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Abstract

We present Minimum Description Length
techniques for learning the structure of
weighted languages. MDL is already
widely used both for segmentation and
classification tasks, and here we show it
can be used to formalize further important
tools in the descriptive linguists’ toolbox,
including the distinction between acciden-
tal and systematic gaps in the data, the de-
tection of ambiguity, the selective discard-
ing of data, and the merging of categories.

Introduction

The Minimum Description Length (MDL, see Ris-
sanen 1978) framework is primarily about data
compression: if we are given some data D, our
goal is to find a modelM, and a correction term
E , such that the model output and the correction
term together describe the data, and transmitting
M and E takes fewer bits than transmitting any
competingM′ and E ′.

From the very beginning, starting with Pān. ini,
linguists have put a premium on brevity. The hope
is that the shortest theory is the best theory (see
Vitanyi and Li 2000), at least if we are willing
to posit a theory of Universal Grammar (UG) that
will let us specifyM briefly, since we can assume
UG to be amortized over many languages.

In this paper we study the problem of com-
pressing weighted languages by presenting them
via weighted finite state automata (WFSA). The
theoretical approach we discuss here has a long
history: the founding paper of Kolmogorov com-
plexity, Solomonoff (1964), already studied the
problem of inferring a grammar from data, and
Grünwald (1996) uses MDL to infer CFGs from
corpora, there conceived of as long strings over a
finite alphabet. It is fair to say that this theory has
not had much impact on computational practice,

where grammatical inference is dominated by the
standard n-gram based language modeling meth-
ods, see Jelinek (1997) for an excellent summary
of the basic ideas and techniques, most of which
are still in wide use.

While the two approaches may coincide in cer-
tain cases (see Grünwald 1996), and in theory n-
gram models are just a special case of the general
WFSA, in practice they are divided by a funda-
mental difference in modeling unseen data. From
an engineering standpoint, Church et al (2007) are
entirely right in saying:

No matter how much data we have, we
never have enough. Nothing has zero
probability.

Linguists, starting perhaps with Chomsky (1965),
draw a bright line between accidentally and sys-
tematically missing data, and would prefer to re-
strict backoff techniques to the accidental gaps.
The distinction is often lost in applied work, be-
cause the models need to be built in a noisy envi-
ronment, where frequent typos like *teh and simi-
lar performance errors can easily overwhelm gen-
uine items like boisterous or mopeds by an order
of magnitude or even more. In the eyes of many
linguists, this observation alone is sufficient to rob
probabilistic models of grammatical content, since
this makes it impossible to define a single thresh-
old g such that all and only strings with weight
greater than g are grammatical.

Aside from this subtle but important distinc-
tion between accidental and systematic gaps, both
kinds of language modeling can be cast in the
same formal terms: we fit a model M that min-
imizes some function E (typically, the squared
sum) of the error E . Obviously, the more pa-
rameters M has, the better fit we can obtain.
Much of contemporary computational linguistics
follows the route of training simple models such



as Hidden Markov Models (HMMs) and proba-
bilistic context-free grammars (PCFGs) with very
many parameters, and stops adding more only
when compressing the memory footprint is of
paramount importance. As (Church et al., 2007)
notes, applications like the contextual speller of
Microsoft Office simply could not ship without
keeping the language model within reasonable
size limits. In such cases, we are quite willing to
trade in E for gains in the size M ofM, and con-
siderations of optimizing the sum of the two are
simply irrelevant.

In contrast, our strategy is to search for model
which measures both M and E in bits, and opti-
mizes the sum M + E, not because we put such
a premium on data compression, but rather be-
cause we follow in Pān. ini’s footsteps. Our goal is
finding structural models capable of distinguish-
ing structurally excluded (ungrammatical) strings
like furiously sleep ideas green colorless from low
probability but grammatical strings like colorless
green ideas sleep furiously (Pereira, 2000). For
this more ambitious goal comparing models with
different number of parameters is a key issue, and
this is precisely where MDL is helpful.

The rest of this Introduction provides the basic
definitions, notation, and terminology, all fairly
standard except for the use of Moore rather than
Mealy machines – the significance of this choice
will be discussed in Section 2. In Section 1
we bring a fundamental idea of signal process-
ing, quantization error, to bear on the problem
of model selection, illustrating the issue on a real
example, the proquant system of Hungarian. In
Section 2 we show how one of the most power-
ful tools at disposal of the linguist, ambiguity, can
be detected by MDL, bringing another standard
idea, signal to noise ratio to bear. In Section 3
we discuss another real example, Hungarian mor-
photactics, and show that two methods widely (but
shamefacedly) used in practice, discarding data
and merging descriptive categories, can be used
on a principled basis within MDL. Our goal is
to show that by consistent application of MDL
principles we can automatically set up the kind
of models that linguists would set up. Ultimately,
both man and machine work toward the same goal,
optimization of grammar elegance or, what is the
same, brevity.

Definition 1. Given some finite alphabet Σ, a
weighted language p over this alphabet is defined

as a mapping p : Σ∗ → R taking non-negative val-
ues such that

∑
α∈Σ∗ p(α) = 1. This is less gen-

eral than the standard notion of noncommutative
power series with weights taken in arbitrary semir-
ings (Eilenberg 1974, Salomaa 1978) but will suf-
fice here. The stringset {α|p(α) > 0} is called the
support of p and will be denoted by S(p).
Definition 2. Given two weighted languages
p and q, we say the Kullback-Leibler (KL)
approximation error Q of q relative to p is∑

α∈S(q) p(α) log(p(α)/q(α)). The entropy of p
is defined as −

∑
α∈S(p) p(α) log(p(α)).

Definition 3. A WFSAM is defined by a square
transition matrix M whose element mij give the
probability of transition from state i to state j, an
emission list h that gives a string hi ∈ Σ∗ for each
i 6= 0, and an acceptance vector ~awhose i-th com-
ponent is 1 if i is an accepting state and 0 other-
wise. There is a unique initial state which starts
the state numbering at 0, and we permit states with
empty outputs. Rows of M must sum to 1. Thus
we have defined WFSA as normalized probability-
weighted nondeterministic Moore machines.
Definition 4. The weight a WFSA assigns to a
generation path is the product of the weights on
the edges traversed, and the weight it assigns to a
string α is the sum of the weights assigned to all
paths that generate α.

1 Quantization error

The notions of quantization error and quantiza-
tion noise, while well known in the signal pro-
cessing literature (for a monographic treatment,
see Widrow and Kollár 2008), and widely used
in speech processing (Makhoul et al., 1985), have
had little impact on language processing. Yet
MDL description of even the simplest weighted
language brings up a significant problem that can-
not be addressed without approximation.

Let p be a non-computable real number between
0 and 1, and let us define the language A as con-
taining only two strings, a and b, with probability
p and 1 − p respectively. Since p is incompress-
ible, the only way Alice can send A to Bob is by
sending all bits of p. By Alice sending only the
first n bits, Bob obtains a language An that ap-
proximatesA with error of 2−n. Since sending the
strings {a, b} has only a small constant cost, the
overall MDL cost is dominated by the error term
E, which is just as incompressible as the original
p was.



As long as the weights themselves are treated
as information objects of arbitrary capacity, there
is no way out of this conundrum (de Leeuw 1956).
On the other hand, the weighted languages we en-
counter in practice are generally abstracted from
gigaword or smaller corpora, and as such their in-
herent precision is less than 32 bits. For weighted
languages with finite support (corpora and lan-
guage models without smoothing) p is simply a
list containing strings and probabilities. The cost
of transmitting this list comes from two sources:
the cost of transmitting the probabilities, and the
cost of transmitting the strings. As a first approx-
imation, let us assume the two are independent, a
matter we shall return to in Section 2.

We begin by investigating the inherent
cost/error tradeoff of transmitting a discrete
probability distribution {pj |1 ≤ j ≤ k} by
uniform quantization to b bits. We divide the unit
interval in n = 2b equal parts. For our theorems
we will use a value b large enough so that we
have pj ≥ 2−(b−2) for all j, leaving at least the
first 4 bins empty. Usually 32 bits suffice for
this, and as we shall see shortly, often a lot fewer
are truly needed, though standard modeling tools
like SRILM often use 64-bit quantities. For each
probability, Alice sends b bits (the bin number).
Bob, who knows b, reconstructs a value based on
the center of the bin.

Since this process does not guarantee that the
reconstructed values sum to 1, Bob takes the ad-
ditional step of renormalizing these values: if∑
qi = r, he will use q = qi/r instead of the

qi that were transmitted by Alice. When b is large,
the pi will be distributed uniformly mod 2−b. In
this case, the expected values E(pi − qi) are zero
for all i, so E(

∑
qi) =

∑
E(qi) =

∑
E(pi) =

E(
∑
pi) = 1 or, in other words, E(r) = 1. Since

Var(r − 1) =
∑

i Var(pi − qi) = k/12n2 is on
the order 1/n2, in the following estimate we can
safely ignore the effects of renormalization. By
Definition 2, the KL approximation error is

Q =
n−1∑
i=0

∑
i/n≤pj≤(i+1)/n

pj∆(pij) (1)

where ∆(pij) = log(2npj/(2i + 1)) is the dif-
ference between the logarithms of the actual pj
and the centerpoint of the interval [i/n, (i+ 1)/n)
where pj falls. In absolute value, this is maximal
when pj is at the lower end of this interval, where
∆(pij) is log(2i+1

2i ). Using the standard estimate

log(1 + x) ≤ x this will be less than 1
2i ≤ 1/8

since i ≥ 4 . Since the ∆(pij) are now estimated
uniformly, and the pj sum to 1, we obtain

Theorem 1. The approximation error Qn of uni-
form quantization into n bins [i/n, (i+1)/n) such
that the first 4 bins are empty satisfies

Qn ≤
1

8 log 2
∼ 0.18 (2)

bits independent of n (the computation was in base
e rather than base 2, hence the factor log 2). With
growing n the number of bins that remain empty
will grow, and the estimate 1

2i of ∆ can be im-
proved accordingly.

Theorem 1 of course gives just an upper bound,
and a rather crude one, the expected value of Qn
is considerably less. Instead of using the max
value ∆(pij) we can consider the expected abso-
lute value, which is log(1 + 1

2i)/n, so equation (2)
could be reformulated as

E(Qn) ≤ 1

8n log 2
(3)

It is evident from the foregoing that the crux of
the matter are the small pi values, and at any rate,
there can only be a handful of relatively large val-
ues, since the sum is 1. Experience shows that
probabilities obtained from corpora span many or-
ders of magnitude, which justifies the use of a log
scale. Instead of the simple uniform quantization
of Theorem 1, we will use a two-parameter quan-
tization scheme, whereby first log pj are cut off at
−C, and the rest, which are on the (−C, 0) inter-
val, are sorted in n = 2b bins ‘b-bit quantization’.

In effect, all probabilities below e−C are as-
sumed to be below measurement precision, and
the log of the rest are uniformly quantized. We
experimented with two simple techniques: repre-
senting the class (−∞,−C) with a very low fixed
value (10−50) or with one set to e−2C based on
the parameter C of the encoding. As there was
no appreciable difference (which is not surprising
given limx→0 x log x = 0), from here on we sim-
ply speak of zero weights for weights below e−C .

We emphasize that ‘being below measurement
precision’ is not the same as ‘being zero’ in the
above sense. First, in any corpus of size N the
smallest number we can measure is 1/N , yet we
know that further strings that were not in our
sample are not necessarily probability zero. It
is therefore common to reserve a small fraction,



∅ a akár bár egyvala más másvala minden se vala
hány 72383 9502 2432 55 21 4584
hogy 7781539 213687 3173 1839 4570 123 4138 31873
hol 117231 399052 1037 9845 16066 16009 20521 34081
honnan 24777 18628 296 1205 2482 1321 627 4274
honnét 1598 1197 12 25 78 33 23 236
hová 17589 21073 486 1753 1 5073 1 1859 2249 3966
hova 17360 10591 309 1166 1788 1381 2105 3036
ki 1309618 1464744 3933 60923 884 814 308508 165230 221175
meddig 11879 8171 189 225 74 252
mely 761277 1586913 166 74262 3 4 40601
melyik 68051 47564 1996 34477 2 939 48274
mennyi 76429 25805 657 1415 517 96184
mi 1626013 1303820 6500 52480 1337 161 275773 355690
miért 251120 20672 58 205 4 1810 13552
mikor 173652 555325 679 33516 15892 11288 206 18235
milyen 343643 38921 8217 68033 1618 1 55603 81155

Table 1: Frequencies of proquants in the Hungarian Webcorpus

generally 1-5% of the probability mass, to un-
seen events, and use calculated numbers, instead
of measured values, to smooth the distribution.
Unfortunately, the engineering philosophy behind
the various backoff schemes (which often utilize
MDL stopping criteria both in speech and lan-
guage modeling, see e.g. Shinoda and Watanabe
2000, Seymore and Rosenfeld 1996) is diametri-
cally opposed to the the method of inquiry pre-
ferred by linguists, whose primary interest is with
generalization, i.e. with models that make falsifi-
able predictions, rather than furnishing descriptive
statistics. In particular, negative generalizations,
that something is forbidden by some rule of gram-
mar, are just as interesting from their standpoint as
positive generalizations. But how do we express a
negative generalization?
Definition 5. A string will be deemed ungrammat-
ical or structurally excluded iff every generation
path includes at least one zero weight in the above
sense.

If scores from different sources are multiplied
together, the use of zero weights as markers of
ungrammaticality is implicit in the semantics of
WFSA.1 Still, there are significant difficulties in
implementing the idea. If we want to maintain
the commonsensical assumption that *teh is not
a word (has zero unigram weight) and also ac-
count for the data that makes it the 34,174th most
common string in English text, we will need to

1We owe this observation to an anonymous MOL referee.

model typos. Once we learn that the log price of
the /the/teh/ substitution is about -9.8, we can pre-
dict not just the frequency of teh, but also those
of weatehr, otehr, tehy, tehre, tehft, and so forth,
without adding these to the lexicon. Since such a
model is based on computed frequencies of letter
substitution and exchange rather than on the typos
directly, the engineer has to give up the enterprise
of building the entire language model in a single
sweep directly on the data.

At the same time, the linguist has to give up
the attractive simplicity of ‘zero weight iff un-
grammatical’: the misspelling model will assign
a low but nonzero weight to everything, and if
this model is compiled together with a unigram
model that contains only grammatical words, the
simple world-view of Definition 5 will no longer
work. Rather, we will have to say that it is zero
weight in the grammatical subautomaton (visible
only prior to getting compiled together with the se-
mantic, spelling, stylistic, and possibly other sub-
automata) that defines grammaticality. We have
to build an explicit noise model to make sense of
the raw data, but this is not particularly surprising
from the perspective of other sciences like astron-
omy where noise reduction is common practice.

The specific contribution of the MDL approach
is that zero weights in the model are a lot
cheaper than using low probabilities would be: the
paradigm encourages both sparseness and struc-
tural decomposition. But before we can establish



these points in Sections 2 and 3, we need to as-
similate another piece of computational practice,
the use of log probabilities. When quantization is
uniform on the log scale, the expected value of the
binning error is no longer zero, given our assump-
tion of uniformity on the linear scale, but rather

−C log i
n∫

−C log i+1
n

ex − e−C
i+0.5

n dx ∼ C3/8n3 (4)

which yields an expected r ∼ kC3/8n3, still neg-
ligible compared to the bound given in Theorem 2,
which is obtained by methods similar to those used
above.

Theorem 2. For C, n sufficiently large for the
first 4 bins to remain empty, the approximation
error LCn of log-uniform quantization with cutoff
−C into n = 2b bins [−C(i + 1)/n,−Ci/n) is
bounded by

LCn ≤
C

2n log 2
(5)

and the expected value E(LCn ) is bounded by
C2/4n2 log 2.

Figure 1: Error of log-scale uniform quantization

Let us see on an example how these error
bounds compare to values obtained numerically.
Our first example will explore what we will call,
for want of a better name, the proquant system
of Hungarian that covers both pro-forms (pro-
nouns, proadjectives, proadverbials) and quan-
tifiers. Given the prefixes a-, minden-, vala-,
egyvala-, másvala-, se-, akár-, más-, bár- and

zero, and suffixes -ki, -mi, -hol, -hogy, -hova,
etc. we can create forms such as valaki ‘some-
one’, valami ‘something’, akárki ‘anyone’, sehol
‘nowhere’ and so on. Clearly, many of what we
call prefixes and suffixes could be analyzed fur-
ther, e.g. másvala as más+vala, but we don’t want
to prejudge the issue by presenting a maximally
detailed analysis.

In a corpus of over 40 million sentences (Hun-
garian Webcorpus, Halácsy et al. 2004) we ob-
served the frequencies in Table 1. Many of these
proquant forms take inflectional suffixes (case,
number, etc.), and the numbers presented here al-
ready include these, so that the 814 occurrences of
másvalaki include forms like másvalakivel ‘with
someone else’, másvalakinek ‘to someone else’
etc. If we think of the (stemmed) Hungarian vo-
cabulary as a weighted language h, the set of
prefixes (suffixes) as an unweighted language Pre
(resp. Suff), the data is a sample from S(h)∩
Pre·Suff with the weights renormalized. Alto-
gether, we have 121 nonzero values plus 39 ze-
ros, the entropy of the distribution is H = 3.677.
Figure 1 plots the log of the observed quantiza-
tion noise as a function of the number of bits b and
the cutoff −C. Notice that once C is sufficiently
large, no further gains are made by increasing it
further. As expected from Theorem 2, the log of
the error is roughly linear in b = log2 n (the ob-
served values are of course better than the bounds).

Definition 6. The inherent noise of a dataset D
is the KL approximation error between a random
subsample and its complement.

Ideally, we would want to compare another sam-
ple D′ to D, but in many cases launching a com-
parable data collection effort is simply not feasi-
ble, and we must content ourselves with the sim-
ple procedure suggested by this definition. By ran-
domly cutting the 40m sentence corpus on which
the proquant dataset is based in 10m sentence parts
and computing the KL divergence between any
two, we obtain numbers in the 7-8·10−5 range,
which means it makes little sense to approximate
D with better precision than 10−5. How to handle
the singular cases when some qj becomes 0 (as
happens with half of the hapaxes when we cut the
sample in two) is an issue we defer to Section 3.

Since the smallest pj in this data is about
5·10−8, by taking C = 20 we guarantee that no
log probability is less than the cutoff point −C.
Trivial ‘list’ automata consisting of an initial state,



a final state, and a separate Mealy arc (or Moore
state) for each of the 121 nonzero observations al-
ready generate a weighted language within the in-
herent noise of the data at 10 bits, where the KL
divergence is at 8 ·10−6. At 12 bits, the divergence
is below 1.4 · 10−6, and at 16 bits, below 5 · 10−9.
As we shall see in the next Section, the MDL size
of these models, between 2k and 7k bits, is domi-
nated by factors unrelated to the precision b of the
encoding.

Figure 2: Model fit to observed probabilities

Figure 2 shows the 80 largest observed proquant
probabilities (in black) in descending order, and
the probabilities of the same strings as computed
from several models. The 10 and 12-bit list au-
tomata are not plotted, as the computed values are
graphically indistinguishable from the observed
values, the rest will be discussed in the text.

2 Detecting ambiguity

Before turning to the actual MDL learning pro-
cess, let us summarize what we have for the Hun-
garian proquant system so far. We have a weighted
language of about 120 strings. When transmit-
ting a weighted automaton, Alice is sending not
strings and weights, but rather weight-labeled arcs
and string-labeled states of a WFSA. In Defini-
tion 3 we used Moore machines, but in the liter-
ature Mealy automata, where inputs/outputs and
weights are both tied to arcs are more common
(see e.g. Mohri 2009). The rationale for preferring
Moore over Mealy in the MDL context is that no
gains can be obtained from joint compression of
strings and probabilities (even though Mealy ma-
chines couple the two), while sharing of strings

has very significant impact on MDL length, as we
shall see shortly. For the simple ‘list’ automata
this means adding extra states in the middle of a
Mealy arc, and we need to take some precautions
to guarantee that the representation is just as com-
pact as it would be for a Mealy machine.

Let us now see in some detail how compact
these encodings can get. With s states, and b bits
for probability, an arc requires 2 log2 s + b bits.
However, Bob can reasonably assume that Alice
is only sending trimmed machines, with states that
cannot be reached from the initial state or with no
path to an accepting state already removed. There-
fore, if Bob sees a state with no outbound path
he supplies an outgoing arc, with probability 1, to
the final state – such arcs need not be sent by Al-
ice to begin with. Similarly, Bob can assume that
all states except for the last one are non-accepting,
and Alice will transmit information only to over-
ride this default when needed.

As for emissions, in a Moore machine each state
emits a string (but no guarantees that different
states emit different strings), so Alice needs to en-
code the strings somehow. If we assume that there
is a character table shared between Alice and Bob,
e.g. the character frequencies of Hungarian, with
entropy H , encoding a string α costs simply |α|H
bits. (We could take this also to be a case of trans-
mitting a weighted language, but we assume that
the cost of transmitting this language can be amor-
tized over many WFSA that deal with Hungarian.)

b l M cs ca KL Hq

1 121 5210 4306 904 2.1883 6.833
2 121 5386 4306 1080 1.1207 3.487
3 121 5507 4306 1201 0.268 2.889
4 121 5628 4306 1322 0.041436 4.044
5 121 5749 4306 1443 0.016117 3.424
6 121 5870 4306 1564 0.002409 3.667
7 121 5991 4306 1685 0.000676 3.653
8 121 6112 4306 1806 0.000288 3.647
9 121 6233 4306 1927 5.905e-5 3.681
10 121 6354 4306 2048 8.003e-6 3.678
11 121 6475 4306 2169 3.999e-6 3.678
12 121 6596 4306 2290 1.387e-6 3.678
16 121 7080 4306 2774 4.660e-9 3.676

Table 2: List models with character-based string
encoding

Table 2 summarizes the relevant values for the triv-
ial models where each weight gets its own train-
able parameter. b is the number of bits, l is the



number of trainable parameters (weights associ-
ated to arcs), ca is the cost of transmitting the arcs.
Note that this is less than l(b+2 log2 s), because of
the redundancy assumptions shared by Alice and
Bob. cs is the cost of transmitting the emissions,
and the total model cost is M = ca + cs. We
would, ideally, also need to add to M a dozen bits
or so to encode the major parameters of the cod-
ing scheme itself, such as the values b = 10 and
C = 20, but these turn out to be negligible com-
pared to the basic cost. Also, these major param-
eters are shared across the alternatives we com-
pare, so whatever we do to minimize M will not
be affected by uniformly adding (or uniformly ig-
noring) this constant cost. KL gives the KL di-
vergence between the model and the training data.
This measures the expected extra message length
per arc weight, so that the error residual E is k
times this value, where k is the number of values
being modeled. We emphasize that k = l only
in the listing format, where all values are treated
as independent – in the ‘hub’ model we shall dis-
cuss shortly l is only 26 (10 prefix and 16 suffix
weights) but k is still 121.

The main components of the total MDL cost,
M , l ·KL, l(KL+Hq), and the totalM+l(KL+
Hq) are plotted on Figure 3.

Figure 3: MDL cost components

All models with b ≥ 10 are within the inter-
nal noise of the data, and it takes over 6kb to de-
scribe such a model. However, the bulk of these
bits come from encoding the output strings char-
acter by character – if we assume that Alice and
Bob share a morpheme table, the results improve
a great deal, by over 3,600 bits. If the system rec-
ognizes what we already anticipated in Table 1,

that each string can be expressed as the concate-
nation of a prefix and suffix, encoding the strings
becomes drastically cheaper. Using MDL for seg-
mentation is a well-explored area (see in particular
Goldsmith 2001, Creutz and Lagus 2002, 2005),
and we are satisfied by pointing out that using
the morphemes in the first row and column of
Table 1 we drastically reduce cs, to about 708
bits, below the cost ca of encoding the probabil-
ities. The 3-bit list model providing the MDL op-
timum (dark blue in Figure 2) requires 1,900 bits
with this string encoding, and is noticeably better
than the SRILM bigram/trigram (turquoise) which
takes around 12kb.

By encoding the emissions in a more clever
fashion, we have not changed the structure of the
model: the same states are still linked by the
same arcs carrying the same probabilities, it is just
the state labels that are now encoded differently.
When expressed as a Mealy automaton, a listing
of probabilities corresponds to a two-state WFSA
with as many arcs as we have list elements (in our
case, 121), while the arrangement of Table 1 is
suggestive of a different model, one with 10 prefix
arcs from the initial state to a central ‘hub’ state,
and 16 suffix arcs from this hub to the final state.

We have trained such ‘hub’ models using KL,
Euclidean (L2), and absolute value (L1) minimiza-
tion techniques. Of these, direct minimization of
KL divergence works best, obtaining 0.325 bits at
b = 10, and 0.298 at b = 12 (red and green in Fig-
ure 2). While the difference, about 0.027 bits, is
still perceptible compared to the noise level, with
a signal to noise ratio (SNR) of 8 dB, it simply
does not amortize over the 26 model probabilities
we need to encode. Adding 2 bits for encoding one
value requires a total of adding 52 bits to our spec-
ification ofM, while the gain of the error residual
E, computed over the 121 observed values, is just
2.074 bits. In short, there is not much to be gained
by going from 10 to 12 bits, and we need to look
elsewhere for further compression.
Definition 7. For a weighted language p a model
transform X is learnable in principle (LIP) if (i)
both M and X(M) are part of the hypothesis
space and (ii) the total MDL cost of describing p
by X(M) is significantly below that of describing
p byM.

In a critical sense, LIP is weaker than MDL learn-
ability, since the space itself can be very large, and
testing all hypothetical transforms X that fit the



bill may not be feasible. The difference between
LIP and practical MDL learnability is precisely the
difference between existence proofs and construc-
tive proofs. Our interest here is with the former:
our goal is to demonstrate that structurally sound
models are LIP. So far, we have seen that struc-
turally valid segmentations can be effectively ob-
tained by MDL. Our next task is to show that am-
biguity is LIP.

As linguists, we know that the weakest point of
the hub model is that hogy, accounting for almost
40% of the data, is not just a proquant ‘how’ but
also a subordinating conjunction ‘that’. To encode
this ambiguity, we add another arc emitting hogy
directly. Table 3 compares list models (lines 1-
3, emissions encoded over morphemes rather than
characters), simple hub models (lines 4-6), and
hub models with this extra arc (lines 7-9).

b l M cs ca KLe5 M+E

3 121 1907 705 1202 26800 2289
10 121 2754 705 2049 0.8 3199
12 121 2999 705 2290 0.14 3441
3 26 473 81 392 42343 1305
10 26 662 81 581 32593 1201
12 26 716 81 635 29827 1249
3 27 480 81 400 23094 1052
10 27 676 81 596 11268 1161
12 27 733 81 652 10022 1198

Table 3: Hub models with/out ambiguous hogy

As can be seen from the table, the best model
again takes only 3 bits, but must include the ex-
tra parameter for handling the ambiguity of hogy.
To learn this, at least in principle, without relying
on the human knowledge that drove the heuristic
search, consider the leading terms of the KL error.
Arranging the pi log(pi/qi) in order of decreasing
absolute value we obtain mi 0.0192; minden+ki
0.0175; a+mely 0.0169; mely -0.0147; a+mikor
0.0135; hogy -0.0128; and so forth. Of all the 121
strings we may consider for direct emission, only
hogy is worth adding a separate arc for. Further, if
we repeat the process, adding a second direct arc
never results in sufficient entropy gain compared
to adding hogy alone.

To summarize, list models can approximate the
original data within its inherent noise level, but
incur a very significant MDL cost, even if they
use an efficient string encoding because they keep
many parameters, see the first three lines of Ta-
ble 3 above. The hub models, which build struc-
ture similar to the one used in the string encoding,

recognizing prefixes and suffixes for what they are,
are far more compact, at 470-730 bits, even though
they have a KL error of about .1-.4 bits. Finally,
the hub+ambiguity model, with 27 parameters, re-
duces the total MDL cost to 1052 bits, less than
half of the best list model.

Currently we lack the kind of detailed under-
standing of the description length surface over
the WFSA×stringencoding space that would let
us say with absolute certainty that e.g. the hub
model with ambiguous hogy is the global mini-
mum, and we cannot muster the requisite com-
putational power to exhaustively search the space
of all WFSA with 27 arcs or less. Further gains
could quite possibly made with even cruder quan-
tization, e.g. to n = 6 levels (powers of 2 are
convenient, but not essential for the model), or by
bringing in non-uniform quantization.

On the one hand, we are virtually certain that
the only encoding of emissions worth studying
is the morpheme-based one, since the economy
brought by this is tremendous, 3,600 bits over the
proquants alone, and no doubt further gains else-
where, as we extend the scope to other words that
contain the same morphemes – in this regard, our
findings simply confirm what Goldsmith, Creutz,
Lagus, and others have already demonstrated. On
the other hand, finding the right segmentation is
only the first step, we also need a good model of
the tactics. As we said at the beginning, the en-
coding of arcs and probabilities can to a signifi-
cant extent be independent of the encoding of the
emissions. Here the remarkable fact is that a bet-
ter emission model could to a large extent drive the
search for structuring the WFSA itself.

Given a segmentation of a string α = α1α2, the
hypothesis space includes both a single arc from
some r to some t where we emit α, or the con-
catenation of two arcs r → s and s → t with s
and t emitting α1 and α2 respectively. This brings
in a bit of ambiguity in regards to the distribution
of the probabilities, for if α had weight p the new
arcs could be assigned any values p1, p2 as long as
p1p2 = p, at least if the sum of outgoing proba-
bilities from s remains 1. If s has no other arcs
outgoing than s → t this forces p1 = p, but if
we collapse the intermediate states from several
bimorphemic words, there is room for joint opti-
mization. In our example, collapsing all interme-
diate states in a single ‘hub’ halves the MDL cost.



3 Decomposition

For our next example we consider Hungarian
stem-internal morphotactics. The Analytic Dic-
tionary of Hungarian (Kiss et al 2011) provides,
for each stem like beleilleszt ‘fit in’ an analysis
like preverb+root+suffix wherein bele is one of a
closed set of Hungarian preverbal particles, ill is
the root, and eszt is a verb-forming suffix. There
are six analytic categories: Stem S; sUffix U ;
Preverb P ; root E; Modified M ; and foreIgn I;
so that each stem gets mapped on a string over
Σ = {S,U, P,E,M, I}. We have two weighted
languages: the tYpe-weighted language Y where
each string is counted as many times as there are
word types corresponding to it (so that e.g. for
SUU we have 3,739 stems from ábrándozik ‘day-
dream’ to zuhanyozó ‘shower stall’, and the tOken-
weighted language O where the same pattern has
weight 18,739,068 because these words together
appeared that many times in the Hungarian Web-
corpus (Halácsy et al., 2004).

Since the inherent noise of O is about 0.0474
bits, we are interested in automata that approxi-
mate it within this limit. This is easily achieved
with HMM-like WFSA that have arcs between any
two states, using b = 11 bits or more, the smallest
requiring only 781 bits. For Y the inherent noise is
less, 0.011 bits, and the complete graph architec-
ture, which only has 49 parameters (6 states, plus
arcs from an initial state and arcs to a final state) is
not capable of getting this close to the data, with
the best models, from b = 11 onwards, remain-
ing at KL distance 0.3. The two languages differ
quite markedly in other respects as well, as can be
seen from the fact that the character entropy of O
is 0.933, that of Y is 1.567. Type frequency is not
a good predictor of token frequency: the KL ap-
proximation error of O relative to Y is 2.11 bits.

An important aspect of the MDL calculus is the
treatment of the singularities which arise when-
ever some of the qi in Definition 2 are 0. In the
case at hand, we find both types that are not at-
tested in the corpus, and tokens whose type was
not listed in the Analytic Dictionary, a situation
that would theoretically render it impossible to
compute the KL divergence in either direction. In
practice, tokens with no dictionary type are either
collected in a single ‘unknown’ type or are silently
discarded. Both techniques have merit. The catch-
all ‘unknown’ type can simply be assumed to fol-
low the distribution of the known types, so a model

that captures the data enshrined in the dictionary
should, at least in principle, be also ideal for the
data not seen by the lexicographer. Surprises may
of course lurk in the unseen data, but as long as
coverage is high, say P (unseen)≤ 0.05, surprises
will really be restricted to this 5% of the unseen,
or what is the same, will be at order P 2. In general
we may consider two distributions {pi} and {qi}
as in Definition 2, and compute P =

∑
qi=0 pi,

the proportion of q-singular data in p.

Theorem 3. The total cost L of transmitting an
item from the p-distribution is bound by

L ≤ (1−P )(KL(p, q)+Hq)+P (1+log2 n) (6)

Proof We use, with probability (1 − P ), the q-
based codebook: this will have cost Hq plus the
modeling loss KL(p, q). In the remaining cases
(probability P ) we should use a codebook based
on the q-singular portion of p, but we resort to uni-
form coding at cost log2 n, where n is the number
of singular cases. We need to transmit some infor-
mation as to which codebook is used: this requires
an extra H(P, 1 − P ) ≤ P bits – collecting these
terms gives (6). 2

Theorem 3 gives a principled basis for discard-
ing data within the MDL framework: when P is
small, the second term of (6) can be absorbed in
the noise. To give an example, consider the uni-
gram frequencies listed in columns fO and fY of
Table 4. Some letters are quite rare, in particu-
lar, I makes up less than 0.06% of O and 0.013%
of Y . Columns KLO and KLY show the KL di-
vergence of O and Y from models obtained by by
discarding words containing the letter in question,
columns PO and PY show the weight of the strings
that are getting discarded.

fO PO KLO fY PY KLY
S .7967 .9638 4.7887 .5342 .9122 3.5092
U .1638 .1464 0.2284 .3443 .5699 1.2174
M .0083 .0103 0.0149 .0255 .0623 0.0928
E .0114 .0141 0.0205 .0331 .0804 0.1209
P .0198 .0248 0.0362 .0623 .1531 0.2397
I .0001 .0001 0.0002 .0006 .0010 0.0006

Table 4: Divergence caused by discarding data

In the case of Y , only I can be discarded while
keeping below the inherent noise of the data, but
for O we have three other symbols M, E, and P,
that could be removed. Further, removing both let-
ters M,E only produces a KL loss of 0.036 bits;
removing M, I a loss of 0.015 bits; E, I 0.021



bits; P, I 0.036 bits; and even removing all three
of M,E, I only 0.036 bits.

Figure 4: MS merge-split model

In the case of I , again as linguists we under-
stand quite well what discarding this data means:
we are excluding foreign stems. This is quite jus-
tified, not because foreign words like paperback,
pacemaker or baseball are in any way inferior, but
because their internal analysis is not transparent to
the Hungarian reader (it is telling that the editors
of the Analytic Dictionary coded the stem bound-
ary in paper+back but not in base+ball).

Discarding M , a category that differs from S
only in that the stem undergoes some automatic
morphophonological change such as vowel eli-
sion, is also a sensible step in that the fundamen-
tal morphotactics are not at all affected by these
changes, but how is this learnable, even in princi-
ple? Here we introduce another model transform
called XY merge-split composed of two steps: first
we replace all letters (or strings) X by Y and train
a model, and next we split up the emission states
of Y in the merged model to X and Y -emissions
according to the relative proportions of X and Y
in the original data.

For LIP, the key observation is that models con-
structed by XY merge-split have a transmission
cost composed of two parts, the length of the
smaller merged model (given in black in Figure 2),
plus transmitting the pairX,Y and the probability
of the split, which is exactly the cost of a single
arc, even though the actual split model will have
many more arcs (given in red in Figure 4). Once
this is taken into account, we can systematically
investigate all 6·5 merge-split possibilities. The
results confirm the educated linguistic guess quite

remarkably. The best compression rates are ob-
tained by merging I with any of the minor cate-
gories or, if I is already discarded or merged in,
merging M into S. The smallest O model before
these steps took 781 bits, this is now reduced to
502 bits. If we start by discarding I , and merging
M to S afterwards, this can be reduced to 349 bits.
In the end we merge the morphophonologically af-
fected forms with the ones not so affected not be-
cause our training as linguists tells us we should
do this, but because that is what brevity demands.

4 Conclusions

In this paper we have developed an MDL-based
framework for structure detection based on simple
notions mostly borrowed from signal processing:
quantization noise, inherent noise level, and cut-
offs. Standard n-gram models fare rather poorly
compared either in size or in model accuracy to
the WFSA results obtained here: for example on
the morphotactics data a straight SRILM trigram
model has over 200 parameters and has KL diver-
gence 1.09 bits. Most of the 64 bits per n-gram
parameter are wasted (if we assume only 12 bits
per parameter, the WFSA we use requires only
49 parameters and gets within 0.03 bits of the ob-
served data) and further, the general-purpose back-
off scheme built into SRILM just makes matters
worse.

Similarly, on the proquant data an SRILM bi-
gram model has 175 parameters (including the
26 unigram weights but excluding the backoff
weights), yet it is farther from the data at 64 bits
resolution than our best 27-parameter model at 3
bits. More important, the bigram structure of the
proquant data has to be hand-fed into the standard
model, while the MDL approach can discover this,
together with other linguistically relevant observa-
tions such that hogy was ambiguous.

This is not to say that n-gram models are no
longer competitive, for our current MDL meth-
ods, based on a simulated annealing learner, use
too much CPU and will not scale to the gigaword
regime without much further work. Yet if for-
mal grammar and information theory are to get to-
gether again, as (Pereira, 2000) suggests, we must
direct effort towards recapitulating linguistic prac-
tice, including the ‘dirty’ parts such as discarding
data strategically. The main thrust of the work pre-
sented here is that the data manipulation methods
that are the stock in trade of the descriptive linguist



are LIP, and Universal Grammar is simply a short
list of the permissible model transformations in-
cluding path duplication for ambiguity, state merg-
ing for position class effects, and merge-split for
collapsing categories.

Acknowledgments

We thank Dániel Varga (Prezi) and Viktor Nagy
(Prezi) for the first version of the simulated an-
nealing WFSA learner. Zséder wrote the version
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