
The 4th Workshop on South and Southeast Asian NLP (WSSANLP), International Joint Conference on Natural Language Processing, pages 25–33,
Nagoya, Japan, 14-18 October 2013.

Statistical Stemming for Kannada

Suma Bhat
Beckman Institute for Advanced Science and Technology,

University of Illinois,
Urbana-Champaign, IL 61801, USA

spbhat2@illinois.edu

Abstract

Stemming is a process that groups mor-
phologically related words into the same
class and is widely used in information
retrieval for improving recall rate. Here
we study a set of statistical stemmers for
Kannada, a resource-poor language with
highly inflectional and agglutinative mor-
phology. We compare stemming using
simple truncation, clustering and an un-
supervised morpheme segmentation algo-
rithm on a sample from a text collection.

We observe that a distance measure that
rewards longest prefix matches is the
best performing clustering-based stemmer.
However, using a reasonably perform-
ing unsupervised morpheme segmentation
seems to outperform the other stemming
schemes considered.

1 Introduction

With the ongoing quest for developing lan-
guage processing techniques and tools for under-
resourced languages there is an emerging need to
study various aspects of these languages. Kan-
nada, with nearly 70 million speakers is one of
the 40 most spoken languages in the world. It is
one of the scheduled languages of India and the
official and administrative language of the state
of Karnataka in South India. Its rich literary her-
itage has endowed the language with an immense
written resource and efforts are currently under-
way to bring them to web scales. However, avail-
able computational tools for Kannada are only in
their incipient stages. Simultaneously, there is an
ever increasing number of internet users who are
creating online materials in Kannada. As more in-
formation becomes available it becomes impera-
tive to develop language processing tools that help
us organize, search and understand information in

Kannada. One such task is that of information re-
trieval and the time is ripe for developing language
processing tools for efficient information retrieval
in Kannada.

Stemming serves to conflate morphologically
related word forms into a common form. The
role of stemming in improving retrieval effective-
ness, particularly for highly inflected languages
and monolingual retrieval has been well docu-
mented in studies including (Larkey and Connell,
2003; Majumder et al., 2007; Dolamic and Savoy,
2010). In addition, the efficiency of IR systems
owing to a decrease in size of the index term
set (and a concomitant decrease in storage) is an
added effect of stemming. Consequently, with the
goal of developing a suitable stemmer for Kannada
(a resource-poor language as far as current lan-
guage processing resources are concerned), the fo-
cus of this study is statistical approaches to stem-
ming in Kannada. We study stemming via three
strategies. The first is truncation by a prefix of cer-
tain length, the second, a clustering approach us-
ing string distance measures and the third involves
using the result of unsupervised morpheme seg-
mentation. In this context the goals of the current
study are the following.

1. To choose the most effective distance mea-
sure from among a set of string distance mea-
sures and determine a distance threshold that
results in good stemming performance; and,

2. To compare the performance of the resulting
clustering-based stemmer with traditional al-
gorithms such as truncation and unsupervised
morpheme segmentation.

For the purpose of this study, we evaluate the stem-
ming performance without distinguishing between
inflectional and derivational morphology.

The rest of this paper is organized as follows.
In Section 2 a description in brief of prior research

25



related to our study is presented. Section 3 deals
with a description of the data used. The method-
ology used in the study is the content of Section
4. The experimental details are found in Section
5. Section 6 highlights the results and the re-
lated analysis occurs in Section 7. In Section 8
we present conclusions drawn from the study and
outline some directions for further study.

2 Prior Work

As a recall enhancing technique in IR and efficient
storage mechanism (since morphologically related
word forms are conflated to the same stem), var-
ious stemming procedures have been studied for
several languages. Stemming experiments and
their effectiveness in IR have been carried out for
English and other European languages (Goldsmith
et al., 2000; Savoy, 2006; Fautsch and Savoy,
2009; Korenius et al., 2004; Majumder et al.,
2008) and for a few Indian languages (Majumder
et al., 2007; Dolamic and Savoy, 2010). There is
empirical evidence that a stemming procedure im-
proves retrieval effectiveness when applied to Eu-
ropean languages including French, Portuguese,
German and Hungarian (Savoy, 2006). For pro-
cessing agglomerative languages such as Turk-
ish and Finnish, stemming effectiveness has been
studied (Ekmekçioglu and Willett, 2000; Sever
and Bitirim, 2003; Korenius et al., 2004). Further,
indexing and search strategies have been found
to perform significantly better with the applica-
tion of the various stemming strategies (compared
to an indexing scheme without a stemmer), for
Hindi, Bengali and Marathi (Dolamic and Savoy,
2010; Majumder et al., 2007). Retrieval exper-
iments on English, French, Bengali, Hindi and
Marathi datasets show that a statistical stemming
approach via clustering is effective for languages
that are primarily suffixing in nature (Majumder et
al., 2007; Dolamic and Savoy, 2010; Ekmekçioglu
and Willett, 2000; Sever and Bitirim, 2003).

As an effective bootstrapping approach to stem-
ming, statistical methods have been explored for
several languages. The popular stemming algo-
rithms for English are based on language-specific
rules explored in (Lovins, 1968) and (Porter,
1980), whereas for several other languages statis-
tical stemming has been considered. The statis-
tical stemmer studied in (Majumder et al., 2007;
Šnajder and Bašic, 2009) is a cluster-based suffix
stripping algorithm, whereas a probabilistic suffix

stripping algorithm is explored in (Di Nunzio et
al., 2004). In (Ekmekçioglu and Willett, 2000)
a rule-based morphological analysis stemmer is
used for Turkish.

Studies on developing morphological analyz-
ers (mostly rule-based) for Kannada are available
(Antony et al., 2010; Veerappan et al., 2011; Shas-
tri, 2011; Murthy, 1999), but there have been
no reports of evaluations of their propositions in
terms of stemming effectiveness. In (Bhat, 2012),
a preliminary study of unsupervised algorithms for
morpheme segmentation in Kannada is available
which observed that a statistical morpheme seg-
mentation algorithm such as (Dasgupta and Ng,
2006) shows a reasonable performance for mor-
pheme segmentation in Kannada. Taking the re-
sults of prior studies further, the current study is
cast in the knowledge-base gained and compares
stemming using a clustering-based approach with
stemming using simple truncation and that us-
ing an unsupervised morpheme segmentation al-
gorithm. The favorable results of prior studies
with languages that are primarily suffixing in na-
ture and those of the agglutinative type, prompts
us to consider their stemming approaches for Kan-
nada.

2.1 Challenges to Morphological Analysis in
Kannada

Kannada is one of the four major literary lan-
guages of the Dravidian family. Kannada is
mainly an agglutinating language of the strongly
suffixing type (Dryer and Haspelmath, 2011; Srid-
har, 1990). Words contain a basic root, with one
or more suffixes being combined with this root
in order to extend its meaning or to create other
classes of words. Agglutination can result in long
words that can contain as much semantic informa-
tion as a whole English phrase, clause or sentence.
An example of this characteristic is provided by
the word, sadupayOgapaDisikoLLabahudu ‘could
avail the benefits’. Nouns are marked for num-
ber and case and verbs are marked, in most cases,
for agreement with the subject in number, gender
and person (like other nouns, geographical, prod-
uct and even proper names are marked with case
endings making the use of a dictionary impracti-
cal). This makes Kannada a relatively free word
order language. Morphologically rich languages
such as Kannada, are characterized by a large
number of morphemes in a single word, where

26



morpheme boundaries are difficult to detect be-
cause they are fused together. In addition, ram-
pant morphophonemic processes (sandhi), pro-
ductive compounding and agglutinating morphol-
ogy of inflectional and derivational suffixes (the
latter mostly with words of Sanskrit origin natu-
ralized into Kannada) drive the prolific word for-
mation processes of the language (Sridhar, 1990).

3 Data

Corpus: For the purpose of experimentation we
use the Kannada portion of the EMILLE corpus
(Baker et al., 2002). In order to avoid words
with typographical errors we restrict the sample
to those word types occurring at least two times.
Here, instead of resorting to clustering the lexicon
from the given collection, we reduce the compu-
tational cost of the experiment by focusing on a
subset of the lexicon. Thus, our experimental data
set has 10020 words which are chosen so as to in-
clude the most morphologically productive words
(manually chosen from the lexicon). We consider
a suitable Roman transliteration of the Kannada
unicode characters for computational ease.

Gold set: For evaluating the stemmers, we man-
ually group the related forms of words in the sam-
ple into equivalence classes. In preparing the
classes we do not distinguish between inflection-
ally and derivationally related forms. Thus, mor-
phologically and semantically related words oc-
cur in the same group (for instance, compound
forms semantically related to the root word occur
in the same class). Moreover, in the case of poly-
semy, it suffices if some of their senses are related
(note that semantic relations between members of
such groups are less clear without the context). In
such cases, the sense was arbitrarily chosen. It is
worth pointing out that the groups here leave out
compound words where the anchoring word oc-
curs in the non-first position (a feature not intrinsic
to Kannada, but derived from Sanskrit - e.g. ma-
hAraja “great king” is derived from raja “king” ).
Our resulting gold set of equivalence classes con-
sists of 667 such groups. Table 1 shows an excerpt
from the sample in which 34 word forms occur in
the same group.

4 Method

We perform a clustering-based approach to dis-
cover equivalence classes of root words and their
morphological variants. Using a set of string dis-

tance measures a subset of a given text collection
in Kannada is clustered to identify these equiva-
lence classes. The proposed approach is compared
with simple truncation based stemming and that
based on unsupervised morpheme segmentation.

4.1 String Distance Measures

We consider the set of string distance measures
proposed in (Majumder et al., 2007) for cluster-
ing a set of words. The distance measures assign
a real value (distance) to a pair of strings, with the
distance being indicative of the similarity between
the two strings - a smaller value means higher sim-
ilarity between the strings. Accordingly, we define
the distance between two identical strings to be 0.
For two strings X and Y , (if X and Y are of un-
equal length, we pad the shorter string with null
characters to make the string lengths equal) let the
length of the strings be n + 1. Let m denote the
position of the first mismatch between X and Y .
The distance measures are given by,

D2(X, Y ) =
1
m

n∑
i=m

1
2i−m

,

D3(X, Y ) =
n−m + 1

m

n∑
i=m

1
2i−m

,

D4(X, Y ) =
n−m + 1

n + 1

n∑
i=m

1
2i−m

.

Intuitively, measure D2 rewards long match-
ing prefixes, D4 penalizes long non-matching suf-
fixes and D3 does both. Motivated by the the ef-
fectiveness of the statistical stemmer (using the
three measures) for the Indian languages - Hindi,
Marathi and Bengali - as in (Majumder et al.,
2007; Dolamic and Savoy, 2010), we use the same
measures to study stemming for Kannada which is
of the strongly suffixing type.

4.2 Clustering

We cluster the word forms using a hierarchical
agglomerative algorithm as studied in (Majumder
et al., 2007). The algorithm starts by assigning
word forms to singleton clusters and proceeds by
merging at each level the two least distant clusters
until a single cluster remains. At each merging
stage, the distance between two clusters is com-
puted as one of the maximum, minimum, or av-
erage distance between the elements of the two

27



vidyArthi, vidyArthigU ,vidyArthigaLU , vidyArthigaLa, vidyArthigaLalli, vidyArthigaLalliruva, vidyArthigaLannU
vidyArthigaLannu, vidyArthigaLeMdare,vidyArthigaLiMda, vidyArthigaLigAgi, vidyArthigaLigU, vidyArthigaLige, vidyArthigaLigiMta
vidyArthigaLirabEku, vidyArthigaLoMdige, vidyArthigaLu, vidyArthige, vidyArthiniyara, vidyArthinilaya, vidyArthinilayada
vidyArthinilayadalli, vidyArthinilayagaLu, vidyArthinilayakke, vidyArthiyAgi, vidyArthiyAgiddAga, vidyArthiyAgidda, vidyArthiyAgiddaru
vidyArthiyAgidde, vidyArthiyU, vidyArthiya, vidyArthiyannu, vidyArthiyobbana, vidyArthiyu

Table 1: An example of a word group with words derived from vidyArthi “student”

clusters, referred to as complete-linkage, single-
linkage, and average-linkage algorithm, respec-
tively. Complete-linkage results in small and com-
pact clusters, single-linkage results in long and
branched clusters, whereas the result of average
linkage is somewhere in between (in contrast to
single linkage, each element needs to be relatively
similar to all members of the other cluster, rather
than to just one). For our experiment, we use
average-linkage clustering. The resulting hierar-
chical structure is only used to the extent that
members along a branch (below a certain distance)
belong to the same cluster.

The main drawback of hierarchical agglomer-
ative clustering is its computational inefficiency.
Because the number of word forms in our sam-
ple is of the order of thousands, we adopt the fol-
lowing complexity reducing technique before pro-
ceeding to the hierarchical clustering step. We
carry out the clustering in two consecutive steps:
a divisive step followed by an agglomerative step.
The idea is to use the divisive step to partition the
set of word forms into pre-clusters and then to per-
form agglomerative clustering on each of the pre-
clusters separately. In order to facilitate the merg-
ing of morphologically related words in the ag-
glomerative step, it is essential that the pre-clusters
be sufficiently coarse grained. We first group the
words into pre-clusters by truncating them to the
first n characters, n = 1, . . . , 7. For a given pre-
fix length, this results in a set of pre-clusters. This
step serves a two-fold purpose in this study; it not
only reduces the computational complexity, but
also serves as a baseline for comparing the stem-
ming performance of the subsequent hierarchical
clustering step.

4.3 Unsupervised Morpheme Segmentation
Algorithm

We consider an extension of Keshava and
Pitler’s algorithm (Keshava and Pitler, 2006) for
language-independent morpheme induction stud-
ied in (Dasgupta and Ng, 2006). This algorithm
was chosen since it was the overall best perform-

ing morpheme segmentation algorithm as stud-
ied in (Bhat, 2012) with a favorable F-measure
of 72%. The algorithm (hereafter abbreviated as
Morphind) being unsupervised, accepts as input
an untagged corpus as a list of words with their
frequency occurrence in the corpus. The key idea
for morpheme discovery used here is that the con-
ditional probability of a letter given its context ex-
hibits a sudden jump at a morpheme boundary.
The algorithm proceeds by first creating a forward
tree and a backward tree, which provide the basis
for efficient calculation of transitional probabili-
ties of a letter given its context. It is then followed
by the affix acquisition step, during which a set
of morphemes is identified from the corpus. The
third step uses the morphemes identified to seg-
ment words.

4.4 Evaluation

Since the explicit benefit of stemming is seen in
the realm of information retrieval (IR), in several
prior studies, the performance of a stemming algo-
rithm is traditionally evaluated by considering the
effect on the performance of IR systems. Conduct-
ing such a task-specific evaluation makes it im-
possible to assess cases where the stemmer makes
faulty conflations and/or cases of correct confla-
tion. In order to enable such an analysis we use
a task-independent evaluation first proposed by
Paice (1996). In this method of stemmer eval-
uation, the actual understemming and overstem-
ming errors committed are counted on a manually
constructed word sample in which the words are
grouped based on their morphological relatedness.
The understemming index (UI) is computed as the
proportion of pairs from the sample that are rel-
egated to different groups by the stemmer even
though they are related; the overstemming index
(OI) is computed as the proportion of pairs that
actually belong to different groups among those
that are conflated to the same stem. As in (Šnajder
and Bašic, 2009) we resort to measure the over-
all stemming effectiveness in terms of stemming
quality (SQ), defined as the harmonic mean of 1-

28



UI and 1-OI.

5 Experiments

5.1 Stemming Algorithms

We use Morphind with its default parameters
(which govern the size of the suffix list for seg-
mentation) as in (Bhat, 2012). The algorithm ex-
cludes from its analysis words seen only once in
the corpus. This has the obvious disadvantage that
several morphological variants are lost from being
considered for the analysis.

5.2 Clustering

The distance threshold during the agglomerative
clustering procedure governs the stemming qual-
ity; a lower threshold corresponds to ‘light’ stem-
ming and a higher threshold corresponds to a heav-
ier stemming. In (Majumder et al., 2007), the op-
timum distance threshold in the hierarchical clus-
tering stage was chosen based upon the number
of clusters being generated. As in (Šnajder and
Bašic, 2009), we choose the optimum threshold
for hierarchical clustering by looking at the stem-
ming quality obtained by stemming the words in
the gold set. The optimum threshold is chosen to
be that which maximizes the stemming quality.

6 Results

Experiments were conducted using the sample of
10020 words and evaluated against the manually
created equivalence classes of 667 groups.

6.1 Pre-clustering

Length Total Largest UI OI SQ
1 26 1106 0.00 0.87 0.23
2 125 406 0.00 0.62 0.55
3 258 382 0.00 0.37 0.77
4 432 280 0.14 0.27 0.79
5 949 234 0.53 0.21 0.59
6 1840 108 0.73 0.03 0.42
7 2976 66 0.85 0.01 0.26

Table 2: Total number of clusters, size of the
largest cluster, understemming (UI), overstem-
ming (OI) indices and stemming quality (SQ)
in the pre-clustering stage with different prefix
lengths

The divisive step of clustering, with word forms
truncated to the first n letters, n = 1, . . . , 7, re-

sults in a set of clusters whose details are tab-
ulated in Table 2. For each partition, we indi-
cate the number of clusters, the size of the largest
cluster, the understemming and overstemming in-
dices and the stemming quality. The understem-
ming index reflects the errors made by truncation
(assigning morphologically related word forms to
distinct pre-clusters by truncating to a prefix of
given length). The problem of pre-clustering with
a common fixed-length prefix is that, in order to
obtain pre-clusters of manageable sizes, the prefix
length must be high. This splits apart many mor-
phologically related groups, as indicated by the in-
creasing understemming values as we move down
the column.

From Table 2, we notice that SQ peaks at a pre-
clustering level of length 4. However, we also ob-
serve that the pre-clusters with a common prefix
of length 3 have a lower understemming index.
With the primary goal of keeping a low UI, and
knowing that once split at the pre-clustering level,
related words cannot be merged during the sub-
sequent clustering stages, we choose pre-clusters
with a common prefix of length 3 for subsequent
agglomerative clustering. For hierarchical cluster-
ing, we use the distance measures D2, D3 and D4

as defined in Section 4.1.

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

threshold

S
Q

Figure 1: Plot of the stemming quality of cluster-
ing using the distance measure D2 as a function of
the distance threshold

In Figure 1, SQ of measure D2 as a function
of the threshold is shown. Measure D2 achieves

29



the optimal stemming quality for a threshold of 2.0
and the maximum stemming quality is 83.46%.

Stemmer t UI% OI% SQ%
D2 2.0 10.19 22.05 83.46
D3 35.8 11.53 23.08 82.10
D4 7.0 0.17 28.97 83.00

trunc(3) - 0.25 36.69 77.20
Morphind - 19.65 0.7 88.82

Table 3: Comparison of the optimal stemming per-
formances of the approaches studied

Table 3 shows the optimal stemming quality of
the string distance measures and the correspond-
ing distance threshold values t. We note that clus-
tering using measure D2 yields the best perfor-
mance for stemming by clustering. We notice that
the optimum SQ, however, comes at the expense
of a higher UI compared to the truncation scheme.

Next, comparing the stemming performance via
clustering with that resulting from morpheme seg-
mentation, we notice that the higher stemming
quality (88.82%) in the latter case comes at the
cost of a significantly higher UI.

The OI-UI plot on Figure 2 shows the stem-
ming performance of the three distance measures.
In particular, the OI-UI variation while varying
the distance threshold is shown (since the distance
thresholds were different for each measure, the
corresponding information was omitted from the
plot). As the value of the distance threshold in-
creases, clusters are merged resulting in decreased
UI and an increase in OI. The plot reveals that for
the most part, the three measures perform better
than simple truncation.

7 Discussion

An evaluation of the stemming performance cru-
cially depends on the manually created groups of
morphologically related word forms. Given that
the grouping process was done by subjective hu-
man judgement rather than an objective criterion,
variations in grouping are highly likely. For in-
stance, semantic relatedness of words is different
depending on the context and has varied granular-
ity. To cite an example, consider the word group
shown in Table 1. The group consists of words de-
rived from vidyArthi “student”. While vidyArthi-
gaLu “students (nominative plural)” is related to
vidyArthi by inflectional morphology, vidyArthini

“female student” is also related and so is vid-
yArthinilaya “ student residence” or vidyArthivE-
tana “financial aid (scholarship)”. Depending on
the topic being discussed, “student residence” and
“scholarship” may be grouped together with “stu-
dent” or not. We would like to remind the fact that
words were grouped based only on their surface
form with no additional information (such as con-
text). It is important to also note here that in order
to facilitate a clustering process, only words re-
lated by a suffixing process were grouped together
which means that the manual grouping process has
an inherent UI. As a result, words such as BASe
“language” and ADuBASe “vernacular (common
language)” were relegated to different groups.

With the choice of an appropriate distance
threshold (for a description see Section 5.2), the
SQ by clustering using measure D2 can exceed
80%. Thus, clustering using string distance mea-
sures seems to be a favorable statistical stemming
approach compared to simple truncation, which
(on the same sample) reaches to SQ = 77.20%.
The agreeable stemming quality of the truncation
method suggests that a simplistic statistical stem-
mer, of taking fixed length substrings of words as
stems, may in itself, result in an increased perfor-
mance for IR.

The ease of implementation of the clustering
procedure could be considered as an advantage
over Morphind, which requires an informed set-
ting of its parameters (language-dependent) for
optimum segmentation performance. A more con-
clusive comparison of the two methods will have
to be done in a task-specific setting such as that of
IR evaluation.

Let us now take a look at an instance of the clus-
tering procedure. We begin with the pre-cluster
‘vid’ (which included the group of words in Ta-
ble 1) which was later clustered hierarchically. At
the optimum threshold of t = 2.0, with the distance
measure D2, the group consisting of the morpho-
logical variants of vidyArthi was clustered along
with the words found in Table 5. Here we notice
that the words are broadly related, but certainly do
not belong to the same group, indicating the source
of understemming error.

We next look at the stemming (via morpho-
logical segmentation) of the set of words in the
same Table 1 and notice that they have been di-
vided into five groups in addition to the obvious
first group, vidyArthi: there is vidyArthiniyara,

30



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Understemming index

O
ve

rs
te

m
m

in
g 

in
de

x

6
7

5
4

3

2

1
Precluster
D2
D3
D4

Figure 2: UI-OI plots of the hierarchical clustering with the distance measures compared with that in the
pre-clustering with different prefix lengths

Method No. of stems Compression (%)
Gold set 666 93.00
Clustering(D2) 227 97.61
Truncation(3) 258 97.29
Morphind 1946 79.57

Table 4: Compression rates compared

vidyArthigaL, vidyArthiyAgidde, vidyArthiy-
obbana and vidyArthinilaya. The resulting over-
stemming error can be attributed to the inability
of the morpheme segmentation algorithm to han-
dle word forms such as vidyArthinilaya and vid-
yArthiyAgidde (compounding) and vidyArthiyob-
bana (external sandhi).

Another perspective of the stemming perfor-
mance can be seen in Table 4. Here we list
the compression rates in terms of the number of
reduced words in the dictionary after stemming.
The rather high compression ratio in the manu-
ally created grouping can be explained by notic-
ing that the words comprise a subsample of the
word types occurring in the collection chosen from
among the most productive words occurring in

the corpus. (True compression rates of the lexi-
con are expected to be lower than what is noted
here, but certainly higher than that of English since
the morphology is more complex than that of En-
glish.) Notice how the morpheme segmentation al-
gorithm results in the creation of about three times
as many groups as needed. This explains the cor-
responding high UI and low OI in Table 3

In the current study, the manually created equiv-
alence classes did not distinguish between inflec-
tional and derivational forms. If such a grouping
were to be available, the distance threshold could
have been tuned to isolate inflectionally related
forms from derivationally related forms.

We are then interested to see how morpholog-
ical variants are ranked based on their distance

31



vidyA2ara,vidyA2arara,vidyA2ikAri,vidyAByAsa,vidyAByAsada,vidyAByAsadalli,vidyAByAsakkAgi,
vidyAByAsakke,vidyAByAsavannu,vidyAbud2i,vidyAbud2ivaMtaru,vidyAdAna,vidyAlayada,vidyAlayagaLalli,
vidyAmaMtrigaLa,vidyAni2i,vidyAnilayada,vidyApariNitaru,vidyArthivEtana,vidyArthivEtanavannu,vidyAraNya,
vidyAraNyara,vidyArhate,vidyArjaneyalli,vidyAsaMs4egaLalli,vidyAtajxara,vidyAvaMta,vidyAvaMtanAgalu,
vidyAvaMtanU,vidyAvaMtarAdarU,vidyAvaMtarAgi,vidyAvaMtarU,vidyAvaMtara,vidyAvaMtaralli,vidyAvaMtarannAgi,
vidyAvaMtarannu,vidyAvaMtarige,vidyAvaMtaru,vidye,vidyegU,vidyegaLa,vidyegaLannu,
vidyeyAgide,vidyeya,vidyeyalli,vidyeyannU,vidyeyannu,vidyeyu

Table 5: The set of words clustered along with words derived from vidyArthi “student”

from the lemma (the dictionary form of the root).
It would be convenient to have a distance mea-
sure that helps us distinguish between inflectional
forms and derivational forms of a lemma. To-
wards this, we again consider the lemma vidyArthi
“student” and its morphologically related forms in
Table 1. We consider the distance between the
lemma and the other forms using the measures D2,
D3 and D4 and rank order them with increasing
order of distance (words with tied distances are
grouped together and only the top-10 words are
listed).

D2 = {vidyArthi, {vidyArthigU, vidyArthige,
vidyArthiyU, vidyArthiya, vidyArthiyu},
{vidyArthigaLU, vidyArthigaLa, vidyArthi-
gaLu, vidyArthiyAgi}, vidyArthigaLalli }

D3 = {vidyArthi, {vidyArthigU, vidyArthige,
vidyArthiyU, vidyArthiya, vidyArthiyu},
{vidyArthigaLU, vidyArthigaLa, vidyArthi-
gaLu, vidyArthiyAgi}, vidyArthiyannu}

D4 = {vidyArthi, {vidyArthigU, vidyArthige,
vidyArthiyU, vidyArthiya, vidyArthiyu},
{vidyArthigaLU, vidyArthigaLa, vidyArthi-
gaLu, vidyArthiyAgi}, vidyArthiyannu}

Here we observe that inflectionally related
forms (in bold) are ranked higher than derivation-
ally related forms. It is also worth pointing out that
the stemming procedures considered here work by
targeting the primarily suffixing processes of Kan-
nada. As a result of this, forms related resulting
via the umlauting process (such as shikSaNa be-
coming shykSaNika as a denominal adjective) are
not conflated.

The stemming performance of Morphind is crit-
ically dependent upon the accuracy of the mor-
pheme segmentation process. In (Bhat, 2012) an
F-measure of 72% was reported. Upon closer in-
spection, we notice that several assumptions in the
algorithm are specific to English, resulting in a low
recall for Kannada, whose morphology is more
complex than that of English. In particular, the
assumptions that - all stems are valid words in the

lexicon, affixes occur at the beginning or end of
words only and affixation does not change stems
- are clearly violated in Kannada. Moreover, as
noted in (Bhat, 2012), morpheme segmentation is
better for nouns than for verbs. An intuitive expla-
nation here is that the noun inflectional process is
seen more often than the verb variants.

8 Conclusions and Future Work

The results of the above experiment suggest that,
for Kannada, the stemming performance of a
truncation-based algorithm can be improved by
subsequent clustering of the generated groups.
Moreover a string distance measure, such as D2,
that rewards long matching prefixes emerges as an
effective distance measure for clustering morpho-
logically related words. Overall, comparing sta-
tistical stemmers, an unsupervised morpheme seg-
mentation approach (such as Morphind) to stem-
ming works better than a clustering-based ap-
proach in the case of Kannada.

We are well aware that a rule-based linguistic
stemmer will perform better than a non-linguistic
statistical stemmer. However, this exercise serves
as a bootstrapping mechanism of the stemming
process for Kannada. Looking ahead, the per-
formance of an aggressive stemmer that not only
removes inflectional suffixes but also removes
derivational suffixes via a set of rules would be of
interest.

This work does not account for possible word
ambiguities since each word is taken as an isolated
entity, and is grouped according to its typical con-
notation. As noted in (Paice, 1996), it would cer-
tainly be of interest to allow different senses of a
word to be assigned to different groups, using in-
formation about the meaning of each specific word
taken in its context.

Finally and most importantly, we plan to study
stemming for Kannada in a task-specific setting
such as that of IR evaluation as has been done in
several related studies with other languages.

32



References
P. J. Antony, M.A. Kumar, and K. P. Soman. 2010.

Paradigm based morphological analyzer for kannada
language using machine learning approach. Interna-
tional Journal on Advances in Computational Sci-
ences and Technology ISSN, pages 0973–6107.

Paul Baker, Andrew Hardie, Tony McEnery, Hamish
Cunningham, and Robert Gaizauskas. 2002.
Emille, a 67-million word corpus of indic languages:
Data collection, mark-up and harmonisation. In
Proceedings of Language Resources and Evaluation
Conference (LREC).

Suma Bhat. 2012. Morpheme segmentation for kan-
nada standing on the shoulder of giants. In Proceed-
ings of the WSANLP, pages 411–415.

Sajib Dasgupta and Vincent Ng. 2006. Unsupervised
morphological parsing of bengali. Language Re-
sources and Evaluation, 40(3):311–330.

Giorgio Di Nunzio, Nicola Ferro, Massimo Melucci,
and Nicola Orio. 2004. Experiments to evaluate
probabilistic models for automatic stemmer gener-
ation and query word translation. In Comparative
evaluation of multilingual information access sys-
tems, pages 220–235. Springer.

Ljiljana Dolamic and Jacques Savoy. 2010. Compar-
ative study of indexing and search strategies for the
hindi, marathi, and bengali languages. ACM Trans-
actions on Asian Language Information Processing,
9(3):1–24.

Matthew S. Dryer and Martin Haspelmath, editors.
2011. The World Atlas of Language Structures On-
line. Max Planck Digital Library, Munich, 2011 edi-
tion.

F Cuna Ekmekçioglu and Peter Willett. 2000. Ef-
fectiveness of stemming for turkish text retrieval.
PROGRAM-LONDON-ASLIB, 34(2):195–200.

Claire Fautsch and Jacques Savoy. 2009. Algorithmic
stemmers or morphological analysis? an evaluation.
Journal of the American Society for Information Sci-
ence and Technology, 60:16161624.

John Goldsmith, Derrick Higgins, and Svetlana Soglas-
nova. 2000. Automatic language-specific stemming
in information retrieval. In Proceedings of the Work-
shop on Cross-Language Evaluation Forum (CLEF),
pages 273–284.

Samarth Keshava and Emily Pitler. 2006. A simpler,
intuitive approach to morpheme induction. In Pro-
ceedings of 2nd Pascal Challenges Workshop, pages
31–35.

Tuomo Korenius, Jorma Laurikkala, Kalervo Järvelin,
and Martti Juhola. 2004. Stemming and lemma-
tization in the clustering of finnish text documents.
In Proceedings of the thirteenth ACM international
conference on Information and knowledge manage-
ment, CIKM ’04, pages 625–633.

Leah S. Larkey and Margaret E. Connell. 2003. Struc-
tured queries, language modeling, and relevance
modeling in cross-language information retrieval.
In Information Processing and Management Special
Issue on Cross Language Information Retrieval.

Julie Lovins. 1968. Development of a stemming al-
gorithm. MIT Information Processing Group, Elec-
tronic Systems Laboratory.

Prasenjit Majumder, Mandar Mitra, Swapan Parui,
Gobinda Kole, Pabitra Mitra, and Kalyankumar
Datta. 2007. Yass: Yet another suffix stripper.
ACM transactions on information systems (TOIS),
25(4):18.

Prasenjit Majumder, Mandar Mitra, and Dipasree Pal.
2008. Bulgarian, hungarian and czech stemming us-
ing yass. In Advances in Multilingual and Multi-
modal Information Retrieval, pages 49–56. Springer.

Kavi Narayana Murthy. 1999. A network and pro-
cess model for morphological analysis/generation.
In ICOSAL-2, the Second International Conference
on South Asian Languages, Punjabi University, Pa-
tiala, India.

Chris Paice. 1996. Method for evaluation of stem-
ming algorithms based on error counting. Journal
of the American Society for Information Science,
47(8):632–649.

Martin Porter. 1980. An algorithm for suffix strip-
ping. Program: electronic library and information
systems, 14(3):130–137.

Jacques Savoy. 2006. Light stemming approaches for
the french, portuguese, german and hungarian lan-
guages. In Proceedings of the 2006 ACM sympo-
sium on Applied computing, SAC ’06, pages 1031–
1035.

Hayri Sever and Yıltan Bitirim. 2003. Findstem:
analysis and evaluation of a turkish stemming al-
gorithm. In String Processing and Information Re-
trieval, pages 238–251. Springer.

G. Shastri. 2011. Kannada morphological analyser
and generator using trie. IJCSNS, 11(1):112.

Jan Šnajder and B Dalbelo Bašic. 2009. String
distance-based stemming of the highly inflected
croatian language. In Proceedings of the Inter-
national Conference RANLP-2009. Borovets, Bul-
garia: Association for Computational Linguistics,
pages 411–415.

S.N. Sridhar. 1990. Kannada. Routledge.

Ramasamy Veerappan, P. J. Antony, S. Saravanan, and
K. P Soman. 2011. A rule based kannada mor-
phological analyzer and generator using finite state
transducer. International Journal of Computer Ap-
plications, 27(10):45–52.

33


