
Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing (SIGHAN-7), pages 64–68,
Nagoya, Japan, 14 October 2013.

Automatic Chinese Confusion Words Extraction Using
Conditional Random Fields and the Web

Chun-Hung Wang
Department of Computer

Science
National Tsing Hua University

mars@cs.nthu.edu.tw

Jason S. Chang
Department of Computer

Science
National Tsing Hua University

jason.jschang@gmail.com

Jian-Cheng Wu
Department of Computer

Science
National Tsing Hua University

wujc86@gmail.com

Abstract

A ready set of commonly confused words
plays an important role in spelling error detec-
tion and correction in texts. In this paper, we
present a system named ACE (Automatic Con-
fusion words Extraction), which takes a Chi-
nese word as input (e.g., “不脛而走”) and au-
tomatically outputs its easily confused words
(e.g., “不徑徑徑徑而走”, “不逕逕逕逕而走”). The purpose
of ACE is similar to web-based set expan-
sion – the problem of finding all instances (e.g.
“Halloween”, “Thanksgiving Day”, “Inde-
pendence Day”, etc.) of a set given a small
number of class names (e.g. “holidays”). Un-
like set expansion, our system is used to pro-
duce commonly confused words of a given
Chinese word. In brief, we use some hand-
coded patterns to find a set of sentence frag-
ments from search engine, and then assign an
array of tags to each character in each sentence
fragment. Finally, these tagged fragments are
served as inputs to a pre-learned conditional
random fields (CRFs) model. We present ex-
periment results on 3,211 test cases, showing
that our system can achieve 95.2% precision
rate while maintaining 91.2% recall rate.

1 Introduction

Since many Chinese characters have similar
forms and similar or identical pronunciation, im-
properly used characters in Chinese texts are
quite common. Previous works collected these
hard-to-distinguish characters to form confusion
sets (Ren et al., 1994). Confusion sets are pretty
helpful for online detecting and correcting im-
properly used Chinese characters in precision
and speed. Zhang et al. (2000) build a confusion
set based on a Chinese input method named
Wubi. The basic assumption is that characters

that have similar input sequences must have sim-
ilar forms. Therefore, by replacing one code in
the input sequence of a certain character, the sys-
tem could generate characters with similar forms.
Lin et al. (2002) used the Cangjie input method
to generate confusion sets under the same as-
sumption in Zhang et al. Another approach is to
manually edit the confusion set. Hung manually
compiled 6,701 common errors from different
sources (Hung and Wu, 2008). These common
errors were collected from essays of junior high
school students and were used in Chinese charac-
ter error detection and correction.

Since the cost of manual compilation is high,
Chen et al. (2009) proposed an automatic method
that can collect these common errors from a cor-
pus. The idea is similar to template generation,
which builds a question-answer system (Ravi-
chandran and Hovy, 2001; Sung et al., 2008).
The template generation method investigates a
large corpus and mines possible question-answer
pairs. In this paper, we present ACE system to
automatically extract commonly confused words
from the Web of a given word. Table 1 shows
some examples of ACE’s input and output.

input 兵荒馬亂 三令五申 伶牙俐齒

output
兵慌慌慌慌馬亂

三令五伸伸伸伸
三令五聲聲聲聲
三申申申申五令令令令

伶牙利利利利齒
靈靈靈靈牙利利利利齒

Table 1: Examples of ACE’s input and output.

This paper is organized as follows. Section 2

illustrates the architecture of ACE. Section 3 ex-
plains the features we use for training model.
Section 4 presents evaluation results. The last
section summarizes this paper and describes our
future work.

64

Figure 1: Flow chart of the ACE System.

2 System Architecture

ACE consists of two major components: the
Fetcher and the Extractor. Given a Chinese word
(assume it is correct), the Fetcher retrieves snip-
pets from Google using hand-coded patterns, and
then executes the pattern matching process to
produce a set of sentence fragments. The Extrac-
tor is responsible for assigning an array of tags to
each character in every sentence fragment de-
pends on its features. These tagged fragments are
served as inputs to a pre-learned CRFs model
(see Section 3) for extracting commonly con-
fused words of the input word. In this section, we
will describe the Fetcher and the Extractor in
more detail.

2.1 The Fetcher

The Fetcher first constructs a few query strings
by using the combination of input word and a set
of pre-defined patterns. Table 2 shows our query
strings and their English translations.

Type I

<�> 誤作 <�> be misused as
<�> 寫成 <�> be written as
<�> 誤為 <�> be misused as
<�> 不是 <�> not

Type II
應為 <�> should be <�>
應作 <w> should be <�>
改為 <�> be revised as <�>

Table 2: Type I and Type II query strings and their
English translations. In each query string, <�> is a
placeholder for the input word.

There are two types of query strings: Type I

are the ones that require the input word � to pre-
cede the pattern (e.g. “�寫成”), and Type II are
the opposite ones (e.g. “應作�”). For every que-
ry, the Fetcher retrieves several Web pages of
results from Google where each page contains up
to 100 snippets due to Google’s restriction. For

each snippet, the Fetcher removes its HTML tags
and extracts sentence fragments which contain
the input word and possibly contain incorrect
words with the help of regular expression. These
sentence fragments are inputs of the Extractor we
will describe later. For Type I query results, sen-
tence fragment is orderly composed by 0 to 6
characters (including Chinese characters, alpha-
numeric symbols, punctuation marks, etc.), the
input word, and 1 to � characters where � is the
number of characters of the input word plus 14.
For Type II query results, sentence fragment is
orderly composed by 1 to � characters, the input
word, and 0 to 6 characters. Table 3 shows some
examples of extracted sentence fragments of the
input word “不脛而走”.

Type I
目。復原不脛而走不脛而走不脛而走不脛而走”誤作“不徑而走”（'97
「不脛而走不脛而走不脛而走不脛而走」寫成「不徑而走」–Y

Type II
“不徑而走”應為“不脛而走不脛而走不脛而走不脛而走”big
月 5日–不徑而走應作不脛而走不脛而走不脛而走不脛而走. 峻工

Table 3: Examples of sentence fragments of the input
word “不脛而走”. For clarification purposes, we
make the input word bold and italicize the pattern.

2.2 The Extractor

The Extractor first assigns an array of tags to
each character in every sentence fragment de-
rived from the Fetcher by its features. We may
assign up to four tags to each character according
to system configurations. Table 4 shows an ex-
ample of fully tagged fragment. Tag I denotes
that this character is in the instance of the input
word or not. Tag II and Tag III are pronuncia-
tion-related features, indicating pronunciation
similarity between this character and any charac-
ter of the input word. Tag IV is orthographic
similarity between this character and any charac-
ter of the input word. Meanings of tags and how
to assign tags to characters will be detailed in
Section 4.

After sentence fragments are tagged, these
tagged fragments are served as inputs to a pre-
learned CRFs model for labeling easily confused
words of the input word. Finally, the Extractor
combines these labeled characters into words,
and then ranks these words based on frequency.

ACE outputs first few ranked words depend
on system settings. Let a = 〈��, �	, … , ��〉 be the
set of ranked words and ���� denotes the fre-
quency of �� , ���� ≥ ��	� ≥ ⋯ ≥ ���� .

65

ACE outputs �� = 〈��, … , ��〉 where 1 ≤ � ≤ �
and �� ≥ � ∗ ���� for each �� ∈ ��. The default
value of � is 0.3 and can be configured in the
system. Some example inputs and outputs are
listed in Table 1, and Section 6 shows more ex-
amples.

characters Tag I Tag II Tag III Tag IV

“ N O O O
不 N Y Y Y
徑 N N N N
而 N Y Y Y
走 N Y Y Y
” N O O O
應 N O O O
為 N O O O
“ N O O O
不 Y Y Y Y
脛 Y Y Y Y
而 Y Y Y Y
走 Y Y Y Y
” N O O O

Table 4: An example of fully tagged fragment.

3 Features Set

One property that makes feature based statistical
models like CRFs so attractive is that they reduce
the problem to finding an appropriate feature set.
This section outlines the four main types of fea-
tures used in our evaluations.

3.1 Base Feature

One of simplest and most obvious features is the
character itself of sentence fragment. Another
intuitive feature is that the character is included
in the input word (tagged as “Y”) or not (tagged
as “N”). More accurately, let � = 	 〈 �, 	, … , �〉
be a sequence of characters of sentence fragment.
Let � =	 〈!�, !	, … , !"〉 be a sequence of char-
acters of the input word. � ⊂ �. For each � ∈ �,
we tag � as “Y” if � ∈ �, otherwise tag � as
“N”. In our experiments, we define the combina-
tion of those two features as base feature.

3.2 Sound Feature

Liu (2009) previously showed that pronuncia-
tion-related errors reach 79.88% among all types
of incorrect writings in Chinese. This feature has
three tag values: “Y”, “N”, and “O”. We contin-
uously use notations of Section 4.1. Let $% =
〈&%'

, &%(
, … , &%)

〉 where &%*
 denotes the sound

of !�. Let &+* denotes the sound of �. For each
 � ∈ �, we tag � as “Y” if � ∈ �, else tag � as
“N” if &+* ∈ $%, otherwise tag � as “O”.

We build up a look-up table for quickly access
a character’s sound. Table 5 is the list of charac-
ters grouped by sound. Note that characters in
the same group may have different tones. We
will consider the feature of same sound and same
tone in Section 4.3.

sound characters
suan 酸 痠 狻 匴 算 蒜 筭
wai 歪 舀 外
zai 哉 災 載 宰 仔 崽 縡 在 再 載

Table 5: Characters grouped by sound.

3.3 Phonetic Alphabet Feature

This feature differentiates two characters with
same sound but different tone from each other.
Let ,% = 〈ℎ%'

, ℎ%(
, … , ℎ%)

〉 where ℎ%*
 denotes

the phonetic symbol of !� . Let ℎ+* denotes the
phonetic symbol of �. For each � ∈ �, we tag �
as “Y” if � ∈ �, else tag � as “N” if ℎ+* ∈ ,%,
otherwise tag � as “O”. Table 6 is the list of
characters grouped by phonetic alphabet.

phonetic alphabet characters
suān 酸 痠 狻
suǎn 匴
suàn 算 蒜 筭
wāi 歪
wǎi 舀
wài 外

Table 6: Characters grouped by phonetic alphabet.

3.4 Orthography Feature

In addition to pronunciation-related features, the
model could also benefit from orthographical
similarity features. We have collected a list of
12,460 Chinese characters accompanied by a
group of orthographically similar characters for
each from Academic Sinica of Taiwan1. Two
characters are considered to be orthographically
similar according to their forms. In this list, each
character may have more than one similar char-
acter. Let .%*

= 〈/%*'
, /%*(

, … , /%*0
〉 be a set of

orthographically similar characters of !� . Let
1% = 〈.%'

, .%(
, … , .%)

〉 be the collection of .%*
.

1 http://cdp.sinica.edu.tw/cdphanzi/

66

For each � ∈ �, we tag � as “Y” if � ∈ �, else
tag � as “N” if � ∈ 1%, otherwise tag � as “O”.
Table 7 is the list of characters accompanied by
their orthographically similar characters.

character similar characters
亨 烹 哼 脝 京 享
佐 仜 左 佈 傞 倥 佑
別 捌 咧 唎 喇

Table 7: Characters and their orthographically similar
characters.

4 Experiments

In this section, we describe the details of CRFs
model training and evaluation. Secondly, we will
compare performance of ACE system with two
manually compiled confusion sets which can be
anonymously accessed online.

4.1 Model Training and Testing

We obtained data set from a document named
Terms Unified Usage2 provided by National Sci-
ence Council of Taiwan. This document contains
641 correct-and-incorrect word pairs. We ran-
domly selected 577 of them for training and the
rest for testing. For each word pair, we constructs
query strings to retrieve sentence fragments by
using the method described in Section 2.1, and
then assigns tags to each character in every sen-
tence fragment by using the method described in
Section 2.2. In addition, we tagged target label
(e.g. B-I, I-I, O) to each character for the purpose
of training and evaluation.

There are 17,019 sentence fragments which
containing 126,130 characters in training data,
and 1,252 sentence fragments which containing
15,767 characters in testing data. Eight experi-
ments were completed by different combinations
of features. Detailed results are presented in table
7 (in next page). In Table 7, characters precision
denotes number of correctly labeled characters
divided by number of total characters in the test-
ing data. Similarly, sentences precision denotes
number of correctly labeled sentences (every
character in sentence is correctly labeled) divided
by number of total sentence. Since the output of
ACE is a ranked list of extracted words, we set
0.3 to constant � (see Section 2.2) to compute
precision ratio, recall ratio, and F1 measure.
More precisely, let:

2 http://www.nsc.gov.tw/sd/uniword.htm

• {A}=incorrect words indicated in Terms
Unified Usage

• {B}=incorrect words extracted by ACE

Then, precision ratio P = |{A} ∩{B}|/|{B}|*100%,
recall ratio R = |{A} ∩{B}|/|{A}|*100%, and F1
measure = 2*P*R/(P+R).

From the result, the CRFs model using the
combination of sound and orthography features
or using all features performs best, achieving F1
measure of 94.6%.

4.2 Comparisons to Manually Compiled
Confusion Sets

We collected two manually compiled confusion
sets for the purpose of comparisons. One is the
Common Error in Chinese Writings 3 (CECW)
provided by Ministry of Education (MOE) of
Taiwan, which containing 1,491 correct-and-
incorrect word pairs. Another is the Commonly
Misused Characters for Middle School Students4
(CMC), which containing 1,720 correct-and-
incorrect word pairs. We feed these correct
words to ACE system to evaluate the ability of
automatic generation of confusion sets. We
choose features combinations of “base + S + G”
and set constant � to 0.3. Table 8 summarizes the
evaluation results, showing that given a Chinese
word, ACE system has about 93% chance to
produce same result with manually compiled
confusion sets.

 Precision Recall F1 measure

CECW 95.2% 91.2% 93.2%
CMC 93.8% 92.0% 92.8%

Table 8: Evaluation results on two confusion sets.

input output
滄海一粟 滄海一栗

半晌
半餉
半响

發憤圖強
發奮圖強
奮發圖強

掃描 掃瞄

彆扭

蹩扭
憋扭
變扭
辯扭

Table 9: Examples of ACE’s input and output.

3 http://dict.revised.moe.edu.tw/htm/biansz/18a-1.htm
4 http://kitty.2y.idv.tw/~mars/cset.xlsx

67

Characters
Precision

Sentences
Precision

Extracted Words
Precision Recall F1 measure

base only 94.1% 66.1% 89.7% 73.2% 80.6%
base + Sound (S) 97.6% 83.0% 89.7% 77.3% 83.0%

base + Phonetic (P) 97.9% 85.7% 93.1% 87.5% 90.2%
base + Orthography (G) 97.9% 86.6% 89.7% 85.6% 87.6%

base + S + P 97.7% 84.1% 89.7% 89.3% 89.5%
base + S + G 98.8% 92.4% 96.6% 92.7% 94.6%
base + P + G 98.9% 92.8% 96.6% 89.3% 92.8%

base + S + P + G 98.8% 92.9% 96.6% 92.7% 94.6%

Table 7: Test results by different combinations of features.

5 Conclusions and Future Work

In this paper, we present the ACE system which
takes a Chinese word as input and automatically
outputs its easily confused words. Table 9 shows
some real examples of ACE’s input and output.
We have shown that a CRF-based model with
pronunciation- and orthography-related features
can achieve performance near that manually
compiled confusion sets.

There are several future topics of research that
we are currently considering. First, we plan to
extend ACE system to support other languages,
such as English and Japanese. Secondly, we will
investigate another approach without the help of
a pre-learned CRFs model. Third, we will look
into automatic identification of possible words
which can be easily misused as another one, so
that we can generate confusion sets without any
input. Lastly, we will apply our approach to an-
other application, such as recognizing as many as
entity pairs (e.g., <“Tokyo”, “Japan”>, <“Taipei”,
“Taiwan”>, etc.) of a given semantic relation (e.g.
“… is a city of …”).

References

Andrew McCallum and Wei Li. 2003. Early results
for named entity recognition with conditional ran-
dom fields, feature induction and web-enhanced
lexicons. Proceedings of the Conference on Natu-
ral Language Learning, 188–191.

Chao-Lin Liu, Kan-Wen Tien, Min-Hua Lai, Yi-
Hsuan Chuang, and Shih-Hung Wu. 2009. Phono-
logical and logographic influences on errors in
written Chinese words. Proceedings of the Seventh
Workshop on Asian Language Resources, the Forty
Seventh Annual Meeting of the Association for
Computational Linguistics, 84-91.

Cheng-Lung Sung, Cheng-Wei, Lee, Hsu0Chun Yen,
and Wen-Lian Hsu. 2008. An Alignment-based

Surface Pattern for a Question Answering System.
IEEE International Conference on Information Re-
use and Integration, 172-177.

Deepak Ravichandran and Eduard Hovy, E. 2001.
Learning surface text patterns for a Question An-
swering system. In Proceedings of the 40th Annual
Meeting on Association for Computational Lin-
guistics, 41-47.

Fei Sha and Fernando Pereira. 2003. Shallow parsing
with conditional random fields. In Proceedings of
the Human Language Technology and North Amer-
ican Association for Computational Linguistics
Conference, 134-141.

Fuji Ren, Hongchi Shi, and Qiang Zhou. 1994. A hy-
brid approach to automatic Chinese text checking
and error correction. In Proceedings of the ARPA
Work shop on Human Language Technology, 76-
81.

John Lafferty, Andrew McCallum, and Fernando Pe-
reira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence
data. In Proceedings of the International Confer-
ence on Machine Learning.

Lei Zhang, Changning Huang, Ming Zhou, and Hai-
hua Pan. 2000. Automatic detecting/correcting er-
rors in Chinese text by an approximate word-
matching algorithm. In Proceedings of the 38th
Annual Meeting on Association for Computational
Linguistics, 248-254.

Ta-Hung Hung and Shih-Hung Wu. 2008. Chinese
essay error detection and suggestion system. Tai-
wan E-Learning Forum.

Yih-Jeng Lin, Feng-Long Huang, and Ming-Shing Yu.
2002. A Chinese spelling error correction System.
In Proceedings of the Seventh Conference on Arti-
ficial Intelligence and Applications (TAAI).

Yong-Zhi Chen, Shih-Hung Wu, Chia-Ching Lu, and
Tsun Ku. 2009. Automatic template feneration for
Chinese essay spelling error detecting system. The
13th Global Chinese Conference on Computer in
Education, 402-408.

68

