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Abstract
We present vector space semantic parsing
(VSSP), a framework for learning compo-
sitional models of vector space semantics.
Our framework uses Combinatory Cate-
gorial Grammar (CCG) to define a cor-
respondence between syntactic categories
and semantic representations, which are
vectors and functions on vectors. The
complete correspondence is a direct con-
sequence of minimal assumptions about
the semantic representations of basic syn-
tactic categories (e.g., nouns are vectors),
and CCG’s tight coupling of syntax and
semantics. Furthermore, this correspon-
dence permits nonuniform semantic repre-
sentations and more expressive composi-
tion operations than previous work. VSSP
builds a CCG semantic parser respecting
this correspondence; this semantic parser
parses text into lambda calculus formulas
that evaluate to vector space representa-
tions. In these formulas, the meanings of
words are represented by parameters that
can be trained in a task-specific fashion.
We present experiments using noun-verb-
noun and adverb-adjective-noun phrases
which demonstrate that VSSP can learn
composition operations that RNN (Socher
et al., 2011) and MV-RNN (Socher et al.,
2012) cannot.

1 Introduction

Vector space models represent the semantics of
natural language using vectors and operations on
vectors (Turney and Pantel, 2010). These models
are most commonly used for individual words and
short phrases, where vectors are created using dis-
tributional information from a corpus. Such mod-
els achieve impressive performance on standard-
ized tests (Turney, 2006; Rapp, 2003), correlate

well with human similarity judgments (Griffiths et
al., 2007), and have been successfully applied to a
number of natural language tasks (Collobert et al.,
2011).

While vector space representations for indi-
vidual words are well-understood, there remains
much uncertainty about how to compose vector
space representations for phrases out of their com-
ponent words. Recent work in this area raises
many important theoretical questions. For exam-
ple, should all syntactic categories of words be
represented as vectors, or are some categories,
such as adjectives, different? Using distinct se-
mantic representations for distinct syntactic cate-
gories has the advantage of representing the opera-
tional nature of modifier words, but the disadvan-
tage of more complex parameter estimation (Ba-
roni and Zamparelli, 2010). Also, does semantic
composition factorize according to a constituency
parse tree (Socher et al., 2011; Socher et al.,
2012)? A binarized constituency parse cannot di-
rectly represent many intuitive intra-sentence de-
pendencies, such as the dependence between a
verb’s subject and its object. What is needed to
resolve these questions is a comprehensive theo-
retical framework for compositional vector space
models.

In this paper, we observe that we already have
such a framework: Combinatory Categorial Gram-
mar (CCG) (Steedman, 1996). CCG provides a
tight mapping between syntactic categories and
semantic types. If we assume that nouns, sen-
tences, and other basic syntactic categories are
represented by vectors, this mapping prescribes
semantic types for all other syntactic categories.1

For example, we get that adjectives are functions
from noun vectors to noun vectors, and that prepo-

1It is not necessary to assume that sentences are vectors.
However, this assumption simplifies presentation and seems
like a reasonable first step. CCG can be used similarly to
explore alternative representations.
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Figure 1: Overview of vector space semantic pars-
ing (VSSP). A semantic parser first translates nat-
ural language into a logical form, which is then
evaluated to produce a vector.

sitions are functions from a pair of noun vectors
to a noun vector. These semantic type specifica-
tions permit a variety of different composition op-
erations, many of which cannot be represented in
previously-proposed frameworks. Parsing in CCG
applies these functions to each other, naturally de-
riving a vector space representation for an entire
phrase.

The CCG framework provides function type
specifications for each word’s semantics, given its
syntactic category. Instantiating this framework
amounts to selecting particular functions for each
word. Vector space semantic parsing (VSSP) pro-
duces these per-word functions in a two-step pro-
cess. The first step chooses a parametric func-
tional form for each syntactic category, which con-
tains as-yet unknown per-word and global param-
eters. The second step estimates these parameters
using a concrete task of interest, such as predicting
the corpus statistics of adjective-noun compounds.
We present a stochastic gradient algorithm for this
step which resembles training a neural network
with backpropagation. These parameters may also
be estimated in an unsupervised fashion, for ex-
ample, using distributional statistics.

Figure 1 presents an overview of VSSP. The
input to VSSP is a natural language phrase and
a lexicon, which contains the parametrized func-
tional forms for each word. These per-word repre-
sentations are combined by CCG semantic pars-
ing to produce a logical form, which is a sym-
bolic mathematical formula for producing the vec-
tor for a phrase – for example, Aredvball is a for-
mula that performs matrix-vector multiplication.
This formula is evaluated using learned per-word
and global parameters (values for Ared and vball)
to produce the language’s vector space representa-
tion.

The contributions of this paper are threefold.

First, we demonstrate how CCG provides a the-
oretical basis for vector space models. Second,
we describe VSSP, which is a method for con-
cretely instantiating this theoretical framework.
Finally, we perform experiments comparing VSSP
against other compositional vector space mod-
els. We perform two case studies of composition
using noun-verb-noun and adverb-adjective-noun
phrases, finding that VSSP can learn composition
operations that existing models cannot. We also
find that VSSP produces intuitively reasonable pa-
rameters.

2 Combinatory Categorial Grammar for
Vector Space Models

Combinatory Categorial Grammar (CCG) (Steed-
man, 1996) is a lexicalized grammar formalism
that has been used for both broad coverage syntac-
tic parsing and semantic parsing. Like other lexi-
calized formalisms, CCG has a rich set of syntac-
tic categories, which are combined using a small
set of parsing operations. These syntactic cate-
gories are tightly coupled to semantic represen-
tations, and parsing in CCG simultaneously de-
rives both a syntactic parse tree and a seman-
tic representation for each node in the parse tree.
This coupling between syntax and semantics moti-
vates CCG’s use in semantic parsing (Zettlemoyer
and Collins, 2005), and provides a framework for
building compositional vector space models.

2.1 Syntax

The intuition embodied in CCG is that, syntac-
tically, words and phrases behave like functions.
For example, an adjective like “red” can com-
bine with a noun like “ball” to produce another
noun, “red ball.” Therefore, adjectives are natu-
rally viewed as functions that apply to nouns and
return nouns. CCG generalizes this idea by defin-
ing most parts of speech in terms of such func-
tions.

Parts of speech in CCG are called syntactic cat-
egories. CCG has two kinds of syntactic cat-
egories: atomic categories and functional cate-
gories. Atomic categories are used to represent
phrases that do not accept arguments. These cate-
gories includeN for noun,NP for noun phrase, S
for sentence, and PP for prepositional phrase. All
other parts of speech are represented using func-
tional categories. Functional categories are written
as X/Y or X\Y , where both X and Y are syn-
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Part of speech Syntactic category Example usage Semantic type Example log. form
Noun N person : N Rd vperson

Adjective N/Nx good person : N 〈Rd,Rd〉 λx.Agoodx

Determiner NP/Nx the person : NP 〈Rd,Rd〉 λx.x

Intrans. Verb S\NPx the person ran : S 〈Rd,Rd〉 λx.Aranx+ bran

Trans. Verb S\NPy/NPx the person ran home : S 〈Rd, 〈Rd,Rd〉〉 λx.λy.(Tranx)y

Adverb (S\NP )\(S\NP ) ran lazily : S\NP 〈〈Rd,Rd〉, 〈Rd,Rd〉〉 [λy.Ay → λy.(TlazyA)y]

(S\NP )/(S\NP ) lazily ran : S\NP 〈〈Rd,Rd〉, 〈Rd,Rd〉〉 [λy.Ay → λy.(TlazyA)y]

(N/N)/(N/N) very good person : N 〈〈Rd,Rd〉, 〈Rd,Rd〉〉 [λy.Ay → λy.(TveryA)y]

Preposition (N\Ny)/Nx person in France : N 〈Rd, 〈Rd,Rd〉〉 λx.λy.(Tinx)y

(S\NPy)\(S\NP )f/NPx ran in France : S\NP 〈Rd, 〈〈Rd,Rd〉, 〈Rd,Rd〉〉〉 λx.λf.λy.(Tinx)(f(y))

Table 1: Common syntactic categories in CCG, paired with their semantic types and example logical
forms. The example usage column shows phrases paired with the syntactic category that results from
using the exemplified syntactic category for the bolded word. For ease of reference, each argument to
a syntactic category on the left is subscripted with its corresponding semantic variable in the example
logical form on the right. The variables x, y, b, v denote vectors, f denotes a function, A denotes a
matrix, and T denotes a tensor. Subscripted variables (Ared) denote parameters. Functions in logical
forms are specified using lambda calculus; for example λx.Ax is the function that accepts a (vector)
argument x and returns the vector Ax. The notation [f → g] denotes the higher-order function that,
given input function f , outputs function g.

tactic categories. These categories represent func-
tions that accept an argument of category Y and
return a phrase of category X . The direction of
the slash defines the expected location of the argu-
ment: X/Y expects an argument on the right, and
X\Y expects an argument on the left.2 For ex-
ample, adjectives are represented by the category
N/N – a function that accepts a noun on the right
and returns a noun.

The left part of Table 1 shows examples of
common syntactic categories, along with exam-
ple uses. Note that some intuitive parts of speech,
such as prepositions, are represented by multiple
syntactic categories. Each of these categories cap-
tures a different use of a preposition, in this case
the noun-modifying and verb-modifying uses.

2.2 Semantics
Semantics in CCG are given by first associating a
semantic type with each syntactic category. Each
word in a syntactic category is then assigned a
semantic representation of the corresponding se-
mantic type. These semantic representations are
known as logical forms. In our case, a logical form
is a fragment of a formula for computing a vector
space representation, containing word-specific pa-
rameters and specifying composition operations.

In order to construct a vector space model, we
associate all of the atomic syntactic categories,

2As a memory aid, note that the top of the slash points in
the direction of the expected argument.

N , NP , S, and PP , with the type Rd. Then,
the logical form for a noun like “ball” is a vec-
tor vball ∈ Rd. The functional categories X/Y
and X\Y are associated with functions from the
semantic type of X to the semantic type of Y . For
example, the semantic type of N/N is 〈Rd,Rd〉,
representing the set of functions from Rd to Rd.3

This semantic type captures the same intuition as
adjective-noun composition models: semantically,
adjectives are functions from noun vectors to noun
vectors.

The right portion of Table 1 shows semantic
types for several syntactic categories, along with
example logical forms. All of these mappings
are a direct consequence of the assumption that
all atomic categories are semantically represented
by vectors. Interestingly, many of these semantic
types contain functions that cannot be represented
in other frameworks. For example, adverbs have
type 〈〈Rd,Rd〉, 〈Rd,Rd〉〉, representing functions
that accept an adjective argument and return an
adjective. In Table 1, the example logical form
applies a 4-mode tensor to the adjective’s matrix.
Another powerful semantic type is 〈Rd, 〈Rd,Rd〉〉,
which corresponds to transitive verbs and prepo-

3The notation 〈A,B〉 represents the set of functions
whose domain isA and whose range isB. Somewhat confus-
ingly, the bracketing in this notation is backward relative to
the syntactic categories – the syntactic category (N\N)/N
has semantic type 〈Rd, 〈Rd,Rd〉〉, where the inner 〈Rd,Rd〉
corresponds to the left (N\N).
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Figure 2: Syntactic CCG parse and corresponding vector space semantic derivation.

sitions. This type represents functions from two
argument vectors to an output vector, which have
been curried to accept one argument vector at a
time. The example logical form for this type uses
a 3-mode tensor to capture interactions between
the two arguments.

Note that this semantic correspondence permits
a wide range of logical forms for each syntactic
category. Each logical form can have an arbitrary
functional form, as long as it has the correct se-
mantic type. This flexibility permits experimenta-
tion with different composition operations. For ex-
ample, adjectives can be represented nonlinearly
by using a logical form such as λx. tanh(Ax). Or,
adjectives can be represented nonparametrically
by using kernel regression to learn the appropriate
function from vectors to vectors. We can also in-
troduce simplifying assumptions, as demonstrated
by the last entry in Table 1. CCG treats preposi-
tions as modifying intransitive verbs (the category
S\N ). In the example logical form, the verb’s
semantics are represented by the function f , the
verb’s subject noun is represented by y, and f(y)
represents the sentence vector created by compos-
ing the verb with its argument. By only operating
on f(y), this logical form assumes that the action
of a preposition is conditionally independent of the
verb f and noun y, given the sentence f(y).

2.3 Lexicon
The main input to a CCG parser is a lexicon, which
is a mapping from words to syntactic categories
and logical forms. A lexicon contains entries such
as:

ball := N : vball

red := N/N : λx.Aredx

red := N : vred

flies := ((S\NP )/NP ) : λx.λy.(Tfliesx)y

Each entry of the lexicon associates a word
(ball) with a syntactic category (N ) and a logical
form (vball) giving its vector space representation.
Note that a word may appear multiple times in the

lexicon with distinct syntactic categories and log-
ical forms. Such repeated entries capture words
with multiple possible uses; parsing must deter-
mine the correct use in the context of a sentence.

2.4 Parsing

Parsing in CCG has two stages. First, a category
for each word in the input is retrieved from the lex-
icon. Second, adjacent categories are iteratively
combined by applying one of a small number of
combinators. The most common combinator is
function application:

X/Y : f Y : g =⇒ X : f(g)
Y : g X\Y : f =⇒ X : f(g)

The function application rule states that a cate-
gory of the form X/Y behaves like a function that
accepts an input category Y and returns category
X . The rule also derives a logical form for the re-
sult by applying the function f (the logical form
for X/Y ) to g (the logical form for Y ). Figure 2
shows how repeatedly applying this rule produces
a syntactic parse tree and logical form for a phrase.
The top row of the parse represents retrieving a
lexicon entry for each word in the input. Each
following line represents a use of the function ap-
plication combinator to syntactically and semanti-
cally combine a pair of adjacent categories. The
order of these operations is ambiguous, and dif-
ferent orderings may result in different parses – a
CCG parser’s job is to find a correct ordering. The
result of parsing is a syntactic category for the en-
tire phrase, coupled with a logical form giving the
phrase’s vector space representation.

3 Vector Space Semantic Parsing

Vector space semantic parsing (VSSP) is an
approach for constructing compositional vector
space models based on the theoretical framework
of the previous section. VSSP concretely instanti-
ates CCG’s syntactic/semantic correspondence by
adding appropriately-typed logical forms to a syn-
tactic CCG parser’s lexicon. Parsing a sentence
with this lexicon and evaluating the resulting logi-
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Semantic type Example syntactic categories Logical form template
Rd N,NP, PP, S vw

〈Rd,Rd〉 N/N , NP/N , S/S, S\NP λx.σ(Awx)
〈Rd, 〈Rd,Rd〉〉 (S\NP )/NP , (NP\NP )/NP λx.λy.σ((Twx)y)
〈〈Rd,Rd〉, 〈Rd,Rd〉〉 (N/N)/(N/N) [λy.σ(Ay)→ λy.σ((TwA)y)]

Table 2: Lexicon templates used in this paper to produce a CCG semantic parser. σ represents the
sigmoid function, σ(x) = ex

1+ex .

cal form produces the sentence’s vector space rep-
resentation.

While it is relatively easy to devise vector space
representations for individual nouns, it is more
challenging to do so for the fairly complex func-
tion types licensed by CCG. VSSP defines these
functions in two phases. First, we create a lexi-
con mapping words to parametrized logical forms.
This lexicon specifies a functional form for each
word, but leaves free some per-word parame-
ters. Parsing with this lexicon produces logical
forms that are essentially functions from these
per-word parameters to vector space representa-
tions. Next, we train these parameters to pro-
duce good vector space representations in a task-
specific fashion. Training performs stochastic gra-
dient descent, backpropagating gradient informa-
tion through the logical forms.

3.1 Producing the Parametrized Lexicon

We create a lexicon using a set of manually-
constructed templates that associate each syntactic
category with a parametrized logical form. Each
template contains variables that are instantiated to
define per-word parameters. The output of this
step is a CCG lexicon which can be used in a
broad coverage syntactic CCG parser (Clark and
Curran, 2007) to produce logical forms for input
language.4

Table 2 shows some templates used to create
logical forms for syntactic categories. To reduce
annotation effort, we define one template per se-
mantic type, covering all syntactic categories with
that type. These templates are instantiated by re-
placing the variable w in each logical form with
the current word. For example, instantiating the
second template for “red” produces the logical
form λx.σ(Aredx), where Ared is a matrix of pa-
rameters.

4In order to use the lexicon in an existing parser, the gen-
erated syntactic categories must match the parser’s syntac-
tic categories. Then, to produce a logical form for a sen-
tence, simply syntactically parse the sentence, generate log-
ical forms for each input word, and retrace the syntactic
derivation while applying the corresponding semantic oper-
ations to the logical forms.

Note that Table 2 is a only starting point – devis-
ing appropriate functional forms for each syntactic
category is an empirical question that requires fur-
ther research. We use these templates in our ex-
periments (Section 4), suggesting that they are a
reasonable first step. More complex data sets will
require more complex logical forms. For example,
to use high-dimensional vectors, all matrices and
tensors will have to be made low rank. Another
possible improvement is to tie the parameters for
a single word across related syntactic categories
(such as the transitive and intransitive forms of a
verb).

3.2 Training the Logical Form Parameters

The training problem in VSSP is to optimize the
logical form parameters to best perform a given
task. Our task formulation subsumes both clas-
sification and regression: we assume the input is
a logical form, and the output is a vector. Given a
data set of this form, training can be performed us-
ing stochastic gradient descent in a fashion similar
to backpropagation in a neural network.

The data set for training consists of tuples,
{(`i, yi)}n

i=1, where ` is a logical form and y is a
label vector representing the expected task output.
Each logical form ` is treated as a function from
parameter vectors θ to vectors in Rd. For example,
the logical form Aredvball is a function from Ared

and vball to a vector. We use θ to denote the set
of all parameters; for example, θ = {Ared, vball}.
We further assume a loss function L defined over
pairs of label vectors. The training problem is
therefore to minimize the objective:

O(θ) =
n∑

i=1

L(yi, g(`i(θ)) +
λ

2
||θ||2

Above, g represents a global postprocessing func-
tion which is applied to the output of VSSP to
make a task-specific prediction. This function may
also be parametrized, but we suppress these pa-
rameters for simplicity. As a concrete example,
consider a classification task (as in our evaluation).
In this case, y represents a target distribution over
labels, L is the KL divergence between the pre-
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dicted and target distributions, and g represents a
softmax classifier.

We optimize the objective O by running
stochastic gradient descent. The gradients of the
parameters θ can be computed by iteratively ap-
plying the chain rule to `, which procedurally
resembles performing backpropagation in a neu-
ral network (Rumelhart et al., 1988; Goller and
Küchler, 1996).

4 Comparing Models of Semantic
Composition

This section compares the expressive power of
VSSP to previous work. An advantage of VSSP
is its ability to assign complex logical forms to
categories like adverbs and transitive verbs. This
section examines cases where such complex logi-
cal forms are necessary, using synthetic data sets.
Specifically, we create simple data sets mimick-
ing expected forms of composition in noun-verb-
noun and adverb-adjective-noun phrases. VSSP
is able to learn the correct composition operations
for these data sets, but previously proposed mod-
els cannot.

We compare VSSP against RNN (Socher et al.,
2011) and MV-RNN (Socher et al., 2012), two
recursive neural network models which factorize
composition according to a binarized constituency
parse tree. The RNN model represents the seman-
tics of each parse tree node using a single vector,
while the MV-RNN represents each node using
both a matrix and a vector. These representations
seem sufficient for adjectives and nouns, but it is
unclear how they generalize to other natural lan-
guage constructions.

In these experiments, each model is used to map
an input phrase to a vector, which is used to train a
softmax classifier that predicts the task output. For
VSSP, we use the lexicon templates from Table 2.
All nouns are represented as two-dimensional vec-
tors, and all matrices and tensors are full rank. The
parameters of each model (i.e., the per-word vec-
tors, matrices and tensors) and the softmax classi-
fier are trained as described in Section 3.2.

4.1 Propositional Logic

The propositional logic experiment examines the
impact of VSSP’s representation of transitive
verbs. VSSP directly represents these verbs as
two-argument functions, allowing it to learn op-
erations with complex interactions between both

false and false 0,1 false or false 0,1 false xor false 0,1
true and false 0,1 true or false 1,0 true xor false 1,0
false and true 0,1 false or true 1,0 false xor true 1,0
true and true 1,0 true or true 1,0 true xor true 0,1

Table 3: Data for propositional logic experiment.

Composition Formula KL divergence
RNN 0.44
MV-RNN 0.12
VSSP 0.01

Table 4: Training error on the propositional logic
data set. VSSP achieves zero error because its
verb representation can learn arbitrary logical op-
erations.

arguments. In contrast, the RNN and MV-RNN
models learn a set of global weights which are
used to combine the verb with its arguments. The
functional forms of these models limit the kinds of
interactions that can be captured by verbs.

We evaluated the learnability of argument in-
teractions using the simple data set shown in Ta-
ble 3. In this data set, the words “and,” “or,” and
“xor” are treated as transitive verbs, while “true”
and “false” are nouns. The goal is to predict the
listed truth values, which are represented as two-
dimensional distributions over true and false.

Table 4 shows the training error of each model
on this data set, measured in terms of KL diver-
gence between the model’s predictions and the
true values. VSSP achieves essentially zero train-
ing error because its 3-mode tensor representa-
tion of transitive verbs is trivially able to learn
arbitrary logical operations. RNN and MV-RNN
can learn each logical operation independently, but
cannot learn all three at the same time – this phe-
nomenon occurs because XOR requires different
global weight matrices than AND/OR. As a re-
sult, these models learn both AND and OR, but fail
to learn XOR. This result suggests that much of
the learning in these models occurs in the global
weight matrices, while the verb representations
can have only limited influence.

Although this data set is synthetic, the interac-
tion given by XOR seems necessary to represent
real verbs. To learn AND and OR, the arguments
need not interact – it is sufficient to detect a set
of appropriate subject and object arguments, then
threshold the number of such arguments. This
information is essentially type constraints for the
subject and object of a verb. However, type con-
straints are insufficient for real verbs. For exam-
ple, consider the verb “eats.” All animals eat and
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very big elephant 1,0 very big mouse 0.3,0.7
pretty big elephant 0.9,0.1 pretty big mouse 0.2,0.8
pretty small elephant 0.8,0.2 pretty small mouse 0.1,0.9
very small elephant 0.7,0.3 very small mouse 0,1

Table 5: Data for adverb-adjective-noun compo-
sition experiment. Higher first dimension values
represent larger objects.

Composition Model KL divergence
RNN 0.10
MV-RNN 0.10
VSSP 0.00

Table 6: Training error of each composition model
on the adverb-adjective-noun experiment.

can be eaten, but not all animals eat all other an-
imals; whether or not “X eats Y ” is true depends
on an interaction between X and Y .

4.2 Adverb-Adjective-Noun Composition

Adverbs can enhance or attenuate the properties
of adjectives, which in turn can enhance or attenu-
ate the properties of nouns. The adverb-adjective-
noun experiment compares each model’s ability
to learn these effects using a synthetic object size
data set, shown in Table 5. The task is to predict
the size of each described object, which is repre-
sented as a two-dimensional distribution over big
and small. The challenge of this data set is that
an adverb’s impact on size depends on the adjec-
tive being modified – a very big elephant is big-
ger than a big elephant, but a very small elephant
is smaller than a small elephant. Note that this
task is more difficult than adverb-adjective com-
position (Socher et al., 2012), since in this task
the adverb has to enhance/attenuate the enhanc-
ing/attenuating properties of an adjective.

Table 6 shows the training error of each model
on this data set. VSSP achieves zero training error
because its higher-order treatment of adverbs al-
lows it to accurately represent their enhancing and
attenuating effects. However, none of the other
models are capable of representing these effects.
This result is unsurprising, considering that the
RNN and MV-RNN models essentially add the
adverb and adjective parameters using a learned
linear operator (followed by a nonlinearity). Such
additive combination forces adverbs to have a con-
sistent direction of effect on the size of the noun,
which is incompatible with the desired enhancing
and attenuating behavior.

Examining VSSP’s learned parameters clearly
demonstrates its ability to learn enhancing and

“elephant”
„

1.6
−0.1

«
“mouse”

„
−0.1
1.6

«

“small” „
0.22 0
0 1.7

« “big” „
1.7 −1.1
0 0.22

«

“very small” „
0.25 −.12
−1.34 2.3

« “very big” „
2.3 −1.34
−0.12 0.25

«
Figure 3: Parameters for nouns, adjectives and ad-
jective phrases learned by VSSP. When the adverb
“very” is applied to “small” and “big,” it enhances
their effect on a modified noun.

attenuating phenomena. Figure 3 demonstrates
VSSP’s learned treatment of “very.” In the fig-
ure, a high first dimension value represents a large
object, while a high second dimension value rep-
resents a small object; hence the vectors for ele-
phant and mouse show that, by default, elephants
are larger than mice. Similarly, the matrices for
big and small scale up the appropriate dimension
while shrinking the other dimension. Finally, we
show the computed matrices for “very big” and
“very small” – this operation is possible because
these phrases have an adjective’s syntactic cate-
gory, N/N . These matrices have the same di-
rection of effect as their unenhanced versions, but
produce a larger scaling in that direction.

5 Related Work

Several models for compositionality in vector
spaces have been proposed in recent years. Much
work has focused on evaluating composition oper-
ations for word pairs (Mitchell and Lapata, 2010;
Widdows, 2008). Many operations have been pro-
posed, including various combinations of addition,
multiplication, and linear operations (Mitchell and
Lapata, 2008), holographic reduced representa-
tions (Plate, 1991) and others (Kintsch, 2001).
Other work has used regression to train models
for adjectives in adjective-noun phrases (Baroni
and Zamparelli, 2010; Guevara, 2010). All of this
work is complementary to ours, as these composi-
tion operations can be used within VSSP by appro-
priately choosing the logical forms in the lexicon.

A few comprehensive frameworks for compo-
sition have also been proposed. One approach
is to take tensor outer products of word vec-
tors, following syntactic structure (Clark and Pul-
man, 2007). However, this approach results in
differently-shaped tensors for different grammati-
cal structures. An improvement of this framework
uses a categorial grammar to ensure that similarly-
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typed objects lie in the same vector space (Clark
et al., 2008; Coecke et al., 2010; Grefenstette
and Sadrzadeh, 2011). VSSP generalizes this
work by allowing nonlinear composition opera-
tions and considering supervised parameter esti-
mation. Several recent neural network models im-
plicitly use a framework which assumes that com-
position factorizes according to a binarized con-
stituency parse, and that words and phrases have
uniform semantic representations (Socher et al.,
2011; Socher et al., 2012). Notably, Hermann
and Blunsom (2013) instantiate such a framework
using CCG. VSSP generalizes these approaches,
as they can be implemented within VSSP by
choosing appropriate logical forms. Furthermore,
our experiments demonstrate that VSSP can learn
composition operations that cannot be learned by
these approaches.

The VSSP framework uses semantic parsing to
define a compositional vector space model. Se-
mantic parsers typically map sentences to logi-
cal semantic representations (Zelle and Mooney,
1996; Kate and Mooney, 2006), with many sys-
tems using CCG as the parsing formalism (Zettle-
moyer and Collins, 2005; Kwiatkowski et al.,
2011; Krishnamurthy and Mitchell, 2012). Al-
though previous work has focused on logical se-
mantics, it has demonstrated that semantic parsing
is an elegant technique for specifying models of
compositional semantics. In this paper, we show
how to use semantic parsing to produce composi-
tional models of vector space semantics.

6 Discussion and Future Work

We present vector space semantic parsing (VSSP),
a general framework for building compositional
models of vector space semantics. Our frame-
work is based on Combinatory Categorial Gram-
mar (CCG), which defines a correspondence be-
tween syntactic categories and semantic types rep-
resenting vectors and functions on vectors. A
model in VSSP instantiates this mapping in a CCG
semantic parser. This semantic parser parses nat-
ural language into logical forms, which are in turn
evaluated to produce vector space representations.
We further propose a method for constructing such
a semantic parser using a small number of logi-
cal form templates and task-driven estimation of
per-word parameters. Synthetic data experiments
show that VSSP’s treatment of adverbs and tran-
sitive verbs can learn more functions than prior

work.
An interesting aspect of VSSP is that it high-

lights cases where propositional semantics seem
superior to vector space semantics. For example,
compare “the ball that I threw” and “I threw the
ball.” We expect the semantics of these phrases
to be closely related, differing only in that one
phrase refers to the ball, while the other refers to
the throwing event. Therefore, our goal is to de-
fine a logical form for “that” which appropriately
relates the semantics of the above expressions. It is
easy to devise such a logical form in propositional
semantics, but difficult in vector space semantics.
Producing vector space solutions to such problems
is an area for future work.

Another direction for future work is joint train-
ing of both the semantic parser and vector space
representations. Our proposed approach of adding
logical forms to a broad CCG coverage parser has
the advantage of allowing VSSP to be applied to
general natural language. However, using the syn-
tactic parses from this parser may not result in
the best possible factorization of semantic com-
position. Jointly training the semantic parser and
the vector space representations may lead to better
models of semantic composition.

We also plan to apply VSSP to real data sets.
We have made some progress applying VSSP to
SemEval Task 8, learning to extract relations be-
tween nominals (Hendrickx et al., 2010). Al-
though our work thus far is preliminary, we have
found that the generality of VSSP makes it easy
to experiment with different models of composi-
tion. To swap between models, we simply mod-
ify the CCG lexicon templates – all of the remain-
ing infrastructure is unchanged. Such preliminary
results suggest the power of VSSP as a general
framework for learning vector space models.
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