
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 66–74,
Sofia, Bulgaria, August 8, 2013. c©2013 Association for Computational Linguistics

Evaluating Neighbor Rank and Distance Measures
as Predictors of Semantic Priming

Gabriella Lapesa
Universität Osnabrück

Institut für Kognitionswissenschaft
Albrechtstr. 28, 49069 Osnabrück

glapesa@uos.de

Stefan Evert
FAU Erlangen-Nürnberg

Professur für Korpuslinguistik
Bismarckstr. 6, 91054 Erlangen

severt@fau.de

Abstract
This paper summarizes the results of a
large-scale evaluation study of bag-of-
words distributional models on behavioral
data from three semantic priming experi-
ments. The tasks at issue are (i) identifi-
cation of consistent primes based on their
semantic relatedness to the target and (ii)
correlation of semantic relatedness with
latency times. We also provide an evalu-
ation of the impact of specific model pa-
rameters on the prediction of priming. To
the best of our knowledge, this is the first
systematic evaluation of a wide range of
DSM parameters in all possible combina-
tions. An important result of the study
is that neighbor rank performs better than
distance measures in predicting semantic
priming.

1 Introduction

Language production and understanding make ex-
tensive and immediate use of world knowledge
information that concerns prototypical events.
Plenty of experimental evidence has been gathered
to support this claim (see McRae and Matzuki,
2009, for an overview). Specifically, a number of
priming studies have been conducted to demon-
strate that event knowledge is responsible for fa-
cilitation of processing of words that denote events
and their participants (Ferretti et al., 2001; McRae
et al., 2005; Hare et al., 2009). The aim of our re-
search is to investigate to which extent such event
knowledge surfaces in linguistic distribution and
can thus be captured by Distributional Semantic
Models (henceforth, DSMs). In particular, we test
the capabilities of bag-of-words DSMs in simu-
lating priming data from the three aforementioned
studies.

DSMs have already proven successful in sim-
ulating priming effects (Padó and Lapata, 2007;

Herdağdelen et al., 2009; McDonald and Brew,
2004). Therefore, in this work, we aim at a more
specific contribution to the study of distributional
modeling of priming: to identify the indexes of
distributional relatedness that produce the best
performance in simulating priming data and to as-
sess the impact of specific model parameters on
such performance. In addition to distance in the
semantic space, traditionally used as an index of
distributional relatedness in DSMs, we also intro-
duce neighbor rank as a predictor of priming ef-
fects. Distance and a number of rank-based mea-
sures are compared with respect to their perfor-
mance in two tasks: the identification of congruent
primes on the basis of distributional relatedness
to the targets (we measure accuracy in picking up
the congruent prime) and the prediction of latency
times (we measure correlation between distribu-
tional relatedness and reaction times). The results
of our experiments show that neighbor rank is a
better predictor than distance for priming data.

Our approach to DSM evaluation constitutes
a methodological contribution of this study: we
use linear models with performance (accuracy or
correlation) as a dependent variable and various
model parameters as independent variables, in-
stead of looking for optimal parameter combina-
tions. This approach is robust to overfitting and
allows to analyze the influence of individual pa-
rameters as well as their interactions.

The paper is structured as follows. Section
2 provides an overview of the modeled datasets.
Section 3 introduces model parameters and in-
dexes of distributional relatedness evaluated in this
paper, describes the experimental tasks and out-
lines our statistical approach to DSM evaluation.
Section 4 presents results for the accuracy and cor-
relation tasks and evaluates the impact of model
parameters on performance. We conclude in sec-
tion 5 by sketching ongoing work and future de-
velopments of our research.
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Dataset Relation N Primec Primei Target Fac

V-N

AGENT 28 Pay Govern Customer 27*
PATIENT 18 Invite Arrest Guest 32*
PATIENT FEATURE 20 Comfort Hire Upset 33*
INSTRUMENT 26 Cut Dust Rag 32*
LOCATION 24 Confess Dance Court - 5

N-V

AGENT 30 Reporter Carpenter Interview 18*
PATIENT 30 Bottle Ball Recycle 22*
INSTRUMENT 32 Chainsaw Detergent Cut 16*
LOCATION 24 Beach Pub Tan 18*

N-N

EVENT-PEOPLE 18 Trial War Judge 32*
EVENT-THING 26 War Gun Banquet 33*
LOCATION-LIVING 24 Church Gym Athlete 37*
LOCATION-THING 30 Pool Garage Car 29*
PEOPLE-INSTRUMENT 24 Hiker Barber Compass 45*
INSTRUMENT-PEOPLE 24 Razor Compass Barber -10
INSTRUMENT-THING 24 Hair Scissors Oven 58*

Table 1: Overview of datasets: thematic relations, number of triples, example stimuli, facilitation effects

2 Data

This section introduces the priming datasets which
are the object of the present study. All the experi-
ments we aim to model were conducted to provide
evidence for the immediate effect of event knowl-
edge in language processing.

The first dataset comes from Ferretti et al.
(2001), who found that verbs facilitate the process-
ing of nouns denoting prototypical participants in
the depicted event and of adjectives denoting fea-
tures of prototypical participants. In what follows,
the dataset from this study will be referred to as
V-N dataset.

The second dataset comes from McRae et al.
(2005). In this experiment, nouns were found to
facilitate the processing of verbs denoting events
in which they are prototypical participants. In this
paper, this dataset is referred to as N-V dataset.

The third dataset comes from Hare et al. (2009),
who found a facilitation effect from nouns to
nouns denoting events or their participants. We
will refer to this dataset as N-N dataset.

Experimental items and behavioral data from
these three experiments have been pooled together
in a global dataset that contains 404 word triples
(Target, Congruent Prime, Incongruent Prime).
For every triple, the dataset contains mean reac-
tion times for the congruent and incongruent con-
ditions, and a label for the thematic relation in-
volved. Table 1 provides a summary of the exper-
imental data. It specifies the number of triples for
every relation in the datasets (N) and gives an ex-
ample triple (Primecongruent , Primeincongruent , Tar-
get). Facilitation effects and stars marking signif-
icance by participants and items reported in the

original studies are also specified for every rela-
tion (Fac). Relations for which the experiments
showed no priming effect are highlighted in bold.

3 Method

3.1 Models

Building on the Distributional Hypothesis (Har-
ris, 1954), DSMs are employed to produce seman-
tic representations of words from patterns of co-
occurrence in texts or documents (Sahlgren, 2006;
Turney and Pantel, 2010). Semantic representa-
tions in the form of distributional vectors are com-
pared to quantify the amount of shared contexts as
an empirical correlate of semantic similarity. For
the purposes of this study, similarity is understood
in terms of topical relatedness (words connected
to a particular situation) rather than attributional
similarity (synonyms and near-synonyms).

DSMs evaluated in this study belong to the class
of bag-of-words models: the distributional vector
of a target word consists of co-occurrence counts
with other words, resulting in a word-word co-
occurrence matrix. The models cover a large vo-
cabulary of target words (27668 words in the un-
tagged version; 31713 words in the part-of-speech
tagged version). It contains the stimuli from the
datasets described in section 2 and further target
words from state-of-the-art evaluation studies (Ba-
roni and Lenci, 2010; Baroni and Lenci, 2011;
Mitchell and Lapata, 2008). Contexts are fil-
tered by part-of-speech (nouns, verbs, adjectives,
and adverbs) and by frequency thresholds. Nei-
ther syntax nor word order were taken into ac-
count when gathering co-occurrence information.
Distributional models were built using the UCS

67



toolkit1 and the wordspace package for R2. The
evaluated parameters are:

– Corpus: British National Corpus3; ukWaC4;
WaCkypedia EN5; WP5006; and a concate-
nation of BNC, ukWaC, and WaCkype-
dia EN (called the joint corpus);

– Window size: 2, 5, or 15 words to the left
and to the right of the target;

– Part of speech: no part of speech tags; part
of speech tags for targets; part of speech tags
for targets and contexts;

– Scoring measure: frequency; Dice coeffi-
cient; simple log-likelihood; Mutual Infor-
mation; t-score; z-score;7

– Vector transformation: no transformation;
square root, sigmoid or logarithmic transfor-
mation;

– Dimensionality reduction: no dimension-
ality reduction; Singular Value Decompo-
sition to 300 dimensions using randomized
SVD (Halko et al., 2009); Random Indexing
(Sahlgren, 2005) to 1000 dimensions;

– Distance measure: cosine, euclidean or
manhattan distance.

3.2 Indexes of Distributional Relatedess
3.2.1 Distance and Rank
The indexes of distributional relatedness described
in this section represent alternative perspectives
on the semantic representation inferred by DSMs
from co-occurrence data.

Given a target, a prime, and a matrix of dis-
tances produced by a distributional model, we test
the following indexes of relatedness between tar-
get and prime:

– Distance: distance between the vectors of
target and prime in the semantic space;

– Backward association: rank of prime
among the neighbors of target, as in Hare et
al. (2009);8

– Forward association: rank of target in the
neighbors of prime;

1http://www.collocations.de/software.html
2http://r-forge.r-project.org/projects/wordspace/
3http://www.natcorp.ox.ac.uk/
4http://wacky.sslmit.unibo.it/doku.php?id=corpora
5http://wacky.sslmit.unibo.it/doku.php?id=corpora
6A subset of WaCkypedia EN containing the initial 500

words of each article, which amounts to 230 million tokens.
7See Evert (2004) for a description of these measures and

details on the calculation of association scores.
8This type of association is labeled as “backward” be-

cause it goes from targets to primes, while in the experimental
setting targets are shown after primes.

– Average rank: average of backward and for-
ward association.

Indexes of distributional relatedness were consid-
ered as an additional parameter in the evaluation,
labeled relatedness index below. Every combi-
nation of the parameters described in section 3.1
with each value of the relatedness index param-
eter defines a DSM. The total number of models
evaluated in our study amounts to 38880.

3.2.2 Motivation for Rank
This section provides some motivation for the use
of neighbor rank as a predictor of priming effects
in DSMs, on the basis of general cognitive princi-
ples and of previous modeling experiments.

In distributional semantic modeling, similar-
ity between words is calculated according to Eu-
clidean geometry: the more similar two words are,
the closer they are in the semantic space. One of
the axioms of spatial models is symmetry (Tver-
sky, 1977): the distance between point a and point
b is equal to the distance between point b and point
a. Cognitive processes, however, often violate the
symmetry axiom. For example, asymmetric asso-
ciations are often found in word association norms
(Griffiths et al., 2007).

Our study also contains a case of asymmetry.
In particular, the results from Hare et al. (2009),
which constitute our N-N dataset, show priming
from PEOPLE to INSTRUMENTs, but not from IN-
STRUMENTs to PEOPLE. This asymmetry can-
not be captured by distance measures for reasons
stated above. However, the use of rank-based in-
dexes allows to overcome the limitation of sym-
metrical distance measures by introducing direc-
tionality (in our case, target→ prime vs. prime→
target), and this without discarding the established
and proven measures.

Rank has already proven successful in model-
ing priming effects with DSMs. Hare et al. (2009)
conducted a simulation on the N-N dataset using
LSA (Landauer and Dumais, 1997) and BEAGLE
(Jones and Mewhort, 2007) trained on the TASA
corpus. Asymmetric priming was correctly pre-
dicted by the context-only version of BEAGLE us-
ing rank (namely, rank of prime among neighbors
of target, cf. backward rank in section 3.2.1).

Our study extends the approach of Hare et al.
(2009) in a number of directions. First, we in-
troduce and evaluate several different rank-based
measures (section 3.2.1). Second, we evaluate
rank in connection with specific parameters and on
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larger corpora. Third, we extend the use of rank-
based measures to the distributional simulation of
two other experiments on event knowledge (Fer-
retti et al., 2001; McRae et al., 2005). Note that
our simulation differs from the one by Hare et al.
(2009) with respect to tasks (they test for a sig-
nificant difference of mean distances between tar-
get and related vs. unrelated prime) and the class
of DSMs (we use term-term models, rather than
LSA; our models are not sensitive to word order,
unlike BEAGLE).

3.3 Tasks and Analysis of Results

The aim of this section is to introduce the exper-
imental tasks whose results will be discussed in
section 4 and to describe the main features of the
analysis we applied to interpret these results.

Two experiments have been carried out:

– A classification experiment: given a target
and two primes, distributional information is
used to identify the congruent prime. Perfor-
mance in this task is measured by classifica-
tion accuracy (section 4.1).

– A prediction experiment: the informa-
tion concerning distributional relatedness be-
tween targets and congruent primes is tested
as a predictor for latency times. Performance
in this task is quantified by Pearson correla-
tion (section 4.2).

Concerning the interpretation of the evaluation re-
sults, it would hardly be meaningful to look at the
best parameter combination or the average across
all models. The best model is likely to be over-
fitted tremendously (after testing 38880 param-
eter settings over a dataset of 404 data points).
Mean performance is largely determined by the
proportions of “good” and “bad” parameter set-
tings among the evaluation runs, which include
many non-optimal parameter values that were only
included for completeness.

Instead, we analyze the influence of individ-
ual DSM parameters and their interactions using
linear models with performance (accuracy or cor-
relation) as a dependent variable and the various
model parameters as independent variables. This
approach allows us to identify parameters that
have a significant effect on model performance
and to test for interactions between the parameters.
Based on the partial effects of each parameter (and
significant interactions) we can select a best model
in a robust way.

This statistical analysis contains some elements
of novelty with respect to the state-of-the-art DSM
evaluation. Broadly speaking, approaches to DSM
evaluation described in the literature fall into two
classes. The first one can be labeled as best model
first, as it implies the identification of the opti-
mal configuration of parameters on an initial task,
considered more basic; the best performing model
on the general task is therefore evaluated on other
tasks of interest. This is the approach adopted, for
example, by Padó and Lapata (2007). In the sec-
ond approach, described in Bullinaria and Levy
(2007; 2012), evaluation is conducted via incre-
mental tuning of parameters: parameters are eval-
uated sequentially to identify the best performing
value on a number of tasks. Such approaches to
DSM evaluation have specific limitations. The
former approach does not assess which parame-
ters are crucial in determining model performance,
since its goal is the evaluation of performance of
the same model on different tasks. The latter ap-
proach does not allow for parameter interactions,
considering parameters individually. Both limita-
tions are avoided in the analysis used here.

4 Results

4.1 Identification of Congruent Prime

This section presents the results from the first task
evaluated in our study. We used the DSMs to iden-
tify which of the two primes is the congruent one
based on their distributional relatedness to the tar-
get. For every triple in the dataset, the different in-
dexes of distributional relatedness (parameter re-
latedness index) were used to compare the associ-
ation between the target and the congruent prime
with the association between the target and the in-
congruent prime. Accuracy of DSMs in picking up
the congruent prime was calculated on the global
dataset and separately for each subset.9

Figure 1 displays the distribution of the accu-
racy scores of all tested models in the task, on the
global dataset. All accuracy values are specified
as percentages. Minimum, maximum, mean and
standard deviation of the accuracy values for the
global dataset and for the three subsets are dis-
played in table 2.

The mean performance on N-N is lower than on

9The small number of triples for which no prediction
could be made because of missing words in the DSMs were
considered mistakes. The coverage of the models ranges from
97.8% to 100% of the triples, with a mean of 99%.
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Figure 1: Identification of congruent prime: distri-
bution of accuracy (%) for global dataset

Dataset Min Max Mean σ

Global 50.2 96.5 80.2 9.2
V-N 45.8 95.8 80.0 8.4
N-V 49.1 99.1 82.7 9.7
N-N 47.6 97.6 78.7 10.0

Table 2: Identification of congruent prime: mean
and range for global dataset and subsets

N-V and slightly lower than on V-N. This effect
may be interpreted as being due to mediated prim-
ing, as no verb is explicitly involved in the N-N
relationship. Yet, the relatively high accuracy on
N-N and its relatively small difference from N-V
and V-N does not speak in favor of a different un-
derlying mechanism responsible for this effect. In-
deed, McKoon and Ratcliff (1992) suggested that
effects traditionally considered as instances of me-
diated priming are not due to activation spreading
through a mediating node, but result from a direct
but weaker relatedness between prime and target
words. This hypothesis found computational sup-
port in McDonald and Lowe (2000).10

4.1.1 Model Parameters and Accuracy
The aim of this section is to assess which param-
eters have the most significant impact on the per-
formance of DSMs in the task of identification of
the congruent prime.

We trained a linear model with the eight DSM
parameters as independent variables (R2 = 0.70)
and a second model that also includes all two-way
interactions (R2 = 0.89). Given the improvement
in R2 as a consequence of the inclusion of two-way
interactions in the linear model, we will focus on
the results from the model with interactions. Table
3 shows results from the analysis of variance for

10The interpretation of the N-N results in terms of spread-
ing activation is also rejected by Hare et al. (2009, 163).

the model with interactions. For every parameter
(and interaction of parameters) we report degrees
of freedom (df ), percentage of explained variance
(R2), and a significance code (signif ). We only
list significant interactions that explain at least 1%
of the variance. Even though all parameters and
many interactions are highly significant due to the
large number of DSMs that were tested, an analy-
sis of their predictive power in terms of explained
variance allows us to make distinctions between
parameters.

Parameter df R2 signif
corpus 4 7.44 ***
window 2 4.39 ***
pos 2 0.92 ***
score 5 7.39 ***
transformation 3 3.79 ***
distance 2 22.20 ***
dimensionality reduction 2 10.52 ***
relatedness index 3 13.67 ***
score:transformation 15 4.53 ***
distance:relatedness index 12 2.24 ***
distance:dim.reduction 4 2.16 ***
window:dim.reduction 4 1.73 ***

Table 3: Accuracy: Parameters and interactions

Results in table 3 indicate that distance, dimen-
sionality reduction and relatedness index are the
parameters with the strongest explanatory power,
followed by corpus and score. Window and trans-
formation have a weaker explanatory power, while
pos falls below the 1% threshold. There is a
strong interaction between score and transforma-
tion, which has more influence than one of the in-
dividual parameters, namely transformation.

Figures 2 to 7 display the partial effects of dif-
ferent model parameters (pos was excluded be-
cause of its low explanatory power). One of the
main research questions behind this work was
whether neighbor rank performs better than dis-
tance in predicting priming data. The partial ef-
fect of relatedness index in Figure 6 confirms our
hypothesis: forward rank achieves the best perfor-
mance, distance the worst.11

Accuracy improves for models trained on big-
ger corpora (parameter corpus, figure 2; corpora
are ordered by size) and larger context windows
(parameter window, figure 3). Cosine is the best
performing distance measure (figure 4). Interest-
ingly, dimensionality reduction is found to neg-
atively affect model performance: as shown in
figure 7, both random indexing (ri) and singular

11Backward rank is equivalent to distance in this task.
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Figure 5: Score + Transformation
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value decomposition (rsvd) cause a decrease in
predicted accuracy.

Because of the strong interaction between score
and transformation, only their combined effect
is shown (figure 5). Among the scoring mea-
sures, stochastic association measures perform
better than frequency: in particular log-likelihood
(simple-ll), z-score and t-score are the best mea-
sures. We can identify a general tendency of trans-
formation to lower accuracy. This is true for all
scores except log-likelihood: square root and (to a
lesser extent) logarithmic transformation result in
an improvement for this measure.

Figure 8 displays the interaction between the
parameters distance and dimensionality reduction.
Despite a general tendency for dimensionality re-
duction to lower accuracy, we found an interac-
tion between cosine distance and singular value
decomposition: in this combination, accuracy re-
mains stable and is even minimally higher com-
pared to no dimensionality reduction.
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Figure 8: Distance + Dimensionality Reduction

4.2 Correlation to Reaction Times

The results reported in section 4.1 demonstrate
that forward rank is the best index for identifying
which of the two primes is the congruent one. The
aim of this section is to find out whether rank is
also a good predictor of latency times. We check
correlation between distributional relatedness and
reaction times and evaluate the impact of model
parameters on this task.

Figure 9 displays the distribution of Pearson
correlation coefficient achieved by the different
DSMs on the global dataset.

0
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0.0 0.1 0.2 0.3 0.4 0.5

Figure 9: Distribution of Pearson correlation be-
tween relatedness and RT in the global dataset

Figure 9 shows that the majority of the models
perform rather poorly, and that only few models
achieve moderate correlation with RT. DSM per-
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formance in the correlation task appears to be less
robust to non-optimal parameter settings than in
the accuracy task (cf. figure 1).

Minimum, maximum, mean and standard devi-
ation correlation for the global dataset and for the
three evaluation subsets are shown in table 4. In all
the cases, absolute correlation values are used so
as not to distinguish between positive and negative
correlation.

Dataset Min Max Mean σ

Global -0.26 0.47 0.19 0.10
V-N -0.34 0.57 0.2 0.12
N-V -0.35 0.41 0.11 0.06
N-N -0.29 0.42 0.16 0.09

Table 4: Mean and range of Pearson correlation
coefficients on global dataset and subsets

4.2.1 Model Parameters and Correlation
In this section we discuss the impact of differ-
ent model parameters on correlation with reaction
times.

We trained a linear model with absolute Pearson
correlation on the global dataset as dependent vari-
able and the eight DSM parameters as independent
variables (R2 = 0.53), and a second model that in-
cludes two-way interactions (R2 = 0.77). Table
5 is based on the model with interactions; it re-
ports the degrees of freedom (df ), proportion of
explained variance (R2) and a significance code
(signif ) for every parameter and every interaction
of parameters (above 1% of explained variance).

Parameter df R2 signif
corpus 4 7.45 ***
window 2 0.47 ***
pos 2 0.20 ***
score 5 3.03 ***
transformation 3 3.52 ***
distance 2 4.27 ***
dimensionality reduction 2 10.57 ***
relatedness index 3 23.40 ***
dim.reduction:relatedness index 6 5.21 ***
distance:dim.reduction 4 4.11 ***
distance:relatedness index 6 3.77 ***
score:transformation 15 3.22 ***
score:relatedness index 15 1.37 ***

Table 5: Correlation: Parameters and interactions

Relatedness index is the most important param-
eter, followed by dimensionality reduction and
corpus. The explanatory power of the other pa-
rameters (score, transformation, distance) is lower
than for the accuracy task, and two parameters
(window and pos) explain less than 1% of the vari-
ance each. By contrast, the explanatory power of

interactions is higher in this task. Table 5 shows
the five relevant interactions with an overall higher
R2 compared to the accuracy task (cf. table 3).

The partial effect plot for relatedness index (fig-
ure 14) confirms the findings of the accuracy task:
forward rank is the best value for this parameter.
The best values for the other parameters, however,
show opposite tendencies with respect to the accu-
racy task. Models trained on smaller corpora (fig-
ure 10) perform better than those trained on big-
ger ones. Cosine is still the best distance measure,
but manhattan distance performs equally well in
this task (parameter distance, figure 12). Singu-
lar value decomposition (parameter dimensional-
ity reduction, figure 15) weakens the correlation
values achieved by the models, but no significant
difference is found between random indexing and
the unreduced data.

Co-occurrence frequency performs better than
statistical association measures and transforma-
tion improves correlation: figure 13 displays the
interaction between these two parameters. Trans-
formation has a positive effect for every score, but
the optimal transformation differs. Its impact is
particularly strong for the Dice coefficient, which
reaches the same performance as frequency when
combined with a square root transformation.

Let us conclude by discussing the interaction
between distance and dimensionality reduction
(figure 16). Based on the partial effects of the indi-
vidual parameters, any combination of manhattan
or cosine distance with random indexing or no di-
mensionality reduction should be close to optimal.
However, the interaction plot reveals that manhat-
tan distance with random indexing is the best com-
bination, outperforming the second best (cosine
without dimensionality reduction) by a consider-
able margin. The positive effect of random index-
ing is quite surprising and will require further in-
vestigation.
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Figure 16: Distance + Dimensionality Reduction
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Figure 13: Score + Transformation
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5 Conclusion

In this paper, we presented the results of a large-
scale evaluation of distributional models and their
parameters on behavioral data from priming ex-
periments. Our study is, to the best of our knowl-
edge, the first systematic evaluation of such a wide
range of DSM parameters in all possible combina-
tions. Our study also provides a methodological
contribution to the problem of DSM evaluation.
We propose to apply linear modeling to determine
the impact of different model parameters and their
interactions on the performance of the models. We
believe that this type of analysis is robust against
overfitting. Moreover, effects can be tested for
significance and various forms of interactions be-
tween model parameters can be captured.

The main findings of our evaluation can be sum-
marized as follows. Forward association (rank of
target among the nearest neighbors of the prime)
performs better than distance in both tasks at is-
sue: identification of congruent prime and correla-
tion with latency times. This finding confirms and
extends the results of previous studies (Hare et al.,
2009). The relevance of rank-based measures for
cognitive modeling is discussed in section 3.2.2.

Identification of congruent primes on the ba-
sis of distributional relatedness between prime and
target is improved by employing bigger corpora
and by using statistical association measures as
scoring functions, while correlation to reaction
times is strengthened by smaller corpora and co-

occurrence frequency or Dice coefficient. A sig-
nificant interaction between transformation and
scoring function is found in both tasks: consider-
ing the interaction between these two parameters
turned out to be vital for the identification of opti-
mal parameter values.

Some preliminary analyses of individual the-
matic relations showed substantial improvements
of correlations. Therefore, future work will focus
on finer-grained linear models for single relations
and on further modeling of reaction times, extend-
ing the study by Hutchinson et al. (2008).

Further research steps also include an evalua-
tion of syntax-based models (Baroni and Lenci,
2010; Padó and Lapata, 2007) and term-document
models on the tasks tackled in this paper, as well
as an evaluation of all models on standard tasks.
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