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Introduction

In recent years, there has been a growing interest in algorithms that learn a continuous representation
for words, phrases, or documents. For instance, one can see latent semantic analysis (Landauer and
Dumais, 1997) and latent Dirichlet allocation (Blei et al. 2003) as a mapping of documents or words into
a continuous lower dimensional topic-space. Another example, continuous word vector-space models
(Sahlgren 2006, Reisinger 2012, Turian et al., 2010, Huang et al., 2012) represent word meanings with
vectors that capture semantic and syntactic information. These representations can be used to induce
similarity measures by computing distances between the vectors, leading to many useful applications,
such as information retrieval (Schuetze 1992, Manning et al., 2008), search query expansions (Jones et
al., 2006), document classification (Sebastiani, 2002) and question answering (Tellex et al., 2003).

On the fundamental task of language modeling, many hard clustering approaches have been proposed
such as Brown clustering (Brown et al.,1992) or exchange clustering (Martin et al.,1998). These
algorithms can provide desparsification and can be seen as examples of unsupervised pre-training.
However, they have not been shown to consistently outperform models based on Kneser-Ney smoothed
language models which have at their core discrete n-gram representations. On the contrary, one
influential proposal that uses the idea of continuous vector spaces for language modeling is that of neural
language models (Bengio et al., 2003, Mikolov 2012). In these approaches, n-gram probabilities are
estimated using a continuous representation of words in lieu of standard discrete representations, using
a neural network that performs both the projection and the probability estimate. They report state of the
art performance on several well studied language modeling datasets.

Other neural network based models that use continuous vector representations achieve state of the art
performance in speech recognition applications (Schwenk, 2007, Dahl et al. 2011), multitask learning,
NER and POS tagging (Collobert et al., 2011) or sentiment analysis (Socher et al. 2011). Moreover, in
(Le et al., 2012), a continuous space translation model was introduced and its use in a large scale machine
translation system yielded promising results in the last WMT evaluation.

Despite the success of single word vector space models, they are severely limited since they do not
capture compositionality, the important quality of natural language that allows speakers to determine
the meaning of a longer expression based on the meanings of its words and the rules used to combine
them (Frege, 1892). This prevents them from gaining a deeper understanding of the semantics of longer
phrases or sentences. Recently, there has been much progress in capturing compositionality in vector
spaces, e.g., (Pado and Lapata 2007; Erk and Pado 2008; Mitchell and Lapata, 2010; Baroni and
Zamparelli, 2010; Zanzotto et al., 2010; Yessenalina and Cardie, 2011; Grefenstette and Sadrzadeh
2011). The work of Socher et al. 2012 compares several of these approaches on supervised tasks and for
phrases of arbitrary type and length.

Another different trend of research belongs to the family of spectral methods. The motivation in that
context is that working in a continuous space allows for the design of algorithms that are not plagued
with the local minima issues that discrete latent space models (e.g. HMM trained with EM) tend to
suffer from (Hsu et al. 2008). In fact, this motivation strikes with the conventional justification behind
vector space models from the neural network literature, which are usually motivated as a way of tackling
data sparsity issues. This apparent dichotomy is interesting and has not been investigated yet. Finally,
spectral methods have recently been developed for word representation learning (Dhillon et al. 2011),
dependency parsing (Dhillon et al. 2012) and probabilistic context-free grammars (Cohen et al. 2012).

In this workshop, we bring together researchers who are interested in how to learn continuous vector
space models, their compositionality and how to use this new kind of representation in NLP applications.
The goal is to review the recent progress and propositions, to discuss the challenges, to identify promising
future research directions and the next challenges for the NLP community.
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Abstract
We present vector space semantic parsing
(VSSP), a framework for learning compo-
sitional models of vector space semantics.
Our framework uses Combinatory Cate-
gorial Grammar (CCG) to define a cor-
respondence between syntactic categories
and semantic representations, which are
vectors and functions on vectors. The
complete correspondence is a direct con-
sequence of minimal assumptions about
the semantic representations of basic syn-
tactic categories (e.g., nouns are vectors),
and CCG’s tight coupling of syntax and
semantics. Furthermore, this correspon-
dence permits nonuniform semantic repre-
sentations and more expressive composi-
tion operations than previous work. VSSP
builds a CCG semantic parser respecting
this correspondence; this semantic parser
parses text into lambda calculus formulas
that evaluate to vector space representa-
tions. In these formulas, the meanings of
words are represented by parameters that
can be trained in a task-specific fashion.
We present experiments using noun-verb-
noun and adverb-adjective-noun phrases
which demonstrate that VSSP can learn
composition operations that RNN (Socher
et al., 2011) and MV-RNN (Socher et al.,
2012) cannot.

1 Introduction

Vector space models represent the semantics of
natural language using vectors and operations on
vectors (Turney and Pantel, 2010). These models
are most commonly used for individual words and
short phrases, where vectors are created using dis-
tributional information from a corpus. Such mod-
els achieve impressive performance on standard-
ized tests (Turney, 2006; Rapp, 2003), correlate

well with human similarity judgments (Griffiths et
al., 2007), and have been successfully applied to a
number of natural language tasks (Collobert et al.,
2011).

While vector space representations for indi-
vidual words are well-understood, there remains
much uncertainty about how to compose vector
space representations for phrases out of their com-
ponent words. Recent work in this area raises
many important theoretical questions. For exam-
ple, should all syntactic categories of words be
represented as vectors, or are some categories,
such as adjectives, different? Using distinct se-
mantic representations for distinct syntactic cate-
gories has the advantage of representing the opera-
tional nature of modifier words, but the disadvan-
tage of more complex parameter estimation (Ba-
roni and Zamparelli, 2010). Also, does semantic
composition factorize according to a constituency
parse tree (Socher et al., 2011; Socher et al.,
2012)? A binarized constituency parse cannot di-
rectly represent many intuitive intra-sentence de-
pendencies, such as the dependence between a
verb’s subject and its object. What is needed to
resolve these questions is a comprehensive theo-
retical framework for compositional vector space
models.

In this paper, we observe that we already have
such a framework: Combinatory Categorial Gram-
mar (CCG) (Steedman, 1996). CCG provides a
tight mapping between syntactic categories and
semantic types. If we assume that nouns, sen-
tences, and other basic syntactic categories are
represented by vectors, this mapping prescribes
semantic types for all other syntactic categories.1

For example, we get that adjectives are functions
from noun vectors to noun vectors, and that prepo-

1It is not necessary to assume that sentences are vectors.
However, this assumption simplifies presentation and seems
like a reasonable first step. CCG can be used similarly to
explore alternative representations.
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Input: Log. Form:

“red ball”→ semantic
parsing →Aredvball→ evaluation →

„
◦
◦

«
↑ ↑

Lexicon: red:= λx.Aredx
ball:= vball

Params.:Ared =
„
◦ ◦
◦ ◦

«

vball =

„
◦
◦

«
Figure 1: Overview of vector space semantic pars-
ing (VSSP). A semantic parser first translates nat-
ural language into a logical form, which is then
evaluated to produce a vector.

sitions are functions from a pair of noun vectors
to a noun vector. These semantic type specifica-
tions permit a variety of different composition op-
erations, many of which cannot be represented in
previously-proposed frameworks. Parsing in CCG
applies these functions to each other, naturally de-
riving a vector space representation for an entire
phrase.

The CCG framework provides function type
specifications for each word’s semantics, given its
syntactic category. Instantiating this framework
amounts to selecting particular functions for each
word. Vector space semantic parsing (VSSP) pro-
duces these per-word functions in a two-step pro-
cess. The first step chooses a parametric func-
tional form for each syntactic category, which con-
tains as-yet unknown per-word and global param-
eters. The second step estimates these parameters
using a concrete task of interest, such as predicting
the corpus statistics of adjective-noun compounds.
We present a stochastic gradient algorithm for this
step which resembles training a neural network
with backpropagation. These parameters may also
be estimated in an unsupervised fashion, for ex-
ample, using distributional statistics.

Figure 1 presents an overview of VSSP. The
input to VSSP is a natural language phrase and
a lexicon, which contains the parametrized func-
tional forms for each word. These per-word repre-
sentations are combined by CCG semantic pars-
ing to produce a logical form, which is a sym-
bolic mathematical formula for producing the vec-
tor for a phrase – for example, Aredvball is a for-
mula that performs matrix-vector multiplication.
This formula is evaluated using learned per-word
and global parameters (values for Ared and vball)
to produce the language’s vector space representa-
tion.

The contributions of this paper are threefold.

First, we demonstrate how CCG provides a the-
oretical basis for vector space models. Second,
we describe VSSP, which is a method for con-
cretely instantiating this theoretical framework.
Finally, we perform experiments comparing VSSP
against other compositional vector space mod-
els. We perform two case studies of composition
using noun-verb-noun and adverb-adjective-noun
phrases, finding that VSSP can learn composition
operations that existing models cannot. We also
find that VSSP produces intuitively reasonable pa-
rameters.

2 Combinatory Categorial Grammar for
Vector Space Models

Combinatory Categorial Grammar (CCG) (Steed-
man, 1996) is a lexicalized grammar formalism
that has been used for both broad coverage syntac-
tic parsing and semantic parsing. Like other lexi-
calized formalisms, CCG has a rich set of syntac-
tic categories, which are combined using a small
set of parsing operations. These syntactic cate-
gories are tightly coupled to semantic represen-
tations, and parsing in CCG simultaneously de-
rives both a syntactic parse tree and a seman-
tic representation for each node in the parse tree.
This coupling between syntax and semantics moti-
vates CCG’s use in semantic parsing (Zettlemoyer
and Collins, 2005), and provides a framework for
building compositional vector space models.

2.1 Syntax

The intuition embodied in CCG is that, syntac-
tically, words and phrases behave like functions.
For example, an adjective like “red” can com-
bine with a noun like “ball” to produce another
noun, “red ball.” Therefore, adjectives are natu-
rally viewed as functions that apply to nouns and
return nouns. CCG generalizes this idea by defin-
ing most parts of speech in terms of such func-
tions.

Parts of speech in CCG are called syntactic cat-
egories. CCG has two kinds of syntactic cat-
egories: atomic categories and functional cate-
gories. Atomic categories are used to represent
phrases that do not accept arguments. These cate-
gories includeN for noun,NP for noun phrase, S
for sentence, and PP for prepositional phrase. All
other parts of speech are represented using func-
tional categories. Functional categories are written
as X/Y or X\Y , where both X and Y are syn-

2



Part of speech Syntactic category Example usage Semantic type Example log. form
Noun N person : N Rd vperson

Adjective N/Nx good person : N 〈Rd,Rd〉 λx.Agoodx

Determiner NP/Nx the person : NP 〈Rd,Rd〉 λx.x

Intrans. Verb S\NPx the person ran : S 〈Rd,Rd〉 λx.Aranx+ bran

Trans. Verb S\NPy/NPx the person ran home : S 〈Rd, 〈Rd,Rd〉〉 λx.λy.(Tranx)y

Adverb (S\NP )\(S\NP ) ran lazily : S\NP 〈〈Rd,Rd〉, 〈Rd,Rd〉〉 [λy.Ay → λy.(TlazyA)y]

(S\NP )/(S\NP ) lazily ran : S\NP 〈〈Rd,Rd〉, 〈Rd,Rd〉〉 [λy.Ay → λy.(TlazyA)y]

(N/N)/(N/N) very good person : N 〈〈Rd,Rd〉, 〈Rd,Rd〉〉 [λy.Ay → λy.(TveryA)y]

Preposition (N\Ny)/Nx person in France : N 〈Rd, 〈Rd,Rd〉〉 λx.λy.(Tinx)y

(S\NPy)\(S\NP )f/NPx ran in France : S\NP 〈Rd, 〈〈Rd,Rd〉, 〈Rd,Rd〉〉〉 λx.λf.λy.(Tinx)(f(y))

Table 1: Common syntactic categories in CCG, paired with their semantic types and example logical
forms. The example usage column shows phrases paired with the syntactic category that results from
using the exemplified syntactic category for the bolded word. For ease of reference, each argument to
a syntactic category on the left is subscripted with its corresponding semantic variable in the example
logical form on the right. The variables x, y, b, v denote vectors, f denotes a function, A denotes a
matrix, and T denotes a tensor. Subscripted variables (Ared) denote parameters. Functions in logical
forms are specified using lambda calculus; for example λx.Ax is the function that accepts a (vector)
argument x and returns the vector Ax. The notation [f → g] denotes the higher-order function that,
given input function f , outputs function g.

tactic categories. These categories represent func-
tions that accept an argument of category Y and
return a phrase of category X . The direction of
the slash defines the expected location of the argu-
ment: X/Y expects an argument on the right, and
X\Y expects an argument on the left.2 For ex-
ample, adjectives are represented by the category
N/N – a function that accepts a noun on the right
and returns a noun.

The left part of Table 1 shows examples of
common syntactic categories, along with exam-
ple uses. Note that some intuitive parts of speech,
such as prepositions, are represented by multiple
syntactic categories. Each of these categories cap-
tures a different use of a preposition, in this case
the noun-modifying and verb-modifying uses.

2.2 Semantics
Semantics in CCG are given by first associating a
semantic type with each syntactic category. Each
word in a syntactic category is then assigned a
semantic representation of the corresponding se-
mantic type. These semantic representations are
known as logical forms. In our case, a logical form
is a fragment of a formula for computing a vector
space representation, containing word-specific pa-
rameters and specifying composition operations.

In order to construct a vector space model, we
associate all of the atomic syntactic categories,

2As a memory aid, note that the top of the slash points in
the direction of the expected argument.

N , NP , S, and PP , with the type Rd. Then,
the logical form for a noun like “ball” is a vec-
tor vball ∈ Rd. The functional categories X/Y
and X\Y are associated with functions from the
semantic type of X to the semantic type of Y . For
example, the semantic type of N/N is 〈Rd,Rd〉,
representing the set of functions from Rd to Rd.3

This semantic type captures the same intuition as
adjective-noun composition models: semantically,
adjectives are functions from noun vectors to noun
vectors.

The right portion of Table 1 shows semantic
types for several syntactic categories, along with
example logical forms. All of these mappings
are a direct consequence of the assumption that
all atomic categories are semantically represented
by vectors. Interestingly, many of these semantic
types contain functions that cannot be represented
in other frameworks. For example, adverbs have
type 〈〈Rd,Rd〉, 〈Rd,Rd〉〉, representing functions
that accept an adjective argument and return an
adjective. In Table 1, the example logical form
applies a 4-mode tensor to the adjective’s matrix.
Another powerful semantic type is 〈Rd, 〈Rd,Rd〉〉,
which corresponds to transitive verbs and prepo-

3The notation 〈A,B〉 represents the set of functions
whose domain isA and whose range isB. Somewhat confus-
ingly, the bracketing in this notation is backward relative to
the syntactic categories – the syntactic category (N\N)/N
has semantic type 〈Rd, 〈Rd,Rd〉〉, where the inner 〈Rd,Rd〉
corresponds to the left (N\N).

3



the
NP/N
λx.x

red
N/N

λx.Aredx

ball
N
vball

N : Aredvball

NP : Aredvball

on
(NP\NP )/NP

λx.λy.Aonx+Bony

the
NP/N
λx.x

table
N

vtable

NP : vtable

NP\NP : λy.Aonvtable +Bony

NP : Aonvtable +BonAredvball

Figure 2: Syntactic CCG parse and corresponding vector space semantic derivation.

sitions. This type represents functions from two
argument vectors to an output vector, which have
been curried to accept one argument vector at a
time. The example logical form for this type uses
a 3-mode tensor to capture interactions between
the two arguments.

Note that this semantic correspondence permits
a wide range of logical forms for each syntactic
category. Each logical form can have an arbitrary
functional form, as long as it has the correct se-
mantic type. This flexibility permits experimenta-
tion with different composition operations. For ex-
ample, adjectives can be represented nonlinearly
by using a logical form such as λx. tanh(Ax). Or,
adjectives can be represented nonparametrically
by using kernel regression to learn the appropriate
function from vectors to vectors. We can also in-
troduce simplifying assumptions, as demonstrated
by the last entry in Table 1. CCG treats preposi-
tions as modifying intransitive verbs (the category
S\N ). In the example logical form, the verb’s
semantics are represented by the function f , the
verb’s subject noun is represented by y, and f(y)
represents the sentence vector created by compos-
ing the verb with its argument. By only operating
on f(y), this logical form assumes that the action
of a preposition is conditionally independent of the
verb f and noun y, given the sentence f(y).

2.3 Lexicon
The main input to a CCG parser is a lexicon, which
is a mapping from words to syntactic categories
and logical forms. A lexicon contains entries such
as:

ball := N : vball

red := N/N : λx.Aredx

red := N : vred

flies := ((S\NP )/NP ) : λx.λy.(Tfliesx)y

Each entry of the lexicon associates a word
(ball) with a syntactic category (N ) and a logical
form (vball) giving its vector space representation.
Note that a word may appear multiple times in the

lexicon with distinct syntactic categories and log-
ical forms. Such repeated entries capture words
with multiple possible uses; parsing must deter-
mine the correct use in the context of a sentence.

2.4 Parsing

Parsing in CCG has two stages. First, a category
for each word in the input is retrieved from the lex-
icon. Second, adjacent categories are iteratively
combined by applying one of a small number of
combinators. The most common combinator is
function application:

X/Y : f Y : g =⇒ X : f(g)
Y : g X\Y : f =⇒ X : f(g)

The function application rule states that a cate-
gory of the form X/Y behaves like a function that
accepts an input category Y and returns category
X . The rule also derives a logical form for the re-
sult by applying the function f (the logical form
for X/Y ) to g (the logical form for Y ). Figure 2
shows how repeatedly applying this rule produces
a syntactic parse tree and logical form for a phrase.
The top row of the parse represents retrieving a
lexicon entry for each word in the input. Each
following line represents a use of the function ap-
plication combinator to syntactically and semanti-
cally combine a pair of adjacent categories. The
order of these operations is ambiguous, and dif-
ferent orderings may result in different parses – a
CCG parser’s job is to find a correct ordering. The
result of parsing is a syntactic category for the en-
tire phrase, coupled with a logical form giving the
phrase’s vector space representation.

3 Vector Space Semantic Parsing

Vector space semantic parsing (VSSP) is an
approach for constructing compositional vector
space models based on the theoretical framework
of the previous section. VSSP concretely instanti-
ates CCG’s syntactic/semantic correspondence by
adding appropriately-typed logical forms to a syn-
tactic CCG parser’s lexicon. Parsing a sentence
with this lexicon and evaluating the resulting logi-

4



Semantic type Example syntactic categories Logical form template
Rd N,NP, PP, S vw

〈Rd,Rd〉 N/N , NP/N , S/S, S\NP λx.σ(Awx)
〈Rd, 〈Rd,Rd〉〉 (S\NP )/NP , (NP\NP )/NP λx.λy.σ((Twx)y)
〈〈Rd,Rd〉, 〈Rd,Rd〉〉 (N/N)/(N/N) [λy.σ(Ay)→ λy.σ((TwA)y)]

Table 2: Lexicon templates used in this paper to produce a CCG semantic parser. σ represents the
sigmoid function, σ(x) = ex

1+ex .

cal form produces the sentence’s vector space rep-
resentation.

While it is relatively easy to devise vector space
representations for individual nouns, it is more
challenging to do so for the fairly complex func-
tion types licensed by CCG. VSSP defines these
functions in two phases. First, we create a lexi-
con mapping words to parametrized logical forms.
This lexicon specifies a functional form for each
word, but leaves free some per-word parame-
ters. Parsing with this lexicon produces logical
forms that are essentially functions from these
per-word parameters to vector space representa-
tions. Next, we train these parameters to pro-
duce good vector space representations in a task-
specific fashion. Training performs stochastic gra-
dient descent, backpropagating gradient informa-
tion through the logical forms.

3.1 Producing the Parametrized Lexicon

We create a lexicon using a set of manually-
constructed templates that associate each syntactic
category with a parametrized logical form. Each
template contains variables that are instantiated to
define per-word parameters. The output of this
step is a CCG lexicon which can be used in a
broad coverage syntactic CCG parser (Clark and
Curran, 2007) to produce logical forms for input
language.4

Table 2 shows some templates used to create
logical forms for syntactic categories. To reduce
annotation effort, we define one template per se-
mantic type, covering all syntactic categories with
that type. These templates are instantiated by re-
placing the variable w in each logical form with
the current word. For example, instantiating the
second template for “red” produces the logical
form λx.σ(Aredx), where Ared is a matrix of pa-
rameters.

4In order to use the lexicon in an existing parser, the gen-
erated syntactic categories must match the parser’s syntac-
tic categories. Then, to produce a logical form for a sen-
tence, simply syntactically parse the sentence, generate log-
ical forms for each input word, and retrace the syntactic
derivation while applying the corresponding semantic oper-
ations to the logical forms.

Note that Table 2 is a only starting point – devis-
ing appropriate functional forms for each syntactic
category is an empirical question that requires fur-
ther research. We use these templates in our ex-
periments (Section 4), suggesting that they are a
reasonable first step. More complex data sets will
require more complex logical forms. For example,
to use high-dimensional vectors, all matrices and
tensors will have to be made low rank. Another
possible improvement is to tie the parameters for
a single word across related syntactic categories
(such as the transitive and intransitive forms of a
verb).

3.2 Training the Logical Form Parameters

The training problem in VSSP is to optimize the
logical form parameters to best perform a given
task. Our task formulation subsumes both clas-
sification and regression: we assume the input is
a logical form, and the output is a vector. Given a
data set of this form, training can be performed us-
ing stochastic gradient descent in a fashion similar
to backpropagation in a neural network.

The data set for training consists of tuples,
{(`i, yi)}n

i=1, where ` is a logical form and y is a
label vector representing the expected task output.
Each logical form ` is treated as a function from
parameter vectors θ to vectors in Rd. For example,
the logical form Aredvball is a function from Ared

and vball to a vector. We use θ to denote the set
of all parameters; for example, θ = {Ared, vball}.
We further assume a loss function L defined over
pairs of label vectors. The training problem is
therefore to minimize the objective:

O(θ) =
n∑

i=1

L(yi, g(`i(θ)) +
λ

2
||θ||2

Above, g represents a global postprocessing func-
tion which is applied to the output of VSSP to
make a task-specific prediction. This function may
also be parametrized, but we suppress these pa-
rameters for simplicity. As a concrete example,
consider a classification task (as in our evaluation).
In this case, y represents a target distribution over
labels, L is the KL divergence between the pre-
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dicted and target distributions, and g represents a
softmax classifier.

We optimize the objective O by running
stochastic gradient descent. The gradients of the
parameters θ can be computed by iteratively ap-
plying the chain rule to `, which procedurally
resembles performing backpropagation in a neu-
ral network (Rumelhart et al., 1988; Goller and
Küchler, 1996).

4 Comparing Models of Semantic
Composition

This section compares the expressive power of
VSSP to previous work. An advantage of VSSP
is its ability to assign complex logical forms to
categories like adverbs and transitive verbs. This
section examines cases where such complex logi-
cal forms are necessary, using synthetic data sets.
Specifically, we create simple data sets mimick-
ing expected forms of composition in noun-verb-
noun and adverb-adjective-noun phrases. VSSP
is able to learn the correct composition operations
for these data sets, but previously proposed mod-
els cannot.

We compare VSSP against RNN (Socher et al.,
2011) and MV-RNN (Socher et al., 2012), two
recursive neural network models which factorize
composition according to a binarized constituency
parse tree. The RNN model represents the seman-
tics of each parse tree node using a single vector,
while the MV-RNN represents each node using
both a matrix and a vector. These representations
seem sufficient for adjectives and nouns, but it is
unclear how they generalize to other natural lan-
guage constructions.

In these experiments, each model is used to map
an input phrase to a vector, which is used to train a
softmax classifier that predicts the task output. For
VSSP, we use the lexicon templates from Table 2.
All nouns are represented as two-dimensional vec-
tors, and all matrices and tensors are full rank. The
parameters of each model (i.e., the per-word vec-
tors, matrices and tensors) and the softmax classi-
fier are trained as described in Section 3.2.

4.1 Propositional Logic

The propositional logic experiment examines the
impact of VSSP’s representation of transitive
verbs. VSSP directly represents these verbs as
two-argument functions, allowing it to learn op-
erations with complex interactions between both

false and false 0,1 false or false 0,1 false xor false 0,1
true and false 0,1 true or false 1,0 true xor false 1,0
false and true 0,1 false or true 1,0 false xor true 1,0
true and true 1,0 true or true 1,0 true xor true 0,1

Table 3: Data for propositional logic experiment.

Composition Formula KL divergence
RNN 0.44
MV-RNN 0.12
VSSP 0.01

Table 4: Training error on the propositional logic
data set. VSSP achieves zero error because its
verb representation can learn arbitrary logical op-
erations.

arguments. In contrast, the RNN and MV-RNN
models learn a set of global weights which are
used to combine the verb with its arguments. The
functional forms of these models limit the kinds of
interactions that can be captured by verbs.

We evaluated the learnability of argument in-
teractions using the simple data set shown in Ta-
ble 3. In this data set, the words “and,” “or,” and
“xor” are treated as transitive verbs, while “true”
and “false” are nouns. The goal is to predict the
listed truth values, which are represented as two-
dimensional distributions over true and false.

Table 4 shows the training error of each model
on this data set, measured in terms of KL diver-
gence between the model’s predictions and the
true values. VSSP achieves essentially zero train-
ing error because its 3-mode tensor representa-
tion of transitive verbs is trivially able to learn
arbitrary logical operations. RNN and MV-RNN
can learn each logical operation independently, but
cannot learn all three at the same time – this phe-
nomenon occurs because XOR requires different
global weight matrices than AND/OR. As a re-
sult, these models learn both AND and OR, but fail
to learn XOR. This result suggests that much of
the learning in these models occurs in the global
weight matrices, while the verb representations
can have only limited influence.

Although this data set is synthetic, the interac-
tion given by XOR seems necessary to represent
real verbs. To learn AND and OR, the arguments
need not interact – it is sufficient to detect a set
of appropriate subject and object arguments, then
threshold the number of such arguments. This
information is essentially type constraints for the
subject and object of a verb. However, type con-
straints are insufficient for real verbs. For exam-
ple, consider the verb “eats.” All animals eat and
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very big elephant 1,0 very big mouse 0.3,0.7
pretty big elephant 0.9,0.1 pretty big mouse 0.2,0.8
pretty small elephant 0.8,0.2 pretty small mouse 0.1,0.9
very small elephant 0.7,0.3 very small mouse 0,1

Table 5: Data for adverb-adjective-noun compo-
sition experiment. Higher first dimension values
represent larger objects.

Composition Model KL divergence
RNN 0.10
MV-RNN 0.10
VSSP 0.00

Table 6: Training error of each composition model
on the adverb-adjective-noun experiment.

can be eaten, but not all animals eat all other an-
imals; whether or not “X eats Y ” is true depends
on an interaction between X and Y .

4.2 Adverb-Adjective-Noun Composition

Adverbs can enhance or attenuate the properties
of adjectives, which in turn can enhance or attenu-
ate the properties of nouns. The adverb-adjective-
noun experiment compares each model’s ability
to learn these effects using a synthetic object size
data set, shown in Table 5. The task is to predict
the size of each described object, which is repre-
sented as a two-dimensional distribution over big
and small. The challenge of this data set is that
an adverb’s impact on size depends on the adjec-
tive being modified – a very big elephant is big-
ger than a big elephant, but a very small elephant
is smaller than a small elephant. Note that this
task is more difficult than adverb-adjective com-
position (Socher et al., 2012), since in this task
the adverb has to enhance/attenuate the enhanc-
ing/attenuating properties of an adjective.

Table 6 shows the training error of each model
on this data set. VSSP achieves zero training error
because its higher-order treatment of adverbs al-
lows it to accurately represent their enhancing and
attenuating effects. However, none of the other
models are capable of representing these effects.
This result is unsurprising, considering that the
RNN and MV-RNN models essentially add the
adverb and adjective parameters using a learned
linear operator (followed by a nonlinearity). Such
additive combination forces adverbs to have a con-
sistent direction of effect on the size of the noun,
which is incompatible with the desired enhancing
and attenuating behavior.

Examining VSSP’s learned parameters clearly
demonstrates its ability to learn enhancing and

“elephant”
„

1.6
−0.1

«
“mouse”

„
−0.1
1.6

«

“small” „
0.22 0
0 1.7

« “big” „
1.7 −1.1
0 0.22

«

“very small” „
0.25 −.12
−1.34 2.3

« “very big” „
2.3 −1.34
−0.12 0.25

«
Figure 3: Parameters for nouns, adjectives and ad-
jective phrases learned by VSSP. When the adverb
“very” is applied to “small” and “big,” it enhances
their effect on a modified noun.

attenuating phenomena. Figure 3 demonstrates
VSSP’s learned treatment of “very.” In the fig-
ure, a high first dimension value represents a large
object, while a high second dimension value rep-
resents a small object; hence the vectors for ele-
phant and mouse show that, by default, elephants
are larger than mice. Similarly, the matrices for
big and small scale up the appropriate dimension
while shrinking the other dimension. Finally, we
show the computed matrices for “very big” and
“very small” – this operation is possible because
these phrases have an adjective’s syntactic cate-
gory, N/N . These matrices have the same di-
rection of effect as their unenhanced versions, but
produce a larger scaling in that direction.

5 Related Work

Several models for compositionality in vector
spaces have been proposed in recent years. Much
work has focused on evaluating composition oper-
ations for word pairs (Mitchell and Lapata, 2010;
Widdows, 2008). Many operations have been pro-
posed, including various combinations of addition,
multiplication, and linear operations (Mitchell and
Lapata, 2008), holographic reduced representa-
tions (Plate, 1991) and others (Kintsch, 2001).
Other work has used regression to train models
for adjectives in adjective-noun phrases (Baroni
and Zamparelli, 2010; Guevara, 2010). All of this
work is complementary to ours, as these composi-
tion operations can be used within VSSP by appro-
priately choosing the logical forms in the lexicon.

A few comprehensive frameworks for compo-
sition have also been proposed. One approach
is to take tensor outer products of word vec-
tors, following syntactic structure (Clark and Pul-
man, 2007). However, this approach results in
differently-shaped tensors for different grammati-
cal structures. An improvement of this framework
uses a categorial grammar to ensure that similarly-
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typed objects lie in the same vector space (Clark
et al., 2008; Coecke et al., 2010; Grefenstette
and Sadrzadeh, 2011). VSSP generalizes this
work by allowing nonlinear composition opera-
tions and considering supervised parameter esti-
mation. Several recent neural network models im-
plicitly use a framework which assumes that com-
position factorizes according to a binarized con-
stituency parse, and that words and phrases have
uniform semantic representations (Socher et al.,
2011; Socher et al., 2012). Notably, Hermann
and Blunsom (2013) instantiate such a framework
using CCG. VSSP generalizes these approaches,
as they can be implemented within VSSP by
choosing appropriate logical forms. Furthermore,
our experiments demonstrate that VSSP can learn
composition operations that cannot be learned by
these approaches.

The VSSP framework uses semantic parsing to
define a compositional vector space model. Se-
mantic parsers typically map sentences to logi-
cal semantic representations (Zelle and Mooney,
1996; Kate and Mooney, 2006), with many sys-
tems using CCG as the parsing formalism (Zettle-
moyer and Collins, 2005; Kwiatkowski et al.,
2011; Krishnamurthy and Mitchell, 2012). Al-
though previous work has focused on logical se-
mantics, it has demonstrated that semantic parsing
is an elegant technique for specifying models of
compositional semantics. In this paper, we show
how to use semantic parsing to produce composi-
tional models of vector space semantics.

6 Discussion and Future Work

We present vector space semantic parsing (VSSP),
a general framework for building compositional
models of vector space semantics. Our frame-
work is based on Combinatory Categorial Gram-
mar (CCG), which defines a correspondence be-
tween syntactic categories and semantic types rep-
resenting vectors and functions on vectors. A
model in VSSP instantiates this mapping in a CCG
semantic parser. This semantic parser parses nat-
ural language into logical forms, which are in turn
evaluated to produce vector space representations.
We further propose a method for constructing such
a semantic parser using a small number of logi-
cal form templates and task-driven estimation of
per-word parameters. Synthetic data experiments
show that VSSP’s treatment of adverbs and tran-
sitive verbs can learn more functions than prior

work.
An interesting aspect of VSSP is that it high-

lights cases where propositional semantics seem
superior to vector space semantics. For example,
compare “the ball that I threw” and “I threw the
ball.” We expect the semantics of these phrases
to be closely related, differing only in that one
phrase refers to the ball, while the other refers to
the throwing event. Therefore, our goal is to de-
fine a logical form for “that” which appropriately
relates the semantics of the above expressions. It is
easy to devise such a logical form in propositional
semantics, but difficult in vector space semantics.
Producing vector space solutions to such problems
is an area for future work.

Another direction for future work is joint train-
ing of both the semantic parser and vector space
representations. Our proposed approach of adding
logical forms to a broad CCG coverage parser has
the advantage of allowing VSSP to be applied to
general natural language. However, using the syn-
tactic parses from this parser may not result in
the best possible factorization of semantic com-
position. Jointly training the semantic parser and
the vector space representations may lead to better
models of semantic composition.

We also plan to apply VSSP to real data sets.
We have made some progress applying VSSP to
SemEval Task 8, learning to extract relations be-
tween nominals (Hendrickx et al., 2010). Al-
though our work thus far is preliminary, we have
found that the generality of VSSP makes it easy
to experiment with different models of composi-
tion. To swap between models, we simply mod-
ify the CCG lexicon templates – all of the remain-
ing infrastructure is unchanged. Such preliminary
results suggest the power of VSSP as a general
framework for learning vector space models.
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Abstract

In this paper, we address the problem of
how to use semantics to improve syntac-
tic parsing, by using a hybrid reranking
method: a k-best list generated by a sym-
bolic parser is reranked based on parse-
correctness scores given by a composi-
tional, connectionist classifier. This classi-
fier uses a recursive neural network to con-
struct vector representations for phrases in
a candidate parse tree in order to classify
it as syntactically correct or not. Tested on
the WSJ23, our method achieved a statisti-
cally significant improvement of 0.20% on
F-score (2% error reduction) and 0.95% on
exact match, compared with the state-of-
the-art Berkeley parser. This result shows
that vector-based compositional semantics
can be usefully applied in syntactic pars-
ing, and demonstrates the benefits of com-
bining the symbolic and connectionist ap-
proaches.

1 Introduction

Following the idea of compositionality in formal
semantics, compositionality in vector-based se-
mantics is also based on the principle of composi-
tionality, which says that “The meaning of a whole
is a function of the meanings of the parts and of
the way they are syntactically combined” (Partee,
1995). According to this principle, composing the
meaning of a phrase or sentence requires a syntac-
tic parse tree, which is, in most current systems,
given by a statistical parser. This parser, in turn, is
trained on syntactically annotated corpora.

However, there are good reasons to also con-
sider information flowing in the opposite direc-
tion: from semantics to syntactic parsing. Per-
formance of parsers trained and evaluated on the
Penn WSJ treebank has reached a plateau, as many

ambiguities cannot be resolved by syntactic infor-
mation alone. Further improvements in parsing
may depend on the use of additional sources of in-
formation, including semantics. In this paper, we
study the use of semantics for syntactic parsing.

The currently dominant approach to syntactic
parsing is based on extracting symbolic grammars
from a treebank and defining appropriate proba-
bility distributions over the parse trees that they
license (Charniak, 2000; Collins, 2003; Klein
and Manning, 2003; Petrov et al., 2006; Bod et
al., 2003; Sangati and Zuidema, 2011; van Cra-
nenburgh et al., 2011). An alternative approach,
with promising recent developments (Socher et
al., 2010; Collobert, 2011), is based on us-
ing neural networks. In the present paper, we
combine the ‘symbolic’ and ‘connectionist’ ap-
proaches through reranking: a symbolic parser
is used to generate a k-best list which is then
reranked based on parse-correctness scores given
by a connectionist compositional-semantics-based
classifier.

The idea of reranking is motivated by anal-
yses of the results of state-of-the-art symbolic
parsers such as the Brown and Berkeley parsers,
which have shown that there is still considerable
room for improvement: oracle results on 50-best
lists display a dramatic improvement in accuracy
(96.08% vs. 90.12% on F-score and 65.56% vs.
37.22% on exact match with the Berkeley parser).
This suggests that parsers that rely on syntactic
corpus-statistics, though not sufficient by them-
selves, may very well serve as a basis for sys-
tems that integrate other sources of information by
means of reranking.

One important complementary source of infor-
mation is the semantic plausibility of the con-
stituents of the syntactically viable parses. The ex-
ploitation of that kind of information is the topic
of the research we report here. In this work,
we follow up on a proposal by Mark Steedman
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(1999), who suggested that the realm of seman-
tics lacks the clearcut hierarchical structures that
characterise syntax, and that semantic information
may therefore be profitably treated by the clas-
sificatory mechanisms of neural nets—while the
treatment of syntactic structures is best left to sym-
bolic parsers. We thus developed a hybrid system,
which parses its input sentences on the basis of a
symbolic probabilistic grammar, and reranks the
candidate parses based on scores given by a neural
network.

Our work is inspired by the work of Socher and
colleagues (2010; 2011). They proposed a parser
using a recursive neural network (RNN) for en-
coding parse trees, representing phrases in a vec-
tor space, and scoring them. Their experimental
result (only 1.92% lower than the Stanford parser
on unlabelled bracket F-score for sentences up to a
length of 15 words) shows that an RNN is expres-
sive enough for syntactic parsing. Additionally,
their qualitative analysis indicates that the learnt
phrase features capture some aspects of phrasal se-
mantics, which could be useful to resolve semantic
ambiguity that syntactical information alone can
not. Our work in this paper differs from their work
in that we replace the parsing task by a reranking
task, and thus reduce the object space significantly
to a set of parses generated by a symbolic parser
rather than the space of all parse trees. As a result,
we can apply our method to sentences which are
much longer than 15 words.

Reranking a k-best list is not a new idea.
Collins (2000), Charniak and Johnson (2005), and
Johnson and Ural (2010) have built reranking sys-
tems with performances that are state-of-the-art.
In order to achieve such high F-scores, those
rerankers rely on a very large number of features
selected on the basis of expert knowledge. Unlike
them, our feature set is selected automatically, yet
the reranker achieved a statistically significant im-
provement on both F-score and exact match.

Closest to our work is Menchetti et al. (2005)
and Socher et al. (2013): both also rely on sym-
bolic parsers to reduce the search space and use
RNNs to score candidate parses. However, our
work differs in the way the feature set for rerank-
ing is selected. In their methods, only the score at
the tree root is considered whereas in our method
the scores at all internal nodes are taken into ac-
count. Selecting the feature set like that gives us a
flexible way to deal with errors accumulated from

the leaves to the root.
Figure 1 shows a diagram of our method. First,

a parser (in this paper: the Berkeley parser) is used
to generate k-best lists of the Wall Street Jour-
nal (WSJ) sections 02-21. Then, all parse trees in
these lists and the WSJ02-21 are preprocessed by
marking head words, binarising, and performing
error-annotation (Section 2). After that, we use
the annotated trees to train our parse-correctness
classifier (Section 3). Finally, those trees and the
classifier are used to train the reranker (Section 4).

2 Experimental Setup

The experiments presented in this paper have the
following setting. We use the WSJ corpus with
the standard splits: sections 2-21 for training, sec-
tion 22 for development, and section 23 for test-
ing. The latest implementation (version 1.7) of the
Berkeley parser1 (Petrov et al., 2006) is used for
generating 50-best lists. We mark head words and
binarise all trees in the WSJ and the 50-best lists
as in Subsection 2.1, and annotate them as in Sub-
section 2.2 (see Figure 2).

2.1 Preprocessing Trees

We preprocess trees by marking head words and
binarising the trees. For head word marking,
we used the head finding rules of Collins (1999)
which are implemented in the Stanford parser.
To binarise a k-ary branching, e.g. P →
C1 ... H ... Ck where H is the top label of the
head constituent, we use the following method. If
H is not the left-most child, then

P → C1 @P ; @P → C2 ... H ... Ck

otherwise,

P → @P Ck ; @P → H ... Ck−1

where @P , which is called extra-P , now is the
head of P . We then apply this transformation
again on the children until we reach terminal
nodes. In this way, we ensure that every internal
node has one head word.

2.2 Error Annotation

We annotate nodes (as correct or incorrect) as fol-
lows. Given a parse tree T in a 50-best list and
a corresponding gold-standard tree G in the WSJ,

1https://code.google.com/p/berkeleyparser
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Figure 1: An overview of our method.

Figure 2: Example for preprocessing trees. Nodes marked with (*) are labelled incorrect whereas the
other nodes are labelled correct.

we first attempt to align their terminal nodes ac-
cording to the following criterion: a terminal node
t is aligned to a terminal node g if they are at
the same position counting from-left-to-right and
they have the same label. Then, a non-terminal
node P [wh] with children C1, ..., Ck is aligned to
a gold-standard non-terminal node P ∗[w∗h] with
children C∗1 , ..., C

∗
l (1 ≤ k, l ≤ 2 in our case)

if they have the same word head, the same syn-
tactical category, and their children are all aligned
in the right order. In other words, the following
conditions have to be satisfied

P = P ∗ ; wh = w∗h ; k = l

Ci is aligned to C∗i , for all i = 1..k

Aligned nodes are annotated as correct whereas
the other nodes are annotated as incorrect.

3 Parse-Correctness Classification

This section describes how a neural network
is used to construct vector representations for

phrases given parse trees and to identify if those
trees are syntactically correct or not. In order to
encode tree structures, we use an RNN2 (see Fig-
ure 3 and Figure 4) which is similar to the one
proposed by Socher and colleagues (2010). How-
ever, unlike their RNN, our RNN can handle unary
branchings, and also takes head words and syntac-
tic tags as input. It is worth noting that, although
we can use some transformation to remove unary
branchings, handling them is helpful in our case
because the system avoids dealing with so many
syntactic tags that would result from the transfor-

2The first neural-network approach attempting to operate
and represent compositional, recursive structure is the Recur-
sive Auto-Associative Memory network (RAAM), which was
proposed by Pollack (1988). In order to encode a binary tree,
the RAAM network contains three layers: an input layer for
two daughter nodes, a hidden layer for their parent node, and
an output layer for their reconstruction. Training the network
is to minimise the reconstruction error such that we can de-
code the information captured in the hidden layer to the orig-
inal tree form. Our RNN differs from the RAAM network in
that its output layer is not for reconstruction but for classifi-
cation.
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mation. In addition, using a new set of weight ma-
trices for unary branchings makes our RNN more
expressive without facing the problem of sparsity
thanks to a large number of unary branchings in
the treebank.

Figure 3: An RNN attached to the parse tree
shown in the top-right of Figure 2. All unary
branchings share a set of weight matrices, and all
binary branchings share another set of weight ma-
trices (see Figure 4).

An RNN processes a tree structure by repeat-
edly applying itself at each internal node. Thus,
walking bottom-up from the leaves of the tree to
the root, we compute for every node a vector based
on the vectors of its children. Because of this
process, those vectors have to have the same di-
mension. It is worth noting that, because informa-
tion at leaves, i.e. lexical semantics, is composed
according to a given syntactic parse, what a vec-
tor at each internal node captures is some aspects
of compositional semantics of the corresponding
phrase. In the remainder of this subsection, we
describe in more detail how to construct composi-
tional vector-based semantics geared towards the
parse-correctness classification task.

Similar to Socher et al. (2010), and Col-
lobert (2011), given a string of words (w1, ..., wl),
we first compute a string of vectors (x1, ..., xl)
representing those words by using a look-up table
(i.e., word embeddings) L ∈ Rn×|V |, where |V | is
the size of the vocabulary and n is the dimension-
ality of the vectors. This look-up table L could
be seen as a storage of lexical semantics where
each column is a vector representation of a word.
Hence, let bi be the binary representation of word
wi (i.e., all of the entries of bi are zero except the
one corresponding to the index of the word in the
dictionary), then

xi = Lbi ∈ Rn (1)

We also encode syntactic tags by binary vectors
but put an extra bit at the end of each vector to
mark if the corresponding tag is extra or not (i.e.,
@P or P ).

Figure 4: Details about our RNN for a unary
branching (top) and a binary branching (bottom).
The bias is not shown for the simplicity.

Then, given a unary branching P [wh]→ C, we
can compute the vector at the node P by (see Fig-
ure 4-top)

p = f
(
Wuc+Whxh +W−1x−1 +

W+1x+1 +Wttp + bu
)

where c, xh are vectors representing the child C
and the head word, x−1, x+1 are the left and right
neighbouring words of P , tp encodes the syn-
tactic tag of P , Wu,Wh,W−1,W+1 ∈ Rn×n,
Wt ∈ Rn×(|T |+1), |T | is the size of the set of
syntactic tags, bu ∈ Rn, and f can be any acti-
vation function (tanh is used in this case). With
a binary branching P [wh] → C1 C2, we simply
change the way the children’s vectors added (see
Figure 4-bottom)

p = f
(
Wb1c1 +Wb2c2 +Whxh +W−1x−1 +

W+1x+1 +Wttp + bb
)

Finally, we put a sigmoid neural unit on the
top of each internal node (except pre-terminal
nodes because we are not concerned with POS-
tagging) to detect the correctness of the subparse
tree rooted at that node

y = sigmoid(Wcatp+ bcat) (2)

where Wcat ∈ R1×n, bcat ∈ R.

14



3.1 Learning
The error on a parse tree is computed as the sum
of classification errors of all subparses. Hence, the
learning is to minimise the objective

J(θ) =
1

N

∑
T

∑
(y(θ),t)∈T

1

2
(t− y(θ))2 + λ‖θ‖2

(3)
where θ are the model parameters, N is the num-
ber of trees, λ is a regularisation hyperparameter,
T is a parse tree, y(θ) is given by Equation 2, and
t is the class of the corresponding subparse (t = 1
means correct). The gradient ∂J∂θ is computed ef-
ficiently thanks to backpropagation through the
structure (Goller and Kuchler, 1996). L-BFGS
(Liu and Nocedal, 1989) is used to minimise the
objective function.

3.2 Experiments
We implemented our classifier in Torch73 (Col-
lobert et al., 2011a), which is a powerful Matlab-
like environment for machine learning. In order to
save time, we only trained the classifier on 10-best
parses of WSJ02-21. The training phase took six
days on a computer with 16 800MHz CPU-cores
and 256GB RAM. The word embeddings given by
Collobert et al. (2011b)4 were used as L in Equa-
tion 1. Note that these embeddings, which are the
result of training a language model neural network
on the English Wikipedia and Reuters, have been
shown to capture many interesting semantic simi-
larities between words.

We tested the classifier on the development
set WSJ22, which contains 1, 700 sentences, and
measured the performance in positive rate and
negative rate

pos-rate =
#true pos

#true pos + #false neg

neg-rate =
#true neg

#true neg + #false pos

The positive/negative rate tells us the rate at which
positive/negative examples are correctly labelled
positive/negative. In order to achieve high per-
formance in the reranking task, the classifier must
have a high positive rate as well as a high nega-
tive rate. In addition, percentage of positive exam-
ples is also interesting because it shows the unbal-
ancedness of the data. Because the accuracy is not

3http://www.torch.ch/
4http://ronan.collobert.com/senna/

a reliable measurement when the dataset is highly
unbalanced, we do not show it here. Table 1, Fig-
ure 5, and Figure 6 show the classification results.

pos-rate (%) neg-rate (%) %-Pos
gold-std 75.31 - 1
1-best 90.58 64.05 71.61
10-best 93.68 71.24 61.32
50-best 95.00 73.76 56.43

Table 1: Classification results on the WSJ22 and
the k-best lists.

Figure 5: Positive rate, negative rate, and percent-
age of positive examples w.r.t. subtree depth.

3.3 Discussion

Table 1 shows the classification results on the
gold-standard, 1-best, 10-best, and 50-best lists.
The positive rate on the gold-standard parses,
75.31%, gives us the upper bound of %-pos when
this classifier is used to yield 1-best lists. On the 1-
best data, the classifier missed less than one tenth
positive subtrees and correctly found nearly two
third of the negative ones. That is, our classi-
fier might be useful for avoiding many of the mis-
takes made by the Berkeley parser, whilst not in-
troducing too many new mistakes of its own. This
fact gave us hope to improve parsing performance
when using this classifier for reranking.

Figure 5 shows positive rate, negative rate, and
percentage of positive examples w.r.t. subtree
depth on the 50-best data. We can see that the pos-
itive rate is inversely proportional to the subtree
depth, unlike the negative rate. That is because the
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Figure 6: Positive rate, negative rate, and percentage of positive samples w.r.t. syntactic categories
(excluding POS tags).

deeper a subtree is, the lower the a priori likeli-
hood that the subtree is positive (we can see this
in the percentage-of-positive-example curve). In
addition, deep subtrees are difficult to classify be-
cause uncertainty is accumulated when propagat-
ing from bottom to top.

4 Reranking

In this section, we describe how we use the above
classifier for the reranking task. First, we need to
represent trees in one vector space, i.e., µ(T ) =(
µ1(T ), ..., µv(T )

)
for an arbitrary parse tree T .

Collins (2000), Charniak and Johnson (2005), and
Johnson and Ural (2010) set the first entry to the
model score and the other entries to the number of
occurrences of specific discrete hand-chosen prop-
erties (e.g., how many times the word pizza comes
after the word eat) of trees. We here do the same
with a trick to discretize results from the classifier:
we use a 2D histogram to store predicted scores
w.r.t. subtree depth. This gives us a flexible way to
penalise low score subtrees and reward high score
subtrees w.r.t. the performance of the classifier at
different depths (see Subsection 3.3). However,
unlike the approaches just mentioned, we do not
use any expert knowledge for feature selection; in-
stead, this process is fully automatic.

Formally speaking, a vector feature µ(T ) is
computed as following. µ1(T ) is the model score

(i.e., max-rule-sum score) given by the parser,(
µ2(T ), ..., µv(T )

)
is the histogram of a set of

(y, h) where y is given by Equation 2 and h is the
depth of the corresponding subtree. The domain
of y (i.e., [0, 1]) is split into γy equal bins whereas
the domain of h (i.e., {1, 2, 3, ...}) is split into γh
bins such that the i-th (i < γh) bin corresponds to
subtrees of depth i and the γh-th bin corresponds
to subtrees of depth equal or greater than γh. The
parameters γy and γh are then estimated on the de-
velopment set.

After extracting feature vectors for parse trees,
we then find a linear ranking function

f(T ) = w>µ(T )

such that

f(T1) > f(T2) iff fscore(T1) > fscore(T2)

where fscore(.) is the function giving F-score, and
w ∈ Rv is a weight vector, which is efficiently
estimated by SVM ranking (Yu and Kim, 2012).
SVM was initially used for binary classification.
Its goal is to find the hyperplane which has the
largest margin to best separate two example sets. It
was then proved to be efficient in solving the rank-
ing task in information retrieval, and in syntactic
parsing (Shen and Joshi, 2003; Titov and Hender-
son, 2006). In our experiments, we used SVM-
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Rank5 (Joachims, 2006), which runs extremely
fast (less than two minutes with about 38, 000 10-
best lists).

4.1 Experiments

Using the classifier in Section 3, we implemented
the reranker in Torch7, trained it on WSJ02-21.
We used WSJ22 to estimate the parameters γy and
γh by the grid search and found that γy = 9 and
γh = 4 yielded the best F-score.

Table 2 shows the results of our reranker on
50-best WSJ23 given by the Berkeley parser, us-
ing the standard evalb. Our method improves
0.20% on F-score for sentences with all length,
and 0.22% for sentences with ≤ 40 words.
These differences are statistically significant6 with
p-value < 0.003. Our method also improves ex-
act match (0.95% for all sentences as well as for
sentences with ≤ 40 words).

Parser LR LP LF EX
all

Berkeley parser 89.98 90.25 90.12 37.22
This paper 90.10 90.54 90.32 38.17

Oracle 95.94 96.21 96.08 65.56
≤ 40 words

Berkeley parser 90.43 90.70 90.56 39.65
This paper 90.57 91.01 90.78 40.50

Oracle 96.47 96.73 96.60 68.51

Table 2: Reranking results on 50-best lists on
WSJ23 (LR is labelled recall, LP is labelled pre-
cision, LF is labelled F-score, and EX is exact
match.)

Table 3 shows the comparison of the three
parsers that use the same hybrid reranking ap-
proach. On F-score, our method performed 0.1%
lower than Socher et al. (2013), and 1.5% better
than Menchetti et al. (2005). However, our method
achieved the least improvement on F-score over its
corresponding baseline. That could be because our
baseline parser (i.e., the Berkeley parser) performs
much better than the other two baseline parsers;
and hence, detecting errors it makes on candidate
parse trees is more difficult.

5www.cs.cornell.edu/people/tj/svm light/svm rank.html
6We used the “Significance testing for evalua-

tion statistics” software (http://www.nlpado.de/ sebas-
tian/software/sigf.shtml) given by Padó (2006).

Parser LF (all) K-best
parser

Menchetti et
al. (2005)

88.8 (0.6) Collins
(1999)

Socher et
al. (2013)

90.4 (3.8) PCFG Stan-
ford parser

This paper 90.3 (0.2) Berkeley
parser

Table 3: Comparison of parsers using the same hy-
brid reranking approach. The numbers in the blan-
kets indicate the improvements on F-score over the
corresponding baselines (i.e., the k-best parsers).

5 Conclusions

This paper described a new reranking method
which uses semantics in syntactic parsing: a sym-
bolic parser is used to generate a k-best list which
is later reranked thanks to parse-correctness scores
given by a connectionist compositional-semantics-
based classifier. Our classifier uses a recursive
neural network, like Socher et al., (2010; 2011), to
not only represent phrases in a vector space given
parse trees, but also identify if these parse trees are
grammatically correct or not.

Tested on WSJ23, our method achieved a
statistically significant improvement on F-score
(0.20%) as well as on exact match (0.95%).
This result, although not comparable to the re-
sults reported by Collins (2000), Charniak and
Johnson (2005), and Johnson and Ural (2010),
shows an advantage of using vector-based com-
positional semantics to support available state-of-
the-art parsers.

One of the limitations of the current paper is the
lack of a qualitative analysis of how learnt vector-
based semantics has affected the reranking results.
Therefore, the need for “compositional seman-
tics” in syntactical parsing may still be doubted.
In future work, we will use vector-based seman-
tics together with non-semantic features (e.g., the
ones of Charniak and Johnson (2005)) to find out
whether the semantic features are truly helpful or
they just resemble non-semantic features.

Acknowledgments

We thank two anonymous reviewers for helpful
comments.

17



References

Rens Bod, Remko Scha, and Khalil Sima’an. 2003.
Data-Oriented Parsing. CSLI Publications, Stan-
ford, CA.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
pages 173–180. Association for Computational Lin-
guistics.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the 1st North
American chapter of the Association for Computa-
tional Linguistics, pages 132–139. Association for
Computational Linguistics.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Michael Collins. 2000. Discriminative reranking for
natural language parsing. In Proceedings of the In-
ternational Workshop on Machine Learning (then
Conference), pages 175–182.

Michael Collins. 2003. Head-driven statistical mod-
els for natural language parsing. Computational lin-
guistics, 29(4):589–637.

Ronan Collobert, Koray Kavukcuoglu, and Clément
Farabet. 2011a. Torch7: A matlab-like environment
for machine learning. In BigLearn, NIPS Workshop.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

In this paper we present a novel approach
(SDSM) that incorporates structure in dis-
tributional semantics. SDSM represents
meaning as relation specific distributions
over syntactic neighborhoods. We em-
pirically show that the model can effec-
tively represent the semantics of single
words and provides significant advantages
when dealing with phrasal units that in-
volve word composition. In particular, we
demonstrate that our model outperforms
both state-of-the-art window-based word
embeddings as well as simple approaches
for composing distributional semantic rep-
resentations on an artificial task of verb
sense disambiguation and a real-world ap-
plication of judging event coreference.

1 Introduction

With the advent of statistical methods for NLP,
Distributional Semantic Models (DSMs) have
emerged as powerful method for representing
word semantics. In particular, the distributional
vector formalism, which represents meaning by a
distribution over neighboring words, has gained
the most popularity.

DSMs are widely used in information re-
trieval (Manning et al., 2008), question answer-
ing (Tellex et al., 2003), semantic similarity com-
putation (Wong and Raghavan, 1984; McCarthy
and Carroll, 2003), automated dictionary building
(Curran, 2003), automated essay grading (Lan-
dauer and Dutnais, 1997), word-sense discrimina-
tion and disambiguation (McCarthy et al., 2004;

∗*Equally contributing authors

Schütze, 1998), selectional preference model-
ing (Erk, 2007) and identification of translation
equivalents (Hjelm, 2007).

Systems that use DSMs implicitly make a bag
of words assumption: that the meaning of a phrase
can be reasonably estimated from the meaning of
its constituents. However, semantics in natural
language is a compositional phenomenon, encom-
passing interactions between syntactic structures,
and the meaning of lexical constituents. It fol-
lows that the DSM formalism lends itself poorly
to composition since it implicitly disregards syn-
tactic structure. For instance, the distributions for
“Lincoln”, “Booth”, and “killed” when merged
produce the same result regardless of whether the
input is “Booth killed Lincoln” or “Lincoln killed
Booth”. As suggested by Pantel and Lin (2000)
and others, modeling the distribution over prefer-
ential attachments for each syntactic relation sep-
arately can yield greater expressive power.

Attempts have been made to model linguistic
composition of individual word vectors (Mitchell
and Lapata, 2009), as well as remedy the inher-
ent failings of the standard distributional approach
(Erk and Padó, 2008). The results show vary-
ing degrees of efficacy, but have largely failed to
model deeper lexical semantics or compositional
expectations of words and word combinations.

In this paper we propose an extension to the
traditional DSM model that explicitly preserves
structural information and permits the approxima-
tion of distributional expectation over dependency
relations. We extend the generic DSM model by
representing a word as distributions over relation-
specific syntactic neighborhoods. One can think
of the Structured DSM (SDSM) representation
of a word/phrase as several vectors defined over
the same vocabulary, each vector representing the
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word’s selectional preferences for a different syn-
tactic argument. We argue that this represen-
tation captures individual word semantics effec-
tively, and is better able to express the semantics
of composed units.

The overarching theme of our framework of
evaluation is to explore the semantic space of the
SDSM. We do this by measuring its ability to dis-
criminate between varying surface forms of the
same underlying concept. We perform the follow-
ing set of experiments to evaluate its expressive
power, and conclude the following:

1. Experiments with single words on similar-
ity scoring and substitute selection: SDSM
performs at par with window-based distribu-
tional vectors.

2. Experiments with phrasal units on two-word
composition: state-of-the-art results are pro-
duced on the dataset from Mitchell and Lap-
ata (2008) in terms of correlation with human
judgment.

3. Experiments with larger structures on the
task of judging event coreferentiality: SDSM
shows superior performance over state-of-
the-art window-based word embeddings, and
simple models for composing distributional
semantic representations.

2 Related Work

Distributional Semantic Models are based on the
intuition that “a word is characterized by the com-
pany it keeps” (Firth, 1957). While DSMs have
been very successful on a variety of NLP tasks,
they are generally considered inappropriate for
deeper semantics because they lack the ability to
model composition, modifiers or negation.

Recently, there has been a surge in studies to
model a stronger form of semantics by phrasing
the problem of DSM compositionality as one of
vector composition. These techniques derive the
meaning of the combination of two words a and
b by a single vector c = f(a, b). Mitchell and
Lapata (2008) propose a framework to define the
composition c = f(a, b, r,K) where r is the re-
lation between a and b, and K is the additional
knowledge used to define composition.

While the framework is quite general, most
models in the literature tend to disregard K and
r and are generally restricted to component-wise

addition and multiplication on the vectors to be
composed, with slight variations. Dinu and Lap-
ata (2010) and Séaghdha and Korhonen (2011) in-
troduced a probabilistic model to represent word
meanings by a latent variable model. Subse-
quently, other high-dimensional extensions by
Rudolph and Giesbrecht (2010), Baroni and Zam-
parelli (2010) and Grefenstette et al. (2011), re-
gression models by Guevara (2010), and recursive
neural network based solutions by Socher et al.
(2012) and Collobert et al. (2011) have been pro-
posed.

Pantel and Lin (2000) and Erk and Padó (2008)
attempted to include syntactic context in distri-
butional models. However, their approaches do
not explicitly construct phrase-level meaning from
words which limits their applicability to real world
problems. A quasi-compositional approach was
also attempted in Thater et al. (2010) by a system-
atic combination of first and second order context
vectors. To the best of our knowledge the formu-
lation of composition we propose is the first to ac-
count for K and r within the general framework
of composition c = f(a, b, r,K).

3 Structured Distributional Semantics

In this section, we describe our Structured Distri-
butional Semantic framework in detail. We first
build a large knowledge base from sample english
texts and use it to represent basic lexical units.
Next, we describe a technique to obtain the repre-
sentation for larger units by composing their con-
stituents.

3.1 The PropStore

To build a lexicon of SDSM representations for
a given vocabulary we construct a proposition
knowledge base (the PropStore) by processing the
text of Simple English Wikipedia through a de-
pendency parser. Dependency arcs are stored as
3-tuples of the form 〈w1, r, w2〉, denoting occur-
rences of words w1 and word w2 related by the
syntactic dependency r. We also store sentence
identifiers for each triple for reasons described
later. In addition to the words’ surface-forms, the
PropStore also stores their POS tags, lemmas, and
Wordnet supersenses.

The PropStore can be used to query for pre-
ferred expectations of words, supersenses, re-
lations, etc., around a given word. In the
example in Figure 1, the query (SST(W1)
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Figure 1: Sample sentences & triples

= verb.consumption, ?, dobj) i.e., “what is
consumed”, might return expectations [pasta:1,
spaghetti:1, mice:1 . . . ]. In our implementation,
the relations and POS tags are obtained using the
Fanseparser (Tratz and Hovy, 2011), supersense
tags using sst-light (Ciaramita and Altun, 2006),
and lemmas are obtained from Wordnet (Miller,
1995).

3.2 Building the Representation
Next, we describe a method to represent lexical
entries as structured distributional matrices using
the PropStore.

The canonical form of a concept C (word,
phrase etc.) in the SDSM framework is a matrix
MC , whose entry MC

ij is a list of sentence identi-
fiers obtained by querying the PropStore for con-
texts in which C appears in the syntactic neigh-
borhood of the word j linked by the dependency
relation i. As with other distributional models in
the literature, the content of a cell is the frequency
of co-occurrence of its concept and word under the
given relational constraint.

This canonical matrix form can be interpreted
in several different ways. Each interpretation is
based on a different normalization scheme.

1. Row Norm: Each row of the matrix is inter-
preted as a distribution over words that attach
to the target concept with the given depen-
dency relation.

MC
ij =

Mij

ΣjMij
∀i

2. Full Norm: The entire matrix is interpreted
as a distribution over the word-relation pairs
which can attach to the target concept.

MC
ij =

Mij

Σi,jMij
∀i, j

Figure 2: Mimicking composition of two words

3. Collapsed Vector Norm: The columns of
the matrix are collapsed to form a standard
normalized distributional vector trained on
dependency relations rather than sliding win-
dows.

MC
j =

ΣiMij

Σi,jMij
∀j

3.3 Mimicking Compositionality

For representing intermediate multi-word phrases,
we extend the above word-relation matrix sym-
bolism in a bottom-up fashion. The combina-
tion hinges on the intuition that when lexical units
combine to form a larger syntactically connected
phrase, the representation of the phrase is given
by its own distributional neighborhood within the
embedded parse tree. The distributional neighbor-
hood of the net phrase can be computed using the
PropStore given syntactic relations anchored on its
parts. For the example in Figure 1, we can com-
pose SST(w1) = Noun.person and Lemma(W1)
= eat with relation ‘nsubj’ to obtain expectations
around “people eat” yielding [pasta:1, spaghetti:1
. . . ] for the object relation ([dining room:2, restau-
rant:1 . . .] for the location relation, etc.) (See Fig-
ure 2). Larger phrasal queries can be built to an-
swer questions like “What do people in China eat
with?”, “What do cows do?”, etc. All of this helps

22



us to account for both relation r and knowledgeK
obtained from the PropStore within the composi-
tional framework c = f(a, b, r,K).

The general outline to obtain a composition of
two words is given in Algorithm 1. Here, we
first determine the sentence indices where the two
words w1 and w2 occur with relation r. Then,
we return the expectations around the two words
within these sentences. Note that the entire algo-
rithm can conveniently be written in the form of
database queries to our PropStore.

Algorithm 1 ComposePair(w1, r, w2)
M1 ← queryMatrix(w1)
M2 ← queryMatrix(w2)
SentIDs←M1(r) ∩M2(r)
return ((M1∩ SentIDs) ∪ (M2∩ SentIDs))

Similar to the two-word composition process,
given a parse subtree T of a phrase, we obtain
its matrix representation of empirical counts over
word-relation contexts. This procedure is de-
scribed in Algorithm 2. Let the E = {e1 . . . en}
be the set of edges in T , ei = (wi1, ri, wi2)∀i =
1 . . . n.

Algorithm 2 ComposePhrase(T )
SentIDs← All Sentences in corpus
for i = 1→ n do

Mi1 ← queryMatrix(wi1)
Mi2 ← queryMatrix(wi2)
SentIDs← SentIDs ∩(M1(ri) ∩M2(ri))

end for
return ((M11∩ SentIDs) ∪ (M12∩ SentIDs)
· · · ∪ (Mn1∩ SentIDs) ∪ (Mn2∩ SentIDs))

3.4 Tackling Sparsity

The SDSM model reflects syntactic properties of
language through preferential filler constraints.
But by distributing counts over a set of relations
the resultant SDSM representation is compara-
tively much sparser than the DSM representation
for the same word. In this section we present some
ways to address this problem.

3.4.1 Sparse Back-off
The first technique to tackle sparsity is to back
off to progressively more general levels of lin-
guistic granularity when sparse matrix represen-
tations for words or compositional units are en-
countered or when the word or unit is not in the

lexicon. For example, the composition “Balthazar
eats” cannot be directly computed if the named en-
tity “Balthazar” does not occur in the PropStore’s
knowledge base. In this case, a query for a su-
persense substitute – “Noun.person eat” – can be
issued instead. When supersenses themselves fail
to provide numerically significant distributions for
words or word combinations, a second back-off
step involves querying for POS tags. With coarser
levels of linguistic representation, the expressive
power of the distributions becomes diluted. But
this is often necessary to handle rare words. Note
that this is an issue with DSMs too.

3.4.2 Densification
In addition to the back-off method, we also pro-
pose a secondary method for “densifying” distri-
butions. A concept’s distribution is modified by
using words encountered in its syntactic neighbor-
hood to infer counts for other semantically similar
words. In other terms, given the matrix represen-
tation of a concept, densification seeks to popu-
late its null columns (which each represent a word-
dimension in the structured distributional context)
with values weighted by their scaled similarities to
words (or effectively word-dimensions) that actu-
ally occur in the syntactic neighborhood.

For example, suppose the word “play” had an
“nsubj” preferential vector that contained the fol-
lowing counts: [cat:4 ; Jane:2]. One might then
populate the column for “dog” in this vector with
a count proportional to its similarity to the word
cat (say 0.8), thus resulting in the vector [cat:4 ;
Jane:2 ; dog:3.2]. These counts could just as well
be probability values or PMI associations (suitably
normalized). In this manner, the k most similar
word-dimensions can be densified for each word
that actually occurs in a syntactic context. As with
sparse back-off, there is an inherent trade-off be-
tween the degree of densification k and the expres-
sive power of the resulting representation.

3.4.3 Dimensionality Reduction
The final method tackles the problem of sparsity
by reducing the representation to a dense low-
dimensional word embedding using singular value
decomposition (SVD). In a typical term-document
matrix, SVD finds a low-dimensional approxima-
tion of the original matrix where columns become
latent concepts while similarity structure between
rows are preserved. The PropStore, as described in
Section 3.1, is an order-3 tensor with w1, w2 and
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rel as its three axes. We explore the following two
possibilities to perform dimensionality reduction
using SVD.

Word-word matrix SVD. In this experiment,
we preserve the axes w1 and w2 and ignore the re-
lational information. Following the SVD regime (
W = UΣV T ) where Σ is a square diagonal ma-
trix of k largest singular values, and U and V are
m× k and n× k matrices respectively. We adopt
matrixU as the compacted concept representation.

Tensor SVD. To remedy the relation-agnostic
nature of the word-word SVD matrix represen-
tation, we use tensor SVD (Vasilescu and Ter-
zopoulos, 2002) to preserve the structural infor-
mation. The mode-n vectors of an order-N tensor
A∈RI1×I2×...×IN are the In-dimensional vectors
obtained from A by varying index in while keep-
ing other indices fixed. The matrix formed by all
the mode-n vectors is a mode-n flattening of the
tensor. To obtain the compact representations of
concepts we thus first apply mode w1 flattening
and then perform SVD on the resulting tensor.

4 Single Word Evaluation

In this section we describe experiments and re-
sults for judging the expressive power of the struc-
tured distributional representation for individual
words. We use a similarity scoring task and a lexi-
cal substitute selection task for the purpose of this
evaluation. We compare the SDSM representa-
tion to standard window-based distributional vec-
tors trained on the same corpus (Simple English
Wikipedia). We also experiment with different
normalization techniques outlined in Section 3.2,
which effectively lead to structured distributional
representations with distinct interpretations.

We experimented with various similarity met-
rics and found that the normalized cityblock dis-
tance metric provides the most stable results.

CityBlock(X,Y ) =
ArcTan(d(X,Y ))

d(X,Y )

d(X,Y ) =
1

|R|
∑
r∈R

d(Xr, Yr)

Results in the rest of this section are thus reported
using the normalized cityblock metric. We also
report experimental results for the two methods
of alleviating sparsity discussed in Section 3.4,
namely, densification and SVD.

4.1 Similarity Scoring

On this task, the different semantic representations
were used to compute similarity scores between
two (out of context) words. We used a dataset
from Finkelstein et al. (2002) for our experiments.
It consists of 353 pairs of words along with an av-
eraged similarity score on a scale of 1.0 to 10.0
obtained from 13–16 human judges.

4.2 Lexical Substitute Selection

In the second task, the same set of semantic repre-
sentations was used to produce a similarity rank-
ing on the Turney (2002) ESL dataset. This dataset
comprises 50 words that appear in a context (we
discarded the context in this experiment), along
with 4 candidate lexical substitutions. We eval-
uate the semantic representations on the basis of
their ability to discriminate the top-ranked candi-
date.1

4.3 Results and Discussion

Table 1 summarizes the results for the window-
based baseline and each of the structured distri-
butional representations on both tasks. It shows
that our representations for single words are com-
petitive with window based distributional vectors.
Densification in certain conditions improves our
results, but no consistent pattern is discernible.
This can be attributed to the trade-off between the
gain from generalization and the noise introduced
by semantic drift.

Hence we resort to dimensionality reduction as
an additional method of reducing sparsity. Table
2 gives correlation scores on the Finkelstein et al.
(2002) dataset when SVD is performed on the rep-
resentations, as described in Section 3.4.3. We
give results when 100 and 500 principal compo-
nents are preserved for both SVD techniques.

These experiments suggest that though afflicted
by sparsity, the proposed structured distributional
paradigm is competitive with window-based dis-
tributional vectors. In the following sections we
show that that the framework provides consid-
erably greater power for modeling composition
when dealing with units consisting of more than
one word.

1While we are aware of the standard lexical substitution
corpus from McCarthy and Navigli (2007) we chose the one
mentioned above for its basic vocabulary, lower dependence
on context, and simpler evaluation framework.
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Model Finklestein (Corr.) ESL (% Acc.)
DSM 0.283 0.247

Collapsed 0.260 0.178
FullNorm 0.282 0.192
RowNorm 0.236 0.264

Densified RowNorm 0.259 0.267

Table 1: Single Word Evaluation

Model Correlation
matSVD100 0.207
matSVD500 0.221
tenSVD100 0.267
tenSVD500 0.315

Table 2: Finklestein: Correlation using SVD

5 Verb Sense Disambiguation using
Composition

In this section, we examine how well our model
performs composition on a pair of words. We
derive the compositional semantic representations
for word pairs from the M&L dataset (Mitchell
and Lapata, 2008) and compare our performance
with M&L’s additive and multiplicative models of
composition.

5.1 Dataset

The M&L dataset consists of polysemous intransi-
tive verb and subject pairs that co-occur at least 50
times in the BNC corpus. Additionally two land-
mark words are given for every polysemous verb,
each corresponding to one of its senses. The sub-
ject nouns provide contextual disambiguation for
the senses of the verb. For each [subject, verb,
landmark] tuple, a human assigned score on a 7-
point scale is provided, indicating the compatibil-
ity of the landmark with the reference verb-subj
pair. For example, for the pair “gun bomb”, land-
mark “thunder” is more similar to the verb than
landmark “prosper”. The corpus contains 120 tu-
ples and altogether 3600 human judgments. Re-
liability of the human ratings is examined by cal-
culating inter-annotator Spearman’s ρ correlation
coefficient.

5.2 Experiment procedure

For each tuple in the dataset, we derive the com-
posed word-pair matrix for the reference verb-subj
pair based on the algorithm described in Section
3.3 and query the single-word matrix for the land-
mark word. A few modifications are made to ad-
just the algorithm for the current task:

1. In our formulation, the dependency relation
needs to be specified in order to compose
a pair of words. Hence, we determine the
five most frequent relations between w1 and
w2 by querying the PropStore. We then use
the algorithm in Section 3.3 to compose the
verb-subj word pair using these relations, re-
sulting in five composed representations.

2. The word pairs in M&L corpus are ex-
tracted from a parsed version of the BNC cor-
pus, while our PropStore is built on Simple
Wikipedia texts, whose vocabulary is signif-
icantly different from that of the BNC cor-
pus. This causes null returns in our PropStore
queries, in which case we back-off to retriev-
ing results for super-sense tags of both the
words. Finally, the composed matrix and the
landmark matrix are compared against each
other by different matrix distance measures,
which results in a similarity score. For a [sub-
ject, verb, landmark] tuple, we average the
similarity scores yielded by the relations ob-
tained in 1.

The Spearman Correlation ρ between our sim-
ilarity ratings and the ones assigned by human
judges is computed over all the tuples. Follow-
ing M&L’s experiments, the inter-annotator agree-
ment correlation coefficient serves an upper bound
on the task.

5.3 Results and Discussion
As in Section 4, we choose the cityblock mea-
sure as the similarity metric of choice. Table 3
shows the evaluation results for two word compo-
sition. Except for row normalization, both forms
of normalization in the structured distributional
paradigm show significant improvement over the
results reported by M&L. The results are statisti-
cally significant at p-value = 0.004 and 0.001 for
Full Norm and Collapsed Vector Norm, respec-
tively.

Model ρ

M&L combined 0.19
Row Norm 0.134
Full Norm 0.289

Collapsed Vector Norm 0.259
UpperBound 0.40

Table 3: Two Word Composition Evaluation

These results validate our hypothesis that the in-
tegration of structure into distributional semantics
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as well as our framing of word composition to-
gether outperform window-based representations
under simplistic models of composition such as
addition and multiplication. This finding is further
re-enforced in the following experiments on event
coreferentiality judgment.

6 Event Coreference Judgment

Given the SDSM formulation and assuming no
sparsity constraints, it is possible to calculate
SDSM matrices for composed concepts. However,
are these correct? Intuitively, if they truly capture
semantics, the two SDSM matrix representations
for “Booth assassinated Lincoln” and “Booth shot
Lincoln with a gun" should be (almost) the same.
To test this hypothesis we turn to the task of pre-
dicting whether two event mentions are coreferent
or not, even if their surface forms differ.

While automated resolution of entity coref-
erence has been an actively researched area
(Haghighi and Klein, 2009; Stoyanov et al., 2009;
Raghunathan et al., 2010), there has been rela-
tively little work on event coreference resolution.
Lee et al. (2012) perform joint cross-document
entity and event coreference resolution using the
two-way feedback between events and their argu-
ments.

In this paper, however, we only consider coref-
erentiality between pairs of events. Formally,
two event mentions generally refer to the same
event when their respective actions, agents, pa-
tients, locations, and times are (almost) the same.
Given the non-compositional nature of determin-
ing equality of locations and times, we represent
each event mention by a triple E = (e, a, p) for
the event, agent, and patient.

While linguistic theory of argument realiza-
tion is a debated research area (Levin and Rap-
paport Hovav, 2005; Goldberg, 2005), it is com-
monly believed that event structure (Moens and
Steedman, 1988) centralizes on the predicate,
which governs and selects its role arguments
(Jackendoff, 1987). In the corpora we use for
our experiments, most event mentions are verbs.
However, when nominalized events are encoun-
tered, we replace them by their verbal forms. We
use SRL Collobert et al. (2011) to determine the
agent and patient arguments of an event mention.
When SRL fails to determine either role, its empir-
ical substitutes are obtained by querying the Prop-
Store for the most likely word expectations for the

role. The triple (e, a, p) is thus the composition
of the triples (a, relagent, e) and (p, relpatient, e),
and hence a complex object. To determine equal-
ity of this complex composed representation we
generate three levels of progressively simplified
event constituents for comparison:

Level 1: Full Composition:
Mfull = ComposePhrase(e, a, p).

Level 2: Partial Composition:
Mpart:EA = ComposePair(e, r, a)
Mpart:EP = ComposePair(e, r, p).

Level 3: No Composition:
ME = queryMatrix(e)
MA = queryMatrix(a)
MP = queryMatrix(p).

To judge coreference between
events E1 and E2, we compute pair-
wise similarities Sim(M1full,M2full),
Sim(M1part:EA,M2part:EA), etc., for each
level of the composed triple representation. Fur-
thermore, we vary the computation of similarity
by considering different levels of granularity
(lemma, SST), various choices of distance metric
(Euclidean, Cityblock, Cosine), and score nor-
malization techniques (Row-wise, Full, Column
collapsed). This results in 159 similarity-based
features for every pair of events, which are used
to train a classifier to make a binary decision for
coreferentiality.

6.1 Datasets
We evaluate our method on two datasets and com-
pare it against four baselines, two of which use
window based distributional vectors and two that
employ weaker forms of composition.

IC Event Coreference Corpus: The dataset
(citation suppressed), drawn from 100 news arti-
cles about violent events, contains manually cre-
ated annotations for 2214 pairs of co-referent
and non-coreferent events each. Where available,
events’ semantic role-fillers for agent and patient
are annotated as well. When missing, empirical
substitutes were obtained by querying the Prop-
Store for the preferred word attachments.

EventCorefBank (ECB) corpus: This corpus
(Bejan and Harabagiu, 2010) of 482 documents
from Google News is clustered into 45 topics,
with event coreference chains annotated over each
topic. The event mentions are enriched with se-
mantic roles to obtain the canonical event struc-
ture described above. Positive instances are ob-
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IC Corpus ECB Corpus
Prec Rec F-1 Acc Prec Rec F-1 Acc

SDSM 0.916 0.929 0.922 0.906 0.901 0.401 0.564 0.843
Senna 0.850 0.881 0.865 0.835 0.616 0.408 0.505 0.791
DSM 0.743 0.843 0.790 0.740 0.854 0.378 0.524 0.830
MVC 0.756 0.961 0.846 0.787 0.914 0.353 0.510 0.831
AVC 0.753 0.941 0.837 0.777 0.901 0.373 0.528 0.834

Table 4: Cross-validation Performance on IC and ECB dataset

tained by taking pairwise event mentions within
each chain, and negative instances are generated
from pairwise event mentions across chains, but
within the same topic. This results in 11039 posi-
tive instances and 33459 negative instances.

6.2 Baselines:

To establish the efficacy of our model, we com-
pare SDSM against a purely window-based base-
line (DSM) trained on the same corpus. In our ex-
periments we set a window size of three words to
either side of the target. We also compare SDSM
against the window-based embeddings trained us-
ing a recursive neural network (SENNA) (Col-
lobert et al., 2011) on both datsets. SENNA em-
beddings are state-of-the-art for many NLP tasks.
The second baseline uses SENNA to generate
level 3 similarity features for events’ individual
words (agent, patient and action). As our final
set of baselines, we extend two simple techniques
proposed by Mitchell and Lapata (2008) that use
element-wise addition and multiplication opera-
tors to perform composition. The two baselines
thus obtained are AVC (element-wise addition)
and MVC (element-wise multiplication).

6.3 Results and Discussion:

We experimented with a number of common clas-
sifiers, and selected decision-trees (J48) as they
give the best classification accuracy. Table 4 sum-
marizes our results on both datasets.

The results reveal that the SDSM model con-
sistently outperforms DSM, SENNA embeddings,
and the MVC and AVC models, both in terms
of F-1 score and accuracy. The IC corpus com-
prises of domain specific texts, resulting in high
lexical overlap between event mentions. Hence,
the scores on the IC corpus are consistently higher
than those on the ECB corpus.

The improvements over DSM and SENNA em-
beddings, support our hypothesis that syntax lends
greater expressive power to distributional seman-
tics in compositional configurations. Furthermore,

the increase in predictive accuracy over MVC and
AVC shows that our formulation of composition
of two words based on the relation binding them
yields a stronger form of composition than simple
additive and multiplicative models.

Next, we perform an ablation study to deter-
mine the most predictive features for the task of
determining event coreferentiality. The forward
selection procedure reveals that the most informa-
tive attributes are the level 2 compositional fea-
tures involving the agent and the action, as well as
their individual level 3 features. This corresponds
to the intuition that the agent and the action are the
principal determiners for identifying events. Fea-
tures involving the patient and level 1 features are
least useful. The latter involves full composition,
resulting in sparse representations and hence have
low predictive power.

7 Conclusion and Future Work

In this paper we outlined an approach that intro-
duces structure into distributional semantics. We
presented a method to compose distributional rep-
resentations of individual units into larger com-
posed structures. We tested the efficacy of our
model on several evaluation tasks. Our model’s
performance is competitive for tasks dealing with
semantic similarity of individual words, even
though it suffers from the problem of sparsity.
Additionally, it outperforms window-based ap-
proaches on tasks involving semantic composi-
tion. In future work we hope to extend this for-
malism to other semantic tasks like paraphrase de-
tection and recognizing textual entailment.
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Abstract

We present a letter-based encoding for
words in continuous space language mod-
els. We represent the words completely by
letter n-grams instead of using the word
index. This way, similar words will au-
tomatically have a similar representation.
With this we hope to better generalize
to unknown or rare words and to also
capture morphological information. We
show their influence in the task of machine
translation using continuous space lan-
guage models based on restricted Boltz-
mann machines. We evaluate the trans-
lation quality as well as the training time
on a German-to-English translation task of
TED and university lectures as well as on
the news translation task translating from
English to German. Using our new ap-
proach a gain in BLEU score by up to 0.4
points can be achieved.

1 Introduction

Language models play an important role in natural
language processing. The most commonly used
approach is n-gram-based language models (Chen
and Goodman, 1999).

In recent years Continuous Space Language
Models (CSLMs) have gained a lot of atten-
tion. Compared to standard n-gram-based lan-
guage models they promise better generalization
to unknown histories or n-grams with only few
occurrences. Since the words are projected into
a continuous space, true interpolation can be per-
formed when an unseen sample appears. The stan-
dard input layer for CSLMs is a so called 1-of-
n coding where a word is represented as a vector
with a single neuron turned on and the rest turned
off. In the standard approach it is problematic to
infer probabilities for words that are not inside the

vocabulary. Sometimes an extra unknown neu-
ron is used in the input layer to represent these
words (Niehues and Waibel, 2012). Since all un-
seen words get mapped to the same neuron, no real
discrimination between those words can be done.
Furthermore, rare words are also hard to model,
since there is too few training data available to es-
timate their associated parameters.

We try to overcome these shortcomings by
using subword features to cluster similar words
closer together and generalize better over unseen
words. We hope that words containing similar let-
ter n-grams will yield a good indicator for words
that have the same function inside the sentence.
Introducing a method for subword units also has
the advantage that the input layer can be smaller,
while still representing nearly the same vocabulary
with unique feature vectors. By using a smaller in-
put layer, less weights need to be trained and the
training is faster. In this work we present the letter
n-gram approach to represent words in an CSLM,
and compare it to the word-based CSLM presented
in Niehues and Waibel (2012).

The rest of this paper is structured as follows:
First we will give an overview of related work.
After that we give a brief overview of restricted
Boltzmann machines which are the basis of the
letter-based CSLM presented in Section 4. Then
we will present the results of the experiments and
conclude our work.

2 Related Work

First research on neural networks to predict word
categories has been done in Nakamura et al.
(1990) where neural networks were used to pre-
dict word categories. Xu and Rudnicky (2000)
proposed a language model that has an input con-
sisting of one word and no hidden units. This
network was limited to infer unigram and bigram
statistics. There has been research on feed for-
ward neural network language models where they
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achieved a decrease in perplexity compared to
standard n-gram language models (Bengio et al.,
2003). In Schwenk and Gauvain (2005) and later
in Schwenk (2007) research was performed on
training large scale neural network language mod-
els on millions of words resulting in a decrease of
the word error rate for continuous speech recog-
nition. In Schwenk et al. (2006) they use the
CSLM framework to rescore n-best lists of a ma-
chine translation system during tuning and testing
steps. Usually these networks use short lists to
reduce the size of the output layer and to make
calculation feasible. There have been approaches
to optimize the output layer of such a network,
so that vocabularies of arbitrary size can be used
and there is no need to back off to a smaller n-
gram model (Le et al., 2011). In this Structured
Output Layer (SOUL) neural network language
model a hierarchical output layer was chosen. Re-
current Neural Networks have also been used to
try and improve language model perplexities in
Mikolov et al. (2010), concluding that Recurrent
Neural Networks potentially improve over classi-
cal n-gram language models with increasing data
and a big enough hidden unit size of the model.
In the work of Mnih and Hinton (2007) and Mnih
(2010) training factored restricted Boltzmann ma-
chines yielded no gain compared to Kneser-Ney
smoothed n-gram models. But it has been shown
in Niehues and Waibel (2012), that using a re-
stricted Boltzmann machine with a different layout
during decoding can yield an increase in BLEU
score. There has also been a lot of research in
the field of using subword units for language mod-
eling. In Shaik et al. (2011) linguistically moti-
vated sub-lexical units were proposed to improve
open vocabulary speech recognition for German.
Research on morphology-based and subword lan-
guage models on a Turkish speech recognition task
has been done by Sak et al. (2010). The idea
of Factored Language models in machine transla-
tion has been introduced by Kirchhoff and Yang
(2005). Similar approaches to develop joint lan-
guage models for morphologically rich languages
in machine translation have been presented by
Sarikaya and Deng (2007). In Emami et al. (2008)
a factored neural network language model for Ara-
bic was built. They used different features such as
segmentation, part-of-speech and diacritics to en-
rich the information for each word.

3 Restricted Boltzmann Machine-based
Language Model

In this section we will briefly review the con-
tinuous space language models using restricted
Boltzmann machines (RBM). We will focus on
the parts that are important for the implementa-
tion of the input layers described in the next sec-
tion. A restricted Boltzmann machine is a gener-
ative stochastic neural network which consists of
a visible and a hidden layer of neurons that have
unidirectional connections between the layers but
no inner layer connections as shown in Figure 1.

Visible

Hidden

Figure 1: Restricted Boltzmann Machine.

The activation of the visible neurons will be de-
termined by the input data. The standard input
layer for neural network language models uses a
1-of-n coding to insert a word from the vocabulary
into the network. This is a vector, where only the
index of the word in the vocabulary is set to one
and the rest to zero. Sometimes this is also referred
to as a softmax layer of binary units. The activa-
tion of the hidden units is usually binary and will
be inferred from the visible units by using sam-
pling techniques. In Niehues and Waibel (2012)
an n-gram Boltzmann machine language model is
proposed using such a softmax layer for each con-
text. In this work, we want to explore different
ways of encoding the word observations in the in-
put layer. Figure 2 is an example of the original
model with three hidden units, two contexts and
a vocabulary of two words. In this example the
bigram my house is modeled.

To calculate the probability of a visible config-
uration v we will use the definition of the free en-
ergy in a restricted Boltzmann machine with bi-
nary stochastic hidden units, which is

F (v) = −
∑

i

viai −
∑

j

log(1 + exj ) (1)

where ai is the bias of the ith visible neuron vi and
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Visible

<s> </s> my house <s> </s> my house

Hidden

Figure 2: RBMLM with three hidden units and a
vocabulary size of two words and two word con-
texts, where activated units are marked as black.

xj is the activation of the jth hidden neuron. The
activation xj is defined as

xj = bj +
∑

i

viwij (2)

where bj is the bias of the jth hidden neuron and
wij is the weight between visible unit vi and hid-
den unit xj . Using these definitions, the probabil-
ity of our visible configuration v is

p(v) =
1

Z
e−F (v) (3)

with the partition function Z =
∑

v e−F (v) being
the normalization constant. Usually this normal-
ization constant is not easy to compute since it is
a sum over an exponential amount of values. We
know that the free energy will be proportional to
the true probability of our visible vector, this is
the reason for using the free energy as a feature
in our log-linear model instead of the true prob-
ability. In order to use it as a feature inside the
decoder we actually need to be able to compute
the probability for a whole sentence. As shown in
Niehues and Waibel (2012) we can do this by sum-
ming over the free energy of all n-grams contained
in the sentence.

3.1 Training

For training the restricted Boltzmann machine lan-
guage model (RBMLM) we used the Contrastive
Divergence (CD) algorithm as proposed in Hinton
(2010). In order to do this, we need to calculate the
derivation of the probability of the example given
the weights

δ log p(v)

δwij
= <vihj>data −<vihj>model (4)

where <vihj>model is the expected value of vihj

given the distribution of the model. In other
words we calculate the expectation of how often
vi and hj are activated together, given the dis-
tribution of the data, minus the expectation of
them being activated together given the distribu-
tion of the model, which will be calculated us-
ing Gibbs-Sampling techniques. Usually many
steps of Gibbs-Sampling are necessary to get an
unbiased sample from the distribution, but in the
Contrastive Divergence algorithm only one step of
sampling is performed (Hinton, 2002).

4 Letter-based Word Encoding

In this section we will describe the proposed in-
put layers for the RBMLM. Compared to the word
index-based representation explained above, we
try to improve the capability to handle unknown
words and morphology by splitting the word into
subunits.

4.1 Motivation

In the example mentioned above, the word index
model might be able to predict my house but it
will fail on my houses if the word houses is not in
the training vocabulary. In this case, a neuron that
classifies all unknown tokens or some other tech-
niques to handle such a case have to be utilized.

In contrast, a human will look at the single let-
ters and see that these words are quite similar. He
will most probably recognize that the appended s
is used to mark the plural form, but both words re-
fer to the same thing. So he will be able to infer
the meaning although he has never seen it before.

Another example in English are be the words
happy and unhappy. A human speaker who does
not know the word unhappy will be able to know
from the context what unhappy means and he can
guess that both of the words are adjectives, that
have to do with happiness, and that they can be
used in the same way.

In other languages with a richer morphology,
like German, this problem is even more important.
The German word schön (engl. beautiful) can have
16 different word forms, depending on case, num-
ber and gender.

Humans are able to share information about
words that are different only in some morphemes
like house and houses. With our letter-based input
encoding we want to generalize over the common
word index model to capture morphological infor-
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mation about the words to make better predictions
for unknown words.

4.2 Features

In order to model the aforementioned morpholog-
ical word forms, we need to create features for
every word that represent which letters are used
in the word. If we look at the example of house,
we need to model that the first letter is an h, the
second is an o and so on.

If we want to encode a word this way, we have
the problem that we do not have a fixed size of
features, but the feature size depends on the length
of the word. This is not possible in the framework
of continuous space language models. Therefore,
a different way to represent the word is needed.

An approach for having a fixed size of features
is to just model which letters occur in the word.
In this case, every input word is represented by a
vector of dimension n, where n is the size of the
alphabet in the text. Every symbol, that is used
in the word is set to one and all the other features
are zero. By using a sparse representation, which
shows only the features that are activated, the word
house would be represented by

w1 = e h o s u

The main problem of this representation is that
we lose all information about the order of the let-
ters. It is no longer possible to see how the word
ends and how the word starts. Furthermore, many
words will be represented by the same feature vec-
tor. For example, in our case the words house and
houses would be identical. In the case of houses
and house this might not be bad, but the words
shortest and others or follow and wolf will also
map to the same input vector. These words have
no real connection as they are different in mean-
ing and part of speech.

Therefore, we need to improve this approach
to find a better model for input words. N-grams
of words or letters have been successfully used to
model sequences of words or letters in language
models. We extend our approach to model not
only the letters that occur in the in the word, but
the letter n-grams that occur in the word. This
will of course increase the dimension of the fea-
ture space, but then we are able to model the order
of the letters. In the example of my house the fea-

ture vector will look like

w1 = my <w>m y</w>

w2 = ho ou se us <w>h e</w>

We added markers for the beginning and end of
the word because this additional information is im-
portant to distinguish words. Using the example
of the word houses, modeling directly that the last
letter is an s could serve as an indication of a plural
form.

If we use higher order n-grams, this will in-
crease the information about the order of the let-
ters. But these letter n-grams will also occur more
rarely and therefore, the weights of these features
in the RBM can no longer be estimated as reliably.
To overcome this, we did not only use the n-grams
of order n, but all n-grams of order n and smaller.
In the last example, we will not only use the bi-
grams, but also the unigrams.

This means my house is actually represented as

w1 = m y my <w>m y</w>

w2 = e h o s u ho ou se us <w>h e</w>

With this we hope to capture many morpholog-
ical variants of the word house. Now the represen-
tations of the words house and houses differ only
in the ending and in an additional bigram.

houses = ... es s</w>

house = ... se e</w>

The beginning letters of the two words will con-
tribute to the same free energy only leaving the
ending letter n-grams to contribute to the different
usages of houses and house.

The actual layout of the model can be seen in
Figure 3. For the sake of clarity we left out the
unigram letters. In this representation we now do
not use a softmax input layer, but a logistic input
layer defined as

p(vi = on) =
1

1 + e−xi
(5)

where vi is the ith visible neuron and xi is the in-
put from the hidden units for the ith neuron de-
fined as

xi = ai +
∑

j

hjwij (6)

with ai being the bias of the visible neuron vi and
wij being the weight between the hidden unit hj

and vi.
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Visible

Hidden

<w>m my <w>h usse<w>m my y</w> se<w>h

…

us y</w>

…

Figure 3: A bigram letter index RBMLM with
three hidden units and two word contexts, where
activated units are marked as black.

4.3 Additional Information
The letter index approach can be extended by
several features to include additional information
about the words. This could for example be part-
of-speech tags or other morphological informa-
tion. In this work we tried to include a neuron
to capture capital letter information. To do this we
included a neuron that will be turned on if the first
letter was capitalized and another neuron that will
be turned on if the word was written in all capital
letters. The word itself will be lowercased after we
extracted this information.

Using the example of European Union, the new
input vector will look like this

w1 =a e n o p r u an ea eu op pe ro ur

<w>e n</w><CAPS>

w2 =u i n o un io ni on

<w>u n</w><CAPS>

This will lead to a smaller letter n-gram vocab-
ulary since all the letter n-grams get lowercased.
This also means there is more data for each of the
letter n-gram neurons that were treated differently
before. We also introduced an all caps feature
which is turned on if the whole word was written
in capital letters. We hope that this can help detect
abbreviations which are usually written in all cap-
ital letters. For example EU will be represented
as

w1 = e u eu <w>e u</w><ALLCAPS>

5 Evaluation

We evaluated the RBM-based language model
on different statistical machine translation (SMT)
tasks. We will first analyze the letter-based word

representation. Then we will give a brief descrip-
tion of our SMT system. Afterwards, we de-
scribe in detail our experiments on the German-
to-English translation task. We will end with addi-
tional experiments on the task of translating Eng-
lish news documents into German.

5.1 Word Representation

In first experiments we analyzed whether the
letter-based representation is able to distinguish
between different words. In a vocabulary of
27,748 words, we compared for different letter n-
gram sizes how many words are mapped to the
same input feature vector.

Table 1 shows the different models, their input
dimensions and the total number of unique clus-
ters as well as the amount of input vectors con-
taining one, two, three or four or more words that
get mapped to this input vector. In the word index
representation every word has its own feature vec-
tor. In this case the dimension of the input vector
is 27,748 and each word has its own unique input
vector.

If we use only letters, as done in the unigram
model, only 62% of the words have a unique repre-
sentation. Furthermore, there are 606 feature vec-
tors representing 4 or more words. This type of
encoding of the words is not sufficient for the task.

When using a bigram letter context nearly each
of the 27,748 words has a unique input represen-
tation, although the input dimension is only 7%
compared to the word index. With the three let-
ter vocabulary context and higher there is no input
vector that represents more than three words from
the vocabulary. This is good since we want similar
words to be close together but not have exactly the
same input vector. The words that are still clus-
tered to the same input are mostly numbers or typ-
ing mistakes like “YouTube” and “Youtube”.

5.2 Translation System Description

The translation system for the German-to-English
task was trained on the European Parliament cor-
pus, News Commentary corpus, the BTEC cor-
pus and TED talks1. The data was preprocessed
and compound splitting was applied for German.
Afterwards the discriminative word alignment ap-
proach as described in Niehues and Vogel (2008)
was applied to generate the alignments between
source and target words. The phrase table was

1http://www.ted.com
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#Vectors mapping to
Model Caps VocSize TotalVectors 1 Word 2 Words 3 Words 4+ Words
WordIndex - 27,748 27,748 27,748 0 0 0
Letter 1-gram No 107 21,216 17,319 2,559 732 606
Letter 2-gram No 1,879 27,671 27,620 33 10 8
Letter 3-gram No 12,139 27,720 27,701 10 9 0
Letter 3-gram Yes 8,675 27,710 27,681 20 9 0
Letter 4-gram No 43,903 27,737 27,727 9 1 0
Letter 4-gram Yes 25,942 27,728 27,709 18 1 0

Table 1: Comparison of the vocabulary size and the possibility to have a unique representation of each
word in the training corpus.

built using the scripts from the Moses package de-
scribed in Koehn et al. (2007). A 4-gram language
model was trained on the target side of the parallel
data using the SRILM toolkit from Stolcke (2002).
In addition, we used a bilingual language model as
described in Niehues et al. (2011). Reordering was
performed as a preprocessing step using part-of-
speech (POS) information generated by the Tree-
Tagger (Schmid, 1994). We used the reorder-
ing approach described in Rottmann and Vogel
(2007) and the extensions presented in Niehues et
al. (2009) to cover long-range reorderings, which
are typical when translating between German and
English. An in-house phrase-based decoder was
used to generate the translation hypotheses and
the optimization was performed using the MERT
implementation as presented in Venugopal et al.
(2005). All our evaluation scores are measured us-
ing the BLEU metric.

We trained the RBMLM models on 50K sen-
tences from TED talks and optimized the weights
of the log-linear model on a separate set of TED
talks. For all experiments the RBMLMs have been
trained with a context of four words. The devel-
opment set consists of 1.7K segments containing
16K words. We used two different test sets to
evaluate our models. The first test set contains
TED talks with 3.5K segments containing 31K
words. The second task was from an in-house
computer science lecture corpus containing 2.1K
segments and 47K words. For both tasks we used
the weights optimized on TED.

For the task of translating English news texts
into German we used a system developed for the
Workshop on Machine Translation (WMT) eval-
uation. The continuous space language models
were trained on a random subsample of 100K sen-
tences from the monolingual training data used for

this task. The out-of-vocabulary rates for the TED
task are 1.06% while the computer science lec-
tures have 2.73% and nearly 1% on WMT.

5.3 German-to-English TED Task
The results for the translation of German TED lec-
tures into English are shown in Table 2. The base-
line system uses a 4-gram Kneser-Ney smoothed
language model trained on the target side parallel
data. We then added a RBMLM, which was only
trained on the English side of the TED corpus.

If the word index RBMLM trained for one iter-
ation using 32 hidden units is added, an improve-
ment of about 1 BLEU can be achieved. The let-
ter bigram model performs about 0.4 BLEU points
better than no additional model, but significantly
worse then the word index model or the other let-
ter n-gram models. The letter 3- to 5-gram-based
models obtain similar BLEU scores, varying only
by 0.1 BLEU point. They also achieve a 0.8 to
0.9 BLEU points improvement against the base-
line system and a 0.2 to 0.1 BLEU points decrease
than the word index-based encoding.

System Dev Test
Baseline 26.31 23.02
+WordIndex 27.27 24.04
+Letter 2-gram 26.67 23.44
+Letter 3-gram 26.80 23.84
+Letter 4-gram 26.79 23.93
+Letter 5-gram 26.64 23.82

Table 2: Results for German-to-English TED
translation task

Using the word index model with the first base-
line system increases the BLEU score nearly as
much as adding a n-gram-based language model
trained on the TED corpus as done in the base-
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line of the systems presented in Table 3. In these
experiments all letter-based models outperformed
the baseline system. The bigram-based language
model performs worst and the 3- and 4-gram-
based models perform only slightly worse than the
word index-based model.

System Dev Test
Baseline+ngram 27.45 24.06
+WordIndex 27.70 24.34
+Letter 2-gram 27.45 24.15
+Letter 3-gram 27.52 24.25
+Letter 4-gram 27.60 24.30

Table 3: Results of German-to-English TED trans-
lations using an additional in-domain language
model.

A third experiment is presented in Table 4. Here
we also applied phrase table adaptation as de-
scribed in Niehues et al. (2010). In this experiment
the word index model improves the system by 0.4
BLEU points. In this case all letter-based models
perform very similar. They are again performing
slightly worse than the word index-based system,
but better than the baseline system.

To summarize the results, we could always im-
prove the performance of the system by adding
the letter n-gram-based language model. Further-
more, in most cases, the bigram model performs
worse than the higher order models. It seems to be
important for this task to have more context infor-
mation. The 3- and 4-gram-based models perform
almost equal, but slightly worse than the word
index-based model.

System Dev Test
BL+ngram+adaptpt 28.40 24.57
+WordIndex 28.55 24.96
+Letter 2-gram 28.31 24.80
+Letter 3-gram 28.31 24.71
+Letter 4-gram 28.46 24.65

Table 4: Results of German-to-English TED trans-
lations with additional in-domain language model
and adapted phrase table.

5.3.1 Caps Feature
In addition, we evaluated the proposed caps fea-
ture compared to the non-caps letter n-gram model
and the baseline systems. As we can see in Ta-
ble 5, caps sometimes improves and sometimes

decreases the BLEU score by about ±0.2 BLEU
points. One reason for that might be that most
English words are written lowercased, therefore
we do not gain much information.

System Dev Test
Baseline 26.31 23.02
+Letter 3-gram 26.80 23.84
+Letter 3-gram+caps 26.67 23.85
Baseline+ngram 27.45 24.06
+Letter 3-gram 27.52 24.25
+Letter 3-gram+caps 27.60 24.47
BL+ngram+adaptpt 28.40 24.57
+Letter 3-gram 28.31 24.71
+Letter 3-gram+caps 28.43 24.66

Table 5: Difference between caps and non-caps
letter n-gram models.

5.4 German-to-English CSL Task
After that, we evaluated the computer science lec-
ture (CSL) test set. We used the same system as
for the TED translation task. We did not perform
a new optimization, since we wanted so see how
well the models performed on a different task.

The results are summarized in Table 6. In this
case the baseline is outperformed by the word in-
dex approach by approximately 1.1 BLEU points.
Except for the 4-gram model the results are similar
to the result for the TED task. All systems could
again outperform the baseline.

System Test
Baseline 23.60
+WordIndex 24.76
+Letter 2-gram 24.17
+Letter 3-gram 24.36
+Letter 4-gram 23.82

Table 6: Results the baseline of the German-to-
English CSL task.

The system with the additional in-domain lan-
guage model in Table 7 shows that both letter
n-gram language models perform better than the
baseline and the word index model, improving the
baseline by about 0.8 to 1 BLEU. Whereas the
word index model only achieved an improvement
of 0.6 BLEU points.

The results of the system with the additional
phrase table adaption can be seen in Table 8. The
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System Test
Baseline+ngram 23.81
+WordIndex 24.41
+Letter 2-gram 24.37
+Letter 3-gram 24.66
+Letter 4-gram 24.85

Table 7: Results on German-to-English CSL cor-
pus with additional in-domain language model.

word index model improves the baseline by 0.25
BLEU points. The letter n-gram models improve
the baseline by about 0.3 to 0.4 BLEU points also
improving over the word index model. The letter
bigram model in this case performs worse than the
baseline.

System Test
BL+ngram+adaptpt 25.00
+WordIndex 25.25
+Letter 2-gram 24.68
+Letter 3-gram 25.43
+Letter 4-gram 25.33

Table 8: Results on German-to-English CSL with
additional in-domain language model and adapted
phrase table.

In summary, again the 3- and 4-gram letter mod-
els perform mostly better than the bigram version.
They both perform mostly equal. In contrast to the
TED task, they were even able to outperform the
word index model in some configurations by up to
0.4 BLEU points.

5.5 English-to-German News Task
When translating English-to-German news we
could not improve the performance of the base-
line by using a word index model. In contrast, the
performance dropped by 0.1 BLEU points. If we
use a letter bigram model, we could improve the
translation quality by 0.1 BLEU points over the
baseline system.

System Dev Test
Baseline 16.90 17.36
+WordIndex 16.79 17.29
+Letter 2-gram 16.91 17.48

Table 9: Results for WMT2013 task English-to-
German.

5.6 Model Size and Training Times

In general the letter n-gram models perform al-
most as good as the word index model on English
language tasks. The advantage of the models up to
the letter 3-gram context model is that the training
time is lower compared to the word index model.
All the models were trained using 10 cores and
a batch size of 10 samples per contrastive diver-
gence update. As can be seen in Table 10 the letter
3-gram model needs less than 50% of the weights
and takes around 75% of the training time of the
word index model. The four letter n-gram model
takes longer to train due to more parameters.

Model #Weights Time
WordIndex 3.55 M 20 h 10 min
Letter 2-gram 0.24 M 1h 24 min
Letter 3-gram 1.55 M 15 h 12 min
Letter 4-gram 5.62 M 38 h 59 min

Table 10: Training time and number of parameters
of the RBMLM models.

6 Conclusions

In this work we presented the letter n-gram-based
input layer for continuous space language models.
The proposed input layer enables us to encode the
similarity of unknown words directly in the input
layer as well as to directly model some morpho-
logical word forms.

We evaluated the encoding on different trans-
lation tasks. The RBMLM using this encod-
ing could always improve the translation qual-
ity and perform similar to a RBMLM based on
word indices. Especially in the second configu-
ration which had a higher OOV rate, the letter n-
gram model performed better than the word index
model. Moreover, the model based on letter 3-
grams uses only half the parameters of the word
index model. This reduced the training time of the
continuous space language model by a quarter.
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Abstract

Classification and learning algorithms use
syntactic structures asproxies between
source sentences and feature vectors. In
this paper, we explore an alternative path
to use syntax in feature spaces: theDis-
tributed Representation “Parsers”(DRP).
The core of the idea is straightforward:
DRPs directly obtain syntactic feature vec-
tors from sentences without explicitly pro-
ducing symbolic syntactic interpretations.
Results show that DRPs produce feature
spaces significantly better than those ob-
tained by existing methods in the same
conditions and competitive with those ob-
tained by existing methods with lexical in-
formation.

1 Introduction

Syntactic processing is widely considered an im-
portant activity in natural language understand-
ing (Chomsky, 1957). Research in natural lan-
guage processing (NLP) exploits this hypothesis
in models and systems. Syntactic features improve
performance in high level tasks such as question
answering (Zhang and Lee, 2003), semantic role
labeling (Gildea and Jurafsky, 2002; Pradhan et
al., 2005; Moschitti et al., 2008; Collobert et al.,
2011), paraphrase detection (Socher et al., 2011),
and textual entailment recognition (MacCartney et
al., 2006; Wang and Neumann, 2007; Zanzotto et
al., 2009).

Classification and learning algorithms are key
components in the above models and in current
NLP systems, but these algorithms cannot directly
use syntactic structures. The relevant parts of
phrase structure trees or dependency graphs are
explicitly or implicitly stored in feature vectors.

To fully exploit syntax in learning classi-
fiers, kernel machines (Cristianini and Shawe-
Taylor, 2000) use graph similarity algorithms
(e.g., (Collins and Duffy, 2002) for trees) as struc-
tural kernels (Gärtner, 2003). These structural ker-
nels allow to exploit high-dimensional spaces of
syntactic tree fragments by concealing their com-
plexity. These feature spaces, although hidden,
still exist. Then, even in kernel machines, sym-
bolic syntactic structures act only asproxiesbe-
tween the source sentences and the syntactic fea-
ture vectors.

In this paper, we explore an alternative way
to use syntax in feature spaces: theDistributed
Representation Parsers(DRP). The core of the
idea is straightforward: DRPs directly bridge
the gap between sentences and syntactic feature
spaces. DRPs act as syntactic parsers and fea-
ture extractors at the same time. We leverage on
the distributed treesrecently introduced by Zan-
zotto&Dell’Arciprete (2012) and on multiple lin-
ear regression models.Distributed treesare small
vectors that encode the large vectors of the syn-
tactic tree fragments underlying the tree kernels
(Collins and Duffy, 2002). These vectors effec-
tively represent the original vectors and lead to
performances in NLP tasks similar to tree kernels.
Multiple linear regression allows to learn linear
DRPs from training data. We experiment with the
Penn Treebank data set (Marcus et al., 1993). Re-
sults show that DRPs produce distributed trees sig-
nificantly better than those obtained by existing
methods, in the same non-lexicalized conditions,
and competitive with those obtained by existing
methods with lexical information. Finally, DRPs
are extremely faster than existing methods.

The rest of the paper is organized as fol-
lows. First, we present the background of our
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idea (Sec. 2). Second, we fully describe our
model (Sec. 3). Then, we report on the experi-
ments (Sec. 4). Finally, we draw some conclusions
and outline future work (Sec. 5)

2 Background

Classification and learning algorithms for NLP
tasks treat syntactic structurest as vectors in fea-
ture spaces~t ∈ R

m. Each feature generally rep-
resents a substructureτi. In simple weighting
schemes, feature values are 1 ifτi is a substruc-
ture of t and 0 otherwise. Different weighting
schemes are used and possible. Then, learning al-
gorithms exploit these feature vectors in different
ways. Decision tree learners (Quinlan, 1993) elect
the most representative feature at each iteration,
whereas kernel machines (Cristianini and Shawe-
Taylor, 2000) exploit similarity between pairs of
instances,s(t1, t2). This similarity is generally
measured as the dot product between the two vec-
tors, i.e.s(t1, t2) = ~t1 · ~t2.

The use of syntactic features changed when tree
kernels (Collins and Duffy, 2002) appeared. Tree
kernels gave the possibility to fully exploit feature
spaces of tree fragments. Until then, learning al-
gorithms could not treat these huge spaces. It is
infeasible to explicitly represent that kind of fea-
ture vectors and to directly compute similarities
through dot products. Tree kernels (Collins and
Duffy, 2002), by computing similarities between
two trees with tree comparison algorithms, exactly
determine dot products of vectors in these target
spaces. After their introduction, different tree ker-
nels have been proposed (e.g., (Vishwanathan and
Smola, 2002; Culotta and Sorensen, 2004; Mos-
chitti, 2006)). Their use spread in many NLP
tasks (e.g., (Zhou et al., 2007; Wang and Neu-
mann, 2007; Moschitti et al., 2008; Zanzotto et
al., 2009; Zhang and Li, 2009)) and in other areas
like biology (Vert, 2002; Hashimoto et al., 2008)
and computer security (Düssel et al., 2008; Rieck
and Laskov, 2007; Bockermann et al., 2009).

Tree kernels have played a very important role
in promoting the use of syntactic information in
learning classifiers, but this method obfuscated the
fact that syntactic trees are ultimately used as vec-
tors in learning algorithms. To work with the
idea of directly obtaining rich syntactic feature
vectors from sentences, we need some techniques
to make these high-dimensional vectors again ex-
plicit, through smaller but expressive vectors.

A solution to the above problem stems from
the recently revitalized research in Distributed
Representations (DR) (Hinton et al., 1986; Ben-
gio, 2009; Collobert et al., 2011; Socher et al.,
2011; Zanzotto and Dell’Arciprete, 2012). Dis-
tributed Representations, studied in opposition to
symbolic representations (Rumelhart and Mcclel-
land, 1986), are methods for encoding data struc-
tures such as trees into vectors, matrices, or high-
order tensors. The targets of these representa-
tions are generally propositions, i.e., flat tree struc-
tures. The Holographic Reduced Representations
(HRR), proposed by Plate (1994), produce nearly
orthogonal vectors for different structures by com-
bining circular convolution and randomly gener-
ated vectors for basic components (as in (Ander-
son, 1973; Murdock, 1983)).

Building on HRRs, Distributed Trees (DT) have
been proposed to encode deeper trees in low di-
mensional vectors (Zanzotto and Dell’Arciprete,
2012). DTs approximate the feature space of tree
fragments defined for the tree kernels (Collins and
Duffy, 2002) and guarantee similar performances
of classifiers in NLP tasks such as question classi-
fication and textual entailment recognition. Thus,
Distributed Trees are good representations of syn-
tactic trees, that we can use in our definition of
distributed representation parsers (DRPs).

3 Distributed Representation Parsers

In this section, first, we sketch the idea of Dis-
tributed Representation “Parsers” (DRPs). Then,
we review thedistributed treesas a way to repre-
sent trees in low dimensional vectors. Finally, we
describe how to build DRPs by mixing a function
that encodes sentences in vectors and a linear re-
gressor that can be induced from training data.

3.1 The Idea

The approach to using syntax in learning algo-
rithms generally follows two steps: first, parse
sentencess with a symbolic parser (e.g., (Collins,
2003; Charniak, 2000; Nivre et al., 2007)) and
produce symbolic treest; second, use an en-
coder to build syntactic feature vectors. Fig-
ure 1 sketches this idea when the final vectors
are thedistributed trees

;

t ∈ Rd (Zanzotto and
Dell’Arciprete, 2012)1. In this case, the last step

1To represent a distributed tree for a treet, we use the

notation
;

t to stress that this small vector is an approximation
of the original high-dimensional vector~t in the space of tree
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Figure 1: “Parsing” with distributed structures in perspective

is the Distributed Tree Encoder (DT).
Our proposal is to build a Distributed Represen-

tation “Parser” (DRP) that directly maps sentences
s into the final vectors. We choose the distributed
trees

;

t as these reduced vectors fully represent the
syntactic trees. ADRP acts as follows (see Fig-
ure 1): first, a functionD encodes sentences into
a distributed vector

;

s ∈ Rd; second, a function
P transforms the input vector

;

s into a distributed

tree
;

t . This second step is a vector to vector trans-
formation and, in a wide sense, “parses” the input
sentence.

Given an input sentences, a DRP is then a
function defined as follows:

;

t = DRP (s) = P (D(s)) (1)

In this paper, we design some functionsD and we
propose a linear functionP , designed to be a re-
gressor that can be induced from training data. In
this study, we use a space withd dimensions for

both sentences
;

s anddistributed trees
;

t , but, in
general, these spaces can be of different size.

3.2 Syntactic Trees as Distributed Vectors

We here report on thedistributed trees2 (Zan-
zotto and Dell’Arciprete, 2012) to describe how
these vectors represent syntactic trees and how the
dot product between two distributed trees approxi-
mates the tree kernel defined by Collins and Duffy
(2002).

fragments.
2For the experiments, we used the implemen-

tation of the distributed tree encoder available at
http://code.google.com/p/distributed-tree-kernels/

Given a treet, the corresponding distributed tree
;

t is defined as follows:

DT (t) =
∑

τi∈S(t)

ωi
;

τ i (2)

whereS(t) is the set of the subtreesτi of t,
;

τ i

is the small vector corresponding to tree fragment
τi andωi is the weight of subtreeτi in the final
feature space. As in (Collins and Duffy, 2002), the
set S(t) contains tree fragmentsτ such that the
root of τ is any non-terminal node int and, if τ
contains noden, it must contain all the siblings of
n in t (see, for example,Slex(t) in Figure 2). The
weightωi is defined as:

ωi =







√
λ|τi|−1 if |τi| > 1 andλ 6= 0

1 if |τi| = 1
0 if λ = 0

(3)

where|τi| is the number of non-terminal nodes of
tree fragmentτi andλ is the traditional parame-
ter used to penalize large subtrees. Forλ = 0,
ωi has a value 1 for productions and 0 other-
wise. If different tree fragments are associated
to nearly orthonormal vectors, the dot product
;

t1 ·
;

t2 approximates the tree kernel (Zanzotto and
Dell’Arciprete, 2012).

A key feature of the distributed tree fragments
;

τ is that these vectors are built compositionally
from a setN of nearly orthonormal random vec-
tors

;

n , associated to node labelsn. Given a sub-
treeτ , the related vector is obtained as:

;

τ =
;

n1 ⊠
;

n2 ⊠ . . . ⊠
;

nk
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Figure 2: Subtrees of the treet in Figure 1

where node vectors
;

n i are ordered according to a
depth-first visit of subtreeτ and⊠ is a vector com-
position operation, specifically theshuffled circu-
lar convolution3. This function guarantees that
two different subtrees have nearly orthonormal
vectors (see (Zanzotto and Dell’Arciprete, 2012)
for more details). For example, the fifth treeτ5 of
setSno lex(t) in Figure 2 is:

;

τ 5 =
;

S ⊠ (
;

NP ⊠ (
;

V P ⊠ (
;

V ⊠

;

NP )))

We experiment with two tree fragment sets:
the non-lexicalized setSno lex(t), where tree frag-
ments do not contain words, and the lexicalized
setSlex(t), including all the tree fragments. An
example is given in Figure 2.

3.3 The Model

To build a DRP, we need to define the encoder
D and the transformerP . In the following, we
present a non-lexicalized and a lexicalized model
for the encoderD and we describe how we can
learn the transformerP by means of a linear re-
gression model.

3.3.1 Sentence Encoders

Establishing good models to encode input sen-
tences into vectors is the most difficult challenge.
The models should consider the kind of informa-
tion that can lead to a correct syntactic interpre-
tation. Only in this way, the distributed repre-
sentation parser can act as a vector transforming
module. Unlike in models such as (Socher et al.,
2011), we want our encoder to represent the whole
sentence as a fixed size vector. We propose a non-
lexicalized model and a lexicalized model.

3Theshuffled circular convolution⊠ is defined as~a⊠~b =

s1(~a)⊗ s2(~b) where⊗ is the circular convolution ands1 and
s2 are two different random permutations of vector elements.

Non-lexicalized model The non-lexicalized
model relies only on the pos-tags of the sentences
s: s = p1 . . . pn wherepi is the pos-tag associated
with the i-th token of the sentence. In the follow-
ing we discuss how to encode this information in
aRd space. The basic modelD1(s) is the one that
considers the bag-of-postags, that is:

D1(s) =
∑

i

;

p i (4)

where
;

p i ∈ N is the vector for labelpi, taken
from the set of nearly orthonomal random vectors
N . It is basically in line with the bag-of-word
model used in random indexing (Sahlgren, 2005).
Due to the commutative property of the sum and
since vectors inN are nearly orthonormal: (1)
two sentences with the same set of pos-tags have
the same vector; and, (2) the dot product between
two vectors,D1(s1) andD1(s2), representing sen-
tencess1 ands2, approximately counts how many
pos-tags the two sentences have in common. The
vector for the sentence in Figure 1 is then:

D1(s) =
;

PRP +
;

V +
;

DT +
;

NN

The general non-lexicalized model that takes
into account all n-grams of pos-tags, up to length
j, is then the following:

Dj(s) = Dj−1(s) +
∑

i

;

p i ⊠ . . . ⊠
;

p i+j−1

where⊠ is again theshuffled circular convolution.
An n-grampi . . . pi+j−1 of pos-tags is represented

as
;

p i ⊠ . . . ⊠
;

p i+j−1. Given the properties of
the shuffled circular convolution, an n-gram of
pos-tags is associated to a versor, as it composes
j versors, and two different n-grams have nearly
orthogonal vectors. For example, vectorD3(s)
for the sentence in Figure 1 is:
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D3(s) =
;

PRP +
;

V +
;

DT +
;

NN +
;

PRP ⊠

;

V +
;

V ⊠

;

DT +
;

DT ⊠

;

NN +
;

PRP ⊠

;

V ⊠

;

DT +
;

V ⊠

;

DT ⊠

;

NN

Lexicalized model Including lexical informa-
tion is the hardest part of the overall model, as
it makes vectors denser in information. Here
we propose an initial model that is basically as
the non-lexicalized model, but includes a vector
representing the words in the unigrams. The
equation representing sentences as unigrams is:

Dlex
1 (s) =

∑

i

;

p i ⊠
;

wi

Vector
;

wi represents wordwi and is taken from the
setN of nearly orthonormal random vectors. This
guarantees thatDlex

1 (s) is not lossy. Given a pair
word-postag(w, p), it is possible to know if the
sentence contains this pair, asDlex

1 (s)×;

p⊠
;

w ≈ 1

if (w, p) is in sentences andDlex
1 (s)×;

p ⊠
;

w ≈ 0
otherwise. Other vectors for representing words,
e.g., distributional vectors or those obtained as
look-up tables in deep learning architectures (Col-
lobert and Weston, 2008), do not guarantee this
possibility.

The general equation for the lexicalized version
of the sentence encoder follows:

Dlex
j (s) = Dlex

j−1(s) +
∑

i

;

p i ⊠ . . . ⊠
;

p i+j−1

This model is only an initial proposal in order
to take into account lexical information.

3.3.2 Learning Transformers with Linear
Regression

The transformerP of theDRP (see Equation 1)
can be seen as a linear regressor:

;

t = P
;

s (5)

whereP is a square matrix. This latter can be esti-
mated having training sets(T,S) of oracle vectors

and sentence input vectors(
;

t i,
;

s i) for sentences
si. Interpreting these sets as matrices, we need to
solve a linear set of equations, i.e.:T = PS.

An approximate solution can be computed us-
ing Principal Component Analysis and Partial
Least Square Regression4. This method relies on

4An implementation of this method is available within the
R statistical package (Mevik and Wehrens, 2007).

Moore-Penrose pseudo-inversion(Penrose, 1955).
Pseudo-inverse matricesS+ are obtained using
singular value decomposition (SVD). Matrices
have the propertySS+ = I. Using the itera-
tive method for computing SVD (Golub and Ka-
han, 1965), we can obtain different approxima-
tionsS+

(k) of S+ consideringk singular values. Fi-
nal approximations ofDRPs are then:P(k) =

TS
+
(k).

MatricesP are estimated by pseudo-inverting
matrices representing input vectors for sentences
S. Given the different input representations for
sentences, we can then estimate different DRPs:
DRP1 = TS

+
1 , DRP2 = TS

+
2 , and so on. We

need to estimate the bestk in a separate parameter
estimation set.

4 Experiments

We evaluated three issues for assessing DRP mod-
els: the performance of DRPs in reproducing or-
acle distributed trees (Sec. 4.2); the quality of the
topology of the vector spaces of distributed trees
induced by DRPs (Sec. 4.3); and the computation
run time of DRPs (Sec. 4.4). Section 4.1 describes
the experimental set-up.

4.1 Experimental Set-up

Data We derived the data sets from the Wall
Street Journal (WSJ) portion of the English Penn
Treebank data set (Marcus et al., 1993), using
a standard data split for training (sections 2-21
PTtrain with 39,832 trees) and for testing (section
23 PT23 with 2,416 trees). We used section 24
PT24 with 1,346 trees for parameter estimation.

We produced the final data sets ofdistributed
treeswith three differentλ values: λ=0, λ=0.2,
and λ=0.4. For eachλ, we have two ver-
sions of the data sets: a non-lexicalized version
(no lex), where syntactic trees are considered
without words, and a lexicalized version (lex),
where words are considered. Oracle treest are
transformed into oracle distributed trees

;

o using
the Distributed Tree EncoderDT (see Figure 1).
We experimented with two sizes of the distributed
trees spaceRd: 4096 and 8192.

We have designed the data sets to determine
how DRPs behave withλ values relevant for
syntax-sensitive NLP tasks. Both tree kernels and
distributed tree kernels have the best performances
in tasks such as question classification, seman-
tic role labeling, or textual entailment recognition
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with λ values in the range 0–0.4.

System Comparison We compared the DRPs
against theexisting wayof producing distributed
trees (based on the recent paper described in
(Zanzotto and Dell’Arciprete, 2012)): distributed
trees are obtained using the output of a sym-
bolic parser (SP) that is then transformed into a
distributed tree using theDT with the appropri-
ate λ. We refer to this chain as the Distributed
Symbolic Parser (DSP ). The DSP is then the
chain DSP (s) = DT (SP (s)) (see Figure 1).
As for the symbolic parser, we used Bikel’s ver-
sion (Bikel, 2004) of Collins’ head-driven statisti-
cal parser (Collins, 2003). For a correct compar-
ison, we used the Bikel’s parser with oracle part-
of-speech tags. We experimented with two ver-
sions: (1) a lexicalized methodDSPlex, i.e., the
natural setting of the Collins/Bikel parser, and (2)
a fully non-lexicalized versionDSPno lex that ex-
ploits only part-of-speech tags. We obtained this
last version by removing words in input sentences
and leaving only part-of-speech tags. We trained
theseDSPs onPTtrain.

Parameter estimation DRPs have two basic pa-
rameters: (1) parameterk of the pseudo-inverse,
that is, the number of considered eigenvectors (see
Section 3.3.2) and (2) the maximum lengthj of the
n-grams considered by the encoderDj (see Sec-
tion 3.3.1). We performed the parameter estima-
tion on the datasets derived from sectionPT24 by
maximizing a pseudo f-measure. Section 4.2 re-
ports both the definition of the measure and the
results of the parameter estimation.

4.2 Parsing Performance

The first issue to explore is whetherDRPs are
actually good “distributed syntactic parsers”. We
compareDRPs against the distributed symbolic
parsers by evaluating how well these “distributed
syntactic parsers” reproduce oracle distributed
trees.

Method A good DRP should produce dis-
tributed trees that are similar to oracle distributed
trees. To capture this, we use the cosine similarity
between the system and the oracle vectors:

cos(
;

t ,
;

o ) =

;

t ·;o
||
;

t ||||;o ||
where

;

t is the system’s distributed tree and
;

o

is the oracle distributed tree. We compute these

dim Model λ = 0 λ = 0.2 λ = 0.4

4096

DRP1 0.6285 0.5697 0.542
DRP2 0.8011 0.7311 0.631
DRP3 0.8276‡ 0.7552‡ 0.6506‡

DRP4 0.8171 0.744 0.6419
DRP5 0.8045 0.7342 0.631
DSPno lex 0.654 0.5884 0.4835
DSPlex 0.815 0.7813 0.7121

8192
DRP3 0.8335‡ 0.7605‡ 0.6558‡

DSPno lex 0.6584 0.5924 0.4873
DSPlex 0.8157 0.7815 0.7123

Table 1: Averagesimilarity on PT23 of the
DRPs (with differentj) and the DSP on thenon-
lexicalized data setswith differentλs and with the
two dimensions of the distributed tree space (4096
and 8192).‡ indicates significant difference wrt.
DSPno lex (p << .005 computed with the Stu-
dent’s t test)

Model λ = 0 λ = 0.2 λ = 0.4
DRP3 0.7192 0.6406 0.0646
DSPlex 0.9073 0.8564 0.6459

Table 2: Averagesimilarity onPT23 of theDRP3

and theDSPlex on thelexicalized data setswith
differentλs on the distributed tree space with 4096
dimensions

the cosine similarity at the sentence-based (i.e.,
vector-based) granularity. Results report average
values.

Estimated parameters We estimated parame-
ters k and j by training the differentDRPs on
thePTtrain set and by maximizing thesimilarity
of the DRPs onPT24. The best pair of param-
eters isj=3 andk=3000. For completeness, we
report also the bestk values for the five different
j we experimented with:k = 47 for j=1 (the lin-
early independent vectors representing pos-tags),
k = 1300 for j=2, k = 3000 for j=3, k = 4000
for j=4, andk = 4000 for j=5. For comparison,
some resulting tables report results for the differ-
ent values ofj.

Results Table 1 reports the results of the first set
of experiments on thenon-lexicalizeddata sets.
The first block of rows (seven rows) reports theav-
erage cosine similarityof the different methods on
the distributed tree spaces with 4096 dimensions.
The second block (the last three rows) reports the
performance on the space with 8192 dimensions.
Theaverage cosine similarityis computed on the
PT23 set. Although we already selectedj=3 as
the best parameterization (i.e.DRP3), the first
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Output Model λ = 0 λ = 0.2 λ = 0.4

No lex
DRP3 0.9490 0.9465 0.9408
DSPno lex 0.9033 0.9001 0.8932
DSPlex 0.9627 0.9610 0.9566

Lex
DRP3 0.9642 0.9599 0.0025
DSPlex 0.9845 0.9817 0.9451

Table 3: Average Spearman’s Correlation: dim
4096 between the oracle’s vector space and the
systems’ vector spaces (100 trials on lists of 1000
sentence pairs).

five rows of the first block report the results of the
DRPs for five values ofj. This gives an idea of
how the different DRPs behave. The last two rows
of this block report the results of the two DSPs.

We can observe some important facts. First,
DRPs exploiting 2-grams, 3-grams, 4-grams, and
5-grams of part-of-speech tags behave signifi-
cantly better than the 1-grams for all the values
of λ. Distributed representation parsers need in-
puts that keep trace of sequences of pos-tags of
sentences. But these sequences tend to confuse
the model when too long. As expected,DRP3

behaves better than all the other DRPs. Second,
DRP3 behaves significantly better than the com-
parable traditional parsing chainDSPno lex that
uses only part-of-speech tags and no lexical in-
formation. This happens for all the values ofλ.
Third, DRP3 behaves similarly toDSPlex for
λ=0. Both parsers use oracle pos tags to emit sen-
tence interpretations butDSPlex also exploits lex-
ical information thatDRP3 does not access. For
λ=0.2 andλ=0.4, the more informedDSPlex be-
haves significantly better thanDRP3. But DRP3

still behaves significantly better than the compa-
rableDSPno lex. All these observations are valid
also for the results obtained for 8192 dimensions.

Table 2 reports the results of the second set of
experiments on thelexicalizeddata sets performed
on a 4192-dimension space. The first row reports
theaverage cosine similarityof DRP3 trained on
the lexicalized model and the second row reports
the results ofDSPlex. In this case,DRP3 is not
behaving well with respect toDSPlex. The addi-
tional problemDRP3 has is that it has to repro-
duce input words in the output. This greatly com-
plicates the work of the distributed representation
parser. But, as we report in the next section, this
preliminary result may be still satisfactory forλ=0
andλ=0.2.

Figure 3: Topology of the resulting spaces derived
with the three different methods: similarities be-
tween sentences

4.3 Kernel-based Performance

This experiment investigates howDRPs preserve
the topology of the oracle vector space. This cor-
relation is an important quality factor of a dis-
tributed tree space. When using distributed tree
vectors in learning classifiers, whether

;

oi ·
;

oj in

the oracle’s vector space is similar to
;

ti ·
;

tj in
the DRP’s vector space is more important than

whether
;

oi is similar to
;

ti (see Figure 3). Sen-
tences that are close using the oracle syntactic in-
terpretations should also be close usingDRP vec-
tors. The topology of the vector space is more rel-
evant than the actual quality of the vectors. The
experiment on the parsing quality in the previous
section does not properly investigate this property,
as the performance of DRPs could be not sufficient
to preserve distances among sentences.

Method We evaluate the coherence of the topol-
ogy of two distributed tree spaces by measuring
the Spearman’s correlation between two lists of
pairs of sentences(si, sj), ranked according to the
similarity between the two sentences. If the two
lists of pairs are highly correlated, the topology
of the two spaces is similar. The different meth-
ods and, thus, the different distributed tree spaces
are compared against the oracle vector space (see
Figure 3). Then, the first list always represents the
oracle vector space and ranks pairs(si, sj) accord-

ing to
;

o i ·
;

o j. The second list instead represents
the space obtained with a DSP or a DRP. Thus, it

is respectively ranked with
;

ẗi ·
;

ẗj or
;

ti ·
;

tj . In this
way, we can comparatively evaluate the quality of
the distributed tree vectors of ourDRPs with re-
spect to the other methods. We report average and
standard deviation of the Spearman’s correlation
on 100 runs over lists of 1000 pairs. We used the
testing setPT23 for extracting vectors.
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Figure 4: Running time with respect to the sen-
tence length (dimension = 4092)

Results Table 3 reports results both on the non-
lexicalized and on the lexicalized data set. For
the non-lexicalized data set we report three meth-
ods (DRP3, DSPno lex, andDSPlex) and for the
lexicalized dataset we report two methods (DRP3

andDSPlex). Columns represent different values
of λ. Experiments are carried out on the 4096-
dimension space. For the non-lexicalized data set,
distributed representation parsers behave signifi-
cantly better thanDSPno lex for all the values of
λ. The upper-bound ofDSPlex is not so far. For
the harder lexicalized data set, the difference be-
tweenDRP3 andDSPlex is smaller than the one
based on the parsing performance. Thus, we have
more evidence of the fact that we are in a good
track.DRPs can substitute theDSPin generating
vector spaces of distributed trees that adequately
approximate the space defined by an oracle.

4.4 Running Time

In this last experiment, we compared the running
time of theDRP with respect to theDSP . The
analysis has been done on a dual-core processor
and both systems are implemented in the same
programming language, i.e. Java. Figure 4 plots
the running time of theDRP , the SP , and the
full DSP = DT ◦ SP . The x-axis represents the
sentence length in words and the y-axis represents
the running time in milliseconds. The distance be-
tween SP and DSP shrinks as the plot is in a log-
arithmic scale. Figure 5 reports the average co-
sine similarity ofDRP , DSPlex, andDSPno lex,
with respect to the sentence length, on the non-
lexicalized data set withλ=0.4.

We observe that DRP becomes extremely con-
venient for sentences larger than 10 words (see
Fig. 4) and the average cosine similarity difference
between the different methods is nearly constant
for the different sentence lengths (see Fig. 5). This
test already makes DRPs very appealing methods
for real time applications. But, if we consider that

Figure 5: Average similarity withλ=0.4 with re-
spect to the sentence length (dimension = 4092)

DRPs can run completely on Graphical Processing
Units (GPUs), as dealing only with matrix prod-
ucts, fast-Fourier transforms, and random genera-
tors, we can better appreciate the potentials of the
proposed methods.

5 Conclusions and Future Work

We presented Distributed Representation Parsers
(DRP) as a novel path to use syntactic structures
in feature spaces. We have shown that these
”parsers” can be learnt using training data and that
DRPs are competitive with respect to traditional
methods of using syntax in feature spaces.

This novel path to use syntactic structures in
feature spaces opens interesting and unexplored
possibilities. First, DRPs tackle the issue of com-
putational efficiency of structural kernel methods
(Rieck et al., 2010; Shin et al., 2011) from another
perspective. DRPs could reduce structural kernel
computations to extremely efficient dot products.
Second, the tight integration of parsing and feature
vector generation lowers the computational cost of
producing distributed representations from trees,
as circular convolution is not applied on-line.

Finally, DRPs can contribute to treat syntax in
deep learning models in a uniform way. Deep
learning models (Bengio, 2009) are completely
based on distributed representations. But when
applied to natural language processing tasks (e.g.,
(Collobert et al., 2011; Socher et al., 2011)), syn-
tactic structures are not represented in the neural
networks in a distributed way. Syntactic informa-
tion is generally used by exploiting symbolic parse
trees, and this information positively impacts per-
formances on final applications, e.g., in paraphrase
detection (Socher et al., 2011) and in semantic role
labeling (Collobert et al., 2011). Building on the
results presented here, an interesting line of re-
search is then the integration of distributed repre-
sentation parsers and deep learning models.
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Abstract

In recent years, there has been widespread
interest in compositional distributional
semantic models (cDSMs), that derive
meaning representations for phrases from
their parts. We present an evaluation of al-
ternative cDSMs under truly comparable
conditions. In particular, we extend the
idea of Baroni and Zamparelli (2010) and
Guevara (2010) to use corpus-extracted
examples of the target phrases for param-
eter estimation to the other models pro-
posed in the literature, so that all models
can be tested under the same training con-
ditions. The linguistically motivated func-
tional model of Baroni and Zamparelli
(2010) and Coecke et al. (2010) emerges
as the winner in all our tests.

1 Introduction

The need to assess similarity in meaning is cen-
tral to many language technology applications,
and distributional methods are the most robust ap-
proach to the task. These methods measure word
similarity based on patterns of occurrence in large
corpora, following the intuition that similar words
occur in similar contexts. More precisely, vector
space models, the most widely used distributional
models, represent words as high-dimensional vec-
tors, where the dimensions represent (functions
of) context features, such as co-occurring context
words. The relatedness of two words is assessed
by comparing their vector representations.

The question of assessing meaning similarity
above the word level within the distributional
paradigm has received a lot of attention in re-
cent years. A number of compositional frame-
works have been proposed in the literature, each
of these defining operations to combine word vec-
tors into representations for phrases or even en-

tire sentences. These range from simple but ro-
bust methods such as vector addition to more ad-
vanced methods, such as learning function words
as tensors and composing constituents through in-
ner product operations. Empirical evaluations in
which alternative methods are tested in compara-
ble settings are thus called for. This is compli-
cated by the fact that the proposed compositional
frameworks package together a number of choices
that are conceptually distinct, but difficult to disen-
tangle. Broadly, these concern (i) the input repre-
sentations fed to composition; (ii) the composition
operation proper; (iii) the method to estimate the
parameters of the composition operation.

For example, Mitchell and Lapata in their clas-
sic 2010 study propose a set of composition op-
erations (multiplicative, additive, etc.), but they
also experiment with two different kinds of input
representations (vectors recording co-occurrence
with words vs. distributions over latent topics) and
use supervised training via a grid search over pa-
rameter settings to estimate their models. Gue-
vara (2010), to give just one further example, is
not only proposing a different composition method
with respect to Mitchell and Lapata, but he is
also adopting different input vectors (word co-
occurrences compressed via SVD) and an unsu-
pervised estimation method based on minimizing
the distance of composed vectors to their equiva-
lents directly extracted from the source corpus.

Blacoe and Lapata (2012) have recently high-
lighted the importance of teasing apart the differ-
ent aspects of a composition framework, present-
ing an evaluation in which different input vector
representations are crossed with different compo-
sition methods. However, two out of three com-
position methods they evaluate are parameter-free,
so that they can side-step the issue of fixing the pa-
rameter estimation method.

In this work, we evaluate all composition meth-
ods we know of, excluding a few that lag be-
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hind the state of the art or are special cases of
those we consider, while keeping the estimation
method constant. This evaluation is made pos-
sible by our extension to all target composition
models of the corpus-extracted phrase approxima-
tion method originally proposed in ad-hoc settings
by Baroni and Zamparelli (2010) and Guevara
(2010). For the models for which it is feasible,
we compare the phrase approximation approach
to supervised estimation with crossvalidation, and
show that phrase approximation is competitive,
thus confirming that we are not comparing mod-
els under poor training conditions. Our tests are
conducted over three tasks that involve different
syntactic constructions and evaluation setups. Fi-
nally, we consider a range of parameter settings for
the input vector representations, to insure that our
results are not too brittle or parameter-dependent.1

2 Composition frameworks

Distributional semantic models (DSMs) approxi-
mate word meanings with vectors recording their
patterns of co-occurrence with corpus contexts
(e.g., other words). There is an extensive literature
on how to develop such models and on their eval-
uation (see, e.g., Clark (2012), Erk (2012), Tur-
ney and Pantel (2010)). We focus here on compo-
sitional DSMs (cDSMs). After discussing some
options pertaining to the input vectors, we review
all the composition operations we are aware of
(excluding only the tensor-product-based models
shown by Mitchell and Lapata (2010) to be much
worse than simpler models),2 and then methods to
estimate their parameters.

Input vectors Different studies have assumed
different distributional inputs to composition.
These include bag-of-words co-occurrence vec-
tors, possibly mapped to lower dimensionality
with SVD or other techniques (Mitchell and La-
pata (2010) and many others), vectors whose di-

1We made the software we used to construct seman-
tic models and estimate and test composition methods
available online at http://clic.cimec.unitn.it/
composes/toolkit/

2Erk and Padó (2008) and Thater et al. (2010) use in-
put vectors that have been adapted to their phrasal contexts,
but then apply straightforward composition operations such
as addition and multiplication to these contextualized vec-
tors. Their approaches are thus not alternative cDSMs, but
special ways to construct the input vectors. Grefenstette and
Sadrzadeh (2011a; 2011b) and Kartsaklis et al. (2012) pro-
pose estimation techniques for the tensors in the functional
model of Coecke et al. (2010). Turney (2012) does not com-
pose representations but similarity scores.

Model Composition function Parameters
Add w1~u + w2~v w1, w2

Mult ~uw1 � ~vw2 w1, w2

Dil ||~u||22~v + (λ − 1)〈~u,~v〉~u λ
Fulladd W1~u + W2~v W1, W2 ∈ Rm×m

Lexfunc Au~v Au ∈ Rm×m

Fulllex tanh([W1, W2]
h

Au~v
Av~u

i
) W1, W2,

Au, Av ∈ Rm×m

Table 1: Composition functions of inputs (u, v).

mensions record the syntactic link between targets
and collocates (Erk and Padó, 2008; Thater et al.,
2010), and most recently vectors based on neural
language models (Socher et al., 2011; Socher et
al., 2012). Blacoe and Lapata (2012) compared
the three representations on phrase similarity and
paraphrase detection, concluding that “simple is
best”, that is, the bag-of-words approach performs
at least as good or better than either syntax-based
or neural representations across the board. Here,
we take their message home and we focus on bag-
of-words representations, exploring the impact of
various parameters within this approach.

Most frameworks assume that word vectors
constitute rigid inputs fixed before composition,
often using a separate word-similarity task inde-
pendent of composition. The only exception is
Socher et al. (2012), where the values in the in-
put vectors are re-estimated during composition
parameter optimization. Our re-implementation of
their method assumes rigid input vectors instead.

Composition operations Mitchell and Lapata
(2008; 2010) present a set of simple but effec-
tive models in which each component of the output
vector is a function of the corresponding compo-
nents of the inputs. Given input vectors ~u and ~v,
the weighted additive model (Add) returns their
weighted sum: ~p = w1~u + w2~v. In the dilation
model (Dil), the output vector is obtained by de-
composing one of the input vectors, say ~v, into
a vector parallel to ~u and an orthogonal vector,
and then dilating only the parallel vector by a fac-
tor λ before re-combining (formula in Table 1).
Mitchell and Lapata also propose a simple mul-
tiplicative model in which the output components
are obtained by component-wise multiplication of
the corresponding input components. We intro-
duce here its natural weighted extension (Mult),
that takes w1 and w2 powers of the components
before multiplying, such that each phrase compo-
nent pi is given by: pi = uw1

i vw2
i .
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Guevara (2010) and Zanzotto et al. (2010) ex-
plore a full form of the additive model (Fulladd),
where the two vectors entering a composition pro-
cess are pre-multiplied by weight matrices before
being added, so that each output component is
a weighted sum of all input components: ~p =
W1~u + W2~v.

Baroni and Zamparelli (2010) and Coecke et
al. (2010), taking inspiration from formal seman-
tics, characterize composition as function applica-
tion. For example, Baroni and Zamparelli model
adjective-noun phrases by treating the adjective
as a function from nouns onto (modified) nouns.
Given that linear functions can be expressed by
matrices and their application by matrix-by-vector
multiplication, a functor (such as the adjective) is
represented by a matrix Au to be composed with
the argument vector ~v (e.g., the noun) by multi-
plication, returning the lexical function (Lexfunc)
representation of the phrase: ~p = Au~v.

The method proposed by Socher et al. (2012)
(see Socher et al. (2011) for an earlier proposal
from the same team) can be seen as a combination
and non-linear extension of Fulladd and Lexfunc
(that we thus call Fulllex) in which both phrase
elements act as functors (matrices) and arguments
(vectors). Given input terms u and v represented
by (~u, Au) and (~v, Av), respectively, their com-
position vector is obtained by applying first a lin-
ear transformation and then the hyperbolic tangent
function to the concatenation of the products Au~v
and Av~u (see Table 1 for the equation). Socher
and colleagues also present a way to construct ma-
trix representations for specific phrases, needed
to scale this composition method to larger con-
stituents. We ignore it here since we focus on the
two-word case.

Estimating composition parameters If we
have manually labeled example data for a target
task, we can use supervised machine learning to
optimize parameters. Mitchell and Lapata (2008;
2010), since their models have just a few param-
eters to optimize, use a direct grid search for the
parameter setting that performs best on the train-
ing data. Socher et al. (2012) train their models
using multinomial softmax classifiers.

If our goal is to develop a cDSM optimized for
a specific task, supervised methods are undoubt-
edly the most promising approach. However, ev-
ery time we face a new task, parameters must be
re-estimated from scratch, which goes against the

idea of distributional semantics as a general sim-
ilarity resource (Baroni and Lenci, 2010). More-
over, supervised methods are highly composition-
model-dependent, and for models such as Fulladd
and Lexfunc we are not aware of proposals about
how to estimate them in a supervised manner.

Socher et al. (2011) propose an autoencoding
strategy. Given a decomposition function that re-
constructs the constituent vectors from a phrase
vector (e.g., it re-generates green and jacket vec-
tors from the composed green jacket vector), the
composition parameters minimize the distance be-
tween the original and reconstructed input vectors.
This method does not require hand-labeled train-
ing data, but it is restricted to cDSMs for which
an appropriate decomposition function can be de-
fined, and even in this case the learning problem
might lack a closed-form solution.

Guevara (2010) and Baroni and Zamparelli
(2010) optimize parameters using examples of
how the output vectors should look like that are
directly extracted from the corpus. To learn, say, a
Lexfunc matrix representing the adjective green,
we extract from the corpus example vectors of
〈N, green N〉 pairs that occur with sufficient fre-
quency (〈car, green car〉, 〈jacket, green jacket〉,
〈politician, green politician〉, . . . ). We then use
least-squares methods to find weights for the green
matrix that minimize the distance between the
green N vectors generated by the model given the
input N and the corresponding corpus-observed
phrase vectors. This is a very general approach, it
does not require hand-labeled data, and it has the
nice property that corpus-harvested phrase vec-
tors provide direct evidence of the polysemous be-
haviour of functors (the green jacket vs. politician
contexts, for example, will be very different). In
the next section, we extend the corpus-extracted
phrase approximation method to all cDSMs de-
scribed above, with closed-form solutions for all
but the Fulllex model, for which we propose a
rapidly converging iterative estimation method.

3 Least-squares model estimation using
corpus-extracted phrase vectors3

Notation Given two matrices X, Y ∈ Rm×n we
denote their inner product by 〈X, Y 〉, (〈X, Y 〉 =∑m

i=1

∑n
j=1 xijyij). Similarly we denote by

〈u, v〉 the dot product of two vectors u, v ∈ Rm×1

and by ||u|| the Euclidean norm of a vector:
3Proofs omitted due to space constraints.
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||u|| = 〈u, u〉1/2. We use the following Frobe-
nius norm notation: ||X||F = 〈X, X〉1/2. Vectors
are assumed to be column vectors and we use xi

to stand for the i-th (m × 1)-dimensional column
of matrix X . We use [X, Y ] ∈ Rm×2n to denote
the horizontal concatenation of two matrices while[

X
Y

]
∈ R2m×n is their vertical concatenation.

General problem statement We assume vocab-
ularies of constituents U , V and that of resulting
phrases P . The training data consist of a set of
tuples (u, v, p) where p stands for the phrase asso-
ciated to the constituents u and v:

T = {(ui, vi, pi)|(ui, vi, pi) ∈ U×V×P, 1 ≤ i ≤ k}

We build the matrices U, V, P ∈ Rm×k by con-
catenating the vectors associated to the training
data elements as columns.4

Given the training data matrices, the general
problem can be stated as:

θ∗ = arg min
θ

||P − fcompθ(U, V )||F

where fcompθ is a composition function and θ
stands for a list of parameters that this composition
function is associated to. The composition func-
tions are defined: fcompθ : Rm×1 × Rm×1 →
Rm×1 and fcompθ(U, V ) stands for their natural
extension when applied on the individual columns
of the U and V matrices.

Add The weighted additive model returns the
sum of the composing vectors which have been
re-weighted by some scalars w1 and w2: ~p =
w1~u + w2~v. The problem becomes:

w∗
1, w

∗
2 = arg min

w1,w2∈R
||P − w1U − w2V ||F

The optimal w1 and w2 are given by:

w∗
1 =

||V ||2F 〈U,P 〉 − 〈U, V 〉〈V, P 〉
||U ||2F ||V ||2F − 〈U, V 〉2

(1)

w∗
2 =

||U ||2F 〈V, P 〉 − 〈U, V 〉〈U,P 〉
||U ||2F ||V ||2F − 〈U, V 〉2

(2)

4In reality, not all composition models require u, v and p
to have the same dimensionality.

Dil Given two vectors ~u and ~v, the dilation
model computes the phrase vector ~p = ||~u||2~v +
(λ − 1)〈~u,~v〉~u where the parameter λ is a scalar.
The problem becomes:

λ∗ = arg min
λ∈R

||P −V D||ui||2−UD(λ−1)〈ui,vi〉||F

where by D||ui||2 and D(λ−1)〈ui,vi〉 we denote
diagonal matrices with diagonal elements (i, i)
given by ||ui||2 and (λ − 1)〈ui, vi〉 respectively.
The solution is:

λ∗ = 1−
∑k

i=1〈ui, (||ui||2vi − pi)〉〈ui, vi〉∑k
i=1〈ui, vi〉2||ui||2

Mult Given two vectors ~u and ~v, the weighted
multiplicative model computes the phrase vector
~p = ~uw1 � ~vw2 where � stands for component-
wise multiplication. We assume for this model that
U, V, P ∈ Rm×n

++ , i.e. that the entries are strictly
larger than 0: in practice we add a small smooth-
ing constant to all elements to achieve this (Mult
performs badly on negative entries, such as those
produced by SVD). We use the w1 and w2 weights
obtained when solving the much simpler related
problem:5

w∗
1, w

∗
2 = arg min

w1,w2∈R
||log(P )−log(U.∧w1�V.∧w2)||F

where .∧ stands for the component-wise power op-
eration. The solution is the same as that for Add,
given in equations (1) and (2), with U → log(U),
V → log(V ) and P → log(P ).

Fulladd The full additive model assumes the
composition of two vectors to be ~p = W1~u+W2~v
where W1,W2 ∈ Rm×m. The problem is:

[W1,W2]∗ = arg min
[W1,W2]∈Rm×2m

||P−[W1W2]
[
U

V

]
||

This is a multivariate linear regression prob-
lem (Hastie et al., 2009) for which the least
squares estimate is given by: [W1,W2] =
((XT X)−1XT Y )T where we use X = [UT , V T ]
and Y = P T .

Lexfunc The lexical function composition
method learns a matrix representation for each
functor (given by U here) and defines composition
as matrix-vector multiplication. More precisely:

5In practice training Mult this way achieves similar or
lower errors in comparison to Add.

53



~p = Au~v where Au is a matrix associated to each
functor u ∈ U . We denote by Tu the training
data subset associated to an element u, which
contains only tuples which have u as first element.
Learning the matrix representations amounts to
solving the set of problems:

Au = arg min
Au∈Rm×m

||Pu −AuVu||

for each u ∈ U where Pu, Vu ∈ Rm×|Tu|

are the matrices corresponding to the Tu train-
ing subset. The solutions are given by: Au =
((VuV T

u )−1VuP T
u )T . This composition function

does not use the functor vectors.

Fulllex This model can be seen as a generaliza-
tion of Lexfunc which makes no assumption on
which of the constituents is a functor, so that both
words get a matrix and a vector representation.
The composition function is:

~p = tanh([W1,W2]
[
Au~v

Av~u

]
)

where Au and Av are the matrices associated to
constituents u and v and [W1,W2] ∈ Rm×2m.
The estimation problem is given in Figure 1.

This is the only composition model which does
not have a closed-form solution. We use a block
coordinate descent method, in which we fix each
of the matrix variables but one and solve the corre-
sponding least-squares linear regression problem,
for which we can use the closed-form solution.
Fixing everything but [W1,W2]:

[W ∗
1 ,W ∗

2 ] = ((XT X)−1XT Y )T

X =
[
[Au1 ~v1, ..., Auk

~vk]
[Av1 ~u1, ..., Avk

~uk]

]T

Y = atanh(P T )

Fixing everything but Au for some element u,
the objective function becomes:

||atanh(Pu)−W1AuVu−W2[Av1~u, ..., Avk′~u]||F

where v1...vk′ ∈ V are the elements occurring
with u in the training data and Vu the matrix result-
ing from their concatenation. The update formula
for the Au matrices becomes:

A∗
u = W−1

1 ((XT X)−1XT Y )T

X = V T
u

Y = (atanh(Pu)−W2[Av1~u, ..., Avk′~u])T

In all our experiments, Fulllex estimation con-
verges after very few passes though the matrices.
Despite the very large number of parameters of
this model, when evaluating on the test data we ob-
serve that using a higher dimensional space (such
as 200 dimensions) still performs better than a
lower dimensional one (e.g., 50 dimensions).

4 Evaluation setup and implementation

4.1 Datasets

We evaluate the composition methods on three
phrase-based benchmarks that test the models on
a variety of composition processes and similarity-
based tasks.

Intransitive sentences The first dataset, intro-
duced by Mitchell and Lapata (2008), focuses on
simple sentences consisting of intransitive verbs
and their noun subjects. It contains a total of
120 sentence pairs together with human similar-
ity judgments on a 7-point scale. For exam-
ple, conflict erupts/conflict bursts is scored 7, skin
glows/skin burns is scored 1. On average, each
pair is rated by 30 participants. Rather than eval-
uating against mean scores, we use each rating as
a separate data point, as done by Mitchell and La-
pata. We report Spearman correlations between
human-assigned scores and model cosine scores.

Adjective-noun phrases Turney (2012) intro-
duced a dataset including both noun-noun com-
pounds and adjective-noun phrases (ANs). We
focus on the latter, and we frame the task dif-
ferently from Turney’s original definition due to
data sparsity issues.6 In our version, the dataset
contains 620 ANs, each paired with a single-
noun paraphrase. Examples include: archaeolog-
ical site/dig, spousal relationship/marriage and
dangerous undertaking/adventure. We evaluate a
model by computing the cosine of all 20K nouns in
our semantic space with the target AN, and look-
ing at the rank of the correct paraphrase in this list.
The lower the rank, the better the model. We re-
port median rank across the test items.

Determiner phrases The last dataset, intro-
duced in Bernardi et al. (2013), focuses on a
class of grammatical terms (rather than content

6Turney used a corpus of about 50 billion words, almost
20 times larger than ours, and we have very poor or no cov-
erage of many original items, making the “multiple-choice”
evaluation proposed by Turney meaningless in our case.
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W ∗
1 ,W ∗

2 , A∗
u1

, ..., A∗
v1

, ... =arg min
Rm×m

||atanh(P T )− [W1,W2]
[
[Au1 ~v1, ..., Auk

~vk]
[Av1 ~u1, ..., Avk

~uk]

]
||F

=arg min
Rm×m

||atanh(P T )−W1[Au1 ~v1, ..., Auk
~vk]−W2[Av1 ~u1, ..., Avk

~uk]||F

Figure 1: Fulllex estimation problem.

words), namely determiners. It is a multiple-
choice test where target nouns (e.g., amnesia)
must be matched with the most closely related
determiner(-noun) phrases (DPs) (e.g., no mem-
ory). The task differs from the previous one also
because here the targets are single words, and the
related items are composite. There are 173 tar-
get nouns in total, each paired with one correct
DP response, as well as 5 foils, namely the de-
terminer (no) and noun (memory) from the correct
response and three more DPs, two of which con-
tain the same noun as the correct phrase (less mem-
ory, all memory), the third the same determiner
(no repertoire). Other examples of targets/related-
phrases are polysemy/several senses and tril-
ogy/three books. The models compute cosines be-
tween target noun and responses and are scored
based on their accuracy at ranking the correct
phrase first.

4.2 Input vectors

We extracted distributional semantic vectors us-
ing as source corpus the concatenation of ukWaC,
Wikipedia (2009 dump) and BNC, 2.8 billion to-
kens in total.7 We use a bag-of-words approach
and we count co-occurrences within sentences and
with a limit of maximally 50 words surrounding
the target word. By tuning on the MEN lexical
relatedness dataset,8 we decided to use the top
10K most frequent content lemmas as context fea-
tures (vs. top 10K inflected forms), and we experi-
mented with positive Pointwise and Local Mutual
Information (Evert, 2005) as association measures
(vs. raw counts, log transform and a probability
ratio measure) and dimensionality reduction by
Non-negative Matrix Factorization (NMF, Lee and
Seung (2000)) and Singular Value Decomposition
(SVD, Golub and Van Loan (1996)) (both outper-
forming full dimensionality vectors on MEN). For

7http://wacky.sslmit.unibo.it;
http://www.natcorp.ox.ac.uk

8http://clic.cimec.unitn.it/∼elia.
bruni/MEN

both reduction techniques, we varied the number
of dimensions to be preserved from 50 to 300 in
50-unit intervals. As Local Mutual Information
performed very poorly across composition exper-
iments and other parameter choices, we dropped
it. We will thus report, for each experiment and
composition method, the distribution of the rele-
vant performance measure across 12 input settings
(NMF vs. SVD times 6 dimensionalities). How-
ever, since the Mult model, as expected, worked
very poorly when the input vectors contained neg-
ative values, as is the case with SVD, for this
model we report result distributions across the 6
NMF variations only.

4.3 Composition model estimation

Training by approximating the corpus-extracted
phrase vectors requires corpus-based examples of
input (constituent word) and output (phrase) vec-
tors for the composition processes to be learned.
In all cases, training examples are simply selected
based on corpus frequency. For the first experi-
ment, we have 42 distinct target verbs and a total
of ≈20K training instances, that is, 〈〈noun, verb〉,
noun-verb〉 tuples (505 per verb on average). For
the second experiment, we have 479 adjectives and
≈1 million 〈〈adjective, noun〉, adjective-noun〉
training tuples (2K per adjective on average). In
the third, 50 determiners and 50K 〈〈determiner,
noun〉, determiner-noun〉 tuples (1K per deter-
miner). For all models except Lexfunc and Ful-
llex, training examples are pooled across target el-
ements to learn a single set of parameters. The
Lexfunc model takes only argument word vectors
as inputs (the functors in the three datasets are
verbs, adjectives and determiners, respectively). A
separate weight matrix is learned for each func-
tor, using the corresponding training data.9 The
Fulllex method jointly learns distinct matrix rep-
resentations for both left- and right-hand side con-

9For the Lexfunc model we have experimented with least
squeares regression with and without regularization, obtain-
ing similar results.
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stituents. For this reason, we must train this model
on balanced datasets. More precisely, for the in-
transitive verb experiments, we use training data
containing noun-verb phrases in which the verbs
and the nouns are present in the lists of 1,500
most frequent verbs/nouns respectively, adding to
these the verbs and nouns present in our dataset.
We obtain 400K training tuples. We create the
training data similarity for the other datasets ob-
taining 440K adjective-noun and 50K determiner
phrase training tuples, respectively (we also exper-
imented with Fulllex trained on the same tuples
used for the other models, obtaining considerably
worse results than those reported). Finally, for Dil
we treat direction of stretching as a further param-
eter to be optimized, and find that for intransitives
it is better to stretch verbs, in the other datasets
nouns.

For the simple composition models for which
parameters consist of one or two scalars, namely
Add, Mult and Dil, we also tune the parame-
ters through 5-fold crossvalidation on the datasets,
directly optimizing the parameters on the target
tasks. For Add and Mult, we search w1, w2

through the crossproduct of the interval [0 : 5] in
0.2-sized steps. For Dil we use λ ∈ [0 : 20], again
in 0.2-sized steps.

5 Evaluation results

We begin with some remarks pertaining to the
overall quality of and motivation for corpus-
phrase-based estimation. In seven out of nine
comparisons of this unsupervised technique with
fully supervised crossvalidation (3 “simple” mod-
els –Add, Dil and Mult– times 3 test sets), there
was no significant difference between the two esti-
mation methods.10 Supervised estimation outper-
formed the corpus-phrase-based method only for
Dil on the intransitive sentence and AN bench-
marks, but crossvalidated Dil was outperformed
by at least one phrase-estimated simple model on
both benchmarks.

The rightmost boxes in the panels of Fig-
ure 2 depict the performance distribution for us-
ing phrase vectors directly extracted from the
corpus to tackle the various tasks. This non-
compositional approach outperforms all composi-
tional methods in two tasks over three, and it is
one of the best approaches in the third, although

10Significance assessed through Tukey Honestly Signifi-
cant Difference tests (Abdi and Williams, 2010), α = 0.05.

in all cases even its top scores are far from the
theoretical ceiling. Still, performance is impres-
sive, especially in light of the fact that the non-
compositional approach suffers of serious data-
sparseness problems. Performance on the intran-
sitive task is above state-of-the-art despite the fact
that for almost half of the cases one test phrase
is not in the corpus, resulting in 0 vectors and
consequently 0 similarity pairs. The other bench-
marks have better corpus-phrase coverage (nearly
perfect AN coverage; for DPs, about 90% correct
phrase responses are in the corpus), but many tar-
get phrases occur only rarely, leading to unreliable
distributional vectors. We interpret these results as
a good motivation for corpus-phrase-based estima-
tion. On the one hand they show how good these
vectors are, and thus that they are sensible targets
of learning. On the other hand, they do not suffice,
since natural language is infinitely productive and
thus no corpus can provide full phrase coverage,
justifying the whole compositional enterprise.

The other boxes in Figure 2 report the perfor-
mance of the composition methods trained by cor-
pus phrase approximation. Nearly all models are
significantly above chance in all tasks, except for
Fulladd on intransitive sentences. To put AN me-
dian ranks into perspective, consider that a median
rank as high as 8,300 has near-0 probability to oc-
cur by chance. For DP accuracy, random guessing
gets 0.17% accuracy.

Lexfunc emerges consistently as the best model.
On intransitive constructions, it significantly out-
performs all other models except Mult, but the dif-
ference approaches significance even with respect
to the latter (p = 0.071). On this task, Lexfunc’s
median correlation (0.26) is nearly equivalent to
the best correlation across a wide range of parame-
ters reported by Erk and Padó (2008) (0.27). In the
AN task, Lexfunc significantly outperforms Ful-
llex and Dil and, visually, its distribution is slightly
more skewed towards lower (better) ranks than any
other model. In the DP task, Lexfunc significantly
outperforms Add and Mult and, visually, most of
its distribution lies above that of the other mod-
els. Most importantly, Lexfunc is the only model
that is consistent across the three tasks, with all
other models displaying instead a brittle perfor-
mance pattern.11

Still, the top-performance range of all models
11No systematic trend emerged pertaining to the input vec-

tor parameters (SVD vs. NMF and retained dimension num-
ber).
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Figure 2: Boxplots displaying composition model performance distribution on three benchmarks, across
input vector settings (6 datapoints for Mult, 12 for all other models). For intransitive sentences, figure of
merit is Spearman correlation, for ANs median rank of correct paraphrase, and for DPs correct response
accuracy. The boxplots display the distribution median as a thick horizontal line within a box extending
from first to third quartile. Whiskers cover 1.5 of interquartile range in each direction from the box, and
extreme outliers outside this extended range are plotted as circles.

on the three tasks is underwhelming, and none of
them succeeds in exploiting compositionality to
do significantly better than using whatever phrase
vectors can be extracted from the corpus directly.
Clearly, much work is still needed to develop truly
successful cDSMs.

The AN results might look particularly worry-
ing, considering that even the top (lowest) median
ranks are above 100. A qualitative analysis, how-
ever, suggests that the actual performance is not
as bad as the numerical scores suggest, since of-
ten the nearest neighbours of the ANs to be para-
phrased are nouns that are as strongly related to
the ANs as the gold standard response (although
not necessarily proper paraphrases). For example,
the gold response to colorimetric analysis is col-
orimetry, whereas the Lexfunc (NMF, 300 dimen-
sions) nearest neighbour is chromatography; the
gold response to heavy particle is baryon, whereas
Lexfunc proposes muon; for melodic phrase the
gold is tune and Lexfunc has appoggiatura; for in-
door garden, the gold is hothouse but Lexfunc pro-
poses glasshouse (followed by the more sophisti-
cated orangery!), and so on and so forth.

6 Conclusion

We extended the unsupervised corpus-extracted
phrase approximation method of Guevara (2010)
and Baroni and Zamparelli (2010) to estimate

all known state-of-the-art cDSMs, using closed-
form solutions or simple iterative procedures in
all cases. Equipped with a general estimation ap-
proach, we thoroughly evaluated the cDSMs in
a comparable setting. The linguistically moti-
vated Lexfunc model of Baroni and Zamparelli
(2010) and Coecke et al. (2010) was the win-
ner across three composition tasks, also outper-
forming the more complex Fulllex model, our re-
implementation of Socher et al.’s (2012) compo-
sition method (of course, the composition method
is only one aspect of Socher et al.’s architecture).
All other composition methods behaved inconsis-
tently.

In the near future, we want to focus on improv-
ing estimation itself. In particular, we want to
explore ways to automatically select good phrase
examples for training, beyond simple frequency
thresholds. We tested composition methods on
two-word phrase benchmarks. Another natural
next step is to apply the composition rules recur-
sively, to obtain representations of larger chunks,
up to full sentences, coming, in this way, nearer to
the ultimate goal of compositional distributional
semantics.
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Abstract

We introduce a new 50-dimensional em-
bedding obtained by spectral clustering of
a graph describing the conceptual struc-
ture of the lexicon. We use the embedding
directly to investigate sets of antonymic
pairs, and indirectly to argue that func-
tion application in CVSMs requires not
just vectors but two transformations (cor-
responding to subject and object) as well.

1 Introduction

Commutativity is a fundamental property of vec-
tor space models. As soon as we encode king by
~k, queen by ~q, male by ~m, and female by ~f , if we
expect ~k ´ ~q “ ~m ´ ~f , as suggested in Mikolov
et al. (2013), we will, by commutativity, also ex-
pect ~k ´ ~m “ ~q ´ ~f ‘ruler, gender unspecified’.
When the meaning decomposition involves func-
tion application, commutativity no longer makes
sense: consider Victoria as ~qmEngland and Victor
as ~kmItaly. If the function application operator m
is simply another vector to be added to the rep-
resentation, the same logic would yield that Italy
is the male counterpart of female England. To
make matters worse, performing the same oper-
ations on Albert, ~kmEngland and Elena, ~qmItaly
would yield that Italy is the female counterpart of
male England.

Section 2 offers a method to treat antonymy in
continuous vector space models (CVSMs). Sec-
tion 3 describes a new embedding, 4lang, obtained
by spectral clustering from the definitional frame-
work of the Longman Dictionary of Contempo-
rary English (LDOCE, see Chapter 13 of McArtur
1998), and Section 4 shows how to solve the prob-
lem outlined above by treating m and n not as a
vectors but as transformations.

2 Diagnostic properties of additive
decomposition

The standard model of lexical decomposition
(Katz and Fodor, 1963) divides lexical meaning in
a systematic component, given by a tree of (gener-
ally binary) features, and an accidental component
they call the distinguisher. Figure 1 gives an ex-
ample.

bachelor

noun

(Animal)

(Male)

[young fur
seal when

without a mate
during the

breeding time]

(Human)

[who has the
first or lowest

academic
degree]

(Male)

[young knight
serving under

the standard of
another knight]

[who
has never
married]

Figure 1: Decomposition of lexical items to fea-
tures (Katz and Fodor, 1963)

This representation has several advantages: for
example bachelor3 ‘holder of a BA or BSc de-
gree’ neatly escapes being male by definition. We
tested which putative semantic features like GEN-
DER are captured by CVSMs. We assume that the
difference between two vectors, for antonyms, dis-
tills the actual property which is the opposite in
each member of a pair of antonyms. So, for ex-
ample, for a set of male and female words, such
as xking, queeny, xactor, actressy, etc., the differ-
ence between words in each pair should represent
the idea of gender. To test the hypothesis, we as-
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GOOD VERTICAL

safe out raise level
peace war tall short

pleasure pain rise fall
ripe green north south

defend attack shallow deep
conserve waste ascending descending

affirmative negative superficial profound
...

...
...

...

Table 1: Word pairs associated to features GOOD

and VERTICAL

sociated antonymic word pairs from the WordNet
(Miller, 1995) to 26 classes e.g. END/BEGINNING,
GOOD/BAD, . . . , see Table 1 and Table 3 for ex-
amples. The intuition to be tested is that the first
member of a pair relates to the second one in the
same way among all pairs associated to the same
feature. For k pairs ~xi, ~yi we are looking for a
common vector ~a such that

~xi ´ ~yi “ ~a (1)

Given the noise in the embedding, it would be
naive in the extreme to assume that (1) can be a
strict identity. Rather, our interest is with the best
~a which minimizes the error

Err “
ÿ

i

||~xi ´ ~yi ´ ~a||
2 (2)

As is well known, E will be minimal when ~a is
chosen as the arithmetic mean of the vectors ~xi ´
~yi. The question is simply the following: is the
minimal Em any better than what we could expect
from a bunch of random ~xi and ~yi?

Since the sets are of different sizes, we took 100
random pairings of the words appearing on either
sides of the pairs to estimate the error distribution,
computing the minima of

Errrand “
ÿ

i

||~xi
1
´ ~y1i ´ ~a||

2 (3)

For each distribution, we computed the mean
and the variance ofErrrand, and checked whether
the error of the correct pairing, Err is at least 2 or
3 σs away from the mean.

Table 2 summarizes our results for three embed-
dings: the original and the scaled HLBL (Mnih
and Hinton, 2009) and SENNA (Collobert et al.,
2011). The first two columns give the number of
pairs considered for a feature and the name of the

PRIMARY ANGULAR

leading following square round
preparation resolution sharp flat

precede follow curved straight
intermediate terminal curly straight
antecedent subsequent angular rounded

precede succeed sharpen soften
question answer angularity roundness

...
...

...
...

Table 3: Features that fail the test

feature. For each of the three embeddings, we re-
port the errorErr of the unpermuted arrangement,
the mean m and variance σ of the errors obtained
under random permutations, and the ratio

r “
|m´ Err|

σ
.

Horizontal lines divide the features to three
groups: for the upper group, r ě 3 for at least
two of the three embeddings, and for the middle
group r ě 2 for at least two.

For the features above the first line we conclude
that the antonymic relations are well captured by
the embeddings, and for the features below the
second line we assume, conservatively, that they
are not. (In fact, looking at the first column of Ta-
ble 2 suggests that the lack of significance at the
bottom rows may be due primarily to the fact that
WordNet has more antonym pairs for the features
that performed well on this test than for those fea-
tures that performed badly, but we didn’t want to
start creating antonym pairs manually.) For exam-
ple, the putative sets in Table 3 does not meet the
criterion and gets rejected.

3 Embedding based on conceptual
representation

The 4lang embedding is created in a manner that
is notably different from the others. Our input is a
graph whose nodes are concepts, with edges run-
ning from A to B iff B is used in the definition of
A. The base vectors are obtained by the spectral
clustering method pioneered by (Ng et al., 2001):
the incidence matrix of the conceptual network is
replaced by an affinity matrix whose ij-th element
is formed by computing the cosine distance of the
ith and jth row of the original matrix, and the first
few (in our case, 100) eigenvectors are used as a
basis.

Since the concept graph includes the entire
Longman Defining Vocabulary (LDV), each LDV
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# feature HLBL original HLBL scaled SENNA
pairs name Err m σ r Err m σ r Err m σ r

156 good 1.92 2.29 0.032 11.6 4.15 4.94 0.0635 12.5 50.2 81.1 1.35 22.9
42 vertical 1.77 2.62 0.0617 13.8 3.82 5.63 0.168 10.8 37.3 81.2 2.78 15.8
49 in 1.94 2.62 0.0805 8.56 4.17 5.64 0.191 7.68 40.6 82.9 2.46 17.2
32 many 1.56 2.46 0.0809 11.2 3.36 5.3 0.176 11 43.8 76.9 3.01 11
65 active 1.87 2.27 0.0613 6.55 4.02 4.9 0.125 6.99 50.2 84.4 2.43 14.1
48 same 2.23 2.62 0.0684 5.63 4.82 5.64 0.14 5.84 49.1 80.8 2.85 11.1
28 end 1.68 2.49 0.124 6.52 3.62 5.34 0.321 5.36 34.7 76.7 4.53 9.25
32 sophis 2.34 2.76 0.105 4.01 5.05 5.93 0.187 4.72 43.4 78.3 2.9 12
36 time 1.97 2.41 0.0929 4.66 4.26 5.2 0.179 5.26 51.4 82.9 3.06 10.3
20 progress 1.34 1.71 0.0852 4.28 2.9 3.72 0.152 5.39 47.1 78.4 4.67 6.7
34 yes 2.3 2.7 0.0998 4.03 4.96 5.82 0.24 3.6 59.4 86.8 3.36 8.17
23 whole 1.96 2.19 0.0718 3.2 4.23 4.71 0.179 2.66 52.8 80.3 3.18 8.65
18 mental 1.86 2.14 0.0783 3.54 4.02 4.6 0.155 3.76 51.9 73.9 3.52 6.26
14 gender 1.27 1.68 0.126 3.2 2.74 3.66 0.261 3.5 19.8 57.4 5.88 6.38
12 color 1.2 1.59 0.104 3.7 2.59 3.47 0.236 3.69 46.1 70 5.91 4.04
17 strong 1.41 1.69 0.0948 2.92 3.05 3.63 0.235 2.48 49.5 74.9 3.34 7.59
16 know 1.79 2.07 0.0983 2.88 3.86 4.52 0.224 2.94 47.6 74.2 4.29 6.21
12 front 1.48 1.95 0.17 2.74 3.19 4.21 0.401 2.54 37.1 63.7 5.09 5.23
22 size 2.13 2.69 0.266 2.11 4.6 5.86 0.62 2.04 45.9 73.2 4.39 6.21
10 distance 1.6 1.76 0.0748 2.06 3.45 3.77 0.172 1.85 47.2 73.3 4.67 5.58
10 real 1.45 1.61 0.092 1.78 3.11 3.51 0.182 2.19 44.2 64.2 5.52 3.63
14 primary 2.22 2.43 0.154 1.36 4.78 5.26 0.357 1.35 59.4 80.9 4.3 5

8 single 1.57 1.82 0.19 1.32 3.38 3.83 0.32 1.4 40.3 70.7 6.48 4.69
8 sound 1.65 1.8 0.109 1.36 3.57 3.88 0.228 1.37 46.2 62.7 6.17 2.67
7 hard 1.46 1.58 0.129 0.931 3.15 3.41 0.306 0.861 42.5 60.4 8.21 2.18

10 angular 2.34 2.45 0.203 0.501 5.05 5.22 0.395 0.432 46.3 60 6.18 2.2

Table 2: Error of approximating real antonymic pairs (Err), mean and standard deviation (m,σ) of error
with 100 random pairings, and the ratio r “ |Err´m|

σ for different features and embeddings

element wi corresponds to a base vector bi. For
the vocabulary of the whole dictionary, we sim-
ply take the Longman definition of any word w,
strip out the stopwords (we use a small list of 19
elements taken from the top of the frequency dis-
tribution), and form V pwq as the sum of the bi for
the wis that appeared in the definition of w (with
multiplicity).

We performed the same computations based on
this embedding as in Section 2: the results are pre-
sented in Table 4. Judgment columns under the
four three embeddings in the previous section and
4lang are highly correlated, see table 5.

Unsurprisingly, the strongest correlation is be-
tween the original and the scaled HLBL results.
Both the original and the scaled HLBL correlate
notably better with 4lang than with SENNA, mak-
ing the latter the odd one out.

4 Applicativity

So far we have seen that a dictionary-based em-
bedding, when used for a purely semantic task, the
analysis of antonyms, does about as well as the
more standard embeddings based on cooccurrence
data. Clearly, a CVSM could be obtained by the
same procedure from any machine-readable dic-

# feature 4lang
pairs name Err m σ r

49 in 0.0553 0.0957 0.00551 7.33
156 good 0.0589 0.0730 0.00218 6.45

42 vertical 0.0672 0.1350 0.01360 4.98
34 yes 0.0344 0.0726 0.00786 4.86
23 whole 0.0996 0.2000 0.02120 4.74
28 end 0.0975 0.2430 0.03410 4.27
32 many 0.0516 0.0807 0.00681 4.26
14 gender 0.0820 0.2830 0.05330 3.76
36 time 0.0842 0.1210 0.00992 3.74
65 active 0.0790 0.0993 0.00553 3.68
20 progress 0.0676 0.0977 0.00847 3.56
18 mental 0.0486 0.0601 0.00329 3.51
48 same 0.0768 0.0976 0.00682 3.05
22 size 0.0299 0.0452 0.00514 2.98
16 know 0.0598 0.0794 0.00706 2.77
32 sophis 0.0665 0.0879 0.00858 2.50
12 front 0.0551 0.0756 0.01020 2.01
10 real 0.0638 0.0920 0.01420 1.98
8 single 0.0450 0.0833 0.01970 1.95
7 hard 0.0312 0.0521 0.01960 1.06

10 angular 0.0323 0.0363 0.00402 0.999
12 color 0.0564 0.0681 0.01940 0.600

8 sound 0.0565 0.0656 0.01830 0.495
17 strong 0.0693 0.0686 0.01111 0.0625
14 primary 0.0890 0.0895 0.00928 0.0529
10 distance 0.0353 0.0351 0.00456 0.0438

Table 4: The results on 4lang
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HLBL HLBL SENNA 4lang
original scaled

HLBL original 1 0.925 0.422 0.856
HLBL scaled 0.925 1 0.390 0.772
SENNA 0.422 0.390 1 0.361
4lang 0.856 0.772 0.361 1

Table 5: Correlations between judgments based on
different embeddings

tionary. Using LDOCE is computationally advan-
tageous in that the core vocabulary is guaranteed
to be very small, but finding the eigenvectors for
an 80k by 80k sparse matrix would also be within
CPU reach. The main advantage of starting with a
conceptual graph lies elsewhere, in the possibility
of investigating the function application issue we
started out with.

The 4lang conceptual representation relies on a
small number of basic elements, most of which
correspond to what are called unary predicates in
logic. We have argued elsewhere (Kornai, 2012)
that meaning of linguistic expressions can be for-
malized using predicates with at most two argu-
ments (there are no ditransitive or higher arity
predicates on the semantic side). The x and y
slots of binary elements such as x has y or x kill
y, (Kornai and Makrai 2013) receive distinct la-
bels called NOM and ACC in case grammar (Fill-
more, 1977); 1 and 2 in relational grammar (Perl-
mutter, 1983); or AGENT and PATIENT in linking
theory (Ostler, 1979). The label names themselves
are irrelevant, what matters is that these elements
are not part of the lexicon the same way as the
words are, but rather constitute transformations of
the vector space.

Here we will use the binary predicate x has y
to reformulate the puzzle we started out with, an-
alyzing queen of England, king of Italy etc. in a
compositional (additive) manner, but escaping the
commutativity problem. For the sake of concrete-
ness we use the traditional assumption that it is
the king who possesses the realm and not the other
way around, but what follows would apply just as
well if the roles were reversed. What we are inter-
ested in is the asymmetry of expressions like Al-
bert has England or Elena has Italy, in contrast to
largely symmetric predicates. Albert marries Vic-
toria will be true if and only if Victoria marries
Albert is true, but from James has a martini it does
not follow that ?A martini has James.

While the fundamental approach of CVSM is
quite correct in assuming that nouns (unaries)
and verbs (binaries) can be mapped on the same
space, we need two transformations T1 and T2

to regulate the linking of arguments. A form
like James kills has James as agent, so we com-
pute V (James)`T1V (kill), while kills James is ob-
tained as V (James)`T2V (kill). The same two
transforms can distinguish agent and patient rel-
atives as in the man that killed James versus the
man that James killed.

Such forms are compositional, and in languages
that have overt case markers, even ‘surface com-
positional’ (Hausser, 1984). All input and outputs
are treated as vectors in the same space where the
atomic lexical entries get mapped, but the applica-
tive paradox we started out with goes away. As
long as the transforms T1 (n) and T2 (m) take dif-
ferent values on kill, has, or any other binary, the
meanings are kept separate.

Acknowledgments

Makrai did the work on antonym set testing,
Nemeskey built the embedding, Kornai advised.
We would like to thank Zsófia Tardos (BUTE) and
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A. Tanács and V. Vincze, editors, IX. Magyar
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Abstract

This paper presents a comparative study
of 5 different types of Word Space Mod-
els (WSMs) combined with 4 different
compositionality measures applied to the
task of automatically determining seman-
tic compositionality of word expressions.
Many combinations of WSMs and mea-
sures have never been applied to the task
before.

The study follows Biemann and Gies-
brecht (2011) who attempted to find a list
of expressions for which the composition-
ality assumption – the meaning of an ex-
pression is determined by the meaning of
its constituents and their combination –
does not hold. Our results are very promis-
ing and can be appreciated by those inter-
ested in WSMs, compositionality, and/or
relevant evaluation methods.

1 Introduction

Our understanding of WSM is in agreement with
Sahlgren (2006): “The word space model is a
computational model of word meaning that uti-
lizes the distributional patterns of words collected
over large text data to represent semantic similar-
ity between words in terms of spatial proximity”.
There are many types of WSMs built by different
algorithms. WSMs are based on the Harris distri-
butional hypothesis (Harris, 1954), which assumes
that words are similar to the extent to which they
share similar linguistic contexts. WSM can be
viewed as a set of words associated with vectors
representing contexts in which the words occur.
Then, similar vectors imply (semantic) similarity
of the words and vice versa. Consequently, WSMs

provide a means to find words semantically simi-
lar to a given word. This capability of WSMs is
exploited by many Natural Language Processing
(NLP) applications as listed e.g. by Turney and
Pantel (2010).

This study follows Biemann and Giesbrecht
(2011), who attempted to find a list of non-
compositional expressions whose meaning is not
fully determined by the meaning of its con-
stituents and their combination. The task turned
out to be frustratingly hard (Johannsen et al.,
2011). Biemann’s idea and motivation is that non-
compositional expressions could be treated as sin-
gle units in many NLP applications such as In-
formation Retrieval (Acosta et al., 2011) or Ma-
chine Translation (Carpuat and Diab, 2010). We
extend this motivation by stating that WSMs could
also benefit from a set of non-compositional ex-
pressions. Specifically, WSMs could treat se-
mantically non-compositional expressions as sin-
gle units. As an example, consider “kick the
bucket”, “hot dog”, or “zebra crossing”. Treat-
ing such expressions as single units might improve
the quality of WSMs since the neighboring words
of these expressions should not be related to their
constituents (“kick”, “bucket”, “dog” or “zebra”),
but instead to the whole expressions.

Recent works, including that of Lin (1999),
Baldwin et al. (2003), Biemann and Giesbrecht
(2011), Johannsen et al. (2011), Reddy et al.
(2011a), Krčmář et al. (2012), and Krčmář et al.
(2013), show the applicability of WSMs in deter-
mining the compositionality of word expressions.
The proposed methods exploit various types of
WSMs combined with various measures for de-
termining the compositionality applied to various
datasets. First, this leads to non-directly compa-
rable results and second, many combinations of
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WSMs and measures have never before been ap-
plied to the task. The main contribution and nov-
elty of our study lies in systematic research of
several basic and also advanced WSMs combined
with all the so far, to the best of our knowledge,
proposed WSM-based measures for determining
the semantic compositionality.

The explored WSMs, described in more detail
in Section 2, include the Vector Space Model,
Latent Semantic Analysis, Hyperspace Analogue
to Language, Correlated Occurrence Analogue to
Lexical Semantics, and Random Indexing. The
measures, including substitutability, endocentric-
ity, compositionality, and neighbors-in-common-
based, are described in detail in Section 3. Sec-
tion 4 describes our experiments performed on
the manually annotated datasets – Distributional
Semantics and Compositionality dataset (DISCO)
and the dataset built by Reddy et al. (2011a). Sec-
tion 5 summarizes the results and Section 6 con-
cludes the paper.

2 Word Space Models

The simplest and oldest types of WSMs1 are the
Vector Space Model (VSM) and Hyperspace Ana-
logue to Language (HAL). More recent and ad-
vanced models include Latent Semantic Analy-
sis (LSA), which is based on VSM, and Corre-
lated Occurrence Analogue to Lexical Semantics
(COALS), which originates from HAL. Random
Indexing (RI) is WSM joining the principles of
LSA and HAL. Many other WSMs have been pro-
posed too. Their description is outside the scope
of this paper and can be found e.g. in Turney and
Pantel (2010) or Jurgens and Stevens (2010).

VSM is based on the assumption that similar (re-
lated) words tend to occur in the same documents.2

VSM stores occurrence counts of all word types
in documents a given corpus in a co-occurrence
matrix C. The row vectors of the matrix corre-
spond to the word types and the columns to the
documents in the corpus. The numbers of occur-
rences cij in C are usually weighted by the prod-
uct of the local and global weighting functions
(Nakov et al., 2001). The local function weights
cij by the same mathematical function; typically
none (further denoted as no), log(cij + 1) (de-

1WSMs are also referred to as distributional models of
semantics, vector space models, or semantic spaces.

2VSM was originally developed for the SMART informa-
tion retrieval system (Salton, 1971).

noted as log) or √cij (denoted as sqrt). The
purpose of local weighting is to lower the im-
portance of highly occurring words in the docu-
ment. The global function weights every value
in row i of C by the same value calculated for
row i. Typically: none (denoted as No), In-
verse Document Frequency (denoted as Idf ) or
a function referred to as Entropy (Ent). Idf
is calculated as 1 + log(ndocs/df(i)) and Ent
as 1 + {

∑
j p(i, j) log p(i, j)}/ log ndocs, where

ndocs is the number of documents in the corpora,
df(i) is the number of documents containing word
type i, and p(i, j) is the probability of occurrence
of word type i in document j.

LSA builds on VSM and was introduced by
Landauer and Dumais (1997). The LSA algo-
rithm works with the same co-occurrence matrix
C which can be weighted in the same manner as
in VSM. The matrix is than transformed by Sin-
gular Value Decomposition (SVD) (Deerwester et
al., 1990) into C. The purpose of SVD is to
project the row vectors and column vectors of C
into a lower-dimensional space and thus bring the
vectors of word types and vectors of documents,
respectively, with similar meanings near to each
other.3 The output number of dimensions is a pa-
rameter of SVD and typically ranges from 200 to
1000 (Landauer and Dumais, 1997; Rohde et al.,
2005).

HAL was first explored by Lund and Burgess
(1996). It differs from VSM and LSA in that it
only exploits neighboring words as contexts for
word types. HAL processes the corpus by moving
a sliding double-sided window with a size rang-
ing from 1 to 5 around the word type in focus
and accumulating the weighted co-occurrences of
the preceding and following words into a matrix.
Typically, the linear weighting function is used
to ensure that the occurrences of words which
are closer to the word type in focus are more
significant. The dimensions of the resulting co-
occurrence matrix are of size |V | and 2|V |, where
V denotes the vocabulary consisting of all the
word types occurring in the processed corpora. Fi-
nally, the HAL co-occurrence matrix can be re-
duced by retaining the most informative columns
only. The columns with the highest values of en-
tropy (−

∑
j pj log pj , where pj denotes the prob-

3In this way, LSA is able to capture higher-order co-
occurrences.
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ability of a word in the investigated column j) can
be considered as the most informative. The alter-
natives and their description can be found e.g. in
Song et al. (2004).

COALS was introduced by Rohde et al. (2005).
Compared to HAL, COALS also processes a cor-
pus by using a sliding window and linear weight-
ing, but differs in several aspects: the window size
of COALS is 4 and this value is fixed; COALS
does not distinguish between the preceding and
following words and treats them equally; applying
COALS supposes that all but the most frequent m
columns reflecting the most common open-class
words are discarded; COALS transforms weighted
counts in the co-occurrence matrix in a special
way (all the word pair correlations are calculated,
negative values are set to 0, and non-negative ones
are square rooted – corr); and optionally, Singu-
lar Value Decomposition (Deerwester et al., 1990)
can be applied to the COALS co-occurrence ma-
trix.

RI is described in Sahlgren (2005) and can be
viewed as a mixture of HAL and LSA. First, RI
assigns random vectors to each word type in the
corpus. The random vectors, referred to as index
vectors, are very sparse, typically with a length
of thousands, and contain only several (e.g. 7)
non-zero values from the {-1,1} set. Second, RI
processes the corpus by exploiting a sliding win-
dow like HAL and COALS. However, RI does not
accumulate the weighted co-occurrence counts of
neighboring words to the vector of the word type
in focus. Instead, RI accumulates the index vec-
tors of the co-occurring words. For accounting the
word order, the permutation variant of RI was also
developed (Sahlgren et al., 2008). This variant
permutes the index vectors of neighboring words
of the word type in focus according to the word
order.

3 Compositionality Measures

We experimented with four basically different
compositionality measures (further referred to as
Measures) (Krčmář et al., 2013). Each Measure
employs a function to measure similarity of WSM
vectors. We experimented with the following
ones: cosine (cos), Euclidian (inverse to Euclid-
ian distance) (euc), and Pearson correlation (cor).

The mathematical formulas are presented below.

cos(a,b) =

∑n
i=1 aibi√∑n

i=1(ai)2
∑n

i=1(bi)2

euc(a,b) =
1

1 +
√∑n

i=1 (ai − bi)2

cor(a,b) =

∑n
i=1 (ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
∑n

i=1(bi − b̄)2

where ā =

∑n
i=1 ai

n
, b̄ =

∑n
i=1 bi
n

SU The substitutability-based Measure is based
on the fact that the replacement of non-
compositional expressions’ constituents by the
words similar to them leads to anti-collocations
(Pearce, 2002). The compositionality of expres-
sions is calculated as the ratio between the num-
ber of occurrences of the expression in a corpora
and the sum of occurrences of its alternatives –
possibly anti-collocations. In a similar way, we
can compare pointwise mutual information scores
(Lin, 1999). As an example, consider the possible
occurrences of “hot dog” and “warm dog” in the
corpora.

Formally, adopted from Krčmář et al. (2012),
we calculate the compositionality score csu for an
examined expression as follows:

csu =

∑H
i=1W 〈ah

i ,m〉 ∗
∑M

j=1W 〈h, am
j 〉

W 〈h,m〉
,

where 〈h,m〉 denotes the number of corpora oc-
currences of the examined expression consisting
of a head and a modifying word, ah

i and am
j denote

i-th and j-th most similar word4 in a certain WSM
to the head and modifying word of the expression,
respectively. W stands for a weighting function;
following Krčmář et al. (2012), we experimented
with no (no) and logarithm (log) weighting. The
∗ symbol stands for one of the two operators: ad-
dition (plus) and multiplication (mult).

EN The endocentricity-based Measure, also re-
ferred to as component or constituent-based, com-
pares the WSM vectors of the examined expres-
sions and their constituents. The vectors expected
to be different from each other are e.g. the vector
representing the expression “hot dog” and the vec-
tor representing the word “dog”. Formally, the

4When exploiting POS tags, we constrained the similar
words to be of the same POS category in our experiments.
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compositionality score cen can be calculated as
follows:

cen = f(xh, xm) ,

where xh and xm denote the similarity (sim) or
inverse rank distance (–dist) between the exam-
ined expression and its head and modifying con-
stituent, respectively, with regards to a certain
WSM. Function f stands for a combination of its
parameters: 0.5xh + 0.5xm (avg), 0xh + 1xm

(mOnly), 1xh + 0xm (hOnly), min(xh, xm) (min),
and max(xh, xm) (max).

CO The compositionality-based Measure com-
pares the true co-occurrence vector of the exam-
ined expression and the vector obtained from the
vectors corresponding to the constituents of the
expression using some compositionality function
(Reddy et al., 2011a). Commonly used compo-
sitionality functions are vector addition (⊕) and
pointwise vector multiplication (⊗) (Mitchell and
Lapata, 2008). The vectors expected to be dif-
ferent from each other are e.g. “hot dog” and
“hot”⊕“dog”. Formally,

cco = s(ve, vh ∗ vm) ,

where ve, vh, and vm stand for vectors of an ex-
amined expression, its head and modifying con-
stituents, respectively. ∗ stands for a vector opera-
tion.

NE The neighbors-in-common-based Measure
is based on overlap of the most similar words to
the examined expression and to its constituents
(McCarthy et al., 2003). As an example, consider
that “hot dog” is similar to “food” or “chips” and
“dog” is similar to “cat” or “bark”. On the other
hand, the list of neighbors of a semantically com-
positional expression such as “black dog” is sup-
posed to overlap with at least one of the lists of
neighbors of both the expression constituents. For-
mally,

cne = oh
N + om

N ,

where oh
N and om

N stand for the number of same
words occurring in the list of the most similar
words to the examined expression and to its head
and modifying constituent, respectively.

4 Experiments

We evaluated the ability of various combinations
of WSMs and Measures to rank expressions as the
human annotators had done ahead of time.

Datasets We experimented with the DISCO
(Biemann and Giesbrecht, 2011) and Reddy
(Reddy et al., 2011a) human annotated datasets,
built for the task of automatic determining of se-
mantic compositionality. The DISCO and Reddy
datasets consist of manually scored expressions
of adjective-noun (AN), verb-object (VO), and
subject-verb (SV) types and the noun-noun (NN)
type, respectively. The DISCO dataset consists
of 349 expressions divided into training, valida-
tion, and test data (TestD); the Reddy dataset con-
sists of one set containing 90 expressions. Since
the DISCO validation data are of low size (35),
we concatenated them with the training data (Tr-
ValD). To TrValD and TestD we added the Reddy
dataset, which we had divided stratifically ahead
of time. Numbers of expressions of all the differ-
ent types are summarized in Table 1.

dataset AN-VO-SV AN VO SV NN
TrValD 175 68 68 39 45
TestD 174 77 62 35 45

Table 1: Numbers of expressions of all the differ-
ent types from the DISCO and Reddy datasets.

WSM construction Since the DISCO and
Reddy data were extracted from the ukWaC cor-
pus (Baroni et al., 2009), we also build our WSMs
from the same corpus. We use our own modifica-
tion of the S-Space package (Jurgens and Stevens,
2010). The modification lies in treating multiword
expressions and handling stopwords. Specifically,
we extended the package with the capability of
building WSM vectors for the examined expres-
sions in such a way that the WSM vectors previ-
ously built for words are preserved. This differen-
tiates our approach e.g. from Baldwin et al. (2003),
who label the expressions in the corpus ahead of
time and treat them as single words.5 As for treat-
ing stopwords, we map trigrams containing deter-
miners as the middle word into bigrams without
the determiners. The intuition is to extract better
co-occurrence statistics for VO expressions often
containing an intervening determiner. As an ex-
ample, compare the occurrences of “reinvent (de-

5Since many single word occurrences disappear, the
WSM vectors for words change. The more expressions are
treated as single words, the more WSM changes. Conse-
quently, we believe that this approach cannot be used for
building a list of all expressions occurring in an examined
corpus ordered by their compositionality score.
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terminer) wheel” and “reinvent wheel” in ukWaC
being 623 and 27, respectively.

We experimented with lemmas (noT) or with
lemmas concatenated with their part of speech
(POS) tags (yesT). We labeled the following
strings in ukWaC as stopwords: low-frequency
words (lemmas with frequency< 50), strings con-
taining two adjacent non-letter characters (thus
omitting sequences of various symbols), and
closed-class words.

For our experiments, we built WSMs using var-
ious parameters examined in previous works (see
Section 2) and parameters which are implied from
our own experience with WSMs. Figure 1 sum-
marizes all the parameters we used for building
WSMs.

Measure settings We examined various Mea-
sure settings (see Section 3), summarized in Ta-
ble 2. For all the vector comparisons, we used the
cos similarity. Only for HAL we also examined
euc and for COALS cor, since these are the rec-
ommended similarity functions for these particu-
lar WSMs (Lund and Burgess, 1996; Rohde et al.,
2005).

Met. par. possible values
all sim. cos, euc if HAL, cor if COALS
SU H 0,1,...,20,30,...,100
SU M 0,1,...,20,30,...,100
SU W no, log
SU ∗ plus, mult
EN x sim, –dist
EN f avg, mOnly, hOnly, min, max
CO ∗ ⊕, ⊗
NE N 10,20,...,50,100,200,...,500,1000

Table 2: All the parameters of Measures for de-
termining semantic compositionality described in
Section 3 used in our experiments.

Experimental setup Following Biemann and
Giesbrecht (2011), Reddy et al. (2011a), Krčmář
et al. (2012), and Krčmář et al. (2013), we use
the Spearman correlation (ρ) for the evaluation of
all the combinations of WSMs and Measures (Se-
tups). Since the distribution of scores assigned to
Reddy’s NN dataset might not have corresponded
to the distribution of DISCO scores, we decided
not to map them to the same scale. Thus, we do not
create a single list consisting of all the examined
expressions. Instead, we order our Setups accord-

ing to the weighted average of Spearman corre-
lations calculated across all the expression types.
The weights are directly proportional to the fre-
quencies of the particular expression types. Thus,
the Setup score (wAvg) is calculated as follows:

wAvg =
|AN |ρAN + |V O|ρV O + |SV |ρSV + |NN |ρNN

|AN | + |V O| + |SV | + |NN | .

Having the evaluation testbed, we tried to find
the optimal parameter settings for all WSMs com-
bined with all Measures with the help of TrValD.
Then, we applied the found Setups to TestD.

Notes Because several expressions or their con-
stituents concatenated with their POS tags did not
occur sufficiently often (for expressions: ≥ 0,
for constituents: ≥ 50) in ukWaC, we removed
them from the experiments; we removed “number
crunching”, “pecking order”, and “sacred cow”
from TrValD and “leading edge”, “broken link”,
“spinning jenny”, and “sitting duck” from TestD.

5 Results

The Setups achieving the highest wAvg when ap-
plied to TrValD are depicted in Table 3. The same
Setups and their results when applied to TestD are
depicted in Table 4. The values of Spearman cor-
relations in TestD confirm many of the observa-
tions from TrValD6:

Almost all the combinations of WSMs and
Measures achieve correlation values which are sta-
tistically significant. This is best illustrated by the
ρ(AN −V O−SV ) column in Table 4, where a
lot of correlation values are statistically (p<0.05)
or highly statistically (p<0.001) significant, with
regards to the number of expressions (172).

The results suggest that for every expression
type, the task of determining compositionality is
of varying difficulty. While determining the com-
positionality of the NN expression type seems to
be the simplest (the highest correlations observed),
determining the compositionality of the SV ex-
pression type seems to be hard since the majority
of values in the ρSV column are not statistically
significant; taking into account the number of SV
expressions in TestD – 35, the statistically signifi-
cant value of ρ at the p<0.05 level is 0.34.

The correlation values differ with regards to the
expression type. Certain WSMs combined with

6A test of statistical difference between two values of the
Spearman correlation is adopted from Papoulis (1990).
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Figure 1: All the parameters of WSMs described in Section 2 used in all our experiments. Semicolon
denotes OR. All the examined combinations of parameters are implied from reading the diagram from
left to right.

certain Measures, although achieving high corre-
lations upon certain expression types, fail to cor-
relate with the rest of the expression types. Com-
pare e.g. the correlation values of VSM and LSA
combined with the SU Measure upon the AN and
SV types with the correlation values upon the VO
and NN types.

The results, as expected, illustrate that employ-
ing more advanced alternatives of basic WSMs is
more appropriate. Specifically, LSA outperforms
VSM and COALS outperforms HAL in 21 and 23
correlation values out of 24, respectively. Con-
cerning RI, the values of correlations seem to be
close to the values of VSM and HAL.

An interesting observation showing the appro-
priateness of using wAvg(ofρ) as a good evalu-
ation score is supported by a comparison of the
wAvg(ofρ) and ρ(AN−V O−SV ) columns. The
columns suggest that some Setups might only be
able to order the expressions of the same type and
might not be able to order the expressions of dif-
ferent types among each other. As an example,
compare the value of ρ = 0.42 in wAvg(ofρ)
with ρ = 0.28 in ρ(AN−V O−SV ) in the row cor-
responding to COALS combined with SU. Con-
sider also that all the values of correlations are
higher or equal to the value in ρ(AN−V O−SV ).

As for the parameters learned from applying
all the combinations of differently set WSM algo-
rithms and Measures to TrValD, their diversity is
well illustrated in Tables 5 and 6. Due to this diver-
sity, we cannot recommend any particular settings
except for one. All our SU Measures benefit from
weighting numbers of expression occurrences by
logarithm.

The correlation values in TestD are slightly
lower – probably due to overfitting – than the
ones observed in TrValD. HAL combined with the
Measures using euc similarity was not as success-
ful as when combined with cos.7

For comparison, the results of Reddy et al.
(2011b) and Chakraborty et al. (2011) as the
results of the best performing Setups based on
WSMs and association measures, respectively, ap-
plied to the DISCO data, are presented (Biemann
and Giesbrecht, 2011). The correlation values of
our Setups based on LSA and COALS, respec-
tively, are mostly higher. However, the improve-
ments are not statistically significant. Also, the re-
cent results achieved by Krčmář et al. (2012) em-
ploying COALS and Krčmář et al. (2013) employ-

7However, using HAL combined with euc, we observed
significant negative correlations which deserve further explo-
ration.
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ing LSA are depicted.

Discussion As described above, we observed
different values of correlations for different ex-
pression types. This motivates us to think about
other classes of expressions different from types;
Measures could be e.g. varyingly successful with
regards to different occurrence frequency classes
of expressions (Evert, 2005). However, with such
small datasets, as shown e.g. by the fact that the
majority of our results are statistically indistin-
guishable, we cannot carry out any deeper in-
vestigations. A large dataset would provide a
more reliable comparison. Ideally, this would
consist of all the candidate expressions occurring
in some smaller corpus. Also, we would pre-
fer the annotated dataset not to be biased towards
non-compositional expressions and to be provided
with an inner-annotator agreement (Pecina, 2008);
which is unfortunately not the case of the DISCO
dataset.

6 Conclusion

Our study suggests that different WSMs combined
with different Measures perform reasonably well
in the task of determining the semantic composi-
tionality of word expressions of different types.
Especially, LSA and COALS perform well in
our experiments since their results are better than
those of their basic variants (VSM and HAL, re-
spectively) and, although not statistically signifi-
cantly, they outperform the best results of the pre-
viously proposed approaches (Table 4).

Importantly, our results demonstrate (Section 5)
that the datasets used for the experiments are small
for: first, a statistical learning of optimal parame-
ters of both WSM algorithms and Measures; sec-
ond, a thorough (different types) and reliable (sta-
tistically significant) comparison of our and the
previously proposed approaches.

Therefore, we plan to build a larger manually-
annotated dataset. Finally, we plan to extract
a list of semantically non-compositional expres-
sions from a given corpus and experiment with us-
ing it in NLP applications.
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WSM Measure wAvg(of ρ) ρAN-VO-SV ρAN ρVO ρSV ρNN
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Reddy-WSM - 0.35 - - - -

StatMix - 0.33 - - - -
Krcmar-COALS - 0.42 0.42 0.69 0.24 -

Krcmar-LSA - 0.50 0.50 0.56 0.41 -

Table 4: The Spearman correlations ρ of the best performing (wAvg) combinations of particular WSMs
and Measures trained in TranValD applied to TestD. The highest correlation values in the particular
columns and the correlation values which are not statistically different from them (p < 0.05) are in bold
(yet we do not know how to calculate the stat. significance for the wAvg(of ρ) column). Reddy-WSM and
StatMix stand for the best performing system based on WSMs and association measures, respectively,
applied to the DISCO task (Biemann and Giesbrecht, 2011). Krcmar-COALS and Krcmar-LSA stand for
the best published results achieved upon the dataset presented in Krčmář et al. (2012) and Krčmář et al.
(2013), respectively. The parameters of WSMs and Measures corresponding to the indexes are depicted
in Tables 5 and 6, respectively.
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Abstract

With the increasing empirical success of
distributional models of compositional se-
mantics, it is timely to consider the types
of textual logic that such models are ca-
pable of capturing. In this paper, we ad-
dress shortcomings in the ability of cur-
rent models to capture logical operations
such as negation. As a solution we pro-
pose a tripartite formulation for a continu-
ous vector space representation of seman-
tics and subsequently use this representa-
tion to develop a formal compositional no-
tion of negation within such models.

1 Introduction

Distributional models of semantics characterize
the meanings of words as a function of the words
they co-occur with (Firth, 1957). These models,
mathematically instantiated as sets of vectors in
high dimensional vector spaces, have been applied
to tasks such as thesaurus extraction (Grefenstette,
1994; Curran, 2004), word-sense discrimination
(Schütze, 1998), automated essay marking (Lan-
dauer and Dumais, 1997), and so on.

During the past few years, research has shifted
from using distributional methods for modelling
the semantics of words to using them for mod-
elling the semantics of larger linguistic units such
as phrases or entire sentences. This move from
word to sentence has yielded models applied to
tasks such as paraphrase detection (Mitchell and
Lapata, 2008; Mitchell and Lapata, 2010; Grefen-
stette and Sadrzadeh, 2011; Blacoe and Lapata,
2012), sentiment analysis (Socher et al., 2012;
Hermann and Blunsom, 2013), and semantic re-
lation classification (ibid.). Most efforts approach
the problem of modelling phrase meaning through
vector composition using linear algebraic vector
operations (Mitchell and Lapata, 2008; Mitchell

and Lapata, 2010; Zanzotto et al., 2010), matrix
or tensor-based approaches (Baroni and Zampar-
elli, 2010; Coecke et al., 2010; Grefenstette et al.,
2013; Kartsaklis et al., 2012), or through the use
of recursive auto-encoding (Socher et al., 2011;
Hermann and Blunsom, 2013) or neural-networks
(Socher et al., 2012). On the non-compositional
front, Erk and Padó (2008) keep word vectors sep-
arate, using syntactic information from sentences
to disambiguate words in context; likewise Turney
(2012) treats the compositional aspect of phrases
and sentences as a matter of similarity measure
composition rather than vector composition.

These compositional distributional approaches
often portray themselves as attempts to recon-
cile the empirical aspects of distributional seman-
tics with the structured aspects of formal seman-
tics. However, they in fact only principally co-opt
the syntax-sensitivity of formal semantics, while
mostly eschewing the logical aspects.

Expressing the effect of logical operations in
high dimensional distributional semantic models
is a very different task than in boolean logic. For
example, whereas predicates such as ‘red’ are seen
in predicate calculi as functions mapping elements
of some set Mred to > (and all other domain ele-
ments to ⊥), in compositional distributional mod-
els we give the meaning of ‘red’ a vector-like
representation, and devise some combination op-
eration with noun representations to obtain the
representation for an adjective-noun pair. Under
the logical view, negation of a predicate therefore
yields a new truth-function mapping elements of
the complement of Mred to > (and all other do-
main elements to⊥), but the effect of negation and
other logical operations in distributional models is
not so sharp: we expect the representation for “not
red” to remain close to other objects of the same
domain of discourse (i.e. other colours) while be-
ing sufficiently different from the representation of
‘red’ in some manner. Exactly how textual logic
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would best be represented in a continuous vector
space model remains an open problem.

In this paper we propose one possible formu-
lation for a continuous vector space based repre-
sentation of semantics. We use this formulation
as the basis for providing an account of logical
operations for distributional models. In particu-
lar, we focus on the case of negation and how it
might work in higher dimensional distributional
models. Our formulation separates domain, value
and functional representation in such a way as to
allow negation to be handled naturally. We ex-
plain the linguistic and model-related impacts of
this mode of representation and discuss how this
approach could be generalised to other semantic
functions.

In Section 2, we provide an overview of work
relating to that presented in this paper, covering
the integration of logical elements in distributional
models, and the integration of distributional el-
ements in logical models. In Section 3, we in-
troduce and argue for a tripartite representation
in distributional semantics, and discuss the issues
relating to providing a linguistically sensible no-
tion of negation for such representations. In Sec-
tion 4, we present matrix-vector models similar to
that of Socher et al. (2012) as a good candidate
for expressing this tripartite representation. We
argue for the elimination of non-linearities from
such models, and thus show that negation cannot
adequately be captured. In Section 5, we present
a short analysis of the limitation of these matrix-
vector models with regard to the task of modelling
non-boolean logical operations, and present an im-
proved model bypassing these limitations in Sec-
tion 6. Finally, in Section 7, we conclude by sug-
gesting future work which will extend and build
upon the theoretical foundations presented in this
paper.

2 Motivation and Related Work

The various approaches to combining logic with
distributional semantics can broadly be put into
three categories: those approaches which use
distributional models to enhance existing logical
tools; those which seek to replicate logic with the
mathematical constructs of distributional models;
and those which provide new mathematical defini-
tions of logical operations within distributional se-
mantics. The work presented in this paper is in the
third category, but in this section we will also pro-

vide a brief overview of related work in the other
two in order to better situate the work this paper
will describe in the literature.

Vector-assisted logic The first class of ap-
proaches seeks to use distributional models of
word semantics to enhance logic-based models of
textual inference. The work which best exempli-
fies this strand of research is found in the efforts of
Garrette et al. (2011) and, more recently, Beltagy
et al. (2013). This line of research converts logi-
cal representations obtained from syntactic parses
using Bos’ Boxer (Bos, 2008) into Markov Logic
Networks (Richardson and Domingos, 2006), and
uses distributional semantics-based models such
as that of Erk and Padó (2008) to deal with issues
polysemy and ambiguity.

As this class of approaches deals with improv-
ing logic-based models rather than giving a dis-
tributional account of logical function words, we
view such models as orthogonal to the effort pre-
sented in this paper.

Logic with vectors The second class of ap-
proaches seeks to integrate boolean-like logical
operations into distributional semantic models us-
ing existing mechanisms for representing and
composing semantic vectors. Coecke et al. (2010)
postulate a mathematical framework generalising
the syntax-semantic passage of Montague Gram-
mar (Montague, 1974) to other forms of syntac-
tic and semantic representation. They show that
the parses yielded by syntactic calculi satisfying
certain structural constraints can be canonically
mapped to vector combination operations in dis-
tributional semantic models. They illustrate their
framework by demonstrating how the truth-value
of sentences can be obtained from the combina-
tion of vector representations of words and multi-
linear maps standing for logical predicates and re-
lations. They furthermore give a matrix interpre-
tation of negation as a ‘swap’ matrix which in-
verts the truth-value of vectorial sentence repre-
sentations, and show how it can be embedded in
sentence structure.

Recently, Grefenstette (2013) showed that the
examples from this framework could be extended
to model a full quantifier-free predicate logic using
tensors of rank 3 or lower. In parallel, Socher et
al. (2012) showed that propositional logic can be
learned using tensors of rank 2 or lower (i.e. only
matrices and vectors) through the use of non-linear
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activation functions in recursive neural networks.
The work of Coecke et al. (2010) and Grefen-

stette (2013) limits itself to defining, rather than
learning, distributional representations of logical
operators for distributional models that simulate
logic, and makes no pretense to the provision of
operations which generalise to higher-dimensional
distributional semantic representations. As for
the non-linear approach of Socher et al. (2012),
we will discuss, in Section 4 below, the limita-
tions with this model with regard to the task of
modelling logic for higher dimensional represen-
tations.

Logic for vectors The third and final class of
approaches is the one the work presented here
belongs to. This class includes attempts to de-
fine representations for logical operators in high
dimensional semantic vector spaces. Such ap-
proaches do not seek to retrieve boolean logic and
truth values, but to define what logical operators
mean when applied to distributional representa-
tions. The seminal work in this area is found in the
work of Widdows and Peters (2003), who define
negation and other logical operators algebraically
for high dimensional semantic vectors. Negation,
under this approach, is effectively a binary rela-
tion rather than a unary relation: it expresses the
semantics of statements such as ‘A NOT B’ rather
than merely ‘NOT B’, and does so by projecting
the vector for A into the orthogonal subspace of
the vector for B. This approach to negation is use-
ful for vector-based information retrieval models,
but does not necessarily capture all the aspects of
negation we wish to take into consideration, as
will be discussed in Section 3.

3 Logic in text

In order to model logical operations over semantic
vectors, we propose a tripartite meaning represen-
tation, which combines the separate and distinct
treatment of domain-related and value-related as-
pects of semantic vectors with a domain-driven
syntactic functional representation. This is a unifi-
cation of various recent approaches to the problem
of semantic representation in continuous distribu-
tional semantic modelling (Socher et al., 2012;
Turney, 2012; Hermann and Blunsom, 2013).

We borrow from Socher et al. (2012) and oth-
ers (Baroni and Zamparelli, 2010; Coecke et al.,
2010) the idea that the information words refer to
is of two sorts: first the semantic content of the

word, which can be seen as the sense or reference
to the concept the word stands for, and is typi-
cally modelled as a semantic vector; and second,
the function the word has, which models the effect
the word has on other words it combines with in
phrases and sentences, and is typically modelled
as a matrix or higher-order tensor. We borrow
from Turney (2012) the idea that the semantic as-
pect of a word should not be modelled as a single
vector where everything is equally important, but
ideally as two or more vectors (or, as we do here,
two or more regions of a vector) which stand for
the aspects of a word relating to its domain, and
those relating to its value.

We therefore effectively suggest a tripartite rep-
resentation of the semantics of words: a word’s
meaning is modelled by elements representing its
value, domain, and function, respectively.

The tripartite representation We argue that the
tripartite representation suggested above allows us
to explicitly capture several aspects of semantics.
Further, while there may be additional distinct as-
pects of semantics, we argue that this is a minimal
viable representation.

First of all, the differentiation between do-
main and value is useful for establishing similar-
ity within subspaces of meaning. For instance,
the words blue and red share a common domain
(colours) while having very different values. We
hypothesise that making this distinction explicit
will allow for the definition of more sophisticated
and fine-grained semantics of logical operations,
as discussed below. Although we will represent
domain and value as two regions of a vector, there
is no reason for these not to be treated as separate
vectors at the time of comparison, as done by Tur-
ney (2012).

Through the third part, the functional repre-
sentation, we capture the compositional aspect of
semantics: the functional representation governs
how a term interacts with its environment. In-
spired by the distributional interpretation (Baroni
and Zamparelli, 2010; Coecke et al., 2010) of
syntactically-paramatrized semantic composition
functions from Montogovian semantics (Mon-
tague, 1974), we will also assume the function part
of our representation to be parametrized princi-
pally by syntax and domain rather than value. The
intuition behind taking domain into account in ad-
dition to syntactic class being that all members of
a domain largely interact with their environment
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in the same fashion.

Modeling negation The tripartite representation
proposed above allows us to define logical opera-
tions in more detail than competing approaches.
To exemplify this, we focus on the case of nega-
tion.

We define negation for semantic vectors to be
the absolute complement of a term in its domain.
This implies that negation will not affect the do-
main of a term but only its value. Thus, blue and
not blue are assumed to share a common domain.
We call this naive form of negation the inversion
of a term A, which we idealise as the partial inver-
sion Ainv of the region associated with the value
of the word in its vector representation A.

 d
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v
−v

  d
v
−µv


[
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] [

f
]

W Winv ¬W

Figure 1: The semantic representations of a word
W , its inverse W inv and its negation ¬W . The
domain part of the representation remains un-
changed, while the value part will partially be in-
verted (inverse), or inverted and scaled (negation)
with 0 < µ < 1. The (separate) functional repre-
sentation also remains unchanged.

Additionally, we expect negation to have a
diminutive effect. This diminutive effect is best
exemplified in the case of sentiment: good is more
positive than not bad, even though good and bad
are antonyms of each other. By extension not not
good and not not not bad end up somewhere in the
middle—qualitative statements still, but void of
any significant polarity. To reflect this diminutive
effect of negation and double negation commonly
found in language, we define the idealised diminu-
tive negation ¬A of a semantic vectorA as a scalar
inversion over a segment of the value region of its
representation with the scalar µ : 0 < µ < 1, as
shown in Figure 1.

As we defined the functional part of our rep-
resentation to be predominately parametrized by
syntax and domain, it will remain constant under
negation and inversion.

4 A general matrix-vector model

Having discussed, above, how the vector compo-
nent of a word can be partitioned into domain and
value, we now turn to the partition between se-
mantic content and function. A good candidate for
modelling this partition would be a dual-space rep-
resentation similar to that of Socher et al. (2012).
In this section, we show that this sort of represen-
tation is not well adapted to the modelling of nega-
tion.

Models using dual-space representations have
been proposed in several recent publications, no-
tably in Turney (2012) and Socher et al. (2012).
We use the class of recursive matrix-vector mod-
els as the basis for our investigation; for a detailed
introduction see the MV-RNN model described in
Socher et al. (2012).

We begin by describing composition for a gen-
eral dual-space model, and apply this model to the
notion of compositional logic in a tripartite repre-
sentation discussed earlier. We identify the short-
comings of the general model and subsequently
discuss alternative composition models and mod-
ifications that allow us to better capture logic in
vector space models of meaning.

Assume a basic model of compositionality for
such a tripartite representation as follows. Each
term is encoded by a semantic vector v captur-
ing its domain and value, as well as a matrix M
capturing its function. Thus, composition consists
of two separate operations to learn semantics and
function of the composed term:

vp = fv(va,vb,Ma,Mb) (1)

Mp = fM (Ma,Mb)

As we defined the functional representation to be
parametrized by syntax and domain, its compo-
sition function does not require va and vb as in-
puts, with all relevant information already being
contained in Ma,Mb. In the case of Socher et al.
(2012) these functions are as follows:

Mp = WM

[
Ma

Mb

]
(2)

vp = g

(
Wv

[
Mavb
Mbva

])
(3)

where g is a non-linearity.

4.1 The question of non-linearities
While the non-linearity g could be equipped with
greater expressive power, such as in the boolean
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logic experiment in Socher et al. (2012)), the aim
of this paper is to place the burden of composition-
ality on the atomic representations instead. For
this reason we treat g as an identity function, and
WM , Wv as simple additive matrices in this inves-
tigation, by setting

g = I Wv = WM = [I I]

where I is an identity matrix. This simplification
is justified for several reasons.

A simple non-linearity such as the commonly
used hyperbolic tangent or sigmoid function will
not add sufficient power to overcome the issues
outlined in this paper. Only a highly complex non-
linear function would be able to satisfy the require-
ments for vector space based logic as discussed
above. Such a function would defeat the point
however, by pushing the “heavy-lifting” from the
model structure into a separate function.

Furthermore, a non-linearity effectively en-
codes a scattergun approach: While it may have
the power to learn a desired behaviour, it similarly
has a lot of power to learn undesired behaviours
and side effects. From a formal perspective it
would therefore seem more prudent to explicitly
encode desired behaviour in a model’s structure
rather than relying on a non-linearity.

4.2 Negation

We have outlined our formal requirements for
negation in the previous section. From these re-
quirements we can deduce four equalities, con-
cerning the effect of negation and double nega-
tion on the semantic representation and function
of a term. The matrices Jµ and Jν (illustrated in
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Figure 2: A partially scaled and inverted identity
matrix Jµ. Such a matrix can be used to trans-
form a vector storing a domain and value repre-
sentation into one containing the same domain but
a partially inverted value, such as W and ¬W de-
scribed in Figure 1.

Figure 2) describe a partially scaled and inverted
identity matrix, where 0 < µ, ν < 1.

fv(not, a) = Jµva (4)

fM (not, a) ≈Ma (5)

fv(not, fv(not, a)) = JνJµva (6)

fM (not, fM (not, a)) ≈Ma (7)

Based on our assumption about the constant do-
main and interaction across negation, we can re-
place the approximate equality with a strict equal-
ity in Equations 5 and 7. Further, we assume that
both Ma 6= I and Ma 6= 0, i.e. that A has a spe-
cific and non-zero functional representation. We
make a similar assumption for the semantic repre-
sentation va 6= 0.

Thus, to satisfy the equalities in Equations 4
through 7, we can deduce the values of vnot and
Mnot as discussed below.

Value and Domain in Negation Under the sim-
plifications of the model explained earlier, we
know that the following is true:

fv(a, b) = g

(
Wv

[
Mavb
Mbva

])
= I

([
I I
] [Mavb
Mbva

])
= Mavb +Mbva

I.e. the domain and value representation of a par-
ent is the sum of the two Mv multiplications of
its children. The matrix Wv could re-weight this
addition, but that would not affect the rest of this
analysis.

Given the idea that the domain stays constant
under negation and that a part of the value is in-
verted and scaled, we further know that these two
equations hold:

∀a ∈ A : fv(not, a) = Jµva

∀a ∈ A : fv(not, fv(not, a)) = JνJµva

Assuming that both semantic and functional
representation across all A varies and is non-zero,
these equalities imply the following conditions for
the representation of not:

Mnot = Jµ = Jν

vnot = 0

These two equations suggest that the term not has
no inherent value (vnot = 0), but merely acts as a
function, inverting part of another terms semantic
representation (Mnot = Jµ).
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Functional Representation in Negation We
can apply the same method to the functional rep-
resentation. Here, we know that:

fM (a, b) = WM

[
Ma

Mb

]
=
[
I I
] [Ma

Mb

]
= Ma +Mb

Further, as defined in our discussion of nega-
tion, we require the functional representation to
remain unchanged under negation:

∀a ∈ A : fM (not, a) = Ma

∀a ∈ A : fM (not, fM (not, a)) = Ma

These requirements combined leave us to con-
clude that Mnot = 0. Combined with the result
from the first part of the analysis, this causes a
contradiction:

Mnot = 0

Mnot = Jµ

=⇒ Jµ = 0 

This demonstrates that the MV-RNN as de-
scribed in this paper is not capable of modelling
semantic logic according to the principles we out-
lined. The fact that we would require Mnot = 0
further supports the points made earlier about the
non-linearities and setting WM to

[
I I
]
. Even a

specific WM and non-linearity would not be able
to ensure that the functional representation stays
constant under negation given a non-zero Mnot.

Clearly, any other complex semantic represen-
tation would suffer from the same issue here—the
failure of double-negation to revert a representa-
tion to its (diminutive) original.

5 Analysis

The issue identified with the MV-RNN style mod-
els described above extends to a number of other
models of vector spaced compositionality. It can
be viewed as a problem of uninformed composi-
tion caused by a composition function that fails to
account for syntax and thus for scope.

Of course, identifying the scope of negation is a
hard problem in its own right—see e.g. the *SEM
2012 shared task (Morante and Blanco, 2012).
However, at least for simple cases, we can deduce
scope by considering the parse tree of a sentence:

S

VP

ADJP

JJ

blue

RB

not

VBZ

is

NP

N

car

Det

This

Figure 3: The parse tree for This car is not blue,
highlighting the limited scope of the negation.

If we consider the parse tree for this car is not blue,
it is clear that the scope of the negation expressed
includes the colour but not the car (Figure 3).

While the MV-RNN model in Socher et al.
(2012) incorporates parse trees to guide the order
of its composition steps, it uses a single composi-
tion function across all steps. Thus, the functional
representation of not will to some extent propagate
outside of its scope, leading to a vector capturing
something that is not blue, but also not quite a car.

There are several possibilities for addressing
this issue. One possibility is to give greater weight
to syntax, for instance by parametrizing the com-
position functions fv and fM on the parse struc-
ture. This could be achieved by using specific
weight matrices Wv and WM for each possible
tag. While the power of this approach is limited
by the complexity of the parse structure, it would
be better able to capture effects such as the scoping
and propagation of functional representations.

Another approach, which we describe in greater
detail in the next section, pushes the issue of
propagation onto the word level. While both ap-
proaches could easily be combined, this second
option is more consistent with our aim of avoid-
ing the implicit encoding of logic into fixed model
parameters in favour of the explicit encoding in
model structure.

6 An improved model

As we outlined in this paper, a key requirement
for a compositional model motivated by formal se-
mantics is the ability to propagate functional rep-
resentations, but also to not propagate these repre-
sentations when doing so is not semantically ap-
propriate. Here, we propose a modification of the
MV-RNN class of models that can capture this dis-
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tinction without the need to move the composition
logic into the non-linearity.

We add a parameter α to the representation of
each word, controlling the degree to which its
functional representation propagates after having
been applied in its own composition step.

Thus, the composition step of the new model
requires three equations:

Mp = WM

[
αa

αa+αb
Ma

αb
αa+αb

Mb

]
(8)

vp = g

(
Wv

[
Mavb
Mbva

])
(9)

αp = max(αa, αb) (10)

Going back to the discussion of negation, this
model has the clear advantage of being able to cap-
ture negation in the way we defined it. As fv(a, b)
is unchanged, these two equations still hold:

Mnot = Jµ = Jν

vnot = 0

However, as fM (a, b) is changed, the second
set of equations changes. We use Z as the α-
denominator (Z = αa + αB) for simplification:

fM (a, b) = WM

[
αa
Z Ma
αb
Z Mb

]
=

[
I
I

] [
αa
Z Ma
αb
Z Mb

]
=
αa
Z
Ma +

αb
Z
Mb

Further, we still require the functional representa-
tion to remain constant under negation:

∀a ∈ A : fM (not, a) = Ma

∀a ∈ A : fM (not, fM (not, a)) = Ma

Thus, we can infer the following two conditions
on the new model:

αnot
Z

Mnot ≈ 0

αa
Z
Ma ≈Ma

From our previous investigation we already know
that Mnot = Jµ 6= 0, i.e. that not has a non-
zero functional representation. While this caused
a contradiction for the original MV-RNN model,

the design of the improved model can resolve this
issue through the α-parameter:

αnot = 0

Thus, we can use this modified MV-RNN model
to represent negation according to the principles
outlined in this paper. The result αnot = 0 is in
accordance with our intuition about the propaga-
tion of functional aspects of a term: We commonly
expect negation to directly affect the things un-
der its scope (not blue) by choosing their semantic
complement. However, this behaviour should not
propagate outside of the scope of the negation. A
not blue car is still very much a car, and when a
film is not good, it is still very much a film.

7 Discussion and Further Work

In this paper, we investigated the capability of con-
tinuous vector space models to capture the seman-
tics of logical operations in non-boolean cases.
Recursive and recurrent vector models of meaning
have enjoyed a considerable amount of success in
recent years, and have been shown to work well on
a number of tasks. However, the complexity and
subsequent power of these models comes at the
price that it can be difficult to establish which as-
pect of a model is responsible for what behaviour.
This issue was recently highlighted by an inves-
tigation into recursive autoencoders for sentiment
analysis (Scheible and Schütze, 2013). Thus, one
of the key challenges in this area of research is the
question of how to control the power of these mod-
els. This challenge motivated the work in this pa-
per. By removing non-linearities and other param-
eters that could disguise model weaknesses, we fo-
cused our work on the basic model design. While
such features enhance model power, they should
not be used to compensate for inherently flawed
model designs.

As a prerequisite for our investigation we estab-
lished a suitable encoding of textual logic. Distri-
butional representations have been well explained
on the word level, but less clarity exists as to the
semantic content of compositional vectors. With
the tripartite meaning representation we proposed
one possible approach in that direction, which we
subsequently expanded by discussing how nega-
tion should be captured in this representation.

Having established a suitable and rigorous sys-
tem for encoding meaning in compositional vec-
tors, we were thus able to investigate the repre-
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sentative power of the MV-RNN model. We fo-
cused this paper on the case of negation, which
has the advantage that it does not require many
additional assumptions about the underlying se-
mantics. Our investigation showed that the basic
MV-RNN model is incompatible with our notion
of negation and thus with any textual logic build-
ing on this proposal.

Subsequently, we analysed the reasons for this
failure. We explained how the issue of nega-
tion affects the general class of MV-RNN models.
Through the issue of double-negation we further
showed how this issue is largely independent on
the particular semantic encoding used. Based on
this analysis we proposed an improved model that
is able to capture such textual logic.

In summary, this paper has two key contribu-
tions. First, we developed a tripartite represen-
tation for vector space based models of seman-
tics, incorporating multiple previous approaches
to this topic. Based on this representation, the
second contribution of this paper was a modified
MV-RNN model that can capture effects such as
negation in its inherent structure.

In future work, we would like to build on the
proposals in this paper, both by extending our
work on textual logic to include formulations for
e.g. function words, quantifiers, or locative words.
Similarly, we plan to experimentally validate these
ideas. Possible tasks for this include sentiment
analysis and relation extraction tasks such as in
Socher et al. (2012) but also more specific tasks
such as the *SEM shared task on negation scope
and reversal (Morante and Blanco, 2012).
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Abstract

Most distributional models of word sim-
ilarity represent a word type by a single
vector of contextual features, even though,
words commonly have more than one
sense. The multiple senses can be captured
by employing several vectors per word in a
multi-prototype distributional model, pro-
totypes that can be obtained by first con-
structing all the context vectors for the
word and then clustering similar vectors
to create sense vectors. Storing and clus-
tering context vectors can be expensive
though. As an alternative, we introduce
Multi-Sense Random Indexing, which per-
forms on-the-fly (incremental) clustering.
To evaluate the method, a number of mea-
sures for word similarity are proposed,
both contextual and non-contextual, in-
cluding new measures based on optimal
alignment of word senses. Experimental
results on the task of predicting semantic
textual similarity do, however, not show
a systematic difference between single-
prototype and multi-prototype models.

1 Introduction

Many terms have more than one meaning, or
sense. Some of these senses are static and can
be listed in dictionaries and thesauri, while other
senses are dynamic and determined by the con-
texts the terms occur in. Work in Word Sense Dis-
ambiguation often concentrate on the static word
senses, making the task of distinguishing between
them one of classification into a predefined set of
classes (i.e., the given word senses); see, e.g., Erk
et al. (2013; Navigli (2009) for overviews of cur-
rent work in the area. The idea of fixed generic
word senses has received a fair amount of criti-
cism in the literature (Kilgarriff, 2000).

This paper instead primarily investigates dy-
namically appearing word senses, word senses that
depend on the actual usage of a term in a cor-
pus or a domain. This task is often referred to as
Word Sense Induction or Word Sense Discrimina-
tion (Schütze, 1998). This is, in contrast, essen-
tially a categorisation problem, distinguished by
different senses being more or less similar to each
other at a given time, given some input data. The
dividing line between Word Sense Disambigua-
tion and Discrimination is not necessarily razor
sharp though: also different senses of a term listed
in a dictionary tend to have some level of overlap.

In recent years, distributional models have been
widely used to infer word similarity. Most such
models represent a word type by a single vector of
contextual features obtained from co-occurrence
counts in large textual corpora. By assigning a
single vector to each term in the corpus, the re-
sulting model assumes that each term has a fixed
semantic meaning (relative to all the other terms).
However, due to homonomy and polysemy, word
semantics cannot be adequately represented by a
single-prototype vector.

Multi-prototype distributional models in con-
trast employ different vectors to represent different
senses of a word (Reisinger and Mooney, 2010).
Multiple prototypes can be obtained by first con-
structing context vectors for all words and then
clustering similar context vectors to create a sense
vector. This may be expensive, as vectors need to
stored and clustered. As an alternative, we propose
a new method called Multi-Sense Random Index-
ing (MSRI), which is based on Random Indexing
(Kanerva et al., 2000) and performs an on-the-fly
(incremental) clustering.

MSRI is a method for building a multi-
prototype / multi-sense vector space model, which
attempts to capture one or more senses per unique
term in an unsupervised manner, where each sense
is represented as a separate vector in the model.
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This differs from the classical Random Indexing
(RI) method which assumes a static sense inven-
tory by restricting each term to have only one vec-
tor (sense) per term, as described in Section 2. The
MSRI method is introduced in Section 3.

Since the induced dynamic senses do not neces-
sarily correspond to the traditional senses distin-
guished by humans, we perform an extrinsic eval-
uation by applying the resulting models to data
from the Semantic Textual Similarity shared task
(Agirre et al., 2013), in order to compare MSRI
to the classical RI method. The experimental set-
up is the topic of Section 4, while the results of
the experiments are given in Section 5. Section 6
then sums up the discussion and points to ways in
which the present work could be continued.

2 Vector Space Models

With the introduction of LSA, Latent Semantic
Analysis (Deerwester et al., 1990), distributed
models of lexical semantics, built from unla-
belled free text data, became a popular sub-field
within the language processing research commu-
nity. Methods for building such semantic mod-
els rely primarily on term co-occurrence infor-
mation, and attempt to capture latent relations
from analysing large amounts of text. Most of
these methods represent semantic models as multi-
dimensional vectors in a vector space model.

After LSA, other methods for building seman-
tic models have been proposed, one of them being
Random Indexing (Kanerva et al., 2000). Com-
mon to these methods is that they generate a con-
text vector for each unique term in the training data
which represents the term’s “contextual” meaning
in the vector space. By assigning a single con-
text vector to each term in the corpus, the resulting
model assumes that each term has a fixed semantic
meaning (relative to all other terms).

Random Indexing incrementally builds a co-
occurrence matrix of reduced dimensionality, by
first assigning index vectors to each unique term.
The vectors are of a predefined size (typically
around 1000), and consist of a few randomly
placed 1s and -1s. Context vectors of the same size
are also assigned to each term, initially consisting
of only zeros. When traversing a document corpus
using a sliding window of a fixed size, the context
vectors are continuously updated: the term in the
centre of the window (the target term), has the in-
dex vectors of its neighbouring terms (the ones in

the window) added to its context vector using vec-
tor summation. Then the cosine similarity mea-
sure can be used on term pairs to calculate their
similarity (or “contextual similarity”).

Random Indexing has achieved promising re-
sults in various experiments, for example, on the
TOEFL test (“Test of English as a Foreign Lan-
guage”) (Kanerva et al., 2000). However, it is ev-
ident that many terms have more than one mean-
ing or sense, some being static and some dynamic,
that is, determined by the contexts the terms occur
in. Schütze (1998) proposed a method for clus-
tering the contextual occurrences of terms into in-
dividual “prototype” vectors, where one term can
have multiple prototype vectors representing sep-
arate senses of the term. Others have adopted
the same underlying idea, using alternative meth-
ods and techniques (Reisinger and Mooney, 2010;
Huang et al., 2012; Van de Cruys et al., 2011; Dinu
and Lapata, 2010).

3 Multi-Sense Random Indexing, MSRI

Inspired by the work of Schütze (1998) and
Reisinger and Mooney (2010), this paper intro-
duces a novel variant of Random Indexing, which
we have called “Multi-Sense Random Indexing”.
MSRI attempts to capture one or more senses per
unique term in an unsupervised and incremental
manner, each sense represented as an separate vec-
tor in the model. The method is similar to classical
sliding window RI, but each term can have mul-
tiple context vectors (referred to as sense vectors
here) which are updated separately.

When updating a term vector, instead of directly
adding the index vectors of the neighbouring terms
in the window to its context vector, the system first
computes a separate window vector consisting of
the sum of the index vectors. The similarity be-
tween the window vector and each of the term’s
sense vectors is calculated. Each similarity score
is then compared to a pre-set similarity threshold:

• if no score exceeds the threshold, the window
vector becomes a new separate sense vector
for the term,

• if exactly one score is above the threshold,
the window vector is added to that sense vec-
tor, and

• if multiple scores are above the threshold, all
the involved senses are merged into one sense
vector, together with the window vector.
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Algorithm 1 MSRI training
for all terms t in a document D do

generate window vector ~win from the neigh-
bouring words’ index vectors
for all sense vectors ~si of t do
sim(si) = CosSim( ~win,~si)

end for
if sim(si..k) ≥ τ then

Merge ~si..k and ~win through summing
else

if sim(si) ≥ τ then
~si+ = ~win

end if
else

if sim(si..n) < τ then
Assign ~win as new sense vector of t

end if
end if

end for

See Algorithm 1 for a pseudo code version. Here
τ represents the similarity threshold.

This accomplishes an incremental (on-line)
clustering of senses in an unsupervised manner,
while retaining the other properties of classical RI.
Even though the algorithm has a slightly higher
complexity than classical RI, this is mainly a mat-
ter of optimisation, which is not the focus of this
paper. The incremental clustering that we apply
is somewhat similar to what is used by Lughofer
(2008), although we are storing in memory only
one element (i.e., vector) for each “cluster” (i.e.,
sense) at any given time.

When looking up a term in the vector space, a
pre-set sense-frequency threshold is applied to fil-
ter out “noisy” senses. Hence, senses that have
occurred less than the threshold are not included
when looking up a term and its senses for, for ex-
ample, similarity calculations.

As an example of what the resulting models
contain in terms of senses, Table 1 shows four dif-
ferent senses of the term ‘round’ produced by the
MSRI model. Note that these senses do not nec-
essarily correspond to human-determined senses.
The idea is only that using multiple prototype
vectors facilitates better modelling of a term’s
meaning than a single prototype (Reisinger and
Mooney, 2010).

round1 round2 round3 round4

finish camping inch launcher
final restricted bundt grenade
match budget dough propel
half fare thick antitank
third adventure cake antiaircraft

Table 1: Top-5 most similar terms for four dif-
ferent senses of ‘round’ using the Max similarity
measure to the other terms in the model.

3.1 Term Similarity Measures
Unlike classical RI, which only has a single con-
text vector per term and thus calculates similarity
between two terms directly using cosine similarity,
there are multiple ways of calculating the similar-
ity between two terms in MSRI. Some alternatives
are described in Reisinger and Mooney (2010). In
the experiment in this paper, we test four ways of
calculating similarity between two terms t and t′

in isolation, with the Average and Max methods
stemming from Reisinger and Mooney (2010).

Let ~si..n and ~s′
j..m be the sets of sense vectors

corresponding to the terms t and t′ respectively.
Term similarity measures are then defined as:

Centroid
For term t, compute its centroid vector by
summing its sense vectors ~si..n. The same is
done for t′ with its sense vectors ~s′

j..m. These
centroids are in turn used to calculate the co-
sine similarity between t and t′.

Average
For all ~si..n in t, find the pair ~si, ~s′

j with high-
est cosine similarity:

1

n

n∑
i=1

CosSimmax(~si, ~s′
j)

Then do the same for all ~s′
j..m in t′:

1

m

m∑
j=1

CosSimmax(~s′
j , ~si)

The similarity between t and t′ is computed
as the average of these two similarity scores.

Max
The similarity between ti and t′i equals the
similarity of their most similar sense:

Sim(t, t′) = CosSimmaxij (~si, ~s′
i)
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Hungarian Algorithm
First cosine similarity is computed for each
possible pair of sense vectors ~si..n and ~s′

j..m,
resulting in a matrix of similarity scores.
Finding the optimal matching from senses ~si

to ~s′
j that maximises the sum of similarities

is known as the assignment problem. This
combinatorial optimisation problem can be
solved in polynomial time through the Hun-
garian Algorithm (Kuhn, 1955). The over-
all similarity between terms t and t′ is then
defined as the average of the similarities be-
tween their aligned senses.

All measures defined so far calculate similarity be-
tween terms in isolation. In many applications,
however, terms occur in a particular context that
can be exploited to determine their most likely
sense. Narrowing down their possible meaning to
a subset of senses, or a single sense, can be ex-
pected to yield a more adequate estimation of their
similarity. Hence a context-sensitive measure of
term similarity is defined as:

Contextual similarity
Let ~C and ~C ′ be vectors representing the con-
texts of terms t and t′ respectively. These
context vectors are constructed by summing
the index vectors of the neighbouring terms
within a window, following the same proce-
dure as used when training the MSRI model.
We then find ŝ and ŝ ′ as the sense vectors
best matching the context vectors:

ŝ = arg maxi CosSim(~si, ~C)

ŝ ′ = arg maxj CosSim(~sj , ~C ′)

Finally, contextual similarity is defined as the
similarity between these sense vectors:

Simcontext(t, t
′) = CosSim(ŝ, ŝ ′)

3.2 Sentence Similarity Features

In the experiments reported on below, a range of
different ways to represent sentences were tested.
Sentence similarity was generally calculated by
the average of the maximum similarity between
pairs of terms from both sentences, respectively.
The different ways of representing the data in
combination with some sentence similarity mea-
sure will here be referred to as similarity features.

1. MSRI-TermCentroid:
In each sentence, each term is represented as
the sum of its sense vectors. This is similar
to having one context vector, as in classical
RI, but due to the sense-frequency filtering,
potentially “noisy” senses are not included.

2. MSRI-TermMaxSense:
For each bipartite term pair in the two sen-
tences, their sense-pairs with maximum co-
sine similarity are used, one sense per term.

3. MSRI-TermInContext:
A 5 + 5 window around each (target) term
is used as context for selecting one sense of
the term. A window vector is calculated by
summing the index vectors of the other terms
in the window (i.e., except for the target term
itself). The sense of the target term which is
most similar to the window vector is used as
the representation of the term.

4. MSRI-TermHASenses:
Calculating similarity between two terms is
done by applying the Hungarian Algorithm
to all their bipartite sense pairs.

5. RI-TermAvg:
Classical Random Indexing — each term is
represented as a single context vector.

6. RI-TermHA:
Similarity between two sentences is calcu-
lated by applying the Hungarian Algorithm to
the context vectors of each constituent term.

The parameters were selected based on a com-
bination of surveying previous work on RI (e.g.,
Sokolov (2012)), and by analysing how sense
counts evolved during training. For MSRI, we
used a similarity threshold of 0.2, a vector dimen-
sionality of 800, a non-zero count of 6, and a win-
dow size of 5 + 5. Sense vectors resulting from
less than 50 observations were removed. For clas-
sical RI, we used the same parameters as for MSRI
(except for a similarity threshold).

4 Experimental Setup

In order to explore the potential of the MSRI
model and the textual similarity measures pro-
posed here, experiments were carried out on data
from the Semantic Textual Similarity (STS) shared
task (Agirre et al., 2012; Agirre et al., 2013).
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Given a pair of sentences, systems participating
in this task shall compute how semantically sim-
ilar the two sentences are, returning a similar-
ity score between zero (completely unrelated) and
five (completely semantically equivalent). Gold
standard scores are obtained by averaging multi-
ple scores obtained from human annotators. Sys-
tem performance is then evaluated using the Pear-
son product-moment correlation coefficient (ρ) be-
tween the system scores and the human scores.

The goal of the experiments reported here was
not to build a competitive STS system, but rather
to investigate whether MSRI can outperform clas-
sical Random Indexing on a concrete task such as
computing textual similarity, as well as to identify
which similarity measures and meaning represen-
tations appear to be most suitable for such a task.
The system is therefore quite rudimentary: a sim-
ple linear regression model is fitted on the training
data, using a single sentence similarity measure
as input and the similarity score as the dependent
variable. The implementations of RI and MSRI
are based on JavaSDM (Hassel, 2004).

As data for training random indexing models,
we used the CLEF 2004–2008 English corpus,
consisting of approximately 130M words of news-
paper articles (Peters et al., 2004). All text was
tokenized and lemmatized using the TreeTagger
for English (Schmid, 1994). Stopwords were re-
moved using a customized version of the stoplist
provided by the Lucene project (Apache, 2005).

Data for fitting and evaluating the linear re-
gression models came from the STS development
and test data, consisting of sentence pairs with
a gold standard similarity score. The STS 2012
development data stems from the Microsoft Re-
search Paraphrase corpus (MSRpar, 750 pairs),
the Microsoft Research Video Description cor-
pus (MSvid, 750 pairs), and statistical machine
translation output based on the Europarl corpus
(SMTeuroparl, 734 pairs). Test data for STS
2012 consists of more data from the same sources:
MSRpar (750 pairs), MSRvid (750 pairs) and
SMTeuroparl (459 pairs). In addition, different
test data comes from translation data in the news
domain (SMTnews, 399 pairs) and ontology map-
pings between OntoNotes and WordNet (OnWN,
750 pairs). When testing on the STS 2012 data, we
used the corresponding development data from the
same domain for training, except for OnWN where
we used all development data combined.

The development data for STS 2013 consisted
of all development and test data from STS 2012
combined, whereas test data comprised machine
translation output (SMT, 750 pairs), ontology
mappings both between WordNet and OntoNotes
(OnWN, 561 pairs) and between WordNet and
FrameNet (FNWN, 189 pairs), as well as news ar-
ticle headlines (HeadLine, 750 pairs). For sim-
plicity, all development data combined were used
for fitting the linear regression model, even though
careful matching of development and test data sets
may improve performance.

5 Results and Discussion

Table 2 shows Pearson correlation scores per fea-
ture on the STS 2012 test data using simple linear
regression. The most useful features for each data
set are marked in bold. For reference, the scores of
the best performing STS systems for each data set
are also shown, as well as baseline scores obtained
with a simple normalized token overlap measure.

There is large variation in correlation scores,
ranging from 0.77 down to 0.27. Part of this vari-
ation is due to the different nature of the data sets.
For example, sentence similarity in the SMT do-
main seems harder to predict than in the video
domain. Yet there is no single measure that ob-
tains the highest score on all data sets. There is
also no consistent difference in performance be-
tween the RI and MSRI measures, which seem
to yield about equal scores on average. The
MSRI-TermInContext measure has the low-
est score on average, suggesting that word sense
disambiguation in context is not beneficial in its
current implementation.

The corresponding results on the STS 2013 test
data are shown in Table 3. The same observations
as for the STS 2012 data set can be made: again
there was no consistent difference between the RI
and MSRI features, and no single best measure.

All in all, these results do not provide any ev-
idence that MSRI improves on standard RI for
this particular task (sentence semantic similarity).
Multi-sense distributional models have, however,
been found to outperform single-sense models on
other tasks. For example, Reisinger and Mooney
(2010) report that multi-sense models significantly
increase the correlation with human similarity
judgements. Other multi-prototype distributional
models may yield better results than their single-
prototype counterparts on the STS task.
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Features: MSRpar MSRvid SMTeuroparl SMTnews OnWN Mean

Best systems 0.73 0.88 0.57 0.61 0.71 0.70
Baseline 0.43 0.30 0.45 0.39 0.59 0.43

RI-TermAvg 0.44 0.71 0.50 0.42 0.65 0.54
RI-TermHA 0.41 0.72 0.44 0.35 0.56 0.49

MSRI-TermCentroid 0.45 0.73 0.50 0.33 0.64 0.53
MSRI-TermHASenses 0.40 0.77 0.47 0.39 0.68 0.54
MSRI-TermInContext 0.33 0.55 0.36 0.27 0.42 0.38
MSRI-TermMaxSense 0.44 0.71 0.50 0.32 0.64 0.52

Table 2: Pearson correlation scores per feature on STS 2012 test data using simple linear regression

Feature Headlines SMT FNWN OnWN Mean

Best systems 0.78 0.40 0.58 0.84 0.65
Baseline 0.54 0.29 0.21 0.28 0.33

RI-TermAvg 0.60 0.37 0.21 0.52 0.42
RI-TermHA 0.65 0.36 0.27 0.52 0.45

MSRI-TermCentroid 0.60 0.35 0.37 0.45 0.44
MSRI-TermHASenses 0.63 0.35 0.33 0.54 0.46
MSRI-TermInContext 0.20 0.29 0.19 0.36 0.26
MSRI-TermMaxSense 0.58 0.35 0.31 0.45 0.42

Table 3: Pearson correlation scores per feature on STS 2013 test data using simple linear regression

Notably, the more advanced features used in our
experiment, such as MSRI-TermInContext,
gave very clearly inferior results when compared
to MSRI-TermHASenses. This suggests that
more research on MSRI is needed to understand
how both training and retrieval can be fully uti-
lized and optimized.

6 Conclusion and Future Work

The paper introduced a new method called Multi-
Sense Random Indexing (MSRI), which is based
on Random Indexing and performs on-the-fly
clustering, as an efficient way to construct multi-
prototype distributional models for word similar-
ity. A number of alternative measures for word
similarity were proposed, both context-dependent
and context-independent, including new measures
based on optimal alignment of word senses us-
ing the Hungarian algorithm. An extrinsic eval-
uation was carried out by applying the resulting
models to the Semantic Textual Similarity task.
Initial experimental results did not show a sys-
tematic difference between single-prototype and
multi-prototype models in this task.

There are many questions left for future work.
One of them is how the number of senses per word
evolves during training and how the distribution
of senses in the final model looks like. So far we

only know that on average the number of senses
keeps growing with more training material, cur-
rently resulting in about 5 senses per word at the
end of training (after removing senses with fre-
quency below the sense-frequency threshold). It
is worth noting that this depends heavily on the
similarity threshold for merging senses, as well as
on the weighting schema used.

In addition there are a number of model para-
meters that have so far only been manually tuned
on the development data, such as window size,
number of non-zeros, vector dimensionality, and
the sense frequency filtering threshold. A system-
atic exploration of the parameter space is clearly
desirable. Another thing that would be worth
looking into, is how to compose sentence vectors
and document vectors from the multi-sense vector
space in a proper way, focusing on how to pick
the right senses and how to weight these. It would
also be interesting to explore the possibilities for
combining the MSRI method with the Reflective
Random Indexing method by Cohen et al. (2010)
in an attempt to model higher order co-occurrence
relations on sense level.

The fact that the induced dynamic word senses
do not necessarily correspond to human-created
senses makes evaluation in traditional word sense
disambiguation tasks difficult. However, correla-
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tion to human word similarity judgement may pro-
vide a way of intrinsic evaluation of the models
(Reisinger and Mooney, 2010). The Usim bench
mark data look promising for evaluation of word
similarity in context (Erk et al., 2013).

It is also worth exploring ways to optimise the
algorithm, as this has not been the focus of our
work so far. This would also allow faster training
and experimentation on larger text corpora, such
as Wikipedia. In addition to the JavaSDM pack-
age (Hassel, 2004), Lucene (Apache, 2005) with
the Semantic Vectors package (Widdows and Fer-
raro, 2008) would be an alternative framework for
implementing the proposed MSRI algorithm.
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Abstract
We present a novel compositional, gener-
ative model for vector space representa-
tions of meaning. This model reformulates
earlier tensor-based approaches to vector
space semantics as a top-down process,
and provides efficient algorithms for trans-
formation from natural language to vectors
and from vectors to natural language. We
describe procedures for estimating the pa-
rameters of the model from positive exam-
ples of similar phrases, and from distribu-
tional representations, then use these pro-
cedures to obtain similarity judgments for
a set of adjective-noun pairs. The model’s
estimation of the similarity of these pairs
correlates well with human annotations,
demonstrating a substantial improvement
over several existing compositional ap-
proaches in both settings.

1 Introduction

Vector-based word representations have gained
enormous popularity in recent years as a basic tool
for natural language processing. Various models
of linguistic phenomena benefit from the ability to
represent words as vectors, and vector space word
representations allow many problems in NLP to be
reformulated as standard machine learning tasks
(Blei et al., 2003; Deerwester et al., 1990).

Most research to date has focused on only one
means of obtaining vectorial representations of
words: namely, by representing them distribution-
ally. The meaning of a word is assumed to be
fully specified by “the company it keeps” (Firth,
1957), and word co-occurrence (or occasionally
term-document) matrices are taken to encode this
context adequately. Distributional representations
have been shown to work well for a variety of dif-
ferent tasks (Schütze and Pedersen, 1993; Baker
and McCallum, 1998).

The problem becomes more complicated when
we attempt represent larger linguistic structures—
multiword constituents or entire sentences—
within the same vector space model. The most ba-
sic issue is one of sparsity: the larger a phrase, the
less frequently we expect it to occur in a corpus,
and the less data we will have from which to es-
timate a distributional representation. To resolve
this problem, recent work has focused on compo-
sitional vector space models of semantics. Based
on the Fregean observation that the meaning of a
sentence is composed from the individual mean-
ings of its parts (Frege, 1892), research in com-
positional distributional semantics focuses on de-
scribing procedures for combining vectors for in-
dividual words in order to obtain an appropriate
representation of larger syntactic constituents.

But various aspects of this account remain un-
satisfying. We have a continuous semantic space
in which finitely many vectors are associated with
words, but no way (other than crude approxima-
tions like nearest-neighbor) to interpret the “mean-
ing” of all the other points in the space. More gen-
erally, it’s not clear that it even makes sense to talk
about the meaning of sentences or large phrases in
distributional terms, when there is no natural con-
text to represent.

We can begin to address these concerns by turn-
ing the conventional account of composition in
vector space semantics on its head, and describ-
ing a model for generating language from vectors
in semantic space. Our approach is still composi-
tional, in the sense that a sentence’s meaning can
be inferred from the meanings of its parts, but we
relax the requirement that lexical items correspond
to single vectors by allowing any vector. In the
process, we acquire algorithms for both meaning
inference and natural language generation.

Our contributions in this paper are as follows:

• A new generative, compositional model of
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phrase meaning in vector space.

• A convex optimization procedure for map-
ping words onto their vector representations.

• A training algorithm which requires only
positive examples of phrases with the same
meaning.

• Another training algorithm which requires
only distributional representations of phrases.

• A set of preliminary experimental results in-
dicating that the model performs well on real-
world data in both training settings.

2 Model overview

2.1 Motivations

The most basic requirement for a vector space
model of meaning is that whatever distance metric
it is equipped with accurately model human judg-
ments of semantic similarity. That is: sequences
of words which are judged to “mean the same
thing” should cluster close together in the seman-
tic space, and totally unrelated sequences of words
should be spread far apart.

Beyond this, of course, inference of vector
space representations should be tractable: we re-
quire efficient algorithms for analyzing natural
language strings into their corresponding vectors,
and for estimating the parameters of the model that
does the mapping. For some tasks, it is also useful
to have an algorithm for the opposite problem—
given a vector in the semantic space, it should be
possible to produce a natural-language string en-
coding the meaning of that vector; and, in keep-
ing with our earlier requirements, if we choose
a vector close to the vector corresponding to a
known string, the resulting interpretation should
be judged by a human to mean the same thing,
and perhaps with some probability be exactly the
same.

It is these three requirements—the use of human
similarity judgments as the measure of the seman-
tic space’s quality, and the existence of efficient al-
gorithms for both generation and inference—that
motivate the remainder of this work.

We take as our starting point the general pro-
gram of Coecke et al. (2010) which suggests that
the task of analyzing into a vector space should
be driven by syntax. In this framework, the com-
positional process consists of repeatedly combin-
ing vector space word representations according to

linguistic rules, in a bottom-up process for trans-
lating a natural language string to a vector in
space.

But our requirement that all vectors be trans-
latable into meanings—that we have both analy-
sis and generation algorithms—suggests that we
should take the opposite approach, working with a
top down model of vector space semantics.

For simplicity, our initial presentation of this
model, and the accompanying experiments, will
be restricted to the case of adjective-noun pairs.
Section 5 will then describe how this framework
can be extended to full sentences.

2.2 Preliminaries

We want to specify a procedure for mapping a
natural language noun-adjective pair (a, n) into
a vector space which we will take to be Rp.
We assume that our input sentence has already
been assigned a single CCG parse (Steedman and
Baldridge, 2011), which for noun-adjective pairs
has the form

blue orangutans
N/N N

>
N

(1)

Here, the parser has assigned each token a cate-
gory of the form N, N/N, etc. Categories are ei-
ther simple, drawn from a set of base types (here
just N for “noun”), or complex, formed by com-
bining simple categories. A category of the form
X/Y “looks right” for a category of the form Y,
and can combine with other constituents by appli-
cation (we write X/Y Y ⇒ X) or composition
(X/Y Y/Z ⇒ X/Z) to form higher-level con-
stituents.

To this model we add a vector space seman-
tics. We begin with a brief review the work of
Coecke et al. (2010). Having assigned simple cat-
egories to vector spaces (in this case, N to Rp),
complex categories correspond to spaces of ten-
sors. A category of the form X/Y is recursively
associated with SX ⊗ SY, where SX and SY are
the tensor spaces associated with the categories X
and Y respectively. So the space of adjectives (of
type N/N) is just Rq⊗Rq, understood as the set of
q× q matrices. To find the meaning of a adjective-
noun pair, we simply multiply the adjective matrix
and noun vector as specified by the CCG deriva-
tion. The result is another vector in the same se-
mantic space as the noun, as desired.
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To turn this into a top-down process, we need
to describe a procedure for splitting meanings and
their associated categories.

2.3 Generation

Our goal in this subsection is to describe a proba-
bilistic generative process by which a vector in a
semantic space is realized in natural language.

Given a constituent of category X, and a corre-
sponding vector x residing in some SX , we can ei-
ther generate a lexical item of the appropriate type
or probabilistically draw a CCG derivation rooted
in X, then independently generate the leaves. For
noun-adjective pairs, this can only be done in one
way, namely as in (1) (for a detailed account of
generative models for CCG see Hockenmaier and
Steedman (2002)). We will assume that this CCG

derivation tree is observed, and concern ourselves
with filling in the appropriate vectors and lexical
items. This is a strong independence assumption!
It effectively says “the grammatical realization of
a concept is independent of its meaning”. We will
return to it in Section 6.

The adjective-noun model has four groups of
parameters: (1) a collection ΘN/N of weight vec-
tors θa for adjectives a, (2) a collection ΘN of
weight vectors θn for nouns n, (3) a collection
EN/N of adjective matrices Ea for adjectives a, and
finally (4) a noise parameter σ2. For compactness
of notation we will denote this complete set of pa-
rameters Θ.

Now we can describe how to generate an
adjective-noun pair from a vector x. The CCG

derivation tells us to produce a noun and an ad-
jective, and the type information further informs
us that the adjective acts as a functor (here a ma-
trix) and the noun as an argument. We begin by
choosing an adjective a conditional on x. Having
made our lexical choice, we deterministically se-
lect the corresponding matrix Ea from EN/N. Next
we noisily generate a new vector y = Eax + ε,
a vector in the same space as x, corresponding
to the meaning of x without the semantic content
of a. Finally, we select a noun n conditional on
y, and output the noun-adjective pair (a, n). To
use the previous example, suppose x means blue
orangutans. First we choose an adjective a =
“blue” (or with some probability “azure” or “ultra-
marine”), and select a corresponding adjectiveEa.
Then the vector y = Eax should mean orangutan,
and when we generate a noun conditional on y we

should have n = “orangutan” (or perhaps “mon-
key”, “primate”, etc.).

This process can be summarized with the graph-
ical model in Figure 1. In particular, we draw a

ΘN/N

a

x

Ea y n

EN/N σ2 ΘN

Figure 1: Graphical model of the generative pro-
cess.

from a log-linear distribution over all words of the
appropriate category, and use the corresponding
Ea with Gaussian noise to map x onto y:

p(a|x; ΘN/N) =
exp(θ>a x)∑

θ′∈ΘN/N
exp(θ′>x)

(2)

p(y|x,Ea;σ2) = N (Eax, σ
2)(y) (3)

Last we choose n as

p(n|y; ΘN) =
exp(θ>n y)∑

θ′∈ΘN
exp(θ′>z)

(4)

Some high-level intuition about this model: in
the bottom-up account, operators (drawn from ten-
sor spaces associated with complex categories)
can be thought of as acting on simple objects and
“adding” information to them. (Suppose, for ex-
ample, that the dimensions of the vector space cor-
respond to actual perceptual dimensions; in the
bottom-up account the matrix corresponding to the
adjective “red” should increase the component of
an input vector that lies in dimension correspond-
ing to redness.) In our account, by contrast, ma-
trices remove information, and the “red” matrix
should act to reduce the vector component corre-
sponding to redness.

2.4 Analysis
Now we must solve the opposite problem: given
an input pair (a, n), we wish to map it to an ap-
propriate vector in Rp. We assume, as before, that
we already have a CCG parse of the input. Then,
analysis corresponds to solving the following op-
timization problem:

arg min
x

− log p(x|a, n; Θ)
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By Bayes’ rule,

p(x|a, n; Θ) ∝ p(a, n|x; Θ)p(x)

so it suffices to minimize

− log p(x)− log p(a, n|x; Θ)

To find the single best complete derivation of an
input pair (equivalent to the Viterbi parse tree in
syntactic parsing), we can rewrite this as

arg min
x,y

− log p(x)− log p(a, b, y|x; Θ) (5)

where, as before, y corresponds to the vector space
semantics representation of the noun alone. We
take our prior log p(x) to be a standard normal.
We have:

− log p(a, n, y|x)

= − log p(a|x; Θ)− log p(y|a, x; Θ)

− log p(n|y; Θ)

∝ −θ>a x+ log
∑

θ′∈ΘN/N

exp θ′>x

+
1

σ2
||Eax− y||2

− θ>n y + log
∑
θ′∈ΘN

exp θ′>y

Observe that this probability is convex: it con-
sists of a sum of linear terms, Euclidean norms,
and log-normalizers, all convex functions. Conse-
quently, Equation 5 can be solved exactly and ef-
ficiently using standard convex optimization tools
(Boyd and Vandenberghe, 2004).

3 Relation to existing work

The approach perhaps most closely related to the
present work is the bottom-up account given by
Coecke et al. (2010), which has already been dis-
cussed in some detail in the preceding section. A
regression-based training procedure for a similar
model is given by Grefenstette et al. (2013). Other
work which takes as its starting point the decision
to endow some (or all) lexical items with matrix-
like operator semantics include that of Socher et
al. (2012) and Baroni and Zamparelli (2010). In-
deed, it is possible to think of the model in Ba-
roni and Zamparelli’s paper as corresponding to
a training procedure for a special case of this
model, in which the positions of both nouns and
noun-adjective vectors are fixed in advance, and in

which no lexical generation step takes place. The
adjective matrices learned in that paper correspond
to the inverses of the E matrices used above.

Also relevant here is the work of Mitchell and
Lapata (2008) and Zanzotto et al. (2010), which
provide several alternative procedures for compos-
ing distributional representations of words, and
Wu et al. (2011), which describes a compositional
vector space semantics with an integrated syntac-
tic model. Our work differs from these approaches
in requiring only positive examples for training,
and in providing a mechanism for generation as
well as parsing. Other generative work on vec-
tor space semantics includes that of Hermann et
al. (2012), which models the distribution of noun-
noun compounds. This work differs from the
model that paper in attempting to generate com-
plete natural language strings, rather than simply
recover distributional representations.

In training settings where we allow all posi-
tional vectors to be free parameters, it’s possible
to view this work as a kind of linear relational em-
bedding (Paccanaro and Hinton, 2002). It differs
from that work, obviously, in that we are interested
in modeling natural language syntax and seman-
tics rather than arbitrary hierarchical models, and
provide a mechanism for realization of the embed-
ded structures as natural language sentences.

4 Experiments

Since our goal is to ensure that the distance be-
tween natural language expressions in the vector
space correlates with human judgments of their
relatedness, it makes sense to validate this model
by measuring precisely that correlation. In the re-
mainder of this section, we provide evidence of the
usefulness of our approach by focusing on mea-
surements of the similarity of adjective-noun pairs
(ANs). We describe two different parameter esti-
mation procedures for different kinds of training
data.

4.1 Learning from matching pairs

We begin by training the model on matching
pairs. In this setting, we start with a collec-
tion N sets of up to M adjective-noun pairs
(ai1, ni1), (ai2, ni2), . . . which mean the same
thing. We fix the vector space representation yi of
each noun ni distributionally, as described below,
and find optimal settings for the lexical choice pa-
rameters ΘN/N and ΘN, matrices (here all q × q)
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EN/N, and, for each group of adjective-noun pairs
in the training set, a latent representation xi. The
fact that the vectors yi are tied to their distribu-
tional vectors does not mean we have committed
to the distributional representation of the corre-
sponding nouns! The final model represents lexi-
cal choice only with the weight vectors Θ—fixing
the vectors just reduces the dimensionality of the
parameter estimation problem and helps steer the
training algorithm toward a good solution. The
noise parameter then acts as a kind of slack vari-
able, modeling the fact that there may be no pa-
rameter setting which reproduces these fixed dis-
tributional representations through exact linear op-
erations alone.

We find a maximum-likelihood estimate for
these parameters by minimizing

L(Θ, x) = −
N∑
i=1

M∑
i=1

log p(aij , nij |xi; Θ) (6)

The latent vectors xi are initialized to one of their
corresponding nouns, adjective matricesE are ini-
tialized to the identity. The components of ΘN are
initialized identically to the nouns they select, and
the components of ΘN/N initialized randomly. We
additionally place an L2 regularization penalty on
the scoring vectors in both Θ (to prevent weights
from going to infinity) and E (to encourage adjec-
tives to behave roughly like the identity). These
penalties, as well as the noise parameter, are ini-
tially set to 0.1.

Note that the training objective, unlike the
analysis objective, is non-convex. We use L-
BFGS (Liu and Nocedal, 1989) on the likeli-
hood function described above with ten such ran-
dom restarts, and choose the parameter setting
which assigns the best score to a held-out cross-
validation set. Computation of the objective and
its gradient at each step is linear in the number of
training examples and quadratic in the dimension-
ality of the vector space.

Final evaluation is performed by taking a set of
pairs of ANs which have been assigned a similar-
ity score from 1–6 by human annotators. For each
pair, we map it into the vector space as described
in Section 2.4 above. and finally compute the co-
sine similarity of the two pair vectors. Perfor-
mance is measured in the correlation (Spearman’s
ρ) between these cosine similarity scores and the
human similarity judgments.

4.1.1 Setup details

Noun vectors yi are estimated distributionally
from a corpus of approximately 10 million tokens
of English-language Wikipedia data (Wikimedia
Foundation, 2013). A training set of adjective-
noun pairs are collected automatically from a col-
lection of reference translations originally pre-
pared for a machine translation task. For each
foreign sentence we have four reference transla-
tions produced by different translators. We as-
sign POS tags to each reference (Loper and Bird,
2002) then add to the training data any adjec-
tive that appears exactly once in multiple refer-
ence translations, with all the nouns that follow it
(e.g. “great success”, “great victory”, “great ac-
complishment”). We then do the same for repeated
nouns and the adjectives that precede them (e.g.
“great success”, “huge success”, “tremendous suc-
cess”). This approach is crude, and the data col-
lected are noisy, featuring such “synonym pairs”
as (“incomplete myths”, “incomplete autumns”)
and (“similar training”, “province-level training”),
as well as occasional pairs which are not adjective-
noun pairs at all (e.g. “first parliamentary”). Nev-
ertheless, as results below suggest, they appear to
be good enough for purposes of learning an appro-
priate representation.

For the experiments described in this section,
we use 500 sets of such adjective-noun pairs,
corresponding to 1104 total training examples.
Testing data consists of the subset of entries in
the dataset from (Mitchell and Lapata, 2010) for
which both the adjective and noun appear at least
once (not necessarily together) in the training set,
a total of 396 pairs. None of the pairs in this test
set appears in training. We additionally withhold
from this set the ten pairs assigned a score of 6
(indicating exact similarity), setting these aside for
cross-validation.

In addition to the model discussed in the first
section of this paper (referred to here as “GEN”),
we consider a model in which there is only one
adjective matrix E used regardless of the lexical
item (referred to as “GEN-1”).

The NP space is taken to be R20, and we re-
duce distributional vectors to 20 dimensions using
a singular value decomposition.
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4.2 Learning from distributional
representations

While the model does not require distributional
representations of latent vectors, it’s useful to con-
sider whether it can also provide a generative ana-
log to recent models aimed explicitly at produc-
ing vectorial representations of phrases given only
distributional representations of their constituent
words. To do this, we take as our training data a
set of N single ANs, paired with a distributional
representation of each AN. In the new model, the
meaning vectors x are no longer free parameters,
but fully determined by these distributional repre-
sentations. We must still obtain estimates for each
Θ and EN/N, which we do by minimizing

L(Θ) = −
N∑
i=1

log p(ai,j , ni,j |xi; Θ) (7)

4.2.1 Experimental setup
Experimental setup is similar to the previous sec-
tion; however, instead of same-meaning pairs col-
lected from a reference corpus, our training data
is a set of distributional vectors. We use the same
noun vectors, and obtain these new latent pair vec-
tors by estimating them in the same fashion from
the same corpus.

In order to facilitate comparison with the other
experiment, we collect all pairs (ai, ni) such that
both ai and ni appear in the training set used in
Section 4.1 (although, once again, not necessar-
ily together). Initialization of Θ and E , regular-
ization and noise parameters, as well as the cross-
validation procedure, all proceed as in the previ-
ous section. We also use the same restricted eval-
uation set, again to allow the results of the two
experiments to be compared. We evaluate by mea-
suring the correlation of cosine similarities in the
learned model with human similarity judgments,
and as before consider a variant of the model in
which a single adjective matrix is shared.

4.3 Results
Experimental results are displayed in Table 1. For
comparison, we also provide results for a base-
line which uses a distributional representation of
the noun only, the Adjective-Specific Linear Map
(ALM) model of Baroni and Zamparelli (2010) and
two vector-based compositional models discussed
in (Mitchell and Lapata, 2008): �, which takes
the Hadamard (elementwise) product of the distri-
butional representations of the adjective and noun,

and +, which adds the distributions. As before,
we use SVD to project these distributional repre-
sentations onto a 20-dimensional subspace.

We observe that in both matrix-based learn-
ing settings, the GEN model or its parameter-
tied variant achieves the highest score (though
the distributionally-trained GEN-1 doesn’t per-
form as well as the summing approach). The pair-
trained model performs best overall. All corre-
lations except � and the distributionally-trained
GEN are statistically significant (p < 0.05), as
are the differences in correlation between the
matching-pairs-trained GEN and all other mod-
els, and between the distributionally-trained GEN-
1 and ALM. Readers familiar with other papers
employing the similarity-judgment evaluation will
note that scores here are uniformly lower than re-
ported elsewhere; we attribute this to the compar-
atively small training set (with hundreds, instead
of thousands or tens of thousands of examples).
This is particularly notable in the case of the ALM

model, which Baroni and Zamparelli report out-
performs the noun baseline when given a training
set of sufficient size.

Training data Model ρ

Word distributions Noun .185
+ .239
� .000

Matching pairs GEN-1 .130
GEN .365

Word and phrase ALM .136
distributions GEN-1 .201

GEN .097

Table 1: Results for the similarity judgment exper-
iment.

We also give a brief demonstration of the gen-
eration capability of this model as shown in Fig-
ure 2. We demonstrate generation from three dif-
ferent vectors: one inferred as the latent represen-
tation of “basic principles” during training, one
obtained by computing a vectorial representation
of “economic development” as described in Sec-
tion 2.4 and one selected randomly from within
vector space. We observe that the model cor-
rectly identifies the adjectives “fundamental” and
“main” as synonymous with “basic” (at least when
applied to “principles”). It is also able to cor-
rectly map the vector associated with “economic
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Input Realization

Training vector tyrannical principles
(“basic principles”) fundamental principles

main principles

Test vector economic development
(“economic development”) economic development

economic development

Random vector vital turning
further obligations
bad negotiations

Figure 2: Generation examples using the GEN

model trained with matching pairs.

development” back onto the correct lexical real-
ization. Words generated from the random vector
appear completely unrelated; this suggests that we
are sampling a portion of the space which does not
correspond to any well-defined concept.

4.4 Discussion

These experimental results demonstrate, first and
foremost, the usefulness of a model that is not tied
to distributional representations of meaning vec-
tors: as the comparatively poor performance of
the distribution-trained models shows, with only
a small number of training examples it is better to
let the model invent its own latent representations
of the adjective-noun pairs.

It is somewhat surprising, in the experi-
ments with distributional training data, that the
single-adjective model outperforms the multiple-
adjective model by so much. We hypothesize that
this is due to a search error—the significantly ex-
panded parameter space of the multiple-adjective
model makes it considerably harder to estimate
parameters; in the case of the distribution-only
model it is evidently so hard the model is unable
to identify an adequate solution even over multiple
training runs.

5 Extending the model

Having described and demonstrated the usefulness
of this model for capturing noun-adjective similar-
ity, we now describe how to extend it to capture
arbitrary syntax. While appropriate experimental
evaluation is reserved for future work, we outline
the formal properties of the model here. We’ll take
as our example the following CCG derivation:

sister Cecilia has blue orangutans
N/N N (S\N)/N N/N N

> >
N N

>
S\N

<
S

Observe that “blue orangutans” is generated ac-
cording to the noun-adjective model already de-
scribed.

5.1 Generation
To handle general syntax, we must first extend the
set EN/N of adjective matrices to sets EX for all
functor categories X, and create an additional set
of weight vectors ΘX for every category X.

When describing how to generate one split in
the CCG derivation (e.g. a constituent of type S
into constituents of type NP and S\NP), we can
identify three cases. The first, “fully-lexicalized”
case is the one already described, and is the gen-
erative process by which the a vector meaning
blue orangutans is transformed into “blue” and
“orangutans”, or sister Cecilia into “sister” and
“Cecilia”. But how do we get from the top-level
sentence meaning to a pair of vectors meaning
sister Cecilia and has blue orangutans (an “un-
lexicalized” split), and from has blue orangutans
to the word “has” and a vector meaning blue
orangutans (a “half-lexicalized” split)?

Unlexicalized split We have a vector xwith cat-
egory X, from which we wish to obtain a vector y
with category Y, and z with category Z. For this we
further augment the sets E with matrices indexed
by category rather than lexical item. Then we pro-
duce y = EYx + ε, z = EZ + ε where, as in the
previous case, ε is Gaussian noise with variance
σ2. We then recursively generate subtrees from y
and z.

Half-lexicalized split This proceeds much as in
the fully lexicalized case. We have a vector x from
which we wish to obtain a vector y with category
Y, and a lexical item w with category Z.

We choose w according to Equation 2, select
a matrix Ew and produce y = Ewx + ε as be-
fore, and then recursively generate a subtree from
y without immediately generating another lexical
item for y.

5.2 Analysis
As before, it suffices to minimize
− log p(x) − log p(W,P |x) for a sentence
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W = (w1, w2, · · · , wn) and a set of internal
vectors P . We select our prior p(x) exactly as
before, and can define p(W,P |x) recursively. The
fully-lexicalized case is exactly as above. For the
remaining cases, we have:

Unlexicalized split Given a subsequence
Wi:j = (wi, · · · , wj), if the CCG parse splits Wi:j

into constituents Wi:k and Wk:j , with categories
Y and Z, we have:

− log p(Wi:j |x) =− log p(Wi:k, P |EY x)

− log p(Wk:j , P |EZx)

Half-lexicalized split If the parse splits Wi:j

into wi and Wi+1:j with categories Y and Z, and
y ∈ P is the intermediate vector used at this step
of the derivation, we have:

− log p(Wi:j , y|x)

= − log p(wi|x)− log p(y|x,wi)
− log p(Wi+1:j |y)

∝ −θTwi
x+ log

∑
w′∈LY

exp θTw′x

+
1

σ2
||Ewix− y||2

− log p(Wi+1:j , P |y)

Finally, observe that the complete expression
of the log probability of any derivation is, as be-
fore, a sum of linear and convex terms, so the
optimization problem remains convex for general
parse trees.

6 Future work

Various extensions to the model proposed in this
paper are possible. The fact that relaxing the
distributional requirement for phrases led to per-
formance gains suggests that something similar
might be gained from nouns. If a reliable train-
ing procedure could be devised with noun vectors
as free parameters, it might learn an even better
model of phrase similarity—and, in the process,
simultaneously perform unsupervised word sense
disambiguation on the training corpus.

Unlike the work of Coecke et al. (2010), the
structure of the types appearing in the CCG deriva-
tions used here are neither necessary nor sufficient
to specify the form of the matrices used in this
paper. Instead, the function of the CCG deriva-
tion is simply to determine which words should
be assigned matrices, and which nouns. While

CCG provides a very natural way to do this, it
is by no means the only way, and future work
might focus on providing an analog using a differ-
ent grammar—all we need is a binary-branching
grammar with a natural functor-argument distinc-
tion.

Finally, as mentioned in Section 2.3, we have
made a significant independence assumption in re-
quiring that the entire CCG derivation be gener-
ated in advance. This assumption was necessary
to ensure that the probability of a vector in mean-
ing space given its natural language representation
would be a convex program. We suspect, however,
that it is possible to express a similar probabil-
ity for an entire packed forest of derivations, and
optimize it globally by means of a CKY-like dy-
namic programming approach. This would make
it possible to optimize simultaneously over all pos-
sible derivations of a sentence, and allow positions
in meaning space to influence the form of those
derivations.

7 Conclusion

We have introduced a new model for vector
space representations of word and phrase mean-
ing, by providing an explicit probabilistic process
by which natural language expressions are gener-
ated from vectors in a continuous space of mean-
ings. We’ve given efficient algorithms for both
analysis into and generation out of this meaning
space, and described two different training proce-
dures for estimating the parameters of the model.
Experimental results demonstrate that these al-
gorithms are capable of modeling graded human
judgments of phrase similarity given only positive
examples of matching pairs, or distributional rep-
resentations of pairs as training data; when trained
in this fashion, the model outperforms several
other compositional approaches to vector space
semantics. We have concluded by suggesting how
syntactic information might be more closely inte-
grated into this model. While the results presented
here are preliminary, we believe they present com-
pelling evidence of representational power, and
motivate further study of related models for this
problem.
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Abstract

While words in documents are generally
treated as discrete entities, they can be
embedded in a Euclidean space which
reflects an a priori notion of similarity
between them. In such a case, a text
document can be viewed as a bag-of-
embedded-words (BoEW): a set of real-
valued vectors. We propose a novel
document representation based on such
continuous word embeddings. It con-
sists in non-linearly mapping the word-
embeddings in a higher-dimensional space
and in aggregating them into a document-
level representation. We report retrieval
and clustering experiments in the case
where the word-embeddings are computed
from standard topic models showing sig-
nificant improvements with respect to the
original topic models.

1 Introduction

For many tasks such as information retrieval (IR)
or clustering, a text document is represented by
a vector, where each dimension corresponds to
a given word and where each value encodes the
word importance in the document (Salton and
McGill, 1983). This Vector Space Model (VSM)
or bag-of-words (BoW) representation is at the
root of topic models such as Latent Semantic In-
dexing (LSI) (Deerwester, 1988), Probablistic La-
tent Semantic Analysis (PLSA) (Hofmann, 1999)
or Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). All these topic models consist in “pro-
jecting” documents on a set of topics generally
learned in an unsupervised manner. During the
learning stage, as a by-product of the projec-
tion of the training documents, one also obtains
an embedding of the words in a typically small-
dimensional continuous space. The distance be-

tween two words in this space translates the mea-
sure of similarity between words which is captured
by the topic models. For LSI, PLSA or LDA, the
implicit measure is the number of co-occurrences
in the training corpus.

In this paper, we raise the following question:
if we were provided with an embedding of words
in a continuous space, how could we best use it in
IR/clustering tasks? Especially, could we develop
probabilistic models which would be able to bene-
fit from this a priori information on the similarity
between words? When the words are embedded
in a continuous space, one can view a document
as a Bag-of-Embedded-Words (BoEW). We there-
fore draw inspiration from the computer vision
community where it is common practice to rep-
resent an image as a bag-of-features (BoF) where
each real-valued feature describes local proper-
ties of the image (such as its color, texture or
shape). We model the generative process of em-
bedded words using a mixture model where each
mixture component can be loosely thought of as
a “topic”. To transform the variable-cardinality
BoEW into a fixed-length representation which is
more amenable to comparison, we make use of the
Fisher kernel framework of Jaakkola and Haussler
(Jaakkola and Haussler, 1999). We will show that
this induces a non-linear mapping of the embed-
ded words in a higher-dimensional space where
their contributions are aggregated.

We underline that our contribution is not the
application of the FK to text analysis (see (Hof-
mann, 2000) for such an attempt). Knowing that
words can be embedded in a continuous space,
our main contribution is to show that we can
consequently represent a document as a bag-of-
embedded-words. The FK is just one possible way
to subsequently transform this bag representation
into a fixed-length vector which is more amenable
to large-scale processing.

The remainder of the article is organized as fol-
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lows. In the next section, we review related works.
In section 3, we describe the proposed framework
based on embedded words, GMM topic models
and the Fisher kernel. In section 4, we report and
discuss experimental results on clustering and re-
trieval tasks before concluding in section 5.

2 Related Works

We provide a short review of the literature on those
topics which are most related to our work: topic
models, word embeddings and bag-of-patches rep-
resentations in computer vision.

Topic models. Statistical topic models build on
the idea of Latent Semantic Indexing (LSI) in a
probabilistic way. The PLSA model proposed by
Hoffman (Hofmann, 1999) can be thought of as a
constrained matrix factorization problem equiva-
lent to NMF (Lee and Seung, 1999; Gaussier and
Goutte, 2005). Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) , the generative counterpart of
PLSA, has played a major role in the development
of probabilistic models for textual data. As a re-
sult, it has been extended or refined in a count-
less studies (Griffiths et al., 2004; Eisenstein et al.,
2011; Hoffman et al., 2010). Statistical topic mod-
els are often evaluated with the perplexity mea-
sure on a held-out dataset but it has been shown
that perplexity only correlates weakly with human
preference (Chang et al., 2009). Moreover, sev-
eral studies reported that LDA does not generally
outperform LSI in IR or sentiment analysis tasks
(Wang et al., 2011; Maas et al., 2011).

Nevertheless, LSI has known a resurging inter-
est. Supervised Semantic Indexing (SSI) (Bai et
al., 2009) learns low-rank projection matrices on
query-document pairs so as to minimize a rank-
ing loss. Similarly, (Wang et al., 2011) studies the
influence of `1 and `2 regularization on the pro-
jection matrices and shows how to distribute the
algorithm using Map-Reduce.

Word embeddings. Parrallel to the large devel-
opment of statistical topic models, there has been
an increasing amount of literature on word em-
beddings where it has been proposed to include
higher-level dependencies between words, either
syntactic or semantic. We note that topic mod-
els such as LSI, PLSA or LDA implicitly perform
such an embedding (jointly with the embedding of
documents) and that the measure of similarity is
the co-occurrence of words in the training corpus.

A seminal work in this field is the one by Col-

lobert and Weston (Collobert and Weston, 2008)
where a neural network is trained by stochastic
gradient descent in order to minimize a loss func-
tion on the observed n-grams. This work has later
then been refined in (Bengio et al., 2009). Proba-
bilistic methods have also been proposed to learn
language models such as the HLBL embedding
(Mnih and Hinton, 2007).

Similarly, (Maas et al., 2011) parametrizes a
probabilistic model in order to capture word repre-
sentations, instead of modeling individually latent
topics, which lead to significant improvements
over LDA in sentiment analysis. Furthermore,
(Dhillon et al., 2011) uses the Canonical Correla-
tion Analysis technique between the left and right
context vectors of a word to learn word embed-
dings. Lastly, (Turian et al., 2010) proposes an
empirical comparison of several word embedding
techniques in a named entity recognition task and
provides an excellent state-of-the-art of word rep-
resentation. Except (Maas et al., 2011) , there has
been very little work to your knowledge bridging
the statistical topic models with the word embed-
ding techniques.

Computer vision. In modern computer vision,
an image is usually described by a set of local de-
scriptors extracted from small image patches such
as SIFT. This local representation provides some
invariance to changes in viewpoint, lighting or
occlusion. The local descriptors characterize the
low-level properties of the image such as its color,
texture or shape. Since it is computationally in-
tensive to handle (e.g. to match) sets of descrip-
tors of variable cardinality, it has been proposed to
aggregate the local descriptors into a global vector
which is more amenable to retrieval and classifica-
tion.

The most popular aggregation mechanism was
directly inspired by the work in text analysis. It
makes use of an intermediate representation – the
visual vocabulary – which is a set of prototypical
descriptors – the visual words – obtained through a
clustering algorithm such as k-means (Leung and
Malik, 1999; Sivic and Zisserman, 2003; Csurka
et al., 2004). Given an image, each of its de-
scriptors is assigned to its closest visual word and
the image is described by the histogram of visual
words frequencies. This representation is referred
to as the Bag-of-Visual-words (BoV).

Some works pushed the analogy with text anal-
ysis even further. For instance, in large-scale re-
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trieval, Sivic and Zisserman proposed to use a tf-
idf weighting of the BoV vector and an inverted
file for efficient matching (Sivic and Zisserman,
2003). As another example, pLSA, LDA and their
many variations have been extensively applied to
problems such as image classification (Quelhas
et al., 2005) or object discovery (Russell et al.,
2006). However, it has been noted that the quan-
tization process mentioned above incurs a loss of
information since a continuous descriptor is trans-
formed into a discrete value (the index of the clos-
est visual word). To overcome this limitation, sev-
eral improvements have been proposed which de-
part from the pure discrete model. These improve-
ments include the soft assignment of descriptors
to visual words (Farquhar et al., 2005; Philbin et
al., 2008; Gemert et al., 2008) or the use of more
advanced coding techniques than vector quanti-
zation such as sparse coding (Yang et al., 2009)
or locality-constrained linear coding (Wang et al.,
2010).

All the previous techniques can be understood
(with some simplifications) as simple counting
mechanisms (computation of 0-order statistics). It
has been proposed to take into account higher-
order statistics (first and second order for instance)
which encode more descriptor-level information
and therefore incur a lower loss of information.
This includes the Fisher vector (Perronnin and
Dance, 2007; Perronnin et al., 2010), which was
directly inspired by the Fisher kernel of Jaakkola
and Haussler (Jaakkola and Haussler, 1999). In a
nutshell, the Fisher vector consists in modeling the
distribution of patches in any image with a Gaus-
sian mixture model (GMM) and then in describing
an image by its deviation from this average prob-
ability distribution. In a recent evaluation (Chat-
field et al., 2011), it has been shown experimen-
tally that the Fisher vector was the state-of-the-art
representation for image classification. However,
in this work we question the treatment of words
as discrete entities. Indeed, intuitvely some words
are closer to each other from a semantic standpoint
and words can be embedded in a continuous space
as is done for instance in LSA.

3 The Bag-of-Embedded-Words (BoEW)

In this work, we draw inspiration from the work
in the computer vision community: we model the
generation process of words with continuous mix-
ture models and use the FK for aggregation.

The proposed bag-of-embedded-words pro-
ceeds as follows: Learning phase. Given an un-
labeled training set of documents:

1. Learn an embedding of words in a low-
dimensional space, i.e. lower-dimensional
than the VSM. After this operation, each
wordw is then represented by a vector of size
e:

w → Ew = [Ew,1, . . . , Ew,e]. (1)

2. Fit a probabilistic model – e.g. a mixture
model – on the continuous word embeddings.

Document representation. Given a document
whose BoW representation is {w1, . . . , wT }:

1. Transform the BoW representation into a
BoEW:

{w1, . . . , wT } → {Ew1 , . . . , EwT } (2)

2. Aggregate the continuous word embeddings
Ewt using the FK framework.

Since the proposed framework is independent of
the particular embedding technique, we will first
focus on the modeling of the generation process
and on the FK-based aggregation. We will then
compare the proposed continuous topic model to
the traditional LSI, PLSA and LDA topic models.

3.1 Probabilistic modeling and FK
aggregation

We assume that the continuous word embeddings
in a document have been generated by a “univer-
sal” (i.e. document-independent) probability den-
sity function (pdf). As is common practice for
continuous features, we choose this pdf to be a
Gaussian mixture model (GMM) since any con-
tinuous distribution can be approximated with ar-
bitrary precision by a mixture of Gaussians. In
what follows, the pdf is denoted uλ where λ =
{θi, µi,Σi, i = 1 . . .K} is the set of parameters
of the GMM. θi, µi and Σi denote respectively
the mixture weight, mean vector and covariance
matrix of Gaussian i. For computational reasons,
we assume that the covariance matrices are diag-
onal and denote σ2

i the variance vector of Gaus-
sian i, i.e. σ2

i = diag(Σi). In practice, the
GMM is estimated offline with a set of continu-
ous word embeddings extracted from a represen-
tative set of documents. The parameters λ are es-
timated through the optimization of a Maximum
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Likelihood (ML) criterion using the Expectation-
Maximization (EM) algorithm.

Let us assume that a document contains T
words and let us denote by X = {x1, . . . , xT } the
set of continuous word embeddings extracted from
the document. We wish to derive a fixed-length
representation (i.e. a vector whose dimensionality
is independent of T ) that characterizes X with re-
spect to uλ. A natural framework to achieve this
goal is the FK (Jaakkola and Haussler, 1999). In
what follows, we use the notation of (Perronnin et
al., 2010).

Given uλ one can characterize the sampleX us-
ing the score function:

GXλ = ∇Tλ log uλ(X). (3)

This is a vector whose size depends only on the
number of parameters in λ. Intuitively, it describes
in which direction the parameters λ of the model
should be modified so that the model uλ better fits
the data. Assuming that the word embeddings xt
are iid (a simplifying assumption), we get:

GXλ =
T∑
t=1

∇λ log uλ(xt). (4)

Jaakkola and Haussler proposed to measure the
similarity between two samplesX and Y using the
FK:

K(X,Y ) = GXλ
′
F−1
λ GYλ (5)

where Fλ is the Fisher Information Matrix (FIM)
of uλ:

Fλ = Ex∼uλ
[
∇λ log uλ(x)∇λ log uλ(x)′

]
. (6)

As Fλ is symmetric and positive definite, it
has a Cholesky decomposition Fλ = L′λLλ and
K(X,Y ) can be rewritten as a dot-product be-
tween normalized vectors Gλ with:

GXλ = LλG
X
λ . (7)

(Perronnin et al., 2010) refers to GXλ as the Fisher
Vector (FV) of X . Using a diagonal approxima-
tion of the FIM, we obtain the following formula
for the gradient with respect to µi 1:

GXi =
1√
θi

T∑
t=1

γt(i)

(
xt − µi
σi

)
. (8)

1we only consider the partial derivatives with respect to
the mean vectors since the partial derivatives with respect to
the mixture weights and variance parameters carry little ad-
ditional information (we confirmed this fact in preliminary
experiments).

where the division by the vector σi should be un-
derstood as a term-by-term operation and γt(i) =
p(i|xt, λ) is the soft assignment of xt to Gaussian i
(i.e. the probability that xt was generated by Gaus-
sian i) which can be computed using Bayes’ for-
mula. The FV GXλ is the concatenation of the GXi ,
∀i . Let e be the dimensionality of the continuous
word descriptors and K be the number of Gaus-
sians. The resulting vector is e×K dimensional.

3.2 Relationship with LSI, PLSA, LDA
Relationship with LSI. Let n be the number of
documents in the collection and t be the number
of indexing terms. Let A be the t × n document
matrix. In LSI (or NMF), A decomposes as:

A ≈ UΣV ′ (9)

where U ∈ Rt×e, Σ ∈ Re×e is diagonal, V ∈
Rn×e and e is the size of the embedding space. If
we choose V Σ as the LSI document embedding
matrix – which makes sense if we accept the dot-
product as a measure of similarity between docu-
ments since A′A ≈ (V Σ)(V Σ)′ – then we have
V Σ ≈ A′U . This means that the LSI embedding
of a document is approximately the sum of the em-
bedding of the words, weighted by the number of
occurrences of each word.

Similarly, from equations (4) and (7), it is clear
that the FV GXλ is a sum of non-linear mappings:

xt → Lλ∇λ log uλ(xt) =[
γt(1)√
θ1

xt − µ1

σ1
, . . . ,

γt(K)√
θK

xt − µK
σK

]

]
(10)

computed for each embedded-word xt. When the
number of Gaussians K = 1, the mapping simpli-
fies to a linear one:

xt →
xt − µ1

σ1
(11)

and the FV is simply a whitened version of the
sum of word-embeddings. Therefore, if we choose
LSI to perform word-embeddings in our frame-
work, the Fisher-based representation is similar to
the LSI document embedding in the one Gaus-
sian case. This does not come as a surprise in
the case of LSI since Singular Value Decomposi-
tion (SVD) can be viewed as a the limite case of a
probabilistic model with a Gaussian noise assump-
tion (Salakhutdinov and Mnih, 2007). Hence, the
proposed framework enables to model documents
when the word embeddings are non-Gaussian.
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Another advantage is that the proposed framework
is rotation and scale invariant. Indeed, while it
“makes sense” to use V Σ as the document em-
bedding, in practice better results can be obtained
when using simply V . Our framework is indepen-
dent of such an arbitrary choice.

Relationship with PLSA and LDA. There is
also a strong parallel between topic models on dis-
crete word occurrences such as PLSA/LDA and
the proposed model for continuous word embed-
dings. Indeed, both generative models include a
latent variable which indicates which mixture gen-
erates which words. In the LDA case, each topic is
modeled by a multinomial distribution which indi-
cates the frequency of each word for the particu-
lar topic. In the mixture model case, each mixture
component can be loosely understood as a “topic”.

Therefore, one could wonder if the proposed
framework is not somehow equivalent to topic
models such PLSA/LDA. The major difference is
that PLSA, LDA and other topic models on word
counts jointly perform the embedding of words
and the learning of the topics. A major deficiency
of such approaches is that they cannot deal with
words which have not been seen at training time.
In the proposed framework, these two steps are de-
coupled. Hence, we can cope with words which
have not been seen during the training of the prob-
abilistic model. We will see in section 4.3.1 that
this yields a major benefit: the mixture model can
be trained efficiently on a small subset of the cor-
pus and yet generalize to unseen words.

In the same manner, our work is significantly
different from previous attempts at applying the
FK framework to topic models such as PLSA
(Hofmann, 2000; Chappelier and Eckard, 2009)
or LDA (Chandalia and Beal, 2006) (we will refer
to such combinations as FKPLSA and FKLDA).
Indeed, while FKPLSA and FKLDA can improve
over PLSA and LDA respectively, they inherit the
deficiencies of the original PLSA and LDA ap-
proaches, especially their unability to deal with
words unseen at training time. We note also that
FKPLSA is extremely computationally intensive:
in the recent (Chappelier and Eckard, 2009), the
largest corpus which could be handled contained
barely 7,466 documents. In contrast, we can eas-
ily handle on a single machine corpora containing
hundreds of thousands of documents (see section
4.2).

Collection #docs #terms #classes
20NG 19,995 32,902 20
TDT 4,214 8,978 18

(a) Clustering
Collection #docs #terms #queries
ROBUST 490,779 87,223 250

TREC1&-3 741,856 108,294 150
CLEF03 166,754 79,008 60

(b) IR

Table 1: Characteristics of the clustering and IR
collections

4 Experiments

The experiments aim at demonstrating that the
proposed continuous model is competitive with
existing topic models on discrete words. We focus
our experiments on the case where the embedding
of the continuous words is obtained by LSI as it
enables us to compare the quality of the document
representation obtained originally by LSI and the
one derived by our framework on top of LSI. In
what follows, we will refer to the FV on the LSI
embedding simply as the FV.

We assessed the performance of the FV on
clustering and ad-hoc IR tasks. We used two
datasets for clustering and three for IR. Using the
Lemur toolkit (Ogilvie and Callan, 2001), we ap-
plied a standard processing pipeline on all these
datasets including stopword removal, stemming or
lemmatization and the filtering of rare words to
speed up computations. The GMMs were trained
on 1,000,000 word occurences, which represents
roughly 5,000 documents for the collections we
have used. In what follows, the cosine similar-
ity was used to compare FVs and LSI document
vectors.

4.1 Clustering
We used two well-known and publicly avail-
able datasets which are 20 NewsGroup
(20NG) and a subset of one TDT dataset
(http://www.ldc.upenn.edu/ProjectsTDT2004,
2004). The 20NG is a classical dataset when
evaluating classifiers or clustering methods. For
the TDT dataset we retain only topics with more
than one hundred documents, which resulted in 18
classes. After preprocessing, the 20NG collection
has approximately 20,000 documents and 33,000
unique words and the TDT has approximately
4,000 documents and 9,000 unique words. Table
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Collection Model ARI NMI

20NG

PLSA 41.0 57.4
LDA 40.7 57.9
LSI 41.0 59.5
FV 45.2 60.7

TDT

PLSA 64.2 84.5
LDA 69.4 86.4
LSI 72.1 88.5
FV 70.4 88.2

Table 2: Clustering experiments on 20NG and the
WebKB TDT Corpus: Mean performance over 20
runs (in %).

1 (a) gives the general statistics of the two datasets
after preprocessing.

We use 2 standard evaluation metrics to assess
the quality of the clusters, which are the Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985) and
Normalized Mutual Information (NMI) (Manning
and Schütze, 1999). These measures compare the
clusters with respect to the partition induced by
the category information. The ARI and NMI range
between 0 and 1 where 1 indicates a perfect match
with the categories. For all the clustering methods,
the number of clusters is set to the true number
of classes of the collections and the performances
were averaged over 20 runs.

We compared spherical k-means on the FV doc-
ument representations to topic models such as
PLSA and LDA2. We choose a priori an embed-
ding of size e = 20 for both datasets for LSI and
therefore for the FV. LDA and PLSA were trained
on the whole dataset. For the FV, we varied the
number of Gaussians (K) to analyze the evolution
of performances. Table 2 shows the best results
for the FV and compares them to LSI, PLSA and
LDA. First, LDA has lower performance than LSI
in our experiments as reported by several stud-
ies which showed that LDA does not necessarily
outperform LSI (Wang et al., 2011; Maas et al.,
2011). Overall, the FV outperforms all the other
models on 20NG and probabilistic topic models
on TDT.

2We use Blei’s implementation available at
http://www.cs.princeton.edu/ blei/lda-c/

4.2 Retrieval

We used three IR collections, from two evalua-
tion campaigns: TREC3 and CLEF4: Table 1 (b)
gives the statistics of the collections we retained:
(i) ROBUST (TREC), (ii) the English subpart of
CLEF03 AdHoc Task and (iii) the TREC 1&2 col-
lection, with 150 queries corresponding to topics
51 to 200. For the ROBUST and TREC 1&2 col-
lections, we used standard Porter stemming. For
CLEF, words were lemmatized. We removed rare
words to speed up the computation of LSI. Per-
formances were measured with the Mean Aver-
age Precision (MAP) over the top 1,000 retrieved
documents. All the collections have more than
80,000 unique words and approximately 166,000
documents for CLEF, 500,000 for ROBUST and
741,000 for TREC. LSI was computed on the
whole dataset and the GMMs were trained on a
random subset of 5,000 documents. We then com-
puted the FVs for all documents in the collection.
Note that we did not compute topic models with
LDA on these datasets as LSI provides similar per-
formances to LDA (Wang et al., 2011; Bai et al.,
2009).

Table 3 shows the evolution of the MAP for the
LSI baseline with respect to the size of the latent
space. Note that we use Matlab to compute sin-
gular valued decompositions and that some num-
bers are missing in this table because of the mem-
ory limitations of our machine. Figure 1 shows
the evolution of the MAP for different numbers of
Gaussians (K) for respectively the CLEF, TREC
and ROBUST datasets. For all these plots, FV per-
formances are displayed with a circle and LSI with
crosses. We tested an embedding of size e = 50
and e = 200 for the CLEF dataset, an embedding
of size e = 100 and e = 200 for the TREC dataset
and e = 100 and e = 300 for ROBUST. All these
figures show the same trend: a) the performance
of the FV increases up to 16 Gaussians and then
reaches a plateau and b) the FV significantly out-
performs LSI (since it is able to double LSI’s per-
formance in several cases). In addition, the LSI
results in table 3 (a) indicate that LSI with more
dimensions will not reach the level of performance
obtained by the FV.

3trec.nist.gov
4www.clef-campaign.org
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e 50 100 200 300 400 500
CLEF 4.0 6.7 9.2 11.0 13.0 13.9

TREC-1 &2 2.2 4.3 6.5 8.3 - -
ROBUST 1.3 2.4 3.6 4.5 - -

Table 3: LSI MAP (%) for the IR datasets for sev-
eral sizes of the latent subspace.

4.3 Discussion

In the previous section we validated the good be-
havior of the proposed continuous document rep-
resentation. In the following parts, we conduct ad-
ditional experiments to further show the strengths
and weaknesses of the proposed approach.

IR Baselines. If the FV based on LSI word em-
beddings significantly outperforms LSI, it is out-
performed by strong IR baselines such as Diver-
gence From Randomness (DFR) models (Amati
and Rijsbergen, 2002) or Language Models (Ponte
and Croft, 1998). This is what we show in table
4 with the PL2 DFR model compared to standard
TFIDF, the best FV and LSI.

Collection PL2 TFIDF FV LSI
CLEF’03 35.7 16.4 23.7 9.2

TREC-1&2 22.6 12.4 10.8 6.5
ROBUST 24.8 12.6 10.5 4.5

Table 4: Mean Average Precision(%) for the PL2
and TFIDF model on the three IR Collections
compared to Fisher Vector and LSI

These results are not surprising as it has been
shown experimentally in many studies that latent-
based approaches such as LSI are generally out-
performed by state-of-the-art IR models in Ad-
Hoc tasks. There are a significant gap in per-
formances between LSI and TFIDF and between
TFIDF and the PL2 model. The first gap is due to
the change in representation, from a vector space
model to latent based representation, while the
second one is only due to a ’better’ similarity as
both methods operate in a similar space. In a
way, the FV approach offers a better similarity
for latent representations even if several improve-
ments could be further proposed (pivoted docu-
ment length normalization, combination with ex-
act representation).
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Figure 1: MAP(%) for the FV with different num-
bers of Gaussians against LSI on the CLEF, TREC
and ROBUST datasets

4.3.1 Influence of Training Set Size and
Unseen Words.

One of the main benefits of our method is its abil-
ity to cope with unseen words: our framework
allows to assign probabilities for words unseen
while training the topic model assuming that they
can be embedded in the Euclidean space. Thus,
one can train the probabilistic model on a subpart
of the collection without having to discard unseen
words at test time. Therefore, we can easily ad-
dress large-scale collections as we can restrict the
GMM learning step on a subset of a collection of
documents. This is something that LDA cannot
cope with as the vocabulary is frozen at training
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Figure 2: NMI for the FV with different Number
of Gaussians against averaging word embeddings
on TDT with the Yule measure

time. We show in figure 5 that our model is robust
to the number of word occurences used for train-
ing the GMM. We illustrate this point using the
TREC 1-&2 collection with an embedding of size
e = 100. We varied the number of documents to
train the GMM. Figure 5 shows that increasing the
number of documents does not lead to improve-
ments and the performance remains stable. There-
fore, these empirical results indeed confirm that
we can adress large-scale collections as we can re-
strict the learning step on a small subset of a col-
lection of documents.

4.3.2 Beyond LSI Embedding
While we focused in the experimental section
on word embeddings obtained with LSI, we now
show that the proposed framework can be ap-
plied to other word embeddings. To do so, we
use a word embedding based on the Yule associ-
ation measure (Jagarlamudi et al., 2011) which is
closely related to the Mutual Information but relies
on the raw frequencies rather than on probabilities.
We use this measure to compute a similarity ma-
trix between words. Then, we applied a spherical
kmeans on this matrix to find e = 50 word clusters
and used the cluster centroids as the word embed-
ding matrix. A simple baseline is to use as docu-
ment representation the average word embedding
as is the case of LSI. The baseline gets 82% NMI
wherease the FV with 32 Gaussians reaches 88%.
The non-linear mapping induced by the FV always
outperforms the simple averaging. Therefore, it is
worthwhile to learn non-linear mappings.

5 Conclusion

In this work, we proposed to treat documents
as bags-of-embedded-words (BoEW) and to learn

M # docs MAP TREC
0.5M ≈ 2,700 11.0
1M ≈ 5,400 11.0
5M ≈ 27,000 10.6
10M ≈ 54,000 10.6

Table 5: Model performance for different subsets
used to train the GMM. M refers to a million word
occurences

probabilistic mixture models once words were em-
bedded in a Euclidean space. This is a signifi-
cant departure from the vast majority of the works
in the machine learning and information retrieval
communities which deal with words as discrete
entities. We assessed our framework on several
clustering and ad-hoc IR collections and the exper-
iments showed that our model is able to yield ef-
fective descriptors of textual documents. In partic-
ular, the FV based on LSI embedding was shown
to significantly outperform LSI for retrieval tasks.

There are many possible applications and gen-
eralizations of our framework. In this study, we fo-
cused on the LSI embedding and showed prelim-
inary results with the Yule embedding. Since we
believe that the word embedding technique is of
crucial importance, we would like to experiment
with recent embedding techniques such as the Col-
lobert and Weston embedding (Collobert and We-
ston, 2008) which has been shown to scale well in
several NLP tasks.

Moreover, another significant advantage of the
proposed framework is that we could deal seam-
lessly with collections of multilingual documents.
This requires the ability to embedd the words of
different languages and techniques exist to per-
form such an embedding including Canonical Cor-
relation Analysis. Finally, the GMM still has sev-
eral theoretical limitations to model textual docu-
ments appropriately so that one could design a bet-
ter statistical model for bags-of-embedded-words.
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Abstract

We develop a recursive neural network (RNN)
to extract answers to arbitrary natural language
questions from supporting sentences, by train-
ing on a crowdsourced data set (to be released
upon presentation). The RNN defines feature
representations at every node of the parse trees
of questions and supporting sentences, when
applied recursively, starting with token vectors
from a neural probabilistic language model. In
contrast to prior work, we fix neither the types
of the questions nor the forms of the answers;
the system classifies tokens to match a sub-
string chosen by the question’s author.

Our classifier decides to follow each parse tree
node of a support sentence or not, by classify-
ing its RNN embedding together with those of
its siblings and the root node of the question,
until reaching the tokens it selects as the an-
swer. A novel co-training task for the RNN,
on subtree recognition, boosts performance,
along with a scheme to consistently handle
words that are not well-represented in the lan-
guage model. On our data set, we surpass an
open source system epitomizing a classic “pat-
tern bootstrapping” approach to question an-
swering.

1 Introduction
The goal of this paper is to learn the syntax used to an-
swer arbitrary natural language questions. If the kinds
of questions were fixed but the supporting sentences
were open, this would be a kind of relation extraction or
slot-filling. If the questions were open but the support-
ing information was encoded in a database, this would
be a kind of semantic parsing.

In spite of many evaluation sets, no suitable data set
for learning to answer questions has existed before.
Data sets such as TREC (Dang et al., 2008) do not
identify supporting sentences or even answers unless
a competing system submitted an answer and a human
verified it. Exceeding the capabilities of current sys-
tems is difficult by training on such labels; any newly
discovered answer is penalized as wrong. The Jeopardy
Archive (Schmidt, 2013) offers more than 200,000 an-

swer/question pairs, but no pointers to information that
supports the solutions.

Believing that it is impossible to learn to answer
questions, QA systems in TREC tended to measure
syntactic similarity between question and candidate an-
swer, or to map the question into an enumerated set of
possible question types. For the pre-determined ques-
tion types, learning could be achieved, not from the QA
data itself, but from pattern bootstrapping (Brin, 1998)
or distant supervision against an ontology like Freebase
(Mintz et al., 2009). These techniques lose precision;
Riedel et al. (2010) found the distant supervision as-
sumption was violated on 31% of examples aligning
Freebase relations to text from The New York Times.

We introduce a new, crowdsourced dataset, TurkQA,
to enable question answering to be learned. TurkQA
consists of single sentences, each with several crowd-
sourced questions. The answer to each question is
given as a substring of the supporting sentence. For
example,

James Hervey (February 26, 1714 - De-
cember 25, 1758), English divine, was born
at Hardingstone, near Northampton, and
was educated at the grammar school of
Northampton, and at Lincoln College, Ox-
ford.

could have questions like “Where did James Hervey at-
tend school as a boy?” with answers like “the grammar
school of Northampton.” Our approach has yielded al-
most 40,000 such questions, and easily scales to many
more. Since the sentence containing the answer has al-
ready been located, the machine’s output can be judged
without worrying about missing labels elsewhere in the
corpus. Token-level ground truth forces the classifier to
isolate the relevant information.

To meet this challenge, we develop a classifier that
recursively classifies nodes of the parse tree of a sup-
porting sentence. The positively classified nodes are
followed down the tree, and any positively classified
terminal nodes become the tokens in the answer. Fea-
ture representations are dense vectors in a continuous
feature space; for the terminal nodes, they are the word
vectors in a neural probabilistic language model (like
(Bengio and Ducharme, 2001)), and for interior nodes,
they are derived from children by recursive application
of an autoencoder.
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The contributions of this paper are: a data set for
learning to answer free-form questions; a top-down
supervised method using continuous word features in
parse trees to find the answer; and a co-training task
for training a recursive neural network that preserves
deep structural information.

2 Related Work

Most submissions to TREC, TAC, and CLEF (Forner
et al., 2008) QA workshops rely on a large pipeline
of modules, emphasizing feature development, pattern
bootstrapping, and distant supervision. However, some
recent work has introduced new learning techniques for
question answering.

Restricting the forms of the questions, Poon and
Domingos (2009) present a question-answering system
for simple questions about biomedical text, by unsu-
pervised semantic parsing (USP), using Markov logic.
Because of its dependence on semantic role labeling
(SRL), USP can only extract limited kinds of infor-
mation from a sentence’s syntax. Particularly, USP
has been programmed to use information from just
five dependencies: NN, AMOD, PREP_OF, NUM, and
APPOS. The system handles only questions of two
forms: “What VERB OBJ?” and “What does SUBJ
VERB?”

Liang et al. (2011) offers a compositional focus on
semantic parsing. He has implemented a question-
answering system for geography and job databases,
learning to transform natural language questions into
SQL queries. Liang is able to take many words as ver-
batim analogues of table columns (e.g. “city” triggers a
search on a city column), but our task requires learning
such associations in natural language (“city” to a place
named entity), and less attention to Boolean composi-
tional semantics.

We have not seen recursive neural networks (RNN)
applied to QA yet, but Socher has developed applica-
tions to paraphrase (Socher et al., 2011a) and sentiment
analysis (Socher et al., 2011b). Relying either on dy-
namic pooling or the root feature alone, these methods
do not use the full information of the input graphs.

3 TurkQA: a scalable, crowdsourced
data set

The TurkQA data set consists of 13,424 problem sets.
Each problem set consists of the first sentence of a
Wikipedia article, which we call a support sentence,
and four questions, written by workers from Ama-
zon Mechanical Turk.1 (Occasionally, due to a faulty
heuristic, two or three consecutive sentences at the be-
ginning of the article are taken.) Each of the four ques-
tions is answered by a phrase in the support sentence, or
yes/no. At least two short answer questions must exist
in each problem set, and their answers are selected by

1https://www.mturk.com

their authors as contiguous, non-overlapping substrings
of the support sentence.

Over 600 workers contributed. The quality of the
questions was ensured by rigorous constraints on the
input: no pronouns could be used; all words from the
question had to be in the dictionary or the support sen-
tence; the same phrase could not be used as the answer
for multiple questions. We requested that anyone who
understood English should be able to understand the
question just by reading the support sentence, without
any background knowledge. As we took the support
sentences from the start of an article, references to prior
text should not occur.

At first we reviewed submissions by hand, but as
we found that 96% of the problem sets were accept-
able (and a higher percentage of the questions), we ap-
proved most submissions automatically. Thus we ex-
pect the data acquisition technique to be scalable with
a budget.

A possible drawback of our data acquisition is so-
called back-formulation: a tendency of question writ-
ers to closely match the syntax of the supporting sen-
tence when writing questions. This drawback was ob-
served in TREC 8, and caused TREC organizers to
change data set construction for later conferences by
starting with questions input to a search engine, and
then localize supporting sentences, rather than starting
with the support (Voorhees, 2000). In actuality, many
TurkQA question writers introduced their own word-
ing and asked questions with more qualifications than
a typical search engine query. They even asked 100
“why” questions.

4 Recursive neural networks
In their traditional form (Pollack, 1990), autoencoders
consist of two neural networks: an encoder E to com-
press multiple input vectors into a single output vec-
tor, and a decoder D to restore the inputs from the
compressed vector. Through recursion, autoencoders
allow single vectors to represent variable length data
structures. Supposing each terminal node t of a rooted
tree T has been assigned a feature vector ~x(t) ∈ Rn,
the encoder E is used to define n-dimensional feature
vectors at all remaining nodes. Assuming for simplic-
ity that T is a binary tree, the encoder E takes the
form E : Rn × Rn → Rn. Given children c1 and
c2 of a node p, the encoder assigns the representation
~x(p) = E(~x(c1), ~x(c2)). Applying this rule recur-
sively defines vectors at every node of the tree.

The decoder and encoder may be trained together to
minimize reconstruction error, typically Euclidean dis-
tance. Applied to a set of trees T with features already
assigned at their terminal nodes, autoencoder training
minimizes:

Lae =
∑
t∈T

∑
p∈N(t)

∑
ci∈C(p)

||~x′(ci)− ~x(ci)||, (1)

where N(t) is the set of non-terminal nodes of tree
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Algorithm 1: Auto-encoders co-trained for subtree recognition by stochastic gradient descent
Data: E : Rn × Rn → Rn a neural network (encoder)
Data: S : Rn × Rn → R2 a neural network for binary classification (subtree or not)
Data: D : Rn → Rn × Rn a neural network (decoder)
Data: T a set of trees T with features ~x(t) assigned to terminal nodes t ∈ T
Result: Weights of E and D trained to minimize a combination of reconstruction and subtree recognition

error
begin

while stopping criterion not satisfied do
Randomly choose T ∈ T
for p in a postorder depth first traversal of T do

if p is not terminal then
Let c1, c2 be the children of p
Compute ~x(p) = E(~x(c1), ~x(c2))
Let (~x′(c1), ~x′(c2)) = D(~x(p))
Compute reconstruction loss LR = ||~x′(c1)− ~x(c1)||2 + ||~x′(c2)− ~x(c2)||2
Choose a random q ∈ T such that q is a descendant of p
Let cq

1, c
q
2 be the children of q, if they exist

Compute S(~x(p), ~x(q)) = S(E(~x(c1), ~x(c2)), E(~x(cq
1), ~x(cq

2)))
Compute cross-entropy loss L1 = h(S(~x(p), ~x(q)), 1)
if p is not the root of T then

Choose a random r ∈ T such that r is not a descendant of p
Let cr

1, c
r
2 be the children of r, if they exist

Compute cross-entropy loss L2 = h(S(~x(p), ~x(r)), 0)
else

Let L2 = 0
Compute gradients of LR + L1 + L2 with respect to weights of E, D, and S, fixing ~x(c1),
~x(c2), ~x(cq

1), ~x(cq
2), ~x(cr

1), and ~x(cr
2).

Update parameters of E, D, and S by backpropagation

t, C(p) = c1, c2 is the set of children of node p,
and (~x′(c1), ~x′(c2)) = D(E(~x(c1), ~x(c2))). This loss
can be trained with stochastic gradient descent (Bottou,
2004).

However, there have been some perennial concerns
about autoencoders:

1. Is information lost after repeated recursion?

2. Does low reconstruction error actually keep the in-
formation needed for classification?

Socher attempted to address the first of these con-
cerns in his work on paraphrase with deep unfolding
recursive autoencoders (Socher et al., 2011a), where
each node is penalized for reconstruction errors many
levels down an input tree, not just the reconstruction of
its immediate descendants. Beyond five levels, Socher
observed many word-choice errors on decoding in-
put sentences. Socher’s work on sentiment analysis
(Socher et al., 2011b) focused on the second concern,
by co-training on desired sentence classification, along
with the usual reconstruction objective, at every level
down to the terminal nodes. Of course, this had the
side effect of imputing sentence-level sentiment labels
to words where it was not really relevant.

As an alternative, we propose subtree recognition
as a semi-supervised co-training task for any recurrent

neural network on tree structures. This task can be de-
fined just as generally as reconstruction error. While
accepting that some information will be lost as we go
up the tree, the co-training objective encourages the en-
coder to produce representations that can answer basic
questions about the presence or absence of descendants
far below.

Subtree recognition is a binary classification prob-
lem concerning two nodes x and y of a tree T ; we train
a neural network S to predict whether y is a descen-
dant of x. The neural network S should produce two
outputs, corresponding to log probabilities that the de-
scendant relation is satisfied. In our experiments, we
take S (as we do E and D) to have one hidden layer.
We train the outputs S(x, y) = (z0, z1) to minimize the
cross-entropy function

h((z0, z1), j) = − log
(

ezj

ez0 + ez1

)
for j = 0, 1.

(2)
so that z0 and z1 estimate log likelihoods that the de-
scendant relation is satisfied.

Our algorithm for training the subtree classifier is
presented in Algorithm 1. We use SENNA software
(Collobert et al., 2011) to compute parse trees for sen-
tences. Training on a corpus of 64,421 Wikipedia sen-
tences and testing on 20,160, we achieve a test error
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rate of 3.2% on pairs of parse tree nodes that are sub-
trees, for 6.9% on pairs that are not subtrees (F1 =
.95), with .02 mean squared reconstruction error.

5 Features for question and answer data
Application of the recursive neural network begins with
features from the terminal nodes (the tokens). These
features come from the language model of SENNA
(Collobert et al., 2011), the Semantic Extraction Neu-
ral Network Architecture. Originally, neural proba-
bilistic language models associated words with learned
feature vectors so that a neural network could predict
the joint probability function of word sequences (Ben-
gio and Ducharme, 2001). SENNA’s language model
is co-trained on many syntactic tagging tasks, with
a semi-supervised task in which valid sentences are
to be ranked above sentences with random word re-
placements. Through the ranking and tagging tasks,
this model learned embeddings of each word in a 50-
dimensional space. Besides this learned representa-
tions, we encode capitalization and SENNA’s predic-
tions of named entity and part of speech tags with ran-
dom vectors associated to each possible tag, as shown
in Figure 1. The dimensionality of these vectors is cho-
sen roughly as the logarithm of the number of pos-
sible tags. Thus every terminal node obtains a 61-
dimensional feature vector.

We modify the basic RNN construction of Section 4
to obtain features for interior nodes. Since interior tree
nodes are tagged with a node type, we encode the pos-
sible node types in a six-dimensional vector and make
E and D work on triples (ParentType, Child 1, Child
2), instead of pairs (Child 1, Child 2).

Word
Capital

Name Entity
POS x Parsing

"The"
x1: 261-dim vector

"cat"

"sat"

E

...

x8: 261-dim vector

E

x2: 261-dim vector

x11: 261-dim vector

E

x10: 261-dim vector

50 1 4 6200

Padding

6-dim

NP

Encoder

sigmoid

Linear

2x261+6

200

200

261

6-dim
VP

50 1 4 6200

...

Linear

Figure 1: Recursive autoencoder to assign features to
nodes of the parse tree of, “The cat sat on the mat.”
Note that the node types (e.g. “NP” or “VP”) of internal
nodes, and not just the children, are encoded.

Also, parse trees are not necessarily binary, so we bi-
narize by right-factoring. Newly created internal nodes
are labeled as “SPLIT” nodes. For example, a node
with children c1, c2, c3 is replaced by a new node with
the same label, with left child c1 and newly created
right child, labeled “SPLIT,” with children c2 and c3.

Vectors from terminal nodes are padded with 200 ze-
ros before they are input to the autoencoder. We do
this so that interior parse tree nodes have more room
to encode the information about their children, as the
original 61 dimensions may already be filled with in-
formation about just one word.

The feature construction is identical for the question
and the support sentence.

5.1 Modeling unknown words

Many QA systems derive powerful features from exact
word matches. In our approach, we trust that the classi-
fier will be able to match information from autoencoder
features of related parse tree branches, if it needs to.
But our neural language probabilistic language model
is at a great disadvantage if its features cannot charac-
terize words outside its original training set.

Since Wikipedia is an encyclopedia, it is common for
support sentences to introduce entities that do not ap-
pear in the dictionary of 100,000 most common words
for which our language model has learned features. In
the support sentence

Jean-Bedel Georges Bokassa, Crown
Prince of Central Africa was born on the 2nd
November 1975 the son of Emperor Bokassa
I of the Central African Empire and his wife
Catherine Denguiade, who became Empress
on Bokassa’s accession to the throne.

both Bokassa and Denguiade are uncommon, and do
not have learned language model embeddings. SENNA
typically replaces these words with a fixed vector asso-
ciated with all unknown words, and this works fine for
syntactic tagging; the classifier learns to use the context
around the unknown word. However, in a question-
answering setting, we may need to read Denguiade
from a question and be able to match it with Den-
guiade, not Bokassa, in the support.

Thus we extend the language model vectors with a
random vector associated to each distinct word. The
random vectors are fixed for all the words in the orig-
inal language model, but a new one is generated the
first time any unknown word is read. For known words,
the original 50 dimensions give useful syntactic and se-
mantic information. For unknown words, the newly in-
troduced dimensions facilitate word matching without
disrupting predictions based on the original 50.

6 Convolutions inside trees

We extract answers from support sentences by classify-
ing each token as a word to be included in the answer or
not. Essentially, this decision is a tagging problem on
the support sentence, with additional features required
from the question.

Convolutional neural networks efficiently classify
sequential (or multi-dimensional) data, with the ability
to reuse computations within a sliding frame tracking
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Figure 2: Labeling nodes to be followed to select “December 25, 1758.”
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Figure 3: Assembling features from the question, the parent, and siblings, to decide whether to follow node 33

the item to be classified (Waibel et al., 1989). Con-
volving over token sequences has achieved state-of-
the-art performance in part-of-speech tagging, named
entity recognition, and chunking, and competitive per-
formance in semantic role labeling and parsing, using
one basic architecture (Collobert et al., 2011). More-
over, at classification time, the approach is 200 times
faster at POS tagging than next-best systems such as
(Shen et al., 2007) and 100 times faster at semantic role
labeling (Koomen et al., 2005).

Classifying tokens to answer questions involves not
only information from nearby tokens, but long range
syntactic dependencies. In most work utilizing parse
trees as input, a systematic description of the whole
parse tree has not been used. Some state-of-the-art
semantic role labeling systems require multiple parse
trees (alternative candidates for parsing the same sen-
tence) as input, but they measure many ad-hoc features
describing path lengths, head words of prepositional
phrases, clause-based path features, etc., encoded in a
sparse feature vector (Pradhan et al., 2005).

By using feature representations from our RNN and
performing convolutions across siblings inside the tree,
instead of token sequences in the text, we can utilize

the parse tree information in a more principled way. We
start at the root of the parse tree and select branches to
follow, working down. At each step, the entire question
is visible, via the representation at its root, and we de-
cide whether or not to follow each branch of the support
sentence. Ideally, irrelevant information will be cut at
the point where syntactic information indicates it is no
longer needed. The point at which we reach a termi-
nal node may be too late to cut out the corresponding
word; the context that indicates it is the wrong answer
may have been visible only at a higher level in the parse
tree. The classifier must cut words out earlier, though
we do not specify exactly where.

Our classifier uses three pieces of information to de-
cide whether to follow a node in the support sentence
or not, given that its parent was followed:

1. The representation of the question at its root

2. The representation of the support sentence at the
parent of the current node

3. The representations of the current node and a
frame of k of its siblings on each side, in the order
induced by the order of words in the sentence
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Algorithm 2: Training the convolutional neural network for question answering
Data: Ξ, a set of triples (Q, S, T ), with Q a parse tree of a question, S a parse tree of a support sentence, and

T ⊂ W(S) a ground truth answer substring, and parse tree features ~x(p) attached by the recursive
autoencoder for all p ∈ Q or p ∈ S

Let n = dim ~x(p)
Let h be the cross-entropy loss (equation (2))

Data: Φ :
(
R3n

)2k+1 → R2 a convolutional neural network over frames of size 2k + 1, with parameters to be
trained for question-answering

Result: Parameters of Φ trained
begin

while stopping criterion not satisfied do
Randomly choose (Q, S, T ) ∈ Ξ
Let q, r = root(Q), root(S)
Let X = {r} (the set of nodes to follow)
Let A(T ) ⊂ S be the set of ancestor nodes of T in S
while X 6= ∅ do

Pop an element p from X
if p is not terminal then

Let c1, . . . , cm be the children of p
Let ~xj = ~x(cj) for j ∈ {1, . . . ,m}
Let ~xj = ~0 for j /∈ {1, . . . ,m}
for i=1, . . . m do

Let t = 1 if ci ∈ A(T ), or 0 otherwise
Let vci

= ⊕i+k
j=i−k (~xj ⊕ ~x(p)⊕ ~x(q))

Compute the cross-entropy loss h (Φ (vci
) , t)

if exp(−h (Φ (vci
) , 1)) > 1

2 then
Let X = X ∪ {ci} (the network predicts ci should be followed)

Update parameters of Φ by backpropagation

Each of these representations is n-dimensional. The
convolutional neural network concatenates them to-
gether (denoted by ⊕) as a 3n-dimensional feature at
each node position, and considers a frame enclosing
k siblings on each side of the current node. The CNN
consists of a convolutional layer mapping the 3n inputs
to an r-dimensional space, a sigmoid function (such as
tanh), a linear layer mapping the r-dimensional space
to two outputs, and another sigmoid. We take k = 2
and r = 30 in the experiments.

Application of the CNN begins with the children of
the root, and proceeds in breadth first order through
the children of the followed nodes. Sliding the CNN’s
frame across siblings allows it to decide whether to fol-
low adjacent siblings faster than a non-convolutional
classifier, where the decisions would be computed
without exploiting the overlapping features. A fol-
lowed terminal node becomes part of the short answer
of the system.

The training of the question-answering convolu-
tional neural network is detailed in Algorithm 2. Only
visited nodes, as predicted by the classifier, are used for
training. For ground truth, we say that a node should be
followed if it is the ancestor of some token that is part
of the desired answer. For example, to select the death
date “December 25, 1758” from the support sentence
(displayed on page one) about James Hervey, nodes of

the tree would be attached ground truth values accord-
ing to the coloring in Figure 2. At classification time,
some unnecessary (negatively labeled) nodes may be
followed without mistaking the final answer.

For example, when deciding whether to follow the
“NP” in node 33 on the third row of Figure 3, the clas-
sifier would see features of node 32 (NP) and node 8
(‘-’) on its left, its own features, and nothing on its
right. Since there are no siblings to the right of node
33, zero vectors, used for padding, would be placed in
the two empty slots. To each of these feature vectors,
features from the parent and the question root would be
concatenated.

The combination of recursive autoencoders with
convolutions inside the tree affords flexibility and gen-
erality. The ordering of children would be immea-
surable by a classifier relying on path-based features
alone. For instance, our classifier may consider a
branch of a parse tree as in Figure 2, in which the birth
date and death date have isomorphic connections to the
rest of the parse tree. It can distinguish them by the
ordering of nodes in a parenthetical expression (see ex-
amples in Table 2).
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System Short Answer Short Answer Short Answer MC MC MC
Precision Recall F1 Precision Recall F1

Main 58.9% 27.0% .370 79.9% 38.8% .523
No subtree recognition 48.9% 18.6% .269 71.7% 27.8% .400
No unknown 66.8% 19.7% .305 84.2% 29.0% .431
word embeddings

Smaller training 40.6% 16.7% .236 65.5% 20.4% .311
(1,333 questions)

OpenEphyra 52.2% 13.1% .209 73.6% 32.0 % .446

Table 1: Performance on TurkQA test set, for short answer and multiple choice (MC) evaluations.

7 Experiments

From the TurkQA data, we disregard the yes/no ques-
tions, and obtain 12,916 problem sets with 38,083 short
answer questions for training, and 508 problem sets
with 1,488 short answer questions for testing.

Because there may be several ways of stating a short
answer, short answer questions in other data sets are
typically judged by humans. In TurkQA, because an-
swers must be extracted as substrings, we can approx-
imate the machine’s correctness by considering the to-
ken classification error against the substring originally
chosen by the Turk worker. Of course, answer vali-
dation strategies could be used to clean up the short
answers—for instance, require that they are contigu-
ous substrings (as is guaranteed by the task)—but we
did not employ them here, so as not to obfuscate the
performance of the substring extraction system itself.
Inevitably, some token misclassification will occur be-
cause question writers choose more or less complete
answers (“in Nigeria” or just “Nigeria”).

Table 6 shows the performance of our main algo-
rithm, evaluated both as short-answer and as multiple
choice. The short answer results describe the main set-
ting, which formulates answer extraction as token clas-
sification. The multiple choice results come from con-
sidering all the short answers in the problem sets as
alternative choices, and comparing the classifier’s out-
puts averaged over the words in each response to select
the best, or skip if no average is positive. (Thus, all
questions in a single problem set have the same set of
choices.) Although the multiple choice setting is less
challenging, it helps us see how much of the short an-
swer error may be due to finding poor answer bound-
aries as opposed to the classifier being totally misled.
On more than half of the 1,488 test questions, no an-
swer at all is selected, so that multiple choice precision
remains high even with low recall.

As one baseline method, we took the OpenEphyra
question answering system, an open source project
led by Carnegie Mellon University, which evolved
out of submissions to TREC question answering con-
tests (Ko et al., 2007), bypassing its retrieval mod-
ule to simply use our support sentence. In con-
trast to our system, OpenEphyra’s question analy-
sis module is trained to map questions to one of a

fixed number of answer types, such as PERCENTAGE,
or PROPER_NAME.PERSON.FIRST_NAME, and uti-
lizes a large database of answer patterns for these types.
In spite of OpenEphyra’s laborious pattern coding, our
system performs 17% better on a multiple choice basis,
and 77% better on short answers, the latter likely be-
cause OpenEphyra’s answer types cover shorter strings
than the Turks’ answers.

The results show the impact of several of our algo-
rithmic contributions. If the autoencoder is trained only
on reconstruction error and not subtree recognition,
the F1 score for token classification drops from .370
(58.9% precision, 27.0% recall) to .269 (48.9% preci-
sion, 18.6% recall). Without extended embeddings to
differentiate unknown words, F1 is only .305 (66.8%
precision, 19.7% recall). We are encouraged that in-
creasing the amount of data contributes 50% to the F1
score (from only F1=.236 training on 1,333 questions),
as it suggests that the power of our algorithms is not
saturated while picking up the simplest features.

Table 2 gives examples of questions in the test set,
together with the classifier’s selection from the support
sentence.

8 Discussion
We have developed a recursive neural network architec-
ture capable of using learned representations of words
and syntax in a parse tree structure to answer free
form questions about natural language text. Using
meaning representations of the question and support-
ing sentences, our approach buys us freedom from ex-
plicit rules, question and answer types, and exact string
matching.

Certainly retrieval is important in a full-fledged
question answering system, whereas our classifier per-
forms deep analysis after candidate supporting sen-
tences have been identified. Also, multi-sentence
documents would require information to be linked
among coreferent entities. Despite these challenges,
we present our system in the belief that strong QA tech-
nologies should begin with a mastery of the syntax of
single sentences. A computer cannot be said to have a
complete knowledge representation of a sentence until
it can answer all the questions a human can ask about
that sentence.
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Question: What is the name of the British charity based in Haringey in north London?
Support: Based in Haringey in North London, Exposure is a British

charity which enables children and young people from all backgrounds,
including disadvantaged groups and those from areas of deprivation,
to participate and achieve their fullest potential in the media.

Selection: Exposure
Correct Answer: Exposure
Question: What was Robert Person’s profession?
Support: Robert Person was a professional baseball pitcher who

played 9 seasons in Major League Baseball: two for the New York Mets, two and a
half for the Toronto Blue Jays, three and a half for the Philadelphia
Phillies, and only pitched 7 games for the Boston Red Sox in the last year
of his career.

Selection: baseball pitcher
Correct Answer: baseball pitcher
Question: How many seasons did Robert Person play in the Major League?
Support: Robert Person was a professional baseball pitcher who

played 9 seasons in Major League Baseball: two for the New York Mets, two and a
half for the Toronto Blue Jays, three and a half for the Philadelphia
Phillies, and only pitched 7 games for the Boston Red Sox in the last year
of his career.

Selection: 9
Correct Answer: 9 seasons
Question: What sea does Mukka have a shore on?
Support: Mukka is suburb of Mangalore city on the shore of Arabian sea .

It is located to north of NITK, Surathkal campus on National Highway 17 .
There is a beach in Mukka which has escaped public attention.

Selection: Arabian sea
Correct Answer: Arabian sea
Question: What genre was Lights Out?
Support: Lights Out was an extremely popular American old-time radio

program, an early example of a network series devoted mostly to horror and
the supernatural, predating Suspense and Inner Sanctum.

Selection: horror supernatural
Correct Answer: horror and the supernatural
Question: Where is the Arwa Group?
Support: The Arwa Group is a set of three Himalayan peaks, named Arwa

Tower, Arwa Crest, and Arwa Spire, situated in the Chamoli district of
Uttarakhand state, in northern India.

Selection: the Chamoli district Uttarakhand state northern India
Correct Answer: the Chamoli district of Uttarakhand state
Question: What year did Juan Bautista Segura die in?
Support: Juan Bautista Quiros Segura (1853 - 1934) was president of

Costa Rica for two weeks, from August 20 to September 2, 1919, following the
resignation of Federico Tinoco.

Selection: 1934
Correct Answer: 1934
Question: What state is the Oregon School Activities Association in?
Support: The Oregon School Activities Association, or OSAA, is a

non-profit, board-governed organization that regulates high school athletics
and competitive activities in Oregon, providing equitable competition amongst
its members, both public and private.

Selection: OSAA
Correct Answer: Oregon

Table 2: Example results of main classifier on TurkQA test set.
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Abstract

The compositionality of meaning extends
beyond the single sentence. Just as words
combine to form the meaning of sen-
tences, so do sentences combine to form
the meaning of paragraphs, dialogues and
general discourse. We introduce both a
sentence model and a discourse model cor-
responding to the two levels of composi-
tionality. The sentence model adopts con-
volution as the central operation for com-
posing semantic vectors and is based on
a novel hierarchical convolutional neural
network. The discourse model extends the
sentence model and is based on a recur-
rent neural network that is conditioned in
a novel way both on the current sentence
and on the current speaker. The discourse
model is able to capture both the sequen-
tiality of sentences and the interaction be-
tween different speakers. Without feature
engineering or pretraining and with simple
greedy decoding, the discourse model cou-
pled to the sentence model obtains state of
the art performance on a dialogue act clas-
sification experiment.

1 Introduction

There are at least two levels at which the mean-
ing of smaller linguistic units is composed to form
the meaning of larger linguistic units. The first
level is that of sentential compositionality, where
the meaning of words composes to form the mean-
ing of the sentence or utterance that contains them
(Frege, 1892). The second level extends beyond
the first and involves general discourse composi-
tionality, where the meaning of multiple sentences
or utterances composes to form the meaning of
the paragraph, document or dialogue that com-
prises them (Korta and Perry, 2012; Potts, 2011).

The problem of discourse compositionality is the
problem of modelling how the meaning of general
discourse composes from the meaning of the sen-
tences involved and, since the latter in turn stems
from the meaning of the words, how the meaning
of discourse composes from the words themselves.

Tackling the problem of discourse composition-
ality promises to be central to a number of differ-
ent applications. These include sentiment or topic
classification of single sentences within the con-
text of a longer discourse, the recognition of di-
alogue acts within a conversation, the classifica-
tion of a discourse as a whole and the attainment
of general unsupervised or semi-supervised repre-
sentations of a discourse for potential use in di-
alogue tracking and question answering systems
and machine translation, among others.

To this end much work has been done on mod-
elling the meaning of single words by way of se-
mantic vectors (Turney and Pantel, 2010; Col-
lobert and Weston, 2008) and the latter have found
applicability in areas such as information retrieval
(Jones et al., 2006). With regard to modelling
the meaning of sentences and sentential compo-
sitionality, recent proposals have included sim-
ple additive and multiplicative models that do
not take into account sentential features such as
word order or syntactic structure (Mitchell and
Lapata, 2010), matrix-vector based models that
do take into account such features but are lim-
ited to phrases of a specific syntactic type (Ba-
roni and Zamparelli, 2010) and structured mod-
els that fully capture such features (Grefenstette et
al., 2011) and are embedded within a deep neu-
ral architecture (Socher et al., 2012; Hermann and
Blunsom, 2013). It is notable that the additive
and multiplicative models as well as simple, non-
compositional bag of n-grams and word vector av-
eraging models have equalled or outperformed the
structured models at certain phrase similarity (Bla-
coe and Lapata, 2012) and sentiment classifica-
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tion tasks (Scheible and Schütze, 2013; Wang and
Manning, 2012).

With regard to discourse compositionality, most
of the proposals aimed at capturing semantic as-
pects of paragraphs or longer texts have focused
on bag of n-grams or sentence vector averaging
approaches (Wang and Manning, 2012; Socher et
al., 2012). In addition, the recognition of dialogue
acts within dialogues has largely been treated in
non-compositional ways by way of language mod-
els coupled to hidden Markov sequence models
(Stolcke et al., 2000). Principled approaches to
discourse compositionality have largely been un-
explored.

We introduce a novel model for sentential com-
positionality. The composition operation is based
on a hierarchy of one dimensional convolutions.
The convolutions are applied feature-wise, that is
they are applied across each feature of the word
vectors in the sentence. The weights adopted in
each convolution are different for each feature, but
do not depend on the different words being com-
posed. The hierarchy of convolution operations
involves a sequence of convolution kernels of in-
creasing sizes (Fig. 1). This allows for the com-
position operation to be applied to sentences of
any length, while keeping the model at a depth
of roughly

√
2l where l is the length of the sen-

tence. The hierarchy of feature-wise convolution
operations followed by sigmoid non-linear acti-
vation functions results in a hierarchical convo-
lutional neural network (HCNN) based on a con-
volutional architecture (LeCun et al., 2001). The
HCNN shares with the structured models the as-
pect that it is sensitive to word order and adopts a
hierarchical architecture, although it is not based
on explicit syntactic structure.

We also introduce a novel model for discourse
compositionality. The discourse model is based
on a recurrent neural network (RNN) architecture
that is a powerful model for sequences (Sutskever
et al., 2011; Mikolov et al., 2010). The model
aims at capturing two central aspects of discourse
and its meaning: the sequentiality of the sentences
or utterances in the discourse and, where applica-
ble, the interactions between the different speak-
ers. The underlying RNN has its recurrent and out-
put weights conditioned on the respective speaker,
while simultaneously taking as input at every turn
the sentence vector for the current sentence gener-
ated through the sentence model (Fig. 2).
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Figure 1: A hierarchical convolutional neural net-
work for sentential compositionality. The bottom
layer represents a single feature across all the word
vectors in the sentence. The top layer is the value
for that feature in the resulting sentence vector.
Lines represent single weights and color coded
lines indicate sharing of weights. The parameter
k indicates the size of the convolution kernel at
the corresponding layer.

We experiment with the discourse model cou-
pled to the sentence model on the task of recog-
nizing dialogue acts of utterances within a conver-
sation. The dataset is given by 1134 transcribed
and annotated telephone conversations amounting
to about 200K utterances from the Switchboard
Dialogue Act Corpus (Calhoun et al., 2010).1 The
model is trained in a supervised setting without
previous pretraining; word vectors are also ran-
domly initialised. The model learns a probability
distribution over the dialogue acts at step i given
the sequence of utterances up to step i, the se-
quence of acts up to the previous step i−1 and the
binary sequence of agents up to the current step
i. Predicting the sequence of dialogue acts is per-
formed in a greedy fashion.2

We proceed as follows. In Sect. 2 we give the
motivation and the definition for the HCNN sen-
tence model. In Sect. 3 we do the same for the
RCNN discourse model. In Sect. 4 we describe
the dialogue act classification experiment and the
training procedure. We also inspect the discourse
vector representations produced by the model. We
conclude in Sect. 5.

1The dataset is available at compprag.
christopherpotts.net/swda.html

2Code and trained model available at nal.co
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Figure 2: Recurrent convolutional neural network
(RCNN) discourse model based on a RNN archi-
tecture. At each step the RCNN takes as input
the current sentence vector si generated through
the HCNN sentence model and the previous label
xi−1 to predict a probability distribution over the
current label P (xi). The recurrent weights Hi−1

are conditioned on the previous agent ai−1 and
the output weights are conditioned on the current
agent ai. Note also the sentence matrix Ms of the
sentence model and the hierarchy of convolutions
applied to each feature that is a row in Ms to pro-
duce the corresponding feature in si.

2 Sentence Model

The general aim of the sentence model is to com-
pute a vector for a sentence s given the sequence
of words in s and a vector for each of the words.
The computation captures certain general consid-
erations regarding sentential compositionality. We
first relate such considerations and we then pro-
ceed to give a definition of the model.

2.1 Sentential compositionality

There are three main aspects of sentential compo-
sitionality that the model aims at capturing. To
relate these, it is useful to note the following basic
property of the model: a sentence s is paired to the
matrix Ms whose columns are given sequentially
by the vectors of the words in s. A row in Ms cor-
responds to the values of the corresponding feature
across all the word vectors. The first layer of the
network in Fig. 1 represents one such row of Ms,
whereas the whole matrix Ms is depicted in Fig.
2. The three considerations are as follows.

First, at the initial stage of the composition,
the value of a feature in the sentence vector is
a function of the values of the same feature in
the word vectors. That is, the m-th value in the
sentence vector of s is a function of the m-th
row of Ms. This aspect is preserved in the ad-
ditive and multiplicative models where the com-
position operations are, respectively, addition +
and component-wise multiplication �. The cur-
rent model preserves the aspect up to the compu-
tation of the sentence vector s by adopting one-
dimensional, feature-wise convolution operations.
Subsequently, the discourse model that uses the
sentence vector s includes transformations across
the features of s (the transformation S in Fig. 2).

The second consideration concerns the hierar-
chical aspect of the composition operation. We
take the compositionality of meaning to initially
yield local effects across neighbouring words and
then yield increasingly more global effects across
all the words in the sentence. Composition oper-
ations like those in the structured models that are
guided by the syntactic parse tree of the sentence
capture this trait. The sentence model preserves
this aspect not by way of syntactic structure, but
by adopting convolution kernels of gradually in-
creasing sizes that span an increasing number of
words and ultimately the entire sentence.

The third aspect concerns the dependence of the
composition operation. The operation is taken to
depend on the different features, but not on the dif-
ferent words. Word specific parameters are intro-
duced only by way of the learnt word vectors, but
no word specific operations are learnt. We achieve
this by using a single convolution kernel across a
feature, and by utilizing different convolution ker-
nels for different features. Given these three as-
pects of sentential compositionality, we now pro-
ceed to describe the sentence model in detail.

2.2 Hierarchical Convolutional Neural
Network

The sentence model is taken to be a CNN where
the convolution operation is applied one dimen-
sionally across a single feature and in a hierarchi-
cal manner. To describe it in more detail, we first
recall the convolution operation that is central to
the model. Then we describe how we compute the
sequence of kernel sizes and how we determine the
hierarchy of layers in the network.
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Figure 3: Convolution of a vector m with a kernel
k of size 4.

2.2.1 Kernel and One-dimensional
Convolution

Given a sentence s and its paired matrix Ms, let
m be a feature that is a row in Ms. Before
defining kernels and the convolution operation,
let us consider the underlying operation of local
weighted addition. Let w1, ..., wk be a sequence
of k weights; given the feature m, local weighted
addition over the first k values of m gives:

y = w1m1 + ...+ wkmk (1)

Then, a kernel simply defines the value of k
by specifying the sequence of weights w1, ..., wk

and the one-dimensional convolution applies local
weighted addition with the k weights to each sub-
sequence of values of m.

More precisely, let a one-dimensional kernel k
be a vector of weights and assume |k| ≤ |m|,
where | · | is the number of elements in a vec-
tor. Then we define the discrete, valid, one-
dimensional convolution (k ∗m) of kernel k and
feature m by:

(k ∗m)i :=

k∑
j=1

kj ·mk+i−j (2)

where k = |k| and |k ∗m| = |m| − k + 1. Each
value in k ∗m is a sum of k values of m weighted
by values in k (Fig. 3). To define the hierarchical
architecture of the model, we need to define a se-
quence of kernel sizes and associated weights. To
this we turn next.

2.2.2 Sequence of Kernel Sizes
Let l be the number of words in the sentence
s. The sequence of kernel sizes 〈kl

i〉i≤t depends

only on the length of s and itself has length t =
d
√

2le − 1. It is given recursively by:

kl
1 = 2, kl

i+1 = kl
i + 1, kl

t = l −
t−1∑
j=1

(kl
j − 1)

(3)
That is, kernel sizes increase by one until the re-
sulting convolved vector is smaller or equal to the
last kernel size; see for example the kernel sizes in
Fig. 1. Note that, for a sentence of length l, the
number of layers in the HCNN including the input
layer will be t + 1 as convolution with the cor-
responding kernel is applied at every layer of the
model. Let us now proceed to define the hierarchy
of layers in the HCNN.

2.2.3 Composition Operation in a HCNN
Given a sentence s, its length l and a sequence
of kernel sizes 〈kl

i〉i≤t, we may now give the
recursive definition that yields the hierarchy of
one-dimensional convolution operations applied
to each feature f that is a row in Ms. Specifi-
cally, for each feature f , let Kf

i be a sequence of
t kernels, where the size of the kernel |Kf

i | = kl
i.

Then we have the hierarchy of matrices and corre-
sponding features as follows:

M1
f,: = Ms

f,: (4)

Mi+1
f,: = σ( Kf

i ∗Mi
f,: + bif ) (5)

for some non-linear sigmoid function σ and bias
bif , where i ranges over 1, ..., t. In sum, one-
dimensional convolution is applied feature-wise to
each feature of a matrix at a certain layer, where
the kernel weights depend both on the layer and
the feature at hand (Fig. 1). A hierarchy of matri-
ces is thus generated with the top matrix being a
single vector for the sentence.

2.2.4 Multiple merged HCNNs
Optionally one may consider multiple parallel
HCNNs that are merged according to different
strategies either at the top sentence vector layer or
at intermediate layers. The weights in the word
vectors may be tied across different HCNNs. Al-
though potentially useful, multiple merged HC-
NNs are not used in the experiment below.

This concludes the description of the sentence
model. Let us now proceed to the discourse model.
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Figure 4: Unravelling of a RCNN discourse model to depth d = 2. The recurrent Hi and output Oi

weights are conditioned on the respective agents ai.

3 Discourse Model

The discourse model adapts a RNN architecture
in order to capture central properties of discourse.
We here first describe such properties and then de-
fine the model itself.

3.1 Discourse Compositionality
The meaning of discourse - and of words and utter-
ances within it - is often a result of a rich ensemble
of context, of speakers’ intentions and actions and
of other relevant surrounding circumstances (Ko-
rta and Perry, 2012; Potts, 2011). Far from cap-
turing all aspects of discourse meaning, we aim
at capturing in the model at least two of the most
prominent ones: the sequentiality of the utterances
and the interactions between the speakers.

Concerning sequentiality, just the way the
meaning of a sentence generally changes if words
in it are permuted, so does the meaning of a para-
graph or dialogue change if one permutes the sen-
tences or utterances within. The change of mean-
ing is more marked the larger the shift in the order
of the sentences. Especially in tasks where one is
concerned with a specific sentence within the con-
text of the previous discourse, capturing the order
of the sentences preceding the one at hand may be
particularly crucial.

Concerning the speakers’ interactions, the
meaning of a speaker’s utterance within a dis-
course is differentially affected by the speaker’s
previous utterances as opposed to other speakers’

previous utterances. Where applicable we aim at
making the computed meaning vectors reflect the
current speaker and the sequence of interactions
with the previous speakers. With these two aims
in mind, let us now proceed to define the model.

3.2 Recurrent Convolutional Neural Network
The discourse model coupled to the sentence
model is based on a RNN architecture with inputs
from a HCNN and with the recurrent and output
weights conditioned on the respective speakers.

We take as given a sequence of sentences or ut-
terances s1, ..., sT , each in turn being a sequence
of words si = yi

1...y
i
l , a sequence of labels

x1, ..., xT and a sequence of speakers or agents
a1, ..., aT , in such way that the i-th utterance is
performed by the i-th agent and has label xi. We
denote by si the sentence vector computed by way
of the sentence model for the sentence si. The
RCNN computes probability distributions pi for
the label at step i by iterating the following equa-
tions:

hi = σ( Ixi−1 + Hi−1hi−1 + Ssi + bh) (6)

pi = softmax(Oihi + bo) (7)

where I,Hi,Oi are corresponding weight matri-

ces for each agent ai and softmax(y)k =
eyk∑
j e

yj

returns a probability distribution. Thus pi is taken
to model the following predictive distribution:

pi = P (xi|x<i, s≤i, a≤i) (8)
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Dialogue Act Label Example Train (%) Test (%)
Statement And, uh, it’s a legal firm office. 36.9 31.5
Backchannel/Acknowledge Yeah, anything could happen. 18.8 18.2
Opinion I think that would be great. 12.7 17.1
Abandoned/Uninterpretable So, - 7.6 8.6
Agreement/Accept Yes, exactly. 5.5 5.0
Appreciation Wow. 2.3 2.2
Yes−No−Question Is that what you do? 2.3 2.0
Non−Verbal [Laughter], [Throat-clearing] 1.7 1.9
Other labels (34) 12.2 13.5
Total number of utterances 196258 4186
Total number of dialogues 1115 19

Table 1: Most frequent dialogue act labels with examples and frequencies in train and test data.

An RCNN and the unravelling to depth d = 2 are
depicted respectively in Fig. 2 and Fig. 4. With
regards to vector representations of discourse, we
take the hidden layer hi as the vector represent-
ing the discourse up to step i. This concludes the
description of the discourse model. Let us now
consider the experiment.

4 Predicting Dialogue Acts

We experiment with the prediction of dialogue
acts within a conversation. A dialogue act spec-
ifies the pragmatic role of an utterance and helps
identifying the speaker’s intentions (Austin, 1962;
Korta and Perry, 2012). The automated recog-
nition of dialogue acts is crucial for dialogue
state tracking within spoken dialogue systems
(Williams, 2012). We first describe the Switch-
board Dialogue Act (SwDA) corpus (Calhoun et
al., 2010) that serves as the dataset in the experi-
ment. We report on the training procedure and the
results and we make some qualitative observations
regarding the discourse representations produced
by the model.

4.1 SwDA Corpus

The SwDA corpus contains audio recordings and
transcripts of telephone conversations between
multiple speakers that do not know each other and
are given a topic for discussion. For a given utter-
ance we use the transcript of the utterance, the dia-
logue act label and the speaker’s label; no other an-
notations are used in the model. Overall there are
42 distinct dialogue act labels such as Statement
and Opinion (Tab.1). We adopt the same data split
of 1115 train dialogues and 19 test dialogues as
used in (Stolcke et al., 2000).

4.2 Objective Function and Training

We minimise the cross-entropy error of the pre-
dicted and the true distributions and include an
l2 regularisation parameter. The RCNN is trun-
cated to a depth d = 2 so that the prediction of
a dialogue act depends on the previous two utter-
ances, speakers and dialogue acts; adopting depths
> 2 has not yielded improvements in the experi-
ment. The derivatives are efficiently computed by
back-propagation (Rumelhart et al., 1986). The
word vectors are initialised to random vectors of
length 25 and no pretraining procedure is per-
formed. We minimise the objective using L-BFGS
in mini-batch mode; the minimisation converges
smoothly.

4.3 Prediction Method and Results

The prediction of a dialogue act is performed in
a greedy fashion. Given the two previously pre-
dicted acts x̂i−1, x̂i−2, one chooses the act x̂i that
has the maximal probability in the predicted dis-
tribution P (xi). The LM-HMM model of (Stol-
cke et al., 2000) learns a language model for each
dialogue act and a Hidden Markov Model for the
sequence of dialogue acts and it requires all the
utterances in a dialogue in order to predict the dia-
logue act of any one of the utterances. The RCNN
makes the weaker assumption that only the utter-
ances up to utterance i are available to predict the
dialogue act x̂i. The accuracy results of the mod-
els are compared in Tab. 3.

4.4 Discourse Vector Representations

We inspect the discourse vector representations
that the model generates. After a dialogue is pro-
cessed, the hidden layer h of the RCNN is taken
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Center A: Do you repair your own car? A: – I guess we can start. A: Did you use to live around here?
Dialogue B: I try to, whenever I can. B: Okay. B: Uh, Redwood City.
First NN A: Do you do it every day? A: I think for serial murder – A: Can you stand up in it?

B: I try to every day. B: Uh-huh. B: Uh, in parts.
Second NN A: Well, do you have any children? A: The USSR – wouldn’t do it A: [Laughter] Do you have any kids

that you take fishing?
B: I’ve got one. B: Uh-huh. B: Uh, got a stepdaughter.

Third NN A: Do you manage the money? A: It seems to me there needs A: Is our five minutes up?
to be some ground, you know,
some rules –

B: Well, I, we talk about it. B: Uh-huh. B: Uh, pretty close to it.
Fourth NN A: Um, do you watch it every A: It sounds to me like, uh, A: Do you usually go out, uh,

Sunday? you are doing well. with the children or without them?
B: [Breathing] Uh, when I can. B: My husband’s retired. B: Well, a variety.

Table 2: Short dialogues and nearest neighbours (NN).

Accuracy (%)
RCNN 73.9

LM-HMM trigram 71.0
LM-HMM bigram 70.6

LM-HMM unigram 68.2
Majority baseline 31.5
Random baseline 2.4

Table 3: SwDA dialogue act tagging accuracies.
The LM-HMM results are from (Stolcke et al.,
2000). Inter-annotator agreement and theoretical
maximum is 84%.

to be the vector representation for the dialogue
(Sect. 3.2). Table 2 includes three randomly cho-
sen dialogues composed of two utterances each;
for each dialogue the table reports the four near-
est neighbours. As the word vectors and weights
are initialised randomly without pretraining, the
word vectors and the weights are induced during
training only through the dialogue act labels at-
tached to the utterances. The distance between
two word, sentence or discourse vectors reflects
a notion of pragmatic similarity: two words, sen-
tences or discourses are similar if they contribute
in a similar way to the pragmatic role of the utter-
ance signalled by the associated dialogue act. This
is suggested by the examples in Tab. 2, where a
centre dialogue and a nearest neighbour may have
some semantically different components (e.g. “re-
pair your own car” and “manage the money”), but
be pragmatically similar and the latter similarity is
captured by the representations. In the examples,
the meaning of the relevant words in the utter-
ances, the speakers’ interactions and the sequence
of pragmatic roles are well preserved across the
nearest neighbours.

5 Conclusion

Motivated by the compositionality of meaning
both in sentences and in general discourse, we
have introduced a sentence model based on a novel
convolutional architecture and a discourse model
based on a novel use of recurrent networks. We
have shown that the discourse model together with
the sentence model achieves state of the art results
in a dialogue act classification experiment with-
out feature engineering or pretraining and with
simple greedy decoding of the output sequence.
We have also seen that the discourse model pro-
duces compelling discourse vector representations
that are sensitive to the structure of the discourse
and promise to capture subtle aspects of discourse
comprehension, especially when coupled to fur-
ther semantic data and unsupervised pretraining.
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