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Abstract

We present an open-source virtual ma-
nipulative for conditional log-linear mod-
els. This web-based interactive visual-
ization lets the user tune the probabili-
ties of various shapes—which grow and
shrink accordingly—by dragging sliders
that correspond to feature weights. The
visualization displays a regularized train-
ing objective; it supports gradient as-
cent by optionally displaying gradients
on the sliders and providing “Step” and
“Solve” buttons. The user can sam-
ple parameters and datasets of differ-
ent sizes and compare their own pa-
rameters to the truth. Our web-
site, http://cs.jhu.edu/˜jason/
tutorials/loglin/, guides the user
through a series of interactive lessons and
provides auxiliary readings, explanations,
practice problems and resources.

1 Introduction

We argue that if one is going to teach only a sin-
gle machine learning technique in a computational
linguistics course, it should be conditional log-
linear modeling. Such models are pervasive in nat-
ural language processing. They have the form

p~θ(y | x) ∝ exp
(
~θ · ~f (x, y)

)
, (1)

where ~f extracts a feature vector from context x
and outcome y ∈ Y(x). The set of possible out-
comes Y(x) might depend on the context x.1

1The model is equivalent to logistic regression when y is
a binary variable, that is, when Y(x) = {0, 1}.

We then present an interactive web visualiza-
tion that guides students through playing with log-
linear models and their estimation. This open-
source tool, available at http://cs.jhu.
edu/˜jason/tutorials/loglin/, is in-
tended to develop intuitions, so that basic log-
linear models can be then taken for granted in fu-
ture lectures. It can be used near the start of a
course, perhaps after introducing probability no-
tation and n-gram models.

We used the tool in our Natural Language Pro-
cessing (NLP) class and received very positive
feedback. Students were excited by it, with some
saying the tool helped develop their “physical in-
tuition” for log-linear models. Other test users
with no technical background also enjoyed work-
ing through the introductory lessons and found
that they began to understand the model.

The app includes 18 ready-to-use lessons for in-
dividual or small-group study or classroom use.
Each lesson, e.g. Figure 1, guides the student to
fit a probability model p~θ(y | x) over some collec-
tion Y of shapes, words, or other images such as
parse trees. Each lesson is peppered with ques-
tions; students can be asked to answer some of
these questions in writing.2 Ambitious instruc-
tors can add new lessons or edit existing ones by
writing configuration files (see section 5.3). This
is useful for emphasizing specific concepts or ap-
plications. Section 8 provides some history and
applications of log-linear modeling, as well as as-
signment ideas.

2There are approximately 6 questions per lesson. We
found that answering all the questions took our students about
2300 words, or just under 23 words per question, which was
probably both unreasonable and unnecessary.
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Figure 1: The first lesson; the lower half is larger on the actual application.

2 Why Teach With Log-Linear Models?

Log-linear models are very handy in NLP. They
can be used throughout a course, when one needs

• a global classifier for an applied task, such as
detecting sentiment, topic, spam, or gender;

• a local classifier for structure annotation,
such as tags or segment boundaries;

• a local classifier to be applied repeatedly in
sequential decision-making;

• a local conditional probability within some
generative process, such as an n-gram model,
HMM, PCFG, probabilistic FSA or FST,
noisy-channel MT model, or Bayes net;

• a global structured prediction method. Here
y is a complete structured object such as a
tagging, segmentation, parse, alignment, or
translation. Then p(y | x) is a Markov ran-
dom field or a conditional random field, de-
pending on whether x is empty or not.

Log-linear models over discrete variables are
also sufficiently expressive for an NLP course.

Students may experiment freely with adding their
own creative model features that refer to salient at-
tributes or properties of the data, since the proba-
bility (1) may consider any number of informative
features of the (x, y) pair.

How about training? Estimation of the pa-
rameter weights ~θ from a set of fully observed
(x, y) pairs is simply a convex optimization prob-
lem. Maximizing the regularized conditional log-
likelihood

F (~θ) =

(
N∑
i=1

log p~θ (yi | xi)

)
− C ·R(~θ) (2)

is a simple, uniform training principle that can be
used throughout the course. The scaled regular-
izer C · R(~θ) prevents overfitting on sparse fea-
tures. This is arguably more straightforward than
the traditional NLP smoothing methods for esti-
mating probabilities from sparse data (Chen and
Goodman, 1996), which require applying various
ad hoc formulas to counts, and which do not gen-
eralize well to settings where there is not a natural
sequence of backoff models. There exist fast and
usable tools that students can use to train their log-
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linear models, including, among others, MegaM
(Daumé III, 2004), and NLTK (Bird et al., 2009).3

Formally, log-linear models are a good gate-
way to a more general understanding of undirected
graphical models and the exponential family, in-
cluding globally normalized joint or conditional
distributions over trees and sequences.

One reason that log-linear models are both ver-
satile and pedagogically useful is that they do not
just make predictions, but explicitly model proba-
bilities. These can be

• combined with other probabilities using the
usual rules of probability;

• marginalized at test time to obtain the prob-
ability that the outcome y has a particular
property (e.g., one can sum over alignments);

• marginalized at training time in the case of
incomplete data y (e.g., the training data may
not include alignments);

• used to choose among possible decisions by
computing their expected loss (risk).

The training procedure also takes a probabilis-
tic view. Equation (2) helps illustrate impor-
tant statistical principles such as maximum likeli-
hood,4 regularization (the bias-variance tradeoff),
and cross-validation, as well as optimization prin-
ciples such as gradient ascent.

Log-linear models also provide natural exten-
sions of commonly taught NLP methods. For ex-
ample, under a probabilistic context-free gram-
mar (PCFG),5 p(parse tree | sentence) is propor-
tional to a product of rule probabilities. Simply
replacing each rule probability with an arbitrary
non-negative potential—an exponentiated weight,
or sum of weights of features of that rule—gives
an instance of (1). The same parsing algorithms
still apply without modification, as does the same
inside-outside approach to computing the poste-
rior expectation of rule counts and feature counts.
Immediate variants include CRF CFGs (Finkel

3A caveat is that generic log-linear training tools will iter-
ate over the setY(x) in order to maximize (1) and to compute
the constant of proportionality in (1) and the gradient of (2).
This is impractical when Y(x) is large, as in language mod-
eling or structured prediction. See Section 8.

4Historically, this objective has been regarded as the opti-
mization dual of a maximum entropy problem (Berger et al.,
1996), motivating the log-linear form of (2). We have consid-
ered adding a maximum entropy view to our manipulative.

5Likewise for Markov or hidden Markov models.

et al., 2008), in which the rule features become
position-dependent and sentence-dependent, and
log-linear PCFGs (Berg-Kirkpatrick et al., 2010),
in which the feature-rich rule potentials are locally
renormalized into rule probabilities via (1).

For all these reasons, we recommend log-linear
models as one’s “go-to” machine learning tech-
nique when teaching. Other linear classifiers,
such as perceptrons and SVMs, similarly choose
y given x based on a linear score ~f · ~θ(x, y)—but
these scores have no probabilistic interpretation,
and the procedures for training ~θ are harder to un-
derstand or to justify. Thus, they can be taught
as variants later on or in another course. Further
reading includes (Smith, 2011).

3 The Teaching Challenge

Unfortunately, there is a difficulty with introduc-
ing log-linear models early in a course. Once
grasped, they seem very simple. But they are not
so easy to grasp for a student who has not had
any experience with high-dimensional parametric
functions, feature design, or statistical estimation.
The interaction among the parameters can be be-
wildering. Log-likelihood, gradient ascent, and
overfitting may also be new ideas.

Students who lack intuitions about these mod-
els will fail to follow subsequent lectures. They
will also have trouble with homework projects—
interpreting the weights learned by their model,
and diagnosing problems with their features or
their implementation. A student cannot even de-
sign appropriate feature sets without understand-
ing how the weights of these features interact to
define a distribution. We will discuss some of the
necessary intuitions in sections 6 and 7.

We would like equations (1), (2), and the gradi-
ent formula to be more than just recipes. The stu-
dent should regard them as familiar objects with
predictable behavior. Like computer science, ped-
agogy proceeds by layering new ideas on top of
already-familiar abstractions. A solid understand-
ing of basic log-linear models is prerequisite to

• using them in NLP applications that have
their own complexities,

• using them as component distributions within
larger probability models or decision rules,

• generalizing the algorithms for working with
(1) and (2) to settings where one cannot eas-
ily enumerate Y .
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4 (Virtual) Manipulatives

Familiar concrete concepts have often been in-
voked to help develop intuitions about abstract
mathematical concepts. Specifically within early
math education, manipulatives—tactile objects—
have been shown to be effective hands-on teaching
tools. Examples include Cuisenaire rods for ex-
ploring arithmetic concepts like sums, ratios, and
place value, or geoboards for exploring geometric
concepts like area and perimeter.6 The key idea is
to ground and link the mathematical language to a
well-known physical object that can be inspected
and manipulated. For more, see the classic and re-
cent analyses from Sowell (1989) and Carbonneau
et al. (2013).

Research has shown concrete manipulatives to
be effective, but practical widespread use of them
presents certain problems, including procurement
of necessary materials, replicability, and applica-
bility to certain groups of students and to con-
cepts that have no simple physical realization.
These issues have spurred interest over the past
two decades in virtual manipulatives implemented
in software, including the creation of the National
Library of Virtual Manipulatives.7 Both Clements
and McMillen (1996) and Moyer et al. (2002) pro-
vide accessible overviews of virtual manipulatives
in early math education. Virtual manipulatives
give students the ability to effect changes on a
complex system and so learn its underlying prop-
erties (Moyer et al., 2002). This last point is par-
ticularly relevant to log-linear models.

Members of the NLP and speech communities
have previously explored manipulatives and the
idea of “learning by doing.” Eisner (2002) im-
plemented HMM posterior inference and forward-
backward training on a spreadsheet, so that editing
the data or initial parameters changed the numeri-
cal computations and the resulting graphs. VIS-
PER, an applied educational tool that wrapped
various speech technologies, was targeted toward
understanding the acoustics and overall recog-
nition pipeline (Nouza et al., 1997). Light et
al. (2005) developed web interfaces for a num-
ber of core NLP technologies and systems, such
as parsers, part-of-speech taggers, and finite-state

6Cuisenaire rods are color-coded blocks with lengths from
1 to 10. A geoboard is a board representing the plane, with
pegs at the integral points. A rubber band can be stretched
around selected pegs to define a polygon.

7nlvm.usu.edu/en/nav/vlibrary.html and
enlvm.usu.edu/ma/nav/doc/intro.jsp

transducers. Matt Post created a Model 1 stack
decoder visualization for a recent machine trans-
lation class (Lopez et al., 2013).8 Most manipula-
tives/interfaces targeted at NLP have been virtual,
but a notable exception is van Halteren (2002),
who created a (physical) board game for parsing.

In machine learning, there is a plethora of vir-
tual manipulatives demonstrating central concepts
such as decision boundaries and kernel methods.9

There are also several systems for teaching artifi-
cial intelligence: these tend to to involve control-
ling virtual robots10 or physical ones (Tokic and
Bou Ammar, 2012). Overall, manipulatives for
NLP and ML seem to be a successful pedagogi-
cal direction that we hope will continue.

Next, we present our main contribution, a vir-
tual manipulative that teaches log-linear models.
We ground the models in simple objects such as
circles and regular polygons, in order to appeal to
the students’ physical intuitions. Later lessons can
move on from shapes, instead using words or im-
ages from a particular application of interest.

5 Our Log-Linear Virtual Manipulative

Figure 1 shows a screenshot of the tool,
available at http://cs.jhu.edu/˜jason/
tutorials/loglin/. We encourage you to
play with it as you read.

5.1 Student Interface

Successive lessons introduce various challenges or
subleties. In each lesson, the user experiments
with modeling some given dataset D using some
given set of K features. Dataset: For each context
x, the outcomes y ∈ Y(x) are displayed as shapes,
images or words. Features: For each feature fi,
there is a slider to manipulate θi.

Each shape y is sized proportionately to its
model probability p~θ(y | x) (equation (1)), so it
grows or shrinks as the user changes ~θ. In con-
trast, the empirical probability

p̃ (y | x) =
c(x, y)

c(x)
(= ratio of counts) (3)

is constant and is shown by a gray outline.

8github.com/mjpost/stack-decoder
9E.g., http://cs.cmu.edu/˜ggordon/SVMs/

svm-applet.html.
10E.g., http://www-inst.eecs.berkeley.edu/

˜cs188/pacman/pacman.html and http://www.
cs.rochester.edu/trac/quagents.
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The size and color of y indicate how p~θ(y | x)
compares to this empirical probability (Figure 2).
Reinforcing this, the observed count c(x, y) is
shown at the upper left of y, while the expected
count c(x) · p~θ(y | x) is shown at the upper right,
following the same color scheme (Figure 1).

We begin with globally normalized models
(only one context x). For example, the data in
Figure 1—30 solid circles, 15 striped circles, 10
solid triangles, and 5 striped triangles—are to be
modeled with the two indicator features fcircle and
fsolid. With ~θ = 0 we have the uniform dis-
tribution, so the solid circle is contained in its
gray outline (p̃(solid circle) > p~θ(solid circle)),
the striped triangle contains its gray outline
(p̃(striped triangle) < p~θ(striped triangle)), and
the striped circle and gray outline are coincident
(p̃(striped circle) = p~θ(striped circle)).

A student can try various activities:
In the outcome matching activity, the goal is to

match the model p~θ to p̃. The game is to make all
of the outcomes match their corresponding gray
outlines in size (and color). The student “wins”
once the maximum number of objects turn gray.

In the feature matching activity, the goal is to
match the expected feature vector Ep~θ [

~f ] to the

observed feature vector Ep̃[~f ]. In Figure 1, the
student would seek a model that correctly predicts
the total number of circles and the total number
of solid objects—even if the specific number of
solid circles is predicted wrong. (The predicted
and observed counts for a feature can easily be
found by adding up the displayed counts of indi-
vidual outcomes having that feature. For conve-
nience, they are also displayed in a tooltip on the
feature’s slider.) This game can always be won,
even if the given features are not adequately ex-
pressive to succeed at outcome matching on the
given dataset.

In the log-likelihood activity, the goal is to max-
imize the log-likelihood. The log-likelihood bar
(Figure 1) adapts to changes in ~θ, just like the
shapes. The game is to make the bar as long as
possible.11 In later lessons, the student instead
tries to maximize a regularized version of the log-
likelihood bar, which is visibly shortened by a
penalty for large weights (to prevent overfitting).

Winning any of these games with more complex
models becomes difficult or at least tedious, so au-

11Once the gradient is introduced in a later lesson, knowing
when you have “won” becomes clearer.

Quantity
of Interest

> 0 = 0 < 0
red gray blue

p̃− p~θ

Ep̃ [·]−
Ep~θ [·] 15 30 60

∇~θF

Figure 2: Color and area indicate differences be-
twen the empirical distribution (gray outline) and
model distribution. Red (or blue) indicates a
model probability or parameter that should be in-
creased (or decreased) to fit the data.

Figure 3: Gradient components use the same color
coding as given in Figure 2. The length of each
component indicates its potential effect on the ob-
jective. Note that the sliders use a nonlinear scale
from −∞ to +∞.

tomatic methods come as a relief. The student may
view hints on the sliders, showing which way each
slider should be nudged (Figure 3). These hints
correspond to components of the log-likelihood
gradient. Further automation is offered by the
“Step” button, which automatically nudges all pa-
rameters by taking a step of gradient ascent,12 and
even more by the “Solve” button, which steps all
the way to the maximum.13

Our lessons guide the student to appreciate the
relationship among the three activities. First, fea-
ture matching is a weaker, attainable version of
outcome matching (when outcome matching is

12When `1 regularization is used, the optimal ~θ often con-
tains many 0 weights, and a step is not permitted to jump
over a (possibly optimal) weight of 0. It stops at 0, though if
warranted, it can continue past 0 on the next step.

13The “Solve” button adapts the stepsize at each step, using
a backtracking line search with the Armijo condition. This
ensures convergence.
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possible it certainly achieves feature matching as
well). Second, feature matching is equivalent
to maximizing the (unregularized) log-likelihood.
Thus the mismatch is 0 iff the gradient of log-
likelihood is 0. In fact, the mismatch equals the
gradient even when they are not 0! Thus, drag-
ging the sliders in the direction of the gradient
hints can be viewed as a correct strategy for either
the feature matching game or the log-likelihood
game. This connection shows that the current gra-
dient of log-likelihood can easily be computed by
summing up the observed and currently predicted
counts of each feature. After understanding this
and playing with the “Step” and “Solve” buttons,
the student should be able to imagine writing code
to train log-linear models.

5.2 Guided Exploration

We expect students to “learn by playing.” The user
can experiment at any time with the sliders, with
gradient ascent and its stepsize, with the type and
strength of regularization, and with the size of the
dataset. The user can also sample new data or new
parameters, and can peek at the true parameters.
These options are described further in Section 7.

We encourage experimentation by providing
tooltips that appear whenever a student hovers the
mouse pointer over a element of the GUI. Tooltips
provide guidance about whatever the student is
looking at right then. Some are static explanations
(e.g., what does this gray bar represent?). Others
dynamically update with changes to the parame-
ters (e.g., the tooltips on the feature sliders show
the observed and expected counts of that feature).

Students see the tooltips repeatedly, which can
help them absorb and reinforce concepts over an
extended period of time. Students who like to
learn by browsing and experimenting can point to
various tooltips and get a sense of how the differ-
ent concepts fit together. Some tooltips explicitly
refer to one another, linking GUI elements such as
the training objective, the regularization choices,
and the gradient.

Though the user is welcome to play, we also
provide some guidance. Each lesson displays in-
structions that explain the current dataset, jus-
tify modeling choices, introduce new functional-
ity, lead the user through a few activities, and ask
lesson-specific questions. The first lesson also
links to a handout with a more formal textbook-
style treatment. The last lesson links to further

Figure 4: Inventory of available shapes
(circle/triangle/square/pentagon) and fills
(solid/striped/hollow). Text and arbitrary im-
ages may be used instead of shapes. Color and
size are reserved to indicate how the current
model’s predictions of outcome counts or feature
counts compare to the empirical values—see
Figure 2.

reading and exercises.

5.3 Instructor Interface: Creating and
Tailoring Lessons

An instructor may optionally wish to tailor lessons
to his or her students’ needs, interests, and abil-
ities. Shapes provide a nice introduction to log-
linear models, but eventually NLP students will
want to think about NLP problems, whereas vi-
sion students will want to think about vision prob-
lems. Thus, we have designed the manipulative to
handle text and arbitrary images, as well as the 12
shape-fill combinations shown in Figure 4.

Tailoring lessons to the students’ needs is as
simple as editing a couple of text files. These must
specify (1) a set of features, (2) a set of contexts,14

and (3) for each context, a set of featurized events,
including counts and visual positions. This simple
format allows one to describe some rather involved
models. Some of the features may be “hidden”
from the student, thereby allowing the student to
experience model mismatch. Note that the visual
positioning information is pedagogically impor-
tant: aligning objects by orthogonal descriptions
can make feature contrasts stand out more, e.g.,
circles vs. triangles or solid vs. striped.

The configuration files can turn off certain fea-
tures on a per-lesson basis (without program-

14The set of contexts may be omitted when there is only
one context (i.e., an unconditioned model).
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ming). This is useful for, e.g., hiding the “Solve”
button in early lessons, adding new tooltips, or
specializing the existing tooltips on a per-lesson
basis.

However, being a manipulative rather than a
tutoring system, our software does not monitor
the user’s progress through a lesson and provide
guidance via lesson-specific hints, warnings, ques-
tions, or feedback. (The software is open-source,
so others are free to extend it in this way.)

5.4 Back-End Implementation

Anyone can use our virtual manipulative sim-
ply by visiting its website. There is no start-up
cost. Aside from reading the data, model and in-
structions from the web server, it is fully client-
side. The Javascript back-end uses common and
well-supported open-source libraries that provide
a consistent experience across browsers.15 The
manipulative relies on certain capabilities from the
HTML5 standard. Not all browsers in current
use support these capabilities, notably Internet Ex-
plorer 9 and under. The tool works with recent
versions of Firefox, Chrome and Safari.

6 Pedagogical Aims

6.1 Modeling and Estimation

When faced with a dataset D of (x, y) pairs, one
often hopes to choose an appropriate model.
When are log-linear models appropriate? Why
does their hypothesis space include the uniform
distribution? For what feature sets does it include
every distribution?

One should also understand statistical estima-
tion. How do the features interact? When esti-
mating their weights, can raising one weight alter
or reverse the desired changes to other weights?
How can parameter estimation go wrong statis-
tically (overfitting, perhaps driving parameters to
±∞)? What might happen if we have a very
large feature set? Can we design regularized es-
timators that prevent overfitting (the bias-variance
tradeoff)? What is the effect of the regularization
constant on small and large datasets? On rare and
frequent contexts? On rare and frequent features?
On useful features (including features that always
or never fire) and useless ones?

15Specifically and in order, d3 (d3js.org/), jQuery
(jquery.com/), jQuery UI (jqueryui.com),
jQuery Tools (jquerytools.org/), and qTip
(craigsworks.com/projects/qtip/).

Finally, one is responsible for feature design.
Which features usefully distinguish among the
events? How do non-binary features work and
when are they appropriate? When can a feature
safely be omitted because it provides no additional
modeling power? How does the choice of features
affect generalization, particularly if the objective
is regularized? In particular, how do shared fea-
tures and backoff features allow a model to gen-
eralize to novel contexts and outcomes (or rare
ones)? How do the resulting patterns of general-
ization relate qualitatively to traditional smoothing
techniques in NLP (Chen and Goodman, 1996)?

6.2 Training Algorithm

We also aim to convey intuitions about a specific
training algorithm. We use the regularized condi-
tional log-likelihood (2) to define the goodness of
a parameter vector ~θ. The best choice is then the ~θ
that solves equation (4):

0 = ∇~θF = Ep̃
[
~f(X,Y )

]
− Ep~θ

[
~f(X,Y )

]
− C∇~θR(~θ)

(4)
where because our model is conditional, p~θ(x, y)
denotes the hybrid distribution p̃(x) · p~θ(y | x).

Many important concepts are visible in (2) and
(4). As discussed earlier, (4) includes the dif-
ference between observed and expected feature
counts,

Ep̃
[
~f(X,Y )

]
− Ep~θ

[
~f(X,Y )

]
. (5)

Students must internalize this concept and the
meaning of the two counts above. This prepares
them to understand the extension to structured pre-
diction, where these counts can be more diffi-
cult to compute (see Section 8). It also prepares
them to generalize to training latent-variable mod-
els (Petrov and Klein, 2008). In that setting, the
observed count can no longer be observed but is
replaced by another expectation under the model,
conditioned on the partial training data.

(4) also includes a weight decay term for regu-
larization. We allow both `1 and `2 regularization:
R(~θ) = ‖~θ‖1 versus R(~θ) = ‖~θ‖22. One can see
experimentally that strong `1 regularization tries
to use a few larger weights and leave the rest at
0, while strong `2 regularization tries to share the
work among many smaller weights. One can ob-
serve how for a given C, the regularization term is
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more important for small datasets, since for larger
datasets it is dominated by the log-likelihood.

Once one can compute the gradient, one can
“follow” it along the surface, in a way that is guar-
anteed to increase the convex objective function up
to its global maximum. The “Solve” button does
this and indeed one can watch the log-likelihood
bar continually increase. Yet one should observe
what might go wrong here as well. Gradient ascent
can oscillate if a fixed stepsize is used (by click-
ing “Step” repeatedly). One may also notice that
“Solve” is somewhat slow to converge on some
problems, which motivates considering alternative
optimization algorithms (Malouf, 2002).

We should note that we are not concerned
with efficiency issues, e.g., tractably computing
the normalizers Z(x). Efficient normalization is
a crucial practical ingredient in using log-linear
models, but our primary concern is to impart a
near-physical intuitive understanding of the mod-
els themselves. See Section 8 or Smith (2011) for
strategies on computing the normalizer.

7 Provided Lessons

In this section we provide an overview of the 18
currently available lessons. (Of course, you can
work through the lessons yourself for further de-
tails.) “Core” lessons that build intuition precede
the “applied” lessons focused on NLP tasks or
problems. Instructors should feel especially free
to replace or reorder the “applied” lessons.

Core lessons 1–5 provide a basic introduction
to log-linear modeling, using unconditioned distri-
butions over only four shapes as shown in Figure
1. We begin by matching outcomes using just “cir-
cle” and “solid” features. We discover in lesson 2
that it is redundant to add “triangle” and “striped”
features. In lesson 3 we encounter a dataset which
these features cannot fit, because the shape and
fill attributes are not statistically independent. We
remedy this in lesson 4 with a conjunctive “striped
triangle” feature.

Because outcome matching fails in lesson 3,
lessons 3–4 introduce feature matching and log-
likelihood as suitable alternatives. Lesson 5 briefly
illustrates a non-binary feature function, “number
of sides” (taking values 3, 4, and 5 on triangles,
squares, and pentagons). This clarifies the match-
ing of feature counts: here we are trying to predict
the total number of sides in the dataset.

Lessons 6–8 focus on optimization. They move

up to the harder setting of 9 shapes with 6 fea-
tures, so we tell students how to turn on the gra-
dient “hints” on the sliders. We explain how these
hints relate to feature matching and log-likelihood.
We invite the students to try using the hints on
earlier lessons—and on new random datasets that
they can generate by clicking. In Lesson 7, we
introduce the “Step” and “Solve” buttons to help
even more with a difficult dataset. Students use all
these GUI elements to climb the convex objective
and increase the log-likelihood bar.

At this point we introduce regularization. Les-
son 6 invited students to generate small random
datasets and observe their high variance and the
tendency to overfit them. Lesson 8 gives a more
dramatic illustration of overfitting: with no ob-
served pentagons, the solver sends θpentagon →
−∞ to make p~θ(pentagon) → 0. We prevent this
by adding a regularization penalty, which reserves
some probability for pentagons. Striped pentagons
turn out to be the least likely pentagons, because
stripes were observed to be uncommon on other
shapes (so θstriped < 0). Thus we see that our
choice of features allows this “smoothing method”
to make useful generalizations about novel out-
comes.

Lessons 9–10 consider the effect of `1 versus
`2 regularization, and the competition between the
regularizer (scaled by the constant C) and the log-
likelihood (scaled by the dataset size N ).16

Lessons 11–13 introduce conditional models,
showing how features are shared among three con-
texts. The third context is unobserved, yet our
trained model makes plausible predictions about
it. The conditional probabilities of unobserved
shapes are positive even without regularization, in
contrast to the joint probabilities in lesson 9.

We see that a frequent context x generally has
more influence on the parameters. But this need
not be true if the parameters do not help to distin-
guish among the particular outcomes Y(x).

Lessons 14–15 explore feature design in condi-
tional models. We model conditional probabilities
of the form p(fill | shape). “Unigram” features
can favor certain fills y regardless of the shape.
“Bigram” features that look at y and x together
can favor different fills for each shape type. We
see that features that depend only on the shape x
cannot distinguish among fills y, and so have no

16Clever students may think to try setting C < 0, which
breaks convexity of the objective function.
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effect on the conditional probabilities p(y | x).
Lesson 15 illustrates how regularization pro-

motes generalization and feature selection. Once
we have a full set of bigram features, the uni-
gram features are redundant. We never have to
put a high weight on “solid”: we can accomplish
the same thing by putting high weights on “solid
triangle” and “solid circle” separately. Yet this
misses a generalization because it does not pre-
dict that “solid” is also likely for pentagons. For-
tunately, regularization encourages us to avoid too
many high weights. So we prefer to put a single
high weight on “solid,” and use the “solid triangle”
and “solid circle” features only to model smaller
shape-specific deviations from that generalization.
As a result, we will indeed extrapolate that pen-
tagons tend to be solid as well.

Lesson 16 begins the application-driven
lessons:

One lesson builds on the “unigram” and “bi-
gram” concepts to create a “bigram language
model”—a model of shape sequences over a vo-
cabulary of 9 shapes. A shape’s probability de-
pends not only on its attributes but also on the
attributes that it shares with the previous shape.
What is the probability of a striped square given
that the previous shape was also striped, or a
square, or a striped square?

We also apply log-linear modeling to the task
of text categorization (spam detection). We chal-
lenge the students to puzzle out how this model
is set up and how to generalize it to three-way
categorization. Our contexts in this case are
documents—actually very short phrases. Most
contexts are seen only once, with an outcome of ei-
ther “mail” or “spam.” Our feature set implements
logistic regression (footnote 1): each feature con-
joins y = spam with some property of the text
x, such as “contains ’parents’,” “has boldface,” or
“mentions money.”

Additional linguistic application lessons may be
added in the near future—e.g., modeling the rela-
tive probability of grammar rules or parse trees.

The final lesson summarizes what has been
learned, mentions connections to other ideas in
machine learning, and points the student to further
resources.

8 Graduating to Real Applications

At the time of writing, 3266 papers in the ACL
Anthology mention log-linear models, with 137

using “log-linear,” “maximum entropy” or “max-
ent” in the paper title. These cover a wide range of
applications that can be considered in lectures or
homework projects.

Early papers may cover the most fundamen-
tal applications and the clearest motivation. Con-
ditional log-linear models were first popularized
in computational linguistics by a group of re-
searchers associated with the IBM speech and lan-
guage group, who called them “maximum entropy
models,” after a principle that can be used to mo-
tivate their form (Jaynes, 1957). They applied the
method to various binary or multiclass classifica-
tion problems in NLP, such as prepositional phrase
attachment (Ratnaparkhi et al., 1994), text catego-
rization (Nigam et al., 1999), and boundary pre-
diction (Beeferman et al., 1999).

Log-linear models can be also used for struc-
tured prediction problems in NLP such as tagging,
parsing, chunking, segmentation, and language
modeling. A simple strategy is to reduce struc-
tured prediction to a sequence of multiclass pre-
dictions, which can be individually made with a
conditional log-linear model (Ratnaparkhi, 1998).
A more fully probabilistic approach—used in the
original “maximum entropy” papers—is to use (1)
to define the conditional probabilities of the steps
in a generative process that gradually produces the
structure (Rosenfeld, 1994; Berger et al., 1996).17

This idea remains popular today and can be used
to embed rich distributions into a variety of gener-
ative models (Berg-Kirkpatrick et al., 2010). For
example, a PCFG that uses richly annotated non-
terminals involves a large number of context-free
rules. Rather than estimating their probabilities
separately, or with traditional backoff smoothing,
a better approach is to use (1) to model the proba-
bility of all rules given their left-hand sides, based
on features that consider attributes of the nonter-
minals.18

The most direct approach to structured predic-
tion is to simply predict the structured output all
at once, so that y is a large structured object with
many features. This is conceptually natural but
means that the normalizer Z(x) involves sum-
ming over a large space Y(x) (footnote 3). One

17Even predicting the single next word in a sentence can be
broken down into a sequence of binary decisions in this way.
This avoids normalizing over the large vocabulary (Mnih and
Hinton, 2008).

18E.g., case, number, gender, tense, aspect, mood, lexical
head. In the case of a terminal rule, the spelling or morphol-
ogy of the terminal symbol can be considered.
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can restrict Y(x) before training (Johnson et al.,
1999). More common is to sum efficiently by
dynamic programming or sampling, as is typical
in linear-chain conditional random fields (Lafferty
et al., 2001), whole-sentence language modeling
(Rosenfeld et al., 2001), and CRF CFGs (Finkel
et al., 2008). This topic is properly deferred until
such algorithmic techniques are introduced later in
an NLP class, for example in a unit on parsing (see
discussion in section 2). We prepare students for
it by mentioning this point in our final lesson.19

Our final lesson also leads to a web page where
we link to log-linear software and to various
pencil-and-paper problems, homework projects,
and readings that an instructor may consider as-
signing. We welcome suggested additions to this
page.

9 Conclusion

We have introduced an open-source, web-based
virtual manipulative for log-linear models. In-
cluded with the code are 18 lessons peppered with
questions, a handout that gives a formal treatment
of the necessary derivations, and auxiliary infor-
mation including further reading, practice prob-
lems, and recommended software. A version is
available at http://cs.jhu.edu/˜jason/
tutorials/loglin/.
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