
Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality, pages 110–118,
Sofia, Bulgaria, August 9 2013. c©2013 Association for Computational Linguistics

Answer Extraction by Recursive Parse Tree Descent

Christopher Malon
NEC Laboratories America

4 Independence Way
Princeton, NJ 08540

malon@nec-labs.com

Bing Bai
NEC Laboratories America

4 Independence Way
Princeton, NJ 08540

bbai@nec-labs.com

Abstract

We develop a recursive neural network (RNN)
to extract answers to arbitrary natural language
questions from supporting sentences, by train-
ing on a crowdsourced data set (to be released
upon presentation). The RNN defines feature
representations at every node of the parse trees
of questions and supporting sentences, when
applied recursively, starting with token vectors
from a neural probabilistic language model. In
contrast to prior work, we fix neither the types
of the questions nor the forms of the answers;
the system classifies tokens to match a sub-
string chosen by the question’s author.

Our classifier decides to follow each parse tree
node of a support sentence or not, by classify-
ing its RNN embedding together with those of
its siblings and the root node of the question,
until reaching the tokens it selects as the an-
swer. A novel co-training task for the RNN,
on subtree recognition, boosts performance,
along with a scheme to consistently handle
words that are not well-represented in the lan-
guage model. On our data set, we surpass an
open source system epitomizing a classic “pat-
tern bootstrapping” approach to question an-
swering.

1 Introduction
The goal of this paper is to learn the syntax used to an-
swer arbitrary natural language questions. If the kinds
of questions were fixed but the supporting sentences
were open, this would be a kind of relation extraction or
slot-filling. If the questions were open but the support-
ing information was encoded in a database, this would
be a kind of semantic parsing.

In spite of many evaluation sets, no suitable data set
for learning to answer questions has existed before.
Data sets such as TREC (Dang et al., 2008) do not
identify supporting sentences or even answers unless
a competing system submitted an answer and a human
verified it. Exceeding the capabilities of current sys-
tems is difficult by training on such labels; any newly
discovered answer is penalized as wrong. The Jeopardy
Archive (Schmidt, 2013) offers more than 200,000 an-

swer/question pairs, but no pointers to information that
supports the solutions.

Believing that it is impossible to learn to answer
questions, QA systems in TREC tended to measure
syntactic similarity between question and candidate an-
swer, or to map the question into an enumerated set of
possible question types. For the pre-determined ques-
tion types, learning could be achieved, not from the QA
data itself, but from pattern bootstrapping (Brin, 1998)
or distant supervision against an ontology like Freebase
(Mintz et al., 2009). These techniques lose precision;
Riedel et al. (2010) found the distant supervision as-
sumption was violated on 31% of examples aligning
Freebase relations to text from The New York Times.

We introduce a new, crowdsourced dataset, TurkQA,
to enable question answering to be learned. TurkQA
consists of single sentences, each with several crowd-
sourced questions. The answer to each question is
given as a substring of the supporting sentence. For
example,

James Hervey (February 26, 1714 - De-
cember 25, 1758), English divine, was born
at Hardingstone, near Northampton, and
was educated at the grammar school of
Northampton, and at Lincoln College, Ox-
ford.

could have questions like “Where did James Hervey at-
tend school as a boy?” with answers like “the grammar
school of Northampton.” Our approach has yielded al-
most 40,000 such questions, and easily scales to many
more. Since the sentence containing the answer has al-
ready been located, the machine’s output can be judged
without worrying about missing labels elsewhere in the
corpus. Token-level ground truth forces the classifier to
isolate the relevant information.

To meet this challenge, we develop a classifier that
recursively classifies nodes of the parse tree of a sup-
porting sentence. The positively classified nodes are
followed down the tree, and any positively classified
terminal nodes become the tokens in the answer. Fea-
ture representations are dense vectors in a continuous
feature space; for the terminal nodes, they are the word
vectors in a neural probabilistic language model (like
(Bengio and Ducharme, 2001)), and for interior nodes,
they are derived from children by recursive application
of an autoencoder.

110

The contributions of this paper are: a data set for
learning to answer free-form questions; a top-down
supervised method using continuous word features in
parse trees to find the answer; and a co-training task
for training a recursive neural network that preserves
deep structural information.

2 Related Work

Most submissions to TREC, TAC, and CLEF (Forner
et al., 2008) QA workshops rely on a large pipeline
of modules, emphasizing feature development, pattern
bootstrapping, and distant supervision. However, some
recent work has introduced new learning techniques for
question answering.

Restricting the forms of the questions, Poon and
Domingos (2009) present a question-answering system
for simple questions about biomedical text, by unsu-
pervised semantic parsing (USP), using Markov logic.
Because of its dependence on semantic role labeling
(SRL), USP can only extract limited kinds of infor-
mation from a sentence’s syntax. Particularly, USP
has been programmed to use information from just
five dependencies: NN, AMOD, PREP_OF, NUM, and
APPOS. The system handles only questions of two
forms: “What VERB OBJ?” and “What does SUBJ
VERB?”

Liang et al. (2011) offers a compositional focus on
semantic parsing. He has implemented a question-
answering system for geography and job databases,
learning to transform natural language questions into
SQL queries. Liang is able to take many words as ver-
batim analogues of table columns (e.g. “city” triggers a
search on a city column), but our task requires learning
such associations in natural language (“city” to a place
named entity), and less attention to Boolean composi-
tional semantics.

We have not seen recursive neural networks (RNN)
applied to QA yet, but Socher has developed applica-
tions to paraphrase (Socher et al., 2011a) and sentiment
analysis (Socher et al., 2011b). Relying either on dy-
namic pooling or the root feature alone, these methods
do not use the full information of the input graphs.

3 TurkQA: a scalable, crowdsourced
data set

The TurkQA data set consists of 13,424 problem sets.
Each problem set consists of the first sentence of a
Wikipedia article, which we call a support sentence,
and four questions, written by workers from Ama-
zon Mechanical Turk.1 (Occasionally, due to a faulty
heuristic, two or three consecutive sentences at the be-
ginning of the article are taken.) Each of the four ques-
tions is answered by a phrase in the support sentence, or
yes/no. At least two short answer questions must exist
in each problem set, and their answers are selected by

1https://www.mturk.com

their authors as contiguous, non-overlapping substrings
of the support sentence.

Over 600 workers contributed. The quality of the
questions was ensured by rigorous constraints on the
input: no pronouns could be used; all words from the
question had to be in the dictionary or the support sen-
tence; the same phrase could not be used as the answer
for multiple questions. We requested that anyone who
understood English should be able to understand the
question just by reading the support sentence, without
any background knowledge. As we took the support
sentences from the start of an article, references to prior
text should not occur.

At first we reviewed submissions by hand, but as
we found that 96% of the problem sets were accept-
able (and a higher percentage of the questions), we ap-
proved most submissions automatically. Thus we ex-
pect the data acquisition technique to be scalable with
a budget.

A possible drawback of our data acquisition is so-
called back-formulation: a tendency of question writ-
ers to closely match the syntax of the supporting sen-
tence when writing questions. This drawback was ob-
served in TREC 8, and caused TREC organizers to
change data set construction for later conferences by
starting with questions input to a search engine, and
then localize supporting sentences, rather than starting
with the support (Voorhees, 2000). In actuality, many
TurkQA question writers introduced their own word-
ing and asked questions with more qualifications than
a typical search engine query. They even asked 100
“why” questions.

4 Recursive neural networks
In their traditional form (Pollack, 1990), autoencoders
consist of two neural networks: an encoder E to com-
press multiple input vectors into a single output vec-
tor, and a decoder D to restore the inputs from the
compressed vector. Through recursion, autoencoders
allow single vectors to represent variable length data
structures. Supposing each terminal node t of a rooted
tree T has been assigned a feature vector ~x(t) ∈ Rn,
the encoder E is used to define n-dimensional feature
vectors at all remaining nodes. Assuming for simplic-
ity that T is a binary tree, the encoder E takes the
form E : Rn × Rn → Rn. Given children c1 and
c2 of a node p, the encoder assigns the representation
~x(p) = E(~x(c1), ~x(c2)). Applying this rule recur-
sively defines vectors at every node of the tree.

The decoder and encoder may be trained together to
minimize reconstruction error, typically Euclidean dis-
tance. Applied to a set of trees T with features already
assigned at their terminal nodes, autoencoder training
minimizes:

Lae =
∑
t∈T

∑
p∈N(t)

∑
ci∈C(p)

||~x′(ci)− ~x(ci)||, (1)

where N(t) is the set of non-terminal nodes of tree

111

Algorithm 1: Auto-encoders co-trained for subtree recognition by stochastic gradient descent
Data: E : Rn × Rn → Rn a neural network (encoder)
Data: S : Rn × Rn → R2 a neural network for binary classification (subtree or not)
Data: D : Rn → Rn × Rn a neural network (decoder)
Data: T a set of trees T with features ~x(t) assigned to terminal nodes t ∈ T
Result: Weights of E and D trained to minimize a combination of reconstruction and subtree recognition

error
begin

while stopping criterion not satisfied do
Randomly choose T ∈ T
for p in a postorder depth first traversal of T do

if p is not terminal then
Let c1, c2 be the children of p
Compute ~x(p) = E(~x(c1), ~x(c2))
Let (~x′(c1), ~x′(c2)) = D(~x(p))
Compute reconstruction loss LR = ||~x′(c1)− ~x(c1)||2 + ||~x′(c2)− ~x(c2)||2
Choose a random q ∈ T such that q is a descendant of p
Let cq

1, c
q
2 be the children of q, if they exist

Compute S(~x(p), ~x(q)) = S(E(~x(c1), ~x(c2)), E(~x(cq
1), ~x(cq

2)))
Compute cross-entropy loss L1 = h(S(~x(p), ~x(q)), 1)
if p is not the root of T then

Choose a random r ∈ T such that r is not a descendant of p
Let cr

1, c
r
2 be the children of r, if they exist

Compute cross-entropy loss L2 = h(S(~x(p), ~x(r)), 0)
else

Let L2 = 0
Compute gradients of LR + L1 + L2 with respect to weights of E, D, and S, fixing ~x(c1),
~x(c2), ~x(cq

1), ~x(cq
2), ~x(cr

1), and ~x(cr
2).

Update parameters of E, D, and S by backpropagation

t, C(p) = c1, c2 is the set of children of node p,
and (~x′(c1), ~x′(c2)) = D(E(~x(c1), ~x(c2))). This loss
can be trained with stochastic gradient descent (Bottou,
2004).

However, there have been some perennial concerns
about autoencoders:

1. Is information lost after repeated recursion?

2. Does low reconstruction error actually keep the in-
formation needed for classification?

Socher attempted to address the first of these con-
cerns in his work on paraphrase with deep unfolding
recursive autoencoders (Socher et al., 2011a), where
each node is penalized for reconstruction errors many
levels down an input tree, not just the reconstruction of
its immediate descendants. Beyond five levels, Socher
observed many word-choice errors on decoding in-
put sentences. Socher’s work on sentiment analysis
(Socher et al., 2011b) focused on the second concern,
by co-training on desired sentence classification, along
with the usual reconstruction objective, at every level
down to the terminal nodes. Of course, this had the
side effect of imputing sentence-level sentiment labels
to words where it was not really relevant.

As an alternative, we propose subtree recognition
as a semi-supervised co-training task for any recurrent

neural network on tree structures. This task can be de-
fined just as generally as reconstruction error. While
accepting that some information will be lost as we go
up the tree, the co-training objective encourages the en-
coder to produce representations that can answer basic
questions about the presence or absence of descendants
far below.

Subtree recognition is a binary classification prob-
lem concerning two nodes x and y of a tree T ; we train
a neural network S to predict whether y is a descen-
dant of x. The neural network S should produce two
outputs, corresponding to log probabilities that the de-
scendant relation is satisfied. In our experiments, we
take S (as we do E and D) to have one hidden layer.
We train the outputs S(x, y) = (z0, z1) to minimize the
cross-entropy function

h((z0, z1), j) = − log
(

ezj

ez0 + ez1

)
for j = 0, 1.

(2)
so that z0 and z1 estimate log likelihoods that the de-
scendant relation is satisfied.

Our algorithm for training the subtree classifier is
presented in Algorithm 1. We use SENNA software
(Collobert et al., 2011) to compute parse trees for sen-
tences. Training on a corpus of 64,421 Wikipedia sen-
tences and testing on 20,160, we achieve a test error

112

rate of 3.2% on pairs of parse tree nodes that are sub-
trees, for 6.9% on pairs that are not subtrees (F1 =
.95), with .02 mean squared reconstruction error.

5 Features for question and answer data
Application of the recursive neural network begins with
features from the terminal nodes (the tokens). These
features come from the language model of SENNA
(Collobert et al., 2011), the Semantic Extraction Neu-
ral Network Architecture. Originally, neural proba-
bilistic language models associated words with learned
feature vectors so that a neural network could predict
the joint probability function of word sequences (Ben-
gio and Ducharme, 2001). SENNA’s language model
is co-trained on many syntactic tagging tasks, with
a semi-supervised task in which valid sentences are
to be ranked above sentences with random word re-
placements. Through the ranking and tagging tasks,
this model learned embeddings of each word in a 50-
dimensional space. Besides this learned representa-
tions, we encode capitalization and SENNA’s predic-
tions of named entity and part of speech tags with ran-
dom vectors associated to each possible tag, as shown
in Figure 1. The dimensionality of these vectors is cho-
sen roughly as the logarithm of the number of pos-
sible tags. Thus every terminal node obtains a 61-
dimensional feature vector.

We modify the basic RNN construction of Section 4
to obtain features for interior nodes. Since interior tree
nodes are tagged with a node type, we encode the pos-
sible node types in a six-dimensional vector and make
E and D work on triples (ParentType, Child 1, Child
2), instead of pairs (Child 1, Child 2).

Word
Capital

Name Entity
POS x Parsing

"The"
x1: 261-dim vector

"cat"

"sat"

E

...

x8: 261-dim vector

E

x2: 261-dim vector

x11: 261-dim vector

E

x10: 261-dim vector

50 1 4 6200

Padding

6-dim

NP

Encoder

sigmoid

Linear

2x261+6

200

200

261

6-dim
VP

50 1 4 6200

...

Linear

Figure 1: Recursive autoencoder to assign features to
nodes of the parse tree of, “The cat sat on the mat.”
Note that the node types (e.g. “NP” or “VP”) of internal
nodes, and not just the children, are encoded.

Also, parse trees are not necessarily binary, so we bi-
narize by right-factoring. Newly created internal nodes
are labeled as “SPLIT” nodes. For example, a node
with children c1, c2, c3 is replaced by a new node with
the same label, with left child c1 and newly created
right child, labeled “SPLIT,” with children c2 and c3.

Vectors from terminal nodes are padded with 200 ze-
ros before they are input to the autoencoder. We do
this so that interior parse tree nodes have more room
to encode the information about their children, as the
original 61 dimensions may already be filled with in-
formation about just one word.

The feature construction is identical for the question
and the support sentence.

5.1 Modeling unknown words

Many QA systems derive powerful features from exact
word matches. In our approach, we trust that the classi-
fier will be able to match information from autoencoder
features of related parse tree branches, if it needs to.
But our neural language probabilistic language model
is at a great disadvantage if its features cannot charac-
terize words outside its original training set.

Since Wikipedia is an encyclopedia, it is common for
support sentences to introduce entities that do not ap-
pear in the dictionary of 100,000 most common words
for which our language model has learned features. In
the support sentence

Jean-Bedel Georges Bokassa, Crown
Prince of Central Africa was born on the 2nd
November 1975 the son of Emperor Bokassa
I of the Central African Empire and his wife
Catherine Denguiade, who became Empress
on Bokassa’s accession to the throne.

both Bokassa and Denguiade are uncommon, and do
not have learned language model embeddings. SENNA
typically replaces these words with a fixed vector asso-
ciated with all unknown words, and this works fine for
syntactic tagging; the classifier learns to use the context
around the unknown word. However, in a question-
answering setting, we may need to read Denguiade
from a question and be able to match it with Den-
guiade, not Bokassa, in the support.

Thus we extend the language model vectors with a
random vector associated to each distinct word. The
random vectors are fixed for all the words in the orig-
inal language model, but a new one is generated the
first time any unknown word is read. For known words,
the original 50 dimensions give useful syntactic and se-
mantic information. For unknown words, the newly in-
troduced dimensions facilitate word matching without
disrupting predictions based on the original 50.

6 Convolutions inside trees

We extract answers from support sentences by classify-
ing each token as a word to be included in the answer or
not. Essentially, this decision is a tagging problem on
the support sentence, with additional features required
from the question.

Convolutional neural networks efficiently classify
sequential (or multi-dimensional) data, with the ability
to reuse computations within a sliding frame tracking

113

NP

) , ADJP ,

English divineNPNP (-NP

James Hervey February 26 , 1714 December 25 , 1758

NP

Figure 2: Labeling nodes to be followed to select “December 25, 1758.”

NP) , ADJP ,

P (NP

vey February 26 , 1714 December 25 ,

13

2 4 5 6 7 9 10 11
1758

12

31 3 32 - 8 NP
33

English
15

divin

14 41 1740

x(q)x32 x40 x(q)x8 x40 x(q)x33 x40v33= x(q) x400 x(q) x400

46
NP

Figure 3: Assembling features from the question, the parent, and siblings, to decide whether to follow node 33

the item to be classified (Waibel et al., 1989). Con-
volving over token sequences has achieved state-of-
the-art performance in part-of-speech tagging, named
entity recognition, and chunking, and competitive per-
formance in semantic role labeling and parsing, using
one basic architecture (Collobert et al., 2011). More-
over, at classification time, the approach is 200 times
faster at POS tagging than next-best systems such as
(Shen et al., 2007) and 100 times faster at semantic role
labeling (Koomen et al., 2005).

Classifying tokens to answer questions involves not
only information from nearby tokens, but long range
syntactic dependencies. In most work utilizing parse
trees as input, a systematic description of the whole
parse tree has not been used. Some state-of-the-art
semantic role labeling systems require multiple parse
trees (alternative candidates for parsing the same sen-
tence) as input, but they measure many ad-hoc features
describing path lengths, head words of prepositional
phrases, clause-based path features, etc., encoded in a
sparse feature vector (Pradhan et al., 2005).

By using feature representations from our RNN and
performing convolutions across siblings inside the tree,
instead of token sequences in the text, we can utilize

the parse tree information in a more principled way. We
start at the root of the parse tree and select branches to
follow, working down. At each step, the entire question
is visible, via the representation at its root, and we de-
cide whether or not to follow each branch of the support
sentence. Ideally, irrelevant information will be cut at
the point where syntactic information indicates it is no
longer needed. The point at which we reach a termi-
nal node may be too late to cut out the corresponding
word; the context that indicates it is the wrong answer
may have been visible only at a higher level in the parse
tree. The classifier must cut words out earlier, though
we do not specify exactly where.

Our classifier uses three pieces of information to de-
cide whether to follow a node in the support sentence
or not, given that its parent was followed:

1. The representation of the question at its root

2. The representation of the support sentence at the
parent of the current node

3. The representations of the current node and a
frame of k of its siblings on each side, in the order
induced by the order of words in the sentence

114

Algorithm 2: Training the convolutional neural network for question answering
Data: Ξ, a set of triples (Q, S, T), with Q a parse tree of a question, S a parse tree of a support sentence, and

T ⊂ W(S) a ground truth answer substring, and parse tree features ~x(p) attached by the recursive
autoencoder for all p ∈ Q or p ∈ S

Let n = dim ~x(p)
Let h be the cross-entropy loss (equation (2))

Data: Φ :
(
R3n

)2k+1 → R2 a convolutional neural network over frames of size 2k + 1, with parameters to be
trained for question-answering

Result: Parameters of Φ trained
begin

while stopping criterion not satisfied do
Randomly choose (Q, S, T) ∈ Ξ
Let q, r = root(Q), root(S)
Let X = {r} (the set of nodes to follow)
Let A(T) ⊂ S be the set of ancestor nodes of T in S
while X 6= ∅ do

Pop an element p from X
if p is not terminal then

Let c1, . . . , cm be the children of p
Let ~xj = ~x(cj) for j ∈ {1, . . . ,m}
Let ~xj = ~0 for j /∈ {1, . . . ,m}
for i=1, . . . m do

Let t = 1 if ci ∈ A(T), or 0 otherwise
Let vci

= ⊕i+k
j=i−k (~xj ⊕ ~x(p)⊕ ~x(q))

Compute the cross-entropy loss h (Φ (vci
) , t)

if exp(−h (Φ (vci
) , 1)) > 1

2 then
Let X = X ∪ {ci} (the network predicts ci should be followed)

Update parameters of Φ by backpropagation

Each of these representations is n-dimensional. The
convolutional neural network concatenates them to-
gether (denoted by ⊕) as a 3n-dimensional feature at
each node position, and considers a frame enclosing
k siblings on each side of the current node. The CNN
consists of a convolutional layer mapping the 3n inputs
to an r-dimensional space, a sigmoid function (such as
tanh), a linear layer mapping the r-dimensional space
to two outputs, and another sigmoid. We take k = 2
and r = 30 in the experiments.

Application of the CNN begins with the children of
the root, and proceeds in breadth first order through
the children of the followed nodes. Sliding the CNN’s
frame across siblings allows it to decide whether to fol-
low adjacent siblings faster than a non-convolutional
classifier, where the decisions would be computed
without exploiting the overlapping features. A fol-
lowed terminal node becomes part of the short answer
of the system.

The training of the question-answering convolu-
tional neural network is detailed in Algorithm 2. Only
visited nodes, as predicted by the classifier, are used for
training. For ground truth, we say that a node should be
followed if it is the ancestor of some token that is part
of the desired answer. For example, to select the death
date “December 25, 1758” from the support sentence
(displayed on page one) about James Hervey, nodes of

the tree would be attached ground truth values accord-
ing to the coloring in Figure 2. At classification time,
some unnecessary (negatively labeled) nodes may be
followed without mistaking the final answer.

For example, when deciding whether to follow the
“NP” in node 33 on the third row of Figure 3, the clas-
sifier would see features of node 32 (NP) and node 8
(‘-’) on its left, its own features, and nothing on its
right. Since there are no siblings to the right of node
33, zero vectors, used for padding, would be placed in
the two empty slots. To each of these feature vectors,
features from the parent and the question root would be
concatenated.

The combination of recursive autoencoders with
convolutions inside the tree affords flexibility and gen-
erality. The ordering of children would be immea-
surable by a classifier relying on path-based features
alone. For instance, our classifier may consider a
branch of a parse tree as in Figure 2, in which the birth
date and death date have isomorphic connections to the
rest of the parse tree. It can distinguish them by the
ordering of nodes in a parenthetical expression (see ex-
amples in Table 2).

115

System Short Answer Short Answer Short Answer MC MC MC
Precision Recall F1 Precision Recall F1

Main 58.9% 27.0% .370 79.9% 38.8% .523
No subtree recognition 48.9% 18.6% .269 71.7% 27.8% .400
No unknown 66.8% 19.7% .305 84.2% 29.0% .431
word embeddings

Smaller training 40.6% 16.7% .236 65.5% 20.4% .311
(1,333 questions)

OpenEphyra 52.2% 13.1% .209 73.6% 32.0 % .446

Table 1: Performance on TurkQA test set, for short answer and multiple choice (MC) evaluations.

7 Experiments

From the TurkQA data, we disregard the yes/no ques-
tions, and obtain 12,916 problem sets with 38,083 short
answer questions for training, and 508 problem sets
with 1,488 short answer questions for testing.

Because there may be several ways of stating a short
answer, short answer questions in other data sets are
typically judged by humans. In TurkQA, because an-
swers must be extracted as substrings, we can approx-
imate the machine’s correctness by considering the to-
ken classification error against the substring originally
chosen by the Turk worker. Of course, answer vali-
dation strategies could be used to clean up the short
answers—for instance, require that they are contigu-
ous substrings (as is guaranteed by the task)—but we
did not employ them here, so as not to obfuscate the
performance of the substring extraction system itself.
Inevitably, some token misclassification will occur be-
cause question writers choose more or less complete
answers (“in Nigeria” or just “Nigeria”).

Table 6 shows the performance of our main algo-
rithm, evaluated both as short-answer and as multiple
choice. The short answer results describe the main set-
ting, which formulates answer extraction as token clas-
sification. The multiple choice results come from con-
sidering all the short answers in the problem sets as
alternative choices, and comparing the classifier’s out-
puts averaged over the words in each response to select
the best, or skip if no average is positive. (Thus, all
questions in a single problem set have the same set of
choices.) Although the multiple choice setting is less
challenging, it helps us see how much of the short an-
swer error may be due to finding poor answer bound-
aries as opposed to the classifier being totally misled.
On more than half of the 1,488 test questions, no an-
swer at all is selected, so that multiple choice precision
remains high even with low recall.

As one baseline method, we took the OpenEphyra
question answering system, an open source project
led by Carnegie Mellon University, which evolved
out of submissions to TREC question answering con-
tests (Ko et al., 2007), bypassing its retrieval mod-
ule to simply use our support sentence. In con-
trast to our system, OpenEphyra’s question analy-
sis module is trained to map questions to one of a

fixed number of answer types, such as PERCENTAGE,
or PROPER_NAME.PERSON.FIRST_NAME, and uti-
lizes a large database of answer patterns for these types.
In spite of OpenEphyra’s laborious pattern coding, our
system performs 17% better on a multiple choice basis,
and 77% better on short answers, the latter likely be-
cause OpenEphyra’s answer types cover shorter strings
than the Turks’ answers.

The results show the impact of several of our algo-
rithmic contributions. If the autoencoder is trained only
on reconstruction error and not subtree recognition,
the F1 score for token classification drops from .370
(58.9% precision, 27.0% recall) to .269 (48.9% preci-
sion, 18.6% recall). Without extended embeddings to
differentiate unknown words, F1 is only .305 (66.8%
precision, 19.7% recall). We are encouraged that in-
creasing the amount of data contributes 50% to the F1
score (from only F1=.236 training on 1,333 questions),
as it suggests that the power of our algorithms is not
saturated while picking up the simplest features.

Table 2 gives examples of questions in the test set,
together with the classifier’s selection from the support
sentence.

8 Discussion
We have developed a recursive neural network architec-
ture capable of using learned representations of words
and syntax in a parse tree structure to answer free
form questions about natural language text. Using
meaning representations of the question and support-
ing sentences, our approach buys us freedom from ex-
plicit rules, question and answer types, and exact string
matching.

Certainly retrieval is important in a full-fledged
question answering system, whereas our classifier per-
forms deep analysis after candidate supporting sen-
tences have been identified. Also, multi-sentence
documents would require information to be linked
among coreferent entities. Despite these challenges,
we present our system in the belief that strong QA tech-
nologies should begin with a mastery of the syntax of
single sentences. A computer cannot be said to have a
complete knowledge representation of a sentence until
it can answer all the questions a human can ask about
that sentence.

116

Question: What is the name of the British charity based in Haringey in north London?
Support: Based in Haringey in North London, Exposure is a British

charity which enables children and young people from all backgrounds,
including disadvantaged groups and those from areas of deprivation,
to participate and achieve their fullest potential in the media.

Selection: Exposure
Correct Answer: Exposure
Question: What was Robert Person’s profession?
Support: Robert Person was a professional baseball pitcher who

played 9 seasons in Major League Baseball: two for the New York Mets, two and a
half for the Toronto Blue Jays, three and a half for the Philadelphia
Phillies, and only pitched 7 games for the Boston Red Sox in the last year
of his career.

Selection: baseball pitcher
Correct Answer: baseball pitcher
Question: How many seasons did Robert Person play in the Major League?
Support: Robert Person was a professional baseball pitcher who

played 9 seasons in Major League Baseball: two for the New York Mets, two and a
half for the Toronto Blue Jays, three and a half for the Philadelphia
Phillies, and only pitched 7 games for the Boston Red Sox in the last year
of his career.

Selection: 9
Correct Answer: 9 seasons
Question: What sea does Mukka have a shore on?
Support: Mukka is suburb of Mangalore city on the shore of Arabian sea .

It is located to north of NITK, Surathkal campus on National Highway 17 .
There is a beach in Mukka which has escaped public attention.

Selection: Arabian sea
Correct Answer: Arabian sea
Question: What genre was Lights Out?
Support: Lights Out was an extremely popular American old-time radio

program, an early example of a network series devoted mostly to horror and
the supernatural, predating Suspense and Inner Sanctum.

Selection: horror supernatural
Correct Answer: horror and the supernatural
Question: Where is the Arwa Group?
Support: The Arwa Group is a set of three Himalayan peaks, named Arwa

Tower, Arwa Crest, and Arwa Spire, situated in the Chamoli district of
Uttarakhand state, in northern India.

Selection: the Chamoli district Uttarakhand state northern India
Correct Answer: the Chamoli district of Uttarakhand state
Question: What year did Juan Bautista Segura die in?
Support: Juan Bautista Quiros Segura (1853 - 1934) was president of

Costa Rica for two weeks, from August 20 to September 2, 1919, following the
resignation of Federico Tinoco.

Selection: 1934
Correct Answer: 1934
Question: What state is the Oregon School Activities Association in?
Support: The Oregon School Activities Association, or OSAA, is a

non-profit, board-governed organization that regulates high school athletics
and competitive activities in Oregon, providing equitable competition amongst
its members, both public and private.

Selection: OSAA
Correct Answer: Oregon

Table 2: Example results of main classifier on TurkQA test set.

117

References
Y. Bengio and R. Ducharme. 2001. A neural proba-

bilistic language model. In Advances in NIPS, vol-
ume 13.

L. Bottou. 2004. Stochastic learning. In O. Bousquet
and U. von Luxburg, editors, Advanced Lectures on
Machine Learning, Lecture Notes in Artificial Intel-
ligence, LNAI 3176, pages 146–168. Springer.

S. Brin. 1998. Extracting patterns and relations from
the World Wide Web. In Proceedings World Wide
Web and Databases International Workshop (LNCS
1590), pages 172–183. Springer.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of
Machine Learning Research, 12:2493–2537.

H. T. Dang, D. Kelly, and J. Lin. 2008. Overview of
the TREC 2007 question answering track. In NIST
Special Pub. 500-274: The Sixteenth Text Retrieval
Conference (TREC 2007).

P. Forner, A. Penas, E. Agirre, I. Alegria, C. Forascu,
N. Moreau, P. Osenova, P. Prokopidis, P. Rocha,
B. Sacaleanu, R. Sutcliffe, and E. T. K. Sang. 2008.
Overview of the Clef 2008 Multilingual Question
Answering Track. In CLEF.

J. Ko, E. Nyberg, and L. Luo Si. 2007. A probabilistic
graphical model for joint answer ranking in question
answering. In Proceedings of the 30th ACM SIGIR
Conference.

P. Koomen, V. Punyakanok, D. Roth, and W. Yih.
2005. Generalized inference with multiple seman-
tic role labeling systems. In Proceedings of CoNLL.

P. Liang, M. I. Jordan, and D. Klein. 2011. Learn-
ing dependency-based compositional semantics. In
ACL.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009.
Distant supervision for relation extraction without
labeled data. In Proceedings of ACL-IJCNLP, pages
1003–1011.

J. B. Pollack. 1990. Recursive distributed representa-
tions. Artficial Intelligence, 46.

H. Poon and P. Domingos. 2009. Unsupervised se-
mantic parsing. In Proceedings of ACL.

S. Pradhan, K. Hacioglu, W. Ward, J. H. Martin, and
D. Jurafsky. 2005. Semantic role chunking com-
bining complementary syntactic views. In Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 217–220.

S. Riedel, L. Yao, and A. McCallum. 2010. Modeling
relations and their mentions without labeled text. In
Proceedings of ECML-PKDD.

R. Schmidt. 2013. The fan-created archive of
Jeopardy! games and players. http://www.
j-archive.com. Accessed: April 26, 2013.

L. Shen, G. Satta, and A. K. Joshi. 2007. Guided learn-
ing for bidirectional sequence classification. In Pro-
ceedings of ACL.

R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and
C. D. Manning. 2011a. Dynamic pooling and un-
folding recursive autoencoders for paraphrase detec-
tion. In Advances in NIPS.

R. Socher, J. Pennington, E. Huang, A. Y. Ng, and
C. D. Manning. 2011b. Semi-supervised recursive
autoencoders for predicting sentiment distributions.
In Proceedings of EMNLP.

E. M. Voorhees. 2000. Overview of the TREC-9 Ques-
tion Answering track. In NIST Special Pub. 500-
249: The Ninth Text Retrieval Conference (TREC 9),
pages 71–79.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and
K. J. Lang. 1989. Phoneme recognition using
time-delay neural networks. IEEE Trans. Acoustics,
Speech, and Signal Processing, 37(3):328–339.

118

