and zero elsewhere. It is easy to verify that

tr(C(i,j,k)XᵀLᵀRLX) = Di,j
R −D

i,k
R .

The derivation is from (Petersen and Pedersen,
2006):

∂tr(C(i,j,k)XᵀLᵀRLX)

∂R
= LXC(i,j,k)XᵀLᵀ

Using the same method for intra-class and inter-
class terms, the subgradient ofF at R can be derived
as

∇F = λR + LX

 ∑
(i,j,k)∈S+

C(i,j,k)

+
1

|S1|
∑

(i,j)∈S1

C1
(i,j)

− 1

|S2|
∑

(i,k)∈S2

C2
(i,k)

XᵀLᵀ.

(7)

According to the PEGASOS algorithm, instead
of using all elements in S, S1 and S2 to optimize
F(R), we randomly sample subsets of S, S1 and S2

with size of B, B1 and B2 in each iteration. The
full detail of the algorithm is given as procedure
LEARN METRIC.
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procedure LEARN METRIC(A ∈ Bn×n, X ∈ Bn×d,
λ, S, S1, S2, B, B1, B2, T , ξ)

L← rand(r, d)
R1 ← zeros(r, r)
for t← 1− T do

ηt ← 1
λt

C,C1,C2 ← zeros(n, n)
for b← 1 to B do

(i, j, k)← Sample from S

if Di,j
R −D

i,k
R + ξ ≥ 0 then

Cjj ← Cjj + 1, Cik ← Cik + 1
Cki ← Cki + 1, Cij ← Cij + 1
Cji ← Cji + 1, Ckk ← Ckk + 1

end if
end for
for b← 1 to B1 do

(i, j)← Sample from S1

C1,ii ← C1,ii + 1, C1,jj ← C1,jj + 1
C1,ij ← C1,ij − 1, C1,ji ← C1,ji − 1

end for
for b← 1 to B2 do

(i, k)← Sample from S2

C2,ii ← C2,ii + 1, C2,kk ← C2,kk + 1
C2,ik ← C2,ik − 1, C2,ki ← C2,ki − 1

end for
∇t ← λR + LX(C + C1 −C2)X

ᵀLᵀ

Rt+1 ← Rt − ηt∇t
Rt+1 ← [Rt+1]

+ Optional PSD projection
end for
return L, RT

end procedure

4 Experimental Results

We applied our approach in two different problem
domains. One involves a small amount of data
points with moderately high dimensions (more than
1,000 and less than 10,000); the other involves a
large number of data points with very high dimen-
sions (more than 10,000). The results show that our
approach can perform well in both cases.

4.1 Wikipedia Articles

In this domain, the goal is to predict seman-
tic distances between Wikipedia documents about
“Search Engine” and “Philosophy Concept”. The
data sets are available from Shaw et al. (2011).
They manually labeled these pages to decide which
pages should be linked, and extracted bag-of-words
features from Web documents after preprocessing
steps. Each data set forms a sub-network of all re-

lated documents.
The problem here is to learn the metric matri-

ces LᵀRL according to the sub-network described
above. The random projection matrix L was ran-
domly initialized in the beginning and R was ob-
tained by optimization, as described in Section 3.

Tables 1 shows the statistics about the Wikipedia
documents data sets.

Table 1: Wikipedia pages dataset

Data set n m d

Search Engine 269 332 6695
Philosophy Concept 303 921 6695

In this table, n denotes the number of data points, m,
the number of edges, and d, feature dimensionality.

We split this data set 80/20 for training and test-
ing, where 20% of the nodes are randomly chosen
for evaluations. The remaining 80% of data were
used in a five-fold cross-validation to select the best
performing hyper-parameters, e.g., λ in Eq. (5). We
then trained the model with these hyper-parameters.

With the held-out evaluation data, we applied the
learned distance metric to compute the distance be-
tween each pair of data points. Then we ranked all
distances and measured the quality of ranking using
the Receiver Operator Characteristic (ROC) curve.
The area under the curve (AUC) was then used to
compare the performance of various algorithms.

The list below shows the alternatives of the ob-
jective functions used in the algorithms compared
in the experiment. Note that HL denotes the hinge
loss term, parameterized by either M, the full-rank
metric matrix, L, the low-rank approximation ma-
trix, or R, dimensionally-reduced metric matrix af-
ter random projection. I1 denotes the intra-class
distances as given in Eq. (3) and I2 inter-class dis-
tances in Eq. (4). Algorithms A, B, C and D are
diagonal approximation. Algorithm E implements
the low rank decomposition with reduced dimension
r = 300. Algorithms F, G, H, and I are variations of
our approach with combinations of random projec-
tion and/or intra/inter-class regularization. The re-
duced dimension of the new feature space was also
300 and R is a full matrix. Algorithm J uses PCA
to reduce the dimension to 300 and M here is a full
matrix.

In all algorithms, elements in the random projec-
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tion matrix L were generated at random indepen-
dently except for algorithm L, where L was gener-
ated such that its columns are orthonormal.

A λ
2 ‖M‖

2
F +HL(M)

B λ
2 ‖M‖

2
F +HL(M) + I1(M)

C λ
2 ‖M‖

2
F +HL(M)− I2(M)

D λ
2 ‖M‖

2
F +HL(M) + I1(M)− I2(M)

E λ
2 ‖L‖

2
F +HL(L)

F λ
2 ‖R‖

2
F +HL(R)

G λ
2 ‖R‖

2
F +HL(R) + I1(R)

H λ
2 ‖R‖

2
F +HL(R)− I2(R)

I λ
2 ‖R‖

2
F +HL(R) + I1(R)− I2(R)

J λ
2 ‖M‖

2
F +HL(M) (PCA dimension reduction)

L λ
2 ‖R‖

2
F +HL(R) + I1(R) (orthonormal projection)

Table 2: Performance Comparison on Wikipedia Docu-
ments

Search Engine Philosophy Concept
A 0.7297 0.6935
B 0.6169 0.5870
C 0.5817 0.6808
D 0.6198 0.6704
E* 0.6952 0.4832
F 0.6962 0.6849
G 0.7909 0.7264
H 0.5744 0.6903
I 0.5984 0.6966
J 0.3509 0.4525
L 0.7939 0.7174

* Algorithm E performed unstably in this experiment
even when all initial hyper-parameters were the same.

The running time for combined training and eval-
uation for A, B, C, D was around 15 seconds(s), for
E about 300s, for F, G, H and I 200s and J 300s.
All ran on a MacBook Pro notebook computer with
8GB of memory. Learning full-rank M is impossi-
ble because it ran out of memory.

Table 2 shows that algorithm G performs better
than others in terms of the AUC metric, suggesting

that the distances of two points in the same class is
likely to be small and similar to some degree while
the ones in the different classes vary a lot, as we
speculated. Algorithm A also performs well proba-
bly because the bag-of-words features tend to be in-
dependent of each other and lack for word-to-word
(feature-to-feature) interactions. As a result, diago-
nal approximation is sufficient to model the seman-
tic similarity here. The low rank approximation al-
gorithm E is unstable. Different trial runs resulted
in drastically different AUCs. The AUC reported
here is the best observed, but still not the best com-
pared to other algorithms. In contrast, random pro-
jection algorithms rarely suffer this problem. PCA
with dimensionality reducing to 300 hurt the perfor-
mance significantly. This might be because there is
too much information loss for such a low dimension-
ality, compared to the original one. However, using
random L to project the feature vectors to 300 di-
mensions did not seem to have the same problem,
according our results of algorithm F.

Comparing different strategies to generate the
random projection matrix L, we found that algo-
rithms F and L basically performs similarly, yet vari-
ations of the performance of algorithm F in different
trials are slightly higher than L, though the varia-
tions for both algorithms are negligible.

4.2 Phenotype Similarity

The second dataset comes from a project supported
by NIH, with the objective of matching semantically
related phenotype variables across studies. For train-
ing, phenotype variables that are semantically sim-
ilar are categorized to be in the same class. The
data set that we used here contained annotated data
from the harmonization effort in the CARe (the Can-
didate Gene Association Resource) consortium, led
by Prof. Leslie Lange from the University of North
Carolina. This data set is comprised of 3,700 phe-
notypes that were manually classified into 160 cate-
gories. We note that previous works in distance met-
ric learning usually used test data sets with less than
30 classes or categories.

A phenotype variable is given as a tuple of a con-
dition description and an expert-assigned category.
For example
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1. 〈 Forced Vital . . .
. . . Capacity (Litres),
Forced Expiratory Volume 〉

2. 〈 MAX MID-EXPIR’Y FLOW RATE . . .
. . . FR MAX CURVE,
Forced Expiratory Volume 〉

3. 〈 Age at natural menopause,
Menopause 〉

If we regard condition descriptions as data points
and expert-assigned categories as class labels, each
tuple above can be considered to be a node with a
label in a graph. Hence, nodes with the same la-
bels should be a match (be linked) to form a se-
mantic network. For example, phenotype 1 and 2
forms a match because they have the same category
‘‘Forced Expiratory Volume.’’

Previously, we applied the Maximum Entropy
model (MaxEnt) to predict the match on pairs, which
were labeled according to the annotated data by con-
sidering variables in the same category as semanti-
cally similar (i.e., a match), and those across cate-
gories as dissimilar (Hsu et al., 2011). We extracted
features from each pair, such as whether a keyword
appear in both phenotype descriptions, and trained a
MaxEnt model to predict whether a given pair is a
match. To evaluate the performance, we split vari-
ables into training and test sets and paired variables
within each set as the training and test data sets.

After careful observation of the descriptions of
the phenotype variables, we found that they are in
general short and non-standardized. To standardize
them, and detect their semantic similarity, we ex-
panded the descriptions using UMLS (Unified Med-
ical Language System, http://www.nlm.nih.
gov/research/umls/). We search UMLS with
a series of n-grams constructed from the variable
descriptions. For example, for a variable descrip-
tion: “Age Diagnosed Coronary Bypass”. The n-
gram words will be “age diagnosed coronary by-
pass”, “age diagnosed coronary”, “diagnosed coro-
nary bypass”, “age diagnosed”, “diagnosed coro-
nary”, “coronary bypass”. We query UMLS for con-
cepts corresponding to these n-grams. The defini-
tions thus returned are appended to the original vari-
able description. We reused the feature set described

in (Hsu et al., 2008) for the BioCreative 2 Gene
Mention Tagging task, but removed all char-gram
features. This features set was carefully designed
and proved to be effective for the gene mention tag-
ging task, but results in a very high dimensional data
set. Note that this feature set is different from the
one used in our previous work (Hsu et al., 2011).

To make the configurations of our experiment ex-
actly comparable with what described in Sharma et
al. (2012), we modified the algorithms to be pair-
wise oriented. We randomly divided the annotated
phenotype variable description data into three folds
and created pairs for this experiment. The statis-
tics of these folds is shown in Table 3. We trained
our models on connected and disconnected training
pairs in two folds and then evaluated with the pairs
in the other fold. Again, after we used the trained
model to predict the distances of all test pairs, we
ranked them and compared the quality of the rank-
ing using the ROC curves as described earlier. The
evaluation metric is the average of their AUC scores
for the three folds.

Table 3: Phenotype dataset

Fold train+ train− test+ test−
Fold1 98,964 2,824,398 24,550 705,686
Fold2 99,607 2,823,755 25,386 704,850
Fold3 98,013 2,825,349 23,892 706,344

a. The number of data points is 2,484 and dimension here
is 18,919.
b. In this table, train+ denotes number of connected (pos-

itive) pairs in training data, train− number of discon-
nected (negative) pairs in training data, test+ number of
connected pairs in testing data, test− number of discon-
nected pairs in testing data.

We compared algorithms A, E, G, H, I, J and L
listed earlier with the same configurations except
that the reduced dimensionality r = 500. Perfor-
mance of the MaxEnt algorithm was also reported
as K. Their AUC scores are shown in Table 4.

Training and evaluation processes took each fold
for algorithm A around 500 seconds(s) , for algo-
rithm E around 1400s , for algorithms F, G, H, I and
L around 900s , for J 1400s, and for K 1200s.

The experimental results shows that random pro-
jection (algorithm F) outperformed diagonal approx-
imation (algorithm A) by reserving feature-feature
interactions with merely 500 dimensions, compared
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Table 4: Performance Comparison on Phenotype Data

AUC1 AUC2 AUC3 AUC*
A 0.7668 0.7642 0.7627 0.7646
E* 0.9612 0.9617 0.9689 0.9639
F 0.8825 0.8953 0.8684 0.8820
G 0.9461 0.9545 0.9293 0.9433
H 0.7149 0.7272 0.7299 0.7240
I 0.8930 0.8888 0.8809 0.8876
J 0.7582 0.7357 0.7481 0.7473
K 0.8884 0.9107 0.8996 0.8996
L 0.9505 0.9580 0.9527 0.9537

AUC1,2,3 denote the AUC performance of Fold1,2,3 re-
spectively. AUC* is the average AUC score.
* Results of algorithm E varied wildly in each running.
For example, using Fold1 with a fixed hyper-parameter
setting, its AUC scores were 0.9612, 0.9301, 0.9017 and
0.8920 in different trails, respectively.

to the original dimensionality of nearly 19K. Again,
the best performer is algorithm G, which combines
random projection with intra-class regularization.
The intra-class term was beneficial but the inter-
class term was not. One speculation is that the dis-
tance between data points in the same class may
be confined in a small range while those in dif-
ferent classes may vary widely. Maximizing inter-
class distance here might have distorted the learned
feature space. The low rank decomposition (algo-
rithm E) behaved unstably in this data sets. The re-
sult shown here is the best-chosen one. In fact, the
non-convex low-rank decomposition results in dras-
tically different AUC in each trial run. We speculate
that the best result observed here is an overfitting.
Diagonal approximation (algorithm A) and PCA (al-
gorithm J) performed similarly, unlike the results for
the Web documents.

Finally, when comparing different strategies to
generate the random projection matrix L, we had
the same conclusion as for the Wikipedia domain
that orthonormal random projection (algorithm L)
has a slight advantage in terms of low variations in
different trials over completely indepndent random
project (algorithm F).

5 Discussions and Future Work

We have proposed a convex, input-size free op-
timization algorithm for distance metric learning.
This algorithm combines random projection and
intra-class regularization that addresses the weak-
nesses presenting in the previous works. When the
dimension d is in tens of thousands, as in many NLP
and IR applications, M will be hundreds of millions
in size, too large and intractable to handle for any
existing approaches. Our approach addresses these
issues, making the learning not only scalable, but
also more accurate.

In the future, we will investigate theoretical prop-
erties that explain why the synergy of random pro-
jection and intra-class regularization works well and
robust. We would also like to investigate how to use
unlabeled data to regulate the learning to accomplish
semi-supervised learning.
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Abstract

In this work, we propose a graph-based
approach to computing similarities between
words in an unsupervised manner, and take ad-
vantage of heterogeneous feature types in the
process. The approach is based on the creation
of two separate graphs, one for words and
one for features of different types (alignment-
based, orthographic, etc.). The graphs are con-
nected through edges that link nodes in the
feature graph to nodes in the word graph, the
edge weights representing the importance of a
particular feature for a particular word. High
quality graphs are learned during training, and
the proposed method outperforms experimen-
tal baselines.

1 Introduction

Data-driven approaches in natural language process-
ing (NLP) have resulted in a marked improvement
in a variety of NLP tasks, from machine translation
to part-of-speech tagging. Such methods however,
are generally only as good as the quality of the data
itself. This issue becomes highlighted when there
is a mismatch in domain between training and test
data, in that the number of out-of-vocabulary (OOV)
words increases, resulting in problems for language
modeling, machine translation, and other tasks. An
approach that specifically replaces OOV words with
their synonyms from a restricted vocabulary (i.e., the
words already contained in the training data) could
alleviate this OOV word problem.

∗This work was done during the first author’s internship at
the IBM T.J. Watson Research Center, Yorktown Heights, NY
in 2012.

Vast ontologies that capture semantic similarities
between words, also known as WordNets, have been
carefully created and compiled by linguists for dif-
ferent languages. A WordNet-based solution could
be implemented to fill the gaps when an OOV word
is encountered, but this approach is not scalable in
that it requires significant human effort for a num-
ber of languages in which the WordNet is limited
or does not exist. Thus, a practical solution to this
problem should ideally require as little human su-
pervision and involvement as possible.

Additionally, words can be similar to each other
due to a variety of reasons. For example, the similar-
ity between the words optimize and optimal can be
captured via the high orthographical similarity be-
tween the words. However, relying too much on a
single feature type may result in false positives, e.g.,
suggestions of antonyms instead of synonyms. Valu-
able information can be gleaned from a variety of
feature types, both monolingual and bilingual. Thus,
any potential solution to an unsupervised or mildly
supervised word similarity algorithm should be able
to take into account heterogeneous feature types and
combine them in a globally effective manner when
yielding the final solution.

In this work, we present a graph-based approach
to impute word similarities in an unsupervised man-
ner and takes into account heterogeneous features.
The key idea is to maintain two graphs, one for
words and one for the all the features of different
types, and attempt to promote concurrence between
the two graphs in an effort to find a final solution.
The similarity graphs learned during training are
generally of high quality, and the testing approach
proposed outperforms the chosen baselines.
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2 Approach

The eventual goal is to compute the most similar
word to a given OOV word from a restricted, pre-
existing vocabulary. We propose a graph-based so-
lution for this problem, relying on undirected graphs
to represent words and features as well as the simi-
larities between them. The solution can be broadly
divided into two distinct sub-problems, the training
and testing components.

2.1 Learning the Graph
The intuition of our approach is best expressed
through a small example problem. Figure 1 shows
an example graph of words (shaded) and features
(unshaded). For exposition, let v1 = optimize, v2 =
optimal, and v3 = ideal, while f1 = orth |opti, i.e.,
an orthographic feature corresponding to the sub-
string “opti” at the beginning of a word, and f5 =
align idéal, i.e., a bilingual feature corresponding to
the alignment of the word “optimal” to the French
word “idéal” in the training data1.

v1	


v3	

v2	


v4	
 v5	


f1	


f2	


f5	


f3	


f4	


Zv1,f1

Wf1,f5

Wv1,v2

Figure 1: An example graph for explanatory purposes. The
nodes in red constitute the word graph, and the nodes in white
the feature graph.

There are three types of edges in this scenario.
Edges between word nodes (e.g., Wv1,v2) represent
word similarities, and edges between features (e.g.,
Wf1,f5) represent feature similarities. Edges be-
tween words and features (e.g., Zv1,f1 , the dashed
lines) represent pertinent or active features for a
given word when computing its similarity with other
words, with the edge weight reflecting the degree of
importance.

We restrict the values of all similarities to be be-
tween 0 and 1, as negative-valued edges in undi-

1such word alignments can be extracted through standard
word alignment algorithms applied to a parallel corpus in two
different languages.

rected graphs are significantly more complicated
and would make subsequent computations more in-
tricate. In an ideal situation, the similarity matrices
that represent the word and feature graphs should be
positive semi-definite, which provides a nice prob-
abilistic interpretation due to connections to covari-
ance matrices of multivariate distributions, but this
constraint is not enforced here. Future work will
focus on improved optimization techniques that re-
spect the positive semi-definiteness constraint.

2.1.1 Objective Function
To learn the graph, the following objective func-

tion is minimized:

Ω(WV ,WF ,Z) = α0

∑
fp,fq∈F

(Wfp,fq
−W ∗fp,fq

)2 (1)

+ α1

∑
vi∈V

∑
fp∈F

(Zvi,fp
− Z∗vi,fp

)2 (2)

+ α2

∑
vi,vj∈V

∑
fp,fq∈F

Zvi,fp
Zvj ,fq

(Wvi,vj
−Wfp,fq

)2

(3)

+ α3

∑
vi,vj∈V

∑
fp,fq∈F

Wvi,vjWfp,fq (Zvi,fp − Zvj ,fq )2

(4)

where Wfp,fq is the current similarity between fea-
ture fp and feature fq (with corresponding initial
value W ∗fp,fq

), Wvi,vj is the current similarity be-
tween word vi and word vj , Zvi,fp is the current
importance weight of feature fp for word vi (with
corresponding initial value Z∗vi,fp

), and α0 to α3 are
parameters (that sum to 1) which represent the im-
portance of a given term in the objective function.

The intuition of the objective function is straight-
forward. The first two terms correspond to minimiz-
ing the `2-norm between the initial and current val-
ues of Wfp,fq and Zvi,fp (for further details on ini-
tialization, see Section 2.1.2). The intuition behind
the third term is to minimize the difference between
the word similarity of words vi and vj and the fea-
ture similarity of features fp and fq in proportion to
how important those features are for words vi and vj

respectively. If two features have high importance
weights for two words, and those features are very
similar to each other, then the corresponding words
should also be similar. The fourth term has a simi-
lar rationale, in that it minimizes the difference be-
tween importance weights in proportion to the sim-
ilarities. In other words, we attempt to promote pa-
rameter concurrence between the word and feature
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graphs, which in turn ensures smoothness over the
two graphs.

The basic idea of minimizing two quantities of the
graph in proportion to their link strength has been
used before, for example (but not limited to) graph-
based semi-supervised learning and label propaga-
tion (Zhu et al., 2003) where the concept is applied
to node labels (as opposed to edge weights as pre-
sented in this work). In such methods, the idea is
to ensure that the function varies smoothly over the
graph (Zhou et al., 2004), i.e., to promote parame-
ter concurrence within a graph, whereas we promote
parameter concurrence across two graphs. In that
sense, the α parameters as control the trade-off be-
tween respecting initial values vs. achieving consis-
tency between the two graphs.

While not necessary, we decided to tie the param-
eters together, such that α0 and α2 (representing fea-
ture similarity preference for initial values vs. pref-
erence for consistency) sum to 0.5, and α1 and α3

sum to 0.5 as well, implicitly giving equal weight to
feature similarities and importance weights. In the
future, a more appropriate method of learning these
α parameters will be explored.

2.1.2 Initialization
In many unsupervised algorithms, e.g., EM, the

initialization of parameters is of paramount impor-
tance, as these initial values guide the algorithm in
its attempt to minimize a proposed objective func-
tion. In our problem, initial estimates for word simi-
larities do not exist (otherwise the problem would be
considerably easier!). Instead, word similarities are
seeded from the initial feature similarities and initial
importance weights, and all three quantities are then
iteratively refined.

The initial importance weight values are com-
puted from the co-occurrence statistics between
words and features, by taking the geometric mean
of the conditional probabilities (feature given word
and word given feature) in both directions: Z∗vi,fp

=√
P(vi|fp)P(fp|vi). For the initial feature similar-

ity values, the pointwise mutual information (PMI)
vector for each feature is first computed, by taking
the log ratio of the joint probability with each word
to the marginal probabilities of the feature and the
word (also done through the co-occurrence statis-
tics). Subsequently, the initial similarity is then
computed as the normalized dot product between
feature vectors:

PMIfp ·PMIfq

‖PMIfp‖‖PMIfq‖
.

After computing the initial feature similarity
and weights matrices, we remove features that are
densely connected in the feature similarity graph by
trimming high entropy features (normalizing edge
weights and treating the resulting values as a prob-
ability distribution). This pruning was done in or-
der to speed up the optimization procedure, and we
found that results were not affected by pruning away
the top one percentile of features sorted by entropy.

2.1.3 Optimization

The objective function (Equations 1 to 4) is con-
vex and differentiable with respect to the individ-
ual variables Wvi,vj ,Wfp,fq , and Zvi,fp . Hence, one
way to minimize it is to evaluate the derivatives of
the objective function with respect to these variables,
set to 0 and solve. The final update equations are
provided in the Appendix.

The entire training pipeline is captured in Figure
2. We first compute the word similarities from the
initial feature similarities and importance weights,
and then update those values in turn, based on
the alternating minimization method (Csiszár and
Tusnády, 1984). The process is repeated till con-
vergence.

Preprocessing	

Feature Extraction	


Initialization	


Update Word Sim	


Corpus	


Update Feature Sim	
Repeat for N 
iterations	


Update Weights	


Figure 2: Flowchart for the training pipeline described in Sec-
tion 2.1.3. The number of iterations N is determined before-
hand.
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2.2 Link Prediction

Given a learned word similarity graph (along with
a learned feature similarity graph and the edges be-
tween the two graphs) and an OOV word with as-
sociated features, the proposed solution should also
generate a list of synonyms. In a graph-based set-
ting, this is analogous to the link prediction prob-
lem: given a graph and a new node that needs to be
embedded in the graph, which links, or edges, do we
add between the new node and all the existing ones?

We experimented with two different approaches
for link prediction. The first computes word sim-
ilarities in the same manner as in training, as per
Equation 5. However, since the learned importance
weights Zvi,fp (or Zvj ,fq ) are specific to a given
word, importance weights for the OOV word are ini-
tialized in the same manner as in Section 2.1.2 for
the words in the training data. Thus, for a given
OOV word, we obtain word similarities with all
words in the vocabulary through Equation 5, and
output the most similar words by this metric.

The second method is based on a random walk
approach, similar to (Kok and Brockett, 2010),
wherein a probabilistic interpretation is imposed on
the graphs by row-normalizing all of the matrices
involved (word similarity, feature similarity, and im-
portance weights), implying that the transition prob-
ability, say from node vi to vj , is proportional to
the similarity between the two nodes. For this ap-
proach, only the active features for a given OOV
word, i.e., the features that have at least one non-
zero Z edge between the feature and a word, are
used (see Section 2.3 for more details on active and
inactive features). First, M random walks are ini-
tialized from each active feature node, each walk of
maximum length T . For every walk, the number of
steps needed to hit a word node in the word simi-
larity graph for the first time is recorded. After av-
eraging across the M runs, we need to average the
hitting times across all of the active features, which
is done by weighting the hitting times of each ac-
tive feature f∗ by

∑
vi
Zvi,f∗ , i.e., the sum across all

rows of a given feature (represented by a column) in
the importance weights matrix.

The random walk-based approach introduces
three new parameters: M , the number of random
walks per active feature, T , the maximum length
of each random walk, and β, a parameter that con-
trols how often a random walk should take a Z
edge (thereby transitioning from one graph to the

other) or a W edge (thereby staying within the same
graph). If a node has both Z and W edges, then β
is the parameter for a simple Bernoulli distribution
that samples whether to take one type of edge or the
other; if the node has only one type of edge, then the
walk traverses only that type.

2.3 Sparsification

There is a crucial point regarding Equations 1 to
4, namely that restricting the inputted values to be-
tween 0 and 1 does not guarantee that the resulting
similarity or weight value will also be between 0 and
1, due to the difference in terms in the numerator
of the equations. In order to bypass this problem,
a projection step is employed subsequent to an up-
date, wherein the value obtained is projected into the
correct part of the n-dimensional Euclidean space,
namely the positive orthant. Although slightly more
involved in the multidimensional case, i.e., where
n > 1, since the partial derivatives as computed
in Equations 5 to 7 are with respect to a single ele-
ment, orthant projection in the unidimensional case
amounts to nothing more than setting the value to 0
if it is less than 0. This effectively sparsifies the re-
sulting matrix, and is similar to the soft-thresholding
effect that comes about due to `1-norm regulariza-
tion. Further exploration of this link is left to future
work.

However, the sparsification of the graphs/matrices
is problematic for the random walk-based approach,
in that an OOV word may consist of features that are
all inactive, i.e., none of the features have a non-zero
Z edge to the word similarity graph. In this case,
we cannot compute which words in our vocabulary
are similar to the OOV word. One method to allevi-
ate this drawback is to add back Z edges that were
removed during training with their initial weights.
Yet, we found that adding back all of the features
for a test word was worse than filtering out the fea-
tures with the highest entropy (i.e., with the most
edges to other features) out of the features to add
back. The latter approach was thus adopted and is
the setup used in Section 3.5.

3 Experiments & Results

In our experiments, we looked at both the quality of
the similarity graphs learned from the data, as well
as the performance of the link prediction techniques.
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Corpus Sentences Words
EuroParl+ NewsComm (Train) 1.64 million+ 40.6 million+
WMT2010 (Test) 2034 44,671

Table 1: Corpus statistics for the datasets used in evaluation.

3.1 Dataset
Table 1 summarizes the statistics of the training and
test sets used. We used the standard WMT 2010
evaluation dataset, and the training data consists of a
combination of European Parliament and news com-
mentary bitext, while the test set is from the news
domain. Note that a parallel corpus is not needed as
only the English side is used. While the current ex-
periment is restricted to English, any language can
be used in principle.

3.2 Features
During the feature extraction phase, we first filtered
the 30 most common words from the corpus and do
not extract features for those words. However, these
common words are still used when extracting distri-
butional features. The following features are used:

• Orthographic: all substrings of length 3, 4, and
5 for a given word are extracted. For exam-
ple, the feature “orth |opt”, corresponding to
the substring “opt” at the beginning of a word,
would be extracted from the word “optimal”.

• Distributional (a.k.a., contextual): for a given
word, we extract the word immediately preced-
ing and succeeding it as well as words within
a window of 5. These features are extracted
from a corpus without the 30 most common
words filtered. An example of such a feature
is “LR the+cost”, representing an instance of a
preceding and succeeding word for “optimal”,
extracted from the phrase “the optimal cost”.
Lastly, all distributional features that occur less
than 5 times are removed.

• Part-of-Speech (POS): for example, “pos JJ” is
a POS feature extracted for the word “optimal”.

• Alignment (a.k.a., bilingual): alignment fea-
tures are extracted from alignment matrices
across languages. For every word, we filter
all words in the target language (treating En-
glish, our working language, as the source)
that have a lexical probability less than half the

maximum lexical probability, and use the re-
sulting aligned words as features. For exam-
ple, “align idéal” would be a feature for the
word “optimal”, since the French word “idéal”
is aligned (with high probability) to the word
“optimal”. Note that the assumption during test
time is that alignment features are not available
for OOV words; if they were, then the word
would not be OOV. Nonetheless, alignment in-
formation can be utilized indirectly in the link
prediction stage from random walk traversals
of in-vocabulary nodes.

Statistics on the number of features broken down by
type are presented in Table 2, for 3 different vocab-
ulary sizes. In the experiments, we concentrated on
the 10,000 and 50,000 size vocabularies.

3.3 Baselines
When selecting the baselines, we had two goals in
mind. Firstly, we wanted to compare the proposed
approach against simpler alternatives for generating
word similarities. The baselines were also chosen
so as to correspond in some way to the various fea-
ture types, since a main advantage of our approach
is that it effectively combines various feature types
to yield global word similarity scores. This choice
of baselines also provides insight into the impact of
the various feature types chosen; the idea is that a
baseline corresponding to a particular feature type
would be indicative of word similarity performance
using just that type. Three baselines were initially
selected:

• Distributional: a PMI vector is computed for
each word over the various distributional fea-
tures. The inner product of two PMI vectors
is computed to evaluate the similarity of two
words. We found that this baseline performed
poorly relative to the other ones, and thus de-
cided not to include it in the final evaluation.

• Orthographic: based on a simple edit distance-
based approach, where all words within an edit
distance of 25% of the length of the test word
are retrieved.

• Alignment: we compose the alignment matri-
ces in both directions to generate an English
to English matrix (using German as the pivot
language), from which the three most similar
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Vocabulary Words Features Alignment Distributional Orthographic POS
Full 93,011 780,357 325,940 206,253 248,114 50
50k-vocab 50,000 569,890 222,701 204,266 142,873 50
10k-vocab 10,000 301,555 61,792 199,256 40,457 50

Table 2: Statistics on the number of features extracted based on the number of words, broken down by feature type. Note that the
distributional features are only those with count 5 and above.

words (as per the lexical probabilities in the
matrices) are extracted.

3.4 Evaluation
Automatic evaluation of an algorithm that computes
similarities between words is tricky. The judgment
on whether two words are synonyms is still done
best by a human, requiring significant manual effort.
Therefore, during the experimentation and parame-
ter selection process we developed an intermediate
form of evaluation wherein a human annotator as-
sisted in creating a pseudo “ground truth”. Prior to
creating the ground truth, all OOV words in the test
set were identified (i.e., no match in our vocabulary),
resulting in 978 OOV words. Named entities were
then manually filtered, resulting in a final test set of
312 words for evaluation purposes.

To create the ground truth, we generated for each
test OOV word a set of possible synonyms using the
alignment and orthographic baselines, as per Section
3.3. Naturally, many of the words generated were
not legitimate synonyms; human evaluators thus re-
moved all words that were not synonyms or near
synonyms, ignoring mild grammatical inconsisten-
cies, like singular vs. plural. Generally, a synonym
was considered valid if substituting the word with
the synonym preserved meaning in a sentence.

The final evaluation was performed by a human
evaluator. The two baselines and the proposed ap-
proach generated the top three synonym candidates
for a given OOV test word and both 1-best and 3-
best results were evaluated (as in Table 3). Final
performance was evaluated using precision and re-
call. Recall is defined as the percentage of words
for which at least one synonym was generated, and
precision evaluates the number of correct synonyms
from the ones generated.

3.5 Results
Figure 3 looks at the neighborhood of words around
the word “guardian”. Note that while only two dif-
ferent α parameter configurations are compared in

Test Word Synonym 1 Synonym 2 Synonym 3
pubescent puberty adolescence nanotubes
sportswoman sportswomen athlete draftswoman
briny salty saline salinity

Table 3: Example of the annotation task. The suggested syn-
onyms are real output from our algorithm.

the figure, we investigated a variety of settings and
found that α0 = 0.3, α1 = 0.4, α2 = 0.2, α3 = 0.1
worked best from a final evaluation perspective.

The first point to note is that the graph in Fig-
ure 3b is generally more dense than that of Figure
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(a) α0 = 0.3, α1 = 0.4, α2 = 0.2, α3 = 0.1
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(b) α0 = 0.4, α1 = 0.4, α2 = 0.1, α3 = 0.1

Figure 3: A snapshot of a portion of the learned graph for two
different parameter settings. The graph in 3b is more dense.
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Figure 4: Word similarity and weights matrices sparsities for
10,000-word vocabulary.

3a. For example, Figure 3b contains an edge be-
tween “custodian” and “custodians”, whereas Figure
3a does not. In the latter graph, there is a higher pref-
erence for smoothness over the graph and thus the
idea is that “custodian” and “custodians” are linked
via the smooth transition “custodian”→ “guardian”
→ “guardians”→ “custodians”, whereas in the for-
mer, there is a higher preference to respect the ini-
tial values, which generates this additional edge. We
also observed weak edges between words like “cus-
todian” and “tutor” in Figure 3b but not in Figure
3a. The effect of the parameters on the sparsity of
the graph is definitely apparent, but generally the
learned graphs are of high quality. A further anal-
ysis reveals that for many of the words in the cor-
pus, the highest weighted features are usually align-
ment features; their heavy use allows the algorithm
to produce interesting synonym candidates, and em-
phasizes the importance of bilingual features.

To underscore the point regarding impact of pa-
rameters on graph sparsity, Figures 4 and 5 present
the number of elements in the resulting word sim-
ilarity and weights matrices (graphs) vs. iteration
for vocabulary sizes of 10,000 and 50,000 respec-

Configuration α0 α1 α2 α3

HHLL 0.4 0.4 0.1 0.1
NHNL 0.3 0.4 0.2 0.1
HLLH 0.4 0.1 0.1 0.4
LHHL 0.1 0.4 0.4 0.1

Table 4: Legend for the charts in Figures 4 and 5. H corre-
sponds to “high”, L to “low”, and N to “neutral”.
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Figure 5: Word similarity and weights matrices sparsities for
50,000-word vocabulary.

tively, with Table 4 providing a legend to the curves
in those figures. Higher α weights for terms 1 and
2 in the objective function result in less sparse solu-
tions. The density of the matrices also drops drasti-
cally after a few iterations and stabilizes thereafter.

Lastly, Tables 5 and 6 present the final results of
the evaluation, as assessed by a human evaluator, on
the 312 OOV words in the test set. While the re-
sults on the 1-best front are marginally better than
the edit distance-based baseline, 3-best the perfor-
mance of our approach is comfortably better than the
baselines. Testing was done with the word similarity
update method.

The performance of the random walk-based link
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Method Precision Recall F-1
τ matrix 31.1% 67.0% 42.5%
orthographic 37.5% 92.3% 53.3%
50k-nhnl 37.2% 100% 54.2%

Table 5: 1-best evaluation results on WMT 2010 OOV words
trained on a 50,000-word vocabulary. Our best approach (“50k-
nhnl”) is bolded

Method Precision Recall F-1
τ matrix 96.7% 67.0% 79.1%
orthographic 89.9% 92.3% 91.1%
50k-nhnl 92.6% 100% 96.2%

Table 6: 3-best evaluation results on WMT 2010 OOV words
trained on a 50,000-word vocabulary. Our best approach (“50k-
nhnl”) is bolded

prediction approach was sub-optimal for several rea-
sons. Firstly, it was difficult to use the learned im-
portance weights as is, since the resulting weights
matrix was so sparse that many test words simply
did not have active features. This issue resulted
in the vanilla variant of the random walk approach
to have very low recall. Therefore, we adopted a
“mixed weights” strategy, where we selectively in-
troduced a number of features previously inactive
for a test word, not including the features that had
high entropy. Yet in this case, the random walks get
stuck traversing certain edges, and a good sampling
of similar words was not properly achievable.

A general issue that arose during link prediction
is that the orthographic features tend to dominate
the candidate synonyms list since alignment features
are not utilized. If instead we assume that align-
ment features are accessible during testing, then the
random walk-based approaches do marginally better
than the word similarity update method, but further
investigation is warranted before drawing any defini-
tive conclusions.

4 Related Work

We used the objective function and basic formula-
tion of (Muthukrishnan et al., 2011), but corrected
their derivation of the optimization and introduced
methods to handle the resulting complications. In
addition, (Muthukrishnan et al., 2011) implemented
their approach on just one feature type and with far
fewer nodes, since their word similarity graph was
actually over documents and their feature similar-
ity graph was over words. Recently, an alterna-

tive graph-based approach for the same problem was
presented in (Minkov and Cohen, 2012). However,
in addition to requiring a dependency parse of the
corpus, the emphasis of that work is more on the
testing side. Indeed, we can incorporate some of the
ideas presented in that work to improve our link pre-
diction during query time. The label propagation-
based approaches of (Tamura et al., 2012; Razmara
et al., 2013), wherein “seed distributions” are ex-
tracted from bilingual corpora and are propagated
around a similarity graph, can also be easily inte-
grated into our approach as a downstream method
specific to machine translation.

Another approach to handle OOVs, particularly
in the translation domain, is (Zhang et al., 2005),
wherein the authors leveraged the web as an ex-
panded corpus for OOV mining. If web access is un-
available however, then this method would not work.

The general problem of combining multiple views
of similarity (i.e., across different feature types)
can also be tackled through multiple kernel learn-
ing (MKL) (Bach et al., 2004). However, most of
the work in this field has been on supervised MKL,
whereas we required an unsupervised approach.

An area that has seen a recent resurgence in popu-
larity is deep learning, especially in its applications
to continuous embeddings. Embeddings of word
distributions have been explored in (Mnih and Hin-
ton, 2007; Turian et al., 2010; Weston et al., 2008).

Lastly, while not directly relevant to our work, the
idea of using a graph-based framework to combine
both monolingual and bilingual features was also
presented in (Das and Petrov, 2011).

5 Conclusion & Future Work

In this work, we presented a graph-based approach
to computing word similarities, based on dual word
and feature similarity graphs, and the edges that
go between the graphs, representing importance
weights. We introduced an objective function that
promotes parameter concurrence between the two
graphs, and minimized this function with a simple
alternating minimization-based approach. The re-
sulting optimization recovers high quality word sim-
ilarity graphs, primarily due to the bilingual features,
and improves over the baselines during the link pre-
diction stage.

In the future, on the training side we would like
to optimize the proposed objective function in a
better manner, while enforcing the positive semi-
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definiteness constraints. Other link prediction tech-
niques should be explored, as the current techniques
have pitfalls. Richer features that model more re-
fined aspects can be introduced. In particular, fea-
tures from a dependency parse of the data would be
very useful in this situation.
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A Final Equations for Parameter Updates
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where

C1 = α2

∑
fp,fq∈F

Zvi,fpZvj ,fq

C2 = α0 + α2

∑
vi,vj∈V

Zvi,fpZvj ,fq

C3 = α1 + α3

∑
vi∈V

∑
fp∈F

Wvi,vjWfp,fq
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Abstract

After recasting the computation of a distribu-
tional thesaurus in a graph-based framework
for term similarity, we introduce a new con-
textualization method that generates, for each
term occurrence in a text, a ranked list of terms
that are semantically similar and compatible
with the given context. The framework is in-
stantiated by the definition of term and con-
text, which we derive from dependency parses
in this work. Evaluating our approach on a
standard data set for lexical substitution, we
show substantial improvements over a strong
non-contextualized baseline across all parts of
speech. In contrast to comparable approaches,
our framework defines an unsupervised gener-
ative method for similarity in context and does
not rely on the existence of lexical resources as
a source for candidate expansions.

1 Introduction

Following (de Saussure, 1916) we consider two dis-
tinct viewpoints: syntagmatic relations consider the
assignment of values to a linear sequence of terms,
and the associative (also: paradigmatic) viewpoint
assigns values according to the commonalities and
differences to other terms in the reader’s memory.
Based on these notions, we automatically expand
terms in the linear sequence with their paradigmati-
cally related terms.

Using the distributional hypothesis (Harris,
1951), and operationalizing similarity of terms
(Miller and Charles, 1991), it became possible to
compute term similarities for a large vocabulary
(Ruge, 1992). Lin (1998) computed a distributional
thesaurus (DT) by comparing context features de-
fined over grammatical dependencies with an ap-
propriate similarity measure for all reasonably fre-
quent words in a large collection of text, and evalu-
ated these automatically computed word similarities

against lexical resources. Entries in the DT consist
of a ranked list of the globally most similar terms for
a target term. While the similarities are dependent
on the instantiation of the context feature as well as
on the underlying text collection, they are global in
the sense that the DT aggregates over all occurrences
of target and its similar elements. In our work, we
will use a DT in a graph representation and move
from a global notion of similarity to a contextual-
ized version, which performs context-dependent text
expansion for all word nodes in the DT graph.

2 Related Work

The need to model semantics just in the same way
as local syntax is covered by the n-gram-model, i.e.
trained from a background corpus sparked a large
body of research on semantic modeling. This in-
cludes computational models for topicality (Deer-
wester et al., 1990; Hofmann, 1999; Blei et al.,
2003), and language models that incorporate topical
(as well as syntactic) information, see e.g. (Boyd-
Graber and Blei, 2008; Tan et al., 2012). In the
Computational Linguistics community, the vector
space model (Schütze, 1993; Turney and Pantel,
2010; Baroni and Lenci, 2010; Pucci et al., 2009;
de Cruys et al., 2013) is the prevalent metaphor for
representing word meaning.

While the computation of semantic similarities on
the basis of a background corpus produces a global
model, which e.g. contains semantically similar
words for different word senses, there are a num-
ber of works that aim at contextualizing the infor-
mation held in the global model for particular oc-
currences. With his predication algorithm, Kintsch
(2001) contextualizes LSA (Deerwester et al., 1990)
for N-VP constructions by spreading activation over
neighbourhood graphs in the latent space.

In particular, the question of operationalizing se-
mantic compositionality in vector spaces (Mitchell
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and Lapata, 2008) received much attention. The lex-
ical substitution task (McCarthy and Navigli, 2009)
(LexSub) sparked several approaches for contextual-
ization. While LexSub participants and subsequent
works all relied on a list of possible substitutions
as given by one or several lexical resources, we de-
scribe a graph-based system that is knowledge-free
and unsupervised in the sense that it neither requires
an existing resource (we compute a DT graph for
that), nor needs training for contextualization.

3 Method

3.1 Holing System

For reasons of generality, we introduce the holing
operation (cf. (Biemann and Riedl, 2013)), to split
any sort of observations on the syntagmatic level
(e.g. dependency relations) into pairs of term and
context features. These pairs are then both used for
the computation of the global DT graph similarity
and for the contextualization. This holing system
is the only part of the system that is dependent on
a pre-processing step; subsequent steps operate on
a unified representation. The representation is given
by a list of pairs <t,c>where t is the term (at a cer-
tain offset) and c is the context feature. The position
of t in c is denoted by a hole symbol ’@’. As an ex-
ample, the dependency triple (nsub;gave2;I1)
could be transferred to <gave2,(nsub;@;I1)>
and <I1,(nsub;gave2;@)>.

3.2 Distributional Similarity

Here, we present the computation of the distribu-
tional similarity between terms using three graphs.
For the computation we use the Apache Hadoop
Framework, based on (Dean and Ghemawat, 2004).

We can describe this operation using a bipartite
”term”-”context feature” graph TC(T, C, E) with
T the set terms, C the set of context features and
e(t, c, f) ∈ E edges between t ∈ T , c ∈ C
with f = count(t, c) frequency of co-occurrence.
Additionally, we define count(t) and count(c) as
the counts of the term, respectively as the count
of the context feature. Based on the graph TC
we can produce a first-order graph FO(T, C, E),
with e(t, c, sig) ∈ E. First, we calculate a signif-
icance score sig for each pair (t, c) using Lexicog-
rapher’s Mutual Information (LMI): score(t, c) =

LMI(t, c, ) = count(t, c) log2(
count(t,c)

count(t)count(c))
(Evert, 2004). Then, we remove all edges with
score(t, c) < 0 and keep only the p most signif-
icant pairs per term t and remove the remaining
edges. Additionally, we remove features which co-
occur with more then 1000 words, as these features
do not contribute enough to similarity to justify the
increase of computation time (cf. (Rychlý and Kil-
garriff, 2007; Goyal et al., 2010)). The second-
order similarity graph between terms is defined as
SO(T, E) for t1, t2 ∈ T with the similarity score
s = |{c|e(t1, c) ∈ FO, e(t2, c) ∈ FO}|, which is
the number of salient features two terms share. SO
defines a distributional thesaurus.

In contrast to (Lin, 1998) we do not count how of-
ten a feature occurs with a term (we use significance
ranking instead), and do not use cosine or other sim-
ilarities (Lee, 1999) to calculate the similarity over
the feature counts of each term, but only count sig-
nificant common features per term. This constraint
makes this approach more scalable to larger data, as
we do not need to know the full list of features for
a term pair at any time. Seemingly simplistic, we
show in (Biemann and Riedl, 2013) that this mea-
sure outperforms other measures on large corpora in
a semantic relatedness evaluation.

3.3 Contextual Similarity
The contextualization is framed as a ranking prob-
lem: given a set of candidate expansions as pro-
vided by the SO graph, we aim at ranking them such
that the most similar term in context will be ranked
higher, whereas non-compatible candidates should
be ranked lower.

First, we run the holing system on the lexical
material containing our target word tw ∈ T ′ ⊆
T and select all pairs <tw,ci> ci ∈ C ′ ⊆ C
that are instantiated in the current context. We
then define a new graph CON(T ′, C ′, S) with con-
text features ci ∈ C ′. Using the second-order
similarity graph SO(T, E) we extract the top n
similar terms T ′={ti, . . . , tn}⊆T from the second-
order graph SO for tw and add them to the graph
CON . We add edges e(t, c, sig) between all tar-
get words and context features and label the edge
with the significance score from the first order graph
FO. Edges e(t, c, sig), not contained in FO, get
a significance score of zero. We can then calcu-
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late a ranking score for each ti with the harmonic
mean, using a plus one smoothing: rank(ti) =∏

cj
(sig(ti,cj)+1)/count(term(cj))∑

cj
(sig(ti,cj)+1)/count(term(cj))

(term(cj) extracts

the term out of the context notation). Using that
ranking score we can re-order the entries t1, . . . , tn
according to their ranking score.

In Figure 1, we exemplify this, using the tar-
get word tw= ”cold” in the sentence ”I caught
a nasty cold.”. Our dependency parse-based

Figure 1: Contextualized ranking for target ”cold” in the
sentence ”I caught a nasty cold” for the 10 most similar
terms from the DT.

holing system produced the following pairs for
”cold”: <cold5 ,(amod;@;nasty4)>,
<cold5,(dobj;caught2;@)>. The top 10
candidates for ”cold” are T ′={heat, weather, tem-
perature, rain, flue, wind, chill, disease}. The scores
per pair are e.g. <heat, (dobj;caught;@)>
with an LMI score of 42.0, <weather
,(amod;@;nasty)> with a score of 139.4.
The pair <weather, (dobj;caught;@)>
was not contained in our first-order data. Ranking
the candidates by their overall scores as given in the
figure, the top three contextualized expansions are
”disease, flu, heat”, which are compatible with both
pairs. For the top 200 words, the ranking of fully
compatible candidates is: ”virus, disease, infection,
flu, problem, cough, heat, water”, which is clearly
preferring the disease-related sense of ”cold” over
the temperature-related sense.

In this way, each candidate t’ gets as many
scores as there are pairs containing c’ in the holing
system output. An overall score per t′ then given by
the harmonic mean of the add-one-smoothed single
scores – smoothing is necessary to rank candidates
t’ that are not compatible to all pairs. This scheme

can easily be extended to expand all words in a given
sentence or paragraph, yielding a two-dimensional
contextualized text, where every (content) word is
expanded by a list of globally similar words from the
distributional thesaurus that are ranked according to
their compatibility with the given context.

4 Evaluation

The evaluation of contextualizing the thesaurus (CT)
was performed using the LexSub dataset, introduced
in the Lexical Substitution task at Semeval 2007
(McCarthy and Navigli, 2009). Following the setup
provided by the task organizers, we tuned our ap-
proach on the 300 trial sentences, and evaluate it
on the official remaining 1710 test sentences. For
the evaluation we used the out of ten (oot) preci-
sion and oot mode precision. Both measures cal-
culate the number of detected substitutions within
ten guesses over the complete subset. Whereas en-
tries in the oot precision measures are considered
correct if they match the gold standard, without pe-
nalizing non-matching entries, the oot mode preci-
sion includes also a weighting as given in the gold
standard1. For comparison, we use the results of the
DT as a baseline to evaluate the contextualization.
The DT was computed based on newspaper corpora
(120 million sentences), taken from the Leipzig Cor-
pora Collection (Richter et al., 2006) and the Giga-
word corpus (Parker et al., 2011). Our holing system
uses collapsed Stanford parser dependencies (Marn-
effe et al., 2006) as context features. The contextual-
ization uses only context features that contain words
with part-of-speech prefixes V,N,J,R. Furthermore,
we use a threshold for the significance value of the
LMI values of 50.0, p=1000, and the most similar 30
terms from the DT entries.

5 Results

Since out contextualization algorithm is dependent
on the number of context features containing the tar-
get word, we report scores for targets with at least
two and at least three dependencies separately. In
the Lexical Substitution Task 2007 dataset (LexSub)
test data we detected 8 instances without entries in
the gold standard and 19 target words without any

1The oot setting was chosen because it matches the expan-
sions task better than e.g. precision@1
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dependency, as they are collapsed into the depen-
dency relation. The remaining entries have at least
one, 49.2% have at least two and 26.0% have at least
three dependencies. Furthermore, we also evalu-
ated the results broken down into separate part-of-
speeches of the target. The results on the LexSub
test set are shown in Table 1.

Precision Mode Precision
min. # dep. 1 2 3 1 2 3
POS Alg.
noun CT 26.64 26.55 28.36 38.68 38.24 37.68
noun DT 25.35 25.09 28.07 34.96 34.31 36.23
verb CT 23.39 23.75 23.05 32.05 33.09 33.33
verb DT 22.46 22.13 21.32 29.17 28.78 28.25
adj. CT 32.65 34.75 36.08 45.09 48.24 46.43
adj. DT 32.13 33.25 35.02 43.56 43.53 42.86
adv. CT 20.47 29.46 36.23 30.14 40.63 100.00
adv. DT 28.91 26.75 29.88 41.63 34.38 66.67

ALL CT 26.46 26.43 26.61 37.21 37.40 37.38
ALL DT 27.06 24.83 25.24 36.96 33.06 33.11

Table 1: Results of the LexSub test dataset.

Inspecting the results for all POS (denoted as
ALL), we only observe a slight decline for the preci-
sion score with at least only one dependency, which
is caused by adverbs. For targets with more than
one dependency, we observe overall improvements
of 1.6 points in precision and more than 4 points in
mode precision.

Regarding the results of different part-of-speech
tags, we always improve over the DT ranking, ex-
cept for adverbs with only one dependency. Most
notably, the largest relative improvements are ob-
served on verbs, which is a notoriously difficult
word class in computational semantics. For adverbs,
at least two dependencies seem to be needed; there
are only 7 adverb occurrences with more than two
dependencies in the dataset. Regarding performance
on the original lexical substitution task (McCarthy
and Navigli, 2009), we did not come close to the per-
formance of the participating systems, which range
between 32–50 precision points, respectively 43–66
mode precision points (only taking systems with-
out duplicate words in the result set into account).
However, all participants used one or several lexical
resources for generating substitution candidates, as
well as a large number of features. Our system, on
the other hand, merely requires a holing system – in
this case based on a dependency parser – and a large

amount of unlabeled text, and a very small number
of contextual clues.

For an insight of the coverage for the entries deliv-
ered by the DT graph, we extended the oot precision
measure, to consider not only the first 10 entries, but
the first X={1,10,50,100,200} entries (see Figure 2).
Here we also show the coverage for different sized

Figure 2: Coverage on the LexSub test dataset for differ-
ent DT graphs, using out of X entries.

datasets (10 and 120 million sentences). Amongst
the 200 most similar words from the DT, a cover-
age of up to 55.89 is reached. DT quality improves
with corpus size, especially due to increased cover-
age. This shows that there is considerable headroom
for optimization for our contextualization method,
but also shows that our automatic candidate expan-
sions can provide a coverage that is competitive to
lexical resources.

6 Conclusion

We have provided a way of operationalizing seman-
tic similarity by splitting syntagmatic observations
into terms and context features, and representing
them a first-order and second-order graph. Then,
we introduced a conceptually simple and efficient
method to perform a contextualization of semantic
similarity. Overall, our approach constitutes an un-
supervised generative model for lexical expansion
in context. We have presented a generic method
on contextualizing distributional information, which
retrieves the lexical expansions from a target term
from the DT graph, and ranks them with respect to
their context compatibility. Evaluating our method
on the LexSub task, we were able to show improve-
ments, especially for expansion targets with many
informing contextual elements. For further work,
we will extend our holing system and combine sev-
eral holing systems, such as e.g. n-gram contexts.
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Additionally, we would like to adapt more advanced
methods for the contextualization (Viterbi, 1967;
Lafferty et al., 2001) that yield an all-words simulta-
neous expansion over the whole sequence, and con-
stitutes a probabilistic model of lexical expansion.
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Abstract

Bootstrapping has recently become the focus
of much attention in natural language process-
ing to reduce labeling cost. In bootstrapping,
unlabeled instances can be harvested from the
initial labeled “seed” set. The selected seed set
affects accuracy, but how to select a good seed
set is not yet clear. Thus, an “iterative seed-
ing” framework is proposed for bootstrapping
to reduce its labeling cost. Our framework
iteratively selects the unlabeled instance that
has the best “goodness of seed” and labels the
unlabeled instance in the seed set. Our frame-
work deepens understanding of this seeding
process in bootstrapping by deriving the dual
problem. We propose a method called ex-
pected model rotation (EMR) that works well
on not well-separated data which frequently
occur as realistic data. Experimental results
show that EMR can select seed sets that pro-
vide significantly higher mean reciprocal rank
on realistic data than existing naive selection
methods or random seed sets.

1 Introduction

Bootstrapping has recently drawn a great deal of
attention in natural language processing (NLP) re-
search. We define bootstrapping as a method for
harvesting “instances” similar to given “seeds” by
recursively harvesting “instances” and “patterns” by
turns over corpora using the distributional hypothe-
sis (Harris, 1954). This definition follows the def-
initions of bootstrapping in existing NLP papers
(Komachi et al., 2008; Talukdar and Pereira, 2010;
Kozareva et al., 2011). Bootstrapping can greatly

reduce the cost of labeling instances, which is espe-
cially needed for tasks with high labeling costs.

The performance of bootstrapping algorithms,
however, depends on the selection of seeds. Al-
though various bootstrapping algorithms have been
proposed, randomly chosen seeds are usually used
instead. Kozareva and Hovy (2010) recently reports
that the performance of bootstrapping algorithms
depends on the selection of seeds, which sheds light
on the importance of selecting a good seed set. Es-
pecially a method to select a seed set considering
the characteristics of the dataset remains largely un-
addressed. To this end, we propose an “iterative
seeding” framework, where the algorithm iteratively
ranks the goodness of seeds in response to current
human labeling and the characteristics of the dataset.
For iterative seeding, we added the following two
properties to the bootstrapping;

• criteria that support iterative updates of good-
ness of seeds for seed candidate unlabeled in-
stances.

• iterative update of similarity “score” to the
seeds.

To invent a “criterion” that captures the character-
istics of a dataset, we need to measure the influence
of the unlabeled instances to the model. This model,
however, is not explicit in usual bootstrapping algo-
rithms’ notations. Thus, we need to reveal the model
parameters of bootstrapping algorithms for explicit
model notations.

To this end, we first reduced bootstrapping al-
gorithms to label propagation using Komachi et al.
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(2008)’s theorization. Komachi et al. (2008) shows
that simple bootstrapping algorithms can be inter-
preted as label propagation on graphs (Komachi
et al., 2008). This accords with the fact that
many papers such as (Talukdar and Pereira, 2010;
Kozareva et al., 2011) suggest that graph-based
semi-supervised learning, or label propagation, is
another effective method for this harvesting task.
Their theorization starts from a simple bootstrap-
ping scheme that can model many bootstrapping al-
gorithms so far proposed, including the “Espresso”
algorithm (Pantel and Pennacchiotti, 2006), which
was the most cited among the Association for Com-
putational Linguistics (ACL) 2006 papers.

After reducing bootstrapping algorithms to label
propagation, next, we will reveal the model param-
eters of a bootstrapping algorithm by taking the
dual problem of bootstrapping formalization of (Ko-
machi et al., 2008). By revealing the model param-
eters, we can obtain an interpretation of selecting
seeds which helps us to create criteria for the iter-
ative seeding framework. Namely, we propose ex-
pected model rotation (EMR) criterion that works
well on realistic, and not well-separated data.

The contributions of this paper are summarized as
follows.

• The iterative seeding framework, where seeds
are selected by certain criteria and labeled iter-
atively.

• To measure the influence of the unlabeled in-
stances to the model, we revealed the model
parameters through the dual problem of boot-
strapping.

• The revealed model parameters provides an in-
terpretation of selecting seeds focusing on how
well the dataset is separated.

• “EMR” criterion that works well on not well-
separated data which frequently occur as real-
istic data. .

2 Related Work

Kozareva and Hovy (2010) recently shed light on
the problem of improving the seed set for bootstrap-
ping. They defined several goodness of seeds and
proposed a method to predict these measures using

support vector regression (SVR) for their doubly an-
chored pattern (DAP) system. However, Kozareva
and Hovy (2010) does not show how effective the
seed set selected by the goodness of seeds that they
defined was for the bootstrapping process while they
show how accurately they could predict the good-
ness of seeds.

Early work on bootstrapping includes that of
(Hearst, 1992) and that of (Yarowsky, 1995). Abney
(2004) extended self-training algorithms including
that of (Yarowsky, 1995), forming a theory different
from that of (Komachi et al., 2008). We chose to ex-
tend the theory of (Komachi et al., 2008) because it
can actually explain recent graph-based algorithms
including that of (Pantel and Pennacchiotti, 2006).
The theory of Komachi et al. (2008) is also newer
and simpler than that of (Abney, 2004).

The iterative seeding framework can be regarded
as an example of active learning on graph-based
semi-supervised learning. Selecting seed sets cor-
responds to sampling a data point in active learn-
ing. In active learning on supervised learning, the
active learning survey (Settles, 2012) includes a
method called expected model change, after which
this paper’s expected model rotation (EMR) is
named. They share a basic concept: the data
point that surprises the classifier the most is selected
next. Expected model change mentioned by (Settles,
2012), however, is for supervised setting, not semi-
supervised setting, with which this paper deals. It
also does not aim to provide intuitive understanding
of the dataset. Note that our method is for semi-
supervised learning and we also made the calcula-
tion of EMR practical.

Another idea relevant to our EMR is an “an-
gle diversity” method for support vector machines
(Brinker, 2003). Unlike our method, the angle diver-
sity method interprets each data point as data “lines”
in a version space. The weight vector is expressed
as a point in a version space. Then, it samples a data
“line” whose angle formed with existing data lines
is large. Again, our method builds upon different
settings in that this method is only for supervised
learning, while ours is for semi-supervised learning.
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3 Theorization of Bootstrapping

This section introduces a theorization of bootstrap-
ping by (Komachi et al., 2008).

3.1 Simple bootstrapping
Let D = {(y1, x1), . . . , (yl, xl),xl+1, . . . , xl+u}
be a dataset. The first l data are labeled, and the
following u data are unlabeled. We let n = l + u
for simplicity. Each xi ∈ Rm is an m-dimensional
input feature vector, and yi ∈ C is its corresponding
label where C is the set of semantic classes. To han-
dle |C| classes, for k ∈ C, we call an n-sized 0-1
vector yk = (y1k, . . . , ynk)

⊤ a “seed vector”, where
yik = 1 if the i-th instance is labeled and its label is
k, otherwise yik = 0.

Note that this multi-class formalization includes
typical ranking settings for harvesting tasks as its
special case. For example, if the task is to har-
vest animal names from all given instances, such
as “elephant” and “zebra”, C is set to be binary as
C = {animal, not animal}. The ranking is obtained
by the score vector resulting from the seed vector
yanimal − ynot animal due to the linearity.

By stacking row vectors xi, we denote X =
(x1, . . . , xn)⊤. Let X be an instance-pattern (fea-
ture) matrix where (X)ij stores the value of the
jth feature in the ith datum. Note that we can al-
most always assume the matrix X to be sparse for
bootstrapping purposes due to the language sparsity.
This sparsity enables the fast computation.

The simple bootstrapping (Komachi et al., 2008)
is a simple model of bootstrapping using matrix rep-
resentation. The algorithm starts from f0

def
= y and

repeats the following steps until f c converges.

1. ac+1 = X⊤f c. Then, normalize ac+1．

2. f c+1 = Xac+1. Then, normalize f c+1.

The score vector after c iterations of the simple
bootstrapping is obtained by the following equation.

f =

(
1

m

1

n
XX⊤

)c

y (1)

“Simplified Espresso” is a special version of the
simple bootstrapping where Xij = pmi(i,j)

max pmi and we
normalize score vectors uniformly: f c ← f c/n,

ac ← ac/m. Here, pmi(i, j) def
= log p(i,j)

p(i)p(j) .

Komachi et al. (2008) pointed out that, although
the scores f c are normalized during the iterations in
the simple bootstrapping, when c → ∞, f c con-
verges to a score vector that does not depend on
the seed vector y as the principal eigenvector of(

1
m

1
nXX⊤)

becomes dominant. For bootstrapping
purposes, however, it is appropriate for the resulting
score vector f c to depend on the seed vector y.

3.2 Laplacian label propagation
To make f seed dependent, Komachi et al. (2008)
noted that we should use a power series of a ma-
trix rather than a simple power of a matrix. As
the following equation incorporates the score vec-
tors ((−L)cy) with both low and high c values, it
provides a seed dependent score vector with taking
higher c into account.

∞∑
c=0

βc ((−L)cy) = (I + βL)−1 y (2)

Instead of using
(

1
m

1
nXX⊤)

, Komachi et al.

(2008) used L
def
= I − D−1/2XX⊤D−1/2, a nor-

malized graph Laplacian for graph theoretical rea-
sons. D is a diagonal matrix defined as Dii

def
=∑

j(XX⊤)ij . This infinite summation of the ma-
trix can be expressed by inverting the matrix under
the condition that 0 < β < 1

ρ(L) , where ρ(L) be the
spectral radius of L.

Komachi et al. (2008)’s Laplacian label propaga-
tion is simply expressed as (3). Given y, it outputs
the score vector f to rank unlabeled instances. They
reports that the resulting score vector f constantly
achieves better results than those by Espresso (Pan-
tel and Pennacchiotti, 2006).

f = (I + βL)−1 y. (3)

4 Proposal: criteria for iterative seeding

This section describes our iterative seeding frame-
work. The entire framework is shown in Algo-
rithm 1.

Let gi be the goodness of seed for an unlabeled
instance i. We want to select the instance with the
highest goodness of seed as the next seed added in
the next iteration.

î = arg max
i

gi (4)
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Algorithm 1 Iterative seeding framework
Require: y, X , the set of unlabeled instances U ,

the set of classes C.
Initialize gk,i′ ; ∀k ∈ C, ∀i′ ∈ U
repeat

Select instance î by (4).
Label î. Let k′ be î’s class.
U ← U\{̂i}
for all i′ ∈ U do

Recalculate gk′,i′

end for
until A sufficient number of seeds are collected.

Each seed selection criterion defines each good-
ness of seed gi. To measure the goodness of seeds,
we want to measure how an unlabeled instance will
affect the model underlying Eq. (3). That is, we
want to choose the unlabeled instance that would
most influence the model. However, as the model
parameters are not explicitly shown in Eq. (3), we
first need to reveal them before measuring the influ-
ence of the unlabeled instances.

4.1 Scores as margins
This section reveals the model parameters through
the dual problem of bootstrapping. We show that
the score obtained by Eq. (3) can be regarded as
the “margin” between each unlabeled data point and
the hyperplane obtained by ridge regression; specif-
ically, we can show that the i-th element of the re-
sulting score vector obtained using Eq. (3) can be
written as fi = β (yi − ⟨ŵ, ϕ (xi)⟩), where ŵ is
the optimal model parameter that we need to reveal
(Figure 1). ϕ is a feature function mapping xi to a
feature space and is set to make this relation hold.
Note that, for unlabeled instances, yi = 0 holds, and
thus fi is simply fi = −β ⟨ŵ, ϕ (xi)⟩. Therefore,
|fi| ∝ ∥ ⟨ŵ, ϕ (xi)⟩ ∥ denotes the “margin” between
each unlabeled data point and the underlying hyper-
plane.

Let Φ be defined as Φ
def
= (ϕ (x1) , . . . , ϕ (xn))⊤.

The score vector f can be written using Φ as in (6).
If we set Φ as Eq. (6), Eq. (5) is equivalent to Eq.
(3).

f =
(
I + βΦΦ⊤

)−1
y (5)

Figure 1: Scores as margins. The absolute values of the
scores of the unlabeled instances are shown as the mar-
gin between the unlabeled instances and the underlying
hyperplane in the feature space.

ΦΦ⊤ = L = I −D− 1
2 XXT D− 1

2 (6)

By taking the diagonal of ΦΦ⊤ in Eq. (6), it is
easy to see that ∥ϕ (xi) ∥2 = ⟨ϕ (xi) , ϕ (xi)⟩ ≤ 1.
Thus, the data points mapped into the feature space
are within a unit circle in the feature space shown
as the dashed circles in Figure 1-3. The weight vec-
tor is then represented by the classifying hyperplane
that goes through the origin in the feature space.
The classifying hyperplane views all the points posi-
tioned left of this hyperplane as the green class, and
all the points positioned right of this hyperplane as
the blue gray-stroked class. Note that all the points
shown in Figure 1 are unlabeled, and thus the clas-
sifying hyperplane does not know the true classes of
the data points. Due to the lack of space, the proof
is shown in the appendix.

4.2 Margin criterion
Section 4.1 uncovered the latent weight vector for
the bootstrapping model Eq. (3). A weight vector
specifies a hyperplane that classifies instances into
semantic classes. Thus, weight vector interpretation
easily leads to an iterative seeding criterion: an unla-
beled instance closer to the classifying hyperplane is
more uncertain, and therefore obtains higher good-
ness of seed. We call this criterion the “margin cri-
terion” (Figure 2).

First, we define gk,i′
def
= |(fk)i′ |/sk as the good-

ness of an instance i′ to be labeled as k. sk is the
number of seeds labeled as class k in the current
seed set. In the margin criterion, the goodness of the
seed i′ is then obtained by the difference between
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Figure 2: Margin criterion in binary setting. The instance
closest to the underlying hyperplane, the red-and-black-
stroked point, is selected. The part within the large gray
dotted circle is not well separated. Margin criterion con-
tinues to select seeds from this part only in this example,
and fails to sample from the left-bottom blue gray-stroked
points. Note that all the points are unlabeled and thus the
true classes of data points cannot be seen by the underly-
ing hyperplane in this figure.

the largest and second largest gk,i′ among all classes
as follows:

g
Margin
i

def
= −

(
max

k
g

Margin
k,i′ − 2ndlargestkg

Margin
k,i′

)
.

(7)
The shortcoming of Margin criterion is that it can

be “stuck”, or jammed, or trapped, when the data are
not well separated and the underlying hyperplanes
goes right through the not well-separated part. In
Figure 2, the part within the large gray dotted cir-
cle is not well separated. Margin criterion continues
to select seeds from this part only in this example,
and fails to sample from the left-bottom blue gray-
stroked points.

4.3 Expected Model Rotation
To avoid Margin criterion from being stuck in the
part where the data are not well separated, we pro-
pose another more promising criterion: the “Ex-
pected Model Rotation (EMR)”. EMR measures the
expected rotation of the classifying hyperplane (Fig-
ure 3) and selects the data point that rotates the un-

Figure 3: EMR criterion in binary setting. The instance
that would rotate the underlying hyperplane the most is
selected. The amount denoted by the purple brace “{” is
the goodness of seeds in the EMR criterion. This criterion
successfully samples from the left bottom blue points.

derlying hyperplane “the most” is selected. This se-
lection method prevents EMR from being stuck in
the area where the data points are not well sepa-
rated. Another way of viewing EMR is that it selects
the data point that surprises the current classifier the
most. This makes the data points influential to the
classification selected in early iteration in the itera-
tive seeding framework. A simple rationale of EMR
is that important information must be made available
earlier.

To obtain the “expected” model rotation, in EMR,
we define the goodness of seeds for an instance i′,
gi′ as the sum of each per-class goodness of seeds
gk,i′ weighted by the probability that i′ is labeled
as k. Intuitively, gk,i′ measures how the classifying
hyperplane would rotate if the instance i′ were la-
beled as k. Then, gk,i′ is weighted by the probability
that i′ is labeled as k and summed. The probability
for i′ to be labeled as k can be obtained from the
i′-th element of the current normalized score vector
pi′ (k)

def
=

|(fk)i′/sk|∑
k∈C|(fk)i′/sk| , where sk is the number

of seeds labeled as class k in the current seed set.

gEMR
i′

def
=

∑
k∈C

pi′ (k) gEMR
k,i′ (8)

The per-class goodness of seeds gk,i′ can be cal-
culated as follows:

gEMR
k,i′

def
= 1−

∣∣∣∣ w⊤
k

||wk||
wk,+i′

||wk,+i′ ||

∣∣∣∣ . (9)
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From Eq. (17) in the proof, w = Φ⊤f . Here, ei′

is a unit vector whose i′-th element is 1 and all other
elements are 0.

wk = Φ⊤fk = Φ⊤ (I + βL)−1 yk (10)

wk,+i′ = Φ⊤fk,+i′ = Φ⊤ (I + βL)−1 (yk + ei′) (11)

Although Eqs. (10) and (11) use Φ, we do not
need to directly calculate Φ. Instead, we can use Eq.
(6) to calculate these weight vectors as follows:

w⊤
k wk,+i′ = f⊤k

(
I −D− 1

2 XXT D− 1
2

)
fk,+i′ (12)

||w|| =
√

f⊤
(
I −D− 1

2 XXT D− 1
2

)
f . (13)

For more efficient computation, we cached
(I + βL) ei′ to boost the calculation in Eqs. (10)
and (11) by exploiting the fact that yk can be writ-
ten as the sum of ei for all the instances in class k.

5 Evaluation

We evaluated our method for two bootstrapping
tasks with high labeling costs. Due to the nature
of bootstrapping, previous papers have commonly
evaluated each method by using running search en-
gines. While this is useful and practical, it also re-
duces the reproducibility of the evaluation. We in-
stead used openly available resources for our evalu-
ation.

First, we want to focus on the separatedness of the
dataset. To this end, we prepared two datasets: one
is “Freebase 1”, a not well-separated dataset, and
another is “sb-8-1”, a well-separated dataset. We
fixed β = 0.01 as Zhou et al. (2011) reports that
β = 0.01 generally provides good performance on
various datasets and the performance is not keen to β
except extreme settings such as 0 or 1. In all exper-
iments, each class initially has 1 seed and the seeds
are selected and increased iteratively according to
each criterion. The meaning of each curve is shared
by all experiments and is explained in the caption of
Figure 4.

“Freebase 1” is an experiment for information ex-
traction, a common application target of bootstrap-
ping methods. Based on (Talukdar and Pereira,
2010), the experiment setting is basically the same
as that of the experiment Section 3.1 in their paper1.

1Freebase-1 with Pantel Classes, http://www.
talukdar.net/datasets/class_inst/

As 39 instances have multiple correct labels, how-
ever, we removed these instances from the exper-
iment to perform the experiment under multi-class
setting. Eventually, we had 31, 143 instances with
1, 529 features in 23 classes. The task of “Freebase
1” is bootstrapping instances of a certain semantic
class. For example, to harvest the names of stars,
given {Vega, Altair} as a seed set, the bootstrap-
ping ranks Sirius high among other instances (proper
nouns) in the dataset. Following the experiment set-
ting of (Talukdar and Pereira, 2010), we used mean
reciprocal rank (MRR) throughout our evaluation 2.

“sb-8-1” is manually designed to be well-
separated and taken from 20 Newsgroup subsets3.
It has 4, 000 instances with 16, 282 features in 8
classes.

Figure 4 and Figure 5 shows the results. We can
easily see that “EMR” wins in “Freebase 1”, a not
well-separated dataset, and “Margin” wins in “sb-8-
1”, a well-separated dataset. This result can be re-
garded as showing that “EMR” successfully avoids
being “stuck” in the area where the data are not
well separated. In fact, in Figure 4, “Random” wins
“Margin”. This implies that the not well-separated
part of this dataset causes the classifying hyperplane
in “Margin” criterion to be stuck and make it lose
against even simple “Random” criterion.

In contrast, in the “sb-8-1”, a well-separated bal-
anced dataset, “Margin” beats the other remaining
two. This implies the following: When the dataset
is well separated, uncertainty of a data point is the
next important factor to select a seed set. As “Mar-
gin” exactly takes the data point that is the most un-
certain to the current hyperplane, “Margin” works
quite well in this example.

Note that all figures in all the experiments show
the average of 30 random trials and win-and-lose re-
lationships mentioned are statistically tested using
Mann-Whitney test.

While “sb-8-1” is a balanced dataset, realistic data
like “freebase 1” is not only not-well-separated, but
also imbalanced . Therefore, we performed ex-
periments “sb-8-1”, an imbalanced well-separated
dataset, and “ol-8-1”, an imbalanced not-well sepa-

2MRR is defined as MRR
def
= 1

|Q|
∑

i∈Q
1
ri

, where Q is
the test set, i ∈ Q denotes an instance in the test set Q, and ri

is the rank of the correct class among all |C| classes.
3http://mlg.ucd.ie/datasets/20ng.html
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Figure 4: Freebase 1, a NOT well-separated dataset. Av-
erage of 30 random trials. “Random” and “Margin” are
baselines. “Random” is the case that the seeds are se-
lected randomly. “Margin” is the case that the seeds
are selected using the margin criterion described in §4.2.
“EMR” is proposed and is the case that the seeds are se-
lected using the EMR criterion described in §4.3. At the
rightmost point, all the curves meet because all the in-
stances in the seed pool were labeled and used as seeds
by this point. The MRR achieved by this point is shown
as the line “All used”. If a curve of each method crosses
“All used”, this can be intepretted as that iterative seeding
of the curve’s criterion can reduce the cost of labeling all
the instances to the crossing point of the x-axis. “EMR”
significantly beats “Random” and “Margin” where x-axis
is 46 and 460 with p-value < 0.01.

rated dataset under the same experiment setting used
for “sb-8-1”. “sl-8-1” have 2, 586 instances with
10, 764 features. “ol-8-1” have 2, 388 instances with
9, 971 features. Both “sl-8-1” and “ol-8-1” have 8
classes.

Results are shown in Figure 6 and Figure 7. In
Figure 6, “EMR” beats the other remaining two even
though this is a well-separated data set. This im-
plies that “EMR” can also be robust to the imbal-
ancedness as well. In Figure 7, although the MRR
of “Margin” eventually is the highest, the MRR of
“EMR” rises far earlier than that of “Margin”. This
result can be explained as follows: “Margin” gets
“stuck” in early iterations as this dataset is not well
separated though “Margin” achieves best once it gets
out of being stuck. In contrast, as “EMR” can avoid
being stuck, it rises early achieving high perfor-
mance with small number of seeds, or labeling. This
result suggests that “EMR” is pereferable for reduc-

Figure 5: sb-8-1. A dataset manually designed to be well
separated. Average of 30 random trials. Legends are the
same as those in Figure 4. “Margin” beats “Random” and
“EMR” where x-axis is 500 with p-value < 0.01.

Figure 6: sl-8-1. An imbalanced well separated dataset.
Average of 30 random trials. Legends are the same as
those in Figure 4. “EMR” significantly beats “Random”
and “Margin” where x-axis is 100 with p-value < 0.01.

ing labeling cost while “Margin” can sometimes be
preferable for higher performance.

6 Conclusion

Little is known about how best to select seed sets
in bootstrapping. We thus introduced the itera-
tive seeding framework, which provides criteria for
selecting seeds. To introduce the iterative seed-
ing framework, we deepened the understanding of
the seeding process in bootstrapping through the
dual problem by further extending the interpretation
of bootstrapping as graph-based semi-supervised
learning (Komachi et al., 2008), which generalizes
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Figure 7: ol-8-1. An imbalanced NOT well separated
dataset. Average of 30 random trials. Legends are the
same as those in Figure 4. “EMR” significantly beats
“Random” and “Margin” where x-axis is 100 with p-
value < 0.01. “Margin” significantly beats “EMR” and
“Random” where x-axis is 1, 000 with p-value < 0.01.

and improves Espresso-like algorithms.
Our method shows that existing simple “Margin”

criterion can be “stuck” at the area when the data
points are not well separated. Note that many real-
istic data are not well separated. To deal with this
problem, we proposed “EMR” criterion that is not
stuck in the area where the data points are not well
separated.

We also contributed to make the calculation of
“EMR” practical. In particular, we reduced the num-
ber of matrix inversions for calculating the goodness
of seeds for “EMR”. We also showed that the param-
eters for bootstrapping also affect the convergence
speed of each matrix inversion and that the typical
parameters used in other work are fairly efficient and
practical.

Through experiments, we showed that the pro-
posed “EMR” significantly beats “Margin” and
“Random” baselines where the dataset are not well
separated. We also showed that the iterative seed-
ing framework with the proposed measures for the
goodness of seeds can reduce labeling cost.

Appendix: Proof Consider a simple ridge regres-
sion of the following form where 0 < β < 1 is a
positive constant.

minw
β

2

n∑
i=1

∥yi − ⟨w, ϕ (xi)⟩∥2 + ∥w∥2 . (14)

We define ξi = yi − ⟨w, ϕ (xi)⟩. By using ξi, we
can rewrite Eq. (14) into an optimization problem

with equality constraints as follows:

minw
β

2

n∑
i=1

ξ2
i + ∥w∥2 (15)

s.t.∀i ∈ {1, . . . , n} ; yi = w⊤ϕ (xi) + ξi. (16)

Because of the equality constraints of Eq. (16),
we obtain the following Lagrange function h. Here,
each bootstrapping score fi occurs as Lagrange mul-
tipliers: h (w, ξ, f)

def
= 1

2 ∥w∥
2 + β

2

∑n
i=1 ξ2

i −∑n
i=1 (⟨w, ϕ (xi)⟩+ ξi − yi) fi.
By taking derivatives of h, we can derive ŵ by

expressing it with the sum of each fi and ϕ (xi).

∂h

∂w
= 0⇒ ŵ =

n∑
i=1

fiϕ (xi) (17)

∂h

∂ξi
= 0⇒ fi = β (ξi = βyi − ⟨ŵ, ϕ (xi)⟩) (18)

Substituting the relations derived in Eqs. (17) and
(18) to the equation ∂h

∂fi
= 0 results in Eq. (19).

∂h

∂fi
= 0⇒

n∑
j=1

fjϕ (xi)
⊤ ϕ (xj)+

1

β
fi = yi (19)

Equation (19) can be written as a matrix equation
using Φ defined as Φ

def
= (ϕ (x1) , . . . , ϕ (xn))⊤.

From Eq. (20), we can easily derive the form of Eq.

(3) as
(
ΦΦ⊤ + 1

β I
)−1

y ∝
(
I + βΦΦ⊤

)−1
y.(

ΦΦ⊤ +
1

β
I

)
f = y (20)

2

References
Steven Abney. 2004. Understanding the yarowsky algo-

rithm. Computational Linguistics, 30(3):365–395.
Klaus Brinker. 2003. Incorporating diversity in active

learning with support vector machines. In Proc. of
ICML, pages 59–66, Washington D.C.

Zelling S. Harris. 1954. Distributional structure. Word.
Marti A. Hearst. 1992. Automatic acquisition of hy-

ponyms from large text corpora. In Proc. of COLING,
pages 539–545.

Mamoru Komachi, Taku Kudo, Masashi Shimbo, and
Yuji Matsumoto. 2008. Graph-based analysis of se-
mantic drift in Espresso-like bootstrapping algorithms.
In Proc. of EMNLP, pages 1011–1020, Honolulu,
Hawaii.

51



Zornitsa Kozareva and Eduard Hovy. 2010. Not all seeds
are equal: Measuring the quality of text mining seeds.
In Proc. of NAACL-HLT, pages 618–626, Los Angeles,
California.

Zornitsa Kozareva, Konstantin Voevodski, and Shanghua
Teng. 2011. Class label enhancement via related in-
stances. In Proc. of EMNLP, pages 118–128, Edin-
burgh, Scotland, UK.

Patrick Pantel and Marco Pennacchiotti. 2006. Espresso:
Leveraging generic patterns for automatically harvest-
ing semantic relations. In Proc. of ACL-COLING,
pages 113–120, Sydney, Australia.

Burr Settles. 2012. Active Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Mor-
gan & Claypool Publishers.

Partha Pratim Talukdar and Fernando Pereira. 2010.
Experiments in graph-based semi-supervised learning
methods for class-instance acquisition. In Proc. of
ACL, pages 1473–1481, Uppsala, Sweden.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Proc. of
ACL, pages 189–196, Cambridge, Massachusetts.

Xueyuan Zhou, Mikhail Belkin, and Nathan Srebro.
2011. An iterated graph laplacian approach for rank-
ing on manifolds. In Proc. of KDD, pages 877–885.

52



Proceedings of the TextGraphs-8 Workshop, pages 53–60,
Seattle, Washington, USA, 18 October 2013. c©2013 Association for Computational Linguistics

Graph-Structures Matching for Review Relevance Identification

Lakshmi Ramachandran and Edward F. Gehringer
North Carolina State University
{lramach, efg}@ncsu.edu

Abstract

Review quality is determined by identifying
the relevance of a review to a submission
(the article or paper the review was written
for). We identify relevance in terms of the se-
mantic and syntactic similarities between two
texts. We use a word order graph, whose ver-
tices, edges and double edges help determine
structure-based match across texts. We use
WordNet to determine semantic relatedness.
Ours is a lexico-semantic approach, which pre-
dicts relevance with an accuracy of 66% and
f -measure of 0.67.

1 Introduction

Reviews play a critical role in making decisions, e.g.,
for grading students, accepting manuscripts for publi-
cation, or funding grants. Therefore, we must ensure
that the decision-making party finds the review’s con-
tent useful. Kuhne et al. (2010) found that authors were
contented with reviewers who made an effort to under-
stand their work. Nelson and Schunn (2009) found that
reviews locating problems in the author’s work, or pro-
viding suggestions for improvement help authors un-
derstand and use feedback effectively.

We investigated peer reviews from Expertiza, a web-
based collaborative learning application (Gehringer,
2010). We found that reviewers provide comments
such as, “Yes, it is good! It is very well organized.”
Such a review does not contain any unique information,
or reference a specific concept or object in the author’s
submission. Such a generic review could work for any
submission. Consider the comment, “I felt that some of
the examples were clichéd.” The reviewer criticizes the
“examples” in the author’s work but does not explain
why they find the example “clichéd”.

A review’s quality may be assessed with the help of
several metrics such as relevance of a review to the sub-
mission, its content type, coverage, tone, quantity of
feedback provided (Ramachandran, 2011). In this pa-
per we focus on the study of one review quality metric
- review relevance.

A relevant review paraphrases the concepts de-
scribed in a submission, with possible descriptions of
problems identified in the author’s work. Our aim is to

identify whether a review is relevant to the work it was
written for.

While paraphrasing, an idea may be restated by the
reviewer with possible lexical and syntactic changes to
the text. According to Liu et al. (2009), a good para-
phrase, while preserving the original meaning of the
text should contain some syntactic changes. Accord-
ing to Boonthum (2004) patterns followed commonly
while paraphrasing include lexical synonymy, change
in voice and change in sentence structure. Therefore,
conventional text matching approaches, which look for
exact matches, may not be good at identifying rele-
vance.

2 Definition of Relevance

Definition Let S be the set of sentences in the text un-
der review (the submission) and R be the set of review
sentences. Let s and r represent a sentence in the sub-
mission and review respectively.

relevance(S, R) =
1
|R|

∑
∀r∈R

{argmax
∀s∈S

( lexicoSemSim(s, r))} (1)

lexicoSemSim(s,r) represents the lexico-semantic
match between s and r. Relevance is the average of the
best lexico-semantic matches of a review’s sentences
with corresponding submission sentences. The mean-
ing and usage of lexicoSemSim has been explained in
detail in Section 6. We acknowledge that all review
sentences may not have corresponding matches in the
submission. Our aim is only to identify the proportion
of review text that is lexico-semantically relevant to a
submission.

Since our aim is to identify the lexico-semantic
match between texts, we need a representation that cap-
tures the syntax or order of tokens in a text. Hence we
use a word order graph. Word order graphs are suited
for identifying lexical and voice changes, which are
common among paraphrased text. Similarity should
capture the degree of relatedness between texts. Hence
we use a WordNet-based metric (Fellbaum, 1998).

Figure 1 contains a sample submission and three
sample reviews. The first review has some instances of
exact match with the submission and is therefore rele-
vant to the submission. However, the relevance of the
second review may not be determined by a text overlaps
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Figure 1: The figure contains a sample submission, two
relevant reviews – one with overt text matches and an-
other that is lexico-semantically similar to the submis-
sion, and a non-relevant review.

match. The third review is lexico-semantically distinct
from the submission.

3 Related Work

There is little previous work in the area of identifying
relevance between a review and a submission. Xiong
and Litman (2011) use shallow metrics such as noun,
verb count to identify review helpfulness. Their ap-
proach does not check for presence of paraphrases or
summaries in a review. Ours is a pioneering effort in
the application of relevance identification to the study
of review helpfulness.

In this section we list some related work in the area
of text matching, with a focus on approaches that use
graphs such as lexical chains or dependency trees to
represent text. Haghighi et al. (2005) use dependency
trees to determine text entailment. They use node and
path substitutions to compare text graphs.

Vertices in a dependency tree represent words, and
edges capture the asymmetric dependency relation-
ships between a head word and its modifier. Figure 2(a)
contains a dependency tree representation (Bohnet,
2010) for the text “The paper presented the important
concepts.” We see that every token in the text is a ver-
tex in the tree and edges depict governance relations
(head → modifier). For example, “presented” is the
root of this sentence and the edge between “presented”
and “paper” signifies a subject relationship (SBJ). De-
pendency trees may not capture ordering information.
For instance when we read the edges of the dependency
tree in Figure 2(a) we get presented→ paper, presented
→ concepts. The order of words in the edges is re-
versed, as in the case of presented → paper, although
the actual order in the text is paper→ presented.

The corresponding word order graph representation
in Figure 2(b) captures the order of the words. The

(a) Dependency tree

(b) Word order graph

Figure 2: Displaying the ordering difference between a
dependency tree representation and a word order repre-
sentation for the text “The paper presented the impor-
tant concepts.”

word order graph captures SBJ—OBJ ordering as in
paper—presented—concepts, which the directed edges
in a dependency tree do not capture. Thus dependency
tree representations may not be a useful representation
in studying lexical or word order changes across docu-
ments.

Mani and Bloedorn (1997) suggest a graph search
and matching approach for multi-document summa-
rization. The graph matching approach used by
Mani and Bloedorn focuses on concept or topics-based
matching (noun entities). The graph captures adja-
cency relations between concepts or topics. Their
graph representation does not capture ordering infor-
mation, which would be suited for tasks involving com-
parison of lexical-order changes. As noted earlier, text
matching with possible changes in word order is es-
sential for a task like relevance identification. Existing
representations and matching techniques do not capture
this information. Van et al. (2009) construct phrase
nets using regular expressions. Phrase nets are con-
structed for specific relations between tokens e.g. “X at
Y” may indicate location of object X. Phrase nets are
used as a tool for visualizing relations between objects
in literary texts.

The document index graph (DIG) used by Ham-
mouda and Kamel (2002), capture phrases of a doc-
ument. Although the DIG captures order of words
within a phrase, it does not capture the order of phrases
within a document. As a result this representation does
not capture complete sentence structure information,
which may be necessary to identify whether a review
contains sentence structure changes.

Mihalcea (2004) uses a graph to perform sentence
extraction and summarization. Vertices in the graph
represent sentences in a document. Weighted graph
edges represent the degree of overlap across content of
the sentences.

Kauchak and Barzilay (2006) suggest an auto-
mated technique to create paraphrases for human and
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machine-translated text pairs, by substituting words in
machine translated texts with their corresponding syn-
onyms. They define paraphrases primarily in terms of
synonyms of individual tokens.

Although there do exist independent research works
that discuss graph-based summarization and paraphras-
ing techniques, they use content overlap or synonym
matches to determine paraphrases. They do not con-
sider context during text comparison. Our work is an
amalgamation of existing research in the areas of text
matching and paraphrase recognition.

4 Graph Representation
In a word order graph, edges represent relations be-
tween contiguous vertices. The graph captures word or
phrase order of the text. Figure 2(b) contains the graph
representation for a review.

A word order graph is suitable for applications that
identify relevance or paraphrases across texts. Para-
phrases may contain lexical changes and word or
phrase shuffling across a text’s length. Graph matches
identify the presence or absence of lexical changes us-
ing the ordering and context that the word order graphs
capture. A detailed description of the graph gener-
ation algorithm can be found in Ramachandran and
Gehringer (2012).

1. The graph generator takes a piece of text as input
and generates a graph as its output. We use period
(.), semicolons (;) or exclamations (!) to break the
text into multiple segments1. A text segment is a
complete grammatical unit that can stand indepen-
dent of the other clauses in the sentence in terms
of its meaning.

2. The text is then tagged with parts-of-speech (POS)
(NN, DT, VB, RB2 etc.). We use the Stan-
ford NLP POS tagger to generate the tagged text
(Toutanova et al., 2003). POS tags are useful
in determining how to group words into phrases
while still maintaining the order.

3. We use a heuristic phrase chunking technique3

to group consecutive subject components (nouns,
prepositions etc.) into a subject vertex, consecu-
tive verbs (or modals) into a verb vertex, and sim-
ilarly for adverb and adjective vertices. A graph
vertex may contain a phrase or a token.

4. When a verb vertex is created the algorithm looks
for the last created subject vertex to form an edge
between the two. Ordering is maintained when an
edge is created, i.e., if a subject vertex was formed

1Approach used is similar to that of the determinis-
tic sentence splitter used by the Stanford NLP sentence
splitter. http://nlp.stanford.edu/software/
tokenizer.shtml

2NN - noun, DT - determiner, VB(Z) - verb, RB - adverb
3Our chunker groups words based on the POS tags with-

out the overhead of training a model to perform chunking.

before a verb vertex a subject—verb edge is cre-
ated, else a verb—object edge is created. An ad-
jective or an adverb is attached to the subject or
verb vertex found in the sentence (i.e., subject—
adjective or verb—adverb edge).

5. We tag graph edges with dependencies (Bohnet,
2010). We use the anna library available as part
of the mate tools package to identify dependen-
cies. Labels indicate the relation between words
and their modifiers (e.g. SBJ – subject—verb re-
lationship, OBJ – verb—object relationship). Post
edge creation, we iterate through all edges to
determine whether a dependency exists between
the tokens representing the edge’s vertices. We
add an edge label if a dependency exists, e.g.,
“concepts—important” in Figure 2(b) captures the
noun-modifier (NMOD) relation. Labels capture
the grammatical role played by tokens in a text.

5 Semantic Relatedness
Match between two tokens could be one of: (1) ex-
act, (2) synonym, (3) hypernym or hyponym (more
generic or specific), (4) meronym or holonym (sub-
part or whole) (5) presence of common parents (exclud-
ing generic parents such as “object”, “entity”), and (6)
overlaps across definitions or examples of compared to-
kens4, or (7) distinct or non-match. Each match is given
a weight value, which represents its degree of impor-
tance, e.g., exact matches are more important than syn-
onym matches, which are in turn more important than
hypernyms or hyponyms and so on. Weight values are
in the [0-6] range, 0 being the lowest match (distinct)
and 6 the best match (exact). Unlike other approaches,
which capture just exact or synonymy matches, our ap-
proach captures semantic relatedness between tokens
using a few types of matches (Ramachandran, 2013).

Each match is identified using WordNet. WordNet
has been used successfully to measure relatedness by
Agirre et al. (2009). We use WordNet because it
is faster than querying a knowledge source such as
Wikipedia, which contains more than a million articles,
not all of which may be relevant.

6 Lexico-Semantic Matching
The degree of match between two graphs depends on
the degree of match between their vertices and edges.
In this section we describe three types of matches
across graphs - (1) phrase or token matching, (2) con-
text matching, and (3) sentence structure matching.
Figure 3 contains an overview of our relevance iden-
tification approach.

6.1 Phrase or token matching
In phrase or token matching, vertices containing
phrases or tokens are compared across graphs. This

4Using context to match tokens was an approach used by
Lesk (1986) for word-sense disambiguation.
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Figure 3: Overview of our approach for relevance iden-
tification task.

matching succeeds in capturing semantic relatedness
between single or compound words. When vertices
“concepts” and “points” are compared, a common par-
ents match is found. This match would have been
missed when using only an exact or synonym match.

Phrase(S, R) =
1
|Vr|

∑
∀r(v)∈Vr

argmax
∀s(v)∈Vs

{match(s(v), r(v))}

(2)
An overall phrase match is determined by taking the

average of the best match that every review phrase has
with a corresponding submission phrase. Similarity
between two vertices is calculated as the average of
matches between their constituent words or phrases.
Match could be one of those listed in Section 5. In
Equation 2, r(v) and s(v) refer to review and submis-
sion vertices respectively, and Vr and Vs is the set of
vertices in a review and a submission.

6.2 Context matching

Context matching compares edges with same and dif-
ferent syntax, and edges of different types across two
text graphs. We refer to the match as context matching
since contiguous phrases (vertices) are chosen from a
graph for comparison with another, i.e., more context.
Relatedness between edges is the average of the vertex
matches. We compare edge labels for matches retain-
ing word order. Edge labels capture grammatical rela-
tions, and play an important role in matching. Hence
if edges have the same labels then the average match is
retained, else the match is halved. Some of the context-
based matches include:

• Ordered match - Ordered match preserves the
order of phrases in a text. We compare same
type edges5 with the same vertex order. Figure
4(a) shows the comparison of single edges from
two review graphs. A match is identified between
edges “important—concepts” and “necessary—
points”, because they capture the noun-modifier
relationship (NMOD), and because a relation ex-
ists between tokens “concepts” and “points”.

5Same type edges are edges with same types of vertices.

• Lexical change - Lexical match flips the order of
comparison, e.g., we compare subject—verb with
verb—object edges or vice versa. The match iden-
tifies paraphrases, which involve lexical changes.
Figure 4(b) depicts lexical change match. When
comparing edge “paper—presented” with edge
“included—points”, we compare vertex “paper”
with “points” and “presented” with “included”.
A match is found between tokens “paper” and
“points”, resulting in the edge pair getting a relat-
edness value greater than a non-match. Had it not
been for the lexical change match, such a relation
may have been missed.

• Nominalization match - The match identifies
noun nominalizations - nouns formed from verbs
or adjectives (e.g. abstract→ abstraction, ambigu-
ous→ ambiguity).

In an ordered and lexical change match we com-
pare same types of vertices (of the compared
edges). We compare vertices of different types,
e.g., the subject and verb vertices or the subject
and adjective vertices. This match also captures
relations between nouns and their adjective forms
(e.g. ethics → ethical), and nouns and their verb
forms (e.g. confusion→ to confuse).

In Figure 4(b) when we compare the edge
“paper—presented” with edge “presentation—
included”, we compare “paper” (NN) with “in-
cluded” (VB) and “presented” (VB) with “presen-
tation” (NN) . Token “presentation” is the nom-
inalization of token “presented”, as a result of
which a match is identified between the two edges.

Context(S, R) =

1
3|Er|

( ∑
r(e)∈Er

argmax
∀s(e)∈Es

{matchord(s(e), r(e))}+∑
r(e)∈Er

argmax
∀s(e)∈Es

{matchlex(s(e), r(e))}+

∑
r(e)∈Er

argmax
∀s(e)∈Es

{matchnom(s(e), r(e))}
)

(3)

In Equation 2, r(e) and s(e) refer to review and
submission edges. The formula calculates the average
best matches that review edges have with correspond-
ing submission edges, for each of the above three types
of matches matchord, matchlex and matchnom. Er and
Es represent the sets of review and submission edges
respectively.

6.3 Sentence structure matching
Sentence structure matching compares double edges
(two contiguous edges6), which constitute a complete
segment7 (e.g. subject—verb—object), across graphs.

6Two consecutive edges sharing a common vertex.
7In this work we only consider single and double edges,

and not more contiguous edges (triple edges etc.), for text
matching.
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(a) Ordered match - similar edges are compared
across the two reviews, i.e., SBJ with SBJ, OBJ with
OBJ etc.

(b) Lexical change - edges of different types are com-
pared, i.e., SBJ with OBJ and OBJ with SBJ respec-
tively. Only the compared edges are shown in the
graph representation.

Figure 4: Context matching across two text graphs.

The matching captures similarity across segments, and
it captures voice changes. Relatedness between double
edges is the average of the vertex matches. Edge la-
bels are compared in ordered matching, and the average
vertex match is halved if the edge labels are different.
Some sentence structure matches are:

• Ordered match - Double edges capture more
word order than single edges, hence this match-
ing captures more context. In Figure 5(a)
double edges “paper—presented—concepts” and
“presentation—included—points” are compared.
Vertices “paper”, “presented” and “concepts”
are compared with vertices “presentation”, “in-
cluded” and “points” respectively.

• Voice change - Voice match captures word or
phrase shuffling. Change of voice from active
to passive, or vice versa is common with para-
phrased text. Vertices of the same type are com-
pared across double edges. However, the order of
comparison is flipped. Consider the comparison
between active and passive texts “The author pre-
sented the important concepts.” and “Necessary
points were explained by the author.” in Figure
5(b). We compare “author” and “author” (exact
match), “presented” and “were explained” (syn-
onym match), and “concepts” and “points” (com-
mon parents match). This results in a cumulative
voice match value of 48. Only a voice change
match succeeds in capturing such a relationship
across the length of a sentence segment.

8Average of the vertex match values - 6 for exact match,
5 for synonym match, 2 for common parents match. Edge
labels are not compared since the order of comparison of the
vertices is flipped.

(a) Ordered sentence structure match.

(b) Voice change match - Order of comparison of
the vertices is flipped, i.e., “author” is compared
with “author”, “presented” with “were explained”
and “concepts” with “points”.

Figure 5: Matching sentence segments across two text
graphs. Compared vertices are denoted by similar bor-
ders.

SentStruct(S, R) =

1
2|Tr|

( ∑
r(t)∈Tr

argmax
∀s(t)∈Ts

{matchord(s(t), r(t))}+∑
r(t)∈Tr

argmax
∀s(t)∈Ts

{matchvoice(s(t), r(t))}
)
(4)

The cumulative sentence structure match in Equation
3 calculates the average of the best ordered (matchord)
and voice change (matchvoice) matches that a review’s
double edges have with corresponding submission dou-
ble edges. r(t) and s(t) refer to double edges, and Tr

and Ts are the number of double edges in the review
and submission respectively.
Relevance in Equation 1 can be re-written as the av-
erage of the lexico-semantic relatedness values cal-
culated from phrase, context and sentence structure
matches.

relevance(S, R) = 1
3 (Phrase(S, R) + Context(S, R)+
SentStruct(S, R))

(5)

7 Experiments
We evaluate the performance of our graph matching ap-
proach in identifying the relevance of a review. We also
study the performance of each match - Phrase, Context
and SentStruct to determine whether the matches add
value, and help improve the overall performance of our
approach.

7.1 Data and method
We select review-submission pairs from assignments
completed using Expertiza (Gehringer, 2010). Each re-
view is compared with its respective submission, and
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in order to include some explicit non-relevant cases re-
views are compared with other submission texts. For
the sake of evaluation we identify whether a review is
relevant or not relevant to a submission. We chose 986
review-submission pairs containing an equal number of
relevant and non-relevant reviews for our study. Rel-
evance thresholds for the different matches are deter-
mined based on the averages. Two annotators labeled
19% of randomly selected data as relevant or non-
relevant. We found an 80% agreement, and a Spear-
man correlation of 0.44 (significance p < .0001) be-
tween the two annotators’ ratings. We use labels from
the first annotator for testing due to the high percent
agreement.

7.2 Results

Table 1 contains the accuracy and f -measure values of
our approach in identifying relevance. A phrase or to-
ken matching contains no context. Consider the sam-
ple review “I would retitle ‘Teaching, Using and Im-
plementing Ethics’ to ‘Teaching and Using Codes of
Ethics’.” This review gets a good phrase match value
of 3.3 with a submission (in Figure 1) discussing dif-
ferent codes of ethics. However, this review is not fully
relevant to the content of the submission, since it is sug-
gesting a change in title, and does not discuss the sub-
mission’s content. Thus a simple non context-based
phrase match tends to magnify the degree of related-
ness between two texts. Thus although a phrase match
is important, the lack of context may inflate relevance.

In the case of context matching, we found that lex-
ical and nominalization matches produce lower match
values than an ordered match. This happens because
not all reviews contain word order changes or nomi-
nalizations, and flipping the order of matching results
in a lower match when compared to that from an or-
dered match. The lower values decrease the average
context matching, thus rendering a review non-relevant
to a submission. This phenomenon explains the dip in
context matching’s accuracy and f -measure.

We observed a similar trend with sentence structure
matches, where voice match produced a lower value
than the ordered match in some of the cases. How-
ever the average SentStruct match in Equation 3, with
an accuracy of 65%, shows an improvement over both
phrase and context matches (Table 1).

Relevance is identified with an accuracy of 66% and
f -measure of 0.67 (Table 1). Our approach has a high
recall of 0.71, indicating a good degree of agreement
with human relevance ratings. Thus the average of the
phrase, context and sentence structure matches shows
an improvement over each of the individual matches.
This indicates that the addition of context (ordering)
from edges and double edges contributes to an im-
provement in performance.

Dependency trees perform best for phrase matching
(Table 1). Accuracy and f -measure of identifying rel-
evance decreases for context, sentence structure and

Table 1: Comparing accuracy, precision, recall and f -
measure values of our word order graph with those of
a dependency-tree representation.

Metric Phrase Context Sentence Structure Relevance
Word order graph

accuracy 64% 62% 65% 66%
precision 0.64 0.63 0.65 0.64

recall 0.67 0.60 0.63 0.71
f -measure 0.65 0.62 0.64 0.67

Dependency tree
accuracy 64% 50% 52% 61%
precision 0.63 0.50 0.52 0.6

recall 0.7 0.40 0.41 0.65
f -measure 0.66 0.44 0.46 0.62

Figure 6: Identifying relevance with dependency trees
takes more time (in milliseconds) than with word order
graphs.

overall relevance matches. This is likely because edges
in dependency trees capture only governance (head→
modifier relation), and not word order.

Dependency trees contain more vertices and edges
than our graph, which results in an increase in the time
taken to carry out pairwise comparison between the re-
view and submission texts. We randomly selected 4%
of the data to study the time taken to identify relevance
by dependency trees, and by our graph. We found that
in most cases dependency trees take more time than our
graph (Figure 6). Thus our graph has a better perfor-
mance, and is also faster than a dependency tree repre-
sentation.

7.2.1 Comparison with a text overlap-based
approach

We compare our approach with an overlap-based rel-
evance identification approach. For this measure we
consider the average of 1 to 4-gram overlaps between a
review and a submission’s texts to determine relevance.
This is a precision-based metric, similar to the one used
by Papineni et al. (2002).

relevanceoverlap = overlap(R,S)
|R| , where overlap cal-

culates the number of tokens in the review (R) that
overlap with tokens in submission (S), and |R| indi-
cates the number of tokens in the review. Stopwords
and frequent words are excluded from the numerator
and denominator during overlap calculation.

This approach classifies a majority 62% of the
records as non-relevant, and has an f -measure value
of 0.59. The overlap approach has a high false negative
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Figure 7: Example of phrase or token matching and sentence structure match between a review and a submission.

Figure 8: Output from our review assessment system
displaying relevance value of reviews. Review’s con-
tents are relevant to article on “software extensibility”.

rate i.e., several relevant reviews were wrongly clas-
sified as non-relevant (recall of 0.52). A simple text
overlap, which does not capture the relations our ap-
proach succeeds in capturing, does not outperform our
approach.

Figure 7 contains two sample reviews displaying
phrase and sentence structure matching with sentences
from a sample submission. The first review has some
instances of exact match with the submission and its
relevance may be easy to identify. However, relevance
of the second review may not be determined by a text
overlaps match. Our order-based matching and seman-
tic relatedness metric help capture the relevance be-
tween the second review and the submission.

8 Feedback to Reviewers

A screenshot of the output from our review assessment
system can be seen in Figure 8. In this example we

have a review written for an article on software extensi-
bility9. The sample review in Figure 8 has a relevance
of 0.1309 (on a scale of 0–1). As can be seen from
the screenshot, our automated assessment system pro-
vides feedback on not just relevance but on other met-
rics such as quantity, content and tone types too. How-
ever, a discussion of the approach involved in calculat-
ing each of these metrics is beyond the scope of this
paper.

Our aim with this review assessment system is to
motivate reviewers to update their review and make it
more relevant to the text under review. This would help
authors to better understand details of the review, and
use the review to fix and improve their work.

In the future we are planning to improve the format
of this output by providing textual feedback in addition
to the numeric feedback. The feedback will point to
specific instances of the review that need improvement.
This may make it easy for reviewers to interpret the
numeric score, and maybe further motivate reviewers
to use the information to improve their reviews.

9 Conclusion
Assessment of reviews is an important problem in edu-
cation, science and human resources, and so it is wor-
thy of serious attention. In this paper we use a graph-
based approach to determine whether a review is rele-
vant to a piece of submission. Some important findings
from our experiments are:

1. Additional context from graph edges and sen-
tence structures helps improve the accuracy and
f -measure of predicting relevance.

2. Our approach produces higher f -measure than a
text overlap-based approach, that takes the aver-
age of 1 to 4-gram overlaps between review and
submission texts to determine relevance.

9Software Extensibility https://en.wikipedia.
org/wiki/Extensibility
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3. Our approach produces higher accuracy and f -
measure than dependency trees, which capture
word-modifier information and not word order in-
formation.
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Abstract

Many organizations possess large collections
of textual reports that document how a prob-
lem is solved or analysed, e.g. medical pa-
tient records, industrial accident reports, law-
suit records and investigation reports. Ef-
fective use of expert knowledge contained in
these reports may greatly increase productiv-
ity of the organization. In this article, we pro-
pose a method for automatic extraction of rea-
soning chains that contain information used
by the author of a report to analyse the prob-
lem at hand. For this purpose, we devel-
oped a graph-based text representation that
makes the relations between textual units ex-
plicit. This representation is acquired auto-
matically from a report using natural language
processing tools including syntactic and dis-
course parsers. When applied to aviation in-
vestigation reports, our method generates rea-
soning chains that reveal the connection be-
tween initial information about the aircraft in-
cident and its causes.

1 Introduction

Success of an organization is highly depend on its
knowledge which is generated and accumulated by
its employees over years. However, unless made
explicit and shareable, organizations have the risk
of losing this knowledge because employees may
change jobs at any time, or retire. It is common to
document such experience, also for evidence pur-
pose in case of legal problems and governmental
regulations. Consequently, many companies and in-
stitutions have large collections of textual reports

documenting their organizational experience on a
particular task, a client or a problem. Industrial in-
cident reports, law suit reports, electronic patient
records and investigation reports are the most intu-
itive examples. The effective use of the knowledge
contained in these reports can save substantial time
and resources. For example, incident reports can be
used to identify possible risks and prevent future in-
cidents, law suit reports constitute precedences for
future cases, and patient records might help to diag-
nose and find an appropriate treatment for a patient
with similar symptoms.

Existing search engines are effective at finding
relevant documents. However, after retrieval, inter-
pretation and reasoning with knowledge contained
in these documents is still done manually with no
computer assistance other than basic keyword-based
search. In our research, we are aiming to develop
methods that will assist users in interpretation and
reasoning with knowledge contained in textual re-
ports. The rationale behind our approach is that ex-
perts’ line of reasoning for understanding and solv-
ing a problem can be reused for the analysis of a sim-
ilar problem. Reasoning knowledge can be extracted
from a report by analysing its syntactic and rhetor-
ical structure. When extracted and represented in a
computer-friendly way, this knowledge can be used
for automatic and computer-assisted reasoning.

In this article, we propose a method for auto-
matic extraction of reasoning chains from textual re-
ports. A reasoning chain is defined as a sequence
of transitions from one piece of information to an-
other starting from the problem description and lead-
ing to its solution. Our model is based on a novel
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graph-based text representation, called Text Reason-
ing Network (TRN), which decomposes a document
into text units, discovers the connections between
these text units and makes them explicit. TRN is
acquired automatically from text using natural lan-
guage processing tools including a syntactic parser,
a discourse parser and a semantic similarity mea-
sure.

We tested our method on aviation investigation re-
ports from Transportation Board of Canada. These
reports are produced as a result of investigation of
aircraft incidents where experts are assigned the task
of analysing an incident and writing down their un-
derstanding of what and why it happened. Reason-
ing chains extracted from the investigation reports
reveal the connection between initial information
about the incident and its causes. When visualized,
this connection can be interpreted and analysed.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of the related research.
In section 3, TRN representation is described. Gen-
eration of reasoning chains from aviation investiga-
tion reports is explained in section 4. Interesting ex-
amples of reasoning chains generated by our system
are demonstrated and analysed in section 5. In sec-
tion 6, we discuss the results and elaborate on future
work.

2 Related Work

To our knowledge, automatic extraction of reason-
ing chains from text has not been attempted before.
However, we were able to find several papers deal-
ing with text processing tasks relevant to our goal
that make use of graph-based representations.

The work done by Pechsiri and Piriyakul (2010)
is focused on extraction of causal relations from text
and construction of an explanation graph. The rela-
tions are extracted between clauses based on mined
cause-effect verb pairs, e.g. “If the [aphids in-
fest rice pants], [the leaves will become yellow].”
with cause verb “infest” and effect verb “become”.
The explanation graph is constructed directly from
the extracted relations, which is different from our
approach where reasoning chains are extracted as
paths from the graph-based representation of a re-
port. There is only one example of the explanation
graph presented in the paper. This graph is gener-

ated from plant disease technical papers capturing
part of the domain knowledge. Manual inspection
of the graph revealed few mistakes.

An interesting research was conducted by Be-
rant (2012) for his PhD thesis. Unlike Pechsiri and
Piriyakul (2010), his approach relies on textual en-
tailment instead of causal relations. Entailment re-
lations are obtained between propositional patterns,

e.g. (X
subj←−− desire

obj−−→ Y,X
subj←−− want

obj−−→
Y ), using a classifier trained on distributional simi-
larity features. The focus of their work is to exploit
transitive nature of entailment relations in learning
of entailment graphs. As an application, the au-
thors developed a novel text exploration tool, where
a user can drill down/up from one statement to an-
other through the entailment graph. Entailment re-
lations alone, i.e. text

entails−−−−→ hypothesis, are not
sufficient for extraction of reasoning chains because
the hypothesis often contains the information which
is already present in the text, making it impossible
to create a path from the problem description to the
solution. However, when combined with other types
of relations they might be useful for out task.

In the paper by Jin and Srihari (2007), authors
generate and evaluate evidence trails between con-
cepts across documents. An evidence trail is a
path connecting two concepts in a graph where
nodes are concepts that correspond to named enti-
ties and noun phrases participating in subject-verb-
object constructs. Three variations of the represen-
tation are tested, each with edges capturing differ-
ent types of information. In the first one, edges
capture word order in text. The second one cap-
tures co-occurrence of concepts. The third varia-
tion contains edges with weights corresponding to
the similarity between contexts of the concepts. Vec-
tor space model is used to represent and measure the
similarity between the contexts. The concept-based
representation is substantially different from TRN
but the idea of finding a shortest path between nodes
and use it as the evidence is similar. There is one
example of the evidence trail shown in the paper:
“bush - afghanistan - qaeda - bin ladin”, which re-
veals the connection between topics rather than con-
crete pieces of information.

A graph-based representation similar to (Jin and
Srihari, 2007) have been applied for Textual Case-
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The aircraft stalled at a higher-than-normal airspeed due to accumulated ice on critical surfaces.

aircraft stalled at a higher-than-normal airspeedaccumulated ice on critical surfaces ice accumulation on critical surfaces

Ice accumulation on critical surfaces was possible.

ice accumulation critical surfaces 

Similar

accumulated ice

Cause

stalled at a higher-than-normal airspeedaircraft

higher-than-normal airspeed

Contains Contains Contains

Contains Contains Contains Contains

Contains

ContainsContains

Similar

Analysis

Contains Contains

Factual Information

Figure 1: Two sentences represented as Text Reasoning Network.

Based Reasoning (TCBR) (Lenz and Burkhard,
1996; Cunningham et al., 2004), a task of automat-
ically solving a new problem given a collection of
reports describing previous problems with solutions.
The dataset we use in our research can be considered
a TCBR dataset, since each report contains a prob-
lem description and a solution part. Problem-solving
based on knowledge represented in textual form is
a tough task and in practice TCBR approaches ei-
ther do classification of a problem into predefined
classes or retrieve a report that describes a problem
similar to a query problem. In the later case, in-
formation retrieval methods are utilized, including
graph-based representations for computing similar-
ity between documents as it is done by Cunning-
ham et al. (2004). Their representation, inspired by
Schenker et al. (2003), contains terms as nodes and
edges connecting the adjacent terms in text. Nodes
and edges are labelled with the frequency of their
appearance and with the section where they appear,
i.e. title or text. Infrequent terms are removed. In
addition, domain knowledge is introduced as a list
of important domain terms that are preserved even if
their frequency is low. The similarity used is based
on maximum common sub-graph. When tested on
summary documents from a law firm handling in-
surance cases, the results show improvement over
vector space model representations.

3 Text Reasoning Network

In our approach, a reasoning chain is extracted as a
path from the graph-based text representation. An

appropriate representation is crucial because chains
extracted from it are only as good as the represen-
tation itself. In this section we introduce a novel
graph-based text representation, called Text Reason-
ing Network (TRN), which is a graph with two types
of nodes: text nodes and section nodes; and three
types of edges: structural, similarity and causal. Fig-
ure 1 shows two sentences from a report represented
as TRN with section nodes on the top and all the text
nodes below them. The representation is acquired
automatically from text by the following procedure:
(1) syntax trees obtained from a syntactic parser are
added to the graph, (2) section nodes are attached to
sentence nodes, (3) similarity edges are added be-
tween similar text nodes, (4) cause relations identi-
fied by a discourse parser are added. The rest of this
section provides details on the structure of TRN and
methods used to generate it from text.

3.1 Nodes and Structural Relations
We are aiming to extract chains that capture the in-
formation used by the author of a report to reason
about the problem at hand. Graph-based text rep-
resentations described in section 2 use individual
terms or short phrases as nodes. Small text units
such as these are unable to capture sufficient infor-
mation for our purpose. Another popular choice
for a node in a textual graph is a sentence, which
captures a more or less complete piece of informa-
tion and is easy to interpret. However, a complex
sentence may contain several pieces of information
where only one is used in a reasoning chain.

A syntax tree provides a natural decomposition of
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a sentence into its constituents. Since it is hard to
determine beforehand the size of constituents that
would be useful in a reasoning chain, we decided to
incorporate all the S (sentence, clause), NP (noun
phrase) and VP (verb phrase) nodes from syntax
trees produced by Stanford Parser (Klein and Man-
ning, 2003). These nodes are referred to as text
nodes. In addition to text nodes, the structure of a
syntax tree is also retained by adding structural re-
lations Contains and PartOf to TRN that correspond
to relations between parent and children text units
in the syntax tree. Figure 1 shows text nodes ex-
tracted from two sentences along with Contains re-
lations between them. PartOf edges are not shown
to avoid the clutter.

Graphs extracted from different sentences in a
document are combined into one. Each node has
a unique identity that is composed of a sequence of
stemmed words with stopwords removed. The ma-
jor implication of this is that if two sentences over-
lap, they will share one or several nodes, e.g. node
“critical surfaces” in figure 1.

In addition to text nodes, there are also section
nodes corresponding to parts of a document, e.g.
“Factual Information” and “Analysis” nodes in fig-
ure 1. These nodes capture the structure of a doc-
ument. Text nodes containing a complete sentence,
also referred to as sentence nodes, are attached to
section nodes by structural relations.

3.2 Similarity Relations
In addition to structural relations, text nodes are con-
nected through similarity relations. To obtain these
relations, a similarity value is computed for each
pair of text nodes of the same category (S, VP, NP)
that are not in the same sentence. Similar edges are
added to the graph for node pairs with the similarity
value above a predefined threshold, e.g. nodes “ice
accumulation” and “accumulated ice” in figure 1.

Our similarity measure finds one-to-one align-
ment of words from two text units to maximize the
total similarity between them. For words we com-
pute LCH (Leacock et al., 1998) similarity, based on
a shortest path between the corresponding senses in
WordNet. A complete bipartite graph is constructed
and the maximum weighted bipartite matching is
computed using the Hungarian Algorithm (Kuhn,
1955). Nodes in this bipartite graph represent words

from the text units while edges have weights that
correspond to similarities between words. Maxi-
mum weighted bipartite matching finds a one-to-one
alignment that maximizes the sum of similarities be-
tween aligned words. This sum is normalized to lie
between 0 and 1 and is used as the final value for the
similarity between text units. If the value is higher
or equal 0.6 a Similar edge is added between the cor-
responding nodes.

3.3 Causal Relations

Causal relations are essential for analysis and deci-
sion making allowing inference about past and fu-
ture events (Garcia-Retamero et al., 2007). As seen
in (Pechsiri and Piriyakul, 2010) causal graphs ex-
tracted from domain-specific documents provide a
powerful representation of expert knowledge.

State-of-the-art techniques for extraction of
causal relations from text use automatic classi-
fiers trained on lexical features to recognize rela-
tions between subject and object in a clause or be-
tween verbs of different clauses (Chang and Choi,
2005; Bethard and Martin, 2008). Causal relations
are among discourse relations defined by Rhetori-
cal Structure Theory (Mann and Thompson, 1988).
Therefore, a discourse parser can be used to obtain
them from text. The advantage of this approach is
that a discourse parser recognizes relations between
larger text units. Few discourse parsers are avail-
able that can parse an entire document. For our work
we used PDTB-Styled End-to-End Discourse Parser
by Lin et al. (2010), which makes use of machine
learning techniques trained on Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008). Cause relations
identified by the parser are added to TRN graph by
mapping arguments of the relations to text nodes and
then adding Cause edges between them.

4 Generation of Reasoning Chains from
Aviation Accident Reports

Generation of a reasoning chain from a report is a
three-stage process: (1) a report is converted from
text to a TRN graph, (2) given a start and an end
node, several paths are extracted from the graph, (3)
paths are combined, post-processed and visualized.
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4.1 Dataset

In our work we use aviation investigation reports
from Transportation Safety Board of Canada1. Each
report in this collection documents an aircraft inci-
dent and contains the following sections: (1) “Sum-
mary” is a brief description of the incident, (2) “Fac-
tual Information” (further referred to as “Factual”)
contains details about the aircraft, pilot, weather
conditions, terrain and communication with con-
trollers (3) “Analysis” is a discussion of the incident
with the purpose to explain it based on the informa-
tion presented in the previous section, (4) “Findings
as to Causes and Contributing Factor” (further re-
ferred to as “Causes”) is a brief enumeration of find-
ings that most likely caused the incident.

The reports were downloaded from Transporta-
tion Board of Canada website as html documents.
Text and structure were extracted from html using
a custom Java component developed based on man-
ual analysis of the html source. Preprocessing steps
including tokenization, sentence splitting and part-
of-speech tagging were accomplished using ANNIE
components in GATE NLP platform (Cunningham
et al., 2002).

4.2 Extraction of Reasoning Chains

We define a reasoning chain as the shortest path
through a TRN representation of a report starting
from a sentence in “Summary” and ending at one
of the sentences in “Causes” section. The rationale
behind this decision is to reveal the author’s reason-
ing line starting from the initial information about
the incident contained in “Summary” and leading to
incident causes in “Causes” section. Hence, the path
finding process is constrained to follow the direction
from “Summary” to “Causes” through “Factual” and
“Analysis” sections. The reasoning chain path with
constraints is defined by the following context-free
grammar in Backus-Naur Form (optional items in
[...]):

〈path〉 ::= 〈summary-path〉 [〈edge〉 〈factual-path〉]
[〈edge〉 〈analysis-path〉] 〈edge〉 〈causes-path〉

〈summary-path〉 ::= 〈summary-node〉
| 〈summary-node〉 〈contains-edge〉 〈summary-path〉

1Aviation Investigation Reports are available at http://
goo.gl/k9mMV

〈factual-path〉 ::= 〈factual-node〉
| 〈factual-node〉 〈edge〉 〈factual-path〉

〈analysis-path〉 ::= 〈analysis-node〉
| 〈analysis-node〉 〈edge〉 〈analysis-path〉

〈causes-path〉 ::= 〈causes-node〉
| 〈causes-node〉 〈partof-edge〉 〈causes-path〉

〈edge〉 ::= 〈partof-edge〉
| 〈contains-edge〉
| 〈similar-edge〉
| 〈cause-edge〉

Several paths are obtained for each “Summary”
sentence, each of which starting at one of the text
nodes contained in the sentence. These paths are
then combined into a reasoning graph. Before visu-
alization, a post-processing algorithm is applied to
make the reasoning graph more compact. The al-
gorithm collapses a sequence of structural edges of
the same type into a single edge, e.g. A

contains−−−−−→
B

contains−−−−−→ C is converted into A
contains−−−−−→ C if

there is no other edge attached to B. The com-
pressed graph (shown in figures 2, 3 and 4) is visual-
ized using JGraphX library with hierarchical layout
for automatic positioning of nodes.

5 Examples and Analysis

In this section we analyse three reasoning graphs
generated by our system. These graphs were se-
lected mainly because of their compact size and ease
of interpretation even for someone who is not an avi-
ation expert. Every chain starts with a sentence from
“Summary” on the top of the figure and ends with
one or several sentences in “Causes” on the bottom.
For each node a contained text unit is displayed, fol-
lowed by one or several letters in parenthesis indicat-
ing which section of the report this text node is ob-
served in: S - “Summary”, F - “Factual”, A - “Anal-
ysis”, C - “Causes”.

Figure 2 shows the reasoning graph with one
branch expressing that the captain’s focus on “set-
ting climb power” and the “landing gear” prevented
him from paying attention to the “aircraft altitude”
so the “sink rate was undetected and aircraft struck
the ground”. The start and the end sentences are not
similar and it is the sentence from the “Analysis”
section that connects these two.
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Figure 2: A reasoning graph from report A05O0225
(available at goo.gl/SZpTS)

The graph in figure 3 has two branches. The left
branch directly points to a sentence with “the aux-
iliary fuel pump” but it does not explain “a poor
electrical connection”. The right branch, however, is
longer and goes from “switched fuel tank” to “fuel
flow” and then to “fuel pressure”, which is part of
a sentence in the “Cause” section that includes this
text segment: “reduction of fuel pressure, preventing
normal engine operation”.

The graph in figure 4 contains two branches
as well. The left branch picks up the location
of the flight “Deer Lake” which relates to “icing
conditions” although the text node suggesting “a
lower altitude was requested to remain clear of ic-
ing conditions” makes this branch incoherent. The
right branch provides a connection between “Provin-
cial Airlines Limited” and “no requirement” in
their “standard operating procedures” for a “method
for ensuring the correct selection of AFCS climb
modes”. The chain goes through “an inappropriate
AFCS mode” providing a good idea of the incident
cause.

Reasoning chains extracted by the system provide

a brief overview of the authors’ reasoning line show-
ing how a basic information about the incident is
connected to its causes. However, some chains are
less informative than others (left branch in figure 3)
or incoherent (left branch of 4). In the former case
the chain could be made more informative if the sys-
tem will be queried to find evidence for “poor elec-
trical connection” in addition to “the auxiliary fuel
pump”. In the latter case, the chain becomes inco-
herent because “icing conditions” is used in differ-
ent contexts where the first sentence states the lack
of “icing conditions” and the second the presence of
“icing conditions”. It is possible to account for this
inconsistency by introducing a preference for larger
text units capturing more context or by recognizing
negations/absence.

6 Conclusion and Future Work

This paper presents a method for extraction of rea-
soning chains from textual reports. The method is
based on a graph-based text representation that cap-
tures both the structure and the content of the re-
port. Extracted reasoning chains provide a conve-
nient way to visualize information used by a domain
expert to reason about causes of an aircraft incident.
It may help in analysis of future incidents and opens
the possibility for automatic or computer-assisted
analysis. The methods can be adapted to other do-
mains and applications by defining appropriate start
nodes, end nodes and constraints like it is done in
section 4.2.

Extraction of reasoning chains is a new task and
there are yet no evaluation measures available. One
of the primary goals for our future work is to de-
velop a formal evaluation procedure for this task.
An intrinsic evaluation will require manually con-
structed reasoning chains as the gold standard to
compare the automatically extracted ones with. For
the extrinsic evaluation, reasoning chains can be
used in TCBR task for solution retrieval and eval-
uated with TCBR evaluation measures (Raghunan-
dan et al., 2008; Adeyanju et al., 2010). We also
plan to continue our work on the representation by
adding new types of relations to TRN and on the rea-
soning chain extraction algorithm by adapting flow
networks instead of shortest path for extraction of
reasoning chains.
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Figure 3: A reasoning graph from report A05O0146 (available at goo.gl/MPMIq)
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Figure 4: A reasoning graph from report A05A0059 (available at goo.gl/u1CXI)
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Abstract

Entity Resolution is the task of identifying which

records in a database refer to the same entity. A

standard machine learning pipeline for the entity res-

olution problem consists of three major components:

blocking, pairwise linkage, and clustering. The

blocking step groups records by shared properties to

determine which pairs of records should be exam-

ined by the pairwise linker as potential duplicates.

Next, the linkage step assigns a probability score to

pairs of records inside each block. If a pair scores

above a user-defined threshold, the records are pre-

sumed to represent the same entity. Finally, the clus-

tering step turns the input records into clusters of

records (or profiles), where each cluster is uniquely

associated with a single real-world entity. This paper

describes the blocking and clustering strategies used

to deploy a massive database of organization entities

to power a major commercial People Search Engine.

We demonstrate the viability of these algorithms for

large data sets on a 50-node hadoop cluster.

1 Introduction

A challenge for builders of databases whose information

is culled from multiple sources is the detection of dupli-

cates, where a single real-world entity gives rise to mul-

tiple records (see (Elmagarmid, 2007) for an overview).

Entity Resolution is the task of identifying which records

in a database refer to the same entity. Online citation

indexes need to be able to navigate through the differ-

ent capitalization and abbreviation conventions that ap-

pear in bibliographic entries. Government agencies need

to know whether a record for “Robert Smith” living on

“Northwest First Street” refers to the same person as one

for a “Bob Smith” living on “1st St. NW”. In a standard

machine learning approach to this problem all records

first go through a cleaning process that starts with the re-

moval of bogus, junk and spam records. Then all records

are normalized to an approximately common representa-

tion. Finally, all major noise types and inconsistencies

are addressed, such as empty/bogus fields, field duplica-

tion, outlier values and encoding issues. At this point, all

records are ready for the major stages of the entity resolu-

tion, namely blocking, pairwise linkage, and clustering.

Since comparing all pairs of records is quadratic in the

number of records and hence is intractable for large data

sets, the blocking step groups records by shared proper-

ties to determine which pairs of records should be exam-

ined by the pairwise linker as potential duplicates. Next,

the linkage step assigns a score to pairs of records inside

each block. If a pair scores above a user-defined thresh-

old, the records are presumed to represent the same entity.

The clustering step partitions the input records into sets

of records called profiles, where each profile corresponds

to a single entity.

In this paper, we focus on entity resolution for the or-

ganization entity domain where all we have are the orga-

nization names and their relations with individuals. Let’s

first describe the entity resolution for organization names,

and discuss its significance and the challenges in more de-

tail. Our process starts by collecting billions of personal

records from three sources of U.S. records to power a ma-

jor commercial People Search Engine. Example fields

on these records might include name, address, birthday,

phone number, (encrypted) social security number, rel-

atives, friends, job title, universities attended, and orga-

nizations worked for. Since the data sources are hetero-

geneous, each data source provides different aliases of

an organization including abbreviations, preferred names,

legal names, etc. For example, Person A might have

both “Microsoft”, “Microsoft Corp”, “Microsoft Corpo-

ration”, and “Microsoft Research” in his/her profile’s or-

ganization field. Person B might have “University of

Washington”, while Person C has “UW” as the organi-

zation listed in his/her profile. Moreover, some organi-

zations change their names, or are acquired by other in-
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stitutions and become subdivisions. There are also many

organizations that share the same name or abbreviation.

For instance, both “University of Washington”, “Univer-

sity of Wisconsin Madison”, “University of Wyoming”

share the same abbreviation, “UW”. Additionally, some

of the data sources might be noisier than the others and

there might be different kind of typos that needs to be

addressed.

Addressing the above issues in organization fields is

crucial for data quality as graphical representations of the

data become more popular. If we show different represen-

tations of the same organization as separate institutions in

a single person’s profile, it will decrease the confidence of

a customer about our data quality. Moreover, we should

have a unique representation of organizations in order to

properly answer more complicated graph-based queries

such as “how am I connected to company X?”, or “who

are my friends that has a friend that works at organization

X, and graduated from school Y?”.

We have developed novel and highly scalable com-

ponents for our entity resolution pipeline which is cus-

tomized for organizations. The focus of this paper is the

graph-based blocking and clustering components. In the

remainder of the paper, we first describe these compo-

nents in Section 2. Then, we evaluate the performance of

our entity resolution framework using several real-world

datasets in Section 3. Finally, we conclude in Section 4.

2 Methodology

In this section, we will mainly describe the blocking and

clustering strategies as they are more graph related. We

will also briefly mention our pairwise linkage model.

The processing of large data volumes requires highly

scalable parallelized algorithms, and this is only possible

with distributed computing. To this end, we make heavy

use of the hadoop implementation of the MapReduce

computing framework, and both the blocking and cluster-

ing procedures described here are implemented as a series

of hadoop jobs written in Java. It is beyond the scope of

this paper to fully describe the MapReduce framework

(see (Lin, 2010) for an overview), but we do discuss the

ways its constraints inform our design. MapReduce di-

vides computing tasks into a map phase in which the in-

put, which is given as (key,value) pairs, is split up among

multiple machines to be worked on in parallel and a re-

duce phase in which the output of the map phase is put

back together for each key to independently process the

values for each key in parallel. Moreover, in a MapRe-

duce context, recursion becomes iteration.

2.1 Blocking

How might we subdivide a huge number of organiza-

tions based on similarity or probability scores when all

we have is their names and their relation with people? We

could start by grouping them into sets according to the

words they contain. This would go a long way towards

putting together records that represent the same organiza-

tion, but it would still be imperfect because organizations

may have nicknames, abbreviations, previous names, or

misspelled names. To enhance this grouping we could

consider a different kind of information like soundex or a

similar phonetic algorithm for indexing words to address

some of the limitations of above grouping due to typos.

We can also group together the organizations which ap-

pear in the same person’s profile. This way, we will be

able to block the different representations of the same or-

ganization to some extent. With a handful of keys like this

we can build redundancy into our system to accommodate

different types of error, omission, and natural variability.

The blocks of records they produce may overlap, but this

is desirable because it gives the clustering a chance to join

records that blocking did not put together.

The above blocks will vary widely in size. For exam-

ple, we may have a small set of records containing the

word “Netflix” which can then be passed along immedi-

ately to the linkage component. However, we may have

a set of millions of records containing the word “State”

which still needs to be cut down to subsets with manage-

able sizes, otherwise it will be again impractical to do

all pairwise computations in this block. One way to do

this is to find other common properties to further subdi-

vide this set. The set of all records containing not only

“State” but also a specific state name like “Washington”

is smaller than the set of all records containing the word

“State”, and intuitively records in this set will be more

likely to represent the same organization. Additionally

we could block together all the “State” records with the

same number of words, or combination of the initials of

each word. As with the original blocks, overlap between

these sub-blocks is desirable. We do not have to be par-

ticularly artful in our choice of sub-blocking criteria: any

property that seems like it might be individuating will

do. As long as we have an efficient way to search the

space, we can let the data dynamically choose different

sub-blocking strategies for each oversize block. To this

end, we use the ordering on block keys to define a bino-

mial tree where each node contains a list of block keys

and is the parent of nodes that have keys that come later

in the ordering appended to the list. Figure 1 shows a

tree for the oversize top-level set tTkn1 with three sub-

blocking tokens sTkn1 < sTkn2 < sTkn3. With each

node of the tree we can associate a block whose key is

the list of blocks keys in that node and whose records are

the intersection of the records in those blocks, e.g. the

tTkn1 ∩ sTkn1 ∩ sTkn2 node represents all the records

for organizations containing all these tokens. Because the

cardinality of an intersected set is less than or equal to the

cardinalities of the sets that were intersected, every block
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tTkn1

tTkn1 ∩ sTkn3tTkn1 ∩ sTkn2

tTkn1 ∩ sTkn2 ∩ sTkn3

tTkn1 ∩ sTkn1

tTkn1 ∩ sTkn1 ∩ sTkn3tTkn1 ∩ sTkn1 ∩ sTkn2

tTkn1 ∩ sTkn1 ∩ sTkn2 ∩ sTkn3

Figure 1: The root node of this tree represents an oversized block for the name Smith and the other nodes represent possible

sub-blocks. The sub-blocking algorithm enumerates the tree breadth-first, stopping when it finds a correctly-sized sub-block.

in the tree is larger than or equal to any of its children. We

traverse the tree breadth-first and only recurse into nodes

above the maximum block size. This allows us to explore

the space of possible sub-blocks in cardinality order for a

given branch, stopping as soon as we have a small enough

sub-block.

The algorithm that creates the blocks and sub-blocks

takes as input a set of records and a maximum block size

M . All the input records are grouped into blocks defined

by the top-level properties. Those top-level blocks that

are not above the maximum size are set aside. The re-

maining oversized blocks are partitioned into sub-blocks

by sub-blocking properties that the records they con-

tain share, and those properties are appended to the key.

The process is continued recursively until all sub-blocks

have been whittled down to an acceptable size. The

pseudo code of the blocking algorithm is presented in

Figure 2. We will represent the key and value pairs

in the MapReduce framework as < key; value >.

The input organization records are represented as <
INPUT FLAG, ORG NAME >. For the first iter-

ation, this job takes the organization list as input. In

later iterations, the input is the output of the previous

blocking iteration. In the first iteration, the mapper

function extracts the top-level and sub-level tokens from

the input records. It combines the organization name

and all the sub-level tokens in a temp variable called

newV alue. Next, for each top-level token, it emits this

top-level token and the newValue in the following for-

mat: < topToken, newV alue >. For the later itera-

tions, it combines each sub level token with the current

blocking key, and emits them to the reducer. Also note

that the lexicographic ordering of the block keys allows

separate mapper processes to work on different nodes in a

level of the binomial tree without creating redundant sub-

blocks (e.g. if one mapper creates a International ∩ Busi-

ness ∩ Machines block another mapper will not create a

International ∩ Machines ∩ Business one). This is nec-

essary because individual MapReduce jobs run indepen-

dently without shared memory or other runtime commu-

nication mechanisms. In the reduce phase, all the records

will be grouped together for each block key. The reducer

function iterates over all the records in a newly-created

sub-block, counting them to determine whether or not the

block is small enough or needs to be further subdivided.

The blocks that the reducer deems oversized become in-

puts to the next iteration. Care is taken that the memory

requirements of the reducer function are constant in the

size of a fixed buffer because otherwise the reducer runs

out of memory on large blocks. Note that we create a

black list from the high frequency words in organization

names, and we don’t use these as top-level properties as

such words do not help us with individuating the records.

More formally, this process can be understood in terms

of operations on sets. In a set of N records there are
1

2
N(N − 1) unique pairs, so an enumeration over all

of them is O(N2). The process of blocking divides this

original set into k blocks, each of which contains at most

a fixed maximum of M records. The exhaustive compar-

ison of pairs from these sets is O(k), and the constant

factors are tractable if we choose a small enough M . In

the worst case, all the sub-blocks except the ones with the

very longest keys are oversize. Then the sub-blocking al-

gorithm will explore the powerset of all possible block-

ing keys and thus have exponential runtime. However, as

the blocking keys get longer, the sets they represent get

smaller and eventually fall beneath the maximum size. In

practice these two countervailing motions work to keep

this strategy tractable.

2.2 Pairwise Linkage Model

In this section, we give just a brief overview of our pair-

wise linkage system as a detailed description and evalua-

tion of that system is beyond the scope of this paper.

We take a feature-based classification approach to pre-

dict the likelihood of two organization names < o1, o2 >
referring to the same organization entity. Specifically, we

use the OpenNLP1 maximum entropy (maxent) package

as our machine learning tool. We choose to work with

maxent because the training is fast and it has a good sup-

port for classification. Regarding the features, we mainly

have two types: surface string features and context fea-

tures. Examples of surface string features are edit dis-

1http://opennlp.apache.org/
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Blocking Iterations

map(key, value)

if(key.equals(EntityName)
String[] tokens ← value.split(“ ”)
sublevelTokenSet ← ∅

toplevelTokenSet ← ∅

for each (token ∈ tokens)
sublevelTokenSet.add(token.hashCode())

if(notExist(blackList, token))
toplevelTokenSet.add(token.hashCode())

String newValue ← value

for each (sToken ∈ sublevelTokenSet)
newValue ← newV alue.append(STR + sToken)

for each (tToken ∈ toplevelTokenSet)
emit(tToken, newV alue)

else

String[] keyTokens ← key.split(STR)
String[] valueTokens ← value.split(STR)
for each (token ∈ valueTokens)

if(token > keyTokens[keyTokens.length − 1])
emit(key.append(STR + token), value)

reduce(key, < iterable > values)
buffer ← ∅

for each (value ∈ values)
buffer.add(value)
if(buffer.length ≥ MAXBLOCKSIZE)

break

if(buffer.length ≥ MAXBLOCKSIZE)
for each (ele ∈ buffer)

emit(key, ele)
for each (value ∈ values)

emit(key, value)
elseif(buffer.length ≥ 1)

blocks.append(key, buffer)

Figure 2: Alg.1 - Blocking

tance of the two names, whether one name is an abbre-

viation of the other name, and the longest common sub-

string of the two names. Examples of context features are

whether the two names share the same url and the number

of times that the two names co-occur with each other in a

single person record.

2.3 Clustering

In this section, we present our clustering approach. Let’s,

first clarify a set of terms/conditions that will help us de-

scribe the algorithms.

Definition (Connected Component): Let G = (V, E)
be an undirected graph where V is the set of vertices and

E is the set of edges. C = (C1, C2, ..., Cn) is the set of

disjoint connected components in this graph where (C1∪
C2 ∪ ... ∪ Cn) = V and (C1 ∩ C2 ∩ ... ∩ Cn) = ∅. For

each connected component Ci ∈ C, there exists a path in

G between any two vertices vk and vl where (vk, vl) ∈
Ci. Additionally, for any distinct connected component

sClust 

Transitive 

Closure Edge List 

Node - 

ClusterID 

mapping 

anyClus

ter > 

maxSize 

no 

yes 
Extract Pairs 

Figure 3: Clustering Component

(Ci, Cj) ∈ C, there is no path between any pair vk and

vl where vk ∈ Ci, vl ∈ Cj . Moreover, the problem of

finding all connected components in a graph is finding

the C satisfying the above conditions. �

Definition (Component ID): A component id is a

unique identifier assigned to each connected component.

Definition (Max Component Size): This is the maxi-

mum allowed size for a connected component. �

Definition (Cluster Set): A cluster set is a set of

records that belong to the same real world entity. �

Definition (Max Cluster Size): This is the maximum

allowed size for a cluster. �

Definition (Match Threshold): Match threshold is a

score where pairs scoring above this score are said to rep-

resent the same entity. �

Definition (No-Match Threshold): No-Match thresh-

old is a score where pairs scoring below this score are said

to represent different entities. �

Definition (Conflict Set): Each record has a conflict

set which is the set of records that shouldn’t appear with

this record in any of the clusters. �

The naive approach to clustering for entity resolu-

tion is transitive closure by using only the pairs having

scores above the match threshold. However, in practice

we might see many examples of conflicting scores. For

example, (a,b) and (b,c) pairs might have scores above

match threshold while (a,c) pair has a score below no-

match threshold. If we just use transitive closure, we

will end up with a single cluster with these three records

(a,b,c). Another weakness of the regular transitive clo-

sure is that it creates disjoint sets. However, organiza-

tions might share name, or abbreviation. So, we need a

soft clustering approach where a record might be in dif-

ferent clusters.

On the other hand, the large volume of our data re-

quires highly scalable and efficient parallelized algo-

rithms. However, it is very hard to implement par-
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Figure 4: Transitive Closure Component

allelized clustering approaches with high precision for

large scale graphs due to high time and space complexi-

ties (Bansal, 2003). So, we propose a two-step approach

in order to build both a parallel and an accurate clustering

framework. The high-level architecture of our cluster-

ing framework is illustrated in Figure 3. We first find the

connected components in the graph with our MapReduce

based transitive closure approach, then further, partition

each connected component in parallel with our novel soft

clustering algorithm, sClust. This way, we first combine

similar record pairs into connected components in an effi-

cient and scalable manner, and then further partition each

connected component into smaller clusters for better pre-

cision. Note that there is a dangerous phenomenon, black

hole entities, in transitive closure of the pairwise scores

(Michelson, 2009). A black hole entity begins to pull

an inordinate amount of records from an increasing num-

ber of different true entities into it as it is formed. This

is dangerous, because it will then erroneously match on

more and more records, escalating the problem. Thus, by

the end of the transitive closure, one might end up with

black hole entities with millions of records belonging to

multiple different entities. In order to avoid this problem,

we define a black hole threshold, and if we end up with

a connected component above the size of the black hole

threshold, we increment the match threshold by a delta

and further partition this black hole with one more tran-

sitive closure job. We repeat this process until the sizes

of all the connected components are below the black hole

threshold, and then apply sClust on each connected com-

ponent. Hence at the end of the entire entity resolution

process, the system has partitioned all the input records

into cluster sets called profiles, where each profile corre-

sponds to a single entity.

2.4 Transitive Closure

In order to find the connected components in a graph, we

developed the Transitive Closure (TC) module shown in

Figure 4. The input to the module is the list of all pairs

having scores above the match threshold. As an output

from the module, what we want to obtain is the mapping

from each node in the graph to its corresponding com-

ponentID. For simplicity, we use the smallest node id in

each connected component as the identifier of that com-

ponent. Thus, the module should output a mapping table

from each node in the graph to the smallest node id in

its corresponding connected component. To this end, we

designed a chain of two MapReduce jobs, namely, TC-

Transitive Closure Iterate

map(key, value)

emit(key, value)
emit(value, key)

reduce(key, < iterable > values)
minV alue ← values.next()
if(minV alue < key)

emit(key, minV alue)
for each (value ∈ values)

Counter.NewPair.increment(1)
emit(value, minV alue)

(a) Transitive Closure - Iterate

Transitive Closure Dedup

map(key, value)

emit(key.append(STR + value), null)

reduce(key, < iterable > values)
String[] keyTokens ← key.split(STR)
emit(keyTokens[0], keyTokens[1])

(b) Transitive Closure - Dedup

Figure 5: Alg.3 - Transitive Closure

Iterate, and TC-Dedup, that will run iteratively till we

find the corresponding componentIDs for all the nodes

in the graph.

TC-Iterate job generates adjacency lists AL =
(a1, a2, ..., an) for each node v, and if the node id of this

node vid is larger than the min node id amin in the adja-

cency list, it first creates a pair (vid, amin) and then a pair

for each (ai, amin) where ai ∈ AL, and ai �= amin. If

there is only one node in AL, it means we will generate

the pair that we have in previous iteration. However, if

there is more than one node in AL, it means we might

generate a pair that we didn’t have in the previous itera-

tion, and one more iteration is needed. Please note that,

if vid is smaller than amin, we don’t emit any pair.

The pseudo code of TC-Iterate is given in Figure 5-

(a). For the first iteration, this job takes the pairs having

scores above the match threshold from the initial edge list

as input. In later iterations, the input is the output of TC-

Dedup from the previous iteration. We first start with the

initial edge list to construct the first degree neighborhood

of each node. To this end, for each edge < a; b >, the

mapper emits both < a; b >, and < b; a > pairs so that

a should be in the adjacency list of b and vice versa. In

the reduce phase, all the adjacent nodes will be grouped

together for each node. Reducers don’t receive the values

in a sorted order. So, we use a secondary sort approach

to pass the values to the reducer in a sorted way with cus-

tom partitioning (see (Lin, 2010) for details). This way,

the first value becomes the minValue. If the minValue is

larger than the key, we don’t emit anything. Otherwise,
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Bring together all edges for each partition

Phase-1

map(key, value)

if(key.equals(ConflationOutput))
if ((value.score ≤ NO MATCH THR)||

(value.score ≥ MATCH THR))
emit(value.entity1, value)

else //TCDedupOutput
temp.entity1 ← value
temp.entity2 ← null
temp.score ← null
emit(key, temp)
emit(value, temp)

reduce(key, < iterable > values)
valueList ← ∅
for each (value ∈ values)

if(value.entity2 = null)
clusID ← value.entity1

else

valueList.add(value)
for each (value ∈ valueList)

emit(clusID, value)

Phase-2

map(key, value)

emit(key, value)
reduce(key, < iterable > values)

valueList ← ∅
for each (value ∈ values)

valueList.add(value)
emit(key, valueList)

Figure 6: Alg.3 - Bring together all edges for each partition

we first emit the < key; minV alue > pair. Next, we

emit a pair for all other values as < value; minV alue >,

and increase the global NewPair counter by 1. If the

counter is 0 at the end of the job, it means that we found

all the components and there is no need for further itera-

tions.

During the TC-Iterate job, the same pair might be emit-

ted multiple times. The second job, TC-Dedup, just dedu-

plicates the output of the CCF-Iterate job. This job in-

creases the efficiency of TC-Iterate job in terms of both

speed and I/O overhead. The pseudo code for this job is

given in Figure 5-(b).

The worst case scenario for the number of necessary

iterations is d+1 where d is the diameter of the net-

work. The worst case happens when the min node in

the largest connected component is an end-point of the

largest shortest-path. The best case scenario takes d/2+1

iterations. For the best case, the min node should be at

the center of the largest shortest-path.

2.5 sClust: A Soft Agglomerative Clustering

Approach

After partitioning the records into disjoint connected

components, we further partition each connected compo-

nent into smaller clusters with sClust approach. sClust

is a soft agglomerative clustering approach, and its main

difference from any other hierarchical clustering method

is the “conflict set” term that we described above. Any of

the conflicting nodes cannot appear in a cluster with this

approach. Additionally, the maximum size of the clusters

can be controlled by an input parameter.

First as a preprocessing step, we have a two-step

MapReduce job (see Figure 6) which puts together and

sorts all the pairwise scores for each connected compo-

nent discovered by transitive closure. Next, sClust job

takes the sorted edge lists for each connected component

as input, and partitions each connected component in par-

allel. The pseudo-code for sClust job is given in Figure 7.

sClust iterates over the pairwise scores twice. During the

first iteration, it generates the node structures, and conflict

sets for each of these structures. For example, if the pair-

wise score for (a, b) pair is below the no-match threshold,

node a is added to node b’s conflict set, and vice versa. By

the end of the first iteration, all the conflict sets are gen-

erated. Now, one more pass is needed to build the final

clusters. Since the scores are sorted, we start from the

highest score to agglomeratively construct the clusters by

going over all the scores above the match threshold. Let’s

assume we have a pair (a, b) with a score above the match

threshold. There might be 4 different conditions. First,

both node a and node b are not in any of the clusters yet.

In this case, we generate a cluster with these two records

and the conflict set of this cluster becomes the union of

conflict sets of these two records. Second, node a might

already be assigned to a set of clusters C’ while node b is

not in any of the clusters. In these case, we add node b to

each cluster in C’ if it doesn’t conflict with b. If there is

no such cluster, we build a new cluster with nodes a and

b. Third is the opposite version of the second condition,

and the procedure is the same. Finally, both node a and

node b might be in some set of clusters. If they already

appear in the same cluster, no further action needed. If

they just appear in different clusters, these clusters will

be merged as long as there is no conflict between these

clusters. If there are no such unconflicting clusters, we

again build a new cluster with nodes a and b. This way,

we go over all the scores above the match threshold and

build the cluster sets. Note that if the clusters are merged,

their conflict sets are also merged. Additionally, if the

max cluster size parameter is defined, this condition is

also checked before merging any two clusters, or adding

a new node to an existing cluster.
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Clustering

map(key, valueList)

for each (value ∈ valueList)
if(value.score ≥ MATCH THR)

nodes.insert(value.entity1)
nodes.insert(value.entity2)

else

node1Index ← find(value.entity1, nodes)
node2Index ← find(value.entity2, nodes)
nodes[node1Index].conflictSet.insert(node2Index)
nodes[node2Index].conflictSet.insert(node1Index)

for each (value ∈ valueList)
if(value.score ≥ MATCH THR)

node1Index ← find(value.entity1, nodes)
node2Index ← find(value.entity2, nodes)
node1ClusIDLength ← nodes[node1Index].clusIDs.length
node2ClusIDLength ← nodes[node2Index].clusIDs.length
if((node1ClusIDLength = 0) && (node2ClusIDLength = 0))

clusters[numClusters].nodes[0] ← node1Index
clusters[numClusters].nodes[1] ← node2Index
clusters[numClusters].confSet ←

mergeSortedLists(nodes[node1Index].confSet, nodes[node2Index].confSet)
nodes[node1Index].clusIDs.insert(numClusters)
nodes[node2Index].clusIDs.insert(numClusters)
numClusters++

elseif(node1ClusIDLength = 0)
for each (node2ClusID ∈ nodes[node2Index].clusIDs)

if(notContain(clusters[node2ClusID].confSet, node1Index))
insertToSortedList(clusters[node2ClusID].nodes, node1Index)
clusters[node2ClusID].confSet ←

mergeSortedLists(clusters[node2ClusID].confSet, nodes[node1Index].confSet)
nodes[node1Index].clusIDs.insert(node2ClusID)

elseif(node2ClusIDLength = 0)
for each (node1ClusID ∈ nodes[node1Index].clusIDs)

if(notContain(clusters[node1ClusID].confSet, node2Index))
insertToSortedList(clusters[node1ClusID].nodes, node2Index)
clusters[node1ClusID].confSet ←

mergeSortedLists(clusters[node1ClusID].confSet, nodes[node2Index].confSet)
nodes[node2Index].clusIDs.insert(node1ClusID)

elseif(notIntersect(clusters[node1ClusID].clusIDs, clusters[node2ClusID].clusIDs))
for each (node1ClusID ∈ nodes[node1Index].clusIDs)

for each (node2ClusID ∈ nodes[node2Index].clusIDs)
if( notIntersect(clusters[node1ClusID].confSet, clusters[node2ClusID].nodes) &&

notIntersect(clusters[node2ClusID].confSet, clusters[node1ClusID].nodes) )
clusters[node1ClusID].nodes ←

mergeSortedList(clusters[node1ClusID].nodes, clusters[node2ClusID].nodes)
clusters[node1ClusID].confSet ←

mergeSortedLists(clusters[node1ClusID].confSet, clusters[node2ClusID].confSet)
for each (nodeIndex ∈ clusters[node2ClusID].nodes)

nodes[nodeIndex].clusIDs.insert(node1ClusID)
clusters[node2ClusID].isRemoved ← true
clusters[node2ClusID].nodes ← null
clusters[node2ClusID].confSet ← null

Figure 7: Alg.4 - Clustering
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(a) Block Dist. (iterations)

(b) Block Dist. (overall)

(c) Component & Cluster Size Dist.

Figure 8: Size Distributions

3 Evaluation

In this section, we present the experimental results for

our entity resolution framework. We ran the experiments

on a hadoop cluster consisting of 50 nodes, each with 8

cores. There are 10 mappers, and 6 reducers available

at each node. We also allocated 3 Gb memory for each

map/reduce task.

We used two different real-world datasets for our ex-

periments. The first one is a list of 150K organizations

along with their aliases provided by freebase2. By using

this dataset, we both trained our pairwise linkage model

and measured the precision and recall of our system. We

randomly selected 135K organizations from this list for

the training. We used the rest of the organizations to mea-

2http://www.freebase.com/

precision recall f-measure

Pairwise Classifier 97 63 76

Transitive Closure 64 98 77

sClust 95 76 84

Table 1: Performance Comparison

sure the performance of our system. Next, we generated

positive examples by exhaustively generating a pair be-

tween all the aliases. We also randomly generated equal

number of negative examples among pairs of different

organization alias sets. We trained our pairwise classi-

fier with the training set, then ran it on the test set and

measured its performance. Next, we extracted all the or-

ganization names from this set, and ran our entire entity

resolution pipeline on top of this set. Table 1 presents

the performance results. Our pairwise classifier has 97%

precision and 63% recall when we use a match threshold

of 0.65. Using same match threshold, we then performed

transitive closure. We also measured the precision and

recall numbers for transitive closure as it is the naive ap-

proach for the entity resolution problem. Since transitive

closure merges records transitively, it has very high recall

but the precision is just 64%. Finally, we performed our

sClust approach with the same match threshold. We set

the no-match threshold to 0.3. The pairwise classifier has

slightly better precision than sClust but sClust has much

better recall. Overall, sClust has a much better f-measure

than both the pairwise classifier and transitive closure.

Second, we used our production set to show the viabil-

ity of our framework. In this set, we have 68M organiza-

tion names. We ran our framework on this dataset. Block-

ing generated 14M unique blocks, and there are 842M

unique comparisons in these blocks. The distribution of

the block sizes presented in Figure 8-(a) and (b). Block-

ing finished in 42 minutes. Next, we ran our pairwise

classifier on these 842M pairs and it finished in 220 min-

utes. Finally, we ended up with 10M clusters at the end

of the clustering stage which took 3 hours. The distribu-

tion of the connected components and final clusters are

presented in Figure 8-(c).

4 Conclusion

In this paper, we presented a novel entity resolution ap-

proach for the organization entity domain. We have im-

plemented this in the MapReduce framework with low

memory requirements so that it may scale to large scale

datasets. We used two different real-world datasets in our

experiments. We first evaluated the performance of our

approach on truth data provided by freebase. Our cluster-

ing approach, sClust, significantly improved the recall of

the pairwise classifier. Next, we demonstrated the viabil-

ity of our framework on a large scale dataset on a 50-node

hadoop cluster.
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Abstract

This paper presents a system that performs
skill extraction from text documents. It out-
puts a list of professional skills that are rele-
vant to a given input text. We argue that the
system can be practical for hiring and man-
agement of personnel in an organization. We
make use of the texts and the hyperlink graph
of Wikipedia, as well as a list of professional
skills obtained from the LinkedIn social net-
work. The system is based on first computing
similarities between an input document and
the texts of Wikipedia pages and then using a
biased, hub-avoiding version of the Spreading
Activation algorithm on the Wikipedia graph
in order to associate the input document with
skills.

1 Introduction

One of the most difficult tasks of an employer can
be the recruitment of a new employee out of a long
list of applicants. Another challenge of the employer
is to keep track of the skills and know-how of their
employees in order to direct the right people to work
on things they know. In the scientific community,
editors of journals and committees of conferences
always face the task of assigning suitable reviewers
for a tall pile of submitted papers. The tasks de-
scribed above are example problems of expertise re-
trieval (Balog et al., 2012). It is a subfield of in-
formation retrieval that focuses on inferring asso-
ciations between people, expertise and information
content, such as text documents.

∗Part of this work has been funded by projects with the
“Région wallonne”. We thank this institution for giving us the
opportunity to conduct both fundamental and applied research.
In addition, we thank Laurent Genard and Stéphane Dessy for
their contributions for the work.

In this paper, we propose a method that makes a
step towards a solution of these problems. We de-
scribe an approach for the extraction of professional
skills associated with a text or its author. The goal of
our system is to automatically extract a set of skills
from an input text, such as a set of articles written
by a person. Such technology can be potentially
useful in various contexts, such as the ones men-
tioned above, along with expertise management in a
company, analysis of professional blogs, automatic
meta-data extraction, etc.

For succeeding in our goal, we exploit Wikipedia,
a list of skills obtained from the LinkedIn social net-
work and the mapping between them. Our method
consists of two phases. First, we analyze a query
document with a vector space model or a topic
model in order to associate it with Wikipedia arti-
cles. Then, using these initial pages, we use the
Spreading Activation algorithm on the hyperlink
graph of Wikipedia in order to find articles that cor-
respond to LinkedIn skills and are related or central
to the initial pages.

One difficulty with this approach is that it of-
ten results in some skills, which can be identified
as hubs of the Wikipedia graph, constantly being
retrieved, regardless of what the input is. In or-
der to avoid this pitfall, we bias the activation to
avoid spreading to general, or popular nodes. We
try different measures of node popularity to redirect
the spreading and perform evaluative experiments
which show that this biasing in fact improves re-
trieval results.

We have built a web service that enables anyone
to test our skill extraction system. The name of the
system is Elisit, an abbreviation from “Expertise
Localization from Informal Sources and Information
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Technologies” and conveying the idea of trying to
elicit, i.e. draw forth latent information about exper-
tise in a target text. According to the best of our
knowledge, we are the first to propose such a system
and describe openly the method behind it.

2 Related work

The recent review of Balog et al. (2012) gives a
thorough presentation of the problems of expertise
retrieval and of the methodology used for solving
them. They classify these problems in subcategories
of expert retrieval and expert profiling. The former
means the task of providing a name of a person who
is an expert in a field that is presented as a query,
while the latter means assigning expertise to a per-
son, or some other entity based on information that
is available of that entity. Recent expertise retrieval
research has focused on the TREC enterprise track,
which uses the TREC W3C and CERC corpora (Ba-
log et al., 2008). These datasets contain annotated
crawls of websites. The task in the TREC enterprise
challenge is to build a model that performs expert
retrieval and document retrieval based on a set of
query topics, which correspond to expertise areas.

Our approach is quite different from the one used
in the TREC challenge, as we focus on a fixed
list of skills gathered from the LinkedIn website.
Thus, we were not able to directly compare our sys-
tem to the systems participating in the TREC enter-
prise track. Our problem shares some resemblance
with the INEX entity-ranking track (Demartini et al.,
2010), where the goal was to rank Wikipedia pages
related to queries about a given topic. Our skill re-
trieval task can also be seen as an entity ranking task,
where the entities are Wikipedia pages that corre-
spond to skills.

LinkedIn has developed methods for defining
skills and for finding relations between them (Sko-
moroch et al., 2012). These techniques are used in
their service, for example, for recommending job
opportunities to the users. The key difference of
our technology is that it allows a user to search
for skills by submitting an arbitrary text, instead of
only searching for skills related to a certain skill.
Although expertise retrieval has been an active re-
search topic for some time, there have not been
many methods for explicitly assigning particular

skills to text content or people producing text con-
tent.

Our method consists of two steps. First, we ap-
ply a text similarity method to detect the relevant
Wikipedia pages. Second, we enrich the results
with graph mining techniques using the hyperlink
graph of Wikipedia. We have not found a simi-
lar combination being applied for skill extraction
before, although both parts have been well studied
in similar contexts before. For instance, Steyvers
et al. (2004) proposed the Author-Topic Model, a
graphical model based on LDA (Blei et al., 2003),
that associates authors of texts with topics detected
from those texts.

Wikipedia has been already used in NLP research
both as a corpus and as a semantic network. Its hy-
perlink graph is a collaboratively constructed net-
work, as opposed to manually crafted networks
such as WordNet (Miller, 1995). Gabrilovich and
Markovitch (2007) introduced Explicit Semantic
Analysis (ESA), where the words of a document are
represented as mixtures of concepts, i.e. Wikipedia
pages, according to their occurence in the body texts
of the pages. The experimental results show that this
strategy works very well and outranks, for exam-
ple, LSA (Landauer and Dumais, 1997) in the task
of measuring document similarity. ESA was later
extended by taking into account the graph structure
provided by the links in Wikipedia (Yeh et al., 2009).
The authors of this work used a PageRank-based al-
gorithm on the graph for measuring word and doc-
ument similarity. This approach was coined Wiki-
Walk.

Associating the elements of a text document un-
der analysis with Wikipedia pages involves itself al-
ready many problems often encountered in NLP. The
process where certain words and multiword expres-
sions are associated with a certain Wikipedia page
has been called Wikification (Mihalcea and Csomai,
2007). In our work, we take a more general ap-
proach, and try to associate the full input text to a
set of Wikipedia pages according to different vec-
tor space models. The models and the details of this
strategy are explained in section 3.3.

The Elisit system uses the Spreading Activa-
tion algorithm on the Wikipedia graph to establish
associations between texts and skills. We chose
to use Spreading Activation, as it tries to simulate
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a cognitive associative memory (Anderson, 1983),
and the Wikipedia hyperlink network can be under-
stood as an associative network. The simulation
works by finding associations in a network of con-
cepts by spreading pulses of activation from con-
cepts into their neighbours. In the context of NLP,
the Spreading Activation algorithm has been tradi-
tionally used for word sense disambiguation (Hirst,
1988) and information retrieval (Crestani, 1997).
Gouws et al. (2010) have shown that this algorithm,
applied to the Wikipedia graph, can also be used to
measure conceptual and document similarity.

3 Methodology

In this section, we will explain how the Elisit
skill extraction system works. We will first ex-
plain how the system uses data from Wikipedia and
LinkedIn. Then, we will describe the two main
components of the system, the text2wiki mod-
ule, which associates a query document with related
Wikipedia pages, and the wiki2skill module,
which aims to associate the Wikipedia pages found
by the text2wiki module with Wikipedia pages
that correspond to skills.

3.1 Wikipedia texts and links

Each page in Wikipedia contains a text that may in-
clude hyperlinks to other pages. We make the as-
sumption that there is a meaningful semantic rela-
tionship between the pages that are linked with each
other and that the Wikipedia hyperlink graph can be
exploited as an associative network. The properties
of the hyperlink structure of Wikipedia and the na-
ture of the information contained in the links have
been investigated by Koolen (2011).

In addition to the encyclopedia pages, Wikipedia
also contains, among others, category, discussion
and help pages. In our system, we are only interested
in the encyclopedia pages and the hyperlinks be-
tween them. We are using data downloaded1 on May
2nd 2012. This dump encompasses 3,983,338 pages
with 247,560,469 links, after removal of the redi-
rect pages. The Wikipedia graph consists of a giant
Strongly Connected Component (SCC) of 3,744,419
nodes, 4130 SCC’s of sizes from 61 to 2 nodes and
228,881 nodes that form their own SCC’s.

1http://dumps.wikimedia.org/

3.2 LinkedIn skills

We gathered a list of skills from the LinkedIn social
network2. The list includes skills which the users
can assign to their profiles. This enables the site
to recommend new contacts or open job opportu-
nities to each user. The skills in the list have been
generated by an automated process developed by
LinkedIn (Skomoroch et al., 2012). The process de-
cides, whether a word or a phrase or a skill suggested
by a user is actually a skill through an analysis of the
text contained in the user profile pages.

Each LinkedIn skill has its own webpage that con-
tains information about the skill. One piece of infor-
mation contained in most of these pages is a link
to a Wikipedia article. According to Skomoroch et
al. (2012), LinkedIn automatically builds this map-
ping. However, some links are manually verified
through crowdsourcing. Not all skill pages contain
a link to Wikipedia, but these skills are often ei-
ther very specific or ambiguous. Thus, we decided
to remove these skills from our final list. The list
of skills used in the system was extracted from the
LinkedIn site in September 2012. After removal of
the skills without a link to Wikipedia, the list con-
tained 27,153 skills.

3.3 text2wiki module

The goal of the text2wiki module is to retrieve
Wikipedia articles that are relevant to an input text.

The output of the module is a vector of sim-
ilarities between the input document and all arti-
cles of the English Wikipedia that contain at least
300 characters. There are approximately 3.3 mil-
lion such pages. We only retrieve the 200 Wikipedia
pages that are most similar to the input document.
Thus, each input text is represented as a sparse vec-
tor a(0), which has 200 non-zero elements out of
3,983,338 dimensions corresponding to the full list
of Wikipedia pages. Each non-zero value ai(0) of
this vector is a semantic similarity of the query with
the i-th Wikipedia article. This approach stems from
ESA, mentioned above. The vector a(0) is given as
input to the second module wiki2skill.

The text2wiki module relies on the Gensim
library (Řehůřek and Sojka, 2010)3. In particular,

2http://www.linkedin.com/skills
3http://radimrehurek.com/gensim
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we have used four different text similarity func-
tions, based respectively on the classical Vector
Space Models (VSM’s) (Berry et al., 1994), LSA
and LDA:

(a) TF-IDF (300,000 dimensions)
(b) LogEntropy (300,000 dimensions)
(c) LogEntropy + LSA (200 dimensions)
(d) LogEntropy + LDA (200 topics)

First, each text is represented as a vector x in
a space of the 300,000 most frequent terms in the
corpus, each appearing at least in 10% of the docu-
ments (excluding stopwords). We limited the num-
ber of dimensions to 300,000 to reduce computa-
tional complexity. The models (a) and (b) directly
use this representation, while for (c) and (d) this ini-
tial representation is transformed to a vector x′ in a
reduced space of 200 dimensions/topics. For LSA
and LDA, the number of dimensions is often empir-
ically selected from the range [100 − 500] (Foltz,
1996; Bast and Majumdar, 2005). We followed this
practice. From the vector representations (x or x′),
the similarity between the input document and each
Wikipedia article is computed using the cosine sim-
ilarity.

Pairwise comparison of a vector of 300,000 di-
mensions against 3.3 million vectors of the same
size has a prohibitive computational cost. To make
our application practical, we use an inverted index of
Gensim to efficiently retrieve articles semantically
related to an input document.

3.4 wiki2skill module
The wiki2skill module performs the Spread-
ing Activation algorithm using the initial activations
provided by the text2wiki module and returns a
vector of final activations of all the nodes of the net-
work and a vector containing the activations of only
the nodes corresponding to skills.

The basic idea of Spreading Activation is to ini-
tially activate a set of nodes in a network and then
iteratively spread the activation into the neighbour-
ing nodes. This can actually be interpreted in many
ways opening up a wide space of algorithms that can
lead to different results. One attempt for an exact
definition of the Spreading Activation algorithm can
be found in the work of Shrager et al. (1987). Their
formulation states that if a(0) is a vector containing

the initial activations of each node of the network,
then after each iteration, or time step, or pulse t, the
vector of activations is

a(t) = γa(t− 1) + λWTa(t− 1) + c(t), (1)

where γ ∈ [0, 1] is a decay factor which controls the
conservation of activation during time, λ ∈ [0, 1] is
a friction factor, which controls the amount of acti-
vation that nodes can spread to their neighbors, c(t)
is an activation source vector and W is a weighted
adjacency matrix, where the weights control the
amount of activation that flows through each link in
the network. In some cases, iterating eq. (1) leads
to a converged activation state, but often, especially
when dealing with large networks, it is more prac-
tical to set the number of pulses, T , to some fixed,
low number.

As already stated, this formulation of Spread-
ing Activation spans a wide space of different al-
gorithms. In particular, this space contains many
random walk based algorithms. By considering the
case where γ = 0, λ = 1, c(t) = 0 and where
the matrix W is row-stochastic, the Spreading Ac-
tivation model boils down to a random walk model
with a transition probability matrix W, where a(t)
contains the proportion of random walkers at each
node when the initial proportions are given by a(0).
When the situation is changed by choosing c(t) =
(1 − λ)a(0), we obtain a bounded Random Walk
with Restart model (Pan et al., 2004; Mantrach et
al., 2011).

Early experiments with the first versions of the al-
gorithm revealed an activation bias towards nodes
that correspond to very general Wikipedia pages
(e.g. the page “ISBN”, which is often linked to in
the References section of Wikipedia pages). These
nodes have a high input degree, but are often not rel-
evant for the given query. This problem is often en-
countered when analysing large graphs with random
walk based measures. It is known that they can be
dominated by the stationary distribution of the cor-
responding Markov Chain (Brand, 2005).

To tackle this problem, we assign link weights
according to preferential transition probabilities,
which define biased random walks that try to avoid
hub nodes. They have been studied e.g. in the con-
text of stochastic routing of packages in scale-free
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networks (Fronczak and Fronczak, 2009). These
weights are given by

w∗ij =
παj∑

k:(i,k)∈E
παk
, (2)

where πj is a popularity index and α is a biasing
parameter, which controls the amount of activation
that flows from node i to node j based on the pop-
ularity of node j. For the popularity index, we con-
sidered three options. First, we tried simply the in-
put degree of a node. As a second option, we used
the PageRank score of the node (Page et al., 1999)
which corresponds to the node’s weight in the sta-
tionary distribution of a random surfer that surfs
Wikipedia by clicking on hyperlinks randomly. As a
third popularity index, we used a score based on the
HITS algorithm (Kleinberg, 1999), which is simi-
lar to PageRank, but instead assigns two scores, an
authority score and a hub score. In short, a page
has a high authority score, if it is linked to by many
hub pages, and vice versa. In the case of HITS, the
popularity index was defined as the product of the
authority and hub scores of the node. When α = 0,
wij is equal for all links leaving from node i, but
when α < 0, activation will flow more to less popu-
lar nodes and less to popular nodes. We included the
selection of a suitable value for α as a parameter to
be tuned along with the rest of the spreading strat-
egy in quantitative experiments that are presented in
section 5.2. These experiments show that biasing
the activation to avoid spreading to popular nodes
indeed improves retrieval results.

We also decided to investigate whether giving
more weight to links that exist in both directions
would improve results. The Wikipedia hyperlink
graph is directed, but in some cases two pages may
contain a link to each other. We thus adjust the link
weights wij so that wij = δw∗ij if (j, i) ∈ E and
wij = w∗ij otherwise, where δ ≥ 1 is a bidirectional
link weight. With large values of δ, more activation
will flow through bidirectional links than links that
exist only in one direction. After this weighting,
the final link weight matrix W is obtained by nor-
malizing each element with its corresponding row
sum to make the matrix row-stochastic. This makes
the model easier to interpret by considering random
walks. However, in a traditional Spreading Activa-

tion model the matrix W is not required to be row-
stochastic. We plan to investigate in the future, how
much the normalization affects the results.

The large size of the Wikipedia graph challenges
the use of Spreading Activation. In order to pro-
vide a usable web service, we would need the system
to provide results fast, preferably within fractions of
seconds. So far, we have dealt with this issue within
the wiki2skill module by respresenting the link
weight matrix W of the whole Wikipedia graph us-
ing the sparse matrix library SciPy4. Each itera-
tion of the Spreading Activation is then achieved by
simple matrix arithmetic according to eq. (1). As
a result, the matrix W must be precomputed from
the adjacency matrix for a given value of the bias-
ing parameter α and the bidirectional link weight δ
when the system is launched. Thus, they cannot be
selected separately for each query from the system.
Currently, the system can perform one iteration of
spreading activation within less than one second, de-
pending on the sparsity of the activation vector. Our
experiments indicate that the results are quite stable
after five spreading iterations, meaning that we nor-
mally get results with the wiki2skill module in
about one to three seconds.

4 The Elisit skill extraction system

The Elisit system integrates the text2wiki
and the wiki2skill modules. We have built a
web application5 which lets everyone try our method
and use it from third-party applications. Due to this
web service, the Elisit technology can be eas-
ily integrated into systems performing skill search,
email or document analysis, HR automatization,
analysis of professional blogs, automatic meta-data
extraction, etc. The web interface presents the user
the result of the skill extraction (a list of skills) as
well as the result of the text2wiki module (a list
of Wikipedia pages). Each retrieved skill also con-
tains a link to the corresponding Wikipedia page.

Figure 1 presents an example of results provided
by the Elisit system. It lists skills extracted
from the abstract of the chapter Support vector ma-
chines and machine learning on documents from

4http://www.scipy.org/
5GUI: http://elisit.cental.be/; RESTful web

service: http://elisit.cental.be:8080/.
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Figure 1: Skills extracted from a text about text document
categorization.

Introduction to Information Retrieval by Manning
et al. (2008). As one can observe, the Wikipedia
pages found by the text2wiki module represent
many low-level topics, such as “Desicion bound-
ary”, “Ranking SVM” or “Least square SVM”. On
the other hand, the skills retrieved after using the
wiki2skillmodule provide high-level topics rel-
evant to the input text, such as “SVM”, “Machine
Learning” or “Classification”. These general topics
are more useful, since a user, such as an HR man-
ager, may be confused by too low-level skills.

5 Experiments & results

5.1 Evaluation of the text2wiki module

In order to compare the four text similarity func-
tions, we collected p = 200, 000 pairs of semanti-
cally related documents from the “See also” sections
of Wikipedia articles. A good model is supposed
to assign a high similarity to these pairs. However,
since the distribution of similarity scores depends
on the model, one cannot simply compare the mean
similarity s̄ over the set of pairs. Thus, we used a

Model z-score

TF-IDF 8459
LogEntropy 4370
LogEntropy + LDA 2317
LogEntropy + LSA 2143

Table 1: Comparison of different text similarity functions
on the Wikipedia “See also” dataset.

z-score as evaluation metric. The z-scores are com-
puted as

z =
s̄− µ̂√
σ̂2/p

(3)

where µ̂ and σ̂ are sample estimates of mean and
standard deviation of similarity scores for a given
model. These sample estimates have been calculated
from a set of 1,000,000 randomly selected pairs of
articles. Table 1 presents the results of this experi-
ment. It appears that more complex models (LSA,
LDA) are outperformed on this task by the simpler
vector space models (TF-IDF, LogEntropy). This
can be just a special case with this experimental
setting and perhaps another choice of the number
of topics could give better results. Thus, further
meta-parameter optimization of LSA and LDA is
one approach for improving the performance of the
text2wiki module.

5.2 Evaluation of the wiki2skill module

In order to find the optimal strategy of applying
Spreading Activation, we designed an evaluation
protocol relying on related skills listed on each
LinkedIn skill page. These are automatically se-
lected by computing similarities between skills from
user profiles (Skomoroch et al., 2012). Each skill
page contains at most 20 related skills.

For the evaluation procedure, we choose an initial
node i, corresponding to a LinkedIn skill, and acti-
vate it by setting a(0) = ei, that is a vector contain-
ing 1 in its i-th element and zeros elsewhere. Then,
we compute a(T ) with some spreading strategy and
for some number of steps T , filter out the skill nodes
and rank them according to their final activations. To
measure how well the related skills are represented
in this ranked list of skills, we use Precision at 1, 5
and 10, and R-Precision to evaluate the accuracy of
the first ranked results and Recall at 100 to see how
well the algorithm manages to activate all of the re-
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lated skills.
There are many LinkedIn skills that are not well

represented in the Wikipedia graph, because of am-
biguity issues, for instance. To prevent these anoma-
lies from causing misguiding results, we selected a
fixed set of 16 representative skills for the evalua-
tion. These skills were “Statistics”, “Hidden Markov
Models”, “Telecommunications”, “MeeGo”, “Digi-
tal Printing”, “OCR”, “Linguistics”, “Speech Syn-
thesis”, “Classical”, “Impressionist”, “Education”,
“Secondary Education”, “Cinematography”, “Exec-
utive producer”, “Social Sciences”, “Political Soci-
ology”.

Developing a completely automatic optimisation
scheme for this model selection task would be diffi-
cult because of the number of different parameters,
the size of the Wikipedia graph and the heuristic na-
ture of the whole methodology. Thus, we decided to
rely on a manual evaluation of the results.

Exploring the whole space of algorithms spanned
by eq. (1) would be too demanding as well. That is
why we have so far tested only a few models. In the
preliminary experiments that we conducted with the
system, we observed that using a friction factor λ
smaller than one had little effect on the results, and
thus we decided to always use λ = 1. Otherwise,
we experimented with three models, which we will
simply refer to as models 1, 2 and 3 and which we
define as follows

• model 1: γ = 0 and c(t) = 0;

• model 2: γ = 1 and c(t) = 0;

• model 3: γ = 0 and c(t) = a(0).

In model 1, activation is not conserved in a node
but only depends on the activation it has received
from its neighbors after each pulse. In contrast, the
activation that a node receives is completely con-
served in model 2. Model 3 corresponds to the Ran-
dom Walk with Restart model, where the initial ac-
tivation is fed to the system at each pulse. Models
1 and 2 eventually converge to a stationary distribu-
tion that is independent of the initial activation vec-
tor. This can be beneficial in situations where some
of the initially activated nodes are noisy, or irrele-
vant, because it allows the initial activation to die
out, or at least become lower than the activation of
other, possibly more relevant nodes. With Model 3,

the initially activated nodes remain always among
the most activated nodes, which is not necessarily a
robust choice.

The outcomes of the experiments demonstrated
that model 2 and model 3 perform equally well. In-
deed, these models are very similar, and apparently
their small differences do not affect the results much.
However, model 1 provided constantly worse results
than the two other models. Thus, we decided to use
model 3, corresponding to the Random Walk with
Restart model, in the system and in selecting the rest
of the spreading strategy.

We also evaluated different settings for the link
weighting scheme. Here, we faced a startling result,
namely that increasing the bidirectional link weight
δ all the way up to the value δ = 15 kept improving
the results according to almost all evaluation mea-
sures. This would indicate that links that exist in
only one direction do not convey a lot of semantic
relatedness. However, we assume that this is a phe-
nomenon caused by the nature of the experiment and
the small subset of skills used in it, and not necessar-
ily a general phenomenon for the whole Wikipedia
graph. In our experiments, the improvement was
more drastic in the range δ ∈ [1, 5] after which a
damping effect can be observed. For this reason,
we decided to set the bidirectional link weight in the
Elisit system to δ = 5.

We observed a similar phenomenon for the num-
ber of pulses T . Increasing its value up to T = 8 im-
proved constantly the results. However, again, there
was no substantial change in the results in the range
T ∈ [5, 8]. In the web service, the number of pulses
of the spreading activation can be determined by the
user.

In addition to the parameters discussed above, the
link weighting involves the popularity index πj and
the biasing parameter α. An overview of the ef-
fect of these two choices can be seen in Table 2,
which presents the results with the different eval-
uation measures. These results were obtained by
setting parameters as described earlier in this sec-
tion. First, we can see from this table that using
negative values for α in the weighting improves re-
sults compared to the natural random walk, i.e. the
case α = 0. This indicates that our strategy of bi-
asing the spreading of activation to avoid popular
nodes indeed improves the results. We can also see
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Pre@1 Pre@5 Pre@10 R-Pre Rec@100
α din PR HITS din PR HITS din PR HITS din PR HITS din PR HITS
0 0 0 0 0.119 0.119 0.119 0.156 0.156 0.156 0.154 0.154 0.154 0.439 0.439 0.439

-0.2 0 0 0 0.206 0.238 0.206 0.222 0.216 0.213 0.172 0.193 0.185 0.469 0.469 0.494
-0.4 0 0 0 0.225 0.263 0.169 0.203 0.200 0.150 0.185 0.204 0.148 0.503 0.498 0.476
-0.6 0 0 0.063 0.238 0.225 0.119 0.200 0.197 0.141 0.186 0.193 0.119 0.511 0.517 0.418
-0.8 0 0 0 0.213 0.181 0.075 0.191 0.197 0.113 0.171 0.185 0.109 0.515 0.524 0.384
-1 0 0 0 0.169 0.156 0.063 0.178 0.197 0.091 0.154 0.172 0.097 0.493 0.518 0.336

Table 2: The effect of the biasing parameter α and the choice of popularity index on the results in the evaluation of the
wiki2skill module.

that using Pagerank as the popularity index provided
overall better results than using the input degree,
which again yielded better results than using HITS.
Thus, biasing according to the input connections of
nodes seems more preferable than biasing accord-
ing to co-citation or co-reference connections. The
low scores with Precision@1 are understandable,
because of the low number of positives (at most 20
related skills) in comparison to the total number of
skills (over 27,000). In the Elisit system, we use
the Pagerank score as the popularity index and set
the value of the biasing parameter to α = −0.4.

5.3 Evaluation of the whole Elisit system

We adapted the evaluation procedure used for the
wiki2skill module, described in the previous
section, in order to test the whole Elisit sys-
tem. This time, instead of activating the node of
a given skill, we activated the nodes found by the
text2wiki module when fed with the Wikipedia
article corresponding to the skill. We run the Spread-
ing Activation algorithm with the setup presented in
the previous section. To make the evaluation more
realistic, the initial activation of the target skill node
is set to zero (instead of 1, i.e. the cosine of a vector
with itself).

The system allows its user to set the number of
initially activated nodes. We investigated the ef-
fect of this choice by measuring Precision and Re-
call according to the related skills, and by looking
at the average rank of the target skill on the list of
final activations. However, there was no clear trend
in the results when testing with 1-200 initially ac-
tivated nodes. Nevertheless, we have noticed that
using more than 20 initially activated nodes rarely
improves the results. We must also emphasize that
the choice of the number of initially activated nodes
depends on the query, especially its length.

We also wanted to compare the different VSM’s

VSM Pre@1 Pre@5 Pre@10 R-Pre Rec@100

TF-IDF 0.042 0.231 0.214 0.190 0.516
LogEntropy 0.068 0.216 0.212 0.193 0.525

LogEnt + LSA 0.042 0.180 0.181 0.163 0.491
LogEnt + LDA 0.089 0.193 0.174 0.159 0.470

Table 3: Comparison of the different models of the
text2wiki module in the performance of the whole
Elisit system.

of the text2wiki module when using the whole
Elisit system. We did this by comparing Pre-
cision and Recall at different ranks w.r.t. the re-
lated skills of the target skill found on LinkedIn.
Thus, this experiment combines the experiments in-
troduced in sections 5.1, where the evaluation was
based on the “See also” pages, and 5.2, where we
used a set of 16 target skills and their related skills.
Table 3 reports the Precision and Recall values ob-
tained with the different VSM’s. These values result
from an average over 12 different numbers of ini-
tially activated nodes. They confirm the conclusion
drawn from the experiment in section 5.1, namely
that the LogEntropy and TF-IDF models outperform
LSA and LDA models for this task.

6 Conclusion and future work

We have presented a method for skill extraction
based on Wikipedia articles, their hyperlink graph,
and a set of skills built by LinkedIn. We have also
presented the Elisit system as a reference imple-
mentation of this method. This kind of a system
has many potential applications, such as knowledge
management in a company or recommender systems
of websites. We have demonstrated with examples
and with quantitative evaluations that the system in-
deed extracts relevant skills from text. The evalu-
ation experiments have also allowed us to compare
and finetune different strategies and parameters of
the system. For example, we have shown that using
a bias to avoid the spreading of activation to popular
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nodes of the graph improves retrieval results.
This work is still in progress, and we have many

goals for improvement. One plan is to compute link
weights based on the contents of linked pages using
their vector space representation in the text2wiki
module. The method and system proposed in the
paper could also be extended to other languages. Fi-
nally, our methodology can potentially be used to
different problems than skill extraction by substitut-
ing the LinkedIn skills with a list of Wikipedia pages
from another domain.
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