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Abstract
We describe the ’TILB’ team entry for
the CONLL-2013 Shared Task. Our sys-
tem consists of five memory-based classi-
fiers that generate correction suggestions
for center positions in small text windows
of two words to the left and to the right.
Trained on the Google Web 1T corpus, the
first two classifiers determine the presence
of a determiner or a preposition between
all words in a text. The second pair of clas-
sifiers determine which is the most likely
correction of an occurring determiner or
preposition. The fifth classifier is a general
word predictor which is used to suggest
noun and verb form corrections. We re-
port on the scores attained and errors cor-
rected and missed. We point out a num-
ber of obvious improvements to boost the
scores obtained by the system.

1 Introduction

Our team entry, known under the abbreviation
’TILB’ in the CONLL-2013 Shared Task, is a sim-
plistic text and grammar correction system based
on five memory-based classifiers implementing
eight different error correctors. The goal of the
system is to be lightweight: simple to set up and
train, fast in execution. It requires a preferably
very large but unannotated corpus to train on, and
closed lists of words that contain categories of in-
terest (in our case, determiners and prepositions).
The error correctors make use of information from
a lemmatizer and a noun and verb inflection mod-
ule. The amount of explicit grammatical infor-
mation input in the system is purposely kept to
a minimum, as accurate deep grammatical infor-
mation cannot be assumed to be present in most

real-world situations and languages. The system
described in this article takes plain text as input
and produces plain text as output.

Memory-based classifiers have been applied to
similar tasks before. (Van den Bosch, 2006) de-
scribes memory based classifiers used for con-
fusible disambiguation, and (Stehouwer and Van
den Bosch, 2009) shows how agreement errors can
be detected. In the 2012 shared task ’Helping Our
Own’ (Dale et al., 2012) memory based classifiers
were used to solve the problem of missing and
incorrect determiners and prepositions (Van den
Bosch and Berck, 2012).

The CONLL-2013 Shared Task context limited
the grammatical error correction task to detecting
and correcting five error types:

ArtOrDet Missing, unnecessary or incorrect article or de-
terminer;

Prep Incorrect preposition used;
Nn Wrong form of noun used (e.g. singular instead

of plural);
Vform Incorrect verb form used (e.g. I have went);
SVA Incorrect subject-verb agreement (e.g. He have).

The corrections made by the system are scored
by a program provided by the organizers (Ng,
2012). It takes a plain textfile as input (the output
generated by the system) and outputs a list with
correctly rectified errors followed by precision, re-
call and F-score.

As training material we used two corpora. The
Google Web 1T corpus (Brants and Franz, 2006)
was used to train the classifiers for the ArtOrDet
and Prep error categories. The GigaWord Newspa-
per text corpus1 was used to create the data for the
classifier for the noun and verb-related error cat-
egories. To make the classifiers more compatible

1http://www.ldc.upenn.edu/
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with each other, future versions of the system will
all be trained on the same corpus. We also used
two lists, one consisting of 64 prepositions and
one consisting of 23 determiners, both extracted
from the CONLL-2013 Shared Task training data.
Using the Google corpus means that we restricted
ourselves to a simple 5-gram context, which ob-
viously places a limit on the context sensitivity of
our system; on the other hand, we were able to
make use of the entire Google Web 1T corpus. The
context for the grammatical error detectors was
kept similar to the other classifiers, also 5-grams.

2 System

Our system is based on five memory-based clas-
sifiers that all run the IGTree classifier algorithm
(Daelemans et al., 1997), a decision-tree approx-
imation of k-nearest neighbour classification im-
plemented in the TiMBL software package.2 The
first two classifiers determine the presence of a de-
terminer or a preposition between all words in a
text in which the actual determiners and prepo-
sitions are masked. The second pair of classi-
fiers determine which is the most likely correction
given a masked determiner or preposition. The
fifth classifier is a general word predictor that is
used for suggesting noun and verb form correc-
tions.

All classifiers take a windowed input of two
words to the left of the focus position, and two
words to the right. The focus may either be a posi-
tion between two words, or be on a word. In case
of a position between two words, the task is to pre-
dict whether the position should actually be filled
by an determiner or a preposition. When the fo-
cus is on the word in question, the task is to decide
whether it should be deleted, or whether it should
be corrected.

It is important to note that not just one classifi-
cation is returned for a given context by the IGTree
classifier, but a distribution of results and their re-
spective occurrence counts. The classifier matches
the words in the context to examples in the tree in
a fixed order, and returns the distribution stored
at that point in the tree when an unknown word
is encountered. This is analogous to the back-
off mechanisms often used in other n-gram based
language modeling systems. When even the first
feature fails to match, the complete class distribu-
tion is returned. The output from the classifiers

2http://ilk.uvt.nl/timbl

is filtered by the error correctors for the correct
answers. Filtering is done based on distribution
size, occurrence counts and ratios in occurrence
counts (in the remainder of the text, where we say
frequency we mean occurrence count), and in the
case of the noun and verb-related error types, on
part-of-speech tags.

The system corrects a text from left to right,
starting with the first word and working its way
to the end. Each error corrector is tried after the
other, in the order specified below, until a correc-
tion is suggested. At this point, the correction is
stored, and the system starts processing the next
word. The other classifiers are not tried anymore
after a correction has been suggested by one of the
classifiers.

The first two classifiers, preposition? and de-
terminer?, are binary classifiers that determine
whether or not there should be a preposition or a
determiner, respectively, between two words to the
left and two words to the right:

• The preposition? classifier is trained on all
120,711,874 positive cases of contexts in the
Google Web 1T corpus in which one of the 64
known prepositions are found to occur in the
middle position of a 5-gram. To enable the
classifier to answer negatively to other con-
texts, roughly the same amount of negative
cases of randomly selected contexts with no
preposition in the middle are added to form
a training set of 238,046,975 cases. We in-
corporate the Google corpus token counts in
our model. We performed a validation exper-
iment on a single 90%-10% split of the train-
ing data; the classifier is able to make a cor-
rect decision on 88.6% of the 10% heldout
cases.

• Analogously, the determiner? classifier
takes all 86,253,841 positive cases of 5-
grams with a determiner in the middle po-
sition, and adds randomly selected negative
cases to arrive at a training set of 169,874,942
cases. On a 90%–10% split, the classifier
makes the correct decision in 90.0% of the
10% heldout cases.

The second pair of classifiers perform the multi-
label classification task of predicting which prepo-
sition or determiner is most likely given a context
of two words to the left and to the right. Again,
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Figure 1: System architecture. Shaded rectangles are the five classifiers.

these classifiers are trained on the entire Google
Web 1T corpus, including its token counts:

• The which preposition? classifier is trained
on the aforementioned 120,711,874 cases of
any of the 64 prepositions occurring in the
middle of 5-grams. The task of the classi-
fier is to generate a class distribution of likely
prepositions given an input of the four words
surrounding the preposition, with 64 possible
outcomes. In a 90%-10% split experiment on
the complete training set, this classifier labels
63.3% of the 10% heldout cases correctly.

• The which determiner? classifier, by anal-
ogy, is trained on the 86,253,841 positive
cases of 5-grams with a determiner in the
middle position, and generates class distribu-
tions composed of the 23 possible class labels
(the possible determiners). On a 90%-10%
split of the training set, the classifier predicts
68.3% of all heldout cases correctly.

The fifth classifier predicts the most likely
word(s) between a context of two words to the left
and two to the right.

• The general word predictor, which word?,
for the grammatical error types, was trained
on 10 million lines of the GigaWord En-
glish Newspaper corpus. This amounts to
66,675,151 5-grams. It predicts the word in
the middle between the two context words on
the left and on the right.

From the predictions of the five classifiers the
following eight error correctors are derived. There
is no one-to-one correspondence between classi-
fier and corrector. The ArtOrDet and Prep error
categories are handled by three separate errors cor-
rectors each that handle replacement, deletion, and

insertion errors. The three error types Nn, Vform
and SVA are handled by just two correctors:

1 missing preposition (Prep)
2 replace preposition (Prep)
3 unnecessary preposition (Prep)
4 missing determiner (ArtOrDet)
5 replace determiner (ArtOrDet)
6 unnecessary determiner (ArtOrDet)
7 noun form (Nn, SVA)
8 verb form (Vform, SVA)

For the latter two error correctors, 7 and 8,
we make additional use of a lemmatizer3 and a
singular-plural determiner and generator4 for noun
form errors, and a verb tense determiner and gen-
erator5 for verb form and SVA errors.

The algorithms for the six preposition and de-
terminer correctors will be explained in the rest of
this section. The algorithms use the same logic,
the difference is in the different lists and parame-
ters used for each error type.

The algorithm for missing preposition (or deter-
miner) is as follows.

1 next word is not a preposition
2 run positive-negative classifier P+

−

3 if the classification = + (i.e. we expect a preposition),
and freq(+):freq(−) > MP PNR

4 run the which preposition? classifier
5 if length distribution <= MP DS take answer as missing

preposition

The parameters (MP PNR and MP DS in the
above algorithm) are used to control the certainty
we expect from the classifier. Their values were
determined in our submission to the 2012 ’Helping

3http://www-nlp.stanford.edu/software/
corenlp.shtml

4https://pypi.python.org/pypi/inflect
5http://nodebox.net/code/index.php/
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Our Own’ shared task (Dale et al., 2012), which
focused on determiner and preposition errors (Van
den Bosch and Berck, 2012). Similar classifiers
were used in this year’s system, and the same pa-
rameters were used this time.

In step 3 above, we check the ratio between the
frequency of the positive answer and the negative
answer. If the ratio is larger than the parameter
MP PNR (set to 20) we interpret this as being cer-
tain. In step 5, we prefer a small, sharp distribution
of answers. A large distribution indicates the clas-
sifier not finding any matches in the context and
returning a large distribution with all possible an-
swers. In that case, the majority class tends to be
the majority class of the complete training data,
and not the specific answer(s) in the context we
are looking at. To avoid this we only suggest an
answer when the distribution is equal to or smaller
than a certain preset threshold, MP DS, which was
set to 20 for this task.

The algorithm for replacing propositions (or de-
terminers) proceeds as follows:

1 word in focus is a preposition p

2 run which preposition?, classification is palt

3 if freq(palt) > RP F and
4 if word is in distribution and freq(palt):freq(p) > RP R,

take palt as a correction

This algorithm shows another parameter,
namely a check on frequency (occurrence count).
In order to be generated as a correction, the
alternate answer must have a frequency higher
than RP F, set to 5 in our system, and the ratio
between its frequency and that of the preposition
in the distribution that is the same as in the text
must be larger than RP R. This parameter was set
to 20.

The algorithm for unnecessary preposition (or
determiner) works as follows:

1 word in focus is a preposition
2 run positive-negative classifier P+

−

3 if classification = − and freq(−):freq(+) > UP NPR

4 the preposition is unnecessary

The next two algorithms show the Nn and Vf
correctors. The parameters these correctors use
have not been extensively tweaked, but rather use
the same settings as used in the preposition and
determiner correctors.

The first list shows the algorithm for the noun
type error. This error corrector also makes use of a
noun inflection module to turn singular nouns into

plural and vice versa. The algorithm first looks for
the alternative version of the noun in the distribu-
tion returned by the classifier given the context. If
it is found, and if it is much more frequent in the
distribution than the noun form used in the text, a
noun form error may have been found. The alter-
native form found in the distribution is returned as
the correction.

1 word in focus w is a noun
2 check singular or plural, determine alternate version walt

3 run the which-word? classifier, resulting in distribution
D

4 check if w is in D
5 check if walt is in D
6 if freq(w) in D < 10 and walt is in D use walt as correc-

tion

Finally, the verb form error corrector makes use
of a verb-tense determiner and generator, and a
lemmatizer. The alternative verb forms are gen-
erated from the lemma of the verb and the tense of
the verb. To prevent the system changing, for ex-
ample, give to gave, the generated alternatives are
kept in the same tense as the word in the text. This
does, however, mean that it will not be able to cor-
rect verb tense errors (I see him yesterday versus I
saw him yesterday).

1 word in focus is a verb v

2 determine the lemma of v

3 determine the tense of v

4 generate alternatives in same tense as word, valt

5 run which-word? predictor, resulting in distribution D
6 check if v is in D
7 check which valt are in D, take highest frequency

freq(valt)

8 if freq(valt):freq(v) > 10: take valt as a correction of v

3 Results

Table 1 lists the precision, recall and F-score of our
system on the test data. The test data (Tetreault,
2013) consisted of 300 paragraphs of English text
written by non-native speakers. The system’s out-
put is processed by a scorer supplied by the orga-
nizers (Ng, 2012). For each sentence, it reports the
number of correct, proposed and gold edits, and a
running total of the system’s precision, recall and
F-score.

The system suggested a total of 1,902 edits. Of
these, 118 were correct. The total number of cor-
rect edits was 1,643. To explain the score obtained
by the system, we inspect the kind of errors which
it was subjected to, and what kind of errors it did
correct and which it missed.
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Precision 6.20%
Recall 7.18%
F1 6.66%

Table 1: Summary Score

We see a number of errors which are difficult to
correct because they depend on understanding the
sentence. Take the following sentence for exam-
ple:

Surveillance technology such as RFID can be
operated twenty-four hours with the absence of
operators to track done every detail about human
activities .

The gold-edit for this sentence is changing with
(word 11) to without. This edit may be question-
able, but questionability aside, it is based on a un-
derstanding of what is being talked about in the
text. Correcting these kinds of errors falls outside
the scope of the system at the moment.

Multi-word edits are also a problem. In All pas-
sengers and pilots were died, the gold-edit is to
change were died to died. In The readers are just
smiling when they flip the page because it never
comes to their mind that one day it might come
true, the gold-edit is to change are just smiling to
just smile. These kind of corrections are missed
by our system at the moment due to the rigid one-
word, left-to-right checking of the sentence.

Inserting more than one word is also problem-
atic for our system at the moment. Take the fol-
lowing sentence.

Firstly , security systems are improved in many
areas such as school campus or at the workplace .

The gold-edit is to insert on the before school. A
potential solution for this problem is to take mul-
tiple passes over the sentence, first inserting on,
followed by the in a later pass.

Nevertheless, the system made a number of cor-
rect edits as well. The next subsections list exam-
ples of each error type and a correction, where ap-
plicable.

Missing determiner

In this sentence, the missing determiner before
smart was corrected by the system.

In spite of that, the smart phone is still a device . . .

In the following sentence however, a determiner
is inserted where it is not needed, before RFID.

. . . the idea of using the RFID to track people . . .

To illustrate the reasoning of our system, the de-
terminer? classifier thinks that it is more than 13
times more likely to find a determiner between of
using and RFID to than not. Of the possible de-
terminers, the determiner the has the highest fre-
quency with 38,809 occurrences.

Replace Determiner

Here is an example of a determiner which is cor-
rected:

. . . signal and also a⇒the risk that their phone . . .

It also happens that the right determiner is incor-
rectly changed into another determiner, as shown
in the next example.

. . . this kind of tragedy to happen on any⇒the family.

The determiner the had a frequency of more
than 6 million in the distribution, compared to only
68,612 for any.

Unnecessary Determiner

The system did not detect any unnecessary deter-
miners. It missed, for example, removing the de-
terminer the in this setentence:

. . . technology available for the Man ’s life .

Replace Preposition

In this example, a preposition was corrected.

. . . to be put into⇒under close surveillance . . .

But in the following sentence

. . . remain functional for⇒after a long period of . . .

the preposition for is unfortunately changed to af-
ter, which in this context is more common.

Unnecessary Preposition

The following is an example of a correct removal
of a preposition:
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. . . , many of things that are regarded . . .

Prepositions were also incorrectly removed, as
shown in the following example. Here

. . . that can be out of our imaginations . . .

of is deemed unnecessary.

Missing Preposition

In this example, the missing preposition on was
inserted after live.

. . . find another planet to live on , the earth is . . .

In the sentence

. . . especially in the elderly and the children . . .

the system inserts the preposition in between es-
pecially and and, which in this case was incorrect.

Noun form

The next example shows a noun form correction.

. . . brought harmful side effect⇒effects to human body

This can, of course, also go wrong:

Since RFID tags⇒tag attached to the product . . .

Here the singular form of the noun was deemed
correct.

Verb form

Finally, an example of a verb form correction:

People needs⇒need a safe environment to live . . .

And the final example, an incorrect replacement
of been to was.

. . . that has currently been⇒was implemented

4 Discussion

We have described a memory-based grammar
checker specialized in correcting the five types of
errors in the CONLL-2013 Shared Task. The sys-
tem is built on five classifiers specialized in the
error categories relevant for the task. They are
trained to find errors in a small local context of
two words to the left and two words to the right.

The system scans each word in each sentence in
the test data and calls the relevant classifier(s) to
determine if a word needs to be replaced, deleted,
or inserted. The classifiers take word tokens as
input; no deep grammatical information was sup-
plied to them. Even though the training data sup-
plied for the task contained syntax trees, they were
not used in creating our system. On the other hand,
the part-of-speech information in the training data
was used to create the lists of prepositions and de-
terminers. Furthermore, a part-of-speech tagger
was used to determine if the noun or verb form
error corrector was to be applied.

There are several obvious shortcomings to this
approach. The most obvious one is that each cor-
rector is applied to single words, using only a
small local context of two words to the left and
right. This may work fine for missing preposi-
tions and determiners, but for spotting grammat-
ical errors like subject-verb agreement this limited
contextual scope is insufficient. It also means that
we are only able to correct “single words to single
words”. That is, it is not possible to substitute two
words for one, and vice versa. One avenue that
could be explored is larger contexts. In addition,
the classifiers are not limited to words, and con-
texts with other (contextual) information could be
tried as well.

Secondly, the correctors are applied in a strict
order one after the other. This should not be a
big problem as the classifiers are called separately
for their particular part-of-speech category (deter-
miner, preposition, verb, or noun). On the other
hand, this puts a lot of weight on the part of speech
tagger. Ambiguous or wrong tags could cause the
wrong corrector to be tried and even applied, and
could miss a potential correct correction.

Furthermore, the corrected words are not fed
back into the system. This means that the context
after an error still contains that error. This may
cause the classifiers to mismatch and miss the next
error. It should be noted that the small context of
two words to the left and right probably helps to
alleviate this problem. However, making the sys-
tem insert corrections and backtracking a step (or
more) could help towards solving the problem of
multi-word corrections.

Finally, not all correctors found errors. This
may of course depend on the test data, but it seems
unlikely that the data contained no ’missing prepo-
sition’ errors. There is a potential gain in tuning
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the parameters controlling the error correctors.

4.1 Update

The organizers of the shared task updated the m2-
scorer used to calculate the results, resulting in
slightly better scores. Table 2 shows the revised
score of our system, with the old score between
parentheses.

Precision 7.60% (6.20%)
Recall 9.29% (7.18%)
F1 8.36% (6.66%)

Table 2: Revised Summary Score

And to conclude, we continued working on the
system and tweaked some of the parameters con-
trolling the preposition and determiner checkers.
By allowing the correctors to be applied more of-
ten, we see an increase in the number of proposed
and correct edits (2,533 and 178 respectively). The
downside to this is of course that the number of
false positives increases, which decreases the pre-
cision of the system.

The tweaked score is shown in table 3, with the
revised score between parentheses.

Precision 7.03% (7.60%)
Recall 10.83% (9.29%)
F1 8.52% (8.36%)

Table 3: Tweaked Summary Score

These improved scores give us good hope that
the highest scores have not been reached yet.
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